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Abstract

In this thesis we explore Bell inequalities, a class of inequalities that hold for
random variables taking values in {1,−1}, and the degree to which these can
be violated by the results of quantum measurements. We first provide some
background knowledge in linear algebra and quantum measurement and prove
some preliminary results used in this thesis. The remainder of the thesis can be
divided into two parts. In the first part we formally define Bell inequalities and
quantify the degree to which they can be violated using the largest violation.
Our treatment is based on chapter 5 of [2]. Compared to [2] we provide original
proofs of several facts stated without proof in [2] and fill in some details in
existing proofs. There are well-known Bell inequalities with a largest violation
of
√

2 and theoretical results showing that Bell inequalities with greater largest
violation should exist. In the second part of this thesis we address the question
of whether we can explicitly find Bell inequalities with a largest violation greater
than

√
2. We attempt to find these Bell inequalities by approximating largest

violations using optimization algorithms.

Correlation matrices

Central to the topic of Bell inequalities is the concept of correlation matrices.
An N×N matrix γ = (γi,j)

N
i,j=1 is a correlation matrix if it is of the form γi,j =

E(PiQj). Here P1, . . . PN are the measurement results from N measurements on
some fixed physical system in some fixed state. Similarly, Q1, . . . , QN are the
results from N measurements on a second fixed physical system. Furthermore, E
denotes the expectation. We consider measurements with outcomes in {1,−1}.

We mainly consider two types of correlation matrices. The first type of cor-
relation matrices, called classical correlation matrices, are those for which the
two physical systems and the possible measurements are viewed according to a
local hidden variable model. This means that all the measurement outcomes Pi
and Qj can be described as random variables on a single probability space. The
second type are the quantum correlation matrices, for which the physical sys-
tems and the measurements are described by quantum measurement. We note
that we only consider physical systems described by finite dimensional Hilbert
spaces, so it would be more accurate to call these correlation matrices quantum
correlation matrices of finite dimensional observables. We will refer to these
simply as quantum correlation matrices. We write LN for the set of classical
correlation matrices of size N ×N and QN for the set of quantum correlation
matrices (of finite dimensional observables) of size N ×N .

We prove that LN is a convex set spanned by a finite set of points, or in
other words a polytope. The matrices that span LN are those with entries of
the form γi,j = tisj , where ti, sj ∈ {1,−1}. We have dubbed these matrices
deterministic correlation matrices, since these are exactly the matrices obtained
when the measurement outcomes Pi and Qj are deterministic. We also prove
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some properties of QN , with main results being that QN is convex and that
LN ⊆ QN . Our proof of this last fact is based on a proof provided in [2].

Bell inequalities and largest violation

We define Bell inequalities as follows. Given an N × N matrix with real en-

tries M and a non-negative constant C,
∣∣∣∑N

i,j=1Mi,jγi,j

∣∣∣ ≤ C is called a Bell

inequality if it holds for all N × N classical correlation matrices γ. A central
question we address is to what degree a Bell inequality can be violated if we
instead allow γ to be a quantum correlation matrix. To this end we introduce,
given an N ×N matrix M , its classical value

ω(M) = sup
γ∈LN

∣∣∣∣∣∣
N∑

i,j=1

Mi,jγi,j

∣∣∣∣∣∣
and its quantum value

ω∗(M) = sup
γ∈QN

∣∣∣∣∣∣
N∑

i,j=1

Mi,jγi,j

∣∣∣∣∣∣.
Their ratio, the largest violation LV (M) = ω∗(M)

ω(M) , is our measure for the largest

possible violation of a Bell inequality associated with M . Since LN ⊆ QN ,
LV (M) ≥ 1 for any (non-zero) matrix M .

We prove that classical values can be calculated by taking the supremum (or
maximum) over all deterministic correlation matrices of appropriate size, rather
than all classical correlation matrices. This makes it possible to calculate a clas-
sical value by comparing a finite number of values. The calculation of a quan-
tum value is also simplified by using an alternative (but equivalent) definition
for quantum correlation matrices. This equivalent definition states that γ is a
quantum correlation matrix if and only if its entries have the form γi,j = 〈xi, yj〉
with xi, yj unit vectors in some real Hilbert space H. The equivalence of these
definitions is known as Tsirelson’s theorem which we prove. Our proof is based
on a proof in [2] with us filling in some details. We also prove that there are some
optional restrictions on the Hilbert space H, which gives additional equivalent
definitions. H can be restricted to be finite-dimensional. Instead of an arbitrary
real Hilbert space H, Rn for arbitrary n ∈ N gives an equivalent definition. It
is also possible to replace H by RN+1.

For the matrix MCHSH =

(
1 1
1 −1

)
we prove that ω(MCHSH) = 2 and

ω∗(MCHSH) = 2
√

2, which implies LV (MCHSH) =
√

2. The associated Bell
inequality is known as the CHSH-inequality.
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Using the alternative definition from Tsirelson’s theorem and the fact that ω(M)
can be calculated by only considering deterministic correlation matrices, it fol-
lows from a theorem known as Grothendieck’s theorem, that LV (M) is bounded
when considering all square matrices with real entries M . The supremum of
LV (M) over all these matrices M is known as Grothendieck’s constant KG. No
exact value is known forKG, but 1.67696 and π

2 log(1+
√

2)
≈ 1.7822139781 are the

current best lower and upper bounds on KG. We do not prove Grothendieck’s
theorem or these bounds.

Optimization algorithms

We aim to improve on the CHSH-Inequality, by finding an explicit matrix
with largest violation exceeding

√
2. We do this by using optimization algo-

rithms. Given a matrix M we calculate its classical value exactly by comparing∣∣∣∑N
i,j=1Mi,jtisj

∣∣∣ for all different ti, sj ∈ {1,−1} (omitting some combinations

that always give duplicate results). This process of calculating classical values
has a runtime that scales exponentially with the matrix size N , increasing by
approximately a factor 4 when N is increased by 1. Quantum values are ap-
proximated from below using an optimization algorithm. For fixed dimension n,
the vectors xi, yj are taken in Rn and

∑N
i,j=1Mi,j 〈xi, yj〉 is optimized. For an

N×N matrix M , if we choose n = N+1, then sup
∑N
i,j=1Mi,j 〈xi, yj〉 = ω∗(M)

with the supremum taken over unit vectors xi, yj ∈ Rn. Therefore, if we choose
n = N + 1, the optimization algorithm will approximate ω∗(N). Choosing
n < N + 1 will improve the runtime of the algorithm, but the result might be
approximating a value smaller than ω∗(M). To ensure that the vectors have
unit length, they are expressed using spherical coordinates with radius fixed at
1. The angles are allowed to vary and are used as the variables for the opti-
mization algorithm. For matrices with known quantum values, such as MCHSH ,
the optimization procedure provides accurate lower bounds (accurate to 11 dec-
imal places for MCHSH). LV (M) is approximated from below by dividing the
approximation of ω∗(M) by the exact value of ω(M).

For fixed N , (our approximation of) LV (M) is maximized for N ×N matrices
M . This is done by using a second layer of optimization, this time using the
entries of M as variables. This should provide a lower bound for KN , which
is defined in the same way as KG only with matrix size fixed at N × N , and
for KG itself. The results of the second layer of optimization depend strongly
on the starting values and do not always give an accurate approximation of
KN . Therefore trying several different starting values for the second layer of
optimization is advised. The runtime of the algorithm increases drastically in
terms of the matrix size N and the vector dimension n. Therefore we were
only able to run it for N ≤ 5 when n = N + 1. Choosing smaller n allows
to increase N further, up to N = 10 when n = 3. No matrices with largest
violation exceeding

√
2 were found using this procedure.
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Further research

We looked at articles [5] and [4] for inspiration, hoping to find explicit ma-
trices with largest violation exceeding

√
2 to use as starting points for further

investigation. [5] provides lower bounds for a variation on KG where the vec-
tor dimension n is fixed in the equivalent definition of quantum value from
Tsirelson’s theorem. The matrices used in proving these lower bounds are dif-
ficult to construct explicitly and possibly very large. We have therefore judged
them to be unsuitable for finding improvements on them using numerical meth-
ods. [4] provides a method of constructing matrices M of which LV (M) can be
determined exactly. The smallest matrix provided with largest value exceeding√

2 is of size 20×20. Since this proves K20 >
√

2, the matrix provided in [4] can
be used as a starting point to find matrices with even greater largest violation.
This can be done by making small adjustments to the matrix provided. 20×20
matrices are too large for our algorithms to calculate classical and quantum val-
ues in a reasonable amount of time. If a faster approximation procedure or more
powerful hardware is available, we recommend investigating 20×20 matrices to
possibly improve on the lower bound for K20.
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1 Introduction

According to the theory of quantum mechanics, the state of a physical system
can be described using a wave function. The standard interpretation is that this
wave function fully specifies the state of the system. Despite this, the theory
tells us that even if the wave function describing the physical state of a system is
known, the outcomes of measurements performed on the system will in general
be random. In other words, the randomness in the measurement outcomes is
not caused by lack of information about the state of the system, but is some-
how inherent in nature. This makes quantum mechanics a non-deterministic
theory. Many consider the non-deterministic nature of quantum mechanics to
be counterintuitive. In addition to this, quantum mechanics has another coun-
terintuitive quality. According to quantum mechanics it is possible to seperate
two physical systems over an arbitrary distance and by interacting with the first
system, instantly cause changes in the second system. The intuitive belief that
it should not be possible to instantaneously cause changes in a physical system
from a large distance is known as locality, and this belief is violated by quantum
mechanics.

The counterintuitive nature of quantum mechanics has led to skepticism towards
the theory and alternative theories have been formulated. Among these are
hidden variable models. According to these models, quantum mechanics offers
an incomplete description of reality. In other words, the wave function provides
some but not all information about the state of a system. There exist certain
hidden variables that would provide the missing information. The randomness
of measurement outcomes is not inherent in nature, but a consequence of not
knowing the hidden variables. When combined with the assumption of locality,
these models are known as local hidden variable models and aim to provide an
interpretation of quantum mechanics that satisfies the principles of determinism
and locality.

Bell has shown that the assumption of a local hidden variable model implies
that measurement outcomes must satisfy certain probabilistic inequalities, now
known as Bell inequalities. These inequalities are, however, inconsistent with
possible measurement outcomes as predicted by quantum mechanics. A well-
known example of a Bell inequality is the CHSH-inequality. It states that, given
four random variables Q,R, S, T on a single probability space taking values 1
or −1, the following inequality holds:

|E(QS) + E(RS) + E(RT )− E(QT )| ≤ 2.

Under the assumption of a local hidden variable model, this inequality must
hold if Q and R are the outcomes of measurements performed on some physical
system and S and T are outcomes of measurements performed on a second
physical system (all taking values ±1). Quantum mechanics predicts that it
is theoretically possible to violate the CHSH-inequality in situations where it
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should hold according to a local hidden variable model. Experiments have
shown that the CHSH-inequality can also be violated in practice. In fact the
CHSH-inequality is the Bell inequality usually used in experiments.

Experiments regarding the violation of the CHSH-inequality by quantum mea-
surement generally have the following setup. A source generates pairs of photons
in a fixed state. The two photons in such a pair are the physical systems. Each
of the photons encounters a polarizer, which allows the photon to enter one
of two channels. A detector detects when a photon passes through one of the
channels. By assigning the value 1 to one of the channels and −1 to the other,
the detection of which channel a photon went through becomes a measurement
with outcomes taking values ±1. By varying the orientation of the polarizers,
different measurements can be obtained. Measurements on the first photon us-
ing two specific orientations for the first polarizer can be associated with the
measurement outcomes Q and R for the first physical system. Similarly, two
orientations for the second polarizer can be associated with the measurement
outcomes S and T . Under this identification, the CHSH-inequality can be tested
experimentally using this setup.

During experiments each expectation on the left-hand side of the CHSH-inequality
is approximated by the average of the measurement outcomes and a sufficiently
large sample size is needed before drawing conclusions regarding the violation
of the CHSH-inequality. Even with a sufficiently large sample size, the ap-
proximation of the expectations by measurement averages might not always be
considered justified, leading to so-called loopholes that bring the validity of the
experiment in question. To give some examples:

• Since not each pair of photons is successfully detected, the question arises
if the detected pairs are an adequate sample for approximating the expec-
tations, leading to the detection loophole.

• If the measurements on the two photons are performed too close to each
other, the measurement of one photon can influence the outcome of the
measurement on the other photon, even with the assumption of locality.
This leads to the locality loophole.

• Measurements on subsequent pairs of photons might not be independent,
which leads to the memory loophole.

Closing off loopholes such as these presents experimental challenges, which is
why many experiments have been performed in an attempt to close off as many
loopholes as possible. While the first experiment regarding the CHSH-inequality
dates back to a 1982 experiment by Alain Aspect in Orsay [6], the first significant
experiments addressing all three of the loopholes we mentioned took place in
2015, including an experiment by Robert Hanson et. al. in Delft [7], which
shows that closing these loopholes is no easy task.

2



Bell inequalities also raise some interesting theoretical questions. Knowing that
Bell inequalities can be violated by measurement outcomes in quantum me-
chanics, the question arises to what degree Bell inequalities can be violated
in quantum mechanics. The degree to which a particular Bell inequality can
be violated, can be expressed using a quantity known as the largest violation.
Generic Bell inequalities are similar in form to the CHSH-inequality and the
largest violation is the fraction between the largest value the left-hand side
can attain under assumption of quantum mechanics and the largest value it
can attain under assumption of a local hidden variable model. For the CHSH-
inequality, these values are 2

√
2 and 2 respectively, leading to a largest violation

of
√

2. Theoretical results show that Bell inequalities with even greater largest
violation must exist. In this thesis we address the question of whether we can
find explicitly Bell inequalities with a largest violation exceeding

√
2. Such Bell

inequalities with a greater largest violation could prove useful experimentally,
as they would allow for a greater margin of error. There is, however, a good
chance that Bell inequalities with largest violation greater than

√
2 are signifi-

cantly more complicated and more difficult to build experiments around.

Chapters 2 and 3 of this thesis are meant to provide some background knowledge
for the remainder of this thesis, with chapter 2 focusing on linear algebra and
chapter 3 on quantum measurement. Chapter 2 also contains the proofs of some
preliminary results in linear algebra used in the rest of this thesis. Chapters 2
and 3 can be skipped without loss of continuity and used as reference material
when necessary. The remainder of this thesis consists of two parts.

The first part is a theoretical treatment on Bell inequalities based on chapter 5 of
[2], but with additional proofs of facts stated in [2] without proof. Chapter 4 in-
troduces and defines Bell inequalities informally and treats the CHSH-inequality
as an example of a Bell inequality. In chapters 5 and 6 we introduce and prove
properties of classical correlation matrices and quantum correlation matrices,
which are needed to formally define Bell inequalities. In chapter 7 we formally
define Bell inequalities, define the largest violation of a matrix as a way to quan-
tify the violation of a Bell inequality and show that the matrix associated with
the CHSH-inequality has a largest violation of

√
2. In this chapter we also state

Grothendieck’s theorem, which provides a bound on the largest violation.

In the second part we attempt to find explicit matrices (which represent Bell
inequalities), with a largest violation exceeding

√
2. We mainly do this using

optimization algorithms, but also look at literature to assist in our search. In
chapter 8 we explain our method to approximate the largest violation of a
matrix. In chapter 9 we explain our method to maximize the largest violation
and discuss our results in trying to find a matrix with largest violation exceeding√

2. In chapter 10 we discuss two articles we looked into to assist in finding
matrices with largest violation exceeding

√
2. In chapter 11 we draw conclusions

regarding our research.
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2 Linear algebra

This section will first state some of the definitions and theorems (without proof)
from linear algebra that are relevant to the contents of this thesis. A more
complete treatment of this topic can be found in [1] or most textbooks on
linear algebra. In particular we will introduce tensor products. More on tensor
products can be found in [1] or [3]. Afterwards we will state and prove a number
of more specific theorems from linear algebra that will be used to prove some
results in the remainder of this thesis.

Definition 2.1. Inner Product Space. An inner product space is a vector space
V over a field F , where F is equal to R or C with an operation 〈·, ·〉 : V ×V → F
called the inner product satisfying the following properties for all x, y, z ∈ V
and a ∈ F :

〈x, y〉 = 〈y, x〉∗ (1)

where a∗ denotes the complex conjugate of a. This is called conjugate symmetry.
We also have:

〈x, ay〉 = a 〈x, y〉 (2)

and

〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 . (3)

The above two equations express that the inner product is linear in its second
argument. Lastly we have:

〈x, x〉 > 0 (4)

where the last equation holds for non-zero x ∈ V and expresses that the inner
product is positive-definite.

Remark. If an operation 〈·, ·〉 : V × V → F satisfies all the requirements to be
an inner product, except the last requirement is replaced by:

〈x, x〉 ≥ 0 (5)

for all x ∈ V and there exist 0 6= x ∈ V such that 〈x, x〉 = 0, then this operation
is called a degenerate inner product. To stress that 〈x, x〉 = 0 only holds when
x = 0 for inner products, inner products are sometimes called non-degenerate
inner products.

Remark. We note that the (possibly degenerate) inner product as defined above
satisfies the following properties for all x, y, z ∈ V and a ∈ F :

〈ax, y〉 = a∗ 〈x, y〉 (6)

and
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〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 . (7)

This is called conjugate linearity in its first argument. It is also common to
define the inner products to be linear in its first argument making it conjugate
linear in its second argument. The definition we use, with linearity in the second
argument, is standard in the context of quantum mechanics.

Definition 2.2. 2-norm. On an inner product space V the 2-norm is defined
as ‖x‖2 =

√
〈x, x〉. This is a norm on V and d(x, y) = ‖x− y‖2 defines the

associated metric on V .

Remark. Unless otherwise specified, whenever we view an inner product space
V as a metric space (such as when discussing convergence) the metric used will
be the metric associated with the 2-norm on V .

Theorem 2.1. Cauchy-Schwarz inequality. Let V be an inner product space
over R or C, then for all v, w ∈ V the following inequality holds:

|〈v, w〉| ≤ ‖v‖2‖w‖2. (8)

Definition 2.3. Isomorphism. An isomorphism, or unitary map, between inner
product space V and W (both over the same field R or C) is a bijective linear
map F : V →W such that for all scalars v1, v2 ∈ V :

〈Fv1, Fv2〉 = 〈v1, v2〉 . (9)

So F preserves the inner product and as a consequence F also preserves norms:

‖Fv‖2 = ‖v‖2 (10)

for all v ∈ V .

Remark. If F : V →W is an isomorphism, then so is F−1 : W → V .

As the following remark and theorem state, finite dimensional inner product
spaces can be described using Rn or Cn.

Remark. Suppose V is an inner product space over F , where F is R or C, with
finite dimension n. Let B = {b1, . . . , bn} be a basis of V . Then any vector
v ∈ V can be uniquely written as v =

∑n
i=1 cibi with ci ∈ F . The vector

(ci)
n
i=1 ∈ Fn is called the representation of v with respect to the basis B. This

representation respects addition and scalar multiplication, so the representation
of a sum of vectors vj is the sum of the representations of those vectors vj and
the representation of a scalar multiple of a vector v is the scalar multiple of the
representation of v. If B is an orthonormal basis (so all elements in the basis
are orthogonal to each other and have norm equal to 1), then the inner product
of two vectors v, w ∈ V is the same as the inner product of their representations
in Fn. An orthonormal basis can always be obtained from a given basis using
the Gram-Schmidt process.
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Theorem 2.2. Suppose V,W are inner product spaces over F , where F is R
or C, with finite dimensions n and m respectively. Let A : V → W be a linear
operator. If we fix bases for V and W , then A can be uniquely represented by an
m×n matrix (ai,j)(i,j)∈{1,...,m}×{1,...,n} with entries in F . Multiplication by this
matrix will map the representation of v ∈ V to the representation of Av ∈ W
using the previously fixed bases.

Indeed we see that vectors in finite dimensional inner product spaces, the inner
products on these spaces and linear operators between these spaces can all be
expressed using elements of Fn, the standard inner products on Fn and matrices
with entries in F (where F is equal to R or C).

Definition 2.4. Hilbert space. A Hilbert space is a complete inner product
space, so an inner product space where all Cauchy sequences converge.

Remark. We note that any finite-dimensional inner product space is complete
and therefore a Hilbert space.

Definition 2.5. Adjoint. Given an inner product space V with inner product
〈·, ·〉, the adjoint of a linear operator A : V → V is defined as the unique operator
A† which satisfies 〈v,Aw〉 =

〈
A†v, w

〉
for all v, w ∈ V .

Remark. The adjoint is conjugate linear in the sense that if V is an inner prod-
uct space and A1, . . . , An are operators on V and a1, . . . , an are scalars, then

(
∑n
i=1 aiAi)

†
=
∑n
i=1 a

∗
iA
†
i . We also note that (A†)† = A for any operator A.

Lastly if A and B are linear operators on a vector space V , then (AB)† = B†A†.

Remark. If V is a finite dimensional inner product space over R or C, a linear
operator A : V → V has a matrix representation with respect to a given basis of
V and the matrix representation of A† is given by the transpose of the complex
conjugate of the matrix representation of A.

Definition 2.6. Normal. A linear operator A is called normal if AA† = A†A.

Definition 2.7. Self-adjoint. A linear operator A is called self-adjoint if A† =
A.

Remark. A linear operator A on a finite dimensional inner product space V over
R or C is self-adjoint if and only if its matrix representation with respect to a
given basis of V is Hermitian (equal to the transpose of its complex conjugate).

Definition 2.8. Positive. A linear operator A is called positive if 〈v,Av〉 ≥ 0
for all v ∈ V .

Remark. If A is a positive operator and a ≥ 0 a scalar, then aA is a positive
operator.

Definition 2.9. Projector. Let V be a d-dimensional vector space (over R or
C) and W ⊆ V a k-dimensional subspace of V . It is possible to construct an
orthonormal basis B = {b1, . . . , bd} such that {b1, . . . , bk} is a basis for W . The
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projector P onto the subspace W is defined by P
(∑d

i=1 cibi

)
=
∑k
i=1 cibi (with

ci in R or C as appropriate). This definition is independent of the chosen basis
and P is a linear operator.

Theorem 2.3. Spectral decomposition. Let V be a finite dimensional vector
space and M a normal operator on V . There exists an orthonormal basis for
V such that M is diagonal with respect to this basis. This basis consists of
eigenvectors of M . Let {λi} be the set of eigenvalues of M , then M =

∑
i λiPi,

where Pi is the projector onto the eigenspace of M associated with the eigenvalue
λi.

Definition 2.10. Operator norm. Given a linear operator A : V → V , the
norm of A can be defined as:

‖A‖ = sup
v∈V,v 6=0

‖Av‖2
‖v‖2

(11)

when the supremum in (11) is finite.

Remark. This defines a norm on the space of linear operators A : V → V for
which the supremum in (11) is finite.

Definition 2.11. Trace. The trace of a linear operator A : V → V , where
V is a finite dimensional inner product space is defined as follows. A can be
represented by a matrix (ai,j)

n
i,j=1 with respect to some basis of V and the

trace tr(A) of A is defined as the sum of all the elements on the diagonal of that
matrix: tr(A) =

∑n
i=1 ai,i.

Remark. This definition turns out to be independent from the chosen basis, so
the trace of a linear operator is well-defined. If the chosen basis {v1, . . . , vn} of
V is orthonormal, then the trace of a linear operator A is given by:

tr(A) =

n∑
i=1

〈vi, Avi〉 . (12)

Remark. The trace is linear, so if V is an inner product space and A1, . . . , An are
operators on V and a1, . . . , an are scalars, then tr (

∑n
i=1 aiAi) =

∑n
i=1 aitr(Ai).

Definition 2.12. Direct sum of inner product spaces. If V and W are inner
product spaces (over the same field R or C), then the direct sum V ⊕W of V
and W is an inner product space whose elements are the ordered pairs (v, w)
with v ∈ V and w ∈ W . Addition, scalar multiplication and inner product on
V ⊕W are defined as:

(v1, w1) + (v2, w2) = (v1 + v2, w1 + w2), (13)

a(v, w) = (av, aw) (14)

and
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〈(v1, w1), (v2, w2)〉 = 〈v1, w1〉+ 〈v2, w2〉 . (15)

It can be verified that this makes V ⊕W into an inner product space with (0, 0)
as the zero-element. This definition can be generalized to direct sums of more
than two inner product spaces.

Theorem 2.4. If V and W are inner product spaces (over the same field R
or C) with bases {vi : i ∈ I} and {wj : j ∈ J} for V and W respectively,
then {(vi, 0) : i ∈ I} ∪ {(0, wj) : j ∈ J} is a basis for V ⊕W . This basis is
orthonormal if {vi : i ∈ I} and {wj : j ∈ J} are orthonormal.

Remark. We note that Cn+m can be identified with Cn ⊕ Cm by identifying
(ci)

n+m
i=1 with ((ci)

n
i=1, (ci+n)mi=1).

Definition 2.13. Direct sum of linear operators. If V and W are inner product
spaces (over the same field R or C) and A and B are linear operators on V and
W respectively, then the linear operator A⊕B on V ⊕W is defined as:

(A⊕B)(v, w) = (Av,Bw) (16)

and it can be shown that this is indeed a linear operator.

Remark. If V and W are inner product spaces (over the same field R or C), A
and C are linear operators on V and B and D are linear operators on W , then
(A⊕B)(C ⊕D) = (AC ⊕BD).

Definition 2.14. Quotient space. If V is a vector space and W ⊆ V is a
subspace of V , then vRw ⇐⇒ v − w ∈ W defines an equivalence relation on
V . If we write v for the equivalence class of v under this equivalence relation,
then V/W = {v : v ∈ V } is a vector space with 0 as the zero-vector and with
addition and scalar multiplication defined as:

v + w = v + w (17)

and

av = av. (18)

It can be verified that these operations are well-defined and that V/W equipped
with these operations is indeed a vector space. V/W is called the quotient vector
space of V and W .

Next we will introduce the notion of a tensor product. A tensor product is a
way to construct vector spaces using existing vector spaces.

Definition 2.15. Free vector space. Let B be any non-empty set. The free
vector space F (B) of B over a field R or C is defined as the vector space
with B as its basis. The elements of F (B) are formal finite sums

∑
b∈B cbb

with cb scalars which are equal to 0 for all but finitely many b. Addition and
scalar multiplication are defined component-wise, so

∑
b∈B cbb +

∑
b∈B dbb =∑

b∈B(cb + db)b and c
∑
b∈B cbb =

∑
b∈B ccbb.
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Remark. We note that the formal sums in the definition of the free vector space
are formal in the sense that the summation signs do not indicate the summation
of elements of B according to some pre-defined notion of summation in B. The
sums serve as a way to suggestively write down the elements of the free vector
space. If B is already the underlying set of some vector space, then it should
be noted that the free vector space on B does not depend in any way on the
vector space structure on B.

Definition 2.16. Tensor product of vector spaces. Given vector spaces V and
W (over the same field R or C), consider the free vector space F (V × W )
and the linear subspace F of F (V ×W ) spanned by all vectors of the forms
(v, λw)−λ(v, w), (λv,w)−λ(v, w), (v1 +v2, w)− (v1, w)− (v2, w), (v, w1 +w2)−
(v, w1)− (v, w2) with λ a scalar, v, v1, v2 ∈ V and w,w1, w2 ∈W . We define the
tensor product V ⊗W of V and W as the quotient space V ⊗W = F (V ×W )/F .
We write v⊗w for the equivalence class of (v, w) in V ⊗W and call it the tensor
product of v and w.

The above definition of the tensor product is rather abstract. One can intuitively
think of V ⊗ W as the vector space spanned by elements of the form v ⊗ w
with v ∈ V and w ∈ W where the addition and scalar multiplication satisfy
the following rules (in addition to the vector space axioms) for all scalars λ,
v, v1, v2 ∈ V and w,w1, w2 ∈W :

λ(v ⊗ w) = (λv)⊗ w = v ⊗ (λw), (19)

(v1 + v2)⊗ w = (v1 ⊗ w) + (v2 ⊗ w), (20)

v ⊗ (w1 + w2) = (v ⊗ w1) + (v ⊗ w2). (21)

We note that two elements of V ⊗ W are only equal if this follows from the
above rules and the vector space axioms. The definition of the tensor product
can be extended in case V and W are inner product spaces by defining an inner
product on V ⊗W .

Definition 2.17. Tensor product of inner product spaces. Given inner product
spaces V and W , we define V ⊗W as before making it a vector space. In addition
for v1, v2 ∈ V and w1, w2 ∈W the inner product of v1⊗w1 and v2⊗w2 is defined
as:

〈v1 ⊗ w1, v2 ⊗ w2〉 = 〈v1, w1〉 〈v2, w2〉 . (22)

Extending this linearly to V ⊗W defines an inner product (non-degenerate) on
V ⊗W . This makes V ⊗W into an inner product space.

Just as vector spaces V and W can be used to construct the tensor product
V ⊗W , linear operators A : V → V and B : W →W can be used to construct
the tensor product A⊗B which is a linear operator on V ⊗W .

9



Definition 2.18. Tensor product of operators. Let V,W be vector spaces and
A,B linear operators on V and W respectively. The linear operator A ⊗ B is
defined by letting (A⊗B)(v⊗w) = (Av)⊗ (Bw) for all v ∈ V and w ∈W and
extending it linearly to V ⊗W .

The following theorems state some properties of tensor products that will be
relevant to the contents of this thesis.

Theorem 2.5. Let V,W be vector spaces, A,C linear operators on V and B,D
linear operators on W . Then (A⊗B)(C ⊗D) = (AC)⊗ (BD).

Theorem 2.6. Let V,W be vector spaces and A,B linear operators on V and
W respectively. Then (A⊗B)† = A† ⊗B†.

Theorem 2.7. Let V,W be vector spaces and A,B self-adjoint linear operators
on V and W respectively. Then A⊗B is a self-adjoint linear operator on V ⊗W .

Theorem 2.8. Let V,W be vector spaces and A,B positive linear operators on
V and W respectively. Then A⊗B is a positive linear operator on V ⊗W .

Theorem 2.9. Let V,W be vector spaces of dimensions n and m respectively
and let A,B linear operators on V and W respectively. Let {ei : i ∈ {1, . . . , n}}
and {fj : j ∈ {1, . . . ,m}} be bases for V and W respectively. Let (ai,j)

n
i,j=1 and

(bi,j)
n
i,j=1 be the matrix representations of A and B respectively with respect to

the given bases. {ei⊗fj : (i, j) ∈ {1, . . . , n}×{1, . . . ,m}} is a basis for V ⊗W .
If {ei : i ∈ {1, . . . , n}} and {fj : j ∈ {1, . . . ,m}} are orthonormal bases, then
{ei⊗fj : (i, j) ∈ {1, . . . , n}×{1, . . . ,m}} is also an orthonormal basis. A⊗B will
have a matrix representation (c(p,q),(r,s))(p,q),(r,s)∈{1,...,n}×{1,...,m} with respect to
{ei ⊗ fj : (i, j) ∈ {1, . . . , n}× {1, . . . ,m}} with:

c(p,q),(r,s) = ap,rbq,s. (23)

This representation of A⊗B is known as the Kronecker product.

We now move on to stating and proving some more specific results.

Theorem 2.10. Let V be an inner product space over C and A an operator on
V , then there exist self-adjoint operators B and C on V such that A = B + iC.

Proof. Let V be an inner product space over C and A an operator on V . Let
B = 1

2 (A+A†) and C = 1
2i (A−A

†). Then

B + iC =
1

2
(A+A†) +

1

2
(A−A†) = A. (24)

Also

B† =
1

2
(A† + (A†)†) =

1

2
(A† +A) = B (25)

and
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C† = − 1

2i
(A† − (A†)†) = − 1

2i
(A† −A) =

1

2i
(A−A†) = C. (26)

So B and C are self-adjoint which completes the proof.

Theorem 2.11. Let V be an inner product space over C and A a positive
operator on V , then A is self-adjoint.

Proof. Let V be an inner product space over C and A a positive operator on
V . By Theorem 2.10 there exist self-adjoint operators B and C on V such that
A = B + iC. Let v ∈ V . Since B and C are self-adjoint we have

〈v,Bv〉∗ = 〈Bv, v〉 =
〈
B†v, v

〉
= 〈v,Bv〉 (27)

and

〈v, Cv〉∗ = 〈Cv, v〉 =
〈
C†v, v

〉
= 〈v, Cv〉 (28)

so 〈v,Bv〉 and 〈v, Cv〉 are real. Also, since A is positive

〈v,Av〉 = 〈v,Bv + iCv〉 = 〈v,Bv〉+ i 〈v, Cv〉 (29)

is positive and therefore real. Since 〈v,Bv〉 and 〈v, Cv〉 are real, 〈v,Av〉 has an
imaginary component 〈v, Cv〉. Since 〈v,Av〉 is real we must have 〈v, Cv〉 = 0.
So 〈v, Cv〉 = 0 for all v ∈ V . This means that

0 = 〈Cv + v, C(Cv + v)〉 = 〈Cv,C(Cv)〉+ 〈Cv,Cv〉+ 〈v, C(Cv)〉+ 〈v, Cv〉 =

0 + 〈Cv,Cv〉+ 〈v, C(Cv)〉+ 0 = 〈Cv,Cv〉+ 〈v, C(Cv)〉 =

〈Cv,Cv〉+
〈
C†v, Cv

〉
= 2 〈Cv,Cv〉 = 2‖Cv‖22.

(30)

So ‖Cv‖2 = 0 and therefore Cv = 0. Since this holds for all v ∈ V we have
C = 0. But then A = B and B is self-adjoint, so A is self-adjoint.

Theorem 2.12. Let V be an inner product space over C and E a positive
operator on V such that id − E is positive. Let A = id − 2E, then A is self-
adjoint and ‖A‖ ≤ 1.

Proof. Let V be an inner product space over C and E a positive operator on V
such that id − E is positive and let A = id − 2E. We note that E, id − E are
positive and therefore self-adjoint by Theorem 2.11. The identity is also self-
adjoint, so A† = id†− 2E† = id− 2E = A and we see that A is also self-adjoint.
We note that E(id−E) = E−E2 = (id−E)E, so E and id−E commute. Let
v ∈ V , then
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‖Av‖22 = 〈Av,Av〉 = 〈(id− 2E)v, (id− 2E)v〉 = 〈v − 2Ev, v − 2Ev〉 =

〈v, v〉 − 2 〈v,Ev〉 − 2 〈Ev, v〉+ 4 〈Ev,Ev〉 =

〈v, v〉 − 2 〈v,Ev〉 − 2
〈
E†v, v

〉
+ 4 〈Ev,Ev〉 =

〈v, v〉 − 2 〈v,Ev〉 − 2 〈v,Ev〉+ 4 〈Ev,Ev〉 =

〈v, v〉 − 4 (〈v,Ev〉 − 〈Ev,Ev〉) =

〈v, v〉 − 4 〈v − Ev,Ev〉 = 〈v, v〉 − 4 〈(id− E)v,Ev〉 =

〈v, v〉 − 4
〈
(id− E)†v,Ev

〉
= 〈v, v〉 − 4 〈v, (id− E)Ev〉 =

〈v, v〉 − 4 〈v, (E + id− E)(id− E)Ev〉 =

〈v, v〉 − 4 〈v,E(id− E)Ev + (id− E)(id− E)Ev〉 =

〈v, v〉 − 4 〈v,E(id− E)Ev + (id− E)E(id− E)v〉 =

〈v, v〉 − 4 (〈v,E(id− E)Ev〉+ 〈v, (id− E)E(id− E)v〉) =

〈v, v〉 − 4
(〈
E†v, (id− E)Ev

〉
+
〈
(id− E)†v,E(id− E)v

〉)
=

〈v, v〉 − 4 (〈Ev, (id− E)Ev〉+ 〈(id− E)v,E(id− E)v〉) ≤

〈v, v〉 = ‖v‖22

(31)

where we used that 〈Ev, (id− E)Ev〉 , 〈(id− E)v,E(id− E)v〉 ≥ 0 because E
and id − E are positive. It follows that ‖Av‖2 ≤ ‖v‖2 and since this holds for
all v ∈ V we have ‖A‖ ≤ 1, which completes the proof.

Theorem 2.13. Let V be an inner product space over C and A a self-adjoint
operator on V with ‖A‖ ≤ 1. Let E = 1

2 id−
1
2A, then E and id−E are positive

operators.

Proof. Let V be an inner product space over C and A a self-adjoint operator on
V with ‖A‖ ≤ 1 and let E = 1

2 id−
1
2A. We note that id− E = 1

2 id+ 1
2A. Let

v ∈ V . Since A is self-adjoint we have

〈v,Av〉∗ = 〈Av, v〉 =
〈
A†v, v

〉
= 〈v,Av〉 (32)

so 〈v,Av〉 is real. Using the fact that ‖A‖ ≤ 1 and the Cauchy-Schwarz inequal-
ity it follows that:

|〈v,Av〉| ≤ ‖v‖2‖Av‖2 ≤ ‖v‖2‖A‖‖v‖2 ≤ ‖v‖
2
2 = 〈v, v〉 . (33)

Combining this with the fact that 〈v,AV 〉 is real we find that

−〈v, v〉 ≤ 〈v,Av〉 ≤ 〈v, v〉 . (34)

Now it follows that

〈v,Ev〉 =

〈
v,

(
1

2
id− 1

2
A

)
v

〉
=

1

2
〈v, v〉 − 1

2
〈v,Av〉 ≥ 1

2
〈v, v〉 − 1

2
〈v, v〉 = 0

(35)
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and

〈v, (id− E)v〉 =

〈
v,

(
1

2
id+

1

2
A

)
v

〉
=

1

2
〈v, v〉+

1

2
〈v,Av〉 ≥ 1

2
〈v, v〉 − 1

2
〈v, v〉 = 0.

(36)

This holds for all v ∈ V , so E and id−E are positive operators which completes
the proof.

Theorem 2.14. Let V,W be finite dimensional inner product spaces. Let A :
V → V and B : W →W be normal operators of finite norm. Then ‖A⊗B‖ =
‖A‖‖B‖.

Proof. Let V,W be finite dimensional inner product spaces. Let A : V → V and
B : W →W be normal operators of finite norm. Let n and m be the dimensions
of V and W respectively. Since A is normal, there exists an orthonormal basis
{v1, . . . , vn} of V such that vi is an eigenvector of A with eigenvalue ai. Similarly,
because B is normal, there exists an orthonormal basis {w1, . . . , wm} of W
such that wj is an eigenvector of B with eigenvalue bj . We note that for all
i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}:

|ai| =
|ai|‖vi‖2
‖vi‖2

=
‖aivi‖2
‖vi‖2

=
‖Avi‖2
‖vi‖2

≤ ‖A‖ (37)

and

|bj | =
|bj |‖wj‖2
‖wj‖2

=
‖bjwj‖2
‖wj‖2

=
‖Bwj‖2
‖wj‖2

≤ ‖B‖. (38)

Now {vi⊗wj : i ∈ {1, . . . , n}, j ∈ {1, . . . ,m}} is a basis for V⊗W , so an arbitrary
element of V ⊗W can be written as

∑n
i=1

∑m
j=1 ci,j(vi ⊗wj) for unique scalars

ci,j . Now we have for any choice of scalars ci,j :
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∥∥∥∥∥∥(A⊗B)

n∑
i=1

m∑
j=1

ci,j(vi ⊗ wj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
i=1

m∑
j=1

ci,j(Avi ⊗Bwj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
i=1

m∑
j=1

ci,j(aivi ⊗ bjwj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
i=1

m∑
j=1

ci,jaibj(vi ⊗ wj)

∥∥∥∥∥∥
2

=

√√√√〈 n∑
i=1

m∑
j=1

ci,jaibj(vi ⊗ wj),
n∑
k=1

m∑
l=1

ck,lakbl(vk ⊗ wl)

〉
=

√√√√ n∑
i=1

m∑
j=1

n∑
k=1

m∑
l=1

c∗i,ja
∗
i b
∗
jck,lakbl 〈vi, vk〉 〈wj , wl〉 =

√√√√ n∑
i=1

m∑
j=1

|ci,j |2|ai|2|bj |2 ≤

√√√√ n∑
i=1

m∑
j=1

|ci,j |2‖A‖2‖B‖2 =

‖A‖‖B‖

√√√√ n∑
i=1

m∑
j=1

|ci,j |2 =

‖A‖‖B‖

√√√√ n∑
i=1

m∑
j=1

n∑
k=1

m∑
l=1

〈ci,j(vi ⊗ wj), ck,l(vk ⊗ wl)〉 =

‖A‖‖B‖

√√√√〈 n∑
i=1

m∑
j=1

ci,j(vi ⊗ wj),
n∑
k=1

m∑
l=1

ck,l(vk ⊗ wl)

〉
=

‖A‖‖B‖

∥∥∥∥∥∥
n∑
i=1

m∑
j=1

ci,j(vi ⊗ wj)

∥∥∥∥∥∥
2

.

(39)

This means that ‖A⊗B‖ ≤ ‖A‖‖B‖. In case ‖A‖ = 0 or ‖B‖ = 0 it follows
that 0 ≤ ‖A⊗B‖ ≤ ‖A‖‖B‖ = 0, so ‖A⊗B‖ = 0 = ‖A‖‖B‖. Suppose instead

that ‖A‖, ‖B‖ > 0 and let ε > 0. Let δ = min
{

ε
‖A‖+‖B‖+1 , ‖A‖, ‖B‖

}
> 0. Let

v ∈ V and w ∈ W be such that
‖Av‖2
‖v‖2

> ‖A‖ − δ and
‖Bw‖2
‖w‖2

> ‖B‖ − δ. We

then have:
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‖A⊗B‖ ≥
‖(A⊗B)(v ⊗ w)‖2

‖v ⊗ w‖2
=
‖Av ⊗Bw)‖2
‖v ⊗ w‖2

=

√
〈Av ⊗Bw,Av ⊗Bw〉√
〈v ⊗ w, v ⊗ w〉

=√
〈Av,Av〉

√
〈Bw,Bw〉√

〈v, v〉
√
〈w,w〉

=
‖Av‖2
‖v‖2

‖Bw‖2
‖w‖2

> (‖A‖ − δ)(‖B‖ − δ) =

‖A‖‖B‖ − δ(‖A‖+ ‖B‖) + δ2 > ‖A‖‖B‖ − δ(‖A‖+ ‖B‖) ≥

‖A‖‖B‖ − ε

‖A‖+ ‖B‖+ 1
(‖A‖+ ‖B‖) > ‖A‖‖B‖ − ε.

(40)

This holds for all ε > 0 so ‖A⊗B‖ ≥ ‖A‖‖B‖, so we see that ‖A⊗B‖ =
‖A‖‖B‖.

Theorem 2.15. Let V be an inner product space of finite dimension n and
A : V → V a linear operator. Let (ai,j)

n
i,j=1 be the matrix representation of A

with respect to an orthonormal basis {v1, . . . , vn} of V . Then |ai,j | ≤ ‖A‖ for
all i, j ∈ {1, . . . , n}.

Proof. Let V be an inner product space of finite dimension n. Let A : V → V be
a linear operator of finite norm ‖A‖. Let (ai,j)

n
i,j=1 be the matrix representation

of A with respect to an orthonormal basis {v1, . . . , vn} of V . We note that the
basis vectors vi have representations (δi,j)

n
j=1 with respect to the given basis.

Now we have for all i, j ∈ {1, . . . , n}, using the Cauchy-Schwarz inequality:

|ai,j | =

∣∣∣∣∣
n∑
k=1

δi,kak,j

∣∣∣∣∣ = |〈(δi,k)nk=1, (ak,j)
n
k=1〉| =∣∣∣∣∣

〈
(δi,k)nk=1,

(
n∑
l=1

δj,lak,l

)n
k=1

〉∣∣∣∣∣ =
∣∣〈(δi,k)nk=1, (ak,l)

n
k,l=1(δj,l)

n
l=1

〉∣∣ =

|〈vi, Avj〉| ≤ ‖vi‖2‖Avj‖2 ≤ ‖vi‖2‖A‖‖vj‖2 = ‖A‖

(41)

which completes the proof.

Theorem 2.16. Let V be an inner product space of finite dimension n. Let A :
V → V be a positive linear operator. Let (ai,j)

n
i,j=1 be the matrix representation

of A with respect to an orthonormal basis {v1, . . . , vn} of V . Then ai,i ≥ 0 for
all i ∈ {1, . . . , n}.

Proof. Let V be an inner product space of finite dimension n. Let A : V → V
be a positive linear operator. Let (ai,j)

n
i,j=1 be the matrix representation of A

with respect to an orthonormal basis {v1, . . . , vn} of V . We note that the basis
vectors vi have representations (δi,j)

n
j=1 with respect to the given basis. Now

we have for all i ∈ {1, . . . , n}:
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ai,i =

n∑
k=1

δi,kak,i = 〈(δi,k)nk=1, (ak,i)
n
k=1〉 =〈

(δi,k)nk=1,

(
n∑
l=1

δi,lak,l

)n
k=1

〉
=
〈
(δi,k)nk=1, (ak,l)

n
k,l=1(δi,l)

n
l=1

〉
=

〈vi, Avi〉 ≥ 0

(42)

which completes the proof.

Theorem 2.17. Let V be an inner product space of finite dimension n. Let
A,B : V → V be self-adjoint operators, then tr(AB) ∈ R. If furthermore B is
positive, then |tr(AB)| ≤ ‖A‖tr(B).

Proof. Let V be an inner product space of finite dimension n. Let A,B : V →
V be self-adjoint operators. Since A is normal, there exists an orthonormal
basis {v1, . . . , vn} of V such that A is diagonal with respect to this basis. Let
(ai,j)

n
i,j=1 and (bi,j)

n
i,j=1 be the matrix representations of A and B respectively

with respect to the given basis. A is diagonal with respect to this basis, so
ai,j = 0 if i 6= j. A and B are self-adjoint, so a∗i,i = ai,i and b∗i,i = bi,i for all
i ∈ {1, . . . , n} so the ai,i and bi,i are real. This means that

tr(AB) = tr((ai,k)ni,k=1(bk,j)
n
k,j=1) = tr

( n∑
k=1

ai,kbk,j

)n
i,j=1

 =

tr
(

(ai,ibi,j)
n
i,j=1

)
=

n∑
i=1

ai,ibi,i ∈ R

(43)

because all the ai,i and bi,i are real. Now suppose that B is positive. Then
|ai,i| ≤ ‖A‖ and bi,i ≥ 0 for all i ∈ {1, . . . , n} by Theorems 2.15 and 2.16
respectively. It follows that

|tr(AB)| =

∣∣∣∣∣
n∑
i=1

ai,ibi,i

∣∣∣∣∣ ≤
n∑
i=1

|ai,i||bi,i| =
n∑
i=1

|ai,i|bi,i ≤
n∑
i=1

‖A‖bi,i =

‖A‖
n∑
i=1

bi,i = ‖A‖tr(B)

(44)

which completes the proof.

Theorem 2.18. If F : V → W is an isomorphism and A is a linear operator
on V , then

(FAF−1)† = FA†F−1. (45)
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Proof. Let F : V → W an isomorphism and A a linear operator on V . Then
for all v, w ∈W we have:

〈
FA†F−1v, w

〉
=
〈
A†F−1v, F−1w

〉
=
〈
F−1v,AF−1w

〉
=
〈
v, FAF−1w

〉
(46)

so (FAF−1)† = FA†F−1.

Corollary 2.18.1. If F : V → W is an isomorphism and A is a self-adjoint
operator on V , then FAF−1 is self-adjoint.

Proof. Let F : V → W an isomorphism and A a self-adjoint operator on V ,
then (FAF−1)† = FA†F−1 = FAF−1, so FAF−1 is self-adjoint.

Theorem 2.19. If F : V → W is an isomorphism and A is a linear operator
on V with finite norm ‖A‖, then

∥∥FAF−1
∥∥ = ‖A‖.

Proof. Let F : V →W an isomorphism and A a linear operator on V with finite
norm ‖A‖. For all w ∈W we have:∥∥FAF−1w

∥∥
2

=
∥∥AF−1w

∥∥
2
≤ ‖A‖

∥∥F−1w
∥∥

2
= ‖A‖‖w‖2, (47)

so FAF−1 has a finite norm
∥∥FAF−1

∥∥ ≤ ‖A‖. Also, for all v ∈ V we have:

‖Av‖2 =
∥∥AF−1Fv

∥∥
2

=
∥∥FAF−1Fv

∥∥
2
≤
∥∥FAF−1

∥∥‖Fv‖2 =
∥∥FAF−1

∥∥‖v‖2,
(48)

so ‖A‖ ≤
∥∥FAF−1

∥∥ and we conclude that
∥∥FAF−1

∥∥ = ‖A‖.

Theorem 2.20. If F : V →W is an isomorphism and A is a positive operator
on V , then FAF−1 is a positive operator.

Proof. Let F : V →W an isomorphism and A a positive operator on V . For all
w ∈W we have: 〈

w,FAF−1w
〉

=
〈
F−1w,AF−1w

〉
≥ 0 (49)

because A is positive, so FAF−1 is also positive.

Theorem 2.21. If F : V →W is an isomorphism and {vi : i ∈ I} is a basis for
V , then {Fvi : i ∈ I} is a basis for W . In addition if {vi : i ∈ I} is orthonormal,
then so is {Fvi : i ∈ I}.

Proof. Let F : V → W an isomorphism and {vi : i ∈ I} a basis for V , then
{vi : i ∈ I} spans V and is linearly independent. Let w ∈W , then w = FF−1w.
F−1w ∈ V so there exist scalars ai, all but finitely many equal to 0, such that
F−1w =

∑
i∈I aivi. But then:

w = FF−1w = F
∑
i∈I

aivi =
∑
i∈I

aiFvi, (50)
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so {Fvi : i ∈ I} spans W . Also if ai are scalars, all but finitely many equal to
0, such that

∑
i∈I aiFvi = 0, then:

0 = F−10 = F−1
∑
i∈I

aiFvi =
∑
i∈I

aiF
−1Fvi =

∑
i∈I

aivi. (51)

Now the linear independence of {vi : i ∈ I} implies that ai = 0 for all i. This
means that {Fvi : i ∈ I} is linearly independent, so {Fvi : i ∈ I} is a basis
for W . Suppose in addition that {vi : i ∈ I} is orthonormal, so 〈vi, vj〉 = δi,j .
Then we have:

〈Fvi, Fvj〉 = 〈vi, vj〉 = δi,j , (52)

so {Fvi : i ∈ I} is orthonormal which completes the proof.

Theorem 2.22. If F : V →W is an isomorphism, V has a finite dimension n
and A is a linear operator on V , then tr(FAF−1) = tr(A).

Proof. Let F : V → W an isomorphism with V of finite dimension n and A a
linear operator on V . Let {v1, . . . , vn} be an orthonormal basis for V . Then by
Theorem 2.21 {Fv1, . . . , Fvn} is an orthonormal basis for W and therefore:

tr(FAF−1) =

n∑
i=1

〈
Fvi, FAF

−1Fvi
〉

=

n∑
i=1

〈Fvi, FAvi〉 =

n∑
i=1

〈vi, Avi〉 = tr(A)

(53)
which completes the proof.

Theorem 2.23. Let V and W be inner product spaces (over the same field R
or C) with orthonormal bases {vi : i ∈ I} and {wi : i ∈ I}. Let F : V → W be
defined as:

F

(∑
i∈I

aivi

)
=
∑
i∈I

aiwi, (54)

then F is an isomorphism.

Proof. Let V , W , {vi : i ∈ I}, {wi : i ∈ I} and F as defined in the theorem.
We can define G : W → V as:

G

(∑
i∈I

aiwi

)
=
∑
i∈I

aivi. (55)

Now

(F ◦G)

(∑
i∈I

aiwi

)
= F

(∑
i∈I

aivi

)
=
∑
i∈I

aiwi (56)

and
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(G ◦ F )

(∑
i∈I

aivi

)
= G

(∑
i∈I

aiwi

)
=
∑
i∈I

aivi, (57)

so G = F−1, the two-sided inverse of F and F is therefore bijective. F is also
a linear map preserving inner products, since for all scalars a, ai, bi for i ∈ I we
have:

F

(∑
i∈I

aivi +
∑
i∈I

bivi

)
= F

(∑
i∈I

(ai + bi)vi

)
=
∑
i∈I

(ai + bi)wi =

∑
i∈I

aiwi +
∑
i∈I

wivi = F

(∑
i∈I

aivi

)
+ F

(∑
i∈I

bivi

)
,

(58)

F

(
a
∑
i∈I

aivi

)
= F

(∑
i∈I

(aai)vi

)
=
∑
i∈I

(aai)wi = a
∑
i∈I

aiwi = aF

(∑
i∈I

aivi

)
(59)

and

〈
F

(∑
i∈I

aivi

)
, F

∑
j∈I

bjvj

〉 =

〈∑
i∈I

aiwi,
∑
j∈I

bjwj

〉
=

∑
i∈I

∑
j∈I

a∗i bj 〈wi, wj〉 =
∑
i∈I

∑
j∈I

a∗i bjδi,j =
∑
i∈I

∑
j∈I

a∗i bj 〈vi, vj〉 =

〈∑
i∈I

aivi,
∑
j∈I

bjvj

〉
.

(60)

So F is an isomorphism, which completes the proof.

Theorem 2.24. If V and W are inner product spaces (over the same field
R or C) and A and B are linear operators on V and W respectively, then
(A⊕B)† = A† ⊕B†.

Proof. Let V and W inner product spaces (over the same field R or C) and A
and B linear operators on V and W respectively. For all (v, w) ∈ V ⊕W we
have:

〈
(A† ⊕B†)(v, w), (v, w)

〉
=
〈
(A†v,B†w), (v, w)

〉
=
〈
A†v, v

〉
+
〈
B†w,w

〉
=

〈v,Av〉+ 〈w,Bw〉 = 〈(v, w), (Av,Bw)〉 = 〈(v, w), (A⊕B)(v, w)〉 ,
(61)

so (A⊕B)† = A† ⊕B†.
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Corollary 2.24.1. If V and W are inner product spaces (over the same field
R or C) and A and B are self-adjoint operators on V and W respectively, then
A⊕B is self-adjoint.

Proof. Let V and W inner product spaces (over the same field R or C) and A
and B self-adjoint operators on V and W respectively. Now by Theorem 2.24
(A⊕B)† = A† ⊕B† = A⊕B, so A⊕B is self-adjoint.

Theorem 2.25. If V and W are inner product spaces (over the same field R
or C) and A and B are linear operators on V and W respectively with finite
norms, then:

‖A⊕B‖ = max{‖A‖, ‖B‖}. (62)

Proof. Let V and W inner product spaces (over the same field R or C) and
A and B linear operators on V and W respectively with finite norms. For all
(v, w) ∈ V ⊕W we have:

‖(A⊕B)(v, w)‖2 = ‖(Av,Bw)‖2 =
√
〈(Av,Bw), (Av,Bw)〉 =√

〈Av,Av〉+ 〈Bw,Bw〉 =

√
‖Av‖22 + ‖Bw‖22 ≤√

‖A‖2‖v‖22 + ‖B‖2‖w‖22 ≤
√

(max{‖A‖, ‖B‖})2(‖v‖22 + ‖w‖22) =

max{‖A‖, ‖B‖}
√
‖v‖22 + ‖w‖22 = max{‖A‖, ‖B‖}

√
〈v, v〉+ 〈w,w〉 =

max{‖A‖, ‖B‖}
√
〈(v, w), (v, w)〉 = max{‖A‖, ‖B‖}‖(v, w)‖2,

(63)

so we see that A⊕B has a finite norm ‖A⊕B‖ ≤ max{‖A‖, ‖B‖}. Now for all
v ∈ V we have:

‖Av‖2 =
√
〈Av,Av〉 =

√
〈Av,Av〉+ 〈B0, B0〉 =

√
〈(Av,B0), (Av,B0)〉 =

‖(Av,B0)‖2 = ‖(A⊕B)(v, 0)‖2 ≤ ‖A⊕B‖‖(v, 0)‖2 =

‖A⊕B‖
√
〈(v, 0), (v, 0)〉 = ‖A⊕B‖

√
〈v, v〉+ 〈0, 0〉 = ‖A⊕B‖

√
〈v, v〉 =

‖A⊕B‖‖v‖2,
(64)

so ‖A‖ ≤ ‖A⊕B‖. Similarly for all w ∈W we have:

‖Bw‖2 =
√
〈Bw,Bw〉 =

√
〈A0, A0〉+ 〈Bw,Bw〉 =

√
〈(A0, Bw), (A0, Bw)〉 =

‖(A0, Bw)‖2 = ‖(A⊕B)(0, w)‖2 ≤ ‖A⊕B‖‖(0, w)‖2 =

‖A⊕B‖
√
〈(0, w), (0, w)〉 = ‖A⊕B‖

√
〈0, 0〉+ 〈w,w〉 = ‖A⊕B‖

√
〈w,w〉 =

‖A⊕B‖‖w‖2,
(65)
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so ‖B‖ ≤ ‖A⊕B‖. Combining these last two results we find that
max{‖A‖, ‖B‖} ≤ ‖A⊕B‖, so we conclude that ‖A⊕B‖ = max{‖A‖, ‖B‖}.

Theorem 2.26. If V and W are inner product spaces (over the same field R
or C) and A and B are positive operators on V and W respectively, then A⊕B
is positive.

Proof. Let V and W inner product spaces (over the same field R or C) and A
and B positive operators on V and W respectively. Then for all (v, w) ∈ V ⊕W
we have:

〈(v, w), (A⊕B)(v, w)〉 = 〈(v, w), (Av,Bw)〉 = 〈v,Av〉+ 〈w,Bw〉 ≥ 0 + 0 = 0,
(66)

where we used the positivity of A and B, so we conclude that A⊕B is positive.

Theorem 2.27. If V and W are inner product spaces (over the same field R or
C) of finite dimensions n and m respectively and A and B are positive operators
on V and W respectively, then:

tr(A⊕B) = tr(A) + tr(B). (67)

Proof. Let V and W inner product spaces (over the same field R or C) of finite
dimensions n and m respectively and A and B positive operators on V and
W respectively. Let {v1, . . . , vn} and {w1, . . . , wm} be orthonormal bases of
V and W respectively. Then {(v1, 0), . . . , (vn, 0)} ∪ {(0, w1), . . . , (0, wm)} is an
orthonormal basis for V ⊕W . Therefore we can used these orthonormal bases
to calculate traces:

tr(A⊕B) =

n∑
i=1

〈(vi, 0), (A⊕B)(vi, 0)〉+

m∑
j=1

〈(0, wj), (A⊕B)(0, wj)〉 =

n∑
i=1

〈(vi, 0), (Avi, 0)〉+

m∑
j=1

〈(0, wj), (0, Bwj)〉 =

n∑
i=1

(〈vi, Avi〉+ 〈0, 0〉) +

m∑
j=1

(〈0, 0〉+ 〈wj , Bwj〉) =

n∑
i=1

〈vi, Avi〉+

m∑
j=1

〈wj , Bwj〉 = tr(A) + tr(B)

,

(68)

which completes the proof.

Theorem 2.28. Let V be a finite dimensional inner product space and A a
normal operator on V , then

∥∥A2
∥∥ = ‖A‖2.
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Proof. Let V be a finite dimensional inner product space and A a normal oper-
ator on V . Let v ∈ V , then:∥∥A2v

∥∥
2

= ‖A(Av)‖2 ≤ ‖A‖‖Av‖2 ≤ ‖A‖
2‖v‖2. (69)

Since this holds for all v ∈ V we have
∥∥A2

∥∥ ≤ ‖A‖2. A is normal, so there exists
an orthonormal basis {v1, . . . , vn} for V such that each vi is an eigenvector of
A with eigenvalue ai. Let m ∈ {1, . . . , n} be such that |am| ≥ |ai| for all
i ∈ {1, . . . , n}. For any v =

∑n
i=1 civi ∈ V we have:

‖Av‖2 =

∥∥∥∥∥A
n∑
i=1

civi

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

ciAvi

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
i=1

ciaivi

∥∥∥∥∥
2

=√√√√〈 n∑
i=1

ciaivi,

n∑
j=1

cjajvj

〉
=

√√√√ n∑
i=1

n∑
j=1

c∗i cja
∗
i aj 〈vi, vj〉 =

√√√√ n∑
i=1

n∑
j=1

c∗i cja
∗
i ajδi,j =

√√√√ n∑
i=1

|ci|2|ai|2 ≤

√√√√ n∑
i=1

|ci|2|am|2 =

√√√√|am|2 n∑
i=1

|ci|2 = |am|

√√√√ n∑
i=1

n∑
j=1

c∗i cjδi,j = |am|

√√√√ n∑
i=1

n∑
j=1

c∗i cj 〈vi, vj〉 =

|am|

√√√√〈 n∑
i=1

civi,

n∑
j=1

cjvj

〉
= |am|

√
〈v, v〉 = |am|‖v‖2.

(70)

So we see that ‖A‖ ≤ |am|. We also have:

‖Avm‖2 = ‖amvm‖2 = |am|‖vm‖2 (71)

so in fact ‖A‖ = |am|. Therefore we have:∥∥A2vm
∥∥

2
= ‖amAvm‖2 =

∥∥a2
mvm

∥∥
2

= |am|2‖vm‖2. (72)

So we see that
∥∥A2

∥∥ ≥ |am|2 = ‖A‖2. We conclude that
∥∥A2

∥∥ = ‖A‖2.

Theorem 2.29. Let V be a finite dimensional vector space and A and B linear
operators on V , then tr(AB) = tr(BA).

Proof. Let V be a finite dimensional vector space and A and B linear operators
on V . Let (ai,j)

n
i,j=1 and (bi,j)

n
i,j=1 be the matrix representations of A and B

with respect to some fixed basis of V . We have:
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tr(AB) = tr((ai,j)
n
i,j=1(bj,k)nj,k=1) = tr

 n∑
j=1

ai,jbj,k

n

i,k=1

 =

n∑
i=1

n∑
j=1

ai,jbj,i =

n∑
j=1

n∑
i=1

bj,iai,j =

n∑
i=1

n∑
j=1

bi,jaj,i =

tr

 n∑
j=1

bi,jaj,k

n

i,k=1

 = tr((bi,j)
n
i,j=1(aj,k)nj,k=1)) = tr(BA).

(73)

Theorem 2.30. Let V be a finite dimensional vector space and A a linear
operator on V , then tr(A†) = tr(A)∗.

Proof. Let V be a finite dimensional vector space and A a linear operator on
V . By Theorem 2.10 there exist self-adjoint operators B and C such that
A = B+ iC. Matrix representations of B and C (with respect to any basis) are
hermitian and therefore have real entries on the diagonal. It follows that their
trace is real. Using the linearity of the trace and the conjugate linearity of the
adjoint it follows that:

tr(A†) = tr((B + iC)†) = tr(B† − iC†) = tr(B − iC) =

tr(B)− itr(C) = (tr(B) + itr(C))∗ = tr(A)∗
(74)

which completes the proof.

Theorem 2.31. Let V be a finite dimensional vector space and A, B and C
self-adjoint operators on V , then tr(BAC) = (tr(ABC))∗.

Proof. Let V be a finite dimensional vector space and A, B and C self-adjoint
operators on V . Using Theorems 2.29 and 2.30 it follows that:

(tr(ABC))∗ = tr((ABC)†) = tr(C†B†A†) = tr(CBA) = tr(BAC) (75)

which completes the proof.

Theorem 2.32. Let V be a finite dimensional vector space, A a self-adjoint
operator on V and B a positive operator on V , then tr(A2B) ≥ 0.

Proof. Let V be a finite dimensional vector space, A a self-adjoint operator
on V and B a positive operator on V . B is positive and therefore normal so
there exists an orthonormal basis of V such that B is diagonal with respect to
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this basis. Let (ai,j)
n
i,j=1 and (bi,j)

n
i,j=1 be the matrix representations of A and

B with respect to this basis. A is self-adjoint so its matrix representation is
Hermitian, which means that ai,j = a∗j,i for all i, j ∈ {1, . . . , n}. The matrix
representation of B is diagonal so bi,j = 0 for i 6= j. Also, since B is positive, by
Theorem 2.16 we have bi,i ≥ 0 for all i ∈ {1, . . . , n}. From this it follows that:

tr(A2B) = tr
(
(ai,j)

n
i,j=1(aj,k)nj,k=1(bk,l)

n
k,l=1

)
=

tr

 n∑
j=1

ai,jaj,k

n

i,k=1

(bk,l)
n
k,l=1

 = tr

 n∑
j=1

n∑
k=1

ai,jaj,kbk,l

n

i,l=1

 =

n∑
i=1

n∑
j=1

n∑
k=1

ai,jaj,kbk,i =
n∑
i=1

n∑
j=1

ai,jaj,ibi,i =
n∑
i=1

n∑
j=1

ai,ja
∗
i,jbi,i =

n∑
i=1

n∑
j=1

|ai,j |2bi,i ≥ 0

(76)

since |ai,j |2 ≥ 0 and bi,i ≥ 0.

Theorem 2.33. Let V be a vector space over a field F , where F is equal to R
or C, and let 〈·, ·〉 : V × V → F be a (possibly degenerate) inner product. Then
for all v ∈ V such that 〈v, v〉 = 0 we have that 〈v, w〉 = 0 for all w ∈ V .

Remark. We note that this result follows from the Cauchy-Schwarz inequality
which holds for both degenerate and non-degenerate inner products. The proof
below essentially shows that the Cauchy-Schwarz inequality holds in case one
or both vectors have an inner product with themselves equal to 0.

Proof. Let V be a vector space over a field F , where F is equal to R or C, and
let 〈·, ·〉 : V × V → F be a (possibly degenerate) inner product. Suppose first
that 〈v, v〉 = 0 for all v ∈ V . Let v, w ∈ V , then we have:

0 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉 = 〈v, w〉+ 〈v, w〉∗ =

2Re(〈v, w〉).
(77)

If F = R, then 〈v, w〉 ∈ R and we conclude that 〈v, w〉 = 0. If F = C we note
that iw ∈ V , so we also have:

0 = 〈v + iw, v + iw〉 = 2Re(〈v, iw〉) = 2Re(i 〈v, w〉) = −2Im(〈v, w〉). (78)

Again we can conclude that 〈v, w〉 = 0. So the theorem holds in case 〈v, v〉 = 0
for all v ∈ V . Suppose instead that this is not the case, so there exist u ∈ V
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with 〈u, u〉 > 0. Suppose v, w ∈ V such that 〈v, v〉 = 0 and 〈w,w〉 > 0. We note
that we can write:

v =
〈w, v〉
〈w,w〉

w + v − 〈w, v〉
〈w,w〉

w. (79)

We have:

〈
〈w, v〉
〈w,w〉

w,w

〉
=

(
〈w, v〉
〈w,w〉

)∗
〈w,w〉 =

〈w, v〉∗

〈w,w〉
〈w,w〉 =

〈v, w〉
〈w,w〉

〈w,w〉 = 〈v, w〉

(80)
and therefore:

〈
v − 〈w, v〉
〈w,w〉

w,w

〉
= 〈v, w〉 −

〈
〈w, v〉
〈w,w〉

w,w

〉
= 〈v, w〉 − 〈v, w〉 = 0. (81)

From this it follows that:

0 = 〈v, v〉 =

〈
〈w, v〉
〈w,w〉

w + v − 〈w, v〉
〈w,w〉

w,
〈w, v〉
〈w,w〉

w + v − 〈w, v〉
〈w,w〉

w

〉
=〈

〈w, v〉
〈w,w〉

w,
〈w, v〉
〈w,w〉

w

〉
+

〈
〈w, v〉
〈w,w〉

w, v − 〈w, v〉
〈w,w〉

w

〉
+〈

v − 〈w, v〉
〈w,w〉

w,
〈w, v〉
〈w,w〉

w

〉
+

〈
v − 〈w, v〉
〈w,w〉

w, v − 〈w, v〉
〈w,w〉

w

〉
=(

〈w, v〉
〈w,w〉

)∗ 〈w, v〉
〈w,w〉

〈w,w〉+

(
〈w, v〉
〈w,w〉

)∗〈
w, v − 〈w, v〉

〈w,w〉
w

〉
+

〈w, v〉
〈w,w〉

〈
v − 〈w, v〉
〈w,w〉

w,w

〉
+

〈
v − 〈w, v〉
〈w,w〉

w, v − 〈w, v〉
〈w,w〉

w

〉
=

|〈v, w〉|2

〈w,w〉2
〈w,w〉+

〈v, w〉
〈w,w〉

〈
v − 〈w, v〉
〈w,w〉

w,w

〉∗
+

〈w, v〉
〈w,w〉

〈
v − 〈w, v〉
〈w,w〉

w,w

〉
+

〈
v − 〈w, v〉
〈w,w〉

w, v − 〈w, v〉
〈w,w〉

w

〉
=

|〈v, w〉|2

〈w,w〉
+

〈
v − 〈w, v〉
〈w,w〉

w, v − 〈w, v〉
〈w,w〉

w

〉
≥ |〈v, w〉|

2

〈w,w〉
.

(82)

Since 〈w,w〉 > 0 it follows that |〈v, w〉|2 ≤ 0 and therefore 〈v, w〉 = 0. So
if 〈v, v〉 = 0 and 〈w,w〉 > 0 then 〈v, w〉 = 0. Now suppose v, w ∈ V with
〈v, v〉 = 〈w,w〉 = 0. We assumed that there exists a u ∈ V with 〈u, u〉 > 0.
Since 〈w,w〉 = 0 it follows that:

〈w + u,w + u〉 = 〈w,w〉+ 〈w, u〉+ 〈u,w〉+ 〈u, u〉 =

〈w,w〉+ 〈w, u〉+ 〈w, u〉∗ + 〈u, u〉 = 0 + 0 + 0 + 〈u, u〉 = 〈u, u〉 > 0.
(83)
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Since 〈v, v〉 = 0 and 〈u, u〉 = 〈w + u,w + u〉 > 0 it follows that:

〈v, w〉 = 〈v, w + u− u〉 = 〈v, w + u〉 − 〈v, u〉 = 0− 0 = 0. (84)

So we see that 〈v, w〉 = 0 also when 〈w,w〉 = 0. We conclude that 〈v, w〉 = 0
for all v, w ∈ V with 〈v, v〉 = 0.

Theorem 2.34. Let V be a vector space over a field F , where F is equal to R
or C, and let 〈·, ·〉 : V × V → F be a (possibly degenerate) inner product. Let
G = {v ∈ V : 〈v, v〉 = 0}. Then G is a subspace of V and 〈·, ·〉 : V/G×V/G→ F
defined as 〈v, w〉 = 〈v, w〉 is a non-degenerate inner product on the quotient
vector space V/G.

Proof. Let V be a vector space over a field F , where F is equal to R or C,
and let 〈·, ·〉 : V × V → F be a (possibly degenerate) inner product. Let
G = {v ∈ V : 〈v, v〉 = 0}. We note that by Theorem 2.33 〈v, w〉 = 〈w, v〉∗ = 0
whenever 〈v, v〉 = 0 or 〈w,w〉 = 0. If v ∈ G and a ∈ F then:

〈av, av〉 = |a|2 〈v, v〉 = 0 (85)

so av ∈ G. If v, w ∈ G, then:

〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉 = 0 + 0 + 0 + 0 = 0 (86)

so v+w ∈ G. We see that G is indeed a subspace of V . On the quotient vector
space V/G we define the operation 〈·, ·〉 : V/G× V/G→ F by letting:

〈v, w〉 = 〈v, w〉 . (87)

We will verify that this operation is well-defined and that it is a non-degenerate
inner product on V/G. To show that the operation is well-defined we need to
show that it does not depend on the choice of representative of the equivalence
classes. So we need to show that if v1 = v2 and w1 = w2, then 〈v1, w1〉 =
〈v2, w2〉. So suppose v1 = v2 and w1 = w2, then v1 − v2, w1 − w2 ∈ G and
therefore 〈v1 − v2, v1 − v2〉 = 〈w1 − w2, w1 − w2〉 = 0. Using Theorem 2.33 it
follows that:

〈v1, w1〉 = 〈v1 − v2 + v2, w1 − w2 + w2〉 =

〈v1 − v2, w1 − w2〉+ 〈v1 − v2, w2〉+ 〈v2, w1 − w2〉+ 〈v2, w2〉 =

0 + 0 + 0 + 〈v2, w2〉 = 〈v2, w2〉 .
(88)

So we see that the operation is well-defined. Let v, w ∈ V/G, then we have:

〈v, w〉 = 〈v, w〉 = 〈w, v〉∗ = 〈w, v〉∗ . (89)

Also for all v, w, u ∈ V/G and a ∈ F :
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〈v, aw〉 = 〈v, aw〉 = 〈v, aw〉 = a 〈v, w〉 = a 〈v, w〉 (90)

and

〈v, w + u〉 = 〈v, w + u〉 = 〈v, w + u〉 = 〈v, w〉+ 〈v, u〉 =

〈v, w〉+ 〈v, u〉 .
(91)

Let v ∈ V/G, then:

〈v, v〉 = 〈v, v〉 ≥ 0. (92)

We can now conclude that the operation we defined on V/G is a (possibly
degenerate) inner product. To show that it is a non-degenerate inner product,
we need to show that 〈v, v〉 = 0 only if v = 0. Suppose 〈v, v〉 = 0, then:

〈v, v〉 = 〈v, v〉 = 0 (93)

so v − 0 = v ∈ G and therefore v = 0. We conclude that the operation we
defined on V/G is a non-degenerate inner product, so V/G is an inner product
space. This completes the proof.
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3 Formalism of quantum mechanics

Similarly to the previous section, this section will state the quantum mechanical
formalism relevant to the contents of this thesis. A more complete treatment
can again be found in [1], on which this section is based.

The formalism of quantum mechanics states that an isolated physical system
can be described using a Hilbert space V over C. At any point in time the state
of the system can be fully described by some vector in V [1].

A measurement performed on the system is described by a collection {Mm}.
The Mm are linear operators on V known as measurement operators and the
indices m refer to the possible measurement outcomes. If v ∈ V is the state
of the system before the measurement is performed, then the probability of
obtaining outcome m upon measuring is given by

p(m) =
〈
v,M†mMmv

〉
(94)

and if m is the obtained outcome of the measurement, then the state of the
system after the measurement is given by

Mmv√〈
v,M†mMmv

〉 . (95)

The measurement operators have to satisfy the completeness equation∑
m

M†mMm = id (96)

to ensure that the probabilities of the different measurement outcomes sum to
1 [1].

An important subclass of quantum measurements consists of projective mea-
surements. In the case of projective measurements, the measurement opera-
tors must have two additional properties. Each Mm must be self-adjoint and
MmMm′ = δm,m′Mm. Projective measurements can be described by an observ-
able M , which is a self-adjoint operator. The fact that M is self-adjoint implies
that M is normal, so it has a spectral decomposition M =

∑
mmPm, where

Pm is the projector on the eigenspace of M associated with the eigenvalue m.
When measuring a state v, the possible outcomes are given by the eigenvalues
m. Outcome m is measured with probability

p(m) = 〈v, Pmv〉 (97)

and the post-measurement state after measuring outcome m is given by

Pmv

〈v, Pmv〉
. (98)
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Projective measurements have the nice property that the expectation value of
the measurement outcome has a simple expression:

E(M) = 〈v,Mv〉 . (99)

We note that in the description of quantum measurement, the measurement
operators Mm themselves are needed only to describe the post-measurement
state. The probabilities of the measurement outcomes and the completeness
equation can be formulated in terms of the operators Em = M†mMm. The
operators Em = M†mMm are positive and satisfy

∑
mEm = id. Conversely,

if {Em} is a collection of positive operators satisfying
∑
mEm = id, it can

be shown that there exists a family Mm of measurement operators such that
Em = M†mMm.

Definition 3.1. POVM. A collection {Em} of positive operators satisfying∑
mEm = id is called a POVM.

POVM’s play a central role in the POVM formalism, which states that a mea-
surement performed on an isolated physical system is described by a POVM
{Em} and the probability of obtaining outcome m upon measuring the system
in state v is given by

p(m) = 〈v,Emv〉 . (100)

The fact that any set of measurement operators has an associated POVM and
vice versa shows that the POVM formalism is a special case of the general mea-
surement formalism, giving the measurement probabilities but not the post-
measurement states of the system. The POVM formalism is useful when the
post-measurement states are not relevant [1].

There exists an alternative method to describe the state of a physical system.
Instead of representing the state of a system using a vector v ∈ V , the state is
represented using a density operator ρ : V → V .

Definition 3.2. Density operator. A linear operator ρ : V → V with V a finite
dimensional Hilbert space, is called a density operator when ρ is positive and
tr(ρ) = 1.

This density operator formalism can be used to describe any state of the system
which can also be described be a vector v ∈ V . Such a state is known as a pure
state. If the state of a system is described using the vector v, then in the density
operator formalism this state is described by the density operator ρv defined as:

ρv(w) = 〈v, w〉 v. (101)

The density operator formalism can, however, also be used to describe a mixed
state. A mixed state is a state that is not fully known. For example if you have
a collection of systems, half of which is prepared in state a and the rest in state
b, then an arbitrary system from this collection can be described by a mixed
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state that is equal to state a or b each with probability 1
2 . Such a state can be

described using a density operator, which is one of the main selling points of the
density operator formalism. Measurements in the density operator formalism
are described by a collection of measurement operators {Mm} subject to the
same conditions. In this case the probabilities are given by

p(m) = tr(M†mMmρ) (102)

and the post-measurement state by

MmρM
†
m

tr(M†mMmρ)
. (103)

The POVM formalism can also be applied in the context of the density operator
formalism. In this case measurements are described by a POVM {Em} and the
measurement probabilities are given by [1]

p(m) = tr(Emρ). (104)

So far all the formalism we introduced was used to describe states of a single
system and measurements on those states. The last bit of formalism we will
discuss deals with the description of multiple systems. If V and W are Hilbert
spaces used to describe two physical systems, then the tensor product V ⊗W
can be used to describe the composite system consisting of these two systems.
If the first system is in the state v ∈ V and the second system in the state
w ∈W , then the composite system is in the state v⊗w. Linear combinations of
such states are also possible and not every state of the composite system is the
tensor product of two states of the individual systems. A state that cannot be
written as the tensor product of two states of the individual systems is known
as an entangled state. A composite system can also be described using the den-
sity operator formalism, in which if the first system is in the state ρ : V → V
and the second system in the state σ : W → W , then the composite system
is in the state ρ ⊗ σ. If {Mm} is a collection of measurement operators on V
and {Nn} a collection of measurement operators on W , then {Mm ⊗ Nn} is a
collection of measurement operators on V ⊗W . This collection of measurement
operators describes a measurement on a state of the composite system where the
measurements described by {Mm} and {Nn} are carried out simultaneously on
the individual systems. This simultaneous combination of measurements also
occurs in the context of either projective measurements or POVM’s. Observ-
ables M on V and N on W give rise to an observable M ⊗ N on V ⊗W and
POVM’s {Em} on V and {Fn} on W give rise to a POVM {Em⊗Fn} on V ⊗W .

Lastly in this section we introduce the Pauli-matrices, which are (matrix repre-
sentations of) self-adjoint operators on C2. The three Pauli-matrices are given
by:

X =

(
0 1
1 0

)
, (105)
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Y =

(
0 −i
i 0

)
, (106)

and

Z =

(
1 0
0 −1

)
. (107)

Since these operators are self-adjoint, they can be used to represent observables
in the context of projective measurements. The Pauli-matrices will be used on
multiple occasions throughout the remainder of this thesis. By multiplying the
Pauli-matrices it can be verified that they satisfy the following properties:

X2 = Y 2 = Z2 = id, (108)

XY = −Y X = iZ, (109)

Y Z = −ZY = iX (110)

and

ZX = −XZ = iY. (111)

We note in particular that if A and B are two different Pauli-matrices, that
AB = −BA.
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4 Bell inequalities

Bell inequalities are, roughly speaking, inequalities that hold in classical proba-
bility but are violated in quantum probability. To explain how this can happen,
suppose we have some physical system and a number of different measurements
that can be performed on the system. According to the standard formalism
of quantum mechanics, the system can be associated with a complex Hilbert
space V and the state of the system is fully described by a vector in V . Even
if this state vector is known, the outcomes of the measurements that can be
performed on the system are, in general, random. So according to the standard
formalism of quantum mechanics, there is an inherent randomness in nature.
Alternatively, there exist hidden variable models. According to those models
the state vector does not fully specify the state of a system. Instead there exist
certain hidden variables, which determine the outcomes of the possible mea-
surements on the system. This would make the outcomes of the measurements
deterministic in case the hidden variables are known. These hidden variables
are, however, in general not known. All that is known is the state vector and
this incomplete knowledge is responsible for the randomness in quantum me-
chanics. Under the assumption of such a hidden variable model, there should be
a probability space associated with a given state vector and the outcomes of the
possible measurements on this state are described by random variables on the
underlying probability space. This means these measurement outcomes should
satisfy inequalities that hold in general for random variables on some proba-
bility space. For some states the probabilities of the measurement outcomes
as predicted by the formalism of quantum measurement happen to violate an
inequality in classical probability that should be applicable under the assump-
tion of a hidden variable model. Inequalities in classical probability that can be
violated by the outcomes of quantum measurements even though these inequal-
ities should be applicable under the assumption of a hidden variable model are
known as Bell inequalities. The fact that these Bell inequalities can be violated
indicates that hidden variable models are not compatible with the formalism
of quantum measurement. In order to make the concept of a Bell inequality
more tangible, we will provide an example. First we will derive the inequality
in classical probability known as the CHSH-inequality and afterwards we show
the quantum mechanical context in which it should apply assuming a hidden
variable model, but is violated according to quantum measurement formalism.
This treatment of the CHSH-inequality is based on chapter 5 of [2].

Theorem 4.1. Let (Ω,A ,P) be a probability space and Q,R, S, T : Ω→ {1,−1}
random variables, then the following inequality holds:

|E(QS) + E(RS) + E(RT )− E(QT )| ≤ 2. (112)

Proof. Let (Ω,A ,P) be a probability space and Q,R, S, T : Ω → {1,−1} ran-
dom variables. Now, for all q, r, s, t ∈ {1,−1} we have

qs+ rs+ rt− qt = (q + r)s+ (r − q)t. (113)
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Now if q = r, then r − q = 0 and q + r ∈ {2,−2} and since s ∈ {1,−1}
we have qs + rs + rt − qt ∈ {2,−2} in this case. If q 6= r, then q = −r
and we have q + r = 0 and r − q ∈ {2,−2}. Since t ∈ {1,−1} we again
have qs + rs + rt − qt ∈ {2,−2}, so qs + rs + rt − qt ∈ {2,−2} holds for all
q, r, s, t ∈ {1,−1}. For (q, r, s, t) ∈ {1,−1}4 we define:

Ωq,r,s,t = {ω ∈ Ω : Q(ω) = q,R(ω) = r, S(ω) = s, T (ω) = t}. (114)

This defines a collection of disjoint measurable subsets of Ω. The sets are
measurable as they are finite intersections of the inverse images under random
variables of {1} or {−1}. These sets cover all different combinations of possible
values of the four random variables, so we have the disjoint union:

Ω = ∪(q,r,s,t)∈{1,−1}4Ωq,r,s,t. (115)

Using this it follows that:

|E(QS) + E(RS) + E(RT )− E(QT )| = |E(QS +RS +RT −QT )| =∣∣∣∣∫
Ω

Q(ω)S(ω) +R(ω)S(ω) +R(ω)T (ω)−Q(ω)T (ω)dP(ω)

∣∣∣∣ =∣∣∣∣∣∣
∑

(q,r,s,t)∈{1,−1}4

∫
Ωq,r,s,t

Q(ω)S(ω) +R(ω)S(ω) +R(ω)T (ω)−Q(ω)T (ω)dP(ω)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(q,r,s,t)∈{1,−1}4

∫
Ωq,r,s,t

qs+ rs+ rt− qtdP(ω)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(q,r,s,t)∈{1,−1}4
(qs+ rs+ rt− qt)P(Ωq,r,s,t)

∣∣∣∣∣∣ ≤∑
(q,r,s,t)∈{1,−1}4

|qs+ rs+ rt− qt|P(Ωq,r,s,t) =

2
∑

(q,r,s,t)∈{1,−1}4
P(Ωq,r,s,t) = 2P(Ω) = 2,

(116)

which completes the proof.

If we have a quantum mechanical system and four measurements we can perform
on said system each with possible outcomes 1 or -1, then according to a hidden
variable model the outcomes of these measurements can be described by random
variables Q,R, S, T on some probability space and the CHSH-inequality must
hold for these random variables. In order to violate the CHSH-inequality we
consider a physical system described by the Hilbert space C2 ⊗ C2 and the
state ψ = 1√

2
(e1 ⊗ e2 − e2 ⊗ e1) with ei = (δi,j)

2
j=1. The measurements we

consider will be projective measurements. Using the Pauli-matrices we define
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the following self-adjoint operators on C2 ⊗ C2: Q = Z ⊗ id, R = X ⊗ id,
S = id⊗ −Z−X√

2
and T = id⊗ Z−X√

2
. These operators define observables which

can be measured. Products of these operators are also self-adjoint and represent
observables as well. We note that Xe1 = e2, Xe2 = e1, Ze1 = e1 and Ze2 =
−e2. This can be used to calculate the expectation values of the observables
QS,RS,RT,QT when measuring these on the state ψ defined earlier. We note
that 〈ei ⊗ ej , ek ⊗ el〉 = 〈ei, ek〉 〈ej , el〉 = δi,kδj,l. We have:

E(QS) = 〈ψ,QSψ〉 =

〈
ψ, (Z ⊗ id)

(
id⊗ −Z −X√

2

)
ψ

〉
=〈

1√
2

(e1 ⊗ e2 − e2 ⊗ e1),

(
Z ⊗ −Z −X√

2

)
1√
2

(e1 ⊗ e2 − e2 ⊗ e1)

〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, Ze1 ⊗

−Z −X√
2

e2 −
(
Ze2 ⊗

−Z −X√
2

e1

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, e1 ⊗

1√
2

(e2 − e1)−
(
−e2 ⊗

1√
2

(−e1 − e2)

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1,

1√
2

(e1 ⊗ e2 − e1 ⊗ e1 − e2 ⊗ e1 − e2 ⊗ e2)

〉
=

1

2
√

2
〈e1 ⊗ e2 − e2 ⊗ e1, e1 ⊗ e2 − e1 ⊗ e1 − e2 ⊗ e1 − e2 ⊗ e2〉 =

1

2
√

2
(1 + 1) =

1√
2
,
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E(RS) = 〈ψ,RSψ〉 =

〈
ψ, (X ⊗ id)

(
id⊗ −Z −X√

2

)
ψ

〉
=〈

1√
2

(e1 ⊗ e2 − e2 ⊗ e1),

(
X ⊗ −Z −X√

2

)
1√
2

(e1 ⊗ e2 − e2 ⊗ e1)

〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, Xe1 ⊗

−Z −X√
2

e2 −
(
Xe2 ⊗

−Z −X√
2

e1

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, e2 ⊗

1√
2

(e2 − e1)−
(
e1 ⊗

1√
2

(−e1 − e2)

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1,

1√
2

(e2 ⊗ e2 − e2 ⊗ e1 + e1 ⊗ e1 + e1 ⊗ e2)

〉
=

1

2
√

2
〈e1 ⊗ e2 − e2 ⊗ e1, e2 ⊗ e2 − e2 ⊗ e1 + e1 ⊗ e1 + e1 ⊗ e2〉 =

1

2
√

2
(1 + 1) =

1√
2
,

(118)
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E(RT ) = 〈ψ,RTψ〉 =

〈
ψ, (X ⊗ id)

(
id⊗ Z −X√

2

)
ψ

〉
=〈

1√
2

(e1 ⊗ e2 − e2 ⊗ e1),

(
X ⊗ Z −X√

2

)
1√
2

(e1 ⊗ e2 − e2 ⊗ e1)

〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, Xe1 ⊗

Z −X√
2

e2 −
(
Xe2 ⊗

Z −X√
2

e1

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, e2 ⊗

1√
2

(−e2 − e1)−
(
e1 ⊗

1√
2

(e1 − e2)

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1,

1√
2

(−e2 ⊗ e2 − e2 ⊗ e1 − e1 ⊗ e1 + e1 ⊗ e2)

〉
=

1

2
√

2
〈e1 ⊗ e2 − e2 ⊗ e1,−e2 ⊗ e2 − e2 ⊗ e1 − e1 ⊗ e1 + e1 ⊗ e2〉 =

1

2
√

2
(1 + 1) =

1√
2
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and

E(QT ) = 〈ψ,QTψ〉 =

〈
ψ, (Z ⊗ id)

(
id⊗ Z −X√

2

)
ψ

〉
=〈

1√
2

(e1 ⊗ e2 − e2 ⊗ e1),

(
Z ⊗ Z −X√

2

)
1√
2

(e1 ⊗ e2 − e2 ⊗ e1)

〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, Ze1 ⊗

Z −X√
2

e2 −
(
Ze2 ⊗

Z −X√
2

e1

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1, e1 ⊗

1√
2

(−e2 − e1)−
(
−e2 ⊗

1√
2

(e1 − e2)

)〉
=

1

2

〈
e1 ⊗ e2 − e2 ⊗ e1,

1√
2

(−e1 ⊗ e2 − e1 ⊗ e1 + e2 ⊗ e1 − e2 ⊗ e2)

〉
=

1

2
√

2
〈e1 ⊗ e2 − e2 ⊗ e1,−e1 ⊗ e2 − e1 ⊗ e1 + e2 ⊗ e1 − e2 ⊗ e2〉 =

1

2
√

2
(−1− 1) = − 1√

2
.

(120)

Now we see that for this choice of measurements and the state ψ we have:

|E(QS) + E(RS) + E(RT )− E(QT )| =
∣∣∣∣ 1√

2
+

1√
2

+
1√
2

+
1√
2

∣∣∣∣ = 2
√

2 > 2

(121)
which violates the CHSH-inequality. So the CHSH-inequality is indeed a Bell
inequality as it holds in classical probability but fails in the context of quantum
measurement even though it should be applicable according to a hidden variable
model. Bell inequalities by their very nature can be violated in the context of
quantum measurement and we might ask to what extent a Bell inequality can be
violated. In order to properly address this question we will spend the next few
chapters, which are also based on chapter 5 of [2], giving a more precise mathe-
matical definition of Bell inequalities. In some sense we will be generalizing the
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CHSH-inequality by starting from a similar quantum mechanical context. The
CHSH-inequality will be a specific instance of the more general Bell inequalities
we will consider.
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5 Classical correlation matrix

The quantum mechanical setting we will consider is as follows. We consider
a composite physical system consisting of two systems. This system will be
in some state. For some N ∈ N we have N measurements P1, . . . , PN we can
perform on the first of these systems and N measurements Q1, . . . , QN we can
perform on the second system. All of these measurements will have possible
outcomes in {1,−1}. We will eventually look at inequalities involving terms of
the form E(PiQj) similar to the CHSH-inequality. We will consider terms of the
form E(PiQj) both from the perspective of a hidden variable model and from
the perspective of quantum measurement.

We will first look at this scenario from the perspective of a hidden variable
model. According to such a model there is a probability space (Ω,A ,P) such
that the measurement outcomes P1, . . . , PN and Q1, . . . , QN are random vari-
ables on (Ω,A ,P). In this section we will define classical correlation matrices as
a convenient way to view the terms E(PiQj) from a hidden variable perspective
as a single object. We will also derive some properties of the set of classical cor-
relation matrices, appearing as remarks in chapter 5 of [2], which will be useful
when exploring to what degree Bell inequalities can be violated by quantum
mechanics. We have the following definition which can also be found in chapter
5 of [2].

Definition 5.1. Classical correlation matrix. The set LN is defined, for N ∈ N,
as the set of N ×N matrices γ = (γi,j)

N
i,j=1 whose elements have the following

form:

γi,j = E(AiBj) =

∫
Ω

Ai(ω)Bj(ω)dP(ω) (122)

where (Ω,A ,P) is a probability space and Ai, Bj for i, j ∈ {1, . . . , N} are ran-
dom variables on Ω taking values in {1,−1}. The matrices γ ∈ LN are called
classical correlation matrices.

An important subset of LN consists of the correlation matrices obtained from
probability spaces where each of the random variablesAi andBj is deterministic.
In other words there exist constants ai, bj ∈ {1,−1} for each i, j ∈ {1, . . . , N}
such that Ai(ω) = ai and Bj(ω) = bj for all ω ∈ Ω. In this case the elements of
the correlation matrix take the form:

γi,j = E(AiBj) =

∫
Ω

Ai(ω)Bj(ω)dP(ω) =

∫
Ω

aibjdP(ω) = aibjP(Ω) = aibj .

(123)
So in the special case of deterministic random variables the correlation matrices
have the form γ = (γi,j)

N
i,j=1 = (tisj)

N
i,j=1 with ti, sj ∈ {1,−1} (and conversely

every correlation matrix of this form can be obtained from a probability space
with deterministic random variables taking values in {1,−1} by choosing the
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values ai = ti and bj = sj for the constants). We will from now on refer to
the matrices γ = (γi,j)

N
i,j=1 = (tisj)

N
i,j=1 with ti, sj ∈ {1,−1} as deterministic

correlation matrices, so we have the following definition:

Definition 5.2. Deterministic correlation matrix. An N × N deterministic
correlation matrix is an N ×N matrix γ = (γi,j)

N
i,j=1 = (tisj)

N
i,j=1 with ti, sj ∈

{1,−1}

We note that for any fixed N , the number of deterministic correlation matrices
is finite. In fact since there are 2 possible values for each ti and sj , there are no
more than 22N different deterministic correlation matrices. The exact number
is actually 22N−1 which we will prove.

Theorem 5.1. There exist 22N−1 deterministic correlation matrices of size
N ×N .

Proof. Suppose we fix s1 = 1. In this case the first column of the correlation
matrix is given by (ti)

N
i=1 and each different choice of ti ∈ {1,−1} results in a

different first column. Now the j-th column (for j ∈ {2, . . . , N}) is given by
(tisj)

N
i=1 = sj(ti)

N
i=1, so the j-th column is either equal to the first column (if

sj = 1) or equal to its opposite (if sj = −1). We now consider two deterministic
correlation matrices (tisj)

N
i,j=1 and (t′is

′
j)
N
i,j=1 with s1 = s′1 = 1 but such that

ti 6= t′i for some i ∈ {1, . . . , N} or sj 6= s′j for some j ∈ {2, . . . , N}. These
matrices will be different. This is because if ti 6= t′i for some i ∈ {1, . . . , N} then
the first columns of the matrices will be different. On the other hand, if ti = t′i
for all i ∈ {1, . . . , N}, then the first columns of the matrices will be identical,
but sj 6= s′j for some j ∈ {2, . . . , N} and the j-th columns of the matrices will be
each others’ opposites and therefore different. This argument shows that once
s1 = 1 is fixed, each different choice of the other ti and sj will correspond to
a different deterministic correlation matrix. There are 22N−1 different ways of
choosing the remaining ti and sj and therefore at least 22N−1 different deter-
ministic correlation matrices. To show that there aren’t any more deterministic
correlation matrices, we consider a deterministic correlation matrix (tisj)

N
i,j=1

where s1 = −1. We note that changing each ti to −ti and each sj to −sj will
not change the overall matrix. So this matrix is also of the form (t′is

′
j)
N
i,j=1

where s′1 = 1 and therefore among the 22N−1 matrices we already counted. So
allowing s1 = −1 does not give any new matrices, so we conclude that there are
22N−1 deterministic correlation matrices of size N ×N .

Definition 5.3. Convex combination. Given a finite number of points xi for
i ∈ {1, . . . , n} in a vector space V over R or C, a convex combination of these
points is any point of the form

x =

n∑
i=1

aixi (124)

with ai ≥ 0 and
∑n
i=1 ai = 1.
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Remark. The requirement that all the xi should be distinct can be added to the
above definition to make sure each point can only appear once in the convex
combination. This would ensure that the definition does not depend on the
representation of the set {xi : i ∈ {1, . . . , n}}. However, a convex combination
where not all points xi are distinct is also a convex combination using only
distinct points, which can be shown by grouping together all terms using the
same point. The corresponding coefficients will be added together resulting in
new coefficients which are still non-negative and sum to 1. This argument shows
that we can safely use the definition of a convex combination without having
to worry whether all the xi are distinct. This is useful because in our situation
each deterministic correlation matrix has two different representations.

The importance of the deterministic correlation matrices lies in the following
theorem:

Theorem 5.2. LN is equal to the set of convex combinations of the N × N
deterministic correlation matrices.

This means that LN is fully determined by the deterministic correlation matri-
ces which are finite in number and can be explicitly calculated. This character-
ization can in some ways be easier to work with than the original definition.

Proof. We will first show that LN is a subset of the set of convex combinations
of N×N deterministic correlation matrices. We consider a classical correlation
matrix γ = (γi,j)

N
i,j=1 ∈ LN along with the probability space (Ω,A ,P) and

random variables Ai, Bj such that the elements of γ are given by (122). For
(t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N we define:

Ωt1,...,tN ,s1,...,sN = (∩Ni=1A
−1
i [{ti}]) ∩ (∩Nj=1B

−1
j [{sj}]) =

{ω ∈ Ω : (∀i, j ∈ {1, . . . , N})(Ai(ω) = ti, Bj(ω) = sj)}.
(125)

We note that the Ωt1,...,tN ,s1,...,sN are distinct and disjoint subsets of Ω, since
if (t1, . . . , tN , s1, . . . , sN ) 6= (t′1, . . . , t

′
N , s

′
1, . . . , s

′
N ), then ti 6= t′i for some i or

sj 6= s′j for some j. Now if ω ∈ Ωt1,...,tN ,s1,...,sN ∩Ωt′1,...,t′N ,s′1,...,s′N , then Ai(ω) =
ti = t′i for all i and Bj(ω) = sj = s′j for all j which would lead to a contradiction,
so no such ω exists and Ωt1,...,tN ,s1,...,sN ∩ Ωt′1,...,t′N ,s′1,...,s′N = ∅. Also, if ω ∈ Ω,
then (A1(ω), . . . , AN (ω), B1(ω), . . . , BN (ω)) = (t1, . . . , tN , s1, . . . , sN ) for some
(t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N and therefore ω ∈ Ωt1,...,tN ,s1,...,sN . Each
Ωt1,...,tN ,s1,...,sN is also measurable, because it is a finite intersection of inverse
images under random variables of {1} or {−1}. Combining these results we find
that we have the following disjoint union of measurable sets:

Ω = ∪(t1,...,tN ,s1,...,sN )∈{1,−1}2N Ωt1,...,tN ,s1,...,sN . (126)

Using this, along with the fact that on each Ωt1,...,tN ,s1,...,sN the random vari-
ables are constant (Ai takes value ti and Bj takes value sj), we find that
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γ = (γi,j)
N
i,j=1 =

(∫
Ω

Ai(ω)Bj(ω)dP(ω)

)N
i,j=1

=(∫
∪(t1,...,tN ,s1,...,sN )∈{1,−1}2N Ωt1,...,tN ,s1,...,sN

Ai(ω)Bj(ω)dP(ω)

)N
i,j=1

=

 ∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

∫
Ωt1,...,tN ,s1,...,sN

Ai(ω)Bj(ω)dP(ω)

N

i,j=1

=

 ∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

∫
Ωt1,...,tN ,s1,...,sN

tisjdP(ω)

N

i,j=1

=

 ∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

P(Ωt1,...,tN ,s1,...,sN )tisj

N

i,j=1

=

∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

P(Ωt1,...,tN ,s1,...,sN ) (tisj)
N
i,j=1

(127)

which is a convex combination of the deterministic correlation matrices because
P(Ωt1,...,tN ,s1,...,sN ) ≥ 0 for each (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N and

∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

P(Ωt1,...,tN ,s1,...,sN ) =

P(∪(t1,...,tN ,s1,...,sN )∈{1,−1}2N Ωt1,...,tN ,s1,...,sN ) = P(Ω) = 1.

(128)

So we see that LN is indeed a subset of the set of convex combinations of
N × N deterministic correlation matrices. We will now show that the set of
convex combinations of N×N deterministic correlation matrices is also a subset
of LN from which we will be able to conclude that these two sets are the same.
We consider an arbitrary convex combination of the deterministic correlation
matrices:

γ =
∑

(t1,...,tN ,s1,...,sN )∈{1,−1}2N
a(t1,...,tN ,s1,...,sN ) (tisj)

N
i,j=1 (129)

with each a(t1,...,tN ,s1,...,sN ) ≥ 0 and
∑

(t1,...,tN ,s1,...,sN )∈{1,−1}2N a(t1,...,tN ,s1,...,sN ) =
1 and we will show that γ is a classical correlation matrix. To this end we
consider the probability space (Ω,A ,P), where Ω = (0, 1], A is the Borel
σ-algebra on (0, 1] and P = λ, the Lebesgue measure (restricted to (0, 1]).
The Lebesgue measure is a measure and since λ((0, 1]) = 1 − 0 = 1 it is
also a probability measure. Since

∣∣{1,−1}2N
∣∣ = 22N , there exists a bijection

f : {1, . . . , 22N} → {1,−1}2N . For k ∈ {1, . . . , 22N} we define the following
sets:
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Ωf(k) =

(
k−1∑
l=1

af(l),

k∑
l=1

af(l)

]
(130)

where we use the convention that (a, b] = ∅ if b ≤ a. Since each af(l) ≥ 0 and∑22N

l=1 af(a) =
∑

(t1,...,tN ,s1,...,sN )∈{1,−1}2N a(t1,...,tN ,s1,...,sN ) = 1 it follows that

the Ωf(k) are disjoint subsets of Ω and Ω = (0, 1] = ∪22N

l=1 Ωf(k) is a disjoint union.
We also note that each Ωf(k), being a half-open interval (or empty) is Lebesgue-

measurable. Moreover we have P(Ωf(k)) = λ
((∑k−1

l=1 af(l),
∑k
l=1 af(l)

])
=

af(k) So far we have constructed a probability space (Ω,A ,P) with subsets
Ωt1,...,tN ,s1,...,sN such that Ω = ∪(t1,...,tN ,s1,...,sN )∈{1,−1}2N Ωt1,...,tN ,s1,...,sN is a
disjoint union and P(Ωt1,...,tN ,s1,...,sN ) = a(t1,...,tN ,s1,...,sN ). We can now de-
fine random variables Ai and Bj for i, j ∈ {1, . . . , N} as follows. For ω ∈
Ωt1,...,tN ,s1,...,sN we defineAi(ω) = ti andBj(ω) = sj . Since the sets Ωt1,...,tN ,s1,...,sN
are disjoint and their union is Ω, the functions Ai and Bj are well-defined on
Ω. Moreover, since Ai and Bj are constant on each Ωt1,...,tN ,s1,...,sN (which are
measurable sets), Ai and Bj are measurable functions and therefore random
variables. Since ti, sj ∈ {1,−1}, Ai and Bj takes values in {1,−1}. We have
constructed a probability space with random variables meeting all the require-
ments in the definition of LN , so the matrix with elements

∫
Ω
Ai(ω)Bj(ω)dP(ω)

is a classical correlation matrix. We will now show that γ is this matrix. We
note that the sets Ωt1,...,tN ,s1,...,sN agree with the definition given in (125). Now
it follows from (127) that

(∫
Ω

Ai(ω)Bj(ω)dP(ω)

)N
i,j=1

=∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

P(Ωt1,...,tN ,s1,...,sN ) (tisj)
N
i,j=1 =

∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

a(t1,...,tN ,s1,...,sN ) (tisj)
N
i,j=1 = γ.

(131)

So γ is a classical correlation matrix. This completes the proof that LN is the
set of all convex combinations of N ×N deterministic correlation matrices.

Definition 5.4. Convex set. A convex set C is a subset of some vector space
V over R or C such that for all x, y ∈ C and t ∈ [0, 1] we have (1− t)x+ ty ∈ C.

Theorem 5.3. If V is a vector space over R or C and C is the set of all convex
combinations of the points in {c1, . . . , cn} ⊆ V , then C is a convex set.

Proof. Suppose C is the set of all convex combinations of the points in {c1, . . . , cn} ⊆
V . Let x, y ∈ C and t ∈ [0, 1]. Then x =

∑n
i=1 aici and y =

∑n
i=1 bici for some

ai, bi ≥ 0 with
∑n
i=1 ai =

∑n
i=1 bi = 1. Now we have:
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(1− t)x+ ty = (1− t)
n∑
i=1

aici + t

n∑
i=1

bici =

n∑
i=1

(1− t)aici +

n∑
i=1

tbici =

n∑
i=1

((1− t)ai + tbi)ci

(132)

where (1− t), t, ai, bi ≥ 0, so (1− t)ai + tbi ≥ 0 and

n∑
i=1

((1− t)ai + tbi) = (1− t)
n∑
i=1

ai + t

n∑
i=1

bi = (1− t) + t = 1. (133)

So (1− t)x+ ty is a convex combination of the points in {c1, . . . , cn} and we see
that (1− t)x+ ty ∈ C. We conclude that C is a convex set.

Theorems 5.2 and 5.3 together imply the following corollary:

Corollary 5.3.1. LN is a convex set.
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6 Quantum correlation matrix

We will now take another look at the terms of the form E(PiQj) but from the
point of view of quantum measurement. As before we still consider some state
of a system composed of two systems with P1, . . . , PN measurements on the first
system and Q1, . . . , QN measurements on the second system, all having possi-
ble outcomes in {1,−1}. Similarly to the previous chapter, we want to define
quantum correlation matrices as matrices with elements of the form E(PiQj),
but now from the point of view of quantum measurement. Just as in the case
of the classical correlation matrices we will first translate this to a more explicit
definition. Back when we violated the CHSH-inequality we only considered one
specific state of a specific system and a specific set of measurements. This was
sufficient, since we only wanted to show that the CHSH-inequality can be vio-
lated. Now we want to address the question to what degree a Bell inequality can
be violated, so we must clearly define which systems, states and measurements
we allow.

As stated before we consider a composition of two systems. Each of those two
systems can in general be described by some complex Hilbert space. We will
restrict ourselves to the case where both systems can be described by the finite-
dimensional complex Hilbert space Cn. Here n ∈ N is arbitrary and can vary
but is always equal for both systems. The composite systems are then described
by Cn⊗Cn for some n ∈ N. We will consider states of these composite systems
described by density operators ρ : Cn⊗Cn → Cn⊗Cn. So we will be using the
density operator formalism and will allow mixed states. As stated before we will
consider measurements P1, . . . , PN on the first system and Q1, . . . , QN on the
second system with outcomes in {1,−1} for some N ∈ N which will determine
the size of the quantum correlation matrices. Aside from the outcomes being in
{1,−1} we will consider general measurements and since we are not interested
in the post-measurement state of the system we will use the POVM formalism.
Since each measurement has two outcomes, each POVM will have two elements
which sum to the identity. The POVM for Pi will be {Ei, id − Ei} with Ei
associated to 1 and id − Ei associated to -1. Similarly the POVM for Qj will
be {Fj , id− Fj} with Fj associated to 1 and id− Fj associated to -1. We note
that, as part of POVM’s, Ei, id − Ei, Fj , id − Fj will all be positive operators
on Cn. Now that we have specified which systems, states and measurements we
allow, we can derive a more explicit expression for E(PiQj). This derivation is
based on a similar derivation in chapter 5 of [2].

The combined measurement of Pi and Qj is described by the POVM {Ei ⊗
Fj , Ei ⊗ (id− Fj), (id−Ei)⊗ Fj , (id−Ei)⊗ (id− Fj)}, where the positive op-
erators are associated to outcomes (1, 1), (1,−1), (−1, 1), (−1,−1) respectively.
From this it follows that
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E(PiQj) = (1 · 1)p(Pi = 1, Qj = 1) + (1 · −1)p(Pi = 1, Qj = −1)+

(−1 · 1)p(Pi = −1, Qj = 1) + (−1 · −1)p(Pi = −1, Qj = −1) =

p(Pi = 1, Qj = 1)− p(Pi = 1, Qj = −1)−
p(Pi = −1, Qj = 1) + p(Pi = −1, Qj = −1) =

tr((Ei ⊗ Fj)ρ)− tr((Ei ⊗ (id− Fj))ρ)−
tr(((id− Ei)⊗ Fj)ρ) + tr(((id− Ei)⊗ (id− Fj))ρ) =

tr((Ei ⊗ Fj − Ei ⊗ (id− Fj)− (id− Ei)⊗ Fj + (id− Ei)⊗ (id− Fj))ρ) =

tr((Ei ⊗ Fj − Ei ⊗ id+ Ei ⊗ Fj − id⊗ Fj + Ei ⊗ Fj+
id⊗ id− id⊗ Fj − Ei ⊗ id+ Ei ⊗ Fj)ρ) =

tr((id⊗ id− 2(id⊗ Fj)− 2(Ei ⊗ id) + 4(Ei ⊗ Fj))ρ) =

tr(((id− 2Ei)⊗ (id− 2Fj)ρ).

(134)

So the elements of the quantum correlation matrices will be of the form tr(((id−
2Ei)⊗(id−2Fj))ρ) with Ei, Fj positive operators on Cn for some n ∈ N such that
id−Ei, id−Fj are also positive and ρ a density operator on Cn⊗Cn. Theorems
2.12 and 2.13 now tell us that elements of the form tr(((id−2Ei)⊗(id−2Fj))ρ),
with Ei, Fj positive operators on Cn for some n ∈ N such that id− Ei, id− Fj
are also positive and ρ a density operator on Cn ⊗ Cn, are exactly the same as
the elements of the form tr(Ai ⊗Bjρ) with Ai, Bj self-adjoint operators on Cn
for some n ∈ N with ‖Ai‖, ‖Bj‖ ≤ 1 and ρ a density operator on Cn ⊗ Cn. We
now use this simplified expression to define the quantum correlation matrices,
as in chapter 5 of [2], and we will spend the remainder of this chapter stating
and proving some properties of the set of quantum correlation matrices. Most
of these properties are also stated in chapter 5 of [2] but often without proof.

Definition 6.1. Quantum correlation matrix. The set QN of quantum correla-
tion matrices is defined, for N ∈ N, as the set of N×N matrices γ = (γi,j)

N
i,j=1

whose elements have the following form:

γi,j = tr(Ai ⊗Bjρ) (135)

where Ai, Bj for i, j ∈ {1, . . . , N} are self-adjoint operators acting on a Hilbert
space Cn for some n ∈ N with max{‖A1‖, . . . , ‖AN‖, ‖B1‖, . . . , ‖BN‖} ≤ 1 and
ρ a density operator acting on Cn ⊗ Cn.

The following theorem states that the elements of a quantum correlation matrix
are real numbers between −1 and 1. This is not surprising since the elements
of the quantum correlation matrices are constructed to be of the form E(PiQj),
where Pi and Qj are measurements with outcomes in {1,−1}.

Theorem 6.1. Let (γi,j)
N
i,j=1 ∈ QN , then for all i, j ∈ {1, . . . , N}, γi,j is real

and |γi,j ≤ 1|.
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Proof. Let (γi,j)
N
i,j=1 ∈ QN . There exists an n ∈ N, self-adjoint operators

A1, . . . , AN , B1, . . . , BN : Cn → Cn with ‖Ai‖, ‖Bj‖ ≤ 1 for all i, j ∈ {1, . . . , N}
and a density operator ρ : Cn ⊗ Cn → Cn ⊗ Cn such that γi,j = tr(Ai ⊗ Bjρ).
ρ is positive and tr(ρ) = 1. Let i, j ∈ {1, . . . , N}, then by Theorem 2.14

‖Ai ⊗Bj‖ = ‖Ai‖‖Bj‖ ≤ 1 · 1 = 1 (136)

and Ai ⊗ Bj is self-adjoint. Now by Theorem 2.17 γi,j = tr(Ai ⊗ Bjρ) is real
and

|γi,j | = |tr(Ai ⊗Bjρ)| ≤ ‖Ai ⊗Bj‖tr(ρ) ≤ tr(ρ) = 1 (137)

which completes the proof.

The following theorem tells us that the classical correlation matrices form a
subset of the quantum correlation matrices. This result is also stated and proved
in chapter 5 of [2]. The proof we give is similar but fills in the details omitted
from the original proof.

Theorem 6.2. LN ⊆ QN

Before proving this theorem we would like to make the following remark

Remark. For n ∈ N, Cn has a standard orthonormal basis {ek = (δk,l)
n
l=1 :

k ∈ {1, . . . , n}}. Therefore by Theorem 2.9 {ek ⊗ el : k, l ∈ {1, . . . , n}} is an
orthonormal basis for Cn ⊗ Cn which we will refer to as the standard basis for
Cn ⊗ Cn. If A,B : Cn → Cn are linear operators with matrix representations
(ak,l)

n
k,l=1, (bk,l)

n
k,l=1 with respect to the standard basis, then A⊗B : Cn⊗Cn →

Cn ⊗ Cn will have a matrix representation (c(p,q),(r,s))(p,q),(r,s)∈{1,...,n}2 with
respect to the standard basis of Cn ⊗ Cn with:

c(p,q),(r,s) = ap,rbq,s. (138)

Because the standard basis of Cn ⊗ Cn is orthonormal, any inner products be-
tween vectors in Cn⊗Cn are equal to the inner products of their representations
with respect to the standard basis.

Proof. Let γ = (γi,j)
N
i,j=1 ∈ LN . Since LN consists of all convex combinations

of the deterministic correlation matrices, γ is as in (129) with non-negative
coefficients that sum to 1. Let f : {1, . . . , 22N} → {1,−1}2N be a bijection,
then we can write

γ =

22N∑
k=1

af(k)(ti(k)sj(k))Ni,j=1 (139)

with ti(k), sj(k) ∈ {1,−1} such that f(k) = (t1(k), . . . , tN (k), s1(k), . . . , sN (k)).

We now define the operators Ai and Bj for i, j ∈ {1, . . . , N} on C22N

using

matrix representations (δk,lti(k))22N

k,l=1 and (δk,lsj(k))22N

k,l=1 with respect to the
standard basis. We note that these are diagonal matrices with real elements
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(1 or −1) on the diagonal. This means the matrices are Hermitian and the

corresponding operators are self-adjoint. Now for any vector (cl)
22N

l=1 ∈ C22N

we
have:

∥∥∥(δk,lti(k))22N

k,l=1(cl)
22N

l=1

∥∥∥
2

=

∥∥∥∥∥∥∥
22N∑
l=1

δk,lti(k)cl

22N

k=1

∥∥∥∥∥∥∥
2

=
∥∥∥(ti(k)ck)

22N

k=1

∥∥∥
2

=

√√√√22N∑
k=1

|ti(k)ck|2 =

√√√√22N∑
k=1

|ti(k)|2|ck|2 =

√√√√22N∑
k=1

|ck|2 =
∥∥∥(cl)

22N

l=1

∥∥∥
2

(140)

and

∥∥∥(δk,lsj(k))22N

k,l=1(cl)
22N

l=1

∥∥∥
2

=

∥∥∥∥∥∥∥
22N∑
l=1

δk,lsj(k)cl

22N

k=1

∥∥∥∥∥∥∥
2

=
∥∥∥(sj(k)ck)

22N

k=1

∥∥∥
2

=

√√√√22N∑
k=1

|sj(k)ck|2 =

√√√√22N∑
k=1

|sj(k)|2|ck|2 =

√√√√22N∑
k=1

|ck|2 =
∥∥∥(cl)

22N

l=1

∥∥∥
2
.

(141)

So it follows that ‖Ai‖ = ‖Bj‖ = 1 for all i, j ∈ {1, . . . , N} and therefore
max{‖A1‖, . . . , ‖AN‖, ‖B1‖, . . . , ‖BN‖} = 1. We see that the operators satisfy
all requirements in the definition of the quantum correlation matrices.
With respect to the standard basis Ai ⊗Bj has a matrix representation(
d

(i,j)
(m,n),(q,r)

)
(m,n),(q,r)∈{1,...,22N}2

with:

d
(i,j)
(m,n),(q,r) = (Ai)m,q(Bj)n,r = δm,qti(m)δn,rsj(n). (142)

We now define the operator ρ : C22N ⊗ C22N → C22N ⊗ C22N

using a matrix
representation

(
ρ(m,n),(q,r)

)
(m,n),(q,r)∈{1,...,22N}2 with respect to the standard

basis with:

ρ(m,n),(q,r) = δm,nδq,rδm,qaf(m). (143)

Let c ∈ C22N⊗C22N

and (c(q,r))(q,r)∈{1,...,22N}2 its representation in the standard
basis. We see that:
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〈c, ρc〉 =〈
(c(m,n))(m,n)∈{1,...,22N}2 , (ρ(m,n),(q,r))(m,n),(q,r)∈{1,...,22N}2(c(q,r))(q,r)∈{1,...,22N}2

〉
=〈

(c(m,n))(m,n)∈{1,...,22N}2 ,

22N∑
q=1

22N∑
r=1

ρ(m,n),(q,r)c(q,r)


(m,n)∈{1,...,22N}2

〉
=

22N∑
m=1

22N∑
n=1

c∗(m,n)

22N∑
q=1

22N∑
r=1

ρ(m,n),(q,r)c(q,r) =

22N∑
m=1

22N∑
n=1

22N∑
q=1

22N∑
r=1

ρ(m,n),(q,r)c
∗
(m,n)c(q,r) =

22N∑
m=1

22N∑
n=1

22N∑
q=1

22N∑
r=1

δm,nδq,rδm,qaf(m)c
∗
(m,n)c(q,r) =

22N∑
m=1

22N∑
n=1

22N∑
q=1

δm,nδm,qaf(m)c
∗
(m,n)c(q,q) =

22N∑
m=1

22N∑
n=1

δm,naf(m)c
∗
(m,n)c(m,m) =

22N∑
m=1

af(m)c
∗
(m,m)c(m,m) =

22N∑
m=1

af(m)

∣∣c(m,m)

∣∣2 ≥ 0

(144)

because
∣∣c(m,m)

∣∣2 ≥ 0 and af(m) ≥ 0 for all m ∈ {1, . . . , 22N}. This shows that
ρ is a positive operator. We also have:

tr(ρ) = tr((ρ(m,n),(q,r))(m,n),(q,r)∈{1,...,22N}2) =

22N∑
m=1

22N∑
n=1

ρ(m,n),(m,n) =

22N∑
m=1

22N∑
n=1

δm,nδm,nδm,maf(m) =

22N∑
m=1

22N∑
n=1

δm,naf(m) =

22N∑
m=1

af(m) = 1.

(145)

So ρ satisfies all requirements in the definition of the quantum correlation matri-
ces. This means the matrix (tr(Ai⊗Bjρ))Ni,j=1 is a quantum correlation matrix.
Now
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tr(Ai ⊗Bjρ) =

tr

((
d

(i,j)
(m,n),(p,s)

)
(m,n),(p,s)∈{1,...,22N}2

(
ρ(p,s),(q,r)

)
(p,s),(q,r)∈{1,...,22N}2

)
=

tr


22N∑
p=1

22N∑
s=1

d
(i,j)
(m,n),(p,s)ρ(p,s),(q,r)


(m,n),(q,r)∈{1,...,22N}2

 =

22N∑
m=1

22N∑
n=1

22N∑
p=1

22N∑
s=1

d
(i,j)
(m,n),(p,s)ρ(p,s),(m,n) =

22N∑
m=1

22N∑
n=1

22N∑
p=1

22N∑
s=1

δm,pti(m)δn,ssj(n)δp,sδm,nδp,maf(p) =

22N∑
m=1

22N∑
n=1

22N∑
p=1

22N∑
s=1

δm,pδn,sδp,sδm,naf(p)ti(m)sj(n) =

22N∑
m=1

22N∑
n=1

22N∑
p=1

δm,pδp,nδm,naf(p)ti(m)sj(n) =

22N∑
m=1

22N∑
n=1

δm,naf(m)ti(m)sj(n) =

22N∑
m=1

af(m)ti(m)sj(m) = γi,j .

(146)

So this quantum correlation matrix is actually equal to γ, so γ ∈ QN . This
proves that LN ⊆ QN .

As the following theorem states, classical correlation matrices and quantum
correlation matrices are the same in case N = 1.

Theorem 6.3. L1 = Q1

Proof. L1 ⊆ Q1 is a special case of the previous theorem. Let γ = (γ1,1) ∈ Q1.
As we have seen before, γ1,1 ∈ [−1, 1]. Now

γ1,1 =
1

2
(1 + γ1,1) · 1 +

1

2
(1− γ1,1) · −1 (147)

where 1
2 (1 ± γ1,1) ≥ 0 and 1

2 (1 + γ1,1) + 1
2 (1 − γ1,1) = 1. So γ is a convex

combination of the deterministic correlation matrices (1) and (−1) and therefore
γ ∈ L1. So Q1 ⊆ L1 and we conclude that L1 = Q1.

Our next theorem tells us that the set of quantum correlation matrices is convex,
just like the set of classical correlation matrices. This result is stated but not
proved in chapter 5 of [2].
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Theorem 6.4. QN is a convex set.

Proof. Let γ = (γi,j)
N
i,j=1, β = (βi,j)

N
i,j=1) ∈ QN and t ∈ [0, 1]. This means there

exist natural numbers n,m; self-adjoint operators Ai, Bj for i, j ∈ {1, . . . , N}
acting on Cn with max{‖A1‖, . . . , ‖AN‖, ‖B1‖, . . . , ‖BN‖} ≤ 1; a density opera-
tor ρ acting on Cn⊗Cn; self-adjoint operators Ci, Dj for i, j ∈ {1, . . . , N} acting
on Cm with max{‖C1‖, . . . , ‖CN‖, ‖D1‖, . . . , ‖DN‖} ≤ 1; and a density opera-
tor σ acting on Cm⊗Cm such that γi,j = tr(Ai⊗Bjρ) and βi,j = tr(Ci⊗Djσ).
In order to prove the convexity of QN we need to show that (1− t)γ+ tβ ∈ QN .
To do this we will define self-adjoint operators Ei, Fj for i, j ∈ {1, . . . , N} on
Cn+m with ‖Ei‖, ‖Fj‖ ≤ 1 and a density operator τ on Cn+m ⊗ Cn+m such
that tr(Ei⊗Fjτ) = (1− t)γi,j + tβi,j which will prove that (1− t)γ+ tβ ∈ QN .
Using the identification Cn+m = Cn ⊕ Cm we define the linear operators:

Ei = Ai ⊕ Ci (148)

and

Fj = Bj ⊕Dj . (149)

Ai, Bj , Ci, Dj are all self-adjoint so Ei and Fj are self-adjoint by Corollary
2.24.1. We also have by Theorem 2.25 that

‖Ei‖ = max{‖Ai‖, ‖Ci‖} ≤ 1 (150)

and

‖Fj‖ = max{‖Bj‖, ‖Dj‖} ≤ 1. (151)

This shows that the linear operators Ei and Fj meet all requirements in the
definition of QN . In order to define τ we will need an isomorphism G : (Cn ⊕
Cm)⊗ (Cn⊕Cm)→ (Cn⊗Cn)⊕ (Cn⊗Cm)⊕ (Cm⊗Cn)⊕ (Cm⊗Cm). In order
to define G we will use orthonormal bases of the two spaces. We will write enk
and emk for the elements of the standard bases of Cn and Cm respectively. These
bases are orthonormal. Now {(enk , 0) : k ∈ {1, . . . , n}}∪{(0, emk ) : k ∈ {1, . . . ,m}
is an orthonormal basis for Cn⊕Cm and it follows that {(enk , 0)⊗ (enl , 0) : k, l ∈
{1, . . . , n}} ∪ {(enk , 0) ⊗ (0, eml ) : k ∈ {1, . . . , n}, l ∈ {1, . . . ,m}} ∪ {(0, emk ) ⊗
(enl , 0) : k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}} ∪ {0, (enk )⊗ (0, enl ) : k, l ∈ {1, . . . ,m}} is
an orthonormal basis for (Cn⊕Cm)⊗(Cn⊕Cm). We also have the orthonormal
bases {enk ⊗ enl : k, l ∈ {1, . . . , n}}, {enk ⊗ eml : k ∈ {1, . . . , n}, l ∈ {1, . . . ,m}},
{emk ⊗ enl : k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}} and {emk ⊗ eml : k, l ∈ {1, . . . ,m}}
for Cn ⊗ Cn, Cn ⊗ Cm, Cm ⊗ Cn and Cm ⊗ Cm respectively. This gives us the
orthonormal basis {(enk ⊗ enl , 0, 0, 0) : k, l ∈ {1, . . . , n}} ∪ {(0, enk ⊗ eml , 0, 0) : k ∈
{1, . . . , n}, l ∈ {1, . . . ,m}}∪{(0, 0, emk ⊗enl , 0) : k ∈ {1, . . . ,m}, l ∈ {1, . . . , n}}∪
{(0, 0, 0, emk ⊗ eml ) : k, l ∈ {1, . . . ,m}} for (Cn⊗Cn)⊕ (Cn⊗Cm)⊕ (Cm⊗Cn)⊕
(Cm ⊗ Cm). Using these bases we define G as:
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G(

n∑
k=1

n∑
l=1

ak,l(e
n
k , 0)⊗ (enl , 0) +

n∑
k=1

m∑
l=1

bk,l(e
n
k , 0)⊗ (0, eml )+

m∑
k=1

n∑
l=1

ck,l(0, e
m
k )⊗ (enl , 0) +

m∑
k=1

m∑
l=1

dk,l(0, e
m
k )⊗ (0, eml )) =

n∑
k=1

n∑
l=1

ak,l(e
n
k ⊗ enl , 0, 0, 0) +

n∑
k=1

m∑
l=1

bk,l(0, e
n
k ⊗ eml , 0, 0)+

m∑
k=1

n∑
l=1

ck,l(0, 0, e
m
k ⊗ enl , 0) +

m∑
k=1

m∑
l=1

dk,l(0, 0, 0, e
m
k ⊗ eml )

(152)

for any choice of ak,l, bk,l, ck,l, dk,l ∈ C and Theorem 2.23 ensures that G is an
isomorphism. This definition of G is not the most practical to work with, so we
will first show that for all v, w ∈ Cn and x, y ∈ Cm we have

G((v, x)⊗ (w, y)) = (v ⊗ w, v ⊗ y, x⊗ w, x⊗ y). (153)

To show this we express v, w, x, y as linear combinations of basis vectors:

v =

n∑
k=1

ake
n
k , (154)

w =

n∑
k=1

bke
n
k , (155)

x =

m∑
k=1

cke
m
k (156)

and

y =

m∑
k=1

dke
m
k . (157)

Using the definition of G we find that:
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G((v, x)⊗ (w, y)) =

G((v, 0)⊗ (w, 0) + (v, 0)⊗ (0, y) + (0, x)⊗ (w, 0) + (0, x)⊗ (0, y)) =

G((

n∑
k=1

ake
n
k , 0)⊗ (

n∑
l=1

ble
n
l , 0) + (

n∑
k=1

ake
n
k , 0)⊗ (0,

m∑
l=1

dle
m
l )+

(0,

m∑
k=1

cke
m
k )⊗ (

n∑
l=1

ble
n
l , 0) + (0,

m∑
k=1

cke
m
k )⊗ (0,

m∑
l=1

dle
m
l )) =

G(

n∑
k=1

n∑
l=1

akbl(e
n
k , 0)⊗ (enl , 0) +

n∑
k=1

m∑
l=1

akdl(e
n
k , 0)⊗ (0, eml )+

m∑
k=1

n∑
l=1

ckbl(0, e
m
k )⊗ (enl , 0) +

m∑
k=1

m∑
l=1

ckdl(0, e
m
k )⊗ (0, eml )) =

n∑
k=1

n∑
l=1

akbl(e
n
k ⊗ enl , 0, 0, 0) +

n∑
k=1

m∑
l=1

akdl(0, e
n
k ⊗ eml , 0, 0)+

m∑
k=1

n∑
l=1

ckbl(0, 0, e
m
k ⊗ enl , 0) +

m∑
k=1

m∑
l=1

ckdl(0, 0, 0, e
m
k ⊗ eml ) =

(

n∑
k=1

ake
n
k ⊗

n∑
l=1

ble
n
l , 0, 0, 0) + (0,

n∑
k=1

ake
n
k ⊗

m∑
l=1

dle
m
l , 0, 0)+

(0, 0,

m∑
k=1

cke
m
k ⊗

n∑
l=1

ble
n
l , 0) + (0, 0, 0,

m∑
k=1

cke
m
k ⊗

m∑
l=1

dle
m
l ) =

(v ⊗ w, 0, 0, 0) + (0, v ⊗ y, 0, 0) + (0, 0, x⊗ w, 0) + (0, 0, 0, x⊗ y) =

(v ⊗ w, v ⊗ y, x⊗ w, x⊗ y)

(158)

which is what we wanted to show. Next we will show thatG(Ei⊗Fj)G−1 = (Ai⊗
Bj)⊕ (Ai⊗Dj)⊕ (Ci⊗Bj)⊕ (Ci⊗Dj). For any choice of ak,l, bk,l, ck,l, dk,l ∈ C
we have:

G(Ei ⊗ Fj)G−1(

n∑
k=1

n∑
l=1

ak,l(e
n
k ⊗ enl , 0, 0, 0) +

n∑
k=1

m∑
l=1

bk,l(0, e
n
k ⊗ eml , 0, 0)+

m∑
k=1

n∑
l=1

ck,l(0, 0, e
m
k ⊗ enl , 0) +

m∑
k=1

m∑
l=1

dk,l(0, 0, 0, e
m
k ⊗ eml )) =

G(Ei ⊗ Fj)(
n∑
k=1

n∑
l=1

ak,l(e
n
k , 0)⊗ (enl , 0) +

n∑
k=1

m∑
l=1

bk,l(e
n
k , 0)⊗ (0, eml )+

m∑
k=1

n∑
l=1

ck,l(0, e
m
k )⊗ (enl , 0) +

m∑
k=1

m∑
l=1

dk,l(0, e
m
k )⊗ (0, eml )) =
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G(

n∑
k=1

n∑
l=1

ak,lEi(e
n
k , 0)⊗ Fj(enl , 0) +

n∑
k=1

m∑
l=1

bk,lEi(e
n
k , 0)⊗ Fj(0, eml )+

m∑
k=1

n∑
l=1

ck,lEi(0, e
m
k )⊗ Fj(enl , 0) +

m∑
k=1

m∑
l=1

dk,lEi(0, e
m
k )⊗ Fj(0, eml )) =

G(

n∑
k=1

n∑
l=1

ak,l(Aie
n
k , 0)⊗ (Bje

n
l , 0) +

n∑
k=1

m∑
l=1

bk,l(Aie
n
k , 0)⊗ (0, Dje

m
l )+

m∑
k=1

n∑
l=1

ck,l(0, Cie
m
k )⊗ (Bje

n
l , 0) +

m∑
k=1

m∑
l=1

dk,l(0, Cie
m
k )⊗ (0, Dje

m
l )) =

n∑
k=1

n∑
l=1

ak,lG((Aie
n
k , 0)⊗ (Bje

n
l , 0)) +

n∑
k=1

m∑
l=1

bk,lG((Aie
n
k , 0)⊗ (0, Dje

m
l ))+

m∑
k=1

n∑
l=1

ck,lG((0, Cie
m
k )⊗ (Bje

n
l , 0)) +

m∑
k=1

m∑
l=1

dk,lG((0, Cie
m
k )⊗ (0, Dje

m
l )) =

n∑
k=1

n∑
l=1

ak,l(Aie
n
k ⊗Bjenl , 0, 0, 0) +

n∑
k=1

m∑
l=1

bk,l(0, Aie
n
k ⊗Dje

m
l , 0, 0)+

m∑
k=1

n∑
l=1

ck,l(0, 0, Cie
m
k ⊗Bjenl , 0) +

m∑
k=1

m∑
l=1

dk,l(0, 0, 0, Cie
m
k ⊗Dje

m
l ) =

((Ai ⊗Bj)
n∑
k=1

n∑
l=1

ak,le
n
k ⊗ enl , 0, 0, 0) + (0, (Ai ⊗Dj)

n∑
k=1

m∑
l=1

bk,le
n
k ⊗ eml , 0, 0)+

(0, 0, (Ci ⊗Bj)
m∑
k=1

n∑
l=1

ck,le
m
k ⊗ enl , 0) + (0, 0, 0, (Ci ⊗Dj)

m∑
k=1

m∑
l=1

dk,le
m
k ⊗ eml ) =

((Ai ⊗Bj)
n∑
k=1

n∑
l=1

ak,le
n
k ⊗ enl , (Ai ⊗Dj)

n∑
k=1

m∑
l=1

bk,le
n
k ⊗ eml ,

(Ci ⊗Bj)
m∑
k=1

n∑
l=1

ck,le
m
k ⊗ enl , (Ci ⊗Dj)

m∑
k=1

m∑
l=1

dk,le
m
k ⊗ eml ) =

((Ai ⊗Bj)⊕ (Ai ⊗Dj)⊕ (Ci ⊗Bj)⊕ (Ci ⊗Dj))(

n∑
k=1

n∑
l=1

ak,l(e
n
k ⊗ enl , 0, 0, 0)+

n∑
k=1

m∑
l=1

bk,l(0, e
n
k ⊗ eml , 0, 0) +

m∑
k=1

n∑
l=1

ck,l(0, 0, e
m
k ⊗ enl , 0)+

m∑
k=1

m∑
l=1

dk,l(0, 0, 0, e
m
k ⊗ eml ))

(159)

which gives us the desired result. We now consider the linear operator (1 −
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t)ρ⊕ 0⊕ 0⊕ tσ on (Cn ⊗ Cn)⊕ (Cn ⊗ Cm)⊕ (Cm ⊗ Cn)⊕ (Cm ⊗ Cm) with 0
being the zero-operator which sends every element to 0. ρ and σ are positive
and (1 − t), t ≥ 0 so (1 − t)ρ and tσ are positive. Since 0 is also positive, it
follows from Theorem 2.26 that (1− t)ρ⊕ 0⊕ 0⊕ tσ is a positive operator. By
Theorem 2.27 we also have:

tr((1− t)ρ⊕ 0⊕ 0⊕ tσ) = tr((1− t)ρ) + tr(0) + tr(0) + tr(tσ) =

(1− t)tr(ρ) + 0 + 0 + ttr(σ) = (1− t) + t = 1.
(160)

We define the linear operator τ = G−1((1− t)ρ⊕ 0⊕ 0⊕ tσ)G on (Cn ⊕Cm)⊗
(Cn⊕Cm) and note that because G is an isomorphism and (1− t)ρ⊕ 0⊕ 0⊕ tσ
is a positive operator with trace equal to 1, that τ is also positive and tr(τ) = 1
by Theorems 2.20 and 2.22, so τ is a density operator. Now, using the fact that
G is an isomorphism we have by Theorems 2.22 and 2.27:

tr((Ei ⊗ Fj)τ) = tr(G(Ei ⊗ Fj)τG−1) =

tr(G(Ei ⊗ Fj)G−1((1− t)ρ⊕ 0⊕ 0⊕ tσ)GG−1) =

tr((Ai ⊗Bj)⊕ (Ai ⊗Dj)⊕ (Ci ⊗Bj)⊕ (Ci ⊗Dj)((1− t)ρ⊕ 0⊕ 0⊕ tσ)) =

tr((1− t)(Ai ⊗Bj)ρ⊕ 0⊕ 0⊕ t(Ci ⊗Dj)σ) =

tr((1− t)(Ai ⊗Bj)ρ) + tr(0) + tr(0) + tr(t(Ci ⊗Dj)σ) =

(1− t)tr((Ai ⊗Bj)ρ) + 0 + 0 + ttr((Ci ⊗Dj)σ) = (1− t)γi,j + tβi,j
(161)

which completes the proof. We also give a second proof that does not rely on
isomorphisms or direct sums and instead relies on the Kronecker product to
represent all operators using matrices.

Proof. Let γ = (γi,j)
N
i,j=1, β = (βi,j)

N
i,j=1 ∈ QN and t ∈ [0, 1]. This means there

exist natural numbers n,m; self-adjoint operators Ai, Bj for i, j ∈ {1, . . . , N}
acting on Cn with max{‖A1‖, . . . , ‖AN‖, ‖B1‖, . . . , ‖BN‖} ≤ 1; a density opera-
tor ρ acting on Cn⊗Cn; self-adjoint operators Ci, Dj for i, j ∈ {1, . . . , N} acting
on Cm with max{‖C1‖, . . . , ‖CN‖, ‖D1‖, . . . , ‖DN‖} ≤ 1; and a density opera-
tor σ acting on Cm⊗Cm such that γi,j = tr(Ai⊗Bjρ) and βi,j = tr(Ci⊗Djσ).

Let (a
(i)
k,l)

n
k,l=1, (b

(j)
k,l)

n
k,l=1, (ρ(p,q),(r,s))(p,q),(r,s)∈{1,...,n}2 , (c

(i)
k,l)

m
k,l=1, (d

(j)
k,l)

m
k,l=1,

(σ(p,q),(r,s))(p,q),(r,s)∈{1,...,m}2 be the matrix representations of Ai, Bj , ρ, Ci, Bj , σ
respectively with respect to the appropriate standard bases. Let

(x
(i,j)
(p,q),(r,s))(p,q),(r,s)∈{1,...,n}2 , (y

(i,j)
(p,q),(r,s))(p,q),(r,s)∈{1,...,m}2 be the matrix repre-

sentations of Ai ⊗Bj and Ci ⊗Dj respectively with respect to the appropriate
standard bases. Then we have by Theorem 2.9:

x
(i,j)
(p,q),(r,s) = a(i)

p,rb
(j)
q,s. (162)
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and:

y
(i,j)
(p,q),(r,s) = c(i)p,rd

(j)
q,s. (163)

From this it follows that

γi,j = tr(Ai ⊗Bjρ) =

tr
(

(x
(i,j)
(p,q),(r,s))(p,q),(r,s)∈{1,...,n}2(ρ(r,s),(t,u))(r,s),(t,u)∈{1,...,n}2

)
=

tr

( n∑
r=1

n∑
s=1

x
(i,j)
(p,q),(r,s)ρ(r,s),(t,u)

)
(p,q),(t,u)∈{1,...,n}2

 =

n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

x
(i,j)
(p,q),(r,s)ρ(r,s),(p,q) =

n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

a(i)
p,rb

(j)
q,sρ(r,s),(p,q)

(164)

and

βi,j = tr(Ci ⊗Djσ) =

tr
(

(y
(i,j)
(p,q),(r,s))(p,q),(r,s)∈{1,...,m}2(σ(r,s),(t,u))(r,s),(t,u)∈{1,...,m}2

)
=

tr

( m∑
r=1

m∑
s=1

y
(i,j)
(p,q),(r,s)σ(r,s),(t,u)

)
(p,q),(t,u)∈{1,...,n}2

 =

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

y
(i,j)
(p,q),(r,s)σ(r,s),(p,q) =

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

c(i)p,rd
(j)
q,sσ(r,s),(p,q).

(165)

We now define, for i, j ∈ {1, . . . , N}, linear operators Ei, Fj : Cn+m → Cn+m

by specifying their matrix representations (e
(i)
k,l)

n+m
k,l=1, (f

(i)
k,l )

n+m
k,l=1 with respect to

the standard basis. The elements of these matrices are given by:

e
(i)
k,l =


a

(i)
k,l for k, l ∈ {1, . . . , n}
c
(i)
k−n,l−n for k, l ∈ {n+ 1, . . . , n+m}

0 otherwise

(166)

and

f
(j)
k,l =


b
(j)
k,l for k, l ∈ {1, . . . , n}
d

(j)
k−n,l−n for k, l ∈ {n+ 1, . . . , n+m}

0 otherwise

. (167)
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We note that

(e
(i)
l,k)∗ =


(a

(i)
l,k)∗ = a

(i)
k,l for k, l ∈ {1, . . . , n}

(c
(i)
l−n,k−n)∗ = c

(i)
k−n,l−n for k, l ∈ {n+ 1, . . . , n+m}

0∗ = 0 otherwise

(168)

and

(f
(j)
l,k )∗ =


(b

(j)
l,k )∗ = b

(j)
k,l for k, l ∈ {1, . . . , n}

(d
(j)
l−n,k−n)∗ = d

(j)
k−n,l−n for k, l ∈ {n+ 1, . . . , n+m}

0∗ = 0 otherwise

(169)

where we used the fact that Ai and Bj are self-adjoint and that their matrix

representations are therefore Hermitian. We see that (e
(i)
l,k)∗ = e

(i)
k,l and (f

(j)
l,k )∗ =

f
(j)
k,l so the matrix representations of Ei and Fj are Hermitian and consequently

Ei and Fj are self-adjoint operators. Let α = (αl)
n+m
l=1 ∈ Cn+m. We note that

‖Eiα‖22 =
∥∥∥(e

(i)
k,l)

n+m
k,l=1(αl)

n+m
l=1

∥∥∥2

2
=

∥∥∥∥∥∥
(
n+m∑
l=1

e
(i)
k,lαl

)n+m

k=1

∥∥∥∥∥∥
2

2

=

n+m∑
k=1

∣∣∣∣∣
n+m∑
l=1

e
(i)
k,lαl

∣∣∣∣∣
2

=

n∑
k=1

∣∣∣∣∣
n+m∑
l=1

e
(i)
k,lαl

∣∣∣∣∣
2

+

n+m∑
k=n+1

∣∣∣∣∣
n+m∑
l=1

e
(i)
k,lαl

∣∣∣∣∣
2

=

n∑
k=1

∣∣∣∣∣
n∑
l=1

a
(i)
k,lαl

∣∣∣∣∣
2

+

n+m∑
k=n+1

∣∣∣∣∣
n+m∑
l=n+1

c
(i)
k−n,l−nαl

∣∣∣∣∣
2

=

n∑
k=1

∣∣∣∣∣
n∑
l=1

a
(i)
k,lαl

∣∣∣∣∣
2

+

m∑
k=1

∣∣∣∣∣
m∑
l=1

c
(i)
k,lαl+n

∣∣∣∣∣
2

=

∥∥∥∥∥
(

n∑
l=1

a
(i)
k,lαl

)n
k=1

∥∥∥∥∥
2

2

+

∥∥∥∥∥
(

m∑
l=1

c
(i)
k,lαl+n

)m
k=1

∥∥∥∥∥
2

2

=

∥∥∥(a
(i)
k,l)

n
k,l=1(αl)

n
l=1

∥∥∥2

2
+
∥∥∥(c

(i)
k,l)

m
k,l=1(αl+n)ml=1

∥∥∥2

2
≤

‖Ai‖2‖(αl)nl=1‖
2
2 + ‖Ci‖2‖(αl+n)ml=1‖

2
2 ≤ ‖(αl)

n
l=1‖

2
2 + ‖(αl+n)ml=1‖

2
2 =

n∑
l=1

|αl|2 +

m∑
l=1

|αl+n|2 =

n∑
l=1

|αl|2 +

n+m∑
l=n+1

|αl|2 =

n+m∑
l=1

|αl|2 = ‖α‖22

(170)

and
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‖Fjα‖22 =
∥∥∥(f

(j)
k,l )

n+m
k,l=1(αl)

n+m
l=1

∥∥∥2

2
=

∥∥∥∥∥∥
(
n+m∑
l=1

f
(j)
k,l αl

)n+m

k=1

∥∥∥∥∥∥
2

2

=

n+m∑
k=1

∣∣∣∣∣
n+m∑
l=1

f
(j)
k,l αl

∣∣∣∣∣
2

=

n∑
k=1

∣∣∣∣∣
n+m∑
l=1

f
(j)
k,l αl

∣∣∣∣∣
2

+

n+m∑
k=n+1

∣∣∣∣∣
n+m∑
l=1

f
(j)
k,l αl

∣∣∣∣∣
2

=

n∑
k=1

∣∣∣∣∣
n∑
l=1

b
(j)
k,lαl

∣∣∣∣∣
2

+

n+m∑
k=n+1

∣∣∣∣∣
n+m∑
l=n+1

d
(j)
k−n,l−nαl

∣∣∣∣∣
2

=

n∑
k=1

∣∣∣∣∣
n∑
l=1

b
(j)
k,lαl

∣∣∣∣∣
2

+

m∑
k=1

∣∣∣∣∣
m∑
l=1

d
(j)
k,lαl+n

∣∣∣∣∣
2

=

∥∥∥∥∥
(

n∑
l=1

b
(j)
k,lαl

)n
k=1

∥∥∥∥∥
2

2

+

∥∥∥∥∥
(

m∑
l=1

d
(j)
k,lαl+n

)m
k=1

∥∥∥∥∥
2

2

=

∥∥∥(b
(j)
k,l)

n
k,l=1(αl)

n
l=1

∥∥∥2

2
+
∥∥∥(d

(j)
k,l)

m
k,l=1(αl+n)ml=1

∥∥∥2

2
≤

‖Bj‖2‖(αl)nl=1‖
2
2 + ‖Dj‖2‖(αl+n)ml=1‖

2
2 ≤ ‖(αl)

n
l=1‖

2
2 + ‖(αl+n)ml=1‖

2
2 =

n∑
l=1

|αl|2 +

m∑
l=1

|αl+n|2 =

n∑
l=1

|αl|2 +

n+m∑
l=n+1

|αl|2 =

n+m∑
l=1

|αl|2 = ‖α‖22.

(171)

So it follows that ‖Ei‖ = supα∈Cn+m,α 6=0
‖Eiα‖2
‖α‖2

≤ 1 and

‖Fj‖ = supα∈Cn+m,α 6=0
‖Fjα‖2
‖α‖2

≤ 1 for all i, j ∈ {1, . . . , N} and we see that

max{‖E1‖, . . . , ‖EN‖, ‖F1‖, . . . , ‖FN‖} ≤ 1. We conclude that the operators
Ei, Fj satisfy all requirements in Definition 6.1. We now define the linear oper-
ator τ : Cn+m⊗Cn+m → Cn+m⊗Cn+m by specifying its matrix representation
(τ(p,q),(r,s))(p,q),(r,s)∈{1,...,n+m}2 with respect to the standard basis with:

τ(p,q),(r,s) =


(1− t)ρ(p,q),(r,s) for p, q, r, s ∈ {1, . . . , n}
tσ(p−n,q−n),(r−n,s−n) for p, q, r, s ∈ {n+ 1, . . . , n+m}
0 otherwise

.

(172)
Let α ∈ Cn+m ⊗ Cn+m and (α(r,s))(r,s)∈{1,...,n+m}2 its representation with re-
spect to the standard basis. Let α′ ∈ Cn⊗Cn with representation (α′(r,s))(r,s)∈{1,...,n}2

with respect to the standard basis with α′(r,s) = α(r,s). Also let α′′ ∈ Cm ⊗ Cm

with representation (α′′(r,s))(r,s)∈{1,...,m}2 with respect to the standard basis with

α′′(r,s) = α(r+n,s+n). We note that:
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〈α, τα〉 =〈
(α(p,q))(p,q)∈{1,...,n+m}2 , (τ(p,q),(r,s))(p,q),(r,s)∈{1,...,n+m}2(α(r,s))(r,s)∈{1,...,n+m}2

〉
=〈

(α(p,q))(p,q)∈{1,...,n+m}2 ,

(
n+m∑
r=1

n+m∑
s=1

τ(p,q),(r,s)α(r,s)

)
(p,q)∈{1,...,n+m}2

〉
=

n+m∑
p=1

n+m∑
q=1

α∗(p,q)

n+m∑
r=1

n+m∑
s=1

τ(p,q),(r,s)α(r,s) =

n+m∑
p=1

n+m∑
q=1

n+m∑
r=1

n+m∑
s=1

τ(p,q),(r,s)α
∗
(p,q)α(r,s) =

n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

(1− t)ρ(p,q),(r,s)α
∗
(p,q)α(r,s)+

n+m∑
p=n+1

n+m∑
q=n+1

n+m∑
r=n+1

n+m∑
s=n+1

tσ(p−n,q−n),(r−n,s−n)α
∗
(p,q)α(r,s) =

(1− t)
n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

ρ(p,q),(r,s)α
∗
(p,q)α(r,s)+

t

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

σ(p,q),(r,s)α
∗
(p+n,q+n)α(r+n,s+n) =

(1− t)
n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

ρ(p,q),(r,s)(α
′
(p,q))

∗α′(r,s)+

t

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

σ(p,q),(r,s)(α
′′
(p,q))

∗α′′(r,s) =

(1− t)
n∑
p=1

n∑
q=1

(α′(p,q))
∗

n∑
r=1

n∑
s=1

ρ(p,q),(r,s)α
′
(r,s)+

t

m∑
p=1

m∑
q=1

(α′′(p,q))
∗
m∑
r=1

m∑
s=1

σ(p,q),(r,s)α
′′
(r,s) =

(1− t)

〈
(α′(p,q))(p,q)∈{1,...,n}2 ,

(
n∑
r=1

n∑
s=1

ρ(p,q),(r,s)α
′
(r,s)

)
(p,q)∈{1,...,n}2

〉
+

t

〈
(α′′(p,q))(p,q)∈{1,...,m}2 ,

(
m∑
r=1

m∑
s=1

σ(p,q),(r,s)α
′′
(r,s)

)
(p,q)∈{1,...,m}2

〉
=

(1− t)
〈

(α′(p,q))(p,q)∈{1,...,n}2 , (ρ(p,q),(r,s))(p,q),(r,s)∈{1,...,n}2(α′(r,s))(r,s)∈{1,...,n}2
〉

+

t
〈

(α′′(p,q))(p,q)∈{1,...,m}2 , (σ(p,q),(r,s))(p,q),(r,s)∈{1,...,m}2(α′′(r,s))(r,s)∈{1,...,m}2
〉

=

(1− t) 〈α′, ρα′〉+ t 〈α′′, σα′′〉 ≥ 0

(173)
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where we used that (1− t), t, 〈α′, ρα′〉 , 〈α′′, σα′′〉 ≥ 0 because t ∈ [0, 1] and ρ, σ
are positive. So we see that τ is a positive operator. We also have:

tr(τ) = tr
(
(τ(p,q),(r,s))(p,q),(r,s)∈{1,...,n+m}2

)
=

n+m∑
p=1

n+m∑
q=1

τ(p,q),(p,q) =

n∑
p=1

n∑
q=1

(1− t)ρ(p,q),(p,q) +

n+m∑
p=n+1

n+m∑
q=n+1

tσ(p−n,q−n),(p−n,q−n) =

(1− t)
n∑
p=1

n∑
q=1

ρ(p,q),(p,q) + t

m∑
p=1

m∑
q=1

σ(p,q),(p,q) =

(1− t)tr(ρ) + ttr(σ) = (1− t) + t = 1.

(174)

We conclude that τ is a density operator and therefore satisfies all requirements
in Definition 6.1. Since the linear operators Ei, Bj , τ meet all the necessary

requirements, we conclude that (tr(Ei ⊗ Fjτ))
N
i,j=1 ∈ QN . Let

(z
(i,j)
(p,q),(r,s))(p,q),(r,s)∈{1,...,n+m}2 be the matrix representation of Ei ⊗ Fj with

respect to the standard basis. Then by Theorem 2.9:

z
(i,j)
(p,q),(r,s) = e(i)

p,rf
(j)
q,s . (175)

Now we have:
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tr(Ei ⊗ Fjτ) =

tr
(

(z
(i,j)
(p,q),(r,s))(p,q),(r,s)∈{1,...,n+m}2(τ(r,s),(t,u))(r,s),(t,u)∈{1,...,n+m}2

)
=

tr

(n+m∑
r=1

n+m∑
s=1

z
(i,j)
(p,q),(r,s)τ(r,s),(t,u)

)
(p,q),(t,u)∈{1,...,n+m}2

 =

n+m∑
p=1

n+m∑
q=1

n+m∑
r=1

n+m∑
s=1

z
(i,j)
(p,q),(r,s)τ(r,s),(p,q) =

n+m∑
p=1

n+m∑
q=1

n+m∑
r=1

n+m∑
s=1

e(i)
p,rf

(j)
q,s τ(r,s),(p,q) =

n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

e(i)
p,rf

(j)
q,s (1− t)ρ(r,s),(p,q)+

n+m∑
p=n+1

n+m∑
q=n+1

n+m∑
r=n+1

n+m∑
s=n+1

e(i)
p,rf

(j)
q,s tσ(r−n,s−n),(p−n,q−n) =

(1− t)
n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

a(i)
p,rb

(j)
q,sρ(r,s),(p,q)+

t

n+m∑
p=n+1

n+m∑
q=n+1

n+m∑
r=n+1

n+m∑
s=n+1

c
(i)
p−n,r−nd

(j)
q−n,s−nσ(r−n,s−n),(p−n,q−n) =

(1− t)
n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

a(i)
p,rb

(j)
q,sρ(r,s),(p,q)+

t

m∑
p=1

m∑
q=1

m∑
r=1

m∑
s=1

c(i)p,rd
(j)
q,sσ(r,s),(p,q) = (1− t)γi,j + tβi,j .

(176)

So (1 − t)γ + tβ = (tr(Ei ⊗ Fjτ))
N
i,j=1 ∈ QN and we conclude that QN is a

convex set.
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7 Grothendieck’s theorem

Now that we have introduced classical correlation matrices and quantum corre-
lation matrices and proved some results regarding them we are ready to look at
Bell inequalities and try to find out to what extent they can be violated. This
chapter is also based on chapter 5 of [2]. For N ∈ N we consider an N × N
matrix γ = (γi,j)

N
i,j=1, an N × N matrix M = (Mi,j)

N
i,j=1 with real elements

Mi,j and a constant C ≥ 0. Using these matrices and constant we can construct
the following inequality: ∣∣∣∣∣∣

N∑
i,j=1

Mi,jγi,j

∣∣∣∣∣∣ ≤ C (177)

which might or might not hold depending on γ, M and C. For a fixed M (of
size N × N) and C we might ask whether the above inequality holds for all
γ ∈ LN and whether it holds for all γ ∈ QN . If M and C are such that the
associated inequality holds for all γ ∈ LN we will call this a Bell inequality. In
fact we will use this as our definition of a Bell inequality.

Definition 7.1. Bell inequality. If N ∈ N, M is an N × N matrix with real
elements Mi,j and C ≥ 0 is a constant, then the inequality:∣∣∣∣∣∣

N∑
i,j=1

Mi,jγi,j

∣∣∣∣∣∣ ≤ C (178)

where γi,j are the elements of an N ×N matrix is a Bell-inequality if it holds
for all classical correlation matrices γ = (γi,j)

N
i,j=1.

We will consider the Bell inequality to be violated in quantum mechanics if there
is some γ ∈ QN for which the inequality does not hold. In order to find out to
what extent a Bell inequality can be violated we want to choose the constant
C, for a given M , as small as possible such that the associated inequality will
hold for all γ ∈ LN . We will call this smallest C the classical value of M and
it is defined as follows just as in chapter 5 of [2].

Definition 7.2. Classical value. Given a real matrix M = (Mi,j)
N
i,j=1, the

classical value of M is defined as:

ω(M) = sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jγi,j

∣∣∣∣∣∣ : (γi,j)
N
i,j=1 ∈ LN

 . (179)

It makes sense to choose the constant as small as possible if we want to consider
large violations of Bell inequalities, because if we find some γ ∈ QN that violates
a given Bell inequality, the violation will only become worse if we make the
constant smaller (while making sure the inequality stays a Bell inequality).
Similarly, if we want to find the largest violation of a given Bell inequality, we
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want to consider γ ∈ QN for which
∣∣∣∑N

i,j=1Mi,jγi,j

∣∣∣ is large. If we want the

largest violation, we need the find the quantum value of M which is defined as
in chapter 5 of [2].

Definition 7.3. Quantum value. Given a real matrix M = (Mi,j)
N
i,j=1, the

quantum value of M is defined as:

ω∗(M) = sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jγi,j

∣∣∣∣∣∣ : (γi,j)
N
i,j=1 ∈ QN

 . (180)

So far we have only considered the extent to which a Bell inequality is violated
in a qualitative manner, without providing a way to quantify the extent of a
violation. The extent to which a Bell inequality is violated can be quantified as
follows. If M and C are such that the associated inequality is a Bell inequality
and γ ∈ QN , then the violation of this Bell inequality by γ can be quantified
by the fraction ∣∣∣∑N

i,j=1Mi,jγi,j

∣∣∣
C

. (181)

If this fraction is less than or equal to 1, there is no violation since the associated
inequality holds. If the fraction is larger than 1, the associated Bell inequality

is violated by γ. This fraction increases when
∣∣∣∑N

i,j=1Mi,jγi,j

∣∣∣ increases with

respect to C and is therefore a reasonable way to quantify the violation of a Bell
inequality. Since we wish to find out how large the violation of a Bell inequality
can get, and therefore how large the above fraction can get we will consider, for
fixed M , the supremum of the above fraction. This supremum is taken over all
constants C such that the associated inequality is a Bell inequality and over all
γ ∈ QN . This supremum is obtained by taking the supremum of the numerator
and the infimum of the denominator and results in a quantity called the largest
violation of M which is defined as in chapter 5 of [2].

Definition 7.4. Largest violation of M . For an N ×N (non-zero) matrix M
with real elements, the largest violation of M is defined as:

LV (M) =
ω∗(M)

ω(M)
. (182)

We note that both ω(M) and ω∗(M) are defined as the supremum of a set of
non-negative numbers. This means that the classical and quantum values of
a matrix M might be equal to 0 or ∞ which could lead to some issues in the
definition of the largest violation. For the classical value we have the following
theorem which is also stated in chapter 5 of [2].

Theorem 7.1. Let N ∈ N and M an N ×N matrix with real elements, then:

ω(M) = sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N
 . (183)

61



Proof.

sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N
 ≤ ω(M) (184)

follows from the fact that each deterministic correlation matrix is also a clas-
sical correlation matrix. To prove the opposite inequality, let γ = (γi,j)

N
i,j=1 ∈

LN . As we proved before, γ is a linear combination of deterministic corre-
lation matrices, so there exist a(t1,...,tN ,s1,...,sN ) with a(t1,...,tN ,s1,...,sN ) ≥ 0 and∑

(t1,...,tN ,s1,...,sN )∈{1,−1}2N a(t1,...,tN ,s1,...,sN ) = 1 such that equation (129) holds.
Then we have

∣∣∣∣∣∣
N∑

i,j=1

Mi,jγi,j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,j

∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

a(t1,...,tN ,s1,...,sN )tisj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

(t1,...,tN ,s1,...,sN )∈{1,−1}2N
a(t1,...,tN ,s1,...,sN )

N∑
i,j=1

Mi,jtisj

∣∣∣∣∣∣ ≤
∑

(t1,...,tN ,s1,...,sN )∈{1,−1}2N

∣∣∣∣∣∣a(t1,...,tN ,s1,...,sN )

N∑
i,j=1

Mi,jtisj

∣∣∣∣∣∣ =

∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

∣∣a(t1,...,tN ,s1,...,sN )

∣∣∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ =

∑
(t1,...,tN ,s1,...,sN )∈{1,−1}2N

a(t1,...,tN ,s1,...,sN )

∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ ≤
sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N
∑

(t1,...,tN ,s1,...,sN )∈{1,−1}2N
a(t1,...,tN ,s1,...,sN ) =

sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N


(185)

and since this holds for any γ ∈ LN , we have
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ω(M) ≤ sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N )

 (186)

which completes the proof.

From this theorem it follows that ω(M) is the supremum of a finite set and
therefore it must be finite, so this excludes the possibility that ω(M) =∞.

Corollary 7.1.1. Let N ∈ N and M an N×N matrix with real elements, then
ω(M) <∞.

This assures us that no division by ∞ occurs in the definition of the largest
violation. Moreover, ω(M) can be calculated for each fixed M by considering
a finite number of cases. In case M is the (N × N) zero-matrix, we have∣∣∣∑N

i,j=1Mi,jγi,j

∣∣∣ = 0 for any N × N matrix γ, so ω(M) = ω∗(M) = 0 if M

is the zero-matrix. This would lead to division by 0 in the definition of the
largest violation and for this reason the zero-matrix is excluded. If ω(M) = 0
for some other matrix this would again lead to the issue of having to divide
by 0 in the definition of the largest violation of M . Fortunately the following
theorem ensures us that this only occurs if M is the zero-matrix.

Theorem 7.2. Let N ∈ N and M an N × N matrix with real elements such
that ω(M) = 0, then M is the zero-matrix.

Proof. Let N ∈ N and M an N × N matrix with real elements such that
ω(M) = 0. This means that:

sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N
 = 0. (187)

So we must have

N∑
i,j=1

Mi,jtisj = 0 (188)

for all (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N . This means that for arbitrary ti ∈
{1,−1} and k ∈ {1, . . . , N} we have
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N∑
i=1

Mi,kti =
1

2

(
N∑
i=1

Mi,kti +

N∑
i=1

Mi,kti

)
=

1

2

 N∑
i=1

Mi,kti +

N∑
i=1

Mi,kti +

N∑
i,j=1,j 6=k

Mi,jti −
N∑

i,j=1,j 6=k

Mi,jti

 =

1

2

 N∑
i,j=1

Mi,jti −

 N∑
i,j=1,j 6=k

Mi,jti −
N∑
i=1

Mi,kti

 =

1

2

 N∑
i,j=1

Mi,jti −
N∑

i,j=1

Mi,jti(1− 2δj,k)

 =
1

2
(0− 0) = 0

(189)

where we used
∑N
i,j=1Mi,jtisj = 0 with sj = 1 and with sj = 1 − 2δj,k. Now

we have that for any k, l ∈ {1, . . . , N}

Ml,k =
1

2
(Ml,k +Ml,k) =

1

2

Ml,k +Ml,k +

N∑
i=1,i6=l

Mi,k −
N∑

i=1,i6=l

Mi,k

 =

1

2

 N∑
i=1

Mi,k −

 N∑
i=1,i6=l

Mi,k −Ml,k

 =

1

2

(
N∑
i=1

Mi,k −
N∑
i=1

Mi,k(1− 2δi,l)

)
=

1

2
(0 + 0) = 0

(190)

where we used
∑N
i=1Mi,kti = 0 with ti = 1 and with ti = 1 − 2δi,l. So we

see that Ml,k = 0 for all k, l ∈ {1, . . . , N}, which means M is the N × N
zero-matrix.

So we see that requiring that M is not the zero-matrix is sufficient to ensure
that ω(M) is finite and larger than 0. ω∗(M) is also always finite for any M ,
as ensured by the following theorem which given an upper bound on ω∗(M).

Theorem 7.3. Let M be an N ×N matrix with real elements, then ω∗(M) ≤∑N
i,j=1 |Mi,j |.

Proof. Let M be an N × N matrix with real elements and γ ∈ QN . We note
that |γi,j | ≤ 1 for all i, j ∈ {1, . . . , N} and it follows that:∣∣∣∣∣∣

N∑
i,j=1

Mi,jγi,j

∣∣∣∣∣∣ ≤
N∑

i,j=1

|Mi,j ||γi,j | ≤
N∑

i,j=1

|Mi,j |. (191)
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This holds for every γ ∈ QN , so
∑N
i,j=1 |Mi,j | is an upper bound for{∣∣∣∑N

i,j=1Mi,jγi,j

∣∣∣ : (γi,j)
N
i,j=1 ∈ QN

}
. This means ω∗(M) exists as a real num-

ber and ω∗(M) ≤
∑N
i,j=1 |Mi,j |.

We’ve seen that as long as M is not the zero-matrix, LV (M) is a finite positive
number. Now since LN ⊆ QN according to Theorem 6.2, we note that ω∗(M) ≥
ω(M), so LV (M) ≥ 1 for any non-zero M . In case M is a 1 × 1 matrix,
LV (M) = 1 since L1 = Q1 according to Theorem 6.3. LV (M) gives the
largest violation possible for all Bell inequalities associated with the matrix M ,
so the question of how large the violation of a Bell inequality can be in general
comes down to the question of how large LV (M) can become. This can be
considered either for matrices M of a fixed size N or allowing all sizes. For
M a non-zero matrix of size 1 we have shown that LV (M) = 1. For larger
matrices M it is more difficult to determine LV (M). Because of Theorem 7.1
ω(M) can be determined in a straightforward way by considering all N × N
deterministic correlation matrices, although this process takes more time the
larger N is since the number of deterministic correlation matrices is increasing
in N . The real problem however, lies in determining ω∗(M) since we cannot
in general determine it by considering a finite number of quantum correlation
matrices. Our next theorem, known as Tsirelson’s theorem, gives an alternative
description of QN and an alternative expression for ω∗(M) which in some cases
is more convenient than our current definitions. This theorem can also be found
in chapter 5 of [2] along with a proof on which our proof is based. Before we
state and prove Tsirelson’s theorem we will first prove the following lemma:

Lemma 7.4. Given N ∈ N with N ≥ 2 and a complex Hilbert space H of
dimension 2b

N
2 c there exist self-adjoint operators Xi : H → H for i ∈ {1, . . . , N}

satisfying:

XiXj +XjXi = 2δi,jidH . (192)

Proof. Let N ∈ N with N ≥ 2. We note that it is sufficient to consider only a
single Hilbert space H of dimension 2b

N
2 c and prove the existence of operators

Xi with the required properties. Suppose H and G are complex Hilbert spaces
of dimension 2b

N
2 c and Xi : H → H are self-adjoint operators for i ∈ {1, . . . , N}

satisfying for all i, j ∈ {1, . . . , N}:

XiXj +XjXi = 2δi,jidH . (193)

Since H and G have the same finite dimension, we can find orthonormal bases
for H and G with the same cardinality. By Theorem 2.23 we can find an
isomorphism F : H → G. By Corollary 2.18.1 the operators FXiF

−1 : G→ G
are self-adjoint and for all i, j ∈ {1, . . . , N} we have:
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FXiF
−1FXjF

−1 + FXjF
−1FXiF

−1 = FXiXjF
−1 + FXjXiF

−1 =

F (XiXj +XjXi)F
−1 = F (2δi,jidH)F−1 = 2δi,jFidHF

−1 = 2δi,jFF
−1 =

2δi,jidG.

(194)

So we see that if the lemma holds for H it holds for G as well and therefore
it suffices to prove it for one specific Hilbert space of dimension 2b

N
2 c. We will

prove the lemma for the complex Hilbert space H =
⊗
bN2 c

C2, where if G is

a Hilbert space and n ∈ N,
⊗

nG is the Hilbert space obtained by repeatedly
taking the tensor product of n copies of G. Since C2 has dimension 2, it follows
by repeatedly applying Theorem 2.9 that H has dimension 2b

N
2 c. Let k = bN2 c,

then N = 2k or N = 2k + 1. We define linear operators Xi for i ∈ {1, . . . , N}
on H by letting:

Xi =

k⊗
l=1

Xi,l (195)

where
⊗k

l=1Xi,l is the linear operator obtained by repeatedly taking the tensor
product of the still to be specified operators Xi,l on C2 for l ∈ {1, . . . , k}. We will
be choosing each Xi,l equal to the identity id on C2 or one of the Pauli-matrices
X,Y or Z. These are all self-adjoint operators so each Xi,l will be self-adjoint. It
follows from repeated applications of Theorem 2.7 that Xi will be a self-adjoint
operator for each i ∈ {1, . . . , N}. We choose the Xi,l as follows:

X2m−1,l =


Z, if l < m

X, if l = m

id, if l > m

(196)

with m ∈ {1, . . . , k} if N = 2k or m ∈ {1, . . . , k + 1} if N = 2k + 1 and

X2m,l =


Z, if l < m

Y, if l = m

id, if l > m

(197)

with m ∈ {1, . . . , k}. We note that by repeated application of Theorem 2.5:

XiXj =

k⊗
l=1

Xi,lXj,l. (198)

Since all the Xi,l satisfy X2
i,l = id it follows that:

2X2
i = 2

k⊗
l=1

X2
i,l = 2

k⊗
l=1

id = 2idH . (199)
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If i = 2m− 1 and j = 2n− 1 with m > n we find that:

X2m−1,lX2n−1,l =



Z2 = X2n−1,lX2m−1,l, if l < n

ZX = −XZ = −X2n−1,lX2m−1,l, if l = n

Z = X2n−1,lX2m−1,l, if n < l < m

X = X2n−1,lX2m−1,l, if l = m

id = X2n−1,lX2m−1,l, if l > m

.

(200)
If i = 2m and j = 2n with m > n we find that:

X2m,lX2n,l =



Z2 = X2n,lX2m,l, if l < n

ZY = −Y Z = −X2n,lX2m,l, if l = n

Z = X2n,lX2m,l, if n < l < m

Y = X2n,lX2m,l, if l = m

id = X2n,lX2m,l, if l > m

. (201)

If i = 2m− 1 and j = 2m we find that:

X2m−1,lX2m,l =


Z2 = X2m,lX2m−1,l, if l < m

XY = −Y X = −X2m,lX2m−1,l, if l = m

id = X2m,lX2m−1,l, if l > m

. (202)

If i = 2m− 1 and j = 2n with m > n we find that:

X2m−1,lX2n,l =



Z2 = X2n,lX2m−1,l, if l < n

ZY = −Y Z = −X2n,lX2m−1,l, if l = n

Z = X2n,lX2m−1,l, if n < l < m

X = X2n,lX2m−1,l, if l = m

id = X2n,lX2m−1,l, if l > m

. (203)

If i = 2m and j = 2n− 1 with m > n we find that:

X2m,lX2n−1,l =



Z2 = X2n−1,lX2m,l, if l < n

ZX = −XZ = −X2n−1,lX2m,l, if l = n

Z = X2n−1,lX2m,l, if n < l < m

Y = X2n−1,lX2m,l, if l = m

id = X2n−1,lX2m,l, if l > m

. (204)

We see that in each case where i 6= j we have some l0 ∈ {1, . . . , k} such that
Xi,lXj,l = Xj,lXi,l for l 6= l0 and Xi,l0Xj,l0 = −Xj,l0Xi,l0 . From this it follows
that for i 6= j, XiXj = −XjXi and therefore:

67



XiXj +XjXi = 0H . (205)

We can now conclude that the operators Xi satisfy:

XiXj +XjXi = 2δi,jidH (206)

which concludes the proof.

A collection of operators Xi on a Hilbert space H satisfying the conditions
in Lemma 7.4 is called a CAR-algebra on H. We will now state and prove
Tsirelson’s theorem in two parts.

Theorem 7.5. Tsirelson’s theorem (part 1). If γ = (γi,j)
N
i,j=1 ∈ QN , then

there exists a real Hilbert space H of finite dimension and xi, yi ∈ H with
‖xi‖2 = ‖yi‖2 = 1 for i ∈ {1, . . . , N} such that:

γi,j = 〈xi, yj〉 (207)

for all i, j ∈ {1, . . . , N}.

Proof. Suppose γ = (γi,j)
N
i,j=1 ∈ QN . Then there exists an n ∈ N, self-adjoint

operators Ai, Bj on Cn for i, j ∈ {1, . . . , n} with ‖Ai‖, ‖Bj‖ ≤ 1 and a density
operator ρ on Cn ⊗ Cn such that γi,j = tr((Ai ⊗ Bj)ρ) for all i, j ∈ {1, . . . , n}.
Let H1 be the set of all self-adjoint operators acting on Cn ⊗Cn. The set of all
linear operators acting on Cn⊗Cn is a real vector space under the standard defi-
nitions for addition and scalar multiplication of linear operators. The conjugate-
linearity of the adjoint ensures that H1 is closed under addition and multipli-
cation with real scalars, so H1 is a subspace of this vector space and therefore
is itself a real vector space. We define on H1 an operation 〈·, ·〉 : H1 ×H1 → R
by letting:

〈A,B〉 = Re(tr(ABρ)) ∈ R. (208)

Let A,B ∈ H1. Since A,B, ρ are all self-adjoint (ρ by Theorem 2.11), it follows
by Theorem 2.31 that:

〈A,B〉 = Re(tr(ABρ)) = Re((tr(BAρ))∗) = Re(tr(BAρ)) = 〈B,A〉 . (209)

By the linearity of the trace it follows that for all A,B,C ∈ H1 and a ∈ R:

〈A, aB〉 = Re(tr(aABρ)) = Re(atr(ABρ)) = aRe(tr(ABρ)) = a 〈A,B〉 (210)

and

〈A,B + C〉 = Re(tr(A(B + C)ρ)) = Re(tr(ABρ+ACρ)) =

Re(tr(ABρ) + tr(ACρ)) = Re(tr(ABρ)) + Re(tr(ACρ)) = 〈A,B〉+ 〈A,C〉 .
(211)
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Let A ∈ H1. Since A is self-adjoint and ρ is positive, it follows from Theorem
2.32 that:

〈A,A〉 = Re(tr(A2ρ)) ≥ 0. (212)

We can now conclude that the operation we defined is a (possibly degenerate)
inner product. We define G = {A ∈ H1 : 〈A,A〉 = 0}. By Theorem 2.34 this is
a subspace of H1. We consider the real vector space H2 = H1/G and define on
it an operation 〈·, ·〉 : H2 ×H2 → R by letting:〈

A,B
〉

= 〈A,B〉 . (213)

This operation is, again by Theorem 2.34, a well-defined non-degenerate inner
product on H2, so H2 is an inner product space. We now define for i, j ∈
{1, . . . , N}:

xi = Ai ⊗ idCn (214)

and

yj = idCn ⊗Bj . (215)

Ai, Bj , idCn are all self-adjoint operators on Cn so by Theorem 2.7, Ai ⊗ idCn

and idCn ⊗ Bj are self-adjoint operators on Cn ⊗ Cn and therefore elements
of H1. It follows that xi, yj ∈ H2 for all i, j ∈ {1, . . . , N}. We note that
the elements of H2 are equivalence classes of operators. To avoid confusion
we stress that for A ∈ H1 we use the notation ‖A‖ for the operator norm

of A and
∥∥A∥∥

2
=
√〈

A,A
〉

=
√
〈A,A〉 for the norm of A associated with

the inner product we defined on H2. By Theorem 2.14 we note that for all
i, j ∈ {1, . . . , N}:

‖Ai ⊗ idCn‖ = ‖Ai‖‖idCn‖ = ‖Ai‖ ≤ 1 (216)

and

‖idCn ⊗Bj‖ = ‖idCn‖‖Bj‖ = ‖Bj‖ ≤ 1. (217)

Then by Theorem 2.28 we have for all i, j ∈ {1, . . . , N}:∥∥(Ai ⊗ idCn)2
∥∥ = ‖Ai ⊗ idCn‖2 ≤ 1 (218)

and ∥∥(idCn ⊗Bj)2
∥∥ = ‖idCn ⊗Bj‖2 ≤ 1. (219)

It now follows by Theorems 2.32 and 2.17 that for all i, j ∈ {1, . . . , N}:

tr((Ai ⊗ idCn)2ρ) =
∣∣tr((Ai ⊗ idCn)2ρ)

∣∣ ≤ ∥∥(Ai ⊗ idCn)2
∥∥tr(ρ) =∥∥(Ai ⊗ idCn)2

∥∥ ≤ 1
(220)
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and

tr((idCn ⊗Bj)2ρ) =
∣∣tr((idCn ⊗Bj)2ρ)

∣∣ ≤ ∥∥(idCn ⊗Bj)2
∥∥tr(ρ) =∥∥(idCn ⊗Bj)2

∥∥ ≤ 1.
(221)

This means that for all i, j ∈ {1, . . . , N} we have:

‖xi‖2 =
√
〈xi, xi〉 =

√
〈Ai ⊗ idCn , Ai ⊗ idCn〉 =√

Re(tr((Ai ⊗ idCn)2ρ)) =
√
tr((Ai ⊗ idCn)2ρ) ≤ 1

(222)

and

‖yj‖2 =
√
〈yj , yj〉 =

√
〈idCn ⊗Bj , idCn ⊗Bj〉 =√

Re(tr((idCn ⊗Bj)2ρ)) =
√
tr((idCn ⊗Bj)2ρ) ≤ 1.

(223)

So xi, yj ∈ H2 all have norm no larger than 1. Now for all i, j ∈ {1, . . . , N} we
note that Ai and Bj are self-adjoint so Ai ⊗ Bj is self-adjoint by Theorem 2.7
and therefore by Theorem 2.17 we have:

〈xi, yj〉 = 〈Ai ⊗ idCn , idCn ⊗Bj〉 = Re(tr((Ai ⊗ idCn)(idCn ⊗Bj)ρ)) =

Re(tr((Ai ⊗Bj)ρ)) = tr((Ai ⊗Bj)ρ) = γi,j .
(224)

We now define the subspace H3 = span({x1, . . . , xN , y1, . . . , yN}) ⊆ H2 of H2.
This subspace contains the elements xi, yj for i, j ∈ {1, . . . , N} and inherits the
inner product we defined on H2. H3 is therefore also an inner product space.
Since H3 is spanned by the finite set {x1, . . . , xN , y1, . . . , yN} of at most 2N
elements, there exists a basis for H3 which is a subset of this set and is therefore
finite. So H3 is a real finite-dimensional inner product space and therefore also
a real finite-dimensional Hilbert space. Let k ∈ N be the dimension of H3. We
define the real inner product space H4 = H3⊕R⊕R. H4 is the direct sum of real
inner product spaces and is therefore also a real inner product space itself. The
dimension of H4 is equal to k+ 2 so H4 is also of finite dimension and therefore
a finite-dimensional real Hilbert space. On H4 we define for i, j ∈ {1, . . . , N}
the elements:

x̂i = xi ⊕
√

1− ‖xi‖22 ⊕ 0 (225)

and

ŷj = yj ⊕ 0⊕
√

1− ‖yj‖22. (226)

Now for all i, j ∈ {1, . . . , N} we have:
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‖x̂i‖2 =
√
〈x̂i, x̂i〉 =

√
〈xi, xi〉+

〈√
1− ‖xi‖22,

√
1− ‖xi‖22

〉
+ 〈0, 0〉 =√

‖xi‖22 +

(√
1− ‖xi‖22

)2

+ 02 =

√
‖xi‖22 + 1− ‖xi‖22 =

√
1 = 1

(227)

and

‖ŷj‖2 =
√
〈ŷj , ŷj〉 =

√
〈yj , yj〉+ 〈0, 0〉+

〈√
1− ‖yj‖22,

√
1− ‖yj‖22

〉
=√

‖yj‖22 + 02 +

(√
1− ‖yj‖22

)2

=

√
‖yj‖22 + 1− ‖yj‖22 =

√
1 = 1.

(228)

Furthermore we have for all i, j ∈ {1, . . . , N}:

〈x̂i, ŷj〉 = 〈xi, yj〉+

〈√
1− ‖xi‖22, 0

〉
+

〈
0,

√
1− ‖yj‖22

〉
= γi,j + 0 + 0 = γi,j .

(229)
So H4 is a real finite-dimensional Hilbert space, x̂i, ŷj ∈ H4 for i, j ∈ {1, . . . , N}
have norm equal to 1 and γi,j = 〈x̂i, ŷj〉.

Theorem 7.6. Tsirelson’s theorem (part 2). If γ = (γi,j)
N
i,j=1 is a matrix such

that there exists a real Hilbert space H of finite dimension and xi, yi ∈ H with
‖xi‖2 = ‖yi‖2 = 1 for i ∈ {1, . . . , N} such that:

γi,j = 〈xi, yj〉 (230)

for all i, j ∈ {1, . . . , N}, then γ ∈ QN .

Proof. Suppose that H is a real Hilbert space of finite dimension M , xi, yj ∈ H
for i, j ∈ {1, . . . , N} have norm equal to 1 and γ = (γi,j)

N
i,j=1 with γi,j = 〈xi, yj〉.

We fix an orthonormal basis for H and let (xi,k)Mk=1 ∈ RM , (yj,k)Mk=1 ∈ RM for
i, j ∈ {1, . . . , N} be the representations of xi and yj with respect to this basis.
We note that for all i, j ∈ {1, . . . , N} we have:

1 = ‖xi‖2 =
∥∥(xi,k)Mk=1

∥∥
2

=

√√√√ M∑
k=1

x2
i,k, (231)

1 = ‖yj‖2 =
∥∥(yj,k)Mk=1

∥∥
2

=

√√√√ M∑
k=1

y2
j,k (232)

and
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γi,j = 〈xi, yj〉 =
〈
(xi,k)Mk=1, (yj,k)Mk=1

〉
=

M∑
k=1

xi,kyj,k. (233)

In case M = 1 this reduces to |xi,1| = 1, |yj,1| = 1 and γi,j = xi,1yj,1. Since
xi,1, yj,1 ∈ R we have xi,1, yj,1 ∈ {1,−1} for all i, j ∈ {1, . . . , N}. This means
that γ is a deterministic correlation matrix so γ ∈ LN ⊆ QN . If M ≥ 2,
let n = 2b

M
2 c, then by Lemma 7.4 there exist self-adjoint operators Xk for

k ∈ {1, . . . ,M} on Cn such that:

XkXl +XlXk = 2δk,lidCn . (234)

We now define for i, j ∈ {1, . . . , N} the following operators on Cn:

Ai =

M∑
k=1

xi,kXk (235)

and

Bj =

M∑
k=1

yj,kXk. (236)

The Xk are self-adjoint and xi,k, yj,k are real, so by the conjugate-linearity of
the adjoint it follows that Ai, Bj are self-adjoint for all i, j ∈ {1, . . . , N}. For
all i, j ∈ {1, . . . , N} we have:

A2
i =

(
M∑
k=1

xi,kXk

)2

=

M∑
k=1

M∑
l=1

xi,kxi,lXkXl =

M∑
k=1

x2
i,kX

2
k +

M∑
k=1

k−1∑
l=1

xi,kxi,lXkXl +

M∑
k=1

M∑
l=k+1

xi,kxi,lXkXl =

M∑
k=1

x2
i,kX

2
k +

M∑
k=1

k−1∑
l=1

xi,kxi,lXkXl +

M∑
l=1

l−1∑
k=1

xi,kxi,lXkXl =

M∑
k=1

x2
i,kX

2
k +

M∑
k=1

k−1∑
l=1

xi,kxi,lXkXl +

M∑
k=1

k−1∑
l=1

xi,lxi,kXlXk =

M∑
k=1

x2
i,kX

2
k +

M∑
k=1

k−1∑
l=1

xi,kxi,l(XkXl +XlXk) =

M∑
k=1

x2
i,kX

2
k =

M∑
k=1

x2
i,kidCn =

(
M∑
k=1

x2
i,k

)
idCn = idCn

(237)

and
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B2
j =

(
M∑
k=1

yj,kXk

)2

=

M∑
k=1

M∑
l=1

yj,kyj,lXkXl =

M∑
k=1

y2
j,kX

2
k +

M∑
k=1

k−1∑
l=1

yj,kyj,lXkXl +

M∑
k=1

M∑
l=k+1

yj,kyj,lXkXl =

M∑
k=1

y2
j,kX

2
k +

M∑
k=1

k−1∑
l=1

yj,kyj,lXkXl +

M∑
l=1

l−1∑
k=1

yj,kyj,lXkXl =

M∑
k=1

y2
j,kX

2
k +

M∑
k=1

k−1∑
l=1

yj,kyj,lXkXl +

M∑
k=1

k−1∑
l=1

yj,lyj,kXlXk =

M∑
k=1

y2
j,kX

2
k +

M∑
k=1

k−1∑
l=1

yj,kyj,l(XkXl +XlXk) =

M∑
k=1

y2
j,kX

2
k =

M∑
k=1

y2
j,kidCn =

(
M∑
k=1

y2
j,k

)
idCn = idCn .

(238)

Now by Theorem 2.28 for all i, j ∈ {1, . . . , N} we have:

‖Ai‖2 =
∥∥A2

i

∥∥ = ‖idCn‖ = 1 (239)

and

‖Bj‖2 =
∥∥B2

j

∥∥ = ‖idCn‖ = 1. (240)

So we find that ‖Ai‖ = ‖Bj‖ = 1 for all i, j ∈ {1, . . . , N}. We also have by
Theorem 2.29 that for all i, j ∈ {1, . . . , N}:
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1

n
tr(AiBj) =

1

2n
· 2tr(AiBj) =

1

2n
(tr(AiBj) + tr(BjAi)) =

1

2n
tr(AiBj +BjAi) =

1

2n
tr

((
M∑
k=1

xi,kXk

)(
M∑
l=1

yj,lXl

)
+

(
M∑
k=1

yj,kXk

)(
M∑
l=1

xi,lXl

))
=

1

2n
tr

(
M∑
k=1

M∑
l=1

xi,kyj,lXkXl +

M∑
k=1

M∑
l=1

yj,kxi,lXkXl

)
=

1

2n
tr

(
M∑
k=1

M∑
l=1

xi,kyj,lXkXl +

M∑
l=1

M∑
k=1

xi,lyj,kXkXl

)
=

1

2n
tr

(
M∑
k=1

M∑
l=1

xi,kyj,lXkXl +

M∑
k=1

M∑
l=1

xi,kyj,lXlXk

)
=

1

2n
tr

(
M∑
k=1

M∑
l=1

xi,kyj,l(XkXl +XlXk)

)
=

1

2n
tr

(
M∑
k=1

M∑
l=1

xi,kyj,l2δk,lidCn

)
=

1

2n
tr

(
M∑
k=1

xi,kyj,k2idCn

)
=

1

n
tr

((
M∑
k=1

xi,kyj,k

)
idCn

)
=

1

n

M∑
k=1

xi,kyj,ktr (idCn) =

1

n

M∑
k=1

xi,kyj,kn =

M∑
k=1

xi,kyj,k =
〈
(xi,k)Mk=1, (yj,k)Mk=1

〉
= 〈xi, yj〉 .

(241)

Let (a
(i)
k,l)

n
k,l=1 and (b

(j)
k,l)

n
k,l=1 be the matrix representations of Ai and Bj with

respect to the standard basis {ek = (δk,l)
n
l=1 : k ∈ {1, . . . , n}} of Cn. Since Ai

and Bj are self-adjoint, their matrix representations are Hermitian, so (a
(i)
k,l)
∗ =

a
(i)
l,k and (b

(j)
k,l)
∗ = b

(j)
l,k . We define for j ∈ {1, . . . , n} the linear operators B̂j

by specifying their matrix representation with respect to the standard basis.

We choose these matrix representations to be ((b
(j)
k,l)
∗)nk,l=1. Since ((b

(j)
k,l)
∗)∗ =

b
(j)
k,l = (b

(j)
l,k )∗ we see that the matrix representations of the operators B̂j are

Hermitian, so these operators are self-adjoint. Now the matrix representation
of B̂2

j is given by:

((b
(j)
k,m)∗)nk,m=1((b

(j)
m,l)

∗)nm,l=1 =

(
n∑

m=1

(b
(j)
k,m)∗(b

(j)
m,l)

∗

)n
k,l=1

=

((
n∑

m=1

b
(j)
k,mb

(j)
m,l

)∗)n
k,l=1

.

(242)
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This is the matrix obtained by conjugating all elements of the matrix represen-
tation of B2

j = idCn . The matrix representation of B2
j is equal to (δk,l)

n
k,l=1 and

we see that it has only real elements. So the matrix representations of B2
j and

B̂2
j are the same and therefore by Theorem 2.28 we have:∥∥∥B̂j∥∥∥2

=
∥∥∥B̂2

j

∥∥∥ =
∥∥B2

j

∥∥ = 1 (243)

so
∥∥∥B̂j∥∥∥ = 1. We see that the operators Ai and B̂j satisfy all the necessary

requirements in the definition of QN . By Theorem 2.9, the operators Ai ⊗ B̂j
have matrix representations (a

(i)
p,r(b

(j)
q,s)∗)(p,q),(r,s)∈{1,...,n}2 with respect to the

basis {ek ⊗ el : k, l ∈ {1, . . . , n}} of Cn ⊗ Cn. We now define the operator ρ
on Cn ⊗Cn by letting

(
1
nδp,qδr,s

)
(p,q),(r,s)∈{1,...,n}2 be its matrix representation

with respect to the same basis. For any c ∈ Cn ⊗ Cn with representation
(c(p,q))(p,q)∈{1,...,n}2 we have:

〈c, ρc〉 =〈
(c(p,q))(p,q)∈{1,...,n}2 ,

(
1

n
δp,qδr,s

)
(p,q),(r,s)∈{1,...,n}2

(c(r,s))(r,s)∈{1,...,n}2

〉
=〈

(c(p,q))(p,q)∈{1,...,n}2 ,

(
n∑
r=1

n∑
s=1

1

n
δp,qδr,sc(r,s)

)
(p,q)∈{1,...,n}2

〉
=

n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

1

n
δp,qδr,sc

∗
(p,q)c(r,s) =

1

n

n∑
p=1

n∑
r=1

c∗(p,p)c(r,r) =

1

n

(
n∑
p=1

c∗(p,p)

)(
n∑
r=1

c(r,r)

)
=

1

n

(
n∑
p=1

c∗(p,p)

)(
n∑
p=1

c(p,p)

)
=

1

n

(
n∑
p=1

c(p,p)

)∗( n∑
p=1

c(p,p)

)
=

1

n

∣∣∣∣∣
n∑
p=1

c(p,p)

∣∣∣∣∣
2

≥ 0.

(244)

So we see that ρ is a positive operator. We also have that:

tr(ρ) = tr

((
1

n
δp,qδr,s

)
(p,q),(r,s)∈{1,...,n}2

)
=

n∑
p=1

n∑
q=1

1

n
δp,qδp,q =

n∑
p=1

1

n
= 1.

(245)
From this we conclude that ρ is a density operator. Now for all i, j ∈ {1, . . . , N}
we have that:
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tr((Ai ⊗ B̂j)ρ) =

tr

((
a(i)
p,r

(
b(j)q,s

)∗)
(p,q),(r,s)∈{1,...,n}2

(
1

n
δr,sδt,u

)
(r,s),(t,u)∈{1,...,n}2

)
=

tr

( n∑
r=1

n∑
s=1

a(i)
p,r

(
b(j)q,s

)∗ 1

n
δr,sδt,u

)
(p,q),(t,u)∈{1,...,n}2

 =

n∑
p=1

n∑
q=1

n∑
r=1

n∑
s=1

a(i)
p,r

(
b(j)q,s

)∗ 1

n
δr,sδp,q =

1

n

n∑
p=1

n∑
r=1

a(i)
p,r

(
b(j)p,r

)∗
=

1

n

n∑
p=1

n∑
r=1

a(i)
p,rb

(j)
r,p =

1

n
tr

( n∑
r=1

a(i)
p,rb

(j)
r,q

)n
p,q=1

 =

1

n
tr((a(i)

p,r)
n
p,r=1(b(j)r,q)

n
r,q=1) =

1

n
tr(AiBj) = 〈xi, yj〉 = γi,j .

(246)

From this we see that γ ∈ QN .

These last two results combined give us Tsirelson’s theorem.

Theorem 7.7. Tsirelson’s theorem. If γ = (γi,j)
N
i,j=1 is a matrix with real

elements, then γ ∈ QN if and only if there exists a real Hilbert space H of finite
dimension and xi, yi ∈ H with ‖xi‖2 = ‖yi‖2 = 1 for i ∈ {1, . . . , N} such that:

γi,j = 〈xi, yj〉 (247)

for all i, j ∈ {1, . . . , N}. Furthermore:

ω∗(M) = sup

∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ (248)

with the supremum taken over all real Hilbert spaces H of finite dimension and
xi, yi ∈ H with ‖xi‖2 = ‖yi‖2 = 1 for i ∈ {1, . . . , N}.

Proof. Theorems 7.5 and 7.6 combined, imply that if γ = (γi,j)
N
i,j=1 is a matrix

with real elements, then γ ∈ QN if and only if there exists a real Hilbert space
H of finite dimension and xi, yi ∈ H with ‖xi‖2 = ‖yi‖2 = 1 for i ∈ {1, . . . , N}
such that:

γi,j = 〈xi, yj〉 (249)

for all i, j ∈ {1, . . . , N}. Now it follows from the definition of the quantum value
that for any N ×N matrix M with real elements:
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ω∗(M) = sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jγi,j

∣∣∣∣∣∣ : (γi,j)
N
i,j=1 ∈ QN

 = sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣


(250)
with the last supremum taken over all real Hilbert spaces H of finite dimension
and xi, yi ∈ H with ‖xi‖2 = ‖yi‖2 = 1 for i ∈ {1, . . . , N}. This completes the
proof of Tsirelson’s theorem.

Remark. The requirement that the Hilbert space H must be finite-dimensional
in Tsirelson’s theorem can be omitted. This is because if xi, yj ∈ H for i, j ∈
{1, . . . , N} with H an arbitrary real Hilbert space, then xi, yj ∈ Ĥ for all

i, j ∈ {1, . . . , N} with Ĥ = span({x1, . . . , xN , y1, . . . , yN}) ⊆ H a real finite-
dimensional Hilbert space.

Now that we have formally defined Bell inequalities and have a way to quan-
tify the violation of a Bell-inequality, we will take another look at the first Bell
inequality we have seen, the CHSH-inequality. We recall that the quantum me-
chanical context we considered was that of the composite system of two physical
systems in some state and measurements Q and R that can be performed on
the first system and S and T that can be performed on the second system all
with outcomes in {1,−1}. The associated inequality that should hold under the
assumption of a local hidden variable model was:

|E(QS) + E(RS) + E(RT )− E(QT )| ≤ 2 (251)

which we derived in general for {1,−1}-valued random variables Q,R, S, T on
some probability space. In the more general setting we have developed, the
CHSH-inequality can be rephrased as the inequality:∣∣∣∣∣∣

N∑
i,j=1

Mi,jγi,j

∣∣∣∣∣∣ ≤ C (252)

with N = 2, C = 2 and

M = MCHSH =

(
1 1
1 −1

)
(253)

and since it holds for all 2×2 classical correlation matrices γ, it is indeed a Bell
inequality. Suppose t1, t2, s1, s2 ∈ {1,−1}. Then we have:

∣∣∣∣∣∣
2∑

i,j=1

(MCHSH)i,jtisj

∣∣∣∣∣∣ = |t1s1 + t1s2 + t2s1 − t2s2| =

|t1(s1 + s2) + t2(s1 − s2)| = 2.

(254)
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The last equality holds because either s1 = s2 in which case t2(s1− s2) = 0 and
s1 + s2 ∈ {2,−2}, t1 ∈ {1,−1} so t1(s1 + s2) ∈ {2,−2} or s1 = −s2 in which
case t1(s1 + s2) = 0 and s1− s2 ∈ {2,−2}, t2 ∈ {1,−1} so t2(s1− s2) ∈ {2,−2}.
By Theorem 7.1 it follows that ω(MCHSH) = 2 so it turns out that the constant
C = 2 in the CHSH-inequality is the smallest constant such that the associated
inequality is a Bell inequality. We managed to violate the CHSH-inequality
by finding a composite quantum system, a quantum state and measurements
P,Q,R, S such that:

|E(QS) + E(RS) + E(RT )− E(QT )| = 2
√

2. (255)

In other words we found a quantum correlation matrix γ ∈ Q2 such that:∣∣∣∣∣∣
N∑

i,j=1

(MCHSH)i,jγi,j

∣∣∣∣∣∣ = 2
√

2. (256)

Earlier we used the state vector ψ and observables to violate the CHSH-inequality,
but the same quantum correlation matrix can be obtained from the definition
we gave by letting the component systems be described by C2, letting ρ = ρψ
with:

ρψ(v) = 〈ψ, v〉ψ (257)

and choosing A1 = Z, A2 = X, B1 = −Z−X√
2

and B2 = Z−X√
2

. We omit the

calculations needed to derive that for this choice of operators

γ =

(
1
2

√
2 1

2

√
2

1
2

√
2 − 1

2

√
2

)
(258)

as they are very similar to the calculations of E(QS), E(RS), E(RT ) and
E(QT ) we’ve done before. This specific quantum correlation matrix shows that
ω∗(MCHSH) ≥ 2

√
2. Our next theorem shows that in fact ω∗(MCHSH) = 2

√
2.

Theorem 7.8. ω∗(MCHSH) = 2
√

2.

Proof. We have found a γ ∈ Q2 for which∣∣∣∣∣∣
N∑

i,j=1

(MCHSH)i,jγi,j

∣∣∣∣∣∣ = 2
√

2 (259)

so ω∗(MCHSH) ≥ 2
√

2. To show that ω∗(MCHSH) ≤ 2
√

2, let γ ∈ Q2. By
Theorem 7.7 there exists a real Hilbert space H and x1, x2, y1, y2 ∈ H with

‖x1‖2 = ‖x2‖2 = ‖y1‖2 = ‖y2‖2 = 1 (260)

such that

γi,j = 〈xi, yj〉 . (261)
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Using the triangle inequality and the Cauchy-Schwarz inequality we find that:

∣∣∣∣∣∣
2∑

i,j=1

(MCHSH)i,jγi,j

∣∣∣∣∣∣ = |〈x1, y1〉+ 〈x1, y2〉+ 〈x2, y1〉 − 〈x2, y2〉| =

|〈x1, y1 + y2〉+ 〈x2, y1 − y2〉| ≤ |〈x1, y1 + y2〉|+ |〈x2, y1 − y2〉| ≤
‖x1‖2‖y1 + y2‖2 + ‖x2‖2‖y1 − y2‖2 = ‖y1 + y2‖2 + ‖y1 − y2‖2 =√
〈y1 + y2, y1 + y2〉+

√
〈y1 − y2, y1 − y2〉 =√

〈y1, y1〉+ 〈y1, y2〉+ 〈y2, y1〉+ 〈y2, y2〉+√
〈y1, y1〉 − 〈y1, y2〉 − 〈y2, y1〉+ 〈y2, y2〉 =√
‖y1‖2 + ‖y2‖2 + 2 〈y1, y2〉+

√
‖y1‖2 + ‖y2‖2 − 2 〈y1, y2〉 =√

2 + 2 〈y1, y2〉+
√

2− 2 〈y1, y2〉 =
√

2
(√

1 + 〈y1, y2〉+
√

1− 〈y1, y2〉
)
.

(262)

Since H is a real Hilbert space, 〈y1, y2〉 is real and by the Cauchy-Schwarz
inequality we have:

〈y1, y2〉 ≤ ‖y1‖2‖y2‖2 = 1. (263)

For z ∈ [−1, 1] we note that

√
1 + z +

√
1− z ≥ 0 (264)

and

(
√

1 + z+
√

1− z)2 = 1+z+1−z+2
√

(1 + z)(1− z) = 2+2
√

1− z2 ≤ 2+2 = 4.
(265)

Therefore we have:

√
1 + z +

√
1− z ≤ 2. (266)

Because 〈y1, y2〉 ∈ [−1, 1] it follows that:

∣∣∣∣∣∣
2∑

i,j=1

(MCHSH)i,jγi,j

∣∣∣∣∣∣ ≤ √2
(√

1 + 〈y1, y2〉+
√

1− 〈y1, y2〉
)
≤ 2
√

2. (267)

Since this holds for all γ ∈ Q2 it follows that ω∗(MCHSH) = 2
√

2 which com-
pletes the proof.
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So we see that the violation we had obtained for the CHSH-inequality was

already maximal and we have LV (MCHSH) = 2
√

2
2 =

√
2. This shows that

LV (M) can become at least as large as
√

2. It turns out that there exists an
upper bound on the value of LV (M) even when allowing the size of the matrices
M to vary. Moreover, LV (MCHSH) =

√
2 is fairly close to this upper bound.

These results follow from a theorem known as Grothendieck’s theorem which
we will state without proof. This theorem can also be found (without proof) in
chapter 5 of [2].

Theorem 7.9. Grothendieck’s theorem. There exists a positive constant KG

such that for every N ∈ N and every non-zero N × N matrix M with real
elements the following inequality holds:

sup

∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ ≤
KG sup


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : (t1, . . . , tN , s1, . . . , sN ) ∈ {1,−1}2N
 .

(268)

with the first supremum taken over all real Hilbert spaces H and xi, yi ∈ H with
‖xi‖2 = ‖yi‖2 = 1 for i ∈ {1, . . . , N}.

Using Tsirelson’s theorem (without the condition that H is finite-dimensional)
and Theorem 7.1 we can reformulate Grothendieck’s theorem as follows:

Theorem 7.10. Grothendieck’s theorem. There exists a positive constant KG

such that for every N ∈ N and every non-zero N × N matrix M with real
elements the following inequality holds:

ω∗(M) ≤ KG · ω(M) (269)

or equivalently

LV (M) ≤ KG. (270)

The constant KG is known as the real Grothendieck’s constant. The exact value
of KG is unknown but it is known that (see chapter 5 of [2]):

1.67696 · · · ≤ KG ≤
π

2 log
(
1 +
√

2
) ≈ 1.7822139781. (271)

The remainder of this thesis will revolve around approximating Grothendieck’s
constant. In particular we will attempt to calculate or approximate the largest
violation of matrices and optimize the largest violation for a fixed matrix size.
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8 Calculating classical and quantum values

As a first step in attempting to optimize the largest value of matrices, we need
to be able to calculate or approximate the classical and quantum value of a
given matrix M with real entries. Theorem 7.1 ensures that we can calculate
the classical value of an N × N matrix exactly by taking the supremum (or

maximum) of a finite set. This set consists of the numbers
∣∣∣∑N

i,j=1Mi,jtisj

∣∣∣ for

all possible combinations of ti, sj ∈ {1,−1}2N . Since there are 22N = 4N possi-

ble combinations of the ti and sj , the calculation
∣∣∣∑N

i,j=1Mi,jtisj

∣∣∣ needs to be

performed 4N times. This means that while ω(M) can be calculated exactly in
a straightforward way, we expect the time it takes to calculate ω(M) to increase

exponentially in the matrix size N . The number of times
∣∣∣∑N

i,j=1Mi,jtisj

∣∣∣ has

to be calculated can be reduced by noting that we can fix t1 = s1 = 1 without

omitting any elements from the set
{∣∣∣∑N

i,j=1Mi,jtisj

∣∣∣ : ti, sj ∈ {1,−1}
}

.

Theorem 8.1. Let M be an N × N matrix with real elements and ti, sj ∈
{1,−1} for all i, j ∈ {1, . . . , N}. Then there exist t′i, s

′
j ∈ {1,−1} for all i, j ∈

{1, . . . , N} with t′1 = s′1 = 1 such that
∣∣∣∑N

i,j=1Mi,jtisj

∣∣∣ =
∣∣∣∑N

i,j=1Mi,jt
′
is
′
j

∣∣∣.
Proof. Let M be an N×N matrix with real elements and ti, sj ∈ {1,−1} for all
i, j ∈ {1, . . . , N}. Let t′i = t1ti and s′j = s1sj for all i, j ∈ {1, . . . , N}. Clearly

t′i, s
′
j ∈ {1,−1}, t′1 = t21 = 1 and s′1 = s2

1 = 1. We also have

∣∣∣∣∣∣
N∑

i,j=1

Mi,jt
′
is
′
j

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,jtit1sjs1

∣∣∣∣∣∣ =

∣∣∣∣∣∣t1s1

N∑
i,j=1

Mi,jtisj

∣∣∣∣∣∣ =

|t1||s1|

∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣
(272)

which concludes the proof.

Theorem 8.1 allows us to fix t1 = s1 = 1, so we only have to calculate
∣∣∣∑N

i,j=1Mi,jtisj

∣∣∣
22N−2 = 4N−1 times. For calculation of ω∗(M) we will rely on Tsirelson’s the-

orem (Theorem 7.7). So we need to find the supremum of
∣∣∣∑N

i,j=1Mi,j 〈xi, yj〉
∣∣∣

taken over all possible unit vectors xi and yj in all finite-dimensional real Hilbert
spaces. We now define:

Definition 8.1. ω∗n(M) = sup
∣∣∣∑N

i,j=1Mi,j 〈xi, yj〉
∣∣∣ with the supremum taken

over all unit vectors xi, yj in real Hilbert spaces of dimension n.

We note that ω∗(M) = supn∈N ω
∗
n(M). We also note that given a real Hilbert

space H of dimension n and unit vectors xi, yj ∈ H, we can take an arbitrary
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orthonormal basis of H. If we consider the representations of the vectors xi
and yj in Rn with respect to the chosen basis, then we can replace xi and yj by
their representations without changing the inner products 〈xi, yj〉. Consequently∣∣∣∑N

i,j=1Mi,j 〈xi, yj〉
∣∣∣ will remain unchanged if we replace the vectors by their

representations in Rn. In other words it is sufficient to only consider unit vectors
in Rn when calculating ω∗n(M).

Theorem 8.2. ω∗n(M) = sup
∣∣∣∑N

i,j=1Mi,j 〈xi, yj〉
∣∣∣ with the supremum taken

over all unit vectors xi, yj ∈ Rn.

Our next theorem shows that ω∗n(M) is increasing in n.

Theorem 8.3. Let M be an N ×N matrix with real entries and n ∈ N, then
ω∗n+1(M) ≥ ω∗n(M).

Proof. Let M be an N×N matrix with real entries and n ∈ N. Let xi, yj ∈ Rn
be unit vectors. We consider the vectors xi⊕ 0 and yj ⊕ 0. These are vectors in
a vector space of dimension n+ 1 which can easily be identified with Rn+1. In
other words we consider vectors x′i, y

′
j ∈ Rn+1 whose first entries match those

of xi and yj and whose last entry is equal to 0. These are clearly unit vectors
in Rn+1 with 〈xi, yj〉 =

〈
x′i, y

′
j

〉
. It follows that∣∣∣∣∣∣

N∑
i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,j

〈
x′i, y

′
j

〉∣∣∣∣∣∣. (273)

This shows that


∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ : xi, yj ∈ Rn, ‖xi‖2 = ‖yj‖2 = 1

 ⊆
∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ : xi, yj ∈ Rn+1, ‖xi‖2 = ‖yj‖2 = 1


(274)

and it follows that ω∗n+1(M) ≥ ω∗n(M).

In addition, the following theorem shows that ω∗n(M) is eventually constant in
n.

Theorem 8.4. Let M be an N × N matrix with real entries and n ≥ N + 1,
then ω∗n = ω∗N+1.

Proof. Let M be an N×N matrix with real entries and n ≥ N +1. ω∗n ≥ ω∗N+1

is clear from Theorem 8.3. For the reverse inequality note that given unit
vectors xi, yj for i, j ∈ {1, . . . , N} in H = Rn, we can consider the real Hilbert
space H ′ spanned by the vectors x1, . . . , xN . This Hilbert space has dimension
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at most N and contains the vectors x1, . . . , xN . We define the vectors y′j for
j ∈ {1, . . . , N} as the projection of yj on H ′. This gives us vectors y′j ∈ H ′ with∥∥y′j∥∥ ≤ ‖yj‖ = 1 and

〈
xi, y

′
j

〉
= 〈xi, yj〉. Similarly to what we did in the proof

of Tsirelson’s theorem we consider the real Hilbert space H ′′ = H ′ ⊕R and the

vectors x′′i = xi⊕ 0 and y′′j = y′j ⊕
√

1−
∥∥y′j∥∥2

in H ′′. These are unit vectors in

H ′′ with
〈
x′′i , y

′′
j

〉
=
〈
xi, y

′
j

〉
= 〈xi, yj〉. We note that the dimension k of H ′′ is

one larger than the dimension of H ′ and therefore k ≤ N + 1. So∣∣∣∣∣∣
N∑

i,j=1

Mi,j

〈
x′′i , y

′′
j

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ (275)

with x′′i , y
′′
j ∈ H ′′ unit vectors and H ′′ of dimension k ≤ N + 1. We can

replace x′′i and y′′j by their representations x′′′i and y′′′j in Rk with respect to
an orthonormal basis of H ′′. We subsequently replace x′′′i and y′′′j by vectors

x′′′′i and y′′′′j in RN+1 by adding N + 1 − k zeros as the last entries. These
replacements do not change the inner products between the vectors or the fact
that they are unit vectors. Therefore∣∣∣∣∣∣

N∑
i,j=1

Mi,j

〈
x′′′′i , y′′′′j

〉∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ (276)

with x′′′′i and y′′′′j unit vectors in RN+1. This shows that


∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ : xi, yj ∈ Rn, ‖xi‖2 = ‖yj‖2 = 1

 ⊆
∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ : xi, yj ∈ RN+1, ‖xi‖2 = ‖yj‖2 = 1


(277)

and it follows that ω∗n(M) ≤ ω∗N+1(M). We conclude that ω∗n = ω∗N+1.

Since ω∗n(M) is increasing in n and constant for n ≥ N+1 we have the following
corollary.

Corollary 8.4.1. Let M be an N ×N matrix with real entries, then ω∗(M) =
ω∗N+1(M).

Corollary 8.4.1 allows us to only consider unit vectors in RN+1 when calculating
the quantum value of a matrix. We will not be calculating the quantum value
of matrices M exactly and will instead use an optimization algorithm in python
to approximate the quantum value, giving us lower bounds. This optimization

becomes easier if we can omit the absolute value in
∣∣∣∑N

i,j=1Mi,j 〈xi, yj〉
∣∣∣, which

the following theorem allows us to do.
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Theorem 8.5. Let M be an N ×N matrix with real entries and n ∈ N, then:

ω∗n(M) = sup

N∑
i,j=1

Mi,j 〈xi, yj〉 = − inf

N∑
i,j=1

Mi,j 〈xi, yj〉 . (278)

Proof. Let M be an N ×N matrix with real entries and n ∈ N. We note that
given unit vectors xi, yj ∈ Rn for i, j ∈ {1, . . . , N}, −xi ∈ Rn are also unit
vectors and

N∑
i,j=1

Mi,j 〈−xi, yj〉 = −
N∑

i,j=1

Mi,j 〈xi, yj〉 . (279)

This means that the set {
∑N
i,j=1Mi,j 〈xi, yj〉 : xi, yj ∈ Rn, ‖xi‖2 = ‖yj‖2 = 1}

is symmetric around 0 in the sense that if it contains a it also contains −a and
|a|. For a set A of real numbers having this property we have supA = − inf A
and supA = sup{|a| : a ∈ A}. This directly implies the statement from the
theorem completing the proof.

The optimization algorithm we will use is a minimization algorithm. We will
use it to minimize

∑N
i,j=1Mi,j 〈xi, yj〉 for a given matrix M over all unit vectors

xi, yj ∈ Rn. This should give us an upper bound on −ω∗(M) which, if the
optimization is successful, should be quite accurate if we choose n = N + 1. If
we write xi = (xi,k)nk=1 and yj = (yj,k)nk=1 we can write, for an arbitrary N×N
matrix with real entries M :

fM =

N∑
i,j=1

Mi,j 〈xi, yj〉 =

N∑
i,j=1

Mi,j

n∑
k=1

xi,kyj,k (280)

and minimize fM as function of the real variables xi,k, yj,k (with i, j ∈ {1, . . . , N},
k ∈ {1, . . . , n}) under the condition that

∑n
k=1 x

2
i,k =

∑n
k=1 y

2
j,k = 1. The func-

tion fM is differentiable with partial derivatives given by:

∂fM
∂xi0,k0

=

N∑
j=1

Mi0,jyj,k0 (281)

and

∂fM
∂yj0,k0

=

N∑
i=1

Mi,j0xi,k0 . (282)

To enforce the condition that
∑n
k=1 x

2
i,k =

∑n
k=1 y

2
j,k = 1 (the vectors must

be unit vectors) we will not optimize using the variables xi,k and yj,k directly.
Instead we will express the vectors xi and yj using (higher dimensional) spherical
coordinates fixing the radius at 1 and optimizing using the angles as variables.
A point z ∈ Rn with ‖z‖2 = 1 can be represented using n− 1 angles φ1 through
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φn−1. The function g : Rn−1 → Rn mapping φ = (φm)n−1
m=1 to z = (zk)nk=1 has

components gk (k ∈ {1, . . . , n}) given by:

gk(φ) =

{
cos(φk)

∏k−1
m=1 sin(φm), k ≤ n− 1∏n−1

m=1 sin(φm), k = n
(283)

and it can be verified that the range of g consists of all unit vectors in Rn. For
our optimization we use the real variables φi,m and ψj,m for i, j ∈ {1, . . . , N}
and m ∈ {1, . . . , n − 1} and substitute xi,k by gk((φi,m)n−1

m=1) and yj,k by
gk((ψj,m)n−1

m=1) in the objective function fM . So the function to be optimized
becomes:

fM =

N∑
i,j=1

Mi,j

n∑
k=1

gk((φi,m)n−1
m=1)gk((ψj,m)n−1

m=1) (284)

with no restrictions necessary on the variables φi,m and ψj,m (although the
periodicity of sine and cosine makes it possible to restrict the domain if we want).
We want to provide the optimization algorithm with the partial derivatives of
the objective function fM . Using the chain rule for partial derivatives we find
that:

∂fM
∂φi0,m0

=

n∑
k0=1

N∑
j=1

Mi0,jgk0((ψj,m)n−1
m=1)

∂gk0
∂φi0,m0

((φi0,m)n−1
m=1) (285)

and

∂fM
∂ψj0,m0

=

n∑
k0=1

N∑
i=1

Mi,j0gk0((φi,m)n−1
m=1)

∂gk0
∂ψj0,m0

((ψj0,m)n−1
m=1). (286)

It remains to calculate the partial derivatives of the gk which are given by:

∂gk
∂φm0

=


0, m0 > k

cos(φk) cos(φm0
)
∏k−1
m=1,m 6=m0

sin(φm), m0 < k < n

−
∏k
m=1 sin(φm), m0 = k

cos(φm0
)
∏n−1
m=1,m 6=m0

sin(φm), k = n

. (287)

Substituting the explicit form of the gk and their partial derivatives into the
partial derivatives of fM would give an explicit expression of the partial deriva-
tives of fM as a function of the φi,m and ψj,m. The algorithm we use to ap-
proximate the quantum value of a matrix M is the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm which is part of the scipy.optimize.minimize function
in python. We use fM as the objective function with φi,m and ψj,m as the vari-
ables. We also provide the algorithm with a function calculating the gradient
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of fM , using the expressions for the partial derivatives we have found. We will
usually choose n = N + 1, unless we wish to save on run-time in which case we
can choose n < N + 1 to reduce the number of variables. Combined with the
calculation of the exact value of the classical value we can calculate lower bounds
for the largest violation of a matrix M . The lower bounds obtained (when using
n = N + 1) seem to accurately approximate the exact value of the largest viola-
tion at least in cases where the exact value is known. Using the BFGS algorithm
on the CHSH-matrix, we find a largest violation of 1.4142135623710677, which
agrees with the exact value to 11 decimal places.
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9 Approximating Grothenieck’s constant

Now that we can calculate the largest violation of a matrix M , we want to
optimize this largest violation to approximate Grothendieck’s constant. We will
first lay out our method for approximating Grothendieck’s constant and then
discuss the results we have obtained.

9.1 Method for approximating Grothendieck’s constant

We first introduce a variation on Grothendieck’s constant.

Definition 9.1. Grothendieck’s constant for N×N matrices is given by KN =
supM∈MatN×N (R)\{0} LV (M), where MatN×N (R) is the set of all N×N matrices
with real entries and 0 denotes the zero-matrix.

We note that KG can be defined in a similar way, by taking the supremum over
all non-zero square matrices of arbitrary size with real entries. This means that
KG = supN∈NKN . The next theorem shows that KN is increasing in N .

Theorem 9.1. Let N ∈ N, then KN+1 ≥ KN .

Proof. Let N ∈ N. Let M = (Mi,j)
N
i,j=1 be an arbitrary non-zero N×N matrix

with real entries. we consider the matrix M ′ = (M ′i,j)
N+1
i,j=1 with M ′i,j = Mi,j for

i, j ∈ {1, . . . , N} and M ′i,j = 0 if i = N + 1 or j = N + 1. Given ti, sj ∈ {1,−1}
for i, j ∈ {1, . . . , N + 1} we note that:∣∣∣∣∣∣

N+1∑
i,j=1

M ′i,jtisj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

M ′i,jtisj

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣. (288)

This shows that:


∣∣∣∣∣∣
N+1∑
i,j=1

M ′i,jtisj

∣∣∣∣∣∣ : ti, sj ∈ {1, 1}

 =


∣∣∣∣∣∣
N∑

i,j=1

Mi,jtisj

∣∣∣∣∣∣ : ti, sj ∈ {1, 1}

 (289)

and therefore ω(M ′) = ω(M). Similarly, given xi, yj ∈ RN+2 with ‖xi‖2 =
‖yj‖2 = 1 we have:

∣∣∣∣∣∣
N+1∑
i,j=1

M ′i,j 〈xi, yj〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

M ′i,j 〈xi, yj〉

∣∣∣∣∣∣ =

∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣. (290)

It follows that:
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∣∣∣∣∣∣
N+1∑
i,j=1

M ′i,j 〈xi, yj〉

∣∣∣∣∣∣ : xi, yj ∈ RN+2, ‖xi‖2 = ‖yj‖2 = 1

 =


∣∣∣∣∣∣
N∑

i,j=1

Mi,j 〈xi, yj〉

∣∣∣∣∣∣ : xi, yj ∈ RN+2, ‖xi‖2 = ‖yj‖2 = 1

 .

(291)

This means that:

ω∗(M ′) = ω∗N+2(M ′) = ω∗N+2(M) = ω∗N+1(M) = ω∗(M). (292)

Since ω(M ′) = ω(M) and ω∗(M ′) = ω∗(M) we have:

LV (M ′) = LV (M). (293)

So we have:

{LV (M) : M ∈ MatN×N (R)\{0}} ⊆ {LV (M) : M ∈ MatN+1×N+1(R)\{0}}
(294)

and consequently KN ≤ KN+1.

We see that the KN form an increasing sequence increasing to KG. If we can
find a lower bound for KN for some N ∈ N, then this is also a lower bound on
KG. Furthermore by increasing N we can hope to find increasingly better lower
bounds on KG. We note without proof that K2 = K3 =

√
2 (see [4]). In other

words there are no 2×2 or 3×3 matrices M with LV (M) >
√

2 = LV (MCHSH).
To find lower bounds on KN we have used Powell’s method. This is a mini-
mization algorithm, which is also part of the scipy.minimize.optimize function
in python, and does not require the objective function to be differentiable. The
objective function we used is given by −LV (M), where we calculate LV (M)
by calculating ω(M) exactly and approximating ω∗(M) using the BFGS algo-
rithm. So the objective function is actually an upper bound on −LV (M). The
variables are the N2 entries of the matrix M . Powell’s method should find a
(local) minimum of the objective function, which will give an upper bound on
−KN . The reason we have used an algorithm that does not require the objective
function to be differentiable is the following. Even though the expression∑N

i,j=1Mi,j 〈xi, yj〉∑N
i,j=1 tisjMi,j

(295)

is differentiable with respect to the matrix entries Mi,j when we take ti, sj , xi, yj
fixed, the values of ti and sj for which

∑N
i,j=1 tisjMi,j = ω(M) depend on the

matrix M and similarly for xi and yj . Without knowing the exact dependence
it is unclear if LV (M) is differentiable as a function of the matrix entries of M .
For this reason we have chosen to use a different optimization algorithm.
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We have observed that the bound found using this algorithm can significantly
depend on the chosen starting values, which is not too surprising since the min-
ima found are local. To increase the likelyhood of finding the global minimum
(or at least a good local minimum) using the algorithm, we can repeat the algo-
rithm several times using different starting values. We have chosen to run the
algorithm using random starting values, choosing each matrix entry uniformly
in [−1, 1] independent from each other. We note that it is sufficient to only
choose starting values in [−1, 1]. This is because multiplying a given matrix M
by a constant a ∈ R will change both the classical and quantum value of the ma-
trix by a factor |a|, leaving the largest violation unchanged. Therefore a given
non-zero N×N matrix M with real entries can be multiplied by 1

max |Mi,j | . The

resulting matrix will have the same largest violation and all its entries will be
in the interval [−1, 1]. Therefore when minimizing −LV (M) it is not necessary
(but possible) to consider matrices with large entries (larger than 1 in absolute
value). This justifies only using starting values in [−1, 1] for the minimization
algorithm. Below we have included the Python code containing the functions
we used with comments to explain what each function does. The last function
constructs matrices according to the procedure described in [4]. We will also
give a brief description of the construction method in the next chapter.

1 import numpy as np

2 import itertools

3 import scipy.optimize

4 import time

5

6 ’’’Takes a vector of angles phi as the spherical coordinates of a

point x on the surface of an n-dimensional sphere and returns

the associated point x.’’’

7 def sphertocart(phi):

8 ’’’Calculates n as the number of angles plus one.’’’

9 n = len(phi) + 1

10 ’’’x is iniated as a vector of length n and each entry is

calculated using the function g as defined in Equation (283).

’’’

11 x = np.zeros(n)

12 for i in range(0,n-1):

13 x[i] = np.prod(np.sin(phi [0:i]))*np.cos(phi[i])

14 x[n-1] = np.prod(np.sin(phi))

15 return x

16

17 ’’’Takes a vector of angles theta and two positive integers N and n

.

18 The vector theta is treated as a vector containing the spherical

coordinates of N points on the surface of an n-dimensional

sphere and must have length equal to N(n-1).

19 The first n-1 entries are the spherical coordinates of the first

point etc.

20 The output is a vector x of length Nn whose first n entries

represent the coordinates of the first point , etc.’’’

21 def sphertocart2(theta ,N,n):

22 ’’’x is iniated as a vector of length Nn.’’’

23 x = np.zeros (2*N*n)

24 for i in range (0,2*N):
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25 ’’’The first n entries of x are calculated using

sphertocart , with the input given by the first n-1 entries of

theta.

26 This process is repeated for the next n entries of x etc.

’’’

27 x[i*n:(i+1)*n] = sphertocart(theta[i*(n-1):(i+1)*(n-1)])

28 return x

29

30 ’’’The input is a vector of angles phi , to be interpreted as the

spherical coordinates of a point x on the surface of an n-

dimensional sphere.

31 The output is the matrix deriv containing the partial derivatives

of the transformation from spherical to cartesian coordinates (

the function g in Equation (283)).’’’

32 def sphertocartderiv(phi):

33 ’’’Calculates n as the number of angles plus one.’’’

34 n = len(phi) + 1

35 ’’’Initiates deriv as an n by n-1 matrix.’’’

36 deriv = np.zeros([n,n-1])

37 ’’’The entries of deriv , which are the partial derivatives of g

, are calculated as in Equation (287).

38 The entries which are always equal to 0 (m > k) are unchanged.

’’’

39 for k in range(0,n-1):

40 for m in range(0,k):

41 deriv[k,m] = np.cos(phi[k])*np.cos(phi[m])* \

42 np.prod(np.sin(phi [0:k][np.array(range(0,k)) != m]))

43 deriv[k,k] = -np.prod(np.sin(phi [0:k+1]))

44 for m in range(0,n-1):

45 deriv[n-1,m] = np.cos(phi[m])* \

46 np.prod(np.sin(phi[np.array(range(0,n-1)) != m]))

47 return deriv

48

49 ’’’The input is a square matrix of real entries M.

50 The output is the classical value of M.

51 It is calculated using Theorem 6.1 by considering all combinations

of ti and sj in {1,-1}.

52 t1 and s1 are kept fixed at 1, which is justified by Theorem 7.1.

’’’

53 def classicalvalue(M):

54 ’’’Determines the matrix size N.’’’

55 N = np.size(M,1)

56 ’’’Defines TS as the cartesian product of 2(N-1) copies of

{1,-1}.

57 TS represents all different choices for the ti and sj (for i,j

> 1).’’’

58 TS = itertools.product ([1,-1], repeat =2*(N-1))

59 ’’’Initiates Mcorrmat as an empty set.

60 Mcorrmat will contain the value to be maximized for the

different choices of ti and sj.’’’

61 Mcorrmat = set()

62 for ts in TS:

63 ’’’For each elements in the cartesian product TS, t and s

are defined as the vectors containing the associated ti and sj.

’’’

64 t = np.mat ([1]+ list(ts[0:N-1]))

65 s = np.mat ([1]+ list(ts[N -1:(2*(N-1))]))
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66 ’’’The deterministic correlation matrix gamma is calculated

from t and s (gammaij = ti*sj).’’’

67 gamma = np.array(np.transpose(t)*s)

68 ’’’M and gamma are multiplicated entrywise , the entries of

the resulting matrix are summed and the absolute value is taken

.

69 The resulting number is added to the set Mcorrmat.’’’

70 Mcorrmat.add(abs(np.sum(M*gamma)))

71 ’’’The classical value omega of M is calculated by taking

the maximum of all numbers in Mcorrmat.’’’

72 omega = max(Mcorrmat)

73 return omega

74

75 ’’’The input should be a square N by N matrix of real entries M and

two N by n matrices X and Y.

76 The rows of the matrices X and Y are to be interpreted as the n-

dimensional unit vectors xi and yj from Equation (280).

77 The output qprod is equal to fM from Equation (280).’’’

78 def quantumprod(M,X,Y):

79 ’’’N and n are determined from the input matrices.’’’

80 N = np.size(M,1)

81 n = np.size(X,1)

82 ’’’Inner products between the rows of X and Y are taken to

construct the associated quatum correlation matrix inprod.’’’

83 inprod = np.mat(X)*np.transpose(np.mat(Y))

84 ’’’qprod is calculated by taking the entrywise product between

M and inprod and summing the entries.’’’

85 qprod = np.sum(M*np.array(inprod))

86 return qprod

87

88 ’’’A reformulation of quantumprod to allow for the input to be

presented in a different form.

89 M is the same as in quantumprod , and x must be a vector containing

all entries from X and Y.

90 The entries of x should start with those of X row by row and then

those of Y also row by row.’’’

91 def funqprod(x,M):

92 ’’’N and n are determined from the input.’’’

93 N = np.size(M,1)

94 n = np.size(x)/(2*N)

95 ’’’x is reshaped into a 2*N by n matrix Z, whose top half is

the matrix X and its bottom half is the matrix Y.’’’

96 Z = np.reshape(x,(2*N,n))

97 ’’’Z is split into the matrices X and Y, which are used to call

quantumprod.’’’

98 X = Z[0:N,0:n]

99 Y = Z[N:2*N,0:n]

100 return quantumprod(M,X,Y)

101

102 ’’’Using the same input as funqprod , returns jacob , the Jacobian (

or gradient) of funqprod (fM), as function of the components of

x, or in other words the components of the vectors xi and yj.

’’’

103 def jacobfunqprod(x,M):

104 ’’’N and n are determined from the input.’’’

105 N = np.size(M,1)

106 n = np.size(x)/(2*N)
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107 ’’’x is reshaped into a 2*N by n matrix Z, whose top half is

the matrix X and its bottom half is the matrix Y.’’’

108 Z = np.reshape(x,(2*N,n))

109 ’’’Z is split into the matrices X and Y.’’’

110 X = Z[0:N,0:n]

111 Y = Z[N:2*N,0:n]

112 ’’’The Jacobian (gradient) jacob is calculated using the

partial derivatives of fM (Equations (281) and (282)).’’’

113 jacob = list()

114 for i in range(0,N):

115 for k in range(0,n):

116 jacob = jacob + [sum(M[i,:]*Y[:,k])]

117 for j in range(0,N):

118 for k in range(0,n):

119 jacob = jacob + [sum(M[:,j]*X[:,k])]

120 jacob = np.array(jacob)

121 return jacob

122

123 ’’’The input is a square N by N matrix M with real entries and a

vector of angles theta of length 2*N*(n-1).

124 Each n-1 consecutive components of theta represent the vectors phii

and psij from Equation (284).

125 The output is the value of the function fM (as a function of the

spherical coordinates phii and psij) as in Equation (284).’’’

126 def spherefunqprod(theta ,M):

127 ’’’N and n are determined from the input.’’’

128 N = np.size(M,1)

129 n = 1+np.size(theta)/(2*N)

130 ’’’theta is converted to a vector x containing the components

of the vectors xi and yj using sphertocart2.

131 x is then used as the input for qprod to calculate fM.’’’

132 x = sphertocart2(theta ,N,n)

133 return funqprod(x,M)

134

135 ’’’Using the same input as spherefunqprod , returns jacob , the

jacobian (or gradient) of spherefunqprod (fM), as a function of

the components of theta , or in other words the components of

the vectors phii and psij.’’’

136 def jacobspherefunqprod(theta ,M):

137 ’’’N and n are determined from the input.’’’

138 N = np.size(M,1)

139 n = 1+np.size(theta)/(2*N)

140 ’’’theta is converted to a vector x containing the components

of the vectors xi and yj using sphertocart2.’’’

141 x = sphertocart2(theta ,N,n)

142 ’’’The Jacobian (gradient) jacob is calculated according to

Equations (285) and (286).

143 jacobfunqprod (gradient of fM with respect to the components of

xi and yj) and sphertocartderiv (partial derivatives of g) are

used for this according to the chain rule.’’’

144 jacob = list()

145 for i in range (0,2*N):

146 for m in range(0,n-1):

147 jacob = jacob + [np.sum(jacobfunqprod(x,M)[i*n:(i+1)*n

]*

148 sphertocartderiv(theta[i*(n-1):(i+1)*(n-1)])[:,m])]

149 jacob = np.array(jacob)
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150 return jacob

151

152 ’’’The input should be a square N by N matrix M with real entries

and a positive integer n.

153 Uses the BFGS algorithm to minimize spherefunqprod as a function of

theta.

154 Returns the minimization results containing the point where the

minimum was found , the value at this point and other

information regarding the outcome.

155 The value found approximates -omega n star(M) from above.’’’

156 def quantumvaluespher(M,n):

157 ’’’Determines the matrix size N.’’’

158 N = np.size(M,1)

159 ’’’Chooses starting values theta0 for theta.’’’

160 theta0 = np.array(range (2*N*(n-1)))

161 ’’’Calls the optimization algorithm.

162 spherefunqprod is the objective function with theta as the

variables.

163 theta0 gives the starting values of theta.

164 M is given as a parameter to the objective function.

165 jacobspherfunqprod is used as the Jacobian in the minimization

process.’’’

166 result = scipy.optimize.minimize(spherefunqprod ,theta0 ,args=M,

167 jac=jacobspherefunqprod)

168 return result

169

170 ’’’Using the same input calls quantumvaluespher and returns the

value found by the minimization algorithm multiplied by -1.

171 The returned value approximates omega n star(M) from below.’’’

172 def quantvalue(M,n):

173 return -quantumvaluespher(M,n)[’fun’]

174

175 ’’’Using the same input calls quantumvaluespher , takes the value of

theta where the minimum was found and returns the associated

vectors xi and yj.

176 The output is an 2*N by n matrix Z, whose first N rows contain the

components of the xi and the last N rows contain the components

of the yj.’’’

177 def quantvaluepoint(M,n):

178 ’’’Determines the matrix size N.’’’

179 N = np.size(M,1)

180 ’’’Calls quantumvaluespher and takes the optimal value of theta

.’’’

181 theta = quantumvaluespher(M,n)[’x’]

182 ’’’Uses sphertocart2 to convert the spherical coordinates theta

to cartesian coordinates x.’’’

183 x = sphertocart2(theta ,N,n)

184 ’’’Reshapes x to obtain the matrix Z contain the xi and yj.’’’

185 Z = np.reshape(x,(2*N,n))

186 return Z

187

188 ’’’Using the same input calls quantvaluepoint and calculates the

associated quantum correlation matrix.’’’

189 def quantvaluegamma(M,n):

190 ’’’Calls quantvaluepoint.’’’

191 Z = quantvaluepoint(M,n)

192 ’’’Determines the matrix size N.’’’
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193 N = np.size(M,1)

194 ’’’Splits Z into matrices X and Y containing as rows the xi and

yj respectively.’’’

195 X = Z[0:N,:]

196 Y = Z[N:2*N,:]

197 ’’’Takes inner products between the rows of X and Y to

calculate the associated quantum correlation matrix gamma.’’’

198 gamma = np.array(np.mat(X)*np.transpose(np.mat(Y)))

199 return gamma

200

201 ’’’The input should be a square N by N matrix M with real entries

and a positive integer n.

202 Returns the fraction of quantvalue(M,n) and classicalvalue(M),

which approximates the largest violation of M from below.’’’

203 def LV(M,n):

204 result = quantvalue(M,n)/classicalvalue(M)

205 return result

206

207 ’’’Using the same input returns -LV(M,n).’’’

208 def negLV(M,n):

209 return -LV(M,n)

210

211 ’’’Calculates negLV(M,n) with the input in a different form.

212 x should be the same as M, but reshaped into an N^2 by 1 matrix.’’’

213 def negLVfunq(x,n):

214 ’’’Determines N from the input.’’’

215 N = int(len(x)**0.5)

216 ’’’Determines M by reshaping x.’’’

217 M = np.reshape(x,(N,N))

218 return negLV(M,n)

219

220 ’’’The input should consist of two positive integers N and n, and a

vector x0 of length N^2 with real entries.

221 Uses the Powell algorithm to minimize negLVfunq as a function of x

(with fixed length N^2 for x) using x0 as starting value.

222 Returns the minimization results containing the point where the

minimum was found , the value at this point and other

information regarding the outcome.

223 The value found approximates -KN from above.’’’

224 def LVopt(N,n,x0):

225 ’’’Calls the optimization algorithm.

226 negLVfunq is the objective function with x as the variables.

227 x0 gives the starting values of x.

228 n is given as a parameter to the objective function.’’’

229 result = scipy.optimize.minimize(negLVfunq ,x0,args=n,method=’

Powell ’)

230 return result

231

232 ’’’The input should consist of two positive integers N and n, and a

negative real number bound.

233 Repeatedly calls LVopt(N,n,x0) for randomly generated x0 untill a

value smaller than bound is found.’’’

234 def LVoptloop(N,n,bound):

235 ’’’Initiates lastresult at 0. ’’’

236 lastresult = 0

237 ’’’Checks if lastresult is >= bound.

238 If it is , randomly generates x0 and calculates LVopt(N,n,x0).
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’’’

239 while lastresult >= bound:

240 ’’’Randomly generates each entry of x0 using the uniform

distribution on [-1,1]. ’’’

241 x0 = np.zeros(N**2)

242 for i in range(0,N**2):

243 x0[i] = np.random.uniform (-1,1)

244 ’’’Calls LVopt(N,n,x0) and sets lastresult equal to the

value found.’’’

245 result = LVopt(N,n,x0)

246 lastresult = result[’fun’]

247 ’’’When a value < bound is found , the loop ends.

248 The value found (multiplied by -1) is printed as well as the

associated matrix M.’’’

249 print -lastresult

250 print np.reshape(result[’x’],(N,N))

251

252 ’’’The input should consist of an integer k >= 2 and a real number

lam.

253 Calculates the k*(k-1) by k*(k-1) matrix M with entries given by

Equation (308).

254 Returns M - lam*I with I the k*(k-1) by k*(k-1) identity matrix.’’’

255 def Mfishburn(k,lam):

256 ’’’Creates an empty list F and fills it with all different k-

dimensional vectors with all but two entries equal to 0, with

the first of these equal to 1 and the second equal to 1 or -1.

’’’

257 F = []

258 for i in range(0,k-1):

259 for j in range(i+1,k):

260 f = np.zeros(k)

261 f[i] = 1

262 f[j] = 1

263 F = F + [f]

264 for i in range(0,k-1):

265 for j in range(i+1,k):

266 f = np.zeros(k)

267 f[i] = 1

268 f[j] = -1

269 F = F + [f]

270 ’’’Constructs the k*(k-1) by k*(k-1) matrix M whose entries are

all inner products between pairs of vectors in F.’’’

271 M = np.zeros([k*(k-1),k*(k-1)])

272 for i in range(0,k*(k-1)):

273 for j in range(0,k*(k-1)):

274 M[i,j] = np.sum(F[i]*F[j])

275 ’’’Subtracts lam*I from M.’’’

276 M = M - lam*np.eye(k*(k-1))

277 return M

To illustrate the performance of the algorithm and the results it produced we
will provide several examples of input and output. The input will each time
consist of a starting matrix M0, which also fixes the size N of the matrices over
which we optimize, and the dimension n of the vectors used to approximate
quantum values. In these examples we have chosen n = N + 1 and the starting
matrices M0 were randomly generated using the described procedure.
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9.2 Results for 2× 2 matrices

If we optimize LV (M) over 2×2 matrices using vectors in R3 for approximating
ω∗(M) and use the following matrix as starting value:

M0 =

(
0.86886844 0.86173587
0.4383951 0.07197179

)
, (296)

the algorithm returns -1.4142133636010936 as its approximation of −K2. This
value agrees with −

√
2, the real value of −K2, to 6 decimal places. The algo-

rithm finds this minimum as −LV (M), where M is given by:

M =

(
0.43897087 0.43897095
0.43897087 −0.43897103

)
. (297)

We note that M is almost equal to a rescaled version of MCHSH , explaining
why −LV (M) is almost equal to −

√
2. The algorithm took 7.7389042 seconds

to perform this particular optimization.

9.3 Results for 3× 3 matrices

As an another example we run the algorithm with 3 × 3 matrices and vectors
in R4 with starting matrix:

M0 =

−0.21644749 −0.83806447 −0.08462567
−0.87560947 −0.06566203 −0.89925771
−0.1488139 0.5072271 0.39554632

 . (298)

The algorithm returns -1.3127534836781058, which is −LV (M) where

M =

 0.40158651 −0.3123819 −0.08920489
−0.55040048 −0.06564923 −0.48475118
−0.1488139 0.24673272 0.39554629

 , (299)

as an approximation of −K3. This differs significantly from −
√

2, the real value
of −K3. This run took 152.3407607 seconds and the algorithm unfortunately
failed to find a global minimum. We ran the algorithm again, this time with
starting matrix:

M0 =

−0.45874146 −0.88363231 0.11597403
−0.21065968 −0.77907307 0.06008189
0.92943898 −0.96576616 0.17289409

 . (300)

This time the algorithm takes 142.3457634 seconds to find the value
-1.4142135355751462 as −LV (M) with

M =

−0.71870584 −0.60331727 0.11538856
−0.21041449 −0.15290799 0.0575065
0.92912032 −0.75622526 0.17289506

 . (301)

96



The value found agrees with −K3 = −
√

2 to 7 decimals, so the algorithm seems
to have succeeded in finding a global minimum this time. This illustrates that
the algorithm is able to find a global minimum, but is not guaranteed to always
do so. Therefore we stress that the algorithm’s output should be viewed as an
upper bound of −KN and not necessarily (a good approximation to) −KN itself.
We also advise to let the algorithm run multiple times to be more likely to find a
good bound on KN . This run also gives a 3 × 3 matrix with a largest violation
close to

√
2 that does not resemble MCHSH with added zeros. We also note

that increasing the matrix size and the dimension of the vectors significantly
increases the typical runtime of the algorithm.

9.4 Results for 4× 4 matrices

As an example of a run with 4 × 4 matrices and vectors in R5 we started with
the matrix:

M0 =


−0.71001942 0.22106513 −0.30260331 0.43747759
0.60207936 0.1379811 0.29031476 0.6619015
0.4777203 0.20907129 0.58707658 −0.58041805
−0.04101268 −0.1157671 0.31224929 0.25799558

 . (302)

For this run the algorithm took 1957.2352031 seconds to find the value
-1.2804075280622145 as −LV (M) with

M =


−0.1612881 0.22692921 −0.30259406 0.23888188
0.53871803 0.13171277 0.25480289 0.6619015
0.47589537 0.20905196 0.31357465 −0.58041805
−0.04101533 −0.11576446 0.31224929 0.15749178

 . (303)

Since K4 ≥
√

2 the algorithm failed to find a global minimum. To summarize
we have let the optimization algorithm run multiple times for different values
of the matrix size N and the vector dimension n. We have first done this for
n = N + 1. Because the runtime increases drastically when increasing matrix
size and vector dimensions, we have only been able to do this for n = N+1 when
N ≤ 5. While during some of the runs the algorithm was able to find a value
close to −

√
2, no matrices with largest violation greater than

√
2 were found.

We have also tried runs with a fixed low vector dimension and a somewhat larger
matrix size. Keeping the vector dimension small improved the runtime and we
were able to consider slightly larger matrices. Even when fixing n = 3 we were
only able to run the algorithm within reasonable time for matrices of size up to
N = 10. Unfortunately no matrices with largest violation greater than

√
2 were

found in these runs either.

97



10 Further research regarding Grothendieck’s con-
stant

With our initial attempts to find a matrix M with LV (M) >
√

2 being un-
successful, we decided to look at earlier research regarding Grothendieck’s con-
stant. We would hope to find an explicit matrix M with known largest violation
LV (M) >

√
2. Given such a matrix M we could approximate its largest viola-

tion using our algorithm and see if the algorithm gives a good approximation.
We could also attempt to make small changes to the matrix M and approx-
imate the largest violation of the resulting matrix, possibly finding a matrix
with largest violation greater than that of M . Alternatively, if we were unable
to explicitly find such a matrix M , we might at least find out for what matrix
size N we might be able to find a matrix with largest violation greater than√

2. We have looked at two articles that seemed relevant for our purposes. We
will briefly summarize the contents of these articles and how they relate to our
research.

10.1 A Generalized Grothendieck Inequality and Nonlocal
Correlations that Require High Entanglement

We first looked at [5]. This article introduces a variation on Grothendieck’s
constant and proves a lower bound for it. Using our own notation, this variation
on Grothendieck’s constant is defined as:

Definition 10.1. For n,m ∈ N with m < n, let:

KG(n 7→ m) = sup
ω∗n(M)

ω∗m(M)
(304)

with the supremum taken over all non-zero square matrices of arbitrary size
with real entries.

We note that ω∗1(M) = ω(M) for any N ×N matrix M . Combining this with
the fact that ω∗n(M) ≤ ω∗(M), it follows that for all n ∈ N:

KG(n 7→ 1) ≤ KG. (305)

This means that any lower bound on KG(n 7→ 1) is also a lower bound on KG.
In [5] the following lower bound on KG(n 7→ m) is stated and proved:

Theorem 10.1.

KG(n 7→ m) ≥ m

n

(
Γ
(
m
2

)
Γ
(
m+1

2

) Γ
(
n+1

2

)
Γ
(
n
2

) )2

, (306)

where Γ is the gamma function. We hoped to find, somewhere in this proof,
a way to explicitly construct a matrix M that would satisfy the inequality in
Theorem 10.1 or at least come arbitrarily close to satisfying it. These matrices
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appear in the proof of Lemma 2 of [5]. Unfortunately the matrices used in the
proof seem difficult to calculate explicitly for use in our algorithm. There are
several reasons for this:

1. The construction of the matrices in Lemma 2 relies on the existence of an
ε-net Eεn for the surface of an n-dimensional unit sphere Sn−1. This is a
finite subset of Sn−1, such that for each point x ∈ Sn−1, there exists a
y ∈ Eεn such that ‖x− y‖2 ≤ ε. The existence of such an ε-net is proved
in Lemma 3 of [5], but the proof makes use of Zorn’s Lemma. This makes
the proof of the existence of the ε-net non-constructive. Since the matrices
used in the proof of Lemma 2 are constructed using the ε-net from Lemma
3, this makes the proof of the existence of these matrices non-constructive
as well. This means we do not have a way to explicitly construct the
matrices we are interested in.

2. It might be possible to alter the proof of Lemma 3 to make it constructive.
This would in theory make it possible to explicitly construct the matrices
in the proof of Lemma 2. However, these matrices would still be difficult
to calculate. To illustrate this we will state how these matrices are defined.
Given an ε-net Eεn = {w1, . . . , wk} for Sn−1, the sets Rw for w ∈ Eεn are
defined as follows. Rw consists of all points in Sn−1 that are closer to w
than to any other v ∈ Eεn with points equidistant to two or more w ∈ Eεn
arbitrarily assigned to one of these w. Next for M ′ : Sn−1 × Sn−1 → R a
measurable function, the entries of matrices M used in the proof of Lemma
2 are defined as:

Mi,j =

∫
a∈Rwi

∫
b∈Rwj

M ′(a, b)dadb. (307)

These matrix entries are defined as integrals over complicated subsets of
spherical surfaces. To use these matrices in our algorithm we would need
to approximate these integrals numerically, which would be difficult.

3. Even if we manage to accurately approximate these matrices, they might
still not be of much use for us. This is because these matrices might be
too large for our algorithm to handle. As part of Lemma 3 of [5], the
number of elements in the ε-net Eεn is proved to bounded from above by(

3
ε

)n
. We note that the n here is the dimension of the vectors used in

calculating ω∗n(M). Also, for appropriate choice of M ′, ε is related to how
close the matrix M (constructed from the measurable function M ′) comes
to satisfying the inequality in Theorem 10.1. The smaller the choice of
ε, the closer M comes to satisfying this inequality. We see that even for
small n and relatively large ε, the upper bound

(
3
ε

)n
allows for matrices

that might be larger than our algorithm can handle. Furthermore, we note
that this upper bound is proved to hold for the ε-net constructed using
Zorn’s Lemma. Since we would need to alter Lemma 3 to construct an
ε-net without using Zorn’s Lemma, this upper bound might not hold if we
construct our ε-net in a different way.
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Because of the above reasons, we conclude that the matrices used in [5] cannot
be used for our research.

10.2 Bell Inequalities, Grothendieck’s Constant, and root
two

We have also looked at [4]. This article addresses the problem of finding specific
N × N matrices M for which LV (M) >

√
2, indicating that KN >

√
2. The

article mentions that finding these specific examples is surprisingly difficult,
which agrees with our own inability to find these specific examples. The article
presents a method for constructing specific matrices M and calculates LV (M)
for these matrices. For some of these matrices LV (M) >

√
2. We will outline

the construction of these matrices and state their largest violations. For the
calculation of the largest violations we refer to [4]. For any integer k ≥ 2, a
k(k−1)×k(k−1) matrix can be constructed using the following procedure. We
consider all vectors in Rk whose entries are all equal to 0 except for two entries.
These two entries will either both be equal to 1 or the first will be equal to 1
and the second to −1. There are k(k−1) vectors that meet these requirements.

For example for k = 3 these vectors are given by

1
1
0

,

1
0
1

,

0
1
1

,

 1
−1
0

, 1
0
−1

 and

 0
1
−1

. We number these vectors f1 through fk(k−1) and define a

k(k − 1) × k(k − 1) matrix M with entries given by:

Mi,j = 〈fi, fj〉 . (308)

The largest violation of a matrix constructed in this way is given by 3k−3
2k−1 as

proved in [4]. The fraction 3k−3
2k−1 is increasing in k and its limit as k → ∞ is

equal to 1.5 >
√

2. k = 10 is the smallest k for which 3k−3
2k−1 >

√
2. This gives

a way to explicitly construct a 90 × 90 matrix with largest violation exceeding√
2. [4] also provides a way to modify the matrices obtained in the procedure

described earlier to increase their largest violation. This is done by taking such
a matrix M and replacing it with M − λI for a constant λ and I the identity
matrix. It is shown in [4] that for k ∈ {3, 4, 5} the optimal choice for λ is given
by λ = 4

3 . This is equivalent to replacing each diagonal entry of M , which are
all equal to 2, by 2

3 . The largest violation of the modified matrix is given by
3k−5
2k−3 for k ∈ {3, 4, 5}. For k ∈ {3, 4} this fraction is still smaller than

√
2, but

for k = 5 this fraction equals 10
7 >

√
2. This gives a 20× 20 matrix with largest

violation greater than
√

2, showing that K20 >
√

2. This matrix can be found
explicitly in [4] as Figure 1. This 20× 20 matrix would serve as a good starting
point to search for more matrices with larger violation greater than

√
2, possibly

even exceeding 10
7 . Unfortunately we have found that 20 × 20 matrices are too

large to handle for our algorithm. The largest violation of the matrices in [4]
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could be calculated by relying on the specific way in which these matrices were
constructed. However, if we start making changes to these matrices we can no
longer rely on this. We have found that the time it takes for us to calculate
the classical value of an arbitrary N × N matrix M increases exponentially
in N . Increasing N by 1, increases the time it takes to calculate the classical
value by approximately a factor 4. Using this to extrapolate the runtimes for
smaller matrices we estimate that it would take about 75 days to calculate the
classical value of a 20 × 20 matrix. Approximating the quantum value would
probably take even longer, so unfortunately it does not seem feasible to calculate
the largest violation of 20 × 20 matrices using our methods. We were able to
calculate the largest violations of the matrices constructed in [4] for k ≤ 4 with
our algorithm and our results agreed with [4]. We note that 20 × 20 matrices
have associated Bell inequalities with up to 400 terms. The violation of these
Bell inequalities would probably involve much more complicated experimental
setup than the CHSH-inequality and would therefore not be very suitable for
practical experiments.
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11 Conclusion

As stated in Grothendieck’s theorem, LV (M) is bounded when considering
square matrices M of arbitrary size with real entries. The smallest upper bound
for LV (M) is given by the Grothendieck’s constant KG. It is known that

1.67696 · · · ≤ KG ≤
π

2 log
(
1 +
√

2
) ≈ 1.7822139781. (309)

MCHSH =

(
1 1
1 −1

)
is a matrix with LV (MCHSH) =

√
2. Even though it

is easy to find a matrix with largest violation equal to
√

2, finding an explicit
matrix M with LV (M) >

√
2 has proven to be a difficult problem.

We have attempted to find such a matrix using optimization algorithms. We
are, in theory, able to calculate exactly the classical value of any matrix M . The
time this takes increases exponentially in the matrix size N , with the calculation
time increasing by a factor 4 when increasing N by 1. This makes it impractical
to calculate classical values for large matrices using our method. We are also
able to approximate the quantum value of a matrix M from below, using an op-
timization algorithm. For matrices with an exactly known quantum value, such
as the CHSH-matrix and the matrices constructed in [4], the approximations
provided by this algorithm seem accurate (up to 11 decimal places for MCHSH).
Approximating the quantum value generally seems to take at least as long as
calculation the classical value and is therefore alo impractical for large matrices.

Combining these two procedures allows us to (presumably accurately) approx-
imate the largest violation of a matrix from below. Subsequently we can opti-
mize the largest violation of matrices of a fixed size, giving us a lower bound
on Grothendieck’s constant. This process can take a long time depending on
the matrix size N and on the dimension n of the vectors used to approximate
quantum values. This process can be completed within a reasonable amount of
time (at most about 1 day) when N ≤ 5 and n = N + 1. If n is fixed, N can be
taken a bit larger. For n = 3, the process can be completed within a reasonable
time for N ≤ 10. The lower bounds found for Grothendieck’s constant depend
strongly on the matrix used as starting point for the optimization algorithm.
Therefore the lower bound found when running the algorithm once, is not guar-
anteed to be accurate for that matrix size. It is therefore advised to run the
algorithm multiple times with different starting matrices. Using our optimiza-
tion algorithms, we were unable to find any matrix M with LV (M) >

√
2.

[4] provides a method for constructing matrices with known largest violations.
For sufficiently large matrices this includes matrices with largest violation ex-
ceeding

√
2. The smallest matrix provided in [4] with largest violation exceeding√

2 is of size 20 × 20. These matrices are too large for us to calculate largest
violations, so we have not been able to calculate the largest violation of other
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20 × 20 matrices in an attempt to improve on the results in [4].

The calculation of largest violations of matrices as we have done it seems suf-
ficiently accurate, but not fast enough to find matrices with largest violation
exceeding

√
2. If a significantly faster implementation of a similar process is

realized, or a faster computer is used, it might be possible to use this process
to more success. If the optimization process for largest violations is to be used
in further research, it should ideally be improved in a way to not depend so
strongly on the starting matrix. If sufficient improvements can be made to the
optimization processes to significantly decrease the running time of the algo-
rithms, we suggest to look into 20 × 20 matrices for further research. As it
is not clear if the matrix presented in [4] attains the greatest largest violation
for 20 × 20 matrices, it might be possible to find a 20 × 20 matrix with even
greater largest violation. A good starting point might be to consider matrices
obtained by slightly modifying the matrix in [4], to see if this matrix is a (local)
maximum for the largest violation or not.
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