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SUMMARY

Topological quantum computation is a paradigm of quantum computation anticipated
to be resilient to a wide variety of noise sources. In it information is encoded in dis-
tributed, exponentially topologically protected degrees of freedom. These would only
be deteriorated by significant perturbations of the system.

At the heart of this paradigm lies the Majorana zero mode It is an effective particle
excitation akin to a fractionalized electron. Such Majorana zero modes are non-Abelian
meaning their exchange changes the quantum state of the system. This can allow to
perform operations in a protected and noise resilient way. Isolating and controlling Ma-
jorana zero modes is therefore the first step on the way to topological quantum compu-
tation.

The past decade has seen significant efforts to isolate such Majorana zero modes.
Especially semiconductor superconductor hybrid systems in the form of proximitized
ballistic one dimensional channels have garnered great attention. With time however, it
became apparent that ballisticity puts significant constraints on material and fabrication
quality.

As alternative, recent work suggests that the relevant physics can similarly be realized
in arrays of quantum dots. The idea is to design quantum dot based arrays to imple-
ment the desired physics in their low energy degrees of freedom. By having a number of
dots be proximitzed through adjacent superconductors, one can implement the relevant
couplings for Majorana zero modes. Tuning the individual quantum dots then allows to
control the localization and coupling to possibly allow for probes of their non-Abelianess
in the near future.

The quantum dot platform largely avoids the challenges associated with material and
fabrication dependent disorder. Rather, the system constituents can be controlled indi-
vidually offering detailed control over the physics. In contrast to previous approaches,
protection of the involved zero modes is not exponential. Instead, protection is generally
proportional to a polynomial depending on the number of sites of the array.

In this thesis we will discuss designs of systems that can realize Majorana zero modes
and how these can be operated to demonstrate the non-Abelian exchange statistics.

We begin in Ch. 1 with an exposé of topological quantum computation. The chap-
ter introduces concepts such as Anyons, non-Abelianeess, Majorana zero modes and
Parafermions. We review parity as the relevant degree of freedom in which we can en-
code information and discuss how braiding of Majorana zero modes corresponds to op-
erations altering the encoded information. The second half of the chapter introduces
the relevant physics for all subsequent chapters. We introduce the Kitaev chain as an ex-
ample target Hamiltonian which can be implemented in a quantum dot based platform.
The chapter proceeds with a review of proximity superconductivity leading over to An-
dreev bound states in quantum dots. These will be essential to mediate the couplings
necessary to isolate Majorana zero modes. The chapter closes with a review of existing
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x SUMMARY

proposals for minimal Kitaev chains and a brief introduction of quantum transport in
the tunneling limit as means to probe the systems we design.

We proceed in Ch. 2 with a discussion of the Pymablock software package. The pack-
age serves as a tool to construct near-degenerate perturbation theories automatically.
Near-degenerate perturbation theory is a standard tool in determining effective models
from large Hamiltonians where the relevant degrees of freedom are separated by an en-
ergy gap. While the involved calculations have uniform structure, performing them by
hand is laborious and prone to human error. Pymablock fills this gap by automating this
process. The algorithm flexibly accommodates both symbolic and numerical calcula-
tions. It does so by implementing classes that handle matrix valued power series while
deferring calculations to a user adjustable callable.

In Ch. 3 we design a system based on a quantum dot - Andreev bound state array
unit cell to realize Majorana zero modes. The insight is to mediate the necessary cou-
plings through the excited states in the Andreev bound states. This eliminates the need
for a third site in the unit cell. We discuss the properties of the system and give condi-
tions on parameters where we expect the system to yield Majorana zero modes. In the
chapter, we elucidate the effect interactions, spin-orbit interaction, and leaking proxim-
ity superconductivity have on these conditions and the stability of the zero modes. We
close the chapter with a discussion of the physics of scaling up the system and emergent
next-nearest neighbor terms.

In Ch. 4 we return to previously implemented systems and study their properties in
the time-reversal symmetric case. We find that, protected by dominating on-site interac-
tions, the system is able to support zero modes despite the presence of the second spin
channel. Interestingly, our analysis demonstrates that in the case of infinitely strong in-
teractions, the spectrum is strongly triply degenerate. This allows to describe the emer-
gent zero modes through both, Majorana Kramers pairs, and Z3 Parafermions. We end
the section with a discussion of the behavior of the system when connected to a normal
quantum dot, a standard test to asses quality of emergent zero modes.

Finally, in Ch. 5 we propose a protocol involving two minimal Kitaev chains and an
auxiliary dot to probe their non-Abelian exchange statistics. We demonstrate for the
ideal case how the auxiliary dot can facilitate braiding through virtual Majoranas when
arranged in a π-junction with the surrounding chains. We then move to analyze and
discuss the experimentally most relevant error sources which would deteriorate a faith-
ful braid. These are Coulomb repulsion between the auxiliary and surrounding quan-
tum dots, quasistatic noise on parameters, and residual couplings. We devise mitigation
strategies for each where possible and discuss relevant constraints where not.



SAMENVATTING

Topologisch kwantumcomputing is een variant binnen de kwantumcomputing welke
intrinsiek robuust wordt geacht tegen een groot aantal storingsbronnen. De kwantu-
minformatie is gecodeerd in ruimtelijk verspreide, topologisch gestabiliseerde vrijhei-
dsgraden, die alleen gevoelig zijn voor ingrijpende verstoringen van het systeem.

Centraal in dit paradigma staat de Majorana nultoestand, een effectief quasideeltje
dat kan worden opgevat als een gefractioneerd elektron. Majorana zero modes zijn niet-
Abelse deeltjes, wat betekent dat het verwisselen ervan leidt tot een niet-triviale trans-
formatie van de toestand van het kwantumsysteem. Hierdoor kunnen logische oper-
aties op een topologisch beschermde wijze worden uitgevoerd, waardoor het realiseren
en controleren van deze modi een cruciale stap vormen richting topologische kwantum-
computatie.

In de afgelopen tien jaar is aanzienlijke vooruitgang geboekt in het experimenteel re-
aliseren van Majorana zero modes. Vooral halfgeleider–supergeleider-hybridesystemen
uit eendimensionale nanodraden en supergeleiders, zijn uitgebreid onderzocht. Gaan-
deweg is echter gebleken dat de balisticiteit in dergelijke systemen zeer hoge eisen stelt
aan materiaal- en fabricagekwaliteit.

Recent werk heeft aangetoond dat de relevante effecten ook kunnen worden gere-
aliseerd in arrays van kwantumstippen. Door normale kwantumstippen te koppelen
aan kwantumstippen die via het proximiteitseffect supergeleidend zijn, kunnen de ben-
odigde koppelingen voor Majorana zero modes worden geïmplementeerd. Het afstem-
men van deze koppelingen maakt controle over de lokalisatie, interactie en uitlezing van
Majorana-modi mogelijk, wat uitzicht biedt op een directe experimentele demonstratie
van hun niet-Abelse statistiek.

Het kwantumstip-gebaseerde platform vermijdt in belangrijke mate de beperkingen
van nanodraad-gebaseerde systemen en biedt een hoge mate van controle over de af-
zonderlijke componenten. De robuustheid van de Majorana-modi schaalt in dit geval
echter polynomiaal met het aantal kwantumstippen, in plaats van exponentieel.

In deze thesis bestuderen wij systemen die Majorana zero modes kunnen realiseren
en onderzoeken wij hoe hun niet-Abelheid experimenteel kan worden aangetoond. In
hoofdstuk 1 introduceren wij de relevante concepten, waaronder anyons, niet-Abelheid,
Majorana zero modes en parafermionen, evenals pariteit als informatiedragende vrijhei-
dsgraad. Daarnaast bespreken wij hoe verwisselingen van Majorana-modi operaties op
gecodeerde kwantuminformatie implementeren. De tweede helft van het hoofdstuk be-
handelt de fysische mechanismen achter Majorana zero modes, met de Kitaev-keten als
prototypisch model. Wij bespreken de implementatie van de vereiste koppelingen met
kwantumstippen en de rol van Andreev bound states. Het hoofdstuk sluit af met een
overzicht van ontwerpen van minimale Kitaev-keten en een korte introductie tot kwan-
tumtransport in de tunnellimiet.
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xii SAMENVATTING

In hoofdstuk 2 presenteren wij het softwarepakket Pymablock, ontwikkeld voor de
automatische constructie van bijna-gedegenereerde perturbatietheorie. Deze methode
maakt het mogelijk complexe Hamiltonianen te reduceren tot laag-energetische effec-
tieve theorieën. Pymablock automatiseert deze foutgevoelige berekeningen en onders-
teunt zowel analytische als numerieke toepassingen.

Hoofdstuk 3 behandelt een systeem bestaande uit een kwantumstip en een Andreev
bound state welke Majorana zero modes kan realiseren. Door gebruik te maken van
aangeslagen toestanden in de Andreev bound state kunnen de vereiste koppelingen wor-
den gerealiseerd, waardoor een extra kwantumstip overbodig wordt. Wij analyseren de
voorwaarden voor het ontstaan van Majorana-modi en bestuderen de invloed van spin-
baankoppeling, Coulomb-interacties en weglekkende supergeleiding. Het hoofdstuk
sluit af met een bespreking van de schaalbaarheid van dit ontwerp en de bijbehorende
langeafstandskoppelingen.

In hoofdstuk 4 onderzoeken wij hetzelfde systeem in afwezigheid van een extern
magnetisch veld. Wij tonen aan dat sterke Coulomb-interacties zero modes kunnen sta-
biliseren, zelfs in aanwezigheid van spinvrijheidsgraden. In de limiet van oneindig sterke
interactie vertoont het spectrum een drievoudige degeneratie, die kan worden geïnter-
preteerd in termen van Majorana-Kramersparen of Z3-parafermionen. Het hoofdstuk
eindigt met een analyse van de invloed van een extra gekoppelde kwantumpstip op de
kwaliteit van de zero modes.

In hoofdstuk 5 presenteren wij een protocol om de niet-Abelse verwisselingsstatistiek
van Majorana-modi te onderzoeken. Het ontwerp bestaat uit twee minimale Kitaev-
ketens die via een normaal kwantumstip zijn gekoppeld. Onder ideale omstandigheden
maakt deze configuratie de verwisseling van Majorana-modi tussen de ketens mogelijk.
Wij bespreken de belangrijkste experimentele storingsbronnen, waaronder Coulomb-
interacties, lokale potentiaalfluctuaties en resterende koppelingen. Voor elk van deze
effecten formuleren wij strategieën om deze te verminderen en bespreken wij de funda-
mentele beperkingen.



ZUSAMMENFASSUNG

Topologisches Quantencomputing ist eine Teildisziplin der Quanteninformationstheo-
rie, in der Quanteninformation in Systemen enkodiert wird, die aufgrund topologischer
Schutzmechanismen eine hohe Robustheit gegenüber äußeren Störungen aufweisen.
Die Information wird dabei in nichtlokalen, topologisch geschützten Freiheitsgraden
gespeichert und kann nur durch starke Störungen unbrauchbar werden.

Zentrale Objekte dieses Ansatzes sind Majorana-Nullmoden, effektive Quasiteilchen,
die als räumlich getrennte Anteile eines Elektrons interpretiert werden können. Auf-
grund ihrer nicht-abelschen Austauschstatistik führt das Vertauschen solcher Moden
zu einer nichttrivialen Transformation des Quantenzustands. Dies ermöglicht die Re-
alisierung geschützter Quantenoperationen, deren Implementierung weitgehend unab-
hängig von lokalen Störungen ist. Die kontrollierte Erzeugung und Manipulation von
Majorana-Nullmoden stellt daher einen entscheidenden Schritt hin zum topologischen
Quantencomputing dar.

In der vergangenen Dekade wurden erhebliche Fortschritte bei der Realisierung von
Majorana-Nullmoden erzielt, insbesondere in hybriden Systemen aus nano Halbleit-
erdrähten mit aufgebrachten Supraleitern. Dabei hat sich jedoch gezeigt, dass die er-
forderliche Ballistizität hohe Anforderungen an Materialqualität und Nanofabrikation
stellt.

Neuere Arbeiten zeigen hingegen, dass die für Majorana-Nullmoden notwendige Physik
auch in Systemen gekoppelter Quantenpunkte realisiert werden kann. Durch gezielte
Steuerung solcher Systeme lassen sich die relevanten Niedrigenergie-Freiheitsgrade ef-
fektiv erzeugen. Insbesondere erlaubt die Kopplung normaler Quantenpunkte über supralei-
tende, durch den Proximity-Effekt induzierte Elemente die Implementierung aller notwendi-
gen Kopplungsterme. Die individuelle Ansteuerung der Quantenpunkte ermöglicht zu-
dem eine Kontrolle über Lokalisierung und Paarung der Majorana-Moden, was perspek-
tivisch den experimentellen Nachweis ihrer Nicht-Abelschheit erlaubt.

Auf Quantenpunkten basierende Systeme umgehen dabei viele der Herausforderun-
gen der Nanodrahtsysteme. Anstelle extremer Materialanforderungen rückt die präzise
elektrische Steuerbarkeit der Systemparameter in den Vordergrund. Weiterhin skalliert
der urpsrünglich topologische Schutz in diesen Systemen nicht mehr exponentiell, son-
dern skaliert polynomiell mit der Systemgröße.

In dieser Arbeit untersuchen wir Entwürfe solcher Quantenpunktsysteme, analysieren
ihre Eigenschaften und entwickeln Protokolle zum Nachweis der nicht-abelschen Ver-
tauschungsstatistik der Majorana-Nullmoden.

Kapitel 1 führt in die Grundlagen des topologischen Quantencomputings ein und be-
handelt zentrale Konzepte wie Anyonen, Nicht-Abelschheit, Majorana-Nullmoden und
Parafermionen. Anschließend diskutieren wir die Kitaev-Kette als prototypisches Mod-
ell und zeigen, wie sie in Quantenpunktketten realisiert werden kann. Dabei führen
wir durch den Proximity-Effekt induzierte Andreev-Zustände ein, und diskutieren deren
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xiv ZUSAMMENFASSUNG

Nutzen zur Erzeugung der notwendigen Kopplungen. Das Kapitel schließt mit einem
Überblick über bestehende Entwürfe zur Erzeugung von Majoranas in Systemen basierend
auf Quantenpunkten, sowie einer Einführung in die Quantentransporttheorie im Tun-
nellimit.

Kapitel 2 stellt Pymablock vor, ein Softwarepaket zur automatisierten Berechnung
effektiver Modelle mittels Störungstheorie. Der Fokus liegt auf der systematischen Tren-
nung von Freiheitsgraden in verschiedene Sektoren, wobei der Algorithmus sowohl nu-
merische als auch analytische Berechnungen auf Basis matrixwertiger Potenzreihen er-
laubt.

In Kapitel 3 analysieren wir ein System aus zwei Quantenpunkten mit elektronischen
beziehungsweise Andreev-Zuständen und zeigen, wie sich darin Majorana-Nullmoden
realisieren lassen. Die Besonderheit des Systems liegt in der Verwendung des angeregten
Andreev Niveaus, um die relevanten Kopplungen zur Erzeugung der Nullmoden zu ver-
wenden. Wir untersuchen die Abhängigkeit der Nullmoden von Spin-Bahn-Kopplung,
Coulombwechselwirkung und supraleitender Leckage sowie das Verhalten des Systems
bei Skallierung zu längeren Ketten.

Kapitel 4 widmet sich zeitumkehrinvarianten Systemen mit starker Coulombwech-
selwirkung. Wir zeigen, dass in diesem Regime stabile Nullmoden auftreten, die im
Grenzfall unendlicher Wechselwirkung entweder als Majorana-Kramers-Paare oder als
Z3 - Parafermionen interpretiert werden können. Eine Stabilitätsanalyse bei zusätzlicher
normaler Kopplung schließt das Kapitel ab.

Abschließend entwickeln wir in Kapitel 5 ein Protokoll zur Vertauschung von Majorana-
Nullmoden. Wir nehmen ein System aus zwei minimalen Kitaev-Ketten und einem kop-
pelnden elektronischen Quantenpunkt an. Darin wird die Vertauschung durch virtuelle
Majoranamoden im elektronischen Quantenpunkt bei einer Phasendifferenz vonπ zwis-
chen den Supraleitern der Kitaev-Ketten ermöglicht. Wir analysieren relevante experi-
mentelle Fehlerquellen und diskutieren Strategien zu deren Umgehung oder Minimierung.
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1.1. PREFACE
The generation of coherent superpositions of quantum states [1, 2] and the ability to
perform operations on quantum states [3, 4] were significant developments in the last
decade of the last century. These developments can be seen as the advent of the second
quantum revolution [5], which became perhaps most apparent in the field of quantum
computing [6]. The idea is simple: exchange classical bits for quantum bits, qubits, and
perform computations by operating on the qubits. The hope is to leverage quantum cor-
relations for potentially faster or more powerful computations which may yield a quan-
tum advantage [7, 8]. Examples of problems in which quantum computers are suspected
to offer advantages are optimization problems [9, 10] and quantum chemistry [11–13].

In this thesis we focus on topological quantum computation (TQC) [14], as compared
with implementations in other physical systems, e.g., trapped ions [15–17], spins [18–
20], photonic systems [21–23], and superconducting circuits [24–26]. While other quan-
tum architectures encode information in local degrees of freedom, TQC uses a nonlocal
encoding anyonic quasiparticle excitations [14, 27–30]. These emergent quasiparticles
manifest a topological ground-state degeneracy. In such a degeneracy, the information
can be stored in e.g., the local fermion parity, a macroscopic degree of freedom [28] of
each subsystem. Certain systems [31–33] can host such excitations, specifically Majo-
rana zero modes (MZMs). These are spatially separated, charge-neutral states that pair-
wise define a nonlocal fermion. By splitting the MZMs in space, errors from their inter-
actions and the environment become exponentially suppressed due to the separation.
At the same time, the degenerate ground states are separated by an energy gap from the
remaining states. This gap protects the states against global perturbations up to the scale
of the gap.

Recent research [34–37] indicates that an implementation of such designs requires
disorder-free materials and fabrication-optimized devices. Alternatively, recent stud-
ies [38–41] show that MZMs can also be implemented in quantum dot chains. However,

The language and clarity of this section has been improved using AI tools.
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quantum dot systems are generally well understood and can be fabricated reproducibly,
which substitute the problem of disorder for the need for detailed tuning. The ability
to tune parameters reliably, therefore, would allow for protected storage of information.
Given the typical magnitude of parameter noise in quantum dot systems [42–44], we an-
ticipate sufficiently protected systems based on quantum dot chain well within reach.
This might suffice to implement TQC, and it is the motivation of this work. We dis-
cuss the design and analysis of systems that can be the building blocks for TQC with
MZMs. To this end, we will explore the physics of non-Abelian anyons, semiconductor-
superconductor hybrid systems, and low-energy effective modeling.

1.2. TOPOLOGICAL QUANTUM COMPUTING
We begin by reviewing the key concepts of topological quantum computation following
the presentation in Refs. [27–29].

1.2.1. ABELIAN AND NON-ABELIAN ANYONS
In Sec. 1.1 we mentioned anyons as information carriers in TQC. Specifically, that these
anyons must be non-Abelian. Such non-Abelian anyons can emerge as quasiparticles
in two-dimensional systems [27, 29]. As first demonstrated in Ref. [45], particle ex-
change in two dimensions is not restricted to fermionic or bosonic exchange statistics.
Rather, macroscopically degenerate systems, such as those mentioned in Sec. 1.1, can
host emergent non-Abelian anyons. Their defining property is that, upon exchange, they
change the quantum state of the system. Exchange of non-Abelian anyons in two dimen-
sions corresponds to elements bi of the braid group BN [27]. Each exchange, associated
with a bi , corresponds to a unitary transformation U applied to the degenerate states.
Let {|ψi 〉}i=1,...,N be a set of degenerate states. The exchange of two non-Abelian anyons
then acts as Uψ⃗, where ψ⃗ = (|ψ1〉, . . . , |ψN 〉)T . Crucially, the details of exchange matter,
i.e., the final state can differ for different exchanges U1U2ψ⃗ ̸= U2U1ψ⃗. We exploit this
property for TQC, specifically in Ch. 5 of this thesis. Rather than performing operations
by modifying local degrees of freedom, we can perform operations by the exchange of
quasiparticles.

The archetypical non-Abelian anyon is the Majorana fermion or Majorana zero mode
(MZM) [46]. It is a self-conjugate fermionic excitation that is described by a Hermitian
operator γ satisfying,

γ= γ† (1.1)

{γi ,γ j } = 2δi , j (1.2)

Two MZMs γ1,γ2 can be combined to represent a single electronic degree of freedom
described by the creation and annihilation operators c†,c via

c = (γ1 + iγ2)/2 (1.3)

c† = (γ1 − iγ2)/2 (1.4)

Their electronic number operator n = c†c = (1+ iγ1γ2)/2 distinguishes two degenerate
states |0〉, |1〉 = c†|0〉 in which quantum information can be encoded. Crucially, because
the MZMs can be spatially separated, this fermionic degree of freedom is nonlocal.
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With the connection to electronic degrees of freedom, one could be led to believe
that individual MZM themself represent a physical state. However, this is not true. To
understand the action of the MZMs on states, we need the concept of fermionic parity.
The parity operator,

P =∏
i

(2c†
i ci −1), (1.5)

informs if a system contains an odd or an even number of electrons ci . For the previous
example of a single electron c described by two MZMs γ1,γ2, we recognize the parity in
the electronic occupation states. We see that 〈0|P |0〉 = −1 and 〈1|P |1〉 = 1. The mean-
ing of the MZMs can be understood by inspecting their representation in the fermionic
basis. From eqs. (1.3) and (1.4), we can infer

γ1 = c† +c (1.6)

γ2 =−i (c† −c). (1.7)

Writing the MZMs, γ1,γ2, in the fermionic basis |0〉, |1〉, we find their representation

γ1 = |1〉〈0|+ |0〉〈1|, (1.8)

γ2 =−i (|1〉〈0|− |0〉〈1|) . (1.9)

We see that, while the MZMs do not represent physical states, they represent changes of
the parity of the system. The parity, eq. (1.5), can be equivalently represented by MZM
operators as

P = (−1)N+1
2N∏

i
γi , (1.10)

where N is the number of MZM pairs. This number is the same as the number of degen-
erate pairs of states.

Finally, we extend the discussion to parafermions, which we consider in greater de-
tail in Ch. 4. MZMs correspond to the case where the system hosts two-fold degenerate
states with opposing parity. Systems can feature higher-order degeneracies, e.g., in in-
teracting systems [47–50]. The emergent modes associated with such higher-order de-
generate sets of states involve more than two electrons. This leads to the concept of Zn

parafermions [48, 51], which are described by operators α satisfying

αn
i = 1, (1.11)

αlαm = e i 2π
n sgn[m−l ]αmαl . (1.12)

For n = 2 the definition coincides with that of MZMs. For n ≥ 2, parafermions are as-
sociated with an emergent fractional charge connected to an emergent Zn parity sym-
metry [48] that distinguishes states in the degenerate manifold. In contrast to MZMs,
Zn≥3 parafermions cannot be found as a topological zero modes due to the lack of sta-
ble n ≥ 3 particle processes [52]. For that reason, emergent Parafermion modes always
depend on fine-tuning of the physical system due to finite coupling between degenerate
sets of states [52].
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Figure 1.1: Basic set-up for a Majorana-based qubit. Each wire hosts a pair of MZMs, which define a distributed
fermion. Two such wires together encode one qubit and allow for both σ(z) and σ(x) Pauli operations.

1.2.2. QUANTUM COMPUTATION WITH MAJORANA FERMIONS
We have seen how MZMs relate to parity and physical fermions. Next, we use these in-
gredients to encode information. In particular, we want to use the macroscopic parity of
a system to encode qubit states. For a closed system, described by some Hamiltonian H ,
it holds that

[P , H ] = 0. (1.13)

To encode a qubit, we need at least four MZMs, i.e., two fermions (see Fig. 1.1). Restrict-
ing ourselves to the globally even parity sector, we define our qubit states as

|0C 〉 = |01,2〉⊗ |03,4〉, (1.14)

|1C 〉 = |11,2〉⊗ |13,4〉, (1.15)

where the index C specifies a computational state and the numeric indices indicate the
associated MZM operators. Next, we need to identify single-qubit operations, which we
parametrize by the Pauli matrices

σ(0) =
(
1 0
0 1

)
σ(x) =

(
0 1
1 0

)
σ(y) =

(
0 −i
i 0

)
σ(z) =

(
1 0
0 −1

)
. (1.16)

In the previous equation, σ(x) corresponds to a bit-flip operation, σ(y) implements a
phase, and σ(z) is a projection in the computational basis. We encode the first occu-
pation index in the computational states by two MZMs γ1,γ2, and the second by two
MZMs γ3,γ4. Their respective state is then encoded in their local parities

P1,2 =−iγ1γ2, (1.17)

P3,4 =−iγ3γ4, (1.18)

such that the total parity is even. Pairs of MZMs encode the occupation of a distributed
fermionic degree of freedom. We can consider the effect of eq. (1.17) in the computa-
tional basis.

〈0C |P1,2|0C 〉 = 〈01,2|P1,2|01,2〉〈03,4|03,4〉 = 1 (1.19)

〈1C |P1,2|1C 〉 = 〈11,2|P1,2|11,2〉〈13,4|13,4〉 =−1, (1.20)



1.2. TOPOLOGICAL QUANTUM COMPUTING

1

5

and similarly for P3,4. Therefore, we can identify eqs. (1.17) and (1.18) as σ(z) in the
computational basis. In addition, we need access to another Pauli operation in the com-
putational states [6, 53]. Following the same idea as above, we can consider what hap-
pens when coupling MZMs between wires. Coupling e.g., γ2 with γ3, we recognize a
simultaneous parity change across both local parities. This we identify with σ(x) in the
computational basis, i.e., σ(x) =−iγ2γ3. As previously discussed, all involved degrees of
freedom are, in principle, well separated. This separation makes them resilient against
local fluctuations of the system, as long as the global parity of the system is conserved.

To perform the presented operations, we can exchange, or braid, MZMs pairwise.
As noted in Sec. 1.2.1, exchange corresponds to a change of the quantum state of the
system. To see this, we construct the unitary associated with an exchange, i.e., the time
evolution operator of the process. Following an argument presented in [28], exchanging
two MZMs γ1,γ2 clockwise amounts to a transformation that maps

γ1 →−γ2, (1.21)

γ2 → γ1, (1.22)

where the minus sign is a consequence of the branch cut [28] that induces the statistical
phase. The operator facilitating this exchange is

B1,2 =
(
1+γ1γ2

)
/
p

2. (1.23)

In contrast, if we instead exchange both particles in a counterclockwise manner, the uni-
tary associated with the exchange is B̃1,2 = (1−γ1γ2)/

p
2. Exchanging both MZMs again

by applying B 2
1,2 = γ1γ2, we again arrive at the initial configuration of the system. How-

ever, due to the non-Abelian exchange statistics, the states of the system differ by a phase
factor

γ1γ2|01,2〉 =−i |01,2〉 (1.24)

γ1γ2|11,2〉 = i |11,2〉. (1.25)

In terms of MZMs, this can be seen from the fact that

γi → (γ1γ2)γi (γ1γ2)† =−γi . (1.26)

Comparing eq. (1.26) with our discussion at the beginning of Sec. 1.2.2, we can identify
how exchange corresponds to Pauli operations in the computational states:

B12 = B34 = e−i π4 σ
(z)

, (1.27)

B23 = e−i π4 σ
(x)

. (1.28)

Unfortunately, gates implemented via braiding alone do not form a universal set of
gates in this encoding. In particular, we need to be able to perform entangling opera-
tions between multiple qubits [53, 54]. This is because braiding operations can only im-
plement Clifford gates [55]. For universal quantum computation, we need either a π/8-
or T-gate [6, 53, 56]. Fortunately, previous works have proposed schemes to generate for
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entanglement. There are proposals that rely on the geometric properties of the Majo-
rana Hilbert space [57], coupling to an auxiliary Transmon [58], coupling of MZMs via
spin degrees of freedom [59], gate-based measurement schemes [60], or larger numbers
of MZMs in which the computational states are encoded differently [61, 62].

Going beyond MZMs, it is possible to perform universal quantum computation with
parafermionic anyons when only assuming braiding operations [63]. Their higher frac-
tionalized exchange statistics (c.f. eq. (1.12)) enable implementation of entangling gates
through multipartite exchange. Alternative proposals [64] propose universal gates for
Z2n parafermions when coupled to a spin degree of freedom.

1.3. DESIGNING TOPOLOGICAL SYSTEMS
We now develop the building blocks to design semiconductor-superconductor hybrid
systems that host Majorana zero modes. First, in Sec. 1.3.1, we introduce the Kitaev
chain. It is the simplest system to feature MZMs and useful to understand the ingredients
we need. In Sec. 1.3.2, we introduce quantum dots in semiconductors. They are the
basic building blocks for the systems we design. When reviewing MZMs in Sec. 1.2.1, a
crucial ingredient was parity. In practice, we will encounter this in Sec. 1.3.1 in the form
of pairing interactions that involve two particles, hence not changing the local parity of
a subsystem. The only known interaction that facilitates this is superconductivity. We
review its principles in Sec. 1.3.3. Finally, in Sec. 1.3.4, we bring everything together and
review the idea of Poor man’s Majoranas [39].

1.3.1. KITAEV CHAIN
An important model to understand the ingredients needed for MZMs is the Kitaev chain [65].
The Hamiltonian of this one-dimensional, spinless lattice model reads

H =µ
N∑

n=0
c†

ncn + t
N∑

n=0
(c†

n+1cn +h.c.)+∆
N∑

n=0
(cncn+1 +h.c.), (1.29)

where µ is the chemical potential, t is the normal hopping amplitude, and ∆ is a p-wave
pairing term. We transform the electronic operators into the Majorana basis by using the
relations of eqs. (1.6) and (1.7). Per site, we replace

γn,A = (c†
n +cn) (1.30)

γn,B =−i (c†
n −cn). (1.31)

Per site, we obtain two distinct Majorana species A,B .
We now transform eq. (1.29) using eqs. (1.30) and (1.31). Expressing the tunneling

and pairing terms in the Majorana basis, we obtain

t (c†
2c1 +c†

1c2) = i
t

2

[
γB ,1γA,2 −γA,1γB ,2

]
, (1.32)

∆(c†
2c†

1 +c1c2) =−i
∆

2

[
γB ,1γA,2 +γA,1γB ,2

]
. (1.33)

Similarly, the number operator in the Majorana basis reads

µc†
ncn = µ

2
[2− iγA,nγB ,n]. (1.34)
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Figure 1.2: Kitaev chain in the Majorana basis. Each electronic site is split into two Majoranas which couple
through the chemical potential, µ, on each site. Between sites, coupling is mediated by combinations of nor-
mal hopping, t , and p-wave pairing, ∆. At µ= 0 and |t | = |∆|, the onsite couplings and one diagonal coupling
vanish, isolating a single Majorana on the terminating sites.

We collect eqs. (1.32), (1.33), and (1.34) in the picture presented in Fig. 1.2. Intersite
coupling depends only on |t ±∆| and couples opposite species. On-site coupling is pro-
portional to µ itself and couples MZMs on one site. Fig. 1.2 implies the topological phase
of eq. (1.29). Atµ= 0 and |t | = |∆|, the on-site coupling and one intercell coupling vanish.
This leaves two uncoupled MZMs in the terminating sites. At this point, eq. (1.29) can be
written as

H =−i∆
N−1∑
n=1

γn,Aγn+1,B . (1.35)

The two uncoupled Majoranas, γ1,B ,γN ,A imply one fermionic degree of freedom with
degenerate eigenstates at E = 0. They are separated from the rest of the spectrum by an
energy gap ∆. The two MZMs imply one fermion distributed between the ends of the
system.

Crucially, the zero modes are topologically protected, i.e., perturbing the system will
not destroy the MZMs on a scale ∆. For the Kitaev chain this means that the MZMs also
remain when one or multiple µi <∆ are changed. This is guaranteed by the particle-hole
symmetry of eq. (1.29). Rewriting eq. (1.29) in the particle-hole basis (or BdG basis, see
Sec. 1.3.3) c⃗ = (c1, ...cN ,c†

1 , ...,c†
N )T , we obtain

H = c⃗† 1

2

∑
i , j

(
µτ(z)δi , j + tτ(z)(δi+1, j +δi , j+1)+ i∆τ(y)(δi+1, j +δi , j+1)

)
c⃗, (1.36)

whereδi , j is the Kronecker symbol. Observe that the transformation doubles the degrees
of freedom. The matrices τ(i ) are a set of Pauli matrices (c.f. the definition for σ(i ) in
Sec. 1.2.2) that act in particles-hole space. We see that eq. (1.36) satisfies ΠHΠ−1 = −H
with the operator Π = τ(x)K, where K is complex conjugation. This is the particle-hole
symmetry of eq. (1.29), which protects the MZMs [66]. The MZMs are pinned at E = 0
and can only couple through the excited states which are at E =∆.

Looking back, if we want to implement the Kitaev chain, we need three things: 1) an
analogue of a lattice site with controllable µ, 2) a tunable tunneling process t , and 3) a
tunable p-wave pairing∆ between sites. We address 1) and 2) in Sec. 1.3.2 and discuss 3)
in Sec. 1.3.3.



1

8 1. INTRODUCTION

1.3.2. SINGLE LEVEL QUANTUM DOTS

An analogue of a lattice site in condensed matter is the semiconductor quantum dot.
This will be our basic building block from Ch. 3 through Ch. 5.

A quantum dot is a small region in space where otherwise free electrons are confined
electrostatically and/or by system terminations [67, 68]. To make a quantum dot useful,
we need to be able to address levels individually. This means we need the level spacing
∼ µ/Nel to be comparable to the charging energy ∼ e/Ldot where Ldot is a character-
istic length of the dot. We can achieve this by either changing the density of electrons
∼ µ in the material, or the geometry ∼ L of the dot. The most flexible compromise be-
tween both is offered by semiconducting materials due to their controllable electronic
density [67, 68].

The Hamiltonian for a single level, spinful quantum dot reads

HQD = (µ+EZ )c†
↑c↑+ (µ−EZ )c†

↓c↓+Uc†
↑c↑c†

↓c↓ (1.37)

whereµ is the chemical potential, EZ =µB g B/2 is the Zeeman energy induced by a mag-
netic field B , and U is the onsite charging energy (Coulomb repulsion). The g-factor g is
a material- and confinement-dependent parameter that can in principle depend on the
direction of the magnetic field [69].

To implement a site in the Kitaev chain, we want exactly one level on the quantum
dot. This can be achieved by applying sufficiently a large magnetic field. The remaining,
spin polarized level can then be considered as either occupied or unoccupied. In prin-
ciple, quantum dots can be coupled to each other via quantum point contacts or barrier
gates. This would however not suffice to implement Kitaev chains as this would only
satisfy 2) from the previous list in Sec. 1.3.1.

1.3.3. ANDREEV BOUND STATES IN PROXIMITZED QUANTUM DOTS

To implement the p-wave pairing required in eq. (1.29), we need to review superconduc-
tivity. Conventional superconductors are described by the Bardeen-Cooper-Schrieffer
(BCS) [70, 71] theory of superconductivity. In metallic systems, lattice phonons induce
an effective, attractive coupling between the electrons [72]. This leads to an instability of
the Fermi surface where electrons bind pairwise into Cooper pairs [73]. The instability
is characterized by an order parameter ∆0 = |∆0|e iφ. |∆0| is the excitation gap of Cooper
pairs, and φ is the superconducting phase. For the subgap (E < |∆0|) phenomena of in-
terest, we can write the BCS Hamiltonian in the same particle-hole basis as the Kitaev
chain in Sec. 1.3.1

HBC S = c⃗† 1

2

(
H ∆0

−∆∗
0 −H∗

)
c⃗ (1.38)

where the asterisk means complex conjugation. Similar to eq. (1.36), eq. (1.38) has a
particle hole symmetry Π= τ(x)K such that ΠHBC SΠ

−1 =−HBC S .

Eq. (1.38) can be solved by expressing it in a new set of operators. This is called Bo-
goliubov transformation [74, 75]. For spinful Hamiltonians, it reads
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b↑ = uc↑+ vc†
↓ (1.39)

b↓ =−uc↓+ vc†
↑ , (1.40)

where the coefficients |u|2 +|v |2 = 1 .
For Hamiltonians, H , with energy ε, chemical potential µ, and without applied fields

or spin-orbit interaction, the dispersion of the Bogoliubov quasiparticles reads

E± =±
√
ξ2 +|∆0|2. (1.41)

where we define ξ= ϵ−µ. Eq. (1.41) clearly shows the excitation gap of the Cooper pairs.
In this case, the previously mentioned coefficients u, v (c.f. eq. (1.39)) take the form

u2 = 1− v2 = 1/2+ξ/
(
2
√
ξ2 +|∆0|2

)
Cooper pairs bind together and correlate on the scale of the coherence length

ℓ0 = ħvF

π∆0
, (1.42)

where vF is the Fermi velocity. On the same scale we can implant the superconduct-
ing correlations from the metallic superconductor into the semiconductor hosting the
quantum dots. This effect is known as proximity effect [71, 76, 77]. The proximity (or
induced) gap is rescaled by the coupling as ∆∼∆0Γ/(∆0 +Γ) [35, 78], where Γ is the cou-
pling between the electrons in superconductor and semiconductor. Given finite pairing,
we can modify eq. (1.37) by adding an s-wave pairing term

HSC =∆(c†
↑c†

↓ +c↓c↑). (1.43)

The states in confined, proximitized regions are commonly referred to as Andreev bound
states (ABSs) [79]. In the single particle regime, the dispersion is given by eq. (1.41).
An example dispersion (offset by a constant factor −0.75|∆|) is shown in Fig.1.4 a) as
a function of ξ. The ABS allows tuning of the electron-hole content by changes of the
chemical potential. This we indicate in Fig. 1.4 a) with the line-color. Being able to tune
the charge content of the ABS will be crucial when discussing the effective couplings for
Kitaev chains (Sec. 1.3.4).

1.3.4. POOR MAN’S MAJORANAS AND THE MINIMAL KITAEV CHAIN
Finally, we can consider a system of two quantum dots (eq. (1.37)) coupled via a super-
conducting degree of freedom. This type of setup is commonly referred to as Cooper
pair splitter (CPS) and has previously been suggested to distribute entanglement [80,
81]. The initial proposal for PMMs [38, 39] utilizes bulk superconductors where ℓ0 > LSC

(cf. eq. (1.42)). These are rather constrained in their tunability, which limits scalability.
A more recent proposal suggests replacing the bulk superconductor by an ABS in e.g. a
quantum dot in proximity to a superconductor [82]. In this setup, the ABSs can be tuned
by back gates which offers more detailed tunability in turn allowing more flexible scaling.
We show a schematic of this second setup in Fig. 1.3.
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Figure 1.3: Relevant energy scales and schematic of a minimal Kitaev chain. a) A minimal Kitaev chain consists
of three quantum dots. The central dot is proximitized by a superconductor. The chemical potential on each
dot is tunable by a back gate. The pairwise tunneling between them is controlled by a tunnel gate. The elec-
tronic dots each feature an on-site interaction Ui and are spin-polarized by a Zeeman energy EZ ,i . Both are
renormalized by the proximity effect in the central dot. b) Schematic illustration of energy scales. The Zeeman
energy splits different spins leading to the singly occupied regime required in eq. (1.29). On-site interactions
U additionally push away double occupied states and suppress local Andreev reflection. We assume a single
ABS with energy E A <∆ in the enrgy gap of the superconductor.

We achieve the single occupation required by eq. (1.29) by spin polarizing the quan-
tum dots. This is achieved by applying a magnetic field, which yields a Zeeman splitting
of Ez (cf. eq. (1.37)) between the two spin species. We then consider the effective, virtual
tunneling processes across the ABS. As illustrated in Fig. 1.4 b), there are three types of
processes possible: 1) ECT, or electron co-tunneling; 2) CAR, or crossed Andreev reflec-
tion; 3) LAR, or local Andreev reflection. ECT describes a process in which one electron
tunnels through the superconductor onto the other dot. We refer to ECT as ΓEC T . CAR,
ΓC AR , is a joint deposition of electrons on the dots by the splitting of a Cooper pair. The
latter is a process which requires an excitation of an ABS into the continuum. Crucially,
the SC is of s-wave type. Hence, we need an ingredient that mixes spin species. In semi-
conductors, this happens through spin-orbit interaction (SOI) [83]. This, in some mate-
rials [84], is suggested to be tunable. Lastly, LAR corresponds to a virtual process through
the ABS that locally couples the |0〉 and | ↑↓〉 states on a quantum dot. This process scales
as ∼ 1/(Ez +U ) due to the energy difference between the involved states. Due to the spin
polarizing magnetic field and the usually large Coulomb repulsion (cf. Ch. 4 and [41]),
LAR is strongly suppressed and can hence be omitted in the low-energy theory.

Collecting everything, we arrive at the effective low-energy model in the particle-hole
basis c⃗ = (c1,c2,c†

1 ,c†
2)

H =
(
µ1 ΓEC T

ΓEC T µ2

)
τ(z) + i

(
0 ΓC AR

ΓC AR 0

)
τ(y) (1.44)

where we introduced the dot chemical potentials µi , and τ are Pauli matrices that act
in particle-hole space (c.f. Sec. 1.3.1). Eq. (1.44) is analogous to eq. (1.36) for a system of
two sites. This system is commonly referred to as ’Poor man’s Majorana’ (PMM) [39].

The dependencies of the quantum dot coupling via the ABS, ΓEC T ,ΓC AR , can be de-
termined via Schrieffer-Wolff perturbation theory [85–87], which we discuss in Ch. 2. For
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Figure 1.4: Amplitudes of CAR, ECT, and the Bogoliubov coefficients (c.f. eq. (1.39)) of the ABS depending on its
chemical potential for θ = 0 and processes in a minimal Kitaev chain. a) Tuning the chemical potential ξ allows
to tune the electronic content of the ABS as indicated by the parabola (shifted by −0.75∆). That tuning allows
to change the magnitude of CAR and ECT processes leading to a crossing at ξ= ∆. b) Effective processes that
determine the dynamics of and between quantum dots. Crossed Andreev reflection (CAR) deposits electrons
on each quantum dot by splitting a Cooper pair. Electron co-tunneling (ECT) describes a single electron tun-
neling through the ABS. Local Andreev reflection (LAR) corresponds to local pairing on a quantum dot induced
by virtual processes through the ABS.

a single ABS in the proximitized dot given in the presence of spin-orbit interaction, these
read [88]

ΓEC T =−t 2 ξcos(θ)

E 2
A

(1.45)

ΓC AR =−t 2∆sin(θ)

E 2
A

, (1.46)

where t is the hopping amplitude from either dot to the ABS, E A =
√
ξ2 +|∆|2 is the

energy of the ABS (cf. Sec. 1.3.3), and θ is the spin-orbit angle. Crucially, the mag-
nitude of both can be controlled by tuning the chemical potential ξ. At ξ = ∆ tan(θ),
|ΓC AR | = |ΓEC T | as required for a topological phase for eq. (1.29). Fixing ξ to this value
and setting the dot chemical potentials to zero, µi = 0, we can identify two MZMs with
energy E1 = E2 = 0 acting in the degenerate manifold

ψ⃗1 = (1,0,1,0)/
p

2 (1.47)

ψ⃗2 = i (0,1,0,−1)/
p

2. (1.48)

The difference between this system and the existing expectations on MZMs lies in their
protection. Calculating the energy splitting in δµi at the point whereΓ= |ΓEC T | = |ΓC AR |,
a point we will re-encounter as ’sweet spot’, one finds [39]

E1,2 =±δµ1δµ2

2Γ

[
1+O (

(δµi /Γ)2)] . (1.49)

While it is still true that the MZMs persist given a local perturbation δµi satisfying |δµi | <
|Γi |, the same cannot be said about a global shift δµi = δµ. The degeneracy breaks
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quadratically in δµ when tuned away from the sweet spot. Additionally, deviations in
either coupling Γi = Γ+δΓ split the degeneracy linearly as E1,2 = ±δΓ. Despite the ap-
parent shortcomings of reduced protection of the MZMs, we were able to shift the prob-
lem from material disorder [35, 89] to detailed tuning of external parameters. Further-
more, given the prediction to converge to the topologically protected Kitaev chain when
scaled up [38], there is reason to expect that potential noise on parameters only plays a
secondary role. Recently, it was possible to realize minimal Kitaev chains in Refs. [40]
and [41] and extended Kitaev chains in Ref. [90] and [91].

1.3.5. PREDICTING CURRENT IN THE TUNNELING LIMIT
Finally, we want to be able to make predictions of experimentally relevant observables
when studying our systems.

A standard technique to do so is quantum transport in the tunneling limit [92–94].
We consider the Hamiltonian H = HS +∑

i (HBi + HSBi ), where HS is the closed system
Hamiltonian, and each HBi + HSBi corresponds to a bath and its coupling to HS . We
assume we have access to the spectrum of HS =∑

i εi |i 〉〈i |, where |i 〉 is the i -th eigenstate
belonging to the eigenvalue εi . In this basis, we write the system-bath coupling as

HSBi = gi

(
〈 j |c†

i | j ′〉bi +b†
i 〈 j |ci | j ′〉

)
(1.50)

= gi

(
T +

i ; j , j ′bi +b†
i T −

i ; j , j ′
)

(1.51)

where gi is the coupling strength to the i -th bath, and ci ,bi are electronic operators on
system and bath respectively. Via Fermi’s golden rule we can determine the transition
rates as

Γ(−)
i ; j , j ′ =

2π

ħ νi |gi |2|T −
i , j , j ′ |2[1−nF (ϵ j ′ −ϵ j −µi )] (1.52)

Γ(+)
i ; j , j ′ =

2π

ħ νi |gi |2|T +
i , j , j ′ |2nF (ϵ j −ϵ j ′ −µi ) (1.53)

where nF is the Fermi-Dirac distribution and νi is the density of states of lead i which
we assume to be constant. We find the master equation governing the occupation prob-
abilities of each state, p j , as

d p j

d t
=∑

i

∑
j ′

[
Γ(+)

i ; j , j ′ +Γ
(−)
i ; j , j ′

]
p j ′ −

∑
i

∑
j

[
Γ(+)

i ; j ′, j +Γ
(−)
i ; j ′, j

]
p j , (1.54)

where the first (second) term corresponds to inflow (outflow) into (from) level j due to
the transitions introduced by a given HSBi respectively. The probabilities in eq. (1.54)
are additionally normalized to satisfy

∑
i pi = 1. With the occupation probabilities we

can then obtain the current induced by lead i via

Ii =−e
∑
j , j ′

[
Γ(+)

i ; j ′, j −Γ
(−)
i ; j ′, j

]
p j . (1.55)

We note that this approach is valid only in the limit gi ≪ kbT as it neglects higher-order
processes. Throughout the remainder of this work we will repeatedly make use of trans-
port as signature of zero modes. In particular we make use of an implementation that
was collected in Ref. [94].
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1.4. THIS THESIS
In this thesis, we explore various designs for systems that can implement MZMs and
other non-Abelian modes. We furthermore discuss a proposal to demonstrate their non-
Abelian nature, and a tool useful for the design of the involved systems.

We begin in Ch. 2 with a discussion of a computational tool that automates the con-
struction of near-degenerate perturbation theories. This method, more commonly re-
ferred to as Schrieffer-Wolff perturbation theory [86, 95], is a standard tool in the study of
low-energy subspaces. In experimental studies usually only a few low-energy degrees of
freedom of the system are relevant. These are captured by an effective Hamiltonian. To
design such effective Hamiltonians one usually begins with large Hilbert spaces. When
the low-energy spectrum is separated by an energy gap from the remainder of the spec-
trum we can apply perturbation theory. For the case of separating the low energy sub-
space from the rest of the Hilbert space, one applies Schrieffer-Wolff perturbation theory.
While tedious and prone to human error by hand, the involved calculations are mathe-
matically uniform. This makes it possible to automate them, the task Pymablock, the
developed tool, facilitates.

In Sec. 1.3.4 we discussed how to implement the interactions of a Kitaev chain in
chains of quantum dots. Initial designs [40, 41, 82] use one quantum dot specifically to
mediate these interactions. In Ch. 3, we use the developed methods to design a system
that implements MZMs in only two quantum dots, avoiding the need for a third dot to
facilitate the required couplings. Instead of using a auxiliary dot with an ABS to mediate
the couplings, we implement them via an excited ABS instead. We discuss the sweet spot
conditions for emergent MZMs, their behavior with respect to parameter changes, and
challenges in scaling the system.

In Ch. 4 we return our focus to the systems presented in [40, 41]. It has been shown [41]
that these systems appear to feature signatures indicative of emergent MZMs also in the
absence of strong spin splitting. In this time-reversal invariant regime, we find that the
demonstrated signatures are explained well by strong on-site interactions on the quan-
tum dots. We find that at tunings where time-reversal and an emergent Z3 parity symme-
try coexist, the spectrum becomes strongly degenerate. This property allows for descrip-
tions of the zero modes in terms of both Majorana Kramers pairs and Z3-parafermions.

Finally, in Ch. 5 we discuss operations on the studied zero modes. The zero modes
studied in preceding chapters 3 and 4 and related literature [40–42, 90, 91] behave con-
sistently with descriptions through MZMs. To conclusively demonstrate this, one needs
to probe the non-Abelian exchange statistics directly. This is possible by either probing
their fusion rules [96] or by braiding (cf. 1.2.1). This chapter discusses a proposal for
the latter. By fine-tuning parameters, it is possible to probe the exchange statistics in a
quasi one-dimensional system consisting of two minimal Kitaev chains coupled via an
auxiliary dot. The exchange realized by the protocol is measurable by performing parity
measurements [97–99] on the minimal chains.
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2
PYMABLOCK: AN ALGORITHM AND A

PACKAGE FOR QUASI-DEGENERATE

PERTURBATION THEORY

Isidora Araya Day, Sebastian Miles, Hugo K. Kerstens, Daniel Varjas, and Anton R.
Akhmerov

A common technique in the study of complex quantum-mechanical systems is to reduce
the number of degrees of freedom in the Hamiltonian by using quasi-degenerate pertur-
bation theory. While the Schrieffer–Wolff transformation achieves this and constructs
an effective Hamiltonian, its scaling is suboptimal, it is limited to two subspaces, and
implementing it efficiently is both challenging and error-prone. We introduce an algo-
rithm for constructing an equivalent effective Hamiltonian as well as a Python package,
Pymablock, that implements it. Our algorithm combines an optimal asymptotic scaling
and the ability to handle any number of subspaces with a range of other improvements.
The package supports numerical and analytical calculations of any order and it is de-
signed to be interoperable with any other packages for specifying the Hamiltonian. We
demonstrate how the package handles constructing a k.p model, analyses a superconduct-
ing qubit, and computes the low-energy spectrum of a large tight-binding model. We also
compare its performance with reference calculations and demonstrate its efficiency.

Own contribution to work: Co-developed the algorithm and implementation of the
package, consulted on writing the paper.
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2.1. INTRODUCTION
Effective models enable the study of complex quantum systems by reducing the dimen-
sionality of the Hilbert space. Their construction separates the low and high-energy sub-
spaces by block-diagonalizing a perturbed Hamiltonian

H=
(

H A A
0 0
0 H BB

0

)
+H′, (2.1)

where H A A
0 and H BB

0 are separated by an energy gap, and H′ is a series in a perturbative
parameter. This procedure requires finding a series of the basis transformation U that
is unitary and that also cancels the off-diagonal block of the transformed Hamiltonian
order by order, as shown in Fig. 2.1. The low-energy effective Hamiltonian H̃A A is then
a series in the perturbative parameter, whose eigenvalues and eigenvectors are approx-
imate solutions of the complete Hamiltonian. As a consequence, the effective model is
sufficient to describe the low-energy properties of the original system while also being
simpler and easier to handle.

A common approach to constructing an effective Hamiltonian is the Schrieffer–Wolff
transformation [1, 2], also known as Löwdin partitioning [3], or quasi-degenerate pertur-
bation theory. This method parameterizes the unitary transformation U = e−S and finds
the series S that decouples the A and B subspaces of H̃ = eSHe−S . This idea enabled
advances in multiple fields of quantum physics. As an example, all the k.p models are a
result of treating crystalline momentum as a perturbation that only weakly mixes atomic
orbitals separated in energy [4–7]. More broadly, this method serves as a go-to tool in the
study of superconducting circuits and quantum dots, where couplings between circuit
elements and drives are treated as perturbations to reproduce the dynamics of the sys-
tem [8, 9]. Applied to time-dependent Hamiltonians, the Schrieffer–Wolff transforma-
tion is an essential tool for the design of quantum gates [10, 11].

H0

+

H1

U

H̃0 + H̃1 + H̃2

Figure 2.1: Block-diagonalization of a Hamiltonian with a first order perturbation.

Constructing effective Hamiltonians is, however, both algorithmically complex and
computationally expensive. This is a consequence of the recursive equations that define
the unitary transformation, which require an exponentially growing number of matrix
products in each order. In particular, already a 4-th order perturbative expansion that
is necessary for many applications may require hundreds of terms. While the computa-
tional complexity is only a nuisance when analysing model systems, it becomes a bottle-
neck whenever the Hilbert space is high-dimensional. Several other approaches improve
the performance of the Schrieffer–Wolff algorithm by either using different parametriza-
tions of the unitary transformation [3, 12–15], adjusting the problem setting to density
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matrix perturbation theory [16, 17], or a finding a similarity transform instead of a uni-
tary [18]. An alternative formulation of the perturbative diagonalization uses Wegner’s
flow equation [19, 20] to construct a continuous unitary transformation (CUT) that de-
pends on a fictitious flow parameter, which at infinity eliminates the undesired terms
from the Hamiltonian [21, 22]. CUT is common in the study of many-body systems [23],
and it relies on solving a set of differential equations to obtain the effective Hamiltonian.
A more recent line of research even applies the ideas of Schrieffer–Wolff transformation
to quantum algorithms for the study of many-body systems [24, 25]. Despite these ad-
vances, neither of the approaches combines an optimal scaling with the ability to con-
struct effective Hamiltonians.

Another limitation of the Schrieffer–Wolff transformation is that it only decouples
two subspaces at a time. While a straightforward generalization of the Schrieffer–Wolff
transformation to multiple subspaces is to decouple one block at a time, this approach
is suboptimal and depends on the order in which the blocks are decoupled. The liter-
ature on multi-block diagonalization is scarce and considers two approaches: the least
action or the block-diagonality of the generator [26]. The former constructs a unitary
transformation that is as close as possible to the identity, and the latter constructs a
block off-diagonal unitary similar to the Schrieffer–Wolff generator. These approaches
are useful to design gates for superconducting qubits [27] and to characterize nonlocal
interactions in multi-qubit systems [28], both of which require the decoupling of qubit
subspaces from different sets of higher energy states. Reference [26], however, showed
that the two generalizations of the Schrieffer–Wolff transformation yield different effec-
tive Hamiltonians when applied to more than two subspaces. While the perturbative
CUT method naturally decouples multiple subspaces [29], in general solving the differ-
ential equations inherent to the method may become a computational bottleneck. To
our knowledge, there is no general algorithm that constructs effective Hamiltonians for
multiple subspaces directly from the least action principle, and how to do so is an open
question.

We introduce an algorithm to construct effective models with optimal scaling, thus
making it possible to find high order corrections for systems with millions of degrees of
freedom. This algorithm exploits the efficiency of recursive evaluations of series satisfy-
ing polynomial constraints and obtains the same effective Hamiltonian as the Schrieffer–
Wolff transformation in the case of two subspaces. Our algorithm, however, deals with
any number of subspaces, providing a generalization of the Schrieffer–Wolff transforma-
tion for multi-block diagonalization and selective decoupling between any two states.
We make the algorithm available via the open source package Pymablock 1(PYthon MA-
trix BLOCK-diagonalization), a versatile tool for the study of numerical and symbolic
models.

2.2. CONSTRUCTING AN EFFECTIVE MODEL
We illustrate the construction of effective models by considering several representative
examples. The simplest application of effective models is the reduction of finite symbolic
Hamiltonians, which appear in the derivation of low-energy dispersions of materials.

1The documentation and tutorials are available in https://pymablock.readthedocs.io/

https://pymablock.readthedocs.io/
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Starting from a tight-binding model, one performs Taylor expansions of the Hamiltonian
near a k-point, and then eliminates several high-energy states [4, 6]. In the study of su-
perconducting qubits, for example, the Hamiltonian contains several bosonic operators,
so its Hilbert space is infinite-dimensional, and the coupling between bosons makes the
Hamiltonian impossible to diagonalize. The effective qubit model describes the analyti-
cal dependence of qubit frequencies and couplings on the circuit parameters [8, 30–34].
This allows to design circuits that realize a desired qubit Hamiltonian, as well as ways
to understand and predict qubit dynamics, for which computational tools are being ac-
tively developed [35–37]. Finally, mesoscopic quantum devices are described by a sin-
gle particle tight-binding model with short range hoppings. This produces a numerical
Hamiltonian that is both big and sparse, which allows to compute a few of its states but
not the full spectrum [38]. Because only the low-energy states contribute to observable
properties, deriving how they couple enables a more efficient simulation of the system’s
behavior.

Pymablock treats all the problems, including the ones above, using a unified ap-
proach that only requires three steps:

• Define a Hamiltonian

• Call pymablock.block_diagonalize

• Request the desired order of the effective Hamiltonian

The following code snippet shows how to use Pymablock to compute the fourth order
correction to an effective Hamiltonian H̃:

# Define perturbation theory
H_tilde, *_ = block_diagonalize([H_0, H_1],

subspace_eigenvectors=[vecs_A, vecs_B]),→

# Request 4th order correction to the effective Hamiltonian
H_AA_4 = H_tilde[0, 0, 4]

The function block_diagonalize interprets the Hamiltonian H0 + H1 as a series with
two terms, zeroth and first order and calls the block diagonalization routine. The sub-
spaces to decouple are spanned by the eigenvectors vecs_A and vecs_B of H0. This is
the main function of Pymablock, and it is the only one that the user ever needs to call.
Its first output is a multivariate series whose terms are different blocks and orders of
the transformed Hamiltonian. Calling block_diagonalize only defines the computa-
tional problem, whereas querying the elements of H_tilde does the actual calculation
of the desired order. This interface treats arbitrary formats of Hamiltonians and system
descriptions on the same footing and supports both numerical and symbolic computa-
tions.

2.2.1. K.P MODEL OF BILAYER GRAPHENE
To illustrate how to use Pymablock with analytic models, we consider two layers of graphene
stacked on top of each other, as shown in Fig. 2.2. Our goal is to find the low-energy
model near the K point [6]. To do this, we first construct the tight-binding model Hamil-
tonian of bilayer graphene. The main features of the model are its 4-atom unit cell
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Figure 2.2: Crystal structure and hoppings of AB-stacked bilayer graphene.

spanned by vectors a1 = (1/2,
p

3/2) and a2 = (−1/2,
p

3/2), and with wave functions
φA,1,φB ,1,φA,2,φB ,2, where A and B indices are the two sublattices, and 1,2 are the layers.
The model has hoppings t1 and t2 within and between the layers, respectively, as shown
in Fig. 2.2. We also include a layer-dependent onsite potential ±m.

We define the Bloch Hamiltonian using the Sympy package for symbolic Python [39].

t_1, t_2, m = sympy.symbols("t_1 t_2 m", real=True)
alpha = sympy.symbols(r"\alpha")

H = Matrix([
[m, t_1 * alpha, 0, 0],
[t_1 * alpha.conjugate(), m, t_2, 0],
[0, t_2, -m, t_1 * alpha],
[0, 0, t_1 * alpha.conjugate(), -m]]

)

H =


m t1α 0 0

t1α
∗ m t2 0

0 t2 −m t1α

0 0 t1α
∗ −m


where α(k) = 1 + e i k·a1 + ek·a2 , with k the wave vector. We consider K = (4π/3,0) the
reference point point in k-space: k = (4π/3+kx ,ky ) because α(K) = 0, making kx and ky

small perturbations. Additionally, we consider m ≪ t2 a perturbative parameter.
To call block_diagonalize, we need to define the subspaces for the block diagonal-

ization, so we compute the eigenvectors of the unperturbed Hamiltonian at the K point,
H(α(K) = m = 0). Then, we substituteα(k) into the Hamiltonian, and call the block diag-
onalization routine using that kx , ky , and m are perturbative parameters via the symbols
argument.

vecs = H.subs({alpha: 0, m: 0}).diagonalize(normalize=True)[0]
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H_tilde, U, U_adjoint = block_diagonalize(
H.subs({alpha: alpha_k}),
symbols=(k_x, k_y, m),
subspace_eigenvectors=[vecs[:, :2], vecs[:, 2:]] # AA, BB

)

The order of the variables in the perturbative series will be that of symbols. For exam-

ple, requesting the term ∝ k i
x k j

y ml from the effective Hamiltonian is done by calling
H_tilde[0, 0, i, j, l], where the first two indices are the block indices (AA). The se-
ries of the unitary transformation U and U † are also defined, and we may use them to
transform other operators.

We collect corrections up to third order in momentum to compute the standard
quadratic dispersion of bilayer graphene and trigonal warping. We query these terms
from H_tilde and those proportional to mass to obtain the effective Hamiltonian (shown
as produced by the code)2:

H̃eff =
 m

3t 2
1

4t2
(−k2

x −2i kx ky +k2
y )

3t 2
1

4t2
(−k2

x +2i kx ky +k2
y ) −m

+


3mt 2

1
2t 2

2
(−k2

x −k2
y )

p
3t 2

1
8t2

(k3
x −5i k2

x ky +9kx k2
y +3i k3

y )
p

3t 2
1

8t2
(k3

x +5i k2
x ky +9kx k2

y −3i k3
y )

3mt 2
1

2t 2
2

(k2
x +k2

y )


The first term is the standard quadratic dispersion of gapped bilayer graphene. The sec-
ond term contains trigonal warping and the coupling between the gap and momentum.
All the terms take less than two seconds in a personal computer to compute.

2.2.2. DISPERSIVE SHIFT OF A TRANSMON QUBIT COUPLED TO A RESONATOR
The need for analytical effective Hamiltonians often arises in circuit quantum electro-
dynamics (cQED) problems, which we illustrate by studying a transmon qubit coupled
to a resonator [8]. Specifically, we choose the standard problem of finding the frequency
shift of the resonator due to its coupling to the qubit, a phenomenon used to measure
the qubit’s state [30]. The Hamiltonian of the system is given by

H=−ωt (a†
t at − 1

2
)+ α

2
a†

t a†
t at at +ωr (a†

r ar + 1

2
)− g (a†

t −at )(a†
r −ar ), (2.2)

where at and ar are bosonic annihilation operators of the transmon and resonator, re-
spectively, and ωt and ωr are their frequencies. The transmon has an anharmonicity α,
so that its energy levels are not equally spaced. In presence of both the coupling g be-
tween the transmon and the resonator and the anharmonicity, this Hamiltonian admits
no analytical solution. We therefore treat g as a perturbative parameter.

To deal with the infinite dimensional Hilbert space, we observe that the perturba-
tion only changes the occupation numbers of the transmon and the resonator by ±1.
Therefore computing n-th order corrections to the n0-th state allows to disregard states

2The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/bilayer_
graphene.html.

https://pymablock.readthedocs.io/en/latest/tutorial/bilayer_graphene.html
https://pymablock.readthedocs.io/en/latest/tutorial/bilayer_graphene.html
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with any occupation numbers larger than n0 +n/2. We want to compute the second
order correction to the levels with occupation numbers of either the transmon or the
resonator being 0 and 1. We accordingly truncate the Hilbert space to the lowest 3 levels
of the transmon and the resonator. The resulting Hamiltonian is a 9×9 matrix that we
construct using Sympy [39].

Finally, to compute the energy corrections of the lowest levels, we call block_diagonalize
for each state separately, replicating a regular perturbation theory calculation for single
wavefunctions. To do this, we observe that H0 is diagonal, and use subspace_indices
to assign the elements of its eigenbasis to the 4 subspaces of interest and the rest. This
corresponds to a multi-block diagonalization problem with 5 blocks. For example, to
find the qubit-dependent frequency shift of the resonator, χ, we start by computing the
second order correction to |0t 0r 〉:
indices = [0, 1, 2, 3, 4, 4, 4, 4, 4] # 00 is the first state in the

basis,→
H_tilde, *_ = block_diagonalize(H, subspace_indices=indices,

symbols=[g]),→
H_tilde[0, 0, 2][0, 0] # 2nd order correction to 00

E (2)
00 = g 2

−ωr +ωt
. (2.3)

Repeating this process for the states |1t 0r 〉, |0t 1r 〉, and |1t 1r 〉 requires requesting the
terms H_tilde[1, 1, 2][0, 0], H_tilde[2, 2, 2][0, 0], and H_tilde[3, 3, 2][0, 0],
and yields the desired resonator frequency shift:

χ= (E (2)
11 −E (2)

10 )− (E (2)
01 −E (2)

00 )

=− 2g 2

α+ωr −ωt
+ 2g 2

−α+ωr +ωt
− 2g 2

ωr +ωt
+ 2g 2

ωr −ωt

=− 4αg 2
(
αωt −ω2

r −ω2
t

)
(ωr −ωt ) (ωr +ωt ) (−α+ωr +ωt ) (α+ωr −ωt )

.

(2.4)

In this example, we have not used the rotating wave approximation, including the fre-
quently omitted counter-rotating terms∼ ar at to illustrate the extensibility of Pymablock.
Computing higher order corrections to the qubit frequency only requires increasing the
size of the truncated Hilbert space and requesting H_tilde[0, 0, n] to any order n.

2.2.3. INDUCED GAP IN A DOUBLE QUANTUM DOT
Large systems pose an additional challenge due to the cubic scaling of linear algebra
routines with matrix size. To overcome this, Pymablock is equipped with an implicit
method, which utilizes the sparsity of the input and avoids the construction of the full
transformed Hamiltonian. We illustrate the efficiency of this method by applying it to
a system of two quantum dots coupled to a superconductor between them, shown in
Fig. 2.3, and described by the Bogoliubov-de Gennes Hamiltonian:

HBdG =
{

(k2/2m −µsc )σz +∆σx for L/3 ≤ x ≤ 2L/3,

(k2/2m −µn)σz otherwise,
(2.5)



2

28 2. PYMABLOCK

where the Pauli matrices σz and σx act in the electron-hole space, k is the 2D wave vec-
tor, m is the effective mass, and ∆ the superconducting gap.

We use the Kwant package [40] to build the Hamiltonian of the system 3, which we
define over a square lattice of L ×W = 200× 40 sites. On top of this, we consider two
perturbations: the barrier strength between the quantum dots and the superconductor,
tb , and an asymmetry of the dots’ potentials, δµ.

The system is large: it is a sparse array of size 63042×63042, with 333680 non-zero
elements, so even storing all the eigenvectors would take 60 GB of memory. The pertur-
bations are also sparse, with 632, and 126084 non-zero elements for the barrier strength
and the potential asymmetry, respectively. The sparsity structure of the Hamiltonian
and the perturbations is shown in the left panel of Fig. 2.3, where we use a smaller sys-
tem of L ×W = 8×2 for visualization. Therefore, we use sparse diagonalization [41] and
compute only four eigenvectors of the unperturbed Hamiltonian closest to zero energy,
which are the Andreev states of the quantum dots.

vals, vecs = scipy.sparse.linalg.eigsh(h_0, k=4, sigma=0)
vecs, _ = scipy.linalg.qr(vecs, mode="economic") # orthogonalize the

vectors,→

We now call the block diagonalization routine and provide the computed eigenvectors.

H_tilde, *_ = block_diagonalize([h_0, barrier, dmu],
subspace_eigenvectors=[vecs]),→

Because we only provide the low-energy subspace, Pymablock uses the implicit method.
Calling block_diagonalize is now the most time-consuming step because it requires
pre-computing several decompositions of the full Hamiltonian. It is, however, manage-
able and it only produces a constant overhead of less than three seconds.

To compute the spectrum, we collect the lowest three orders in each parameter in an
appropriately sized tensor.

h_tilde = np.array(np.ma.filled(H_tilde[0, 0, :3, :3],
fill_value).tolist()),→

This takes two more seconds to run, and we can now compute the low-energy spectrum
after rescaling the perturbative corrections by the magnitude of each perturbation.

def effective_energies(h_tilde, barrier, dmu):
barrier_powers = barrier ** np.arange(3).reshape(-1, 1, 1, 1)
dmu_powers = dmu ** np.arange(3).reshape(1, -1, 1, 1)
return scipy.linalg.eigvalsh(

np.sum(h_tilde * barrier_powers * dmu_powers, axis=(0, 1))
)

Finally, we plot the spectrum of the 2 Andreev states in Fig. 2.3. As expected, the crossing
at E = 0 due to the dot asymmetry is lifted when the dots are coupled to the supercon-
ductor. In addition, we observe how the proximity gap of the dots increases with the
coupling strength.

3The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/induced_
gap.html.

https://pymablock.readthedocs.io/en/latest/tutorial/induced_gap.html
https://pymablock.readthedocs.io/en/latest/tutorial/induced_gap.html
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Figure 2.3: Hamiltonian (left) and Andreev levels (right) of two quantum dots coupled to a superconductor
(inset). The barrier tb between the dots and the superconductor, H10, and the asymmetry δµ between the
dots’ potential, H01, are perturbations.

Computing the spectrum of the system for 3 points in parameter space would require
the same time as the total runtime of Pymablock in this example. This demonstrates the
speed of the implicit method and the efficiency of Pymablock’s algorithm.

2.2.4. SELECTIVE DIAGONALIZATION
Lastly, we demonstrate the generality of Pymablock’s algorithm by applying it to decou-
ple arbitrary states in a generic Hamiltonian. This is an alternative to separating a Hamil-
tonian into blocks, and it requires that the states to decouple are different in energy. To
illustrate this, we consider a 16×16 Hamiltonian H= H0 +H1 with H0 a diagonal matrix
and H1 a random Hermitian perturbation. Our goal is to construct an effective Hamil-
tonian whose only matrix elements are those in a binary mask, which, without loss of
generality, we choose to be a smiley face.

We apply the mask to the Hamiltonian by providing it as the fully_diagonalize
argument to block_diagonalize4.

H_tilde, *_ = block_diagonalize([H_0, H_1], fully_diagonalize={0:
mask}),→

The argument fully_diagonalize is a dictionary where the keys label the blocks of the
Hamiltonian, and the values are the masks that select the terms to keep in that block.
We only used one block in this example: the entire Hamiltonian. Finally, the effective
Hamiltonian only contains the terms in the mask, as shown in Fig. 2.4.

4The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/getting_
started.html#selective-diagonalization.

https://pymablock.readthedocs.io/en/latest/tutorial/getting_started.html#selective-diagonalization
https://pymablock.readthedocs.io/en/latest/tutorial/getting_started.html#selective-diagonalization
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H0 +H1 Mask H̃

Figure 2.4: Selective diagonalization of a Hamiltonian with a random perturbation.

2.3. PERTURBATIVE BLOCK-DIAGONALIZATION ALGORITHM

2.3.1. PROBLEM STATEMENT

Pymablock finds a series of the unitary transformation U (we use calligraphic letters to
denote series) that eliminates the off-diagonal components of the Hamiltonian

H= H0 +H′, (2.6)

with H′ = H′
S +H′

R containing an arbitrary number and orders of perturbations with
block-diagonal and block-offdiagonal components, respectively. Here and later we use
the subscript S to denote the selected part and R to denote remaining components of
a series, with the goal of the perturbation theory to obtain a Hamiltonian with only the
selected part. In other words, we aim to find a unitary transformation U that cancels the
remaining part of the Hamiltonian. In different settings, selected and remaining parts
may mean different things. In quasi-degenerate perturbation theory, the Hilbert space
is subdivided into A and B subspaces, which makes H0 a block-diagonal matrix

H0 =
(

H0
A A 0

0 H0
BB

)
, (2.7)

and the goal of the perturbation theory is to eliminate the offdiagonal AB and B A blocks
of H. In this case the selected part is the block-diagonal part, and the remaining part
is the block-offdiagonal part. Differently, in the context of Rayleigh-Schrödinger pertur-
bation theory, H0 is a diagonal matrix so that the selected part is the diagonal, and the
remaining part of an operator are all its matrix elements that are not on the diagonal.

To consider the problem in the most general setting, we only require the selected and
remaining parts of an operator to satisfy the following constraints:

1. The selected and remaining parts of an operator add to identity: A=AS +AR .

2. Taking either part of an operator is idempotent: (AS )S =AS .

3. Taking either part commutes with Hermitian conjugation: (AS )† = (A†)S .

4. The remaining part of any operator has no matrix elements within eigensubspaces
of H0. This is required to ensure that the perturbation theory is well-defined.
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The separation of an operator into selected and remaining parts is a generalization of
taking block-diagonal and block-offdiagonal parts. In particular, the separation allows
to choose any subset of the offdiagonal matrix elements as remaining, as long as none
of the matrix elements belong to an eigensubspace of H0. That none of the matrix el-
ements belong to a same eigensubspace of H0 becomes evident in the textbook quasi-
degenerate perturbation theory, where the corrections to energies and wavefunctions
contain differences between energy of the states from different subspaces. The main
difference between our generalization and the standard separation into block-diagonal
and block-offdiagonal is that the product of a selected part and remaining part of two
operators may have a non-zero selected part: (ASBR )S ̸= 0, while (AA ABAB )A A = 0. The
generality of the selected and remaining parts allows to consider all perturbation theory
methods with the same algorithm, including multi-block diagonalization, selective di-
agonalization, and the Schrieffer–Wolff transformation. Several expressions simplify if
the selected part corresponds to a block-diagonal operator and simplify further if there
are only two subspaces. We keep track of these simplifications.

All the series we consider may be multivariate, and they represent sums of the form

A=
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nk=0
λ

n1
1 λ

n2
2 · · ·λnk

k An1,n2,...,nk , (2.8)

where λi are the perturbation parameters and An1,n2,...,nk are linear operators. The prob-
lem statement, therefore, is finding U and H̃ such that

H̃=U†HU , H̃R = 0, U†U = 1, (2.9)

which is schematically shown in Fig. 2.1 for the case of two subspaces, where the selected
parts are A A and BB , and the remaining parts are AB and B A. Series multiply according
to the Cauchy product:

C =AB⇔Cn = ∑
m+p=n

AmBp.

The Cauchy product is the most expensive operation in perturbation theory, because
it involves a large number of multiplications between potentially large matrices. For
example, evaluating n-th order of C requires ∼ ∏

i ni ≡ N multiplications of the series
elements.5 A direct computation of all the possible index combinations in a product
between three seriesABC would have a higher cost∼ N 2, however, if we use associativity
of the product and compute this as (AB)C, then the scaling of the cost stays ∼ N .

There are many ways to solve the problem (2.9) that give identical expressions for U
and H̃. We are searching for a procedure that satisfies two additional constraints:

• It has the same complexity scaling as a Cauchy product, and therefore ∼ N multi-
plications per additional order.

• It does not require multiplications by H0.

5If both A and B are known in advance, fast Fourier transform-based algorithms can reduce this cost to ∼
N log N . In our problem, however, the series are constructed recursively and therefore this optimization is
impossible.
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• It requires only one Cauchy product by HS , the selected part of H.

The first requirement is that the algorithm scaling is optimal: the desired expression at
least contains a Cauchy product of U and H. Therefore the complexity scaling of the
complete algorithm may not become lower than the complexity of a Cauchy product
and we aim to reach this lower bound. The second requirement is because in perturba-
tion theory, n-th order corrections to H̃ carry n energy denominators 1/(Ei −E j ), where
Ei and E j are the eigenvalues of H0 belonging to different subspaces. Therefore, any ad-
ditional multiplications by H0 must cancel with additional energy denominators. Multi-
plying by H0 is therefore unnecessary work, and it gives longer intermediate expressions.
The third requirement we impose by considering a case in whichHR = 0, whereHS must
at least enter H̃ as an added term, without any products. Moreover, because U depends
on the entire Hamiltonian, there must be at least one Cauchy product by H′

S . The goal of
our algorithm is thus to be efficient and to produce compact results that do not require
further simplifications.

2.3.2. EXISTING SOLUTIONS
A common approach to constructing effective Hamiltonians in the 2×2 block case is to
use the Schrieffer–Wolff transformation [1]:

H̃= eSHe−S ,

eS = 1+S+ 1

2!
SS+ 1

3!
SSS+·· · ,

(2.10)

where S = ∑
n Sn is an antihermitian polynomial series in the perturbative parameter,

making eS a unitary transformation. Requiring that H̃AB = 0 gives a recursive equation
for Sn , whose terms are nested commutators between the series of S and H. Similarly,
the transformed Hamiltonian is given by a series of nested commutators

H̃=
∞∑

j=0

1

j !

[
H,

∞∑
n=0

Sn

]( j )
, (2.11)

where the superscript ( j ) denotes the j -th nested commutator [A,B ]( j ) = [[A,B ]( j−1),B ],
with [A,B ](0) = A and [A,B ](1) = AB−B A. Regardless of the specific implementation, this
expression does not meet either of our two requirements:

• The direct computation of the series elements requires ∼ exp N multiplications,
and even an optimized one has a ∼ N 2 scaling.

• Evaluating Eq. (2.11) contains multiplications by H0.

Additionally, while in the 2×2 block case the Schrieffer–Wolff transformation produces
a minimal unitary transformation, i.e. as close to identity as possible, this is not the case
in the multi-block case [26]. The generalization of this approach to multiple subspaces
is an open question [26].

Alternative parametrizations of the unitary transformation U require solving unitar-
ity and block diagonalization conditions too, but give rise to a different recursive proce-
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dure for the series elements. For example, using hyperbolic functions

U = coshG+ sinhG, G =
∞∑

i=0
Gi , (2.12)

leads to different recursive expressions for Gi [13], but does not change the algorithm’s
complexity. On the other hand, using a polynomial series directly

U =
∞∑

i=0
Ui , (2.13)

gives rise to another recursive equation for Ui [3, 12, 14, 15]. Still, this choice results in an
expression for H̃ whose terms include products by H0, and therefore requires additional
simplifications.

Another approach uses Wegner’s flow equation [19, 20] to construct a continuous
unitary transformation (CUT) that depends smoothly on a fictitious parameter l , U (l ).
The goal is to define a generator η(l ) such that H(l ) = U†(l )H(0)U (l ) flows towards the
desired effective Hamiltonian:

dH(l )

dl
= [η(l ),H(l )], (2.14)

where U (l ), H(l ), and η(l ) are once again series in the perturbative parameters. At l =∞,
the transformed Hamiltonian does not contain the undesired terms, H(∞) = H̃. Finding
the unitary amounts to solving a set of differential equations

dU (l )

dl
= η(l )U (l ). (2.15)

Together with the Eq. (2.14) and an appropriate choice of η, this gives a set of coupled
differential equations, that become linear if solved order by order. The convergence and
stability of flow equations depends on the parameterization of the flow generator η, and
multiple strategies for this choice are known [23, 42]. The CUT method is common in
the study of many-body systems, where one needs to either decompose the Hamiltonian
into sets of quasiparticle creation and annihilation operators, or choose a different oper-
ator basis together with a set of commutation rules. Despite the numerical complication
of solving differential equations, CUT extends beyond the perturbative regime [20, 22,
23].

The following three algorithms satisfy both of our requirements while solving a re-
lated problem. First, density matrix perturbation theory [16, 17, 43] constructs the den-
sity matrix ρ of a perturbed system as a power series with respect to a perturbative pa-
rameter:

ρ =
∞∑

i=0
ρi . (2.16)

The elements of the series are found by solving two recursive conditions, ρ2 = ρ and
[H,ρ] = 0, which avoid multiplications by H0 and require a single Cauchy product each.
This approach, however, deals with the entire Hilbert space, rather than the low-energy
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subspace, and does not provide an effective Hamiltonian. Second, the perturbative simi-
larity transform by C. Bloch [2, 18] constructs the effective Hamiltonian in a non-orthogonal
basis, which preserves the Hamiltonian spectrum while breaking its hermiticity. Third,
the recursive Schrieffer–Wolff algorithm [37] applies the Schrieffer–Wolff transformation
to the output of lower-order iterations, and calculates the effective Hamiltonian at a fixed
perturbation strength, rather than as a series. Finally, none of these linear scaling algo-
rithms above handles more than two subspaces. We thus identify the following open
question: can we construct an effective Hamiltonian with a linear scaling algorithm that
produces compact expressions?

2.3.3. PYMABLOCK’S ALGORITHM
The first idea that Pymablock exploits is the recursive evaluation of the operator series,
which we illustrate by considering the unitarity condition. Let us separate the transfor-
mation U into an identity and U ′ =W +V :

U = 1+U ′ = 1+W +V , W† =W , V† =−V . (2.17)

We use the unitarity condition U†U = 1 by substituting U ′ into it:

1 = (1+U ′†)(1+U ′) = 1+U ′† +U ′+U ′†U ′. (2.18)

This immediately yields

W = 1

2
(U ′† +U ′) =−1

2
U ′†U ′. (2.19)

Because U ′ has no 0-th order term, (U ′†U ′)n does not depend on the n-th order of U ′
nor W , and therefore Eq. (2.19) allows to compute W using the already available lower
orders of U ′. Alternatively, using Eq. (2.17) we could define W as a Taylor series in V :

W =
√

1+V2 −1 ≡ f (V) ≡∑
n

anV2n .

A direct computation of all possible products of terms in this expression requires ∼ exp N
multiplications. A more efficient approach for evaluating this expression introduces
each term in the sum as a new series An+1 =AAn and reuses the previously computed
results. This optimization brings the exponential cost down to ∼ N 2. However, we see
that the Taylor expansion approach is both more complicated and more computation-
ally expensive than the recurrent definition in Eq. (2.19). Therefore, we use Eq. (2.19) to
efficiently compute W . More generally, a Cauchy product AB where A and B have no
0-th order terms depends on A1, . . . ,An−1 and B1, . . . ,Bn−1. This makes it possible to use
AB in a recurrence relation, a property that we exploit throughout the algorithm.

To compute U ′ we also need to find V , which is defined by the requirement H̃R = 0.
Additionally, we constrain V to have no selected part: VS = 0, a choice we make to min-
imize the norm of U ′, and satisfy the least action principle [44]. That VS = 0 minimizes
the norm of U ′ follows from the following statements:

1. The norm of a series is minimal, when each of the subsequent terms is chosen to
be minimal order by order.
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2. The Hermitian part of U ′, Wn, is determined by the unitarity condition (2.19) at
each order from lower orders of U ′.

3. The norm of Wn +Vn is minimal, when the norm of Vn is minimal because of Her-
miticity properties of W and V .

4. Finally, because VR is fixed by the requirement H̃R = 0, VS = 0 provides the mini-
mal norm of U ′.

In the 2× 2 block case, this choice makes W block-diagonal and ensures that the re-
sulting unitary transformation is equivalent to the Schrieffer–Wolff transformation (see
section 2.3.4). In general, however, WR ̸= 0.

The remaining condition for finding a recurrent relation for U ′ is that the trans-
formed Hamiltonian

H̃=U†HU =HS +U ′†HS +HSU ′+U ′†HSU ′+U†H′
RU , (2.20)

has only the selected part H̃R = 0, a condition that determinesV . Here we usedU = 1+U ′
and H =HS +H′

R , since H0 is has no remaining part by definition. Because we want to
avoid products by HS , we need to get rid of the terms that contain it by replacing them
with an alternative expression. Our strategy is to define an auxiliary operator X that we
can compute without ever multiplying by HS . Like U ′, X needs to be defined via a recur-
rence relation, which we determine later. Because Eq. (2.20) contains HS multiplied by
U ′ from the left and from the right, eliminating HS requires moving it to the same side.
To achieve this, we choose X =Y +Z to be the commutator between U ′ and HS :

X ≡ [U ′,HS ] =Y +Z , Y ≡ [V ,HS ] =Y†, Z ≡ [W ,HS ] =−Z†. (2.21)

If the selected part AS corresponds to a block-diagonal operator, Y is block off-diagonal.
Additionally, in the 2×2 block caseZ is block-diagonal. We useHSU ′ =U ′HS−X to move
HS through to the right and find

H̃=HS +U ′†HS + (HSU ′)+U ′†HSU ′+U†(H′
RU )

=HS +U ′†HS +U ′HS −X +U ′†(U ′HS −X )+U†H′
RU

=HS + (U ′† +U ′+U ′†U ′)HS −X −U ′†X +U†H′
RU

=HS −X −U ′†X +U†H′
RU ,

(2.22)

where the terms multiplied byHS cancel according to Eq. (2.18). The transformed Hamil-
tonian does not contain multiplications by HS anymore, but it does depend on X , an
auxiliary operator whose recurrent definition we do not know yet. To find it, we first
focus on its anti-Hermitian part, Z . Since recurrence relations are expressions whose
right-hand side contains Cauchy products between series, we need to find a way to make
a product appear. We do so by using the unitarity condition U ′† +U ′ =−U ′†U ′ to obtain
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the recursive definition of Z :

Z = 1

2
(X −X †)

= 1

2

[
(U ′+U ′†)HS −HS (U ′+U ′†)

]
= 1

2

[
−U ′†(U ′HS −HSU ′)+ (U ′HS −HSU ′)†U ′

]
= 1

2
(−U ′†X +X †U ′).

(2.23)

Similar to computing Wn, computing Zn requires lower-orders of X and U ′. Then, we
compute the Hermitian part of X by requiring that H̃R = 0 in the Eq. (2.22) and find

YR = (U†H′
RU −U ′†X −Z)R . (2.24)

Once again, despite X enters the right hand side, because all the terms lack 0th order,
this defines a recursive relation Y . To fix YS , we use its definition (2.21), which gives

[V , H0] =Y − [V ,H′
S ], (2.25)

which is a continuous-time Lyapunov equation for V . In order for this equation to be
satisfiable, the selected part of the right hand side must vanish, since the left hand side
has no selected part. Therefore we find:

YS = [V ,H′
S ]S , (2.26)

and it vanishes if the selected part corresponds to a block-diagonal matrix.
The final part is straightforward. Finding V from Y amounts to solving a Sylvester’s

equation, Eq. 2.26, which we only need to solve once for every new order. This is the only
step in the algorithm that requires a direct multiplication by H′

S . In the eigenbasis of H0,
the solution of Sylvester’s equation is Vn,i j = (YR − [V ,H′

S ]R )n,i j /(Ei −E j ), where Ei are
the eigenvalues of H0. However, even if the eigenbasis of H0 is not available, there are
efficient numerical algorithms to solve Sylvester’s equation (see Sec. 2.4.2). An alterna-
tive is to decompose the Hamiltonian into its eigenoperator basis. This approach avoids
specifying the eigenbasis of H0, and therefore it is better suited for second-quantized
Hamiltonians [45, 46].

We now have the complete algorithm:

1. Define series U ′ and X and make use of their block structure and Hermiticity.

2. To define the hermitian part of U ′, use W =−U ′†U ′/2.

3. To find the antihermitian part of U ′, solve Sylvester’s equation
[V , H0] = (Y − [V ,H′

S ])R . This requires X .

4. To find the antihermitian part of X , define Z = (−U ′†X +X †U ′)/2.

5. For the Hermitian part of X , use Y = (−U ′†X +U†H′U )R + [V ,H′
S ]S .

6. Compute the effective Hamiltonian as H̃≡ H̃S =HS −X −U ′†X +U†H′
RU .
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2.3.4. EQUIVALENCE TO SCHRIEFFER–WOLFF TRANSFORMATION

Pymablock’s algorithm applied to 2× 2 block-diagonalization and the Schrieffer–Wolff
transformation both find a unitary transformation U such that H̃R = H̃AB = 0. They are
therefore equivalent up to a gauge choice in each subspace, A and B . We establish the
equivalence between the two by demonstrating that this gauge choice is the same for
both algorithms. The Schrieffer–Wolff transformation uses U = expS , where S = −S†

and SA A = SBB = 0, this restriction makes the result unique [2]. On the other hand, our
algorithm produces the unique block-diagonalizing transformation with a block struc-

ture U A A = U A A †
, UBB = UBB †

and U AB = −U†
B A . The uniqueness is a consequence of

the construction of the algorithm, where calculating every order gives a unique solution
satisfying these conditions. To see that the two solutions are identical, we expand expS
into Taylor series. In the resulting series every term containing a product of an even
number of terms of S is a Hermitian, block-diagonal matrix, while every term contain-
ing a product of an odd number of terms of S is an anti-Hermitian block off-diagonal
matrix. Therefore expS has the same structure as U above. Because both series are fixed
by the hermiticity constraints on their block structure, we conclude that expS from con-
ventional Schrieffer–Wolff transformation is identical to U found by our algorithm.

2.3.5. EXTRA OPTIMIZATION: COMMON SUBEXPRESSION ELIMINATION

While the algorithm of Sec. 2.3.3 satisfies our requirements, we improve it further by
reusing products that are needed in several places, such that the total number of matrix
multiplications is reduced. Firstly, we rewrite the expressions for Z in Eq. (2.23) and H̃
in Eq. (2.22) by utilizing the Hermitian conjugate of U ′†X without recomputing it:

Z = 1

2

[
(−U ′†X )−h.c.

]
,

H̃=HS +U†H′
RU − (U ′†X +h.c.)/2−YS ,

where h.c. is the Hermitian conjugate, and Z drops out from H̃ because it is antihermi-
tian. Additionally, we reuse the repeated A≡H′

RU ′ in

U†H′
RU =H′

R +A+A† +U ′†A. (2.27)

Next, we observe that some products from theU†HRU term appear both inX in Eq. (2.24)
and in H̃ (2.22). To avoid recomputing these products, we introduce B =X −H′

R −A and
define the recursive algorithm using B instead of X . With this definition, we compute
the remaining part of B as:

BR = [Y +Z −H′
R −A]

R

=
[
A† +U ′†A−U ′†X

]
R

=
[
U ′†H′

R +U ′†A−U ′†X
]

R

=−(U ′†B)R ,

(2.28)
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where we also used Eq. (2.24) and the definition ofA. The selected part ofB, on the other
hand, is given by

BS = [X −H′
R −A]

S

=
[

1

2
[(−U ′†X )−h.c.]+Y −A

]
S

=
[

1

2
[(−U ′†[X −H′

R −A])−h.c.]+Y − 1

2
[A† +A]+ 1

2
[(−U ′†A)−h.c.]

]
S

,

=
[

1

2
[(−U ′†B)−h.c.]+ [VH′

S +h.c
]− 1

2
[A† +h.c.]

]
S

,

(2.29)

where we used Eq. (2.23) and that U ′†A is Hermitian. Using B changes the relation for V
in Eq. (2.26) to

[V , H0] = (B−H′−A− [V ,H′
S ]

)
R . (2.30)

Finally, we combine Eq. (2.22), Eq. (2.27), Eq. (2.29) and Eq. (2.28) to obtain the final
expression for the effective Hamiltonian:

H̃S =HS + 1

2

[
A−U ′†B+2VH′

S +h.c.
]

S
. (2.31)

Together with the series U ′ in Eqs. (2.19,2.30), A =H′
RU ′, and B in Eqs. (2.29,2.28), this

equation defines the optimized algorithm.

2.4. IMPLEMENTATION

2.4.1. THE DATA STRUCTURE FOR BLOCK OPERATOR SERIES
The optimized algorithm from the previous section requires constructing 14 operator se-
ries, whose elements are computed using a collection of recurrence relations. This war-
rants defining a specialized data structure suitable for this task that represents a multi-
dimensional series of operators. Because the recurrent relations are block-wise, the data
structure needs to keep track of separate blocks. In order to support varied use cases,
the actual representation of the operators needs to be flexible: the block may be dense
arrays, sparse matrices, symbolic expressions, or more generally any object that defines
addition and multiplication. Finally, the series needs to be queryable by order and block,
so that it supports a block-wise multivariate Cauchy product—the main operation in the
algorithm.

The most straightforward way to implement a perturbation theory calculation is to
write a function that has the desired order as an argument, computes the series up to that
order, and returns the result. This makes it hard to reuse already computed terms for
a new computation, and becomes complicated to implement in the multidimensional
case when different orders in different perturbations are needed. We find that a recursive
approach addresses these issues: within this paradigm, each series needs to define how
its entries depend on lower-order terms.

To address these requirements, we define a BlockSeries Python class and use it to
represent the series of U , H, and H̃, as well as the intermediate series used to define the



2.4. IMPLEMENTATION

2

39

algorithm. The objects of this class are equipped with a function to compute their ele-
ments and it stores the already computed results in a dictionary. Storing the results for
reuse is necessary to optimize the evaluation of higher order terms and it allows to re-
quest additional orders without restarting the computation. For example, the definition
of the BlockSeries for H̃ has the following form:

H_tilde = BlockSeries(
shape=(2, 2), # 2x2 block matrix
n_infinite=n, # number of perturbative parameters
eval=compute_H_tilde, # function to compute the elements
name="H_tilde",
dimension_names=("lambda", ...), # parameter names

)

Here compute_H_tilde is a function implementing Eq. (2.31) by querying other series
objects. Calling H_tilde[0, 0, 2], the second order perturbation ∼λ2 of the A A block,
then does the following:

1. Evaluates compute_H_tilde(0, 0, 2) if it is not already computed.

2. Stores the evaluation result in a dictionary.

3. Returns the result.

To conveniently access multiple orders at once, we implement NumPy array indexing
so that H_tilde[0, 0, :3] returns a NumPy masked array array with the orders ∼ λ0

, ∼ λ1, and ∼ λ2 of the A A block. The masking allows to support a common use case
where some orders of a series are zero, so that they are omitted from the computations.
We expect that the BlockSeries data structure is suitable to represent a broad class of
perturbative calculations, and we plan to extend it to support more advanced features in
the future.

We utilize BlockSeries to implement multiple other optimizations. For example,
we exploit Hermiticity when computing the Cauchy product of U ′†U ′ in Eq. (2.19), by
only evaluating half of the matrix products, and then complex conjugate the result to
obtain the rest. Similarly, for Hermitian and anti-Hermitian series, like the off-diagonal
blocks of U ′, we only compute the AB blocks, and use the conjugate transpose to ob-
tain the B A blocks. This approach should also allow us to implement efficient handling
of symmetry-constrained Hamiltonians, where some blocks either vanish or are equal
to other blocks due to a symmetry. Moreover, using BlockSeries with custom objects
yields additional information about the algorithm and accommodates its further devel-
opment. Specifically, we have used a custom object with a counter to measure the algo-
rithm complexity (see also Sec. 2.5) and to determine which results are only used once
so that they can be immediately discarded from storage.

2.4.2. THE IMPLICIT METHOD FOR LARGE SPARSE HAMILTONIANS
A distinguishing feature of Pymablock is its ability to handle large sparse Hamiltoni-
ans, that are too costly to diagonalize, as illustrated in Sec. 2.2.3. Specifically, we con-
sider the situations when the size NE of the subspace of interest—explicit subspace—is
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small compared to the entire Hilbert space, so that obtaining the basis ΨE of the ex-
plicit subspace is feasible using sparse diagonalization. The projector on this subspace
PE =Ψ†

EΨE is then a low-rank matrix, a property that we exploit to avoid constructing
the matrix representation of operators in the other, implicit, subspace.

The key tool to solve this problem is the projector approach introduced in Ref. [47],
which introduces an equivalent extended Hamiltonian using the projector PI = 1−P A

onto the implicit subspace:

H̄=
(
Ψ†

EHΨE Ψ†
EHPI

PIHΨE PIHPI

)
. (2.32)

In other words, the explicit subspace is written in the basis of ΨE , while the basis of the
implicit subspace is the same as the original complete basis of H to preserve its spar-
sity. The extended Hamiltonian projects out the E-degrees of freedom from the implicit
subspace to avoid duplicate solutions in H̄, which introduces NE eigenvectors with zero
eigenvalues. Introducing H̄ allows to multiply by operators of a form PI HnPI efficiently
by using the low-rank structure of PE . In the code we represent the operators of the im-
plicit subspace as LinearOperator objects from the SciPy package [41], enabled by the
ability of the BlockSeries to store arbitrary objects. Storing the remaining blocks of H̄ as
dense matrices—efficient because these are small and dense—finishes the implementa-
tion of the Hamiltonian.

To solve the Sylvester’s equation we write it for every row of V E I
n separately:

V E I
n,i j (Ei −H0) = Y E I

n, j (2.33)

This equation has a solution despite Ei − H0 not being invertible because Y E I
n P A = 0.

We solve this equation using the MUMPS sparse solver [48, 49], which prepares an ef-
ficient sparse LU-decomposition of Ei − H0, or the KPM approximation of the Green’s
function [50]. Both methods work on sparse Hamiltonians with millions of degrees of
freedom.

2.4.3. CODE GENERATION
An efficient computation of a perturbative block-diagonalization requires a significant
amount of repeated optimizations. These include keeping track of the Hermiticity of
involved series, applying the simplifications due to block-diagonalization and the pres-
ence of only two blocks, or deletion of series terms that are only used once. To separate
the conceptual definition of the algorithm from these optimizations, we designed the
code generation system that accepts a high-level description of the algorithm written in
a domain-specific language and outputs the optimized Python code using the Python
parser and the manipulation of the Python abstract syntax tree. For example, the defini-
tion of the series B from Eqs. (2.29,2.28) is written as:

with "B":
start = 0
if diagonal:

("U'† @ B" - "U'† @ B".adj + "H'_offdiag @ U'" + "H'_offdiag @
U'".adj) / -2,→
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if diagonal:
zero if commuting_blocks[index[0]] else "V @ H'_diag" + "V @

H'_diag".adj,→
if offdiagonal:

-"U'† @ B"

The corresponding compiled function for evaluating the terms of B begins with

def series_eval(*index):
which = linear_operator_series if use_linear_operator[index[:2]]

else series,→
result = zero
if index[0] == index[1]:

result = _zero_sum(
result,
diag(

_safe_divide(
_zero_sum(

which["U'† @ B"][index], -Dagger(which["U'† @
B"][index]),,→

which["H'_offdiag @ U'"][index],
Dagger(which["H'_offdiag @ U'"][index]),

), -2,
), index,

),
)

...

Here we only show the beginning of the generated function to illustrate the correspon-
dence between the high-level description and the generated code.

The code generation system has accommodated multiple rewrites of the algorithm
during the development. We anticipate that it will enable treating different types of per-
turbative computations or other related algorithms, such as the derivative removal by
adiabatic gate (DRAG) algorithm [51, 52]. Contrary to the perturbation theory setting,
DRAG requires that the time-dependent Hamiltonian is block-diagonal in the rotating
frame, and it achieves this goal by adding a series of corrections to the original Hamil-
tonian. Its overall setting, however, is similar to time-dependent perturbation theory in
that it amounts to solving a system of recurrent algebraic equations. Our preliminary
research already demonstrates that our code generation framework allows for a gener-
alization of our work to the time-dependent perturbation theory, and we are confident
that it applies to the DRAG algorithm as well.

2.5. BENCHMARK
To the best of our knowledge, there are no other packages implementing arbitrary order
quasi-degenerate perturbation theory. Literature references provide explicit expressions
for the 2×2 effective Hamiltonian up to fourth order, together with the procedure for ob-
taining higher order expressions [5]. Because the full reference expressions are lengthy6,

6The full expression takes almost a page of text.
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we do not provide them, but for example at 4-th order the effective Hamiltonian is a sum
of several expressions of the form:

∑
m′′m′′′ l

H ′
mm′′ H ′

m′′m′′′ H ′
m′′′ l

H ′
lm′

(Em′′ −El )(Em′′′ −El )(Em −El )
, (2.34)

where the m-indices label states from the A-subspace and l-indices label the states from
the B-subspace. More generally, at n-th order each term is a product of n matrix el-
ements of the Hamiltonian and n − 1 energy denominators. Directly carrying out the
summation over all the states requires O(N 2

A N n−1
B ) operations, where NA and NB are the

number of states in the two subspaces. In other words, the direct computation scales
worse than a matrix product with the problem size. Formulating Eq. (2.34) as n −1 ma-
trix products combined with n−1 solutions of Sylvester’s equation, brings this complex-
ity down to O((n −1)×NA N 2

B ). This optimization, together with the hermiticity of the
sum, allows us to evaluate the reference expressions for the effective Hamiltonian for
2-nd, 3-rd, and 4-th order using 1, 4, and 27 matrix products, respectively. Pymablock’s
algorithm yields the following expressions for the first four orders of the effective Hamil-
tonian:7

Y1,AB = H1,AB ,

H̃2,A A = H1,AB V †
1 /2+h.c.,

Y2,AB =V1H1,BB −H †
1,A AV1,

H̃3,A A = H1,AB V †
2 +h.c.,

Y3,AB =−
V1V †

1 H †
1,B A

2
+V2H1,BB −

(
H1,AB V †

1 +V1H †
1,AB

)
V1

2
−H †

1,A AV2,

H̃4,A A = H1,AB V †
3

2
+

V1V †
1

(
H1,AB V †

1 +V1H †
1,AB

)
8

+h.c.,

(2.35)

where Vn are the solutions of Sylvester’s equation with Yn,AB as the right-hand side.
These expressions utilize 1, 3, and 11, matrix products to obtain the same orders of the
effective Hamiltonian. The advantage of the Pymablock algorithm becomes even more
pronounced at higher orders or with multiple perturbative parameters due to the expo-
nential growth of the number of terms in the reference expressions. While finding the
optimized implementation from the reference expressions is possible for the 3-rd order,
we expect it to be extremely challenging for the 4-th order, and essentially impossible to
do manually for higher orders. Moreover, because the BlockSeries class tracks absent
terms, in practice the number of matrix products depends on the sparsity of the block
structure of the perturbation, as shown in Fig. 2.5.

The efficiency of Pymablock becomes especially apparent when applied to sparse
numerical problems, similar to Sec. 2.2.3. We demonstrate the performance of the im-
plicit method by using it to compute the low-energy spectrum of a large tight-binding

7The output is generated by the algorithm, with manual modifications only done for formatting.
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Figure 2.5: Matrix products required to compute H̃ A A
n for a dense and block off-diagonal first-order perturba-

tion (left) and a dense and block off-diagonal perturbative series with terms of all orders present (right).

model, and comparing Pymablock’s time cost to that of sparse diagonalization. We de-
fine a 2D square lattice of 52×52 sites with nearest-neighbor hopping and a random on-
site potential µ(r). The perturbation δµ(r) interpolates between two different disorder
realizations. For the sake of an illustration, we choose the system’s parameters such that
the dispersion of the lowest few levels with δµ features avoided crossings and an overall
nonlinear shape, whose details are not relevant. Similar to Sec. 2.2.3, constructing the
effective Hamiltonian involves three steps. First, we compute the 10 lowest states of the
unperturbed Hamiltonian using sparse diagonalization. Second, block_diagonalize
computes a sparse LU decomposition of the Hamiltonian at each of the 10 eigenener-
gies. Third, we compute corrections H̃1, H̃2, and H̃3 to the effective Hamiltonian, each
being a 10× 10 matrix. Each of these steps is a one-time cost, see Fig. 2.6. Finally, to
compare the perturbative calculation to sparse diagonalization, we construct the effec-
tive Hamiltonian H̃ = H0 +δµH̃1 +δµ2H̃2 +δµ3H̃3 and diagonalize it to obtain the low-
energy spectrum for a range of δµ. This has a negligible cost compared to constructing
the series. The comparison is shown in Fig. 2.6. We observe that while the second order
results are already very close to the exact spectrum, the third order corrections fully re-
produce the sparse diagonalization. At the same time, the entire cost of computing the
perturbative band structure for a range of δµ is lower than computing a single additional
sparse diagonalization.

2.6. CONCLUSION
We developed an algorithm for constructing an effective Hamiltonian that combines ad-
vantages of different perturbative expansions. The main building block of our approach
is a set of recurrence relations that define several series that depend on each other and
combine into the effective Hamiltonian. Our algorithm constructs the same effective
Hamiltonians as the Schrieffer–Wolff transformation [1] in the case of 2 subspaces, while
keeping the linear scaling per extra order similar to the density matrix perturbation the-
ory [16, 17] or the non-orthogonal perturbation theory [18]. Its expressions minimize the
number of matrix multiplications per order, making it appealing both for symbolic and
numerical computations. Pymablock’s algorithm performs multi-block diagonalization
and selective diagonalization with a single optimized algorithm.
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Figure 2.6: Top panels: band structure of the perturbative effective Hamiltonian (black) of a tight-binding
model compared to exact sparse diagonalization (gray). Bottom panel: a comparison of the Pymablock’s time
cost with sparse diagonalization. Most of the time is spent in the LU decomposition of the Hamiltonian (red).
The entire cost of the implicit method is lower than a single sparse diagonalization (gray). The operations of
negligible cost are not shown. The bars length corresponds to the average time cost over 40 runs, and the error
bars show the standard deviation.

We provide a Python implementation of the algorithm in the Pymablock package [53].
The package is thoroughly tested (95% test coverage as of version 2.1), becoming a reli-
able tool for constructing effective Hamiltonians that combine multiple perturbations to
high orders. The core of the Pymablock interface is the BlockSeries class that handles
arbitrary objects as long as they support algebraic operations. This enables Pymablock’s
construction of effective models for large tight-binding models using its implicit method
as well as for second quantized Hamiltonians. As of version 2.1, applying Pymablock to
second quantized Hamiltonians requires the user to provide a custom solver of the Lya-
punov equation, which we plan to streamline in future versions. It also allows Pymablock
to solve both symbolic and numerical problems in diverse physical settings, and poten-
tially to incorporate it into existing packages, such as scqubits [35], QuTiP [54, 55], or
dft2kp [56].

Beyond the Schrieffer–Wolff transformation, the Pymablock package provides a foun-
dation for defining other perturbative expansions. We anticipate extending it to time-
dependent problems, where the different regimes of the time-dependent drive modify
the recurrence relations that need to be solved [10, 57]. Applying the same framework to
problems with weak position dependence would allow to construct a nonlinear response
theory of quantum materials. These two extensions are active areas of research [7, 46, 51,
52, 58, 59]. Finally, we expect that in the many-particle context the same framework sup-
ports implementing different flavors of diagrammatic expansions.
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3
KITAEV CHAIN IN AN ALTERNATING

QUANTUM DOT-ANDREEV BOUND

STATE ARRAY

Sebastian Miles, David van Driel, Michael Wimmer, and Chun-Xiao Liu

We propose to implement a Kitaev chain based on an array of alternating normal and
superconductor hybrid quantum dots embedded in semiconductors. In particular, the or-
bitals in the dot and the Andreev bound states in the hybrid are now on equal footing and
both emerge as low-energy degrees of freedom in the Kitaev chain, with the couplings be-
ing induced by direct tunneling. Due to the electron and hole components in the Andreev
bound state, this coupling is simultaneously of the normal and Andreev types, with their
ratio being tunable by varying one or several of the experimentally accessible physical pa-
rameters, e.g., strength and direction of the Zeeman field, as well as changing proximity
effect on the normal quantum dots. As such, it becomes feasible to realize a two-site Kitaev
chain in a simple setup with only one normal quantum dot and one hybrid segment. In-
terestingly, when scaling up the system to a three-site Kitaev chain, next-nearest-neighbor
couplings emerge as a result of high-order tunneling, lifting the Majorana zero energy at
the sweet spot. This energy splitting is mitigated in a longer chain, approaching topolog-
ical protection. Our proposal has two immediate advantages: obtaining a larger energy
gap from direct tunneling and creating a Kitaev chain using a reduced number of quan-
tum dots and hybrid segments.
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3.1. INTRODUCTION
The Kitaev chain is a toy model comprised of an array of spinless fermions with both
normal and Andreev tunnelings between neighboring sites [1]. As a one-dimensional
p-wave superconductor, the Kitaev chain in its topological phase will host a pair of Ma-
jorana zero modes localized at the endpoints of the chain [2–13]. These exotic quasipar-
ticles are non-Abelian anyons, i.e., exchanging or braiding two Majoranas will transform
between distinct ground-state wavefunctions in the degenerate manifold [14]. More-
over, since two Majorana modes are spatially separated, quantum information encoded
in such a Majorana pair will be more robust against local perturbation and decoher-
ence. With all these intriguing physical properties, Majorana zero modes are regarded as
a promising candidate for implementing error-resilient topological quantum comput-
ing [15–18].

In solid-state physics, one-dimensional topological superconductivity can be real-
ized in several different types of hybrid materials, e.g., semiconductor-superconductor
nanowires [11, 19–23], normal channels between planar Josephson junctions [24–26],
ferromagnetic atomic chains on top of a superconductor [27, 28]. Despite much experi-
mental progress, a hybrid nanowire is inevitably subject to inhomogeneity and disorder,
which can give rise to topologically trivial subgap states [29–35], hindering an unam-
biguous detection of a topological superconductor. Within this context, a very appealing
solid-state platform for implementing a Kitaev chain is based on an array of semicon-
ducting quantum dots [36], which is much more immune to the effect of disorder owing
to the large level spacing of dot orbitals relative to the disorder fluctuations. In particular,
under a sufficiently strong magnetic field, the spin-polarized dot orbitals serve as spin-
less fermions, coupling with neighboring ones through both, normal and Andreev cou-
plings originating from elastic cotunneling (ECT), and crossed Andreev reflection (CAR)
mediated by a superconductor. Interestingly, even in a setup of only two quantum dots, a
two-site Kitaev chain can be realized and host a pair of poor man’s Majorana zero modes
at a fine-tuned sweet spot [37].

Very recently, significant experimental progress has been made to transform the above-
mentioned theoretical proposals and ideas into a physical realization. In a minimal Ki-
taev chain device of double quantum dots, the conductance spectrocopies measured at
the sweet spot are consistent with the signatures of Majorana zero modes [38]. Here,
the key physical insight is to mediate the effective couplings between dot orbitals us-
ing Andreev bound states (ABS) in a semiconductor-superconductor hybrid [39] instead
of the continuum states of superconductivity [36, 37]. Coupling through an ABS allows
that the ratio of CAR and ECT amplitudes can be controlled by varying the chemical po-
tential in the hybrid segment via electrostatic gating [39–42]. This effect was shown to
be robust to Coulumb interactions in the dots as well as strong coupling [43]. In spite
of progress, current Kitaev chain devices are still suffering from several shortcomings
which may limit its application in quantum technology in the future. First, the excitation
energy gap is relatively small (∼ 25 µeV), owing to the fact that CAR and ECT couplings,
which are induced by second-order tunneling processes, scale with the tunneling am-
plitude as ∼ t 2

0 /∆0, with t0 the characteristic dot-hybrid tunneling strength and ∆0 the
induced gap of ABS. Second, when scaling up the system into an N -site Kitaev chain,
one needs to have N quantum dots and N −1 pieces of hybrid segments, which makes
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the device fabrication process increasingly challenging for a longer chain.
Alternatively to using normal quantum dots, Ref. [44] proposed to use Andreev bound

states in proximitized quantum dots directly as spinless fermions in a Kitaev chain. There,
control over the proximity effect in each quantum dot was required, e.g. by using a quan-
tum point contact to couple to the superconductor.

In the current work, we propose a new method to create Kitaev chain combining the
advantages of previous proposals. Our implementation is based on an array of alternat-
ing quantum dot and semiconductor-superconductor hybrid (see Fig. 3.1). In particular,
the orbitals in the quantum dots and the ABS in the hybrids are now on equal footing as
the spinless fermions in the Kitaev chain, with the effective couplings being induced by
direct tunneling. Due to the electron and hole nature of the ABS, this coupling is simul-
taneously of the normal and Andreev type, with their ratio being tunable by varying one
or several of the experimentally accessible physical parameters, such as strength and di-
rection of the Zeeman field, as well as the changing the tunnel coupling between normal
and hybrid quantum dots. As such, it becomes possible to implement a two-site Kitaev
chain in a simple setup with only one quantum dot and one hybrid segment, and in
general an N -site Kitaev chain requires only N pieces of basic elements of either dot or
hybrid instead of 2N−1 as proposed in Ref. [36]. At the same time, our proposal does not
require control of proximity effect in individual dots as in Ref. [44], and can be realized
in the same type of devices as previous experiments [39–42]. Moreover, the energy gap
of the proposed Kitaev chain will be readily enhanced ∼ t0 owing to the direct tunneling
between dot and hybrid. Interestingly, when scaling up the system to a three-site Ki-
taev chain, next-nearest neighbor couplings emerge as a result of high-order tunneling,
lifting the Majorana zero energy at the sweet spot. Nevertheless, this energy splitting is
mitigated in a longer chain, giving robust zero mode within a larger parameter space, as
topological protection is approached.

While our approach is based on alternating normal and hybrid quantum dots, a par-
allel work considers the case of two superconducting quantum dots showing that a phase
difference alone can be used to tune to a sweet spot [45].

The remainder of the work is structured as follows: Section 3.2 focuses on the study of
minimal Kitaev chain based on a single pair of quantum dot and ABS. We introduce the
model Hamiltonian in Sec. 3.2.1 and derive its low-energy effective theory in Sec. 3.2.2.
In particular, in Sec. 3.2.3-3.2.5 we show how one can systematically fine-tune the sweet
spot using experimentally accessible physical parameters, e.g., strength and direction of
the Zeeman field, as well as induced pairing gap on the quantum dots. In Sec. 3.3, we
consider scaling up of the dot-ABS chain, highlighting the emergence of next-nearest
couplings and the effects on the Majorana properties at the sweet spot. Section 3.4 is
devoted to discussions before we summarize our work in Sec. 3.5.

3.2. MINIMAL KITAEV CHAIN IN A DOT-ABS PAIR
We first consider a minimal setup comprised of one quantum dot in the normal part and
one ABS in the hybrid section. In particular, we derive the effective normal and Andreev
couplings between them and the dependence of their ratio on experimentally accessible
parameters. Importantly, such a simple setup is sufficient for realizing a two-site Kitaev
chain and can host poor man’s Majorana zero modes at a fine-tuned sweet spot.
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3.2.1. MODEL HAMILTONIAN

Figure 3.1: Schematic of a Kitaev chain device from alternating quantum dots and Andreev bound states cre-
ated in semiconductor-superconductor hybrids. Quantum dots are formed by confinement potentials induced
by tunnel gates (vertical black lines), while ABS emerge in the quantum dot hosted in the hybrid segment
where the semiconductor is proximitized by superconductivity. The tunneling strength (purple dashed lines)
between dot and ABS can be tuned by varying the voltage of the tunnel gates, and the chemical potentials of
the dot and ABS can be adjusted by changing the plunger gate voltages (black T-elements).

The model Hamiltonian for a quantum dot-ABS pair is

HD A = HD +HA +HT ,

HD = (εD +EZ D )nD↑+ (εD −EZ D )nD↓+UD nD↑nD↓,

HA = (E A +EZ A)γ†
A↑γA↑+ (E A −EZ A)γ†

A↓γA↓,

HT = t0
∑

σ,η=↑,↓
c†
σ(Uso)σηdη+h.c.. (3.1)

Here HD is the Hamiltonian for a quantum dot with a single spinful orbital, which is a
valid approximation when the dot level spacing is large. nDσ = d †

σdσ is the occupancy
number of the dot orbital with spin σ, εD is the orbital energy, EZ D is the strength of the
induced Zeeman spin splitting, and UD is the Coulomb energy. HA is the Hamiltonian of
the semiconductor-superconductor hybrid. We assume that the low-energy physics of
the hybrid is well described by a pair of subgap ABS, with all the above-gap continuum
states being neglected. γAσ = σucσ + vc†

σ
is the Bogoliubov operator of the ABS with

σ = ±1 for spin ↑↓, and u2 = 1− v2 = 1/2+εA/2E A are the BCS coherence factors. E A =√
ε2

A +∆2
0 is the excitation energy, εA is the normal-state energy,∆0 is the induced pairing

gap, and EZ A is the strength of the induced Zeeman spin splitting. Here the Zeeman
energy for both quantum dot and ABS are induced by the same globally applied magnetic
field, and thereby the spin polarization axis of them coincide. However, owing to the g
factor renormalization at the semiconductor-superconductor interface [46–48], EZ A can
be much weaker than EZ D . In our numerical simulations, we set EZ A = EZ D /2 without
loss of generality. HT is the tunnel Hamiltonian between dot and ABS, with t0 being the
tunneling amplitude which can be controlled by varying the tunnel gate voltage. Uso is
a unitary matrix

Uso = e−iασθ

=
(
cosα− i sinαsinθ −sinαcosθ

sinαcosθ cosα+ i sinαsinθ

)
, (3.2)
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with the diagonal and off-diagonal elements denoting the spin-conserving and spin-
flipping processes, respectively. Hereα is the amount of spin precession accumulated in
the tunnel region due to spin-orbit interaction. σθ = cosθσy + sinθσz is the spin-orbit
field, which is perpendicular to the quantum dot chain axis. Without loss of generality,
here we have chosen a frame where the magnetic field direction and thus the dot spin
polarization axis are fixed, and a rotation of the magnetic field is now equivalently de-
scribed by rotating the spin-orbit field. In particular, θ is the angle between the magnetic
field and the dot chain axis, with θ = 0 (θ = π/2) corresponding to being perpendicular
(parallel) to the applied magnetic field.

3.2.2. LOW-ENERGY EFFECTIVE THEORY AND SWEET SPOT CONDITIONS
We now derive the low-energy effective theory of the dot-ABS pair introduced in Eq. (3.1).
In the strong Zeeman field regime, the spin-down ABS state gets closer to the Fermi en-
ergy while the spin-up ABS becomes higher in energy and can be projected away in the
leading-order approximation. For the quantum dot, either of the spin-polarized orbitals
can be closer to the Fermi energy than the other, depending on the value of the dot
chemical potential. Here, without loss of generality we restrict our discussions to the
spin-down states as the low-energy degrees of freedom in both segments, leaving the
discussions of other spin configurations in the supplemental material. Therefore, in the
weak tunneling, i.e., t0 ≪ EZ D ,EZ A , the effective Hamiltonian of a dot-ABS pair is

H eff
D A ≡ PHDAP = (εD −EZ D )d †

↓d↓+ (E A −EZ A)γ†
A↓γA↓

− tuγ†
A↓d↓− tso vγA↓d↓+h.c., (3.3)

where P projects the original Hamiltonian onto the spin-down states, t and tso are the
tunnel amplitudes for the spin-conserving and spin-flipping processes, respectively, which
are defined as

t = (Uso)↓↓ = t0(cosα+ i sinαsinθ),

tso = (Uso)↓↑ = t0 sinαcosθ, (3.4)

according to Eq. (3.2). Crucially, because an ABS is a coherent superposition of both
electron (u) and hole (v) components, single electron tunneling from the quantum dot
to the hybrid will simultaneously create and annihilate an ABS Bogoliubov excitation,
giving both normal and Andreev-like effective couplings

teff =−tu, ∆eff =−tso v (3.5)

between dot and ABS, as shown in Eq. (3.3). On the other hand, the Hamiltonian for a
two-site Kitaev chain is

HK 2 = ε1 f †
1 f1 +ε2 f †

2 f2 + t12 f †
2 f1 +∆12 f2 f1 +h.c., (3.6)

where fi is the annihilation operator of a spinless fermion on site-i , εi is the on-site
energy, t12 and ∆12 are the normal and Andreev-like tunneling between adjacent sites.
By comparing Eq. (3.3) with Eq. (3.6), we obtain the first main finding in the current work
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that the low-energy physics of a dot-ABS pair in the strong Zeeman regime is a two-site
Kitaev chain. In particular, the correspondence between the two is as below

f1 → d↓,

f2 → γA↓,

ε1 → εD −EZ D ,

ε2 → E A −EZ A ,

t12 → teff =−tu,

∆12 →∆eff =−tso v. (3.7)

Furthermore, the sweet spot of a two-site Kitaev chain is defined as ε1 = ε2 = 0 and |t12| =
|∆12|. That is, both the dot orbital energy

εD −EZ D = 0, (3.8)

and the ABS energy √
ε2

A +∆2
0 −EZ A = 0, (3.9)

need to be adjusted to be on resonance. In addition, the magnitudes of normal and
Andreev-like couplings need to be in perfect balance

|tu| = |tso v |. (3.10)

Once the sweet spot conditions indicated by Eqs. (3.8)- (3.10) are all satisfied, a pair of
poor man’s Majorana zero modes will emerge and localize themselves on the dot and
hybrid segments, respectively, see also Fig. 3.2 (d).

3.2.3. TUNING ZEEMAN FIELD STRENGTH
We now consider how to reach the sweet spot in a dot-ABS pair by varying experimentally
accessible parameters. The most crucial step is the capability of tuning the relative am-
plitude of teff and∆eff. In this subsection, we focus on using the Zeeman field strength as
the tuning knob, which means one only varies the strength of the applied magnetic field,
with its direction being fixed to be perpendicular to the Rashba spin-orbit field. Setting
θ = π/2, we thereby have t = t0 cosα and tso = t0 sinα in Eq. (3.4). Among the three
sweet spot conditions, the zero-energy dot orbital defined in Eq. (3.8) can be readily sat-
isfied by merely varying the dot chemical potential. By contrast, the other two defined
in Eqs. (3.9) and (3.10) are more subtle and mutually constrained. Specifically, under a
sufficiently large Zeeman field (EZ A >∆0), a zero-energy ABS is obtained only when the
normal-state energy is pinned at

ε∗A ≡−
√

E 2
Z A −∆2

0 < 0. (3.11)

Note that here we particularly choose the negative εA solution, corresponding to a hole-
dominant ABS (u < v) such that a balance between teff and∆eff indicated in Eq. (3.10) can
be obtained in the weak spin-orbit interaction regime tso < t (a complete overview of all
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Figure 3.2: (a) strength of the effective couplings teff and ∆eff as a function of EZ A in a dot-ABS configuration.
Analytic (numerical) results are presented with solid lines (dots). In the numerical calculations, the normal dot
Zeeman energy is chosen to be EZ D = 2EZ A . At EZ A = E∗

Z A , we find |teff| = |∆eff| . (b) Sweet spot Zeeman en-
ergy E∗

Z A and excitation gap Egap as a function of α due to spin-orbit interaction. (c) Charge stability diagram
at EZ A = E∗

Z A . Here ∆E = Eodd, gs −Eeven, gs is the energy difference between the ground states in opposite

fermion parity subspaces. The sweet spot is indicated by a yellow cross. (d) Majorana wavefunctions ρ(i )
MZM at

the sweet spot in (c). (e) Local conductance GRR as a function of bias voltage Vbias and ABS detuning δεA .

possible sweet-spot conditions is given in the Appendix). As a result, the dependence of
the magnitudes of the effective couplings on the Zeeman field strength is as below

|teff(EZ A)| = t0 cosαp
2

√
1−

√
1−∆2

0/E 2
Z A ,

|∆eff(EZ A)| = t0 sinαp
2

√
1+

√
1−∆2

0/E 2
Z A . (3.12)

Equations (3.11) and (3.12) show that increasing the Zeeman field strength, is changing
the electron and hole components of the zero-energy ABS, i.e., increasing v from 1/

p
2 to

close to 1, while decreasing u from 1/
p

2 to nearly zero. Therefore, with EZ A increasing
from ∆0, the Andreev coupling |∆eff| is enhanced from t0 sinα/

p
2 to ∼ t0 sinα while the

normal coupling |teff| is suppressed from t0 cosα/
p

2 to zero in the large Zeeman limit
[see Fig. 3.2(a)]. As a result, in the weak spin-orbit interaction regime (α<π/4), which is
experimentally relevant for InAs and InSb hybrid nanowires [38, 40–42], the two coupling
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strengths will become equal at

E∗
Z A = ∆0

sin(2α)
, (3.13)

as indicated by the black dashed line in Fig. 3.2(a). Furthermore, the excitation gap at
this fine-tuned point is

Egap = 2|teff(E∗
Z A)| = t0 sin(2α), (3.14)

which is defined as twice the effective coupling strength. As shown in Fig. 3.2(b), E∗
Z A is a

decreasing as a function of the spin-orbit interaction strengthα, while Egap is increasing.
In general, a larger E∗

Z A is preferable in order to allow for a wider detuning range of the

ABS energy δεA ∼
√

E∗2
Z A −∆2

0. Therefore, in choosing the optimal value of spin-orbit

interaction α for the dot-ABS pair, there exists a tradeoff between a sizeable gap Egap

and a large range of allowed δεA for the effective Kitaev model.
To corroborate the analytic results obtained from the low-energy theory, we perform

numerical simulations of the dot-ABS pair based on the full many-body Hamiltonian
introduced in Eq. (3.1). In particular, we choose ∆0 = 1 to be the natural unit, UD = 5,
t0 = 0.2 and α= 0.3, putting the system into the weak tunneling and weak spin-orbit in-
teraction regime. As shown in Fig. 3.2(a), the numerically calculated |teff| and |∆eff| as a
function of EZ A are in excellent agreement with the analytic results shown in Eq. (3.12).
In Fig. 3.2(b), the calculated E∗

Z A and Egap also match very well with the analytical pre-
dictions in Eqs. (3.13) and (3.14). Figures 3.2(c) shows the charge stability diagram in the
(εD ,εA) plane. A sweet spot, which is defined as the degeneracy point between even- and
odd-parity ground states along with balanced normal and Andreev coupling strengths,
appears in the right-bottom corner when EZ A ≈ 1.75 ∆0, consistent with the analytically
predicted value of E∗

Z A = 1.77 ∆0. Here, the right-bottom corner corresponds to a spin-
down dot orbital and a hole-dominant ABS, which is the focus of this section. Further-
more, the calculated wavefunctions in Fig. 3.2(d) show that indeed, a pair of Majorana
zero modes emerge at the sweet spot [yellow cross in Fig. 3.2(c)], localized at the quan-
tum dot and hybrid, respectively. In Fig. 3.2(e), the calculated tunnel conductance spec-
troscopy in the (Vbias,δεA) plane shows a stable zero-bias peak and a parabola-shaped
gap peak, consistent with the conductance features of poor man’s Majorana zero modes.

3.2.4. TUNING ZEEMAN FIELD DIRECTION
We now consider rotating the applied magnetic field in order to find the sweet spot, with
the field strength being fixed. Inside the rotation plane, the field direction can be ei-
ther parallel or perpendicular to the spin-orbit field [49, 50]. In our consideration, this
field rotation is equivalently described by rotating the spin-orbit field while fixing the
Zeeman field and spin polarization axis, as explained after Eq. (3.2). While increasing
field strength changes u and v of the zero-energy ABS, the effect of field rotation is to
change the ratio of the spin-conserving t and spin-flipping amplitudes tso , as indicated
in Eq. (3.4). Plugging Eq. (3.4) into Eq. (3.5), we thus obtain

|teff(θ)| = t0

√
1− sin2αcos2θ ·u(EZ A),

|∆eff(θ)| = t0 sinαcosθ · v(EZ A), (3.15)
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where u and v do not depend on angle θ. Here we only focus on 0 ≤ θ ≤ π/2, since the
strength of the effective couplings are π-periodic and symmetric about θ = 0. As shown
in Fig. 3.3(a), |teff| (|∆eff|) is an increasing (decreasing) function of the field angle θ. In
particular, when the magnetic field aligns with the spin-orbit field (θ =π/2), |∆eff|, which
is of triplet nature, is suppressed completely due to spin conservation. In order to obtain
a sweet spot in the angle sweep, one thereby needs to start with a sufficiently strong
Zeeman field (EZ A > E∗

Z A), giving |∆eff| > |teff| at θ = 0, and then rotate the magnetic field
to reach the balance between |∆eff| and |teff|. Thus, in general a larger excitation gap
would appear in the vicinity of θ = 0, where the spin-flipping processes are maximized.
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Figure 3.3: (a) Strength of the effective couplings |teff| and |∆eff| as a function of the field angle θ at EZ A =
E∗

Z A + δEZ A (δEZ A = 0.2). Here θ is the angle between the magnetic field and the dot chain axis, and in
particular, θ = 0 corresponds to the magnetic field being perpendicular to the spin-orbit field. (b) |teff| and
|∆eff| as a function of induced gap ∆D at EZ A = E∗

Z A −δEZ A . In both scenarios, a perfect balance between
|teff| and |∆eff| can be obtained.

3.2.5. TUNING INDUCED PAIRING GAP IN THE QUANTUM DOT

The third tuning knob we consider in the current work is the superconducting pairing
gap in the normal quantum dot, which can be induced from the adjacent hybrid by prox-
imity effect. Microscopically, this proximity effect can originate from either the ABS or
the continuum states, with the forms being

∆ABS = (t 2 + t 2
so)

uv

E A +EZ A
,

∆cont = (t 2 + t 2
so)

χ

∆0
, (3.16)

up to the leading order. Here∆ABS comes from the high-energy spin-up ABS, while∆cont

is obtained assuming a zero-band-width model for the continuum states, with χ char-
acterizing the continuum density of states which can be quite different from the ABS.
Since both ∆ABS and ∆cont increase with the tunnel amplitude t0, their strength can be
experimentally enhanced by lowering the tunnel barrier between dot and hybrid. In
the following calculations, we do not distinguish between the microscopic origins of the
proximity effect, instead we consider their combined effect in a phenomenological way
(examples of a microscopic model to change the induced superconductivity by tuning t0
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are given in the Appendix). Now the dot Hamiltonian becomes

H ′
D = HD +Hind,

Hind =∆D d †
↑d †

↓ +h.c., (3.17)

where HD is the bare dot Hamiltonian defined in Eq. (3.1), and ∆D is the total induced
gap on the dot. As a result, the dot orbital in the quantum dot is now proximitized into
an Yu-Shiba-Rusinov state [51–54], with the electron and hole components being

uD =
√

1

2
+ ξD

2(UD /2+EZ D )
≈ 1− 1

8

(
∆D

UD /2+EZ D

)2

,

vD =
√

1

2
− ξD

2(UD /2+EZ D )
≈ 1

2

(
∆D

UD /2+EZ D

)
, (3.18)

where

ξD ≡ εD +UD /2 =
√(

UD

2
+EZ D

)2

−∆2
D (3.19)

is determined by the zero-energy condition for the bound state. Note that the approx-
imations in Eq. (3.18) are made in the weak proximity effect regime (∆D ≪ UD ), and
thereby, up to the leading order of∆D /UD , uD = 1 becomes a constant and only vD ∝∆D

grows linearly with∆D . As a result, the effective couplings between dot and ABS become

teff = t (uAuD − v A vD ) ≈ t (uA − v A vD ),

∆eff = tso(v AuD +uA vD ) ≈ tso(v A +uA vD ). (3.20)

That is, teff decreases with the magnitude of the induced pairing, while ∆eff increases
with it. In Fig. 3.3(b), the solid lines show the analytic curves of |teff| and |∆eff| as a func-
tion of ∆D derived in Eq. (3.20), which agree with the numerical results obtained from
the full many-body Hamiltonian (dots and dashed lines). Note that here the Zeeman
field is perpendicular to the spin-orbit field, and its strength is chosen to be EZ A < E∗

Z A
such that |teff| > |∆eff| at zero proximity effect, and a balance between them is reached at
a sufficiently strong ∆D .

3.3. SCALING UP THE KITAEV CHAIN
We now go beyond the minimal setup of a dot-ABS pair and scale up the system into
a longer chain. Without loss of generality, we consider tuning up the sweet spot and
Majorana modes by varying the Zeeman field strength, with its direction being fixed to be
perpendicular to the spin-orbit field and no superconducting proximity effect on normal
quantum dots. Moreover, we assume homogeneity in the long-chain system, i.e., all the
physical parameters for the dots/ABS/tunneling are identical.

3.3.1. THREE-SITE KITAEV CHAIN: DOT-ABS-DOT
As a first example of the three-site Kitaev chain, we consider a dot-ABS-dot chain, focus-
ing on its physical properties around the sweet spot. The Hamiltonian is given by

HDAD = HDL +HA +HDR +HT L A +HT R A , (3.21)
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where HDL , HA and HDR are the Hamiltonians for the left dot, the middle ABS, and the
right dot, respectively. HT L A (HT R A) is tunnel Hamiltonian between the ABS and the
left (right) dot. The specific forms of these individual Hamiltonian terms are the same
as those introduced in Eq. (3.1). Under the assumption of homogeneity, one can simul-
taneously tune both dot-ABS pairs into their own sweet spot by applying a global Zee-
man field EZ A = E∗

Z A and setting εDL = εDR = ε∗D and εA = ε∗A as indicated in Fig. 3.2(c),
such that the whole system is automatically entering the sweet spot regime. Indeed,
as shown in Fig. 3.4(a), two unpaired Majorana modes are completely localized on the
outermost quantum dots, precisely as expected for the sweet spot of a three-site Ki-
taev chain [1]. However, a surprising fact is that the energy of the two Majoranas are
split into EM Z M ≈ 0.01 which is approximately one-tenth of the excitation gap, [see
Fig. 3.4(b) at δε= 0], even though there is no wavefunction overlap between them at all
[see Fig. 3.4(a)]. Furthermore, as shown in Fig. 3.4(b), the energy spectrum of the whole
system as a function of the detuning energy deviates from the cubic scaling behavior
E ∝ (δε)3 of an idealized three-site Kitaev chain. Here the detuning energy is defined as
δε= εDL −ε∗D = εDR −ε∗D = εA −ε∗A .

DL
↑
DL
↓
A
↑
A
↓
DR
↑
DR
↓

0

1

ρ
(i

)
M

Z
M

(a)

−0.2 −0.1 0.0 0.1 0.2
δε [∆0]

−0.2

0.0

0.2

E
[∆

0
]

(b) HK3 HDAD

Figure 3.4: (a) Majorana wavefunctions at the sweet spot of a dot-ABS-dot chain. (b) Energy spectrum of the
system as a function of detuning energy δε. The solid lines are calculated for the full many-body Hamiltonian,
while the grey dashed lines are based on the low-energy effective theory. The energy splitting at δε= 0 is due
to effective next-nearest-neighbor coupling between the two outer dots.

To understand the physical mechanism underlying this intriguing energy splitting,
we develop a low-energy effective theory for the dot-ABS-dot chain, including both the
first- and second-order contributions,

HDAD,eff = H (1)
DAD,eff +H (2)

DAD,eff. (3.22)

Here H (1)
DAD,eff includes only the low-energy states and direct tunneling terms, which is a

straightforward generalization of the dot-ABS pair, giving

H (1)
DAD,eff = PHDADP

= (εDL −EZ D )d †
L↓dL↓+ (E A −EZ A)γ†

A↓γA↓

+ (εDR −EZ D )d †
R↓dR↓+ teffL Aγ

†
A↓dL↓+∆effL AγA↓dL↓

+ teffR Aγ
†
A↓dR↓+∆effR AγA↓dR↓+h.c.. (3.23)
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Indeed, the first-order effective Hamiltonian H (1)
DAD,eff is a three-site Kitaev chain. In par-

ticular, the sweet spot is reached when all the onsite energies are zero and EZ A = E∗
Z A

giving teffL A = teffR A =∆effL A =∆effR A . In addition, unlike the dot-ABS pair, we now also
include the second-order perturbation terms into the effective Hamiltonian as below

H (2)
DAD,eff = PHT

1−P

HA
HT P

= tDD d †
L↓dR↓+∆DD dL↓dR↓+h.c., (3.24)

where HT = HT L A+HT R A . Equation (3.24) indicates that effective next-nearest-neighbor
couplings between the outer dots can be mediated by the high-energy ABS in the hybrid
via second-order tunnelings (see Fig. 3.5). Specifically, these couplings have the follow-
ing form

tDD = t 2v2 + t 2
sou2

2EZ A
≈ t 2v2

2EZ A
,

∆DD = 2t tsouv

2EZ A
≪ tDD , (3.25)

where we assume the weak spin-orbit limit tso ≪ t and u ≪ v holds in the vicinity of the
sweet spot. Therefore, up to the second order in t0, the low-energy physics of a dot-ABS-
dot chain is well described by a generalized three-site Kitaev chain

HK 3 =
3∑

i=1
εi f †

i fi +
2∑

i=1
(t f †

i+1 fi +∆ fi+1 fi )

+ t31 f †
3 f1 +∆31 f3 f1 +h.c., (3.26)

where fi is the spinless fermion on the i -th site, εi is the on-site energy, t and ∆ are the
normal and Andreev tunnelings between adjacent sites, and t31 and ∆31 are the next-
nearest-neighbor tunnelings. Indeed, as shown in Fig. 3.4(b), the energy spectrum of
the full many-body Hamiltonian in Eq. (3.21) is in excellent agreement with that of the
effective model in Eq. (3.26), supporting our perturbation theory analysis. In the cal-
culation of the generalized Kitaev model, the Hamiltonian parameters are chosen as
t = ∆ = teff(E∗

Z A), t31 = tDD ,∆31 = 0 and εi = δε. Therefore our new finding here is that
even though the two Majorana modes have no wavefunction overlap in space at the
sweet spot [see Fig. 3.4(a)], they are still coupled to each other via next-nearest-neighbor
couplings, giving a finite energy splitting [see Fig. 3.4(b)]. In App. 3.10 we expand our
discussion to the case of inhomogeneities of g-factors and spin-orbit mixing between
the constituing dots of the array.

3.3.2. THREE-SITE KITAEV CHAIN: ABS-DOT-ABS
We briefly discuss the physics of an ABS-dot-ABS chain which is somewhat dual to a
dot-ABS-dot chain. The Hamiltonian is given by

HADA = HAL +HD +HAR +HT LD +HT RD , (3.27)
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Figure 3.5: Schematic of the second-order tunneling processes that are responsible for the next-nearest-
neighbor couplings in a dot-ABS-dot or ABS-dot-ABS chain.
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Figure 3.6: (a) Majorana wavefunctions at the sweet spot of an ABS-dot-ABS chain. (b) Energy spectrum of the
system as a function of detuning energy δε. The solid lines are calculated for the full many-body Hamiltonian,
while the grey dashed lines are based on the low-energy effective theory. The energy splitting at δε= 0 is due
to effective next-nearest-neighbor coupling between the two outer ABS.

which has two outer ABS connected by a quantum dot in the middle. Similar to the
analysis performed in the previous subsection, the low-energy physics of the system is

HADA,eff = H (1)
ADA,eff +H (2)

ADA,eff, (3.28)

where the first-order term is

H (1)
ADA,eff = (E AL −EZ A)γ†

L↓γL↓+ (εD −EZ D )d †
↓d↓

+ (E AR −EZ A)γ†
R↓γR↓+ teffLD d †

↓γL↓+∆effLD d↓γL↓

+ teffRD d †
↓γR↓+∆effRD d↓γR↓+h.c., (3.29)

and the second-order term is

H (2)
ADA,eff = tA Aγ

†
L↓γR↓+∆A AγL↓γR↓+h.c., (3.30)

with

tA A = t 2v2 + t 2
sou2

2EZ D
≈ t 2v2

2EZ D
,

∆A A = 2t tsouv

2EZ D
≪ tA A . (3.31)
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We thus see that the low-energy physics of a ABS-dot-ABS chain is also a generalized
three-site Kitaev chain, with only the roles of quantum dots and ABS being interchanged.
Actually the sweet spot of the system is also reached at EZ A = E∗

Z A , giving an excitation
energy gap of similar size with its dual system. The only difference is a more suppressed
Majorana energy splitting [see Fig. 3.6(b)] because a larger Zeeman spin splitting in the
quantum dot suppresses the second-order tunnelings, as indicated in Eq. (3.31). As for
the dot - ABS - dot setup, in App. 3.10 we expand the discussion to situations where
the dots have inhomogeneities in either g-factors or spin-orbit mixing. In particular we
find that the ABS - dot - ABS system yields more resillient sweet spots due to the larger
separation of levels on the central normal dot.
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Figure 3.7: Energy spectra of N -site alternating quantum dot-ABS chains around the sweet spot. For interme-
diate length chains (e.g., N = 3), the next-nearest-neighbor coupling has an appreciable effect on the Majorana
energy splitting at the sweet spot. As the chain is further scaled up (N ≥ 4), this Majorana energy splitting is
quickly suppressed due to the short-range nature of this effective coupling as shown in Eq. (3.33).

3.3.3. LONGER KITAEV CHAIN
For a general Kitaev chain with N alternating quantum dots and ABS in total, its low-
energy physics can be well described by an effective Hamiltonian up to the N−1-th order,
i.e.,

HN ,eff =
N−1∑
k=1

H (k)
N ,eff. (3.32)

In particular, the strength of the effective couplings between two arbitrary sites in such
an N -site chain has the following scaling behavior

Γk ∼ t k
0

(2EZ )k−1
∼ t0 exp{−(k −1)log(2EZ /t0)}, (3.33)

for 1 ≤ k ≤ N −1. Here Γk denotes the effective normal or Andreev coupling between any
two sites separated by a distance of k (e.g., Γ1 for the nearest-neighbor coupling), and
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EZ is the Zeeman spin splitting of either dot or ABS located between the two sites con-
sidered. Physically, Γk originates from virtual tunnelings that include k times of single-
electron tunneling events via k −1 different high-energy states that are gapped from the
Fermi energy due to Zeeman spin splitting. From Eq. (3.33), we see that Γk decays expo-
nentially with the distance between the coupled two sites, with the decay length being
approximately

ξ−1
Γ ∼ log(2EZ /t0). (3.34)

The range of the effective couplings thus decreases with an increase of Zeeman energy
in the dot-ABS chain, and as a result, the low-energy physics of the dot-ABS chain will
asymptotically approach the idealized spinless Kitaev chain only in the large Zeeman en-
ergy limit (EZ ≫ t0). Another crucial feature of Γk is being short-ranged in nature, mak-
ing it possible to reach topological protection in the long-chain limit. Indeed, the nu-
merical simulations based on the full many-body Hamiltonian for N -site dot-ABS chain
(see Fig. 3.7) show that the finite Majorana energy splitting become strongly suppressed
to nearly zero once there are as many as four or five sites. Moreover, for N as large as six,
the range of δε for hosting zero-energy excitation extends asymptotically to the long-
wire limit −teff(E∗

Z A)≲ δε≲ teff(E∗
Z A) and signatures of gap closing and reopening begin

to appear near |δε| ∼ teff, indicating the emergence of topological phase transition.

3.4. DISCUSSION
In the current work, we proposed a new way of implementing a Kitaev chain in an alter-
nating quantum dot-Andreev bound state array. Although the configuration of the pro-
posed hybrid devices resembles those considered in Refs. [36, 37, 39, 43], a fundamental
difference is the role of ABS. In Refs. [39, 43], the ABSs are gapped and only serve as a
virtual coupler to mediate the effective couplings between quantum dots. By contrast,
here the spin-polarized ABS is taken close to the Fermi energy and are on equal footing
with the dot orbitals as the spinless fermions. Consequently, an immediate advantage
of our proposal is to emulate a Kitaev chain using a reduced number of quantum dots
and hybrid segments in a device. In particular, it becomes possible to implement a two-
site Kitaev chain and poor man’s Majoranas using only one quantum dot and one hybrid
segment. Furthermore, the existing two-site Kitaev chain device comprised of a double
quantum dot linked by a hybrid [38] is now suitable for realizing a three-site Kitaev chain
exhibiting the physics of bulk-edge correspondence in the vicinity of its sweet spot. On
the other hand, our proposal differs from the ABS chain proposed in Ref. [44] in that
we require only half the number of superconducting leads and that we do not need to
control the quantum point contact between the semiconductor wire and the supercon-
ductor leads, making our theoretical proposal more experimentally accessible. Another
advantage of our proposal is the ability of getting a relatively large excitation gap, be-
cause now the effective couplings originate from direct couplings of the dot-ABS pair, i.
e., Egap ∼ t0 in stark contrast with the second-order tunneling processes Egap ∼ t 2

0 /∆0 in
the previous works [39]

Throughout the work, we have assumed perfect homogeneity when considering a
long Kitaev chain device (N ≥ 3), but this has to be relaxed in a realistic device. That is,
the quantum dots can have different values of charging energy UD , g factor EZ D , while
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EZ A and induced gap ∆0 of the ABS may vary from piece to piece. Therefore, it would be
rather unlikely to drive the whole long chain into the sweet spot by merely controlling a
global magnetic field, and as a result, the tuning knob of induced gap on quantum dots
become particularly crucial, because it will allow for fine-tuning the couplings in each
individual dot-ABS pair into perfect balance.

Another new finding of our work is the presence of couplings beyond the nearest
neighbors, which originate from high-order tunneling processes. Its effect will be most
prominent in a three-site device (e.g., dot-ABS-dot chain), where the Majorana energy
at the sweet spot becomes split even though their wavefunctions are completely sepa-
rated on the outermost dots. This raises a new open question of whether it is possible
to define such a sweet spot which simultaneously satisfies three conditions: 1. complete
spatial separation of the Majoranas, 2. robustness against onsite-energy detuning, and
3. minimizing the Majorana energy to nearly zero. In order to obtain an idealized Kitaev
chain model, as shown in Eqs. (3.25) and (3.31), the couplings between two distant sites
would be suppressed in the strong Zeeman limit, similar to the findings in the Majorana
nanowire scenarios [55]. In addition, in the tunneling regime t0 ≪ EZ , such couplings
are short-ranged in nature, and therefore the effect will be mitigated as the number of
sites is scaled up. As we show, when the number of sites is as large as six, the whole chain
becomes very close to a topological Kitaev chain with robust zero energy and signatures
of gap closing and reopening near the quantum phase transition.

3.5. SUMMARY
To summarize, we have proposed a new route to simulating Kitaev chain in an alternat-
ing quantum dot-Andreev bound state array. In particular, both the dot orbitals and the
ABS are now on equal footing as spinless fermions, and the relative amplitude of normal
and Andreev couplings between adjacent sites are highly tunable by the strength and
direction of the magnetic field, as well as the magnitude of the induced pairing gap on
quantum dots. As the quantum dot-ABS chain is scaled up, couplings beyond the near-
est neighbors emerge, affecting the Majorana energy at the sweet spot. Nonetheless, due
to short-range nature of these couplings, topological protection of Majorana zero modes
will recover in the long chain limit. Our proposal will allow for a more efficient simula-
tion of artificial Kitaev chain using a reduced number of quantum dot or hybrid segment
and will at the same time obtain a larger excitation gap above the Majorana zero modes.
In recent experiments [40, 56], it has been demonstrated possible to isolate a single ABS
in a short hybrid region, making our proposal particularly appealing and relevant to the
ongoing studies. Finally, we have been made aware of [45] by its authors. In contrast
to [45], we consider the the limit of both quantum dots being maximally asymmetric in
their proximity coupling to the superconductor.
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3.6. DETAILS OF THE NUMERICAL CALCULATIONS
The numerical results in this work are obtained by exact diagonalization of the full many-
body Hamiltonian, e.g., Eq. (3.1), in Fock space. The dimension of the total Hamiltonian
is 22N where N is the number of quantum dots plus ABS in the chain. Due to fermion
parity conservation, we can decompose the Hamiltonian into even- and odd-parity sub-
space of dimension 22N−1. As a result, the excitation energy E , as depicted in Figs. 3.4,
3.6, and 3.7, has been obtained through

Eλ = E (λ)
odd −E (0)

even (3.35)

for λ = 0,1,2, ...,22N−1 − 1. In a similar fashion, ∆E in the charge stability diagrams, as
depicted in Fig. 3.2(c), is obtained by restricting λ in Eq. (3.35) to λ= 0. To obtain teff and
∆eff we make use of the following relation

∆eff = (E1 +E0)/2,

teff = (E1 −E0)/2, (3.36)

where E0,E1 are defined in Eq. (3.35).
Here teff is related to the cost of exciting an unpaired electron while ∆eff is related to

splitting the lowest Cooper pair into two unpaired electrons. The gap energy, depicted
in e.g. Fig. 3.2(b), is obtained directly through

Egap ≡ E1. (3.37)

In addition, the spectrum plots also contain the energy of the MZM itself in the lowest
laying line following

EMZM ≡ E0. (3.38)

The Zeeman energies characterising the sweet spot depicted in Fig. 3.2 b) have been
determined by using the properties of the CSD [see Fig.3.2 (c)]. As Fig. 3.3 shows, if EZ A

is slightly below the sweet spot E∗
Z A , the degeneracy crossing vanishes in favor of an teff

dominated (∆E > 0) anti-crossing. For EZ A > E∗
Z A the same anti-crossing is caused by

a dominating ∆eff process (∆E < 0). Therefore, the sweet spot is characterised by the
root ∆E(E∗

Z A) = 0 at the point where the charge degeneracy lines have their smallest
distance in the (εD ,εA) plane. To determine the point of minimal distance, we perform
a transformation of the chemical potentials into polar coordinates

(εD ,εA) → (rε cos
(
ϕε

)
,rε sin

(
ϕε

)
) rε =

√
ε2

D +ε2
A , tan

(
ϕε

)= εA/εD . (3.39)
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In polar coordinates, the point with minimal distance between the degeneracy lines is
found to satisfy

(rε,ϕε) ∈ {rε,ϕε : min[∆E(rε,ϕε)]∧max[∆E(rε,ϕε)]}. (3.40)

The bottom right corner we discuss has the further constraint that ϕε ∈ [−π/2,0]. To
obtain the MZM wavefunctions, ρ(i )

MZM, depicted in Figs. 3.2, 3.4, and 3.6 we define the
spin dependent on-site MZM operators

wσ = (dσ+d †
σ) (3.41)

zσ = i (dσ−d †
σ). (3.42)

The MZM on the ABS are defined analogously with the corresponding creation and an-
nihilation operators. From Eq. (3.41) we find the MZM wavefunctions through

ρ(w)
MZM = |〈ψ(0)

odd|wσ+wσ|ψ(0)
even〉|2 (3.43)

ρ(z)
MZM = |〈ψ(0)

odd|zσ+ zσ|ψ(0)
even〉|2 (3.44)

where |ψ(λ)〉 denotes an eigenstate of the many-body Hamiltonian, cf. Eq. (3.1). The con-
ductance plot in Fig. 3.2 e) has been obtained by implementing the rate equations listed
in the supplementary material of [43]. The energies of the Kitaev model [1] in Figs. 3.4,
and 3.6 have been obtained by exact diagonalization and replacing the parameters by
their corresponding partners from perturbation theory, cf. Eq. (3.7). Lastly, the pertur-
bative analysis has in parts been performed by using Pymablock [58]. All codes related
to the results presented in the manuscript can be found in the accompanying Zenodo
repository [57]

3.7. SYMMETRIES OF THE CHARGE STABILITY DIAGRAM
The CSD depicted in Fig. 3.2 shows six distinct regions with alternating groundstate
properties. If the low-energy subspace is described by the Hamiltonian given in Eq. (3.3),
then varying the chemical potentials εi on the two sites changes the charge state of the
dots. The possible charge states on each site depending on the chemical potential are

| ↓↑〉, εD <−UD −EZ D (3.45)

| ↓〉, −UD −EZ D < εD < EZ D (3.46)

|0〉, εD > EZ D (3.47)

on the normal dot, and

u|0〉+ v | ↑↓〉, εA <−
√

E 2
Z A −∆2

0 (3.48)

| ↓〉, −
√

E 2
Z A −∆2

0 < εA <
√

E 2
Z A −∆2

0 (3.49)

u|0〉+ v | ↑↓〉, εA >
√

E 2
Z A −∆2

0, (3.50)
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on the proximitized dot, where u > v in Eq. (3.48), and v > u in Eq. (3.50). The precise
choice of the corner in the CSD depends on 1) the choice of the degeneracy on the nor-

mal dot, and 2) the choice of the ABS, i.e. εA = ±
√

E 2
Z A −∆2

0. The choice of the normal

dot degeneracy yields different low energy Hamiltonians due to the different spin ori-
entations that are relevant for the transition. For the right two corners, the normal dot
orbital is spin-down, so we have

HT ≈−tsoc†
↑d↓+ tc†

↓d↓+h.c.

≈−tso vγ↓d↓− tuγ†
↓d↓+h.c., (3.51)

where we have used the Bogoliubov transformation

c†
↑ = uγ†

↑+ vγ↓, c†
↓ =−uγ†

↓+ vγ↑. (3.52)

So we have

teff =−tu, ∆eff =−tso v (3.53)

for both bottom-right and top-right corners. On the other hand, for the left two corners,
the dot orbitals are spin-up states, giving

HT ≈ t∗c†
↑d↑+ tsoc†

↓d↑+h.c.

≈ t∗vγ↓d↑− tsouγ†
↓d↑. (3.54)

Thus

teff =−tsou, ∆eff = t∗v. (3.55)

The choice top- or bottom-corner depends on the choice of the ABS. In Fig. 3.8 we have
depicted the different options in the parameter regimes relevant for the problem. Choos-

ing the negative energy ABS (εA = −
√

E 2
Z A −∆2

0) yields v > u while it is the opposite

(u > v) for the positive energy ABS. Finally, the availability of a corner to host a sweet
spot depends on the relation between t and tso . The main text discusses the behavior at
the bottom-right sweet spot when t > tso , a condition that needs to be satisfied for the
bottom-right corner to be a viable sweet spot. The choice of corner is then determined

by the ABS, i.e. for the bottom-right corner that is εA =−
√

E 2
Z A −∆2

0 which yields v > u.

This is necessary to enable |teff| = |∆eff|, see Eq. (3.53). Choosing the opposite ABS, i.e.

εA =
√

E 2
Z A −∆2

0, one switches from the bottom right to the top right corner. This corner

can however not host any sweet spot when t > tso since

u =
√

1

2

(
1+

√
1−∆2

0/E 2
Z A

) ∆0
EZ A

↗1
≈

p
2

2
+

√
1−∆2

0/E 2
Z A

2
+
p

2

8

(
∆2

0

E 2
Z A

−1

)
(3.56)

v =
√

1

2

(
1−

√
1−∆2

0/E 2
Z A

) ∆0
EZ A

↗1
≈

p
2

2
−

√
1−∆2

0/E 2
Z A

2
+
p

2

8

(
∆2

0

E 2
Z A

−1

)
(3.57)
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showing that u > v for EZ A > ∆0 (see also Fig. 3.8). If however tso > t , the constraint on
u, v is inverted and the availability of the two corners flips. For clarity, we introduce the
precise definitions by which we refer to the corners of the CSD in table 3.1. There, we list
the participating, i.e. degenerate states, on the normal dot (dot D) and the proximitized
dot (dot A). Furthermore, we give the conditions relevant for the existence of the sweet
spot, e.g. that a bottom right sweet spot becomes viable if both v > u and t > tso are met.

Left Right
Dot D : | ↓↑〉 ; | ↓〉 Dot D : | ↓〉 ; |0〉

Top t > tso t < tso

Dot A: u|0〉+ v | ↑↓〉 ; | ↓〉 u > v u > v
Bottom t < tso t > tso

Dot A: | ↓〉 ; u|0〉+ v | ↑↓〉 u < v u < v
H eff

D A terms teff =−tsou ;∆eff = t †v teff =−tu ;∆eff =−tsov

Table 3.1: Definition of the corners visible in the charge stability diagram, Fig. 3.2. The given constraints on
u, v and t , tso determine the whether the corresponding corner in the charge stability diagram is a viable sweet
spot.

−2 −1 0 1 2
εA

0

1

2

E
A
−
E
Z
A

u = v

v > u u > v

EZA = 0

EZA = ∆0

EZA = ∆0

sin(2α)

Figure 3.8: ABS energy depending on the on-site chemical potential of the ABS dot for varying Zeeman energies
EZ A . Depending on the Zeeman energy, at most two ABS solutions will become available to potentially host
sweet spots of the system.

3.8. FINITE CHARGING ENERGY UABS IN THE ANDREEV BOUND

STATE
The main text discusses a configuration without charging energy on the ABS dot. Re-
moving this constraint, we obtain the Hamiltonian on the ABS dot as

HA = (ε−EZ A)c†
↓c↓+ (ε+EZ A)c†

↑c↑+∆0c†
↑c† ↓ +UABSc†

↑c†
↓c ↓ c ↑ +h.c (3.58)

in the electronic basis. UABS is the charging energy on the ABS and the remaining sym-
bols are defined in Sec. 3.2.1. In the many-body basis, {|0〉, | ↓↑〉, | ↓〉, | ↑〉}, we can write the
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Hamiltonian

HA =


0 ∆ 0 0
∆ 2ε+UABS 0 0
0 0 ε−EZ A 0
0 0 0 ε+EZ A

 . (3.59)

We substitute ξ = 2ε+UABS and define Eξ =
√
ξ2 +∆2. With these replacements we can

write the groundstate of the even and odd parity subspaces as

E (even)
GS = ξ−

√
ξ2 +∆2; |GSodd 〉 =

√
Eξ+ξ

2Eξ
|0〉+

√
Eξ−ξ

2Eξ
| ↑↓〉 (3.60)

E (odd)
GS = ε−EZ A ; |GSeven〉 = | ↓〉 (3.61)

To induce MZMs on the dots, the two groundstates need to be degenerate. They are
connected through a quasiparticle excitation |GSeven〉 = (uc†

↓ − vc†
↑)|GSodd 〉 with u, v to

be determined. We obtain the condition

u

√
Eξ+ξ

2Eξ
+ v

√
Eξ−ξ

2Eξ
= 1 (3.62)

which is solved by u(UABS) =
√

Eξ+ξ
2Eξ

, v(UABS) =
√

Eξ−ξ
2Ex i since u(UABS)2+v(UABS)2 = 1. The

degeneracy condition requires

E (even)
GS = E (odd)

GS (3.63)

leading to ξ being constrained to

ξ2 =
(

UABS

2
+EZ A

)2

−∆2. (3.64)

To satisfy v(UABS) > u(UABS) (see App. 3.7) we choose the negative root solution for ξ.
Gathering all findings into u(UABS) and v(UABS) we can write

u(UABS) =
√

Eξ+ξ
2Eξ

UABS→0≈ u − u

4

∆2

ξ0EZ A(EZ A −ξ0)
UABS (3.65)

v(UABS) =
√

Eξ−ξ
2Eξ

UABS→0≈ v + v

4

∆2

ξ0EZ A(EZ A −ξ0)
UABS (3.66)

where we used ξ0 =
√

E 2
Z A −∆2, and u, v as defined in Sec. 3.2.1. We recognize that u

decreases while v increases. It is therefore to be expected that the Zeeman energy at
which the sweet spot is observed reduces. Indeed we find E∗

Z A for θ = 0 at the sweet spot
as

E∗
Z A = ∆0

sin(2α)
− UABS

2
. (3.67)
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Since two corners of the charge stability diagram are roughly separated by ≃ 2EZA+UABS,
a finite UABS can serve to help make the sweet spot more resilient towards single param-
eter perturbations. Furthermore, Eq. (3.67) shows that large enough UABS can push the
sweet spot Zeeman energy below∆0. Hence, sweet spots can emerge even if EZA <∆0 as a
result of the separation of the ABS states in εA and Eq. (3.67). This final property might be
particularly useful when the platform inherent g-factor might be limited through other
constraints.

3.9. CONTROLLING THE EFFECTIVE PAIRING THROUGH t0

In Sec. 3.2.5 we used a phenomenological pairing parameter ∆D on the initially normal
dot to demonstrate how a change on the pairing on the dot can recover a sweet spot.
This section appends to Sec. 3.2.5, demonstrating explicitly on the many-body system
how the induced pairing from the ABS is controlled through the bare hopping t0. In
particular„ when the ABS dot is tuned slightly off the sweet spot in EZA, we can adjust t0

to recover a sweet spot. Fig. 3.9 demonstrates sweet spot recovery along two examples:
a) and b) show how large t0 recover a sweet spot when starting with an initially small t0(=
0.2) and EZA = E∗

ZA −δEZA; c) and d) demonstrate recovery for small t0 when beginning
with t0 = 1.5, i.e. strong coupling of the dots, at EZA = E∗

ZA +δEZA.

3.10. INHOMOGENEITY IN THE DOT-ABS ARRAY

In this section, we consider the effect of Hamiltonian parameter inhomogeneity in a dot-
ABS array. This captures the realistic situation of an experimental device. To demon-
strate the main physical effect, we focus on the three-site Kitaev chain with four differ-
ent scenarios: DAD and ADA with inhomogeneous spin-orbit interaction, and DAD and
ADA with inhomogeneous g factor. Here we choose the level of inhomogeneity to be 10%
to generate the results in Figs. 3.10and 3.11 and we emphasize that our results are ro-
bust even for larger values. We find that the physical findings and main conclusions pre-
sented in the main text are still valid, e.g., the presence of long-range coupling between
Majoranas with negligible wavefunction overlap, and energy spectra against chemical
potential detuning. In our simulation here, we need to first figure out the sweet spots in
each two-site DA pair by varying the tunnel strength t0. After that, the sweet spot of a
three-site one is obtained by putting them together. It is likely that the middle site (ei-
ther dot or ABS) may reach different values of chemical potential for the left and right
pairs respectively, and we choose to take the average of them. In addition, to capture the
proximity effect from the continuum states, we add a pairing term ∆D,i nduced ≈ t 2

0δ∆ on
normal quantum dots, with δ∆ = 0.5∆0. We note that the induced gap is proportional
to t 2

0 owing to second-order process of local Andreev reflection, and that δ∆ is a phe-
nomonological parameter which is proportional to the superconductor density of states.
We have checked that our simulation results do not depend on the precise value ofδ∆. To
summarize, we have shown that even in the presence of parameter inhomogeneity, the
sweet spot of an extended Kitaev chain can still be found by varying the tunnel strength
between dot and ABS. Furthermore, the main findings presented in the main text are still
valid.
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3.10.1. INHOMOGENEOUS SPIN-ORBIT MIXING
We first consider inhomogeneous spin-orbit mixing in both ADA and DAD set-ups. We
assume that αL and αR , i.e. the spin-orbit mixing angles of the two pairs. The results
of this analysis are depicted in Fig. 3.10. We recognize that, for both set-ups, we can
well recover the spectral behavior discussed in Sec. 3.3. Furthermore, we see that the
Majorana wavefunctions shown in Fig. 3.10 a) and c) are still well separated.

3.10.2. INHOMOGENEOUS g -FACTOR
Lastly, we consider inhonmogenuous g-factors between the dots. The different g-factors
of the outer dots between the two set-ups makes them differently susceptible to inho-
mogeneities of the g-factor. We choose gL = 2, gR = 1.8 for the DAD and gL = 1, gR = 0.9
for the ADA set-up. This choice yields reasonably different sweet spots of the two pairs
of 2-site chains that still allow to be connected by barrier tuning of the second pair, i.e.
varying t0. The results of this analysis are depicted in Fig. 3.11 For both situations we
find that the behavior of the spectrum suggested in the main text can still be reasonably
well reproduced and that the Majoranas that the systems yield are still well separated.
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Figure 3.9: sweet spot recovery through adjustment of t0. a) and b) show how, when starting with t0 = 0.2
but EZA = E∗

ZA −δEZA, a sweet spot can be recovered by increasing t0. Particularly b) demonstrates how the
corresponding t0 > ∆0, strongly coupling the two dots. We lastly want to highlight that, despite the slope of
|teff|− |∆eff| being negative towards smaller t0 in a), it is impossible to recover a sweet spot by decreasing the
hopping further. c) and d) demonstrates sweet spot recovery when t0 = 1.5 initially and EZA = E∗
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Figure 3.10: Inhomogenuous spin-orbit mixing between the two pairs. We allow for a deviation of 10% between
the different αi (αL = 0.3,αR = 0.27). We see that the ADA set-up reproduces the behavior suggested in the
main text (d)) despite the inhomogeneity and yields well separated Majoranas (c)). This is explained by the
better protection against next-nearest neighbor hopping from the larger g-factor in the central, normal dot.
The DAD set-up however is more sensitive to changes of the chemical potential of the middle dot. The smaller
g-factor in the ABS dot generally leads to poorer protection against next-nearest neighbor hopping. Yet, we
obtain still well separated Majoranas despite the sweet spot only being meta stable against global changes of
the chemical potential.
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Figure 3.11: Inhomogenuous g-factors between the dots. For the DAD set-up, a) and b), we let the inhomo-
geneity be as large as 10% (gL = 2, gR = 1.8). We find that, despite the stark difference, the spectrum reproduces
the findings of the main text well and the Majoranas yielded by the system are well separated from each other.
This resillience is due to the larger level separation of the levels on the normal dots. For the ADA set-up we
allow for an inhomogeneity of 10% (gL = 1, gR = 0.9). In both cases we recover spectral lines akin to those
demonstrated in the main text despite the presence of inhomogeneities. Consequently, also the Majorana
wavefunctions remian well separated between the dots.
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We theoretically explore the emergence of strong zero modes in a two-site chain consist-
ing of two quantum dots coupled due to a central dot that mediates electron hopping and
singlet superconducting pairing. In the presence of time-reversal symmetry, the on-site
Coulomb interaction leads to a three-fold ground-state degeneracy when tuning the sys-
tem to a sweet spot as a function of the inter-dot couplings. This degeneracy is protected
against changes of the dot energies in the same way as “poor man’s” Majorana bound states
in short Kitaev chains. In the limit of strong interactions, this protection is maximal and
the entire spectrum becomes triply degenerate, indicating the emergence of a “poor man’s”
version of a strong zero mode. We explain the degeneracy and protection by construct-
ing corresponding Majorana Kramers-pair operators and Z3-parafermion operators. The
strong zero modes share many properties of Majorana bound states in short Kitaev chains,
including the stability of zero-bias peaks in the conductance and the behavior upon cou-
pling to an additional quantum dot. However, they can be distinguished through finite-
bias spectroscopy and the exhibit a different behavior when scaling to longer chains.
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4.1. INTRODUCTION
Arrays of quantum dots offer a platform for quantum simulation of strongly-correlated
and topological phases [1–4]. With a superconducting coupling in the form of crossed
Andreev reflections, quantum dots have been proposed to implement the Kitaev chain
which can be tuned into a topological phase [5]. Recently, it has been shown that both
crossed-Andreev reflection (CAR) and elastic co-tunneling (ECT) between two quantum
dots can be effectively tuned by an additional proximitized quantum dot between two
normal quantum dots [6]. This has allowed to implement high-performance Cooper pair
splitters [7–9] and to explore Majorana physics in a minimal Kitaev chain of two sites [10–
12] and three sites [13]. When the quantum dots are in the spin-polarized regime and the
amplitudes of these two processes are equal, a condition referred to as the sweet spot, a
double quantum dot system connected by an ABS can feature Majorana bound states
localized on the outer dots [6, 14–16], so-called poor man’s Majoranas (PMMs).

In these quantum dot systems, the charging energy U is typically the largest energy
scale. In current experiments, U is of order several meV, whereas the inter-dot coupling
is of order 30−80µeV [10–12]. This two-orders-of-magnitude difference in energy scales
evokes the question of the role of interactions in these systems. The presence of strong
charging energy makes the quantum dot platform fundamentally different from the orig-
inal Majorana proposal in nanowires [17, 18], and insights from those systems may not
directly apply here. For instance, can interactions lead to false positives in the search for
Majorana bound states in quantum dot systems? On the other hand, can interactions
be used to engineer new types of states in these systems? The exploration of these two
questions is the main goal of this study.

The importance of these questions is highlighted by a recent experimental work [11]
implementing an artificial Kitaev chain with two sites in a proximitized two-dimensional
electron gas. This experiment revealed stable zero-bias peaks for finite magnetic field,
interpreted as PMMs. However, measurements also revealed a stable zero-bias peak in
the absence of a magnetic field. In fact, the zero-bias conductance features were remark-
ably similar regardless of the value of magnetic field, despite PMMs only being expected
at sufficiently large Zeeman splitting. This raises the question whether signatures of
PMMs can be mimicked by trivial mechanisms in quantum dot systems. At the same
time, a setup similar to the experiment was predicted theoretically to exhibit Majorana
zero modes induced by Coulomb interaction in the presence of only a small Zeeman
splitting [19]. Hence, it equally seems possible to induce precursors of topological states
in quantum dot systems by interactions. Overall, this underlines the need for a system-
atic understanding of the zero-field case.

In this manuscript, we investigate strongly interacting double quantum dot system
coupled by normal hopping and singlet superconducting inter-dot coupling via an addi-
tional proximitized quantum dot in the presence of time-reversal symmetry. We find that
any finite charging energy on the quantum dots allows for a sweet spot characterized by
a triply degenerate ground state. This ground state degeneracy is protected quadratically
against changes of the on-site potential of either dot, akin to the two-site spinless Kitaev
chain case. In the limit of large Coulomb interaction, the triple ground state degeneracy
becomes completely protected against local changes of the on-site energies. We show
that the system in this limit exhibits a poor man’s version of strong zero modes, and
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construct corresponding Majorana Kramers-pair operators as well as Z3-parafermion
operators explaining the protection against local perturbations. Moreover, just as in the
spinless two-site Kitaev chain case [20], the ground state degeneracy is not lifted by cou-
pling a third normal dot to the system via normal hopping. However, we can distinguish
the zero-field, interaction-induced strong zero modes from PMMs through finite-bias
spectroscopy and the absence of scaling to longer chains.

4.2. CHARGE STABILITY DIAGRAM AND TRANSPORT PROPERTIES

OF A DOUBLE-QUANTUM DOT SYSTEM
We consider a double-quantum dot system coupled by ECT and CAR processes, as sketched
in Fig. 4.1(a). The Hamiltonian of this system is given by [19, 21]

H =∑
i ,σ
ϵi niσ+

∑
i

Ui ni↑ni↓+ t
∑
σ

c†
LσcRσ+∆

∑
σ
ησc†

Lσc†
Rσ̄+H.c., (4.1)

where i = L,R denotes the site index, niσ = c†
iσciσ is the number operator on site i with

spin σ, ϵi is the on-site energy, Ui is the Coulomb energy of dot i , t is the normal hop-
ping and ∆ is the singlet type of superconducting pairing between left and right dot.1

The term ησ = (−1)σ encodes the singlet pairing and σ̄ = −σ denotes the opposite spin
σ = ↑,↓. We note that as we consider a system with time-reversal symmetry, we can
gauge-away the spin-orbit coupling by redefining the spin quantization axis on each
dot, as detailed in Appendix 4.11. Consequently, the presence of spin-orbit coupling,
and consequently triplet superconducting pairing, is not necessary for our investigation.
Tuning the relative strength of t and∆ can for example be achieved through changing the
energy of an ABS in a hybrid segment or proximitized quantum dot [6], as indicated in
lighter color in Fig. 4.1(a). In the main text, we will exclusively use the effective model
(4.1). However, using a model that includes the ABS gives comparable results, as shown
in App. 4.7.

The charge stability diagram (CSD) of Eq. (4.1) of a double-quantum dot system cou-
pled by ECT and CAR processes in the absence of a magnetic field has been studied
in [21]. We show a sketch of the charge stability diagram in the absence of inter-dot
interactions in Fig. 4.1(b), focusing on the energy range where each dot can be either
empty or singly-occupied. Due to time-reversal symmetry, all states in the odd parity
sector are doubly degenerate (blue parts of the CSD). When both dots are occupied by
one electron, there are four degenerate states when the dots are decoupled: one singlet
and three triplet states. However, in the presence of any finite t or ∆, it was shown [21]
that the triplet states are higher in energy. Hence, for our purposes it is sufficient to only
consider the singlet state and thus the even parity sector generally is singly degenerate.
Ref. [21] further showed that for finite inter-dot coupling, either the odd or the even par-
ity sectors merge, as we confirm in Figs. 4.1(d) and (f) by varying∆/t . This is due to either
the ground state energy being lowered differently depending on the relative strength of
t and ∆. However, since the CSD connectivity can be completely changed, it is always
possible to find a relative strength of ∆/t such that there is a crossing, which we refer to
as a sweet-spot, as shown in Fig. 4.1(e).

1Here, we choose a gauge such that t ,∆ ∈R.
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SC

Figure 4.1: (a) Schematics of a two-site chain consisting of three quantum dots. The superconductor (blue)
proximitizes the middle dot and facilitates normal hopping and superconducting pairing between the left and
right quantum dots, each characterized by their respective on-site energies ϵi and charging energy U . (b)
Sketch of the charge stability diagram, excluding the doubly-occupied states. The blue regions denote the odd
fermion parity ground state, while the red regions represent the even fermion-parity ground state. (c) The
parameters for the sweet spot, ∆∗ and ϵ∗, are depicted as a function of U . The evolution of the charge stability
diagram for (d) ∆∗ >∆= 0.293t , (e) ∆=∆∗ = 0.493t , and (f) ∆∗ <∆= 0.693t . Here, we use U = 5t .

Fig. 4.1(d)–(f) shows the charge stability diagram in the form of δE = E odd
gs −E even

gs
being the energy difference of the ground states with opposite fermion parity. At the
sweet-spot, and in general for the white lines in the CSD, the energies of the even and
odd-parity ground states are equal, and the ground state triply degenerate. Moreover,
the crossing corresponding to a sweet-spot represents a saddle point in δE . Hence, for
small deviations around the sweet-spot, the three-fold ground state degeneracy is pro-
tected quadratically. This quadratic protection of ground state degeneracy is—up to the
multiplicity of the degeneracy—identical to the spinless Kitaev chain case [14]. This is
not surprising, as our arguments show that it is due to the intrinsic “topology” of the
sweet spot, i.e. the fact the sweet spot must be a saddle point for δE . Hence we generally
expect this quadratic protection when the connectivity of the CSD switches.

Note that this quadratic protection is seemingly in contradiction to Ref. [22] which
claimed that the degeneracy in this system is changing linearly with changing the on-
site energies ϵR,L . This contradiction can be resolved by observing that Ref. [22] only
considered degeneracies for ϵR = ϵL = 0. The sweet spot however is generally shifted
away from zero on-site energy as shown in Fig. 4.1(c).
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Figure 4.2: The charge stability diagram and local finite bias conductance as a function of the charging energy.
Top panels: The charge stability diagram of the two-site spinful interacting chain for (a) U = 2t , (b) U = 5t , and
(c) U = 15t , featuring a sweet spot. The crossing of the degeneracy lines at the sweet spot becomes straighter as
U increases. Additionally, as U increases, the quadrants of the charge stability diagram move further away from
each other. Bottom panels: The local finite bias conductance GLL for (d) U = 2t , (e) U = 5t , and (f) U = 15t , as
a function of voltage bias Vbias and the variation of the on-site energy on site R away from the sweet spot, δϵR .
The zero-bias peak persists for a wider range of detuning, δϵR , for larger local charging energy. Additionally, the
local conductance feature visible in (f) for δϵR < 0 and Vbias > 0 describes the transport process via coupling
of the ground state to the triplet states. For even larger voltage bias values, the conductance features exhibit
splitting, which diminishes as U increases.For transport simulations, we use dot-lead coupling Γ= 0.0125t and
reservoir temperature T = 0.025t .

A hallmark of spinless PMMs is the persistence of the ground state degeneracy when
changing only a single site on-site energy [14]. In general this does not apply to the de-
generacies for the time-reversal symmetric Hamiltonian (4.1). In Fig. 4.2 we show the
charge stability diagrams (a)–(c) and the corresponding conductances, calculated using
a rate-equation approach [15], for a normal probe on the left site (d)–(f) for different val-
ues of the Coulomb interaction U . The separation between the lower left quadrant of
the charge stability diagram, comprised of states with double occupancy, from the up-
per right quadrant, comprised of empty dots, increases with Coulomb energy U . As a
consequence, the degeneracy lines of the sweet spot crossing are initially tilted and be-
come increasingly straighter with increasing U , Figs. 4.2(a)–(c). Hence, the ground state
degeneracy becomes increasingly better protected against local potential changes, i.e.
only changing ϵR(L) while keeping ϵL(R) at the sweet spot value. This can be directly ob-
served in the behavior of the conductance that probes the excitation spectrum of the
system. In particular, a ground state degeneracy gives rise to a zero-bias peak, whereas
any splitting gives rise to a conductance only at finite bias.

As U increases, the ground state degeneracy becomes more and more protected
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against the changes in one of the local on-site energies. This protection is reflected as
a robust zero-bias peak in the local conductance spectroscopy on the left dot, as shown
in Fig. 4.2(d)–(f). In fact, for large values of U , the zero-bias conductance of the two-
site spinful interacting chain described by Eq. (4.1) becomes indistinguishable from the
zero-bias conductance of a two-site spinless Kitaev chain hosting PMMs. Hence, these
interaction-induced zero-energy states could be mistaken for PMMs. However, they can
be distinguished by additional features at finite-bias, in particular the feature at posi-
tive bias voltage that approaches zero as the on-site energy of one site is decreased. It
originates from the triplet states, and allows to distinguish this system from the spinless
Kitaev chain, as discussed in detail in Appendix 4.6.

4.3. STRONG ZERO MODES IN THE U →∞ LIMIT

4.3.1. EIGENSTATES AND EIGENSPECTRUM IN THE U →∞ LIMIT
While it is possible to find a sweet spot where the ground state is triply degenerate for
any finite charging energy U , the protection of the ground state degeneracy with re-
spect to local changes is only truly possible in the limit of U → ∞.2 In this limit, dou-
ble occupancy of a quantum dot is forbidden. This constraint can be implemented in
Eq. (4.1) by replacing all fermionic operators by constrained fermions [23]. The con-
strained fermions are defined by the Hubbard operators c̄iσ = (1−ni σ̄)ciσ. The Hamil-
tonian then takes the form

H =∑
i
ϵi n̄i + t

∑
σ

c̄†
Lσc̄Rσ+∆

∑
σ
ησc̄†

Lσc̄†
Rσ̄+H.c. , (4.2)

where n̄i =∑
σ c̄†

iσc̄iσ.

In this limit, the many-body energy levels for the odd parity sector are 1
2 (ϵL +ϵR )±[

t 2+ 1
4 (ϵL −ϵR )2

]1/2 with a multiplicity of 2 due to Kramers’ degeneracy. For the even par-
ity sector, the energy levels consist of (ϵL +ϵR ) with a multiplicity of 3, describing triplet

states, and 1
2 (ϵL +ϵR )± [

2∆2 + 1
4 (ϵL +ϵR )2

]1/2, describing singlet states. Therefore, when

t =p
2∆ and ϵL = ϵR = 0, the ground state becomes triply degenerate with an energy of

Eg =−t [19]. The many-body eigenstates of the ground state manifold are

|n = 0,↓〉 = 1p
2

(|0↓〉− |↓0〉) , (4.3a)

|n = 0,↑〉 = 1p
2

(|↑0〉− |0↑〉) , (4.3b)

|n = 0,S〉 =− 1p
2
|00〉+ 1

2
(|↑↓〉− |↓↑〉) , (4.3c)

where n = 0 denotes the ground state manifold (the states n = 1,2 are given in Ap-
pendix 4.8), we label odd-parity states with their spins |↑(↓)〉 and the even-parity ground

2In current experimental implementations, U exceeds all other energy scales in the system [10–12]. In this
case, coupling to doubly occupied states is strongly suppressed and corrections through these states would
only enter perturbatively and become visible through splittings in the excited states (see Fig. 4.2).



4.3. STRONG ZERO MODES IN THE U →∞ LIMIT

4

87

Figure 4.3: Many-body energy spectrum of the double-quantum dot system. In panel a), we demonstrate the
many-body energy spectrum at the sweet spot as a function of U . The different colors indicate the different
total fermion parity eigenvalues pF = 〈ψ|∑i (1−2ni )|ψ〉 of the corresponding eigenstate. The second excited
state manifold becomes three-fold degenerate as U →∞. In addition, the states forming the first excited state
manifold for U → ∞ are three-fold degenerate for all U . Hence, the full many-body spectrum is three-fold
degenerate for U → ∞. Panel b) shows the many-body spectrum for U → ∞ and protection of the three-
fold degenerate structure in the many-body spectrum with respect to changes in ϵL . The states with distinct
generalized Z3 parity eigenvalues p are differentiated by their colors and line styles.

state is a superposition of vacuum state and a singlet state |S〉. These eigenstates are
reminiscent of the eigenstates of a two-site spinless Kitaev chain [14], except that the
component with both dots occupied has a singlet character. As we show below, this leads
to non-local correlations.

However, the three-fold degeneracy extends beyond the ground state manifold in
this system. In fact, the many-body spectrum of the system consists of three different
manifolds with three-fold degeneracy. As the entire many-body spectrum exhibits the
three-fold degenerate structure, the zero energy excitations associated with this system
are strong zero modes [24]. In Fig. 4.3(b), we show the many-body spectrum of the two-
site chain as we vary one of the on-site energies ϵi . The three-fold degeneracy of each
three manifold is maintained upon varying one local on-site energy, demonstrating the
protection of strong zero modes to this perturbation. Within these three manifolds, both
the ground state (n = 0) and second excited state (n = 2) manifolds each feature two odd
and one even parity states. In contrast, the first excited state (n = 1) manifold comprises
three triplet states with eigenvalues E = 0. We want to stress that the strong zero modes
in our system only exist in the limit of U →∞. For any finite U , the entire many-body
spectrum does not feature three-fold degenerate manifolds, as shown in Fig. 4.3 a), and
hence, the resulting zero modes are weak zero modes.
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4.3.2. MAJORANA KRAMERS-PAIR OPERATORS
Given the shared parity structure of the ground state and the second excited state man-
ifolds, featuring two odd and one even fermion parity states, we introduce Majorana
operators that allow switching between different parity states across the spectrum. Im-
portantly, we exclude the first excited state manifold, as it does not permit any parity-
switching zero-energy excitations and the triplet states do not couple to any of the other
states by any term in the Hamiltonian. The modes described by these operators are
deemed strong Majorana zero modes due to the consistent degeneracy throughout the
spectrum [25, 26]. Additionally, recognizing that the odd states within each manifold are
Kramers partners, we also associate Majorana operators with their Kramers partners.
Based on these restrictions, Majorana Kramers-pair operators satisfy the conditions

γσ = γ†
σ, (4.4a)

γσ|n,S〉 = e iφ|n,σ〉, (4.4b)

γσ|n,σ〉 = e−iφ|n,S〉, (4.4c)

where φ is a phase.
We then use the eigenstates of the many-body Hamiltonian and construct the Ma-

jorana Kramers-pair operators that satisfy Eq. (4.4) for a given spin projection.3 We find
these Majorana Kramers-pair operators as

γRσ = ησ (1− n̄L) c̄Rσ− 1p
2

(
n̄Lσc̄Rσ̄− c̄†

Lσc̄Lσ̄c̄Rσ

)
+H.c., (4.5a)

γLσ = iησ (1− n̄R ) c̄Lσ+ ip
2

(
n̄Rσc̄Lσ̄− c̄†

Rσc̄Rσ̄c̄Lσ

)
+H.c., (4.5b)

where ησ = (−1)σ and σ̄ = −σ denotes the opposite spin. The strong correlation in the
system is evident from the presence of products of number operators in the definition of
Majorana operators, and by products of operators flipping the spin on a dot. The latter
are related to the fact that the even ground state involves a spin singlet state.

The Majorana Kramers-pairs operators given in Eq. (4.5) commute with the Hamilto-
nian at the sweet spot by construction. Furthermore, each Majorana Kramers-pair oper-
ator commutes with one of the number operators n̄i , specifically [n̄L ,γRσ] = [n̄R ,γL,σ] =
0. This explains why any perturbation involving only one of the on-site energies ϵi will
not lift the degeneracies within the n = 0,2 states. We note that in terms of the commu-
tation relations with the number operators on each dot, these Majorana Kramers-pairs
operators are local. However, in terms of dot creation and annihilation operators, they
clearly are not.

It is worth emphasizing that these Majorana Kramers-pairs, or in other words the
corresponding ground state degeneracy, only exist due to interactions: A no-go theorem
states that Majorana Kramers-pairs cannot be realized in non-interacting electronic sys-
tems with a single conventional superconductor [27]. Hence, the charging energy U is
the driving force for obtaining the ground state degeneracy.

3We refer the reader to Appendix 4.9 for more details on how to construct the Majorana operators from the
eigenstates.



4.3. STRONG ZERO MODES IN THE U →∞ LIMIT

4

89

4.3.3. Z3-PARAFERMION OPERATORS
Majorana Kramers-pairs operators can only be meaningfully defined in terms of the
manifolds n = 0,2 containing even and odd parity states. In the following, we will intro-
duce a different, complementary description that takes the full spectrum into account.

Having a many-body spectrum that is three-fold degenerate signals a symmetry of
the system. Beyond the fermion-parity conservation, the system has the additional generalized-
parity symmetry

PZ3 =ω
∑

j (n j↑+2n j↓) (4.6)

with ω= e i 2π/3 [28] and n jσ = c†
jσc jσ the spin-resolved number operator defined on site

j . We find that the eigenstates within each degenerate manifold n are uniquely charac-
terized by their corresponding generalized parity eigenvalue p = 0,1,2

PZ3

∣∣n, p
〉=ωp ∣∣n, p

〉
. (4.7)

As all the states
∣∣n, p

〉
for fixed n, are degenerate, we can construct a parafermion

operator χ. These operators switch between eigenstates with different PZ3 -parity eigen-
values p within each degenerate manifold with

χ
∣∣n, p

〉= an,p
∣∣n, p +1 (mod 3)

〉
, (4.8a)

χ3 =1 (4.8b)

χPZ3 =ωPZ3χ, (4.8c)

where the coefficients an,p are complex and satisfy
∏

p an,p = 1 for all n, ensuring that
χ3 = 1. Note that the parafermion operators do not obey superselection as they must
contain both fermion-parity switching and conserving operators.

To construct the parafermion operators, we use the many-body eigenstates of the
system. In addition to satisfying the conditions outlined for parafermion operators in
Eq. (4.8), we require that these operators commute with one of the number operators.
This requirement helps explain how the many-body spectrum is protected against changes
in local on-site energies.4 We find two parafermion operators χL and χR expressed in
terms of constrained fermion operators as

χR = (1− n̄L)
(
−c̄†

R↓+ c̄R↑
)
+

(
c̄†

R↓c̄R↑+
1p
2

(
c̄R↓+ c̄†

R↑
))

c̄†
L↓c̄L↑

− 1p
2

(
n̄L↑c̄†

R↓+ n̄L↓c̄R↑
)
−

(
1− 1+p

2p
2

n̄L

)
c̄†

R↑c̄R↓−
(

1− 1+p
2p

2
n̄R

)
c̄†

L↑c̄L↓, (4.9a)

χL = (1− n̄R )
(
c̄†

L↓+ c̄L↑
)
+

(
c̄†

L↓c̄L↑+
1p
2

(
c̄†

L↑− c̄L↓
))

c̄†
R↓c̄R↑

− 1p
2

(
n̄R↑c̄†

L↓− n̄R↓c̄L↑
)
+

(
1+ 1−p

2p
2

n̄L

)
c̄†

R↑c̄R↓+
(

1+ 1−p
2p

2
n̄R

)
c̄†

L↑c̄L↓. (4.9b)

4We refer the reader to Appendix 4.10 for the details.
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The parafermion operators given in Eq. (4.9) commute with the Hamiltonian at the
sweet spot and satisfy χ3

i = 1 by construction. Furthermore, each parafermion opera-
tor commutes with one of the number operators n̄i , specifically [n̄L ,χR ] = [n̄R ,χL] = 0.
Hence these parafermion operators also explain the protection of the degeneracy in the
many-body spectrum against variations in the on-site energies.

The parafermion operators given in Eq. (4.9) do not satisfy Z3 parastatistics. The
reason for this is that we want the parafermion operators to commute with the number
operators to explain the robustness with respect to changes in on-site energies. If we
remove this restriction, we can find coefficients an,p such that the resulting parafermion
operators obey the Z3 parastatistics χLχR = ωχRχL .5 As a interesting side-remark, we
note that we were able to find parafermion operators that commute with the number
operators and satisfy theZ3 parastatistics when projected to the ground state manifold.6

4.3.4. LOW-ENERGY EFFECTIVE HAMILTONIAN WITH PARAFERMION OPER-
ATORS

Next, we explore the low-energy physics of the three-fold degenerate ground state man-
ifold. To this end, we project the parafermion operators given in Eq. (4.9) to the ground
state manifold. These projected operators, denoted as χ̃R and χ̃L , still commute with
their respective number operators.

Mapping the parafermion operators onto the ground state allows us to derive the
low-energy effective Hamiltonian

H̃ =−
(
t +p

2∆
)

2
1+

(
t −p

2∆
)

4

(
χ̃†

Lχ̃R + χ̃†
R χ̃L

)
. (4.10)

Note that the low-energy Hamiltonian is akin to the low-energy Hamiltonian of a two-
site Z3 parafermion chain[24, 29–31]. The first term is an energy offset such that at the
sweet spot, with t =p

2∆, the ground state energy is Eg =−t .

4.4. THREE-SITE SPINFUL INTERACTING CHAINS

4.4.1. QUANTUM DOT TEST
Having established the characterization of the two-site spinful interacting chain and its
protection due to PZ3 parity, we now investigate its behavior when the chain length is
increased. To this end, we first consider adding a third spinful quantum dot only cou-
pled by a normal hopping t , as show in Fig. 4.4(a). This system is the time-reversal sym-
metric variant of a quantum dot test originally designed for Majorana bound state de-
tection. This test, aimed at identifying unpaired localized Majorana bound states, has
been previously considered in various setups, including proximitized nanowires [32–34]
and artificial Kitaev chains [20, 35]. Here, we probe the two-site chain by using a test
quantum dot D in the single electron limit, i.e. UD →∞, with an on-site energy ϵD = 0.
Quantum dot D is coupled to site R of the two-site chain with spin-conserving hopping

5The choice of coefficients with a1
n,p =ω and a2

n,p =ω−p yields two parafermion operators that obeyZ3 paras-
tatistics. In this case, the first parafermion operator still commutes with nR , however the second parafermion
operator does not commute with nL .

6See Appendix 4.10.2 for details.
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SC SC SC

Figure 4.4: (a) Quantum dot test: A two-site spinful interacting chain is coupled to a quantum dot D via a spin-
conserving normal hopping. (b) Three-site spinful interacting chain with sites L, M and R, each coupled via
normal hopping t and superconducting pairing ∆.

Figure 4.5: Quantum dot test: Another quantum dot D is attached, coupled exclusively to site R through spin-
conserving hopping. Variation of (a) on-site energy ϵL results in a splitting of the zero-bias peak in the local
finite bias conductance measured from quantum dot D . Conversely, changes in (b) on-site energy ϵR or (c) the
test quantum dot ϵD do not induce a splitting of the zero-bias peak. For transport simulations, we use dot-lead
coupling Γ= 0.0125t and reservoir temperature T = 0.025t .

HRD = tD
∑
σ c̄†

Rσc̄Dσ +H.c., as shown in Fig. 4.4(a). We then measure local finite bias
conductance GDD as we vary on-site energies of each of the three sites in the system as
shown in Fig. 4.5.

In Fig. 4.5(a), we observe that detuning the on-site energy of site L leads to a split-
ting in the zero-bias peak in the local differential conductance GDD measured by tunnel
coupling a normal lead to quantum dot D . In contrast to varying the on-site energy of
site L, varying the on-site energy of site R or the test dot D does not lead a splitting in the
zero-bias conductance peak, as shown in Fig 4.5(b)–(c).

The outcome of the quantum dot test closely resembles the quantum dot test for
poor man’s Majorana zero modes [20]. There the splitting of the zero-bias peak, when
the on-site energy of site L is detuned, is attributed to the leakage of the left Majorana
wavefunction to the right site. Then, the right site no longer hosts an isolated Majorana
wavefunction and the zero-bias peak splits linearly. On the other hand, detuning the on-
site energies of site R or the test quantum dot would not lead to any splitting as there
would be a single Majorana residing on the site R. Disregarding the interacting nature of
our system, the outcomes of the quantum dot test could thus be (mis)interpreted as the
presence of an isolated zero-mode in each dot.
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To understand the role of the quantum dot test in our spinful interacting system, we
construct a low-energy Hamiltonian using the Z3-parafermion operators that we con-
structed before to show the stability against changes in local potentials. To that end,
we project the spin-conserving coupling term between site R and test quantum dot
Ht = tD

∑
σ c̄†

Rσc̄Dσ +H.c. to the ground state manifold. Then, the projected coupling
Hamiltonian takes the form

H̃t = tp
6

(
A1d †

D↑+ A2d †
D↓+H.c.

)
, (4.11)

where operators A1,2 act on site L and site R of the original two-site chain and are ex-
pressed in terms of parafermion operators

A1 = 1

2
(χ̃L + χ̃R ), (4.12a)

A2 = 1

2
(χ̃†

L + χ̃Lχ̃R ), (4.12b)

and operators

d †
D,σ =

√
2

3

(
1p
2

c̄†
Dσ+ c̄Dσ̄

)
, (4.13)

act on the test quantum dot states.
The form of Eq. (4.11) together with Eq. (4.12) indicate that the fermionic states in

the quantum dot D actually couple to both of the parafermions. Therefore, the result of
the quantum dot test for our system cannot be interpreted as selectively coupling to a
single parafermion, in contrast to Majorana bound states [20, 32, 33].

This leaves the question of why the quantum dot test leaves the ground state degen-
eracy unchanged. In fact, we find that the entire many-body spectrum of the combined
three-dot system is also comprised by degenerate manifolds. The fact that the system
still features PZ3 symmetry, each degenerate manifold has eigenstates with three differ-
ent generalized parity eigenvalues. This property allows us to construct two parafermion
operators χ1 and χ2, similar to how we constructed parafermion operators for the two-
site chain case given in Eq. (4.9).7

Each parafermion operator, in addition to commuting with the Hamiltonian at the
sweet spot and n̄D , also commutes with either n̄L or n̄R , specifically [χ1, n̄L] = [χ2, n̄R ] =
0. On the other hand, only χ2 commutes with HRD , the operator that describes spin-
conserving hopping between site R and quantum dot D . As a consequence, varying ϵL

results in the splitting of the degenerate energy levels, whereas varying ϵR or ϵD does not.
A natural question to ask is whether parafermion operators in three-site and two-site

cases are related. Given the strongly-correlated nature of the system, the form of these
operators are quite involved, and involve terms mixing operators from all three dots.
Nevertheless, we can project the parafermion operators for the three-site system onto a
two-site system by tracing out the degrees of freedom related to quantum dot D . In this

7See App. 4.10.3 for the construction of the parafermion operators.
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Figure 4.6: The local finite bias conductance for the three site chain shown in Fig. 4.4(b) as we detune (a) ϵL , (b)
ϵM , and (c) ϵR on-site energies. At zero-detuning for each case, the system shows a gap, indicating the absence
of ground state degeneracy with opposite fermion parity. For transport simulations, we use dot-lead coupling
Γ= 0.0125t and reservoir temperature T = 0.025t .

case, we recover that the projected three-site parafermion operators are identical to the
parafermion operators for the two-site case

TrD
[
χ1

]=χR , (4.14a)

TrD
[
χ2

]=χL . (4.14b)

This equivalence underlines the protection mechanism for the degeneracies in these
two setups as parafermion operators.

4.4.2. ABSENCE OF SCALING
The presence of strong zero modes in a two-site system raises a key question: Can ex-
tending the chain to more sites bring about topologically protected zero modes? An
example is seen in Majorana zero modes within an N-site Kitaev chain with uniform
t = ∆ for all hoppings and ϵ = 0 for all on-site energies. To explore the emergence of
such modes in a strongly interacting chain with time-reversal symmetry, we examine a
three-site chain, with sites L, M and R as shown in Fig. 4.4(b), with normal hopping and
superconducting pairing between adjacent sites induced by proximitized quantum dots.
Given our focus on strong zero modes, we assume infinite charging energy in each site
and use constrained fermion operators as detailed in Sec. 4.3.

To investigate this, we set the condition t =p
2∆ for all hopping magnitudes and ϵ= 0

for all on-site energies. We find that the many-body ground state no longer maintains the
triply degenerate structure with one even- and two odd-parity eigenstates. Instead, the
ground state exhibits even fermion parity, accompanied by an excitation gap to the low-
est odd fermion parity eigenstates. This aspect becomes apparent in the local finite bias
conductance spectroscopy of the three-site chain as illustrated in Fig. 4.6. The absence
of a zero-bias peak in Fig. 4.6, which signifies degenerate ground states with opposite
fermion parities, is replaced by a gap in the excitation spectrum. As either ϵL or ϵR is
detuned such that the site in question is depleted, the system effectively reduces again
to a two-site chain. We observe this feature in local differential conductance shown in
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Fig. 4.6(a),(c) as a development of zero bias peak for ϵi ≫ t .
Hence, despite the zero-bias conductance being identical for a two-site spinless Ki-

taev chain and a spinful interacting two-site chain and despite the similarity for the
quantum dot test in both cases, the spinful interacting three-site chain differs crucially
from the spinless three-site Kitaev chain. We believe that this should be testable in cur-
rent experiments.

4.5. DISCUSSION AND CONCLUSION
In this work, we have studied spinful interacting quantum dots coupled by normal hop-
pings and singlet-type of superconducting pairings under time-reversal symmetry. The
combination of local Coulomb interactions, normal hopping and singlet-type supercon-
ducting pairing within a two-site system results in a three-fold degenerate ground state,
which is quadratically protected against changes in the on-site energies. This yields ex-
perimental features similar to regular Majorana zero modes in a two-site chain, although
they can be distinguished through finite bias conductance spectroscopy. Hence, our re-
sults show that the presence of a sweet spot alone does not guarantee the existence of
localized Majorana bound states.

In the limit of U →∞, the entire many-body spectrum features three-fold degenerate
manifolds, revealing the emergence of strong zero modes. We find two different inter-
pretations for the existence of such strong zero modes, namely Majorana Kramers-pairs
andZ3 parafermions. We explicitly construct corresponding Majorana Kramer-pairs op-
erators andZ3 parafermion operators. In particular, from the parafermion operators, we
can understand the protection of the degeneracy in the entire spectrum with respect
to changes in the on-site energies and the coupling strength to the test quantum dot
as discussed in Sec. 4.4.1. Projecting the parafermion operators of the two-site spin-
ful interacting chain onto the ground state manifold yields a low-energy Hamiltonian,
represented by Eq. (4.10), which resembles a two-site parafermion chain Hamiltonian.
Moreover, by selecting appropriate phases for the parafermion operators, the projected
operators obey Z3 parastatistics.

We find that these strong zero modes present in the two-site spinful interacting chain
feature the same resilience as regular Majorana zero modes[20, 32, 33] against the quan-
tum dot test. In contrast, however, extending the chain to more sites does not retain its
triply-degenerate many-body spectrum. The deviation from the triply degenerate struc-
ture in the many-body spectrum for longer chains emphasizes the need for further in-
vestigation.

Previous studies [28, 36] have used Fock parafermions proposed in Ref. [37] to embed
a parafermionic chain [29] in a fermionic system, resulting in fermionic Hamiltonians
with parity breaking terms or three-body interaction terms that are hard to implement
in experimental settings. Here, we start from a setup that can be realized experimen-
tally [11] and construct parafermion operators for this system. Given that the system
has two sites only, we call these modes “poor man’s Z3 parafermions” in analogy to poor
man’s Majoranas [14]. However, there are several open questions: Can these strong zero
modes obtain topological protection once extended to longer chains? Can we use this
minimal model to demonstrate braiding or fusion for Z3 parafermions that could be
used for universal quantum computation? Answering these questions may open promis-
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ing avenues in strongly-correlated time-reversal invariant systems.
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4.6. EXPERIMENTAL FEATURES OF SPINLESS KITAEV CHAIN VS.
SPINFUL INTERACTING CHAIN

This section compares two-site spinless Kitaev chain to two-site spinful interacting chain,
focusing on their charge stability diagrams and the resulting finite bias conductance
spectroscopy. The many-body Hamiltonian for spinless two-site Kitaev chain is expressed
as

HKitaev =
∑

i=L,R
ϵi c†

i ci + tc†
LcR +∆c†

Lc†
R +H.c. . (4.15)

The sweet spot condition for two-site spinless Kitaev chain requires ϵi = 0 and t =∆,
leading to a two-fold degenerate many-body spectrum. This degeneracy becomes ap-
parent in the charge stability diagram illustrated in Fig. 4.7(a), where detuning the on-
site energies causes the degeneracies to split. The impact is also reflected in the local
finite bias spectroscopy, depicted in Fig. 4.7(b), where the zero-bias peak splits upon de-
tuning both on-site energies by ϵ ≡ ϵL = ϵR . For completeness, in Fig. 4.7(c), we show
the nonlocal finite bias conductance GLR as both on-site energies are varied. In com-
parison with the poor man’s Majorana zero modes, we illustrate the charge stability di-
agram and finite bias conductance spectroscopy for two-site spinful interacting chain
in Fig. 4.7(d-f). Although the charge stability diagrams for each system is almost identi-
cal, we observe that the finite bias conductance spectroscopy can distinguish between
two cases. Specifically, in Fig. 4.7(b) and (e), we show the local finite bias conductance
spectroscopy for the spinless Kitaev chain and spinful interacting chain, respectively.
Detuning both on-site energies, we observe that the local conductance for the spinful
interacting chain, as shown in Fig. 4.7(e), features an additional trace of enhanced con-
ductance at finite energy that moves down with decreasing ϵ. The high charging energy
of the dots prevents double occupation, allowing the ground state to only connect with
triplet states by adding a single particle. This restriction on the transport process via
triplet states explains the conductance asymmetry observed in Fig. 4.7(e) for the two-
site spinful interacting chain with respect to bias voltage. The additional feature arises
from the triplet states of the spinful interacting chain and is absent in the local conduc-
tance spectroscopy of the two-site spinless Kitaev chain. Finally, in Fig. 4.7(c) and (f), we
examine the nonlocal differential conductance spectroscopy of both systems and ob-
serve that, similar to the local conductance signal, the transport processes via the triplet
states in the spinful interacting chain can help distinguish between the two cases.
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Figure 4.7: Comparison between a two-site spinless Kitaev chain and a two-site spinful interacting chain. Top
panels: (a) depicts the charge stability diagram of the two-site Kitaev chain at the sweet spot. (b) illustrates
the local and (c) nonlocal differential conductance of the two-site Kitaev chain at the sweet spot, plotted as a
function of the voltage bias and simultaneous detuning of both on-site energies. Bottom panels: (d) depicts
the charge stability diagram of the two-site spinful interacting chain in the limit U →∞. (e) shows the local
and (f) nonlocal differential conductance of the two-site spinful interacting chain, plotted as a function the
voltage bias and simultaneous detuning of both on-site energies. For transport simulations, we use dot-lead
coupling Γ= 0.0125t and reservoir temperature T = 0.025t .

For completeness, we present all of the conductance matrix elements as we detune
the left on-site energy ϵL in Fig. 4.8. Similar to Fig. 4.7(b,e), the local conductance ele-
ments GLL and GRR of the spinful interacting chain, shown in Fig. 4.8(e) and (h), feature
an additional enhanced conductance trace compared to the spinless Kitaev chain case,
shown in Fig. 4.8(a) and (d). This difference between two cases is also observed for the
nonlocal conductance GLR , as shown in Fig. 4.8(b) and (f). On the other hand, the most
striking difference between the spinless Kitaev chain and the spinful interacting chain
is observed in the nonlocal conductance GRL . While the conductance vanishes entirely
for the spinless Kitaev chain, as illustrated in Fig. 4.8(c), it remains finite for the spinful
interacting chain. We observe that the transport via triplet states remains visible for the
spinful interacting chain.
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Figure 4.8: Comparison of the finite bias differential conductance between (top panels) a two-site spinless
Kitaev chain and (bottom panels) a two-site spinful interacting chain while detuning the left on-site energy ϵL .
For transport simulations, we use dot-lead coupling Γ= 0.0125t for both leads and temperature T = 0.025t for
both reservoirs.

4.7. THE MODEL INCLUDING THE ANDREEV BOUND STATE
In this appendix, we show the results obtained with the full model, including the proxim-
itized quantum dot hosts an ABS. Here, ABS in the middle region mediates CAR and ECT
between left and right quantum dots. The Hamiltonian for this system is given as [15, 39]

H = HD +HS +HT , (4.16a)

HD = ∑
σ,i=L,R

ϵi niσ+
∑

i=L,R
Ui ni↑ni↓, (4.16b)

HS = ϵM
∑
σ

nMσ+∆0(cM↑cM↓+c†
M↓c†

M↑), (4.16c)

HT =∑
σ

(t0c†
Mσ

cLσ+ t0c†
RσcMσ)+H.c., (4.16d)

where HD is the Hamiltonian of the quantum dots, niσ = c†
iσciσ is the spin-resolved elec-

tron occupation number on dot i , Ui is the charging energy, ϵi is the on-site energy. HT

describes the tunnel coupling between the outer dots and ABS in the middle, which fea-
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Figure 4.9: The change in connectivity of the charge stability diagram as the energy of the ABS is varied. The
ground state switches its fermion-parity from (a) odd, with ϵM = ϵ∗M −0.5∆0, to (c) even, with ϵM = ϵ∗M +0.5∆0.
This ensures that the degeneracy lines cross for a specific value of middle dot on-site energy ϵ∗M , as shown in
panel (b). Here, we have t0 = 0.25∆0, U = 0.1∆0, ϵ∗M ≈−0.677∆0.

tures a spin-conserving hopping process with strength t0. HS describes the middle dot
that hosts an ABS in the low-energy approximation with an induced gap ∆0.

In Fig. 4.9(a-c), we demonstrate the evolution of the charge stability diagram while
changing the energy of the ABS by varying ϵM . Changing the ABS energy alters the effec-
tive parameters we use in the main text superconducting pairing ∆ and normal hopping
t . Similarly to the charge stability diagram of the effective model portrayed in Fig. 4.1,
the connectivity of the charge stability diagram transitions from an odd ground state,
as depicted in Fig. 4.9(a), to an even ground state, as illustrated in Fig. 4.9(c). Conse-
quently, this ensures that a sweet spot condition can be achieved for any given ϵM value,
as demonstrated in Fig. 4.9(b).

Furthermore, in Fig. 4.10, we depict the evolution of the charge stability diagram and
the corresponding local differential conductance at the sweet spot as a function of the
charging energy U on the left and right quantum dots. Despite the increased complexity
of the full model, qualitative features of the charge stability diagrams and corresponding
local conductances exhibit similar behaviors to the effective model results, presented
in the main text Fig. 4.2. As in the effective model, increasing the Coulomb interaction
U in the quantum dots results in a widening separation between the regions of double
occupancy and empty dots in the charge stability diagrams. Consequently, the degener-
acy lines of the sweet spot crossing become straighter with increasing U , indicating the
increased protection of the ground state degeneracy against local potential changes.

4.8. ENERGY LEVELS AND MANY-BODY EIGENSTATES OF TWO-
SITE SPINFUL INTERACTING CHAIN

In this appendix, we list the eigenstate and eigenvalues of the spinful interacting chain
in the limit of U →∞. At the sweet spot, i.e. t =p

2∆ and ϵL,R = 0, the spectrum exhibits
three triply-degenerate manifolds. The many-body eigenstates for the ground state are
already given in Eq. (4.3). Here, we show the eigenstates of the excited state manifolds.
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Figure 4.10: The evolution of charge stability diagram and local finite bias conductance GLL at the sweet spot
for various charging energies for two-site chain with an ABS in the middle dot. For (a) and (d), we set U =
0.15∆0; for (b) and (e), U = 0.25∆0; and for (c) and (f), U = 0.45∆0. Here, we use t0 = 0.25, T = 0.0025∆0, and
Γ= 0.00125∆0.

We start with n = 1, namely the triplet manifold

|n = 1,↓〉 =−|↓↓〉 (4.17a)

|n = 1,↓〉 =+|↑↑〉 (4.17b)

|n = 1,0〉 =− 1p
2

(|↓↑〉+ |↑↓〉) . (4.17c)

Finally, the eigenstates of the second excited state manifold, which consists of the
bonding version of eigenstates of the ground state manifold

|n = 2,↓〉 =− 1p
2

(|↓0〉+ |0↓〉) (4.18a)

|n = 2,↑〉 =− 1p
2

(|↑0〉+ |0↑〉) (4.18b)

|n = 2,S〉 =− 1p
2
|00〉−

(
1

2
|↑ ↓〉− 1

2
|↓↑〉

)
. (4.18c)

In the subsequent appendices, we will make use of these many-body eigenstates to
construct operators.
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4.9. MAJORANA KRAMERS-PAIR OPERATORS
In this appendix, we describe how we obtain the Majorana Kramers-pair operators. As
described in the main text, the first excited state manifold is entirely composed of even
fermion parity states. Consequently, our analysis of Majorana Kramers-pair operators
excludes this manifold. We begin by constructing Majorana operators from the eigen-
states of the many-body Hamiltonian. For a given spin projection, we define

γ1σ = ∑
n=0,2

e iφ1,n |n,σ〉〈n,S|+H.c., (4.19a)

γ2σ = ∑
n=0,2

i e iφ2,n |n,σ〉〈n,S|+H.c., (4.19b)

where |n,S〉 denotes the even parity state (singlet) and |n,σ〉 denotes the odd parity state
with spin σ in the nth manifold, and φn is an arbitrary phase. We find that for phase
configuration

φ1,n = 0, (4.20a)

φ2,n =
{

0 if n = 0,

π if n = 2,
(4.20b)

γ1σ commutes with the number operator on the right site nR , while γ2σ commutes with
the number operator on the left site nL . Consequently, we relabel γ1σ and γ2σ as γLσ

and γRσ, respectively. Eq. (4.5) of the main text, we present the decomposition of these
operators in terms of constrained fermion operators.

4.10. Z3 PARITY AND PARAFERMION OPERATORS
The three-fold degenerate structure of the many-body eigenstates of the two site chain
presented in Sec. 4.3 and also quantum dot test presented in Sec. 4.4.1 signals a con-
served symmetry of the system. As discussed in the main text, this symmetry is the

generalized parity PZ3 = e i 2π
3

∑
j n j↑+2n j↓ , where n jσ = c†

jσc jσ is the spin-resolved num-

ber operator defined on dot j . Given the three-fold degenerate manifolds of the system
under consideration, we express the parafermion operators as

χ= ∑
n=0

1∑
p=−1

an,p
∣∣n, p

〉〈
n, p +1mod3

∣∣ , (4.21)

where n denotes the three-fold degenerate manifolds and p represents the generalized
parity eigenvalues of the states

PZ3

∣∣n, p
〉=ωp ∣∣n, p

〉
. (4.22)

In Eq. (4.21), the coefficients an,p are complex and satisfy
∏

p an,p = 1 for all n, ensuring
that χ3 =1.

Based on Eq. (4.22), we relabel the eigenstates according to their parity eigenvalues
PZ3 . In the ground state manifold, given in Eq. (4.3), and the second excited state mani-
fold, given in Eq. (4.18), we assign ↑ 7→ p = 1, ↓ 7→ p =−1 and S 7→ p = 0. Furthermore, in
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the first excited state manifold given in Eq. (4.17), the labeling slightly varies due to the
state |n = 1,0〉: we assign ↑ 7→ p = 1, ↓ 7→ p =−1 and 0 7→ p = 0.

Our procedure to construct parafermion operators relies on the following steps:

• Obtain the entire many-body spectrum and its eigenstates by exact diagonaliza-
tion of the Hamiltonian.

• Label the eigenstates based on their energy-manifold n and generalized parity
eigenstate p.

• Construct the numerical matrices given in Eq. (4.21) using the eigenstates.

• Find the complex coefficients an,p such that the corresponding parafermion oper-
ators commutes with a corresponding number operator.

• Express the resulting numerical matrix in terms of fermionic creation and annihi-
lation operators.

In the next two subsections, we follow this procedure and construct the parafermion
operators.

4.10.1. PARAFERMION OPERATORS FOR TWO-SITE CHAIN
For two-site chain, we have three three-fold degenerate manifolds, as shown in Fig. 4.3
in the main text. Following the method described above, we determine two sets of coef-
ficients, an,p , which yield two parafermion operators. Each parafermion operator either
commutes with the left or right number operator. The coefficients for the operator com-
muting with n̄i , which we name ai

n,p , is

aL
n,p =


−1 if n = 0 and p ̸= −1

−1 if n = 2 and p ̸= 0

1 else

(4.23)

aR
n,p = 1. (4.24)

We note that the relative minus sign in aL
n,p is crucial for the commutation with the

left number operator n̄L . Plugging the coefficients given in Eq. (4.23) into Eq. (4.21), we
obtain the parafermion operators defined in Eq. (4.9).

4.10.2. DIFFERENT GAUGE CHOICE FOR PARAFERMION OPERATORS AND PARAS-
TATISTICS

We now use a different gauge choice for χL parafermion operator of the two-site spinful
interacting chain, while keeping χR as the same defined in Eq. (4.10). This amounts to
changing the coefficients aL

n,p defined in Eq. (4.23) as follows

aL
n,p =

{
−ωp+1 if n = 2 and p ̸= 0

ωp+1 else
. (4.25)
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We express the resulting parafermion operator χ′L in terms of constrained fermion
operators as

χ′L =
(
−ω(1− n̄R↑)+

(
1p
2
+ω

)
n̄R↓

)
c̄L↑−

(
ωp

2
c̄†

L↑+
1p
2

c̄L↓+ω2c̄†
L↓c̄L↑

)
c̄†

R↓c̄R↑

+
(

1p
2
+ω2

)(
n̄R↑c̄†

L↑c̄L↓+ n̄L↑c̄†
R↑c̄R↓

)
+

(
ω2

2+p
2
− 1p

2

)(
n̄R↓c̄†

L↑c̄L↓+ n̄L↓c̄†
R↑c̄R↓

)
+

((
ωp

2
−1

)
n̄R↑+ (1− n̄R↓)

)
c̄†

L↓−ω2
(
c̄†

L↑c̄L↓+ c̄†
R↑c̄R↓

)
. (4.26)

We now explore the low-energy physics of the three-fold degenerate ground state
manifold. To that end, we project the parafermion operators, specifically χR given in
Eq. (4.9) and χ′L given in Eq. (4.26), to the ground state manifold. These projected op-
erators, denoted as χ̃R and χ̃′L , still commute with their respective number operators.
Additionally, we observe that the projected parafermion operators satisfy Z3 parastatis-
tics

χ̃R χ̃
′
L =ωχ̃′Lχ̃R . (4.27)

Mapping the parafermion operators on to the ground state and establishing that they
obeyZ3-parafermionic statistics allow us to derive the low-energy effective Hamiltonian
using parafermion operators

H̃ =−
(
2t +p

2∆
)

3
1+

(
t −p

2∆
)

3

(
χ̃′†L χ̃R + χ̃†

R χ̃
′
L

)
(4.28)

We realize that the form of the low-energy Hamiltonian is similar to the low-energy
Hamiltonian of a two-site Z3-parafermion chain. Similar to Eq. (4.10), the first term
serves to ensure that at the sweet spot t =p

2∆, the parafermions are decoupled.

4.10.3. PARAFERMION OPERATORS FOR THE QUANTUM DOT TEST
For the quantum dot test, we introduce a third quantum dot, labeled as D , which is at-
tached to the right quantum dot of the two-site spinful interacting chain. In the ab-
sence of coupling between the right site and quantum dot D , the system exhibits three
nine-fold degenerate manifolds, with each manifold labeled by its Z3 eigenstates. As the
fermion-parity is conserved, we further order every eigenstate in each degenerate man-
ifold according to its fermion-parity eigenvalue.

To ensure that the coupling between the test quantum dot and the two-site spin-
ful interacting chain does not cause a splitting of the ground state degeneracy, we per-
form a unitary rotation on the ordered basis. This rotation is designed to ensure that the
coupling, represented by Ht = tD

∑
σ c̄†

Rσc̄Dσ+H.c., maintains an identical matrix struc-
ture within each Z3 block. This property guarantees a three-fold degenerate structure
in the entire spectrum for any value of tD . Having established this basis, we proceed
with the remaining steps of the procedure described above to determine the coefficients
ai

n,p . These coefficients ensure that the resulting parafermion operators commute with
either n̄L or n̄R . Furthermore, we confirm that the obtained parafermion operators re-
main identical to their two-site version once the trace is taken over the test quantum
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dot. Details on the steps taken to get these coefficients and the expression of resulting
parafermion operators in terms of fermionic creation and annihilation operators can be
found in the code repository [38].

4.11. SPIN-ORBIT INSENSITIVITY OF THE DEGENERACIES
This appendix demonstrates how a unitary transformation on the fermion operators in
spin-space transforms the Hamiltonian given in Eq. (4.1) to one with spin-orbit interac-
tion (cf. e.g. [40]). We follow the procedure outlined in Ref. [41] and perform a unitary
transformation:

(
cL↑
cL,↓

)
=

(
c̃L↑
c̃L,↓

)
and

(
cR↑
cR↓

)
=

cos
(
θ
2

)
−sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

) (
c̃R↑
c̃R↓

)
. (4.29)

where θ is the spin-orbit angle relative to the basis of choice. Plugging the above
identities into Eq. (4.1) we find the on-site term stays invariant

∑
i
ϵi (c†

i↑ci↑+c†
i↓ci↓) =∑

i
ϵi (c̃†

i↑c̃i↑+ c̃†
i↓c̃i↓), (4.30)

for the ECT term we have

t
(
c†

L↑cR↑+c†
L↓cR↓+h.c.

)
= t cos

(
θ

2

)
(c̃†

L↑c̃R↑+ c̃†
L↓c̃R↓+h.c.)

+ t sin

(
θ

2

)
(−c̃†

L↑c̃R↓+ c̃†
L↓c̃R↑+h.c.), (4.31)

and finally for the CAR term

∆
(
c†

L↑c†
R↓−c†

L↓c†
R↑+h.c.

)
=∆cos

(
θ

2

)
(c̃†

L↑c̃†
R↓− c̃†

L↓c̃†
R↑+h.c.)

+∆sin

(
θ

2

)
(c̃†

L↑c̃†
R↑+ c̃†

L↓c̃†
R↓+h.c.). (4.32)

The Coulomb term keeps its form only replacing ciσ → c̃iσ. Collecting all terms we
find the two-site Hamiltonian with spin-orbit hopping between the dots (cf. [40]).
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BRAIDING MAJORANAS IN A LINEAR

QUANTUM DOT-SUPERCONDUCTOR

ARRAY: MITIGATING THE ERRORS

FROM COULOMB REPULSION AND

RESIDUAL TUNNELING

Sebastian Miles, Francesco Zatelli, A. Mert Bozkurt, Michael Wimmer, and Chun-Xiao
Liu

Exchanging the positions of two non-Abelian anyons transforms between many-body wave-
functions within a degenerate ground-state manifold. This behavior is fundamentally dis-
tinct from fermions, bosons and Abelian anyons. Recently, quantum dot-superconductor
arrays have emerged as a promising platform for creating topological Kitaev chains that
can host non-Abelian Majorana zero modes. In this work, we propose a minimal braiding
setup in a linear array of quantum dots consisting of two minimal Kitaev chains cou-
pled through an ancillary, normal quantum dot. We focus on the physical effects that are
peculiar to quantum dot devices, such as interdot Coulomb repulsion and residual single
electron tunneling. We find that the errors caused by either of these effects can be efficiently
mitigated by optimal control of the ancillary quantum dot that mediates the exchange of
the non-Abelian anyons. Moreover, we propose experimentally accessible methods to find
this optimal operating regime and predict signatures of a successful Majorana braiding
experiment.
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5.1. INTRODUCTION
The exchange statistics of identical particles is a central concept in quantum mechanics.
It allows for classifying elementary particles (e.g., electrons and photons) into fermions
and bosons. In two-dimensional spaces, there exist more exotic particles, e.g., non-
Abelian anyons [1, 2]. By exchanging the positions of two such anyons, referred to as
a braid operation, the many-body wavefunction transforms into a different one in the
degenerate ground-state manifold. Thus, applying the same set of braid operations in
a different order results in different unitary evolutions of the system. In addition, non-
Abelian anyons are regarded as the building blocks of topological quantum computa-
tion, where qubit information is encoded in a pair of anyons, and quantum gates are im-
plemented by anyonic braiding [2, 3]. Ideally, this protocol is intrinsically fault-tolerant,
because both storage and processing of the quantum information are immune to local
perturbations due to the topological protection. Therefore, demonstrating non-Abelian
exchange statistics is of great importance to fundamental physics as well as to topologi-
cal quantum computation.

Majorana zero modes, which are Ising anyons, are the simplest example of non-
Abelian anyons [3–14]. They can appear at the defects of a topological superconduc-
tor in the form of a mid-gap quasiparticle excitation [15–18]. In particular, it was pro-
posed that topological Kitaev chains and Majorana zero modes can be engineered in a
quantum-dot-superconductor array using a bottom-up approach [19]. An advantage of
this proposal is the intrinsic robustness against the effect of disorder that is ubiquitous
in mesoscopic systems [20–22]. Moreover, by controlling the relative strengths of normal
and superconducting couplings between neighboring quantum dots [23, 24], it is even
possible to create Majoranas in the short-chain limit [25], albeit lacking true topologi-
cal protection in this case. Based on these proposals, significant experimental progress
has been achieved recently in realizing short Kitaev chains in two- [26–28] and three-
quantum-dot chains [29–31], supported by tunnel spectroscopy evidence of Majorana
zero modes at finely tuned sweet spots. This opened up a new research field for Majo-
rana physics and topological superconductivity [23, 32–55]. It also provides a new and
promising platform to demonstrate the non-Abelian character of the exchange statis-
tics [56–59], which has been elusive for decades.

In quasi-one-dimensional systems, braid operations can also be implemented by
cyclic tuning of the pairwise Majorana couplings in a trijunction [60–63], or by a se-
quence of measurement on the fermion parity in Majorana pairs [64–66], both of which
are mathematically equivalent to physically moving Majoranas in a T -junction [67]. Fur-
thermore, it was shown that the setup of trijunction braiding can be further simplified,
where the role of a vertical topological superconductor branch can be replaced by a
quantum dot [68–70]. However, it is a critical open question whether a braid protocol
proposed for Majorana nanowires remains valid in the quantum dot setups with strong
interactions. For example, it has been recently shown that strong interdot Coulomb in-
teraction can prevent the extraction of Majorana quality measures [34], and that Coulomb
interaction within a Kitaev chain can be detrimental to the protection of Majorana zero
modes or qubits [25, 47, 50].

In the current work, we generalize the minimal braid protocol to engineered Kitaev
chains, focusing on the physical effects that are peculiar to quantum dot devices, e.g.,
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strong interdot Coulomb repulsion and residual single-electron tunneling. Surprisingly,
we find that the detrimental errors caused by both effects can be efficiently mitigated
by optimal control of the ancillary quantum dot. Moreover, we propose experimentally
accessible methods to find this optimal operating regime and predict signatures of a suc-
cessful Majorana braiding experiment.

Figure 5.1: (a) Schematic of the minimal setup required for braiding in a linear array of quantum dots. Yel-
low squares are normal quantum dots, blue regions are superconducting leads mediating normal and Andreev
tunneling. Purples lines are electrostatic gates to control the parameters. (b) Majorana representation of the
Hamiltonian: The grey ovals with filled circles represent the Majorana operators γa,A/B for dot a, lines repre-
sent effective couplings. By tuning its chemical potential, the ancillary dot D supplies two Majoranas forming
a virtual trijunction together with dots L2 and R1. (c) Schematic of the single Majorana exchange protocol. A
full braid is implemented by varying µD , ΓL , and ΓR in sequence twice. µD ,ΓL , and ΓR can be experimentally
controlled via three electrostatic gates (dark purple). (d) Occupation probability of the |oo〉 state depending
on t over a full braiding operation. At times 3T and 6T the protocol implements exchange and full braid of the
two Majoranas neighboring the ancillary dot respectively. The line highlights the change in parity the system
undergoes during the protocol.

5.2. SETUP AND MODEL HAMILTONIAN
The minimal braiding setup in a linear array of quantum dots consists of two copies of a
two-site Kitaev chain connected by an ancillary quantum dot in the middle. A schematic
of this setup is shown in Fig. 5.1(a). The model Hamiltonian is

H = HL +HR +HD +Htunnel +HCoulomb,

Ha = ∑
i=1,2

µai nai + tac†
a2ca1 +∆aca2ca1 +h.c.,

HD =µD nD ,

Htunnel = ΓLc†
D cL2 +ΓR e iϕ/2c†

D cR1 +h.c.,

HCoulomb =ULnD nL2 +UR nD nR1. (5.1)

Here Ha with a = L/R are the Kitaev chain Hamiltonians, cai and nai = c†
ai cai are the

annihilation and number operators of the dot orbitals, µai is the orbital energy, and ta

and ∆a are the normal and Andreev tunnelings. HD is the Hamiltonian for the ancillary
quantum dot. Here we assume that both the magnetic-field-induced Zeeman energy
and the level spacing are large, such that all quantum dots are in the spinless regime.
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The effect of onsite Coulomb interaction can thus be safely neglected. Htunnel describes
single electron transfer between the end of the Kitaev chain and the ancillary quantum
dot, withΓL/R being the tunneling amplitudes. ϕ is the phase difference between the two
superconducting leads, which can be controlled by the magnetic fluxΦ through the loop.
Here we choose a gauge such that ta ,∆a > 0. HCoulomb describes the interdot Coulomb
interaction between the inner dots of the Kitaev chains and the ancillary dot. We neglect
Coulomb interaction between two dots of the same chain due to the strong screening
effect of the grounded superconductor.

5.3. MINIMAL MAJORANA BRAIDING IN A QUANTUM DOT CHAIN

5.3.1. EFFECTIVE TRIJUNCTION IN THE MAJORANA REPRESENTATION

One of the key results of Refs. [68, 69] was that a quantum dot forming a junction between
two Majorana bound states behaves as an effective tri-junction at a phase difference of
π. Here, we briefly show how this argument applies to the quantum dot chain.

To this end, we rewrite the Hamiltonian (5.1) in the Majorana basis. For each dot, we
transform the fermionic operators into Majorana operators as

ca = (γa A + iγaB )/2, c†
a = (γa A − iγaB )/2. (5.2)

At the sweet spot of the Kitaev chain we have

HL +HR = i∆LγL2AγL1B + i∆RγR2AγR1B , (5.3)

with unpaired Majoranas γL1A ,γL2B ,γR1A ,γR2B . On the other hand, the Hamiltonian for
the ancillary dot reads

HD = i
µD

2
γD AγDB . (5.4)

The left tunneling Hamiltonian can be rewritten as

Htunn,L = i
ΓL

2
(γL2AγDB −γL2BγD A) ≈−i

ΓL

2
γL2BγD A (5.5)

where the approximation is to project away the coupling to the high-energy Majorana
when ∆L ≫ ΓL . For the right tunneling Hamiltonian, at ϕ=π, we have equally

Htunn,R = i
ΓR

2
(γR1AγD A +γR1BγDB ) ≈ i

ΓR

2
γR1AγD A . (5.6)

Thus the effective Hamiltonian is

Heff = i
µD

2
γD AγDB − i

ΓL

2
γL2BγD A − i

ΓR

2
γR1AγD A , (5.7)

and thus equivalent to a Majorana trijunction [61], and schematically shown in Fig. 5.1(b).
Here, the dot energy µD plays effectively the role of a Majorana coupling.
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5.3.2. BRAIDING IN THE IDEAL CASE
We first consider an ideal scenario for Majorana braiding. Assuming no interdot Coulomb
interaction (UL =UR = 0), two finely tuned Kitaev chains (µai = 0 and ta =∆a) can host
four zero-energy Majoranas

γ1 = γL1A ,γ2 = γL2B ,γ3 = γR1A ,γ4 = γR2B , (5.8)

localized on four different quantum dots. They form the degenerate ground-state man-
ifold. As shown above, when the phase condition ϕ = π is satisfied, Majoranas γ2 and
γ3 together with the ancillary quantum dot, form an effective trijunction, with the cou-
pling strengths being ΓL ,ΓR and µD , respectively. Starting from uncoupled Majoranas
with ΓL = ΓR = 0 and µD > 0, we perform a sequence of three operations, adapting the
protocol of Ref. [61]:

1. turn off µD while turn on ΓL , 0 < t ≤ T

2. turn off ΓL while turn on ΓR , T < t ≤ 2T

3. turn off ΓR while turn on µD to its original value, 2T < t ≤ 3T .

The effect is to exchange the positions of γ2 and γ3 as shown in Fig. 5.1(c). The action
of the braid protocol is described by the operator

B =U (3T ) = exp
{π

4
γ2γ3

}
. (5.9)

Here we assume that all the operations are performed with perfect precision in the
adiabatic limit and without any noise from the environment. The effect of the braiding
operation becomes apparent when tracking the time evolution of some initial state in the
ground-state manifold through the time evolution. Due to fermion parity conservation
in Eq. (5.1), we can focus on the subspace with total even parity without losing generality.
When ΓL = ΓR = 0 and µD > 0, the ground states are doubly degenerate with

|ee〉 ≡ 1

2
(|00〉L −|11〉L)⊗ (|00〉R −|11〉R )⊗|0〉D ,

|oo〉 ≡ 1

2
(|10〉L −|01〉L)⊗ (|10〉R −|01〉R )⊗|0〉D , (5.10)

where the basis states are defined as |nL1,nL2〉⊗|nR1,nR2〉⊗|nD〉. If the system is initial-
ized as an even-even state ∣∣ψ(0)

〉= |ee〉 , (5.11)

it will evolve into ∣∣ψ(3T )
〉= B

∣∣ψ(0)
〉= (|ee〉− i |oo〉)/

p
2, (5.12)

after performing the braid operation once. By repeating the same braid operation, al-
though Majoranas γ2 and γ3 return to their original positions, the system becomes∣∣ψ(6T )

〉= B 2 ∣∣ψ(0)
〉= |oo〉 , (5.13)
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which is orthorgonal to the inital state. Equations (5.12) and (5.13) are regarded as the
signatures of non-Abelian statistics of Majorana anyons. However, an experimental demon-
stration of Eq. (5.12) would be challenging. What can be measured are probabilities

P|ee〉(3T ) = ∣∣〈ee|ψ(3T )〉∣∣2 and P|oo〉(3T ) = ∣∣〈oo|ψ(3T )〉∣∣2, which do not contain the cru-
cial information of the relative phase (−i ) between the two basis states. Moreover, even
a detection of P|ee〉(3T ) = P|oo〉(3T ) = 1/2, which is consistent with Eq. (5.12), cannot
exclude the possibility of a completely decohered state with an uniform probability dis-
tribution. In contrast, measuring the outcome of a double braid operation in Eq. (5.13),
which yields P|ee〉(6T ) = 0 and P|oo〉(6T ) = 1, will be transparent to interpret and thus
more convincing. Therefore, in the rest of the work, we will focus on the double-braid
protocol, which takes six steps of operations and a total time of 6T , unless stated other-
wise. A complete overview of the time-dependence of P|oo〉(t ) is schematically shown in
Fig. 5.1 (d).

5.3.3. BRAIDING IN THE IMPERFECT CASE
A real system will deviate from this ideal case. For example, inter-dot Coulomb repulsion
may lead to additional splittings, or some residual couplings between quantum dots may
remain. Additionally, the "leg" of the effective trijunction formed by the middle quantum
dot is not protected. Hence, noise in µD can be expected to have a significant impact.
Moreover, the phase-difference may deviate from the ideal value of π.

In the remainder of the paper, we will study the effects of these imperfections, and
how to mitigate them. To this end, we will use the full Hamiltonian (5.1) with time-
dependent parameters ΓL/R (t ) and µD (t ). We then compute ψ(6T ) by solving the time-
dependent Schrödinger equation. For details on the simulations, we refer the reader to
App. 5.10.

To characterize the faithfulness of the protocol, we calculate the infidelity

1−F ≡ 1− ∣∣〈oo|ψ(6T )
〉∣∣2 = 1−P|oo〉(6T ), (5.14)

where
∣∣ψ(6T )

〉
is the final state after time evolution through a double braid protocol and

|oo〉 is the analytical target state, respectively. Note that the infidelity can be obtained
experimentally from readout measurement on P|ee〉(6T ) and P|oo〉(6T ).

In our simulations, unless stated otherwise, we choose the system parameters to be
tL = ∆L = tR = ∆R = ∆ = 5Γ0,µL1 = µL2 = µR1 = µR2 = 0 to satisfy the sweet-spot con-
dition, and ϕ = π for the phase condition. Here, Γ0 is the maximal strength of single
electron tunneling setting the energy and time scale of the braiding process. We make
sure that the time evolution satisfies the adiabatic limit, i.e. T ≫ h/Γ0, and assume no
environmental noise or quasiparticle poisoning.

5.4. INTERDOT COULOMB REPULSION
We now consider the effect of interdot Coulomb repulsion on Majorana braiding. Coulomb
interaction is ubiquitous for quantum-dot-based devices, with the strength varying in
a wide range of tens of µeV to as large as one meV [71, 72]. As described by HC in
Eq. (5.1), it is present among electrons on dots L2,D , and R1 due to the long-range na-
ture of Coulomb interaction, while the interaction between dots within a Kitaev chain is
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strongly suppressed by the screening effect of the grounded superconductor.
We begin by assuming that Coulomb interaction is present, but that the three time-

varying parameters have equal variation magnitude and can be tuned perfectly to zero,

0 ≤ ΓL(t ),ΓR (t ),µD (t ) ≤ Γ0, (5.15)

before relaxing this assumption in later discussions. As shown in Fig. 5.2 (a) (UL = UR )
and (d) (UL ̸= UR ), interdot Coulomb energy has a very detrimental effect on braiding,
with the infidelity quickly approaching one as U ≳ Γ0.

To understand the physics behind this behavior, we focus on the first step of the
braiding operation (0 ≤ t ≤ T ). Since the right Kitaev chain is decoupled in this pro-
cess, we can work on a simpler Hamiltonian of HLD = HK ,L +Htunn,L +HC ,L +HD . Within
the subspace of total even parity, it can be written as

H (even)
LD =


0 −ΓL

2 0 ΓL
2

−ΓL
2 µD + UL

2
ΓL
2 −UL

2
0 ΓL

2 2∆L
ΓL
2

ΓL
2 −UL

2
ΓL
2 2∆L +µD + UL

2

 (5.16)

where the basis is |eL ,0D〉 , |oL ,1D〉 ,
∣∣e ′L ,0D

〉
,
∣∣o′

L ,1D
〉

and primes indicate excited states.
Here we shift all states by ∆L for simplicity of discussion, and the prime denotes the
excited states in the Kitaev chain. In the tunneling regime of ΓL ≪ ∆L , the low-energy
effective Hamiltonian is

H (even)
LD,eff =

(
0 −ΓL

2 (a +b)
−ΓL

2 (a +b) µD + UL
2 +∆L −λ

)
(5.17)

for arbitrary strength of UL , and valid up to second order in ΓL . Here λ=
√
∆2

L + (UL/2)2,

and a,b are positive numbers with a2 = 1−b2 = 1
2 + ∆L

2λ . The low-energy basis states are∣∣ψ1
〉 = |eL ,0D〉, and

∣∣ψ2
〉 = a |oL ,1D〉+b

∣∣o′
L ,1D

〉
. There are two major effects from the

interdot Coulomb repulsion. First, the instantaneous ground state of the total system
now includes a component of the excited states

∣∣o′
L

〉
in

∣∣ψ2
〉

, compared to the idealized∣∣ψ2
〉 = |oL ,1D〉 for the case with UL = 0. Second, as shown in Eq. (5.17), the effective

energy of the ancillary quantum dot is shifted: µD → µD + UL
2 +∆L −λ, which enhances

the energy of
∣∣ψ2

〉
. In the strong Coulomb regime, U ≫ 1, restricting 0 ≤µD ≤ Γ0 does not

effectively take the dot down to resonance. As a result, the state |ψ(t )〉 would stay close
to |ee〉 without moving any Majoranas, which explains the high infidelity in Fig. 5.2(a).
Based on Eq. (5.17), one way to mitigate this detrimental error is to shift the dot energy
as below

µD,min ≤µD (t ) ≤µD,min +Γ0,

µD,min =µ∗
D = ∑

a=L,R

(
−Ua

2
−∆a +

√
∆2

a + (Ua/2)2

)
. (5.18)

Note that the dot energy shift now includes contributions from both Kitaev chains be-
cause the Coulomb potential is additive and we assume no coupling between the two
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Figure 5.2: Effects of interdot Coulomb interaction between ancillary dot and adjacent Kitaev chain dots. (a)
and (d) show the infidelity in dependence of symmetric and asymmetric Coulomb energy respectively. (b)
and (e) show local conductance spectroscopy through the ancillary dot. Due to the interaction, the excitation
minimum shifts in chemical potential to a lower value corresponding to Eq. (5.18). Retuning µD,min to this
value corrects the adverse effect of the Coulomb interaction. This is supported by (c) and (f) showing the
infidelity in dependence of µD,min. In line with the excitation minimum, the infidelity reduces to zero when
µD,min = µ∗D . The discontinuity at µ∗D −Γ0 is due to our choice of µD,max −µD,min = Γ0 where the occupied
state on the dot becomes resonant with the states in the Kitaev chains. Measuring the traces as those presented
in c) and f) experimentally can be considered a signature of Majorana braiding.

Kitaev chains directly. Applying Eq. (5.18) to the braid protocol and without changing
any other conditions, we obtain the blue curve in Fig. 5.2 (a) for UL = UR and (d) for
UL ̸=UR . It shows an excellent correction of the errors with 1−F ≲ 10−3, validating our
analysis and proposal. Notably, since our treatment of Coulomb repulsion is nonpertur-
bative in the interaction strength, the error mitigation applies to strong Coulomb case
(U > ∆) as well, provided the system stays in the tunneling regime ΓL ≪ ∆L . Figure 5.2
(a) and (d) are the first main findings of this work, which positively indicates that it is
possible to mitigate the detrimental effect of interdot Coulomb repulsion in Majorana
braiding.

To find the value of µ∗
D in an actual device, we propose two experiments. The first

one is a local tunnel spectroscopy on the ancillary dot in the (eV ,µD ) plane, as shown
in Fig. 5.2(b) and (e). Here a normal lead is coupled to the ancillary dot to obtain GDD .
Although the Majorana-induced zero-bias peak stays robust, the subgap peak from the
first excited state varies with µD , and reaches a minimum along the bias-voltage axis at
µD = µ∗

D [see Fig. 5.2(b) and (e)], thus providing a way to find µ∗
D for the braid protocol.

Note that this does not add to the device complexity, when transport measurements are
needed to fine-tune the Kitaev chains into their sweet spots. Our second proposal is
to measure the infidelity as a function of µD,min. As shown in Fig. 5.2(c) and (f), the
infidelity drops to nearly zero at the optimal value µD,min = µ∗

D , and then increases to
one when µD,min is tuned away by ∼ Γ0. The numerical simulations are consistent with
our analytical results in Eq. (5.17) and (5.18). Moreover, a measurement of Figs. 5.2(c)
or 5.2(f) can be regarded as a signature of successful Majorana braiding. We note that
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the apparent discontinuity visible in Fig. 5.2 (c) and (f) are a consequence of our initial
choice max(µD (t )) = Γ0. When µD,min → µ∗

D −Γ0 the occupied state of the ancillary dot
is on resonance with the states on the Kitaev chain, interfering with the braiding. As this
happens only for µD,min < µ∗

D and can be controlled by changing max(µD (t )) > Γ0, this
feature can be disregarded for the effectiveness of the central result at µ∗

D .

5.5. RESIDUAL SINGLE ELECTRON TUNNELING
In semiconducting quantum dot devices, the single electron tunneling strength is con-
trolled by electrostatic gates. Although the strength can be varied deterministically, it is
challenging to turn off the coupling completely, causing unwanted errors in qubit con-
trol [73, 74]. To study the effect of residual coupling we assume

Γmin ≤ ΓL(t ),ΓR (t ) ≤ Γ0, (5.19)

µD,min ≤ µD (t ) ≤µD,min +∆µD , (5.20)

where Γmin > 0 is the residual tunneling strength, and ∆µD = µD,max −µD,min is the vari-
ation magnitude of the ancillary dot energy. For the analytic considerations we set the
interdot Coulomb energy at first to zero, unless stated otherwise (we relax this assump-
tion in Fig. 5.4 (c) and (d)). Figure 5.3(a) shows the numerically calculated infidelities in
the (∆µD ,Γmin) plane. The infidelity increases with the residual tunneling strength Γmin

while it decreases with the dot variation magnitude ∆µD , see Figs. 5.3(b) and 5.3(c). As
it will be shown below, the infidelity is a joint consequence of two distinct error mecha-
nisms, which we call leakage and geometrical leakage error.
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Figure 5.3: (a) Infidelity, 1−F , in the (∆µD ,Γmin)-plane. (b) Infidelity as a function of ∆µD for different cuts of
Γmin in (a). (c) Infidelity as a function of Γmin for different cuts of ∆µD in (a).

The leakage error, on one hand, can be understood from a heuristic perturbation the-
ory analysis: At the initial time, treating the residual tunnelings Γa,min as a perturbative
effect, the state |ee〉 can leak into the excited states

|oe〉 = 1

2
(|10〉L −|01〉L)⊗ (|00〉R −|11〉R )⊗|1〉D (5.21)

|eo〉 = 1

2
(|00〉L −|11〉L)⊗ (|10〉R −|01〉R )⊗|1〉D (5.22)

with a characteristic amplitude of Γmin/∆µD . Thus the leakage probability is

Pleak ∝
(
Γmin

∆µD

)2

(5.23)
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Figure 5.4: (a) and (c) Infidelity, 1−F , in the (µD,min,Γmin) plane for Ua = 0 and Ua = 10Γ0 respectively. For
both, we choose ∆µD = 10Γ0. The dotted lines show the numerical minimum of the infidelity, solid lines cor-
respond to the expectation of eqns. (5.30) and (5.18). (b) and (d) Infidelity as a function of µD,min for different
cuts in Γmin through (a) and (c) showing that for increasingly negative values of µD,min the infidelity vanishes
regardless of residual tunnel coupling.

to leading order in residual tunneling strength. The same argument can be made for any
specific state expected at an intermediate step of the time evolution. In light of Eq. (5.14),
for a perfect double braid besides residual couplings of the Majoranas, it is therefore to
expect that 1−F = 1−P|oo〉 ∝ Pleak×const ., with a constant proportional to T . Indeed, as
shown in Fig. 5.3(c), the numerically calculated infidelity decays with a larger variation
magnitude, consistent with Eq. (5.23). As indicated by Eq. (5.23), leakage errors can be
mitigated by an increase of the chemical potential variation on the ancillary dot, i.e.

∆µD ≫ Γ0. (5.24)

We note that an increase of∆µD comes at the expense of diabatic errors due to faster
changes of µD (t ). We do however expect the existence of a window in protocol time
where the leakage error is strongly suppressed before the diabatic error becomes promi-
nent.

The geometrical error, on the other hand, can be understood by calculating the uni-
tary evolution operator, Eq. (5.9), in the presence of residual couplings between the Ma-
joranas. This amounts to calculating the non-Abelian Berry phase of the cyclic variation
of the Hamiltonian, which has a geometrical origin. Performing a similar calculation to
that of Ref. [61] generalized to asymmetric couplings (see App. 5.12), the unitary operator
in Eq. (5.9) becomes

Ures(3T ) = exp
{(π

4
−ϵ

)
γ2γ3

}
, (5.25)

where ϵ denotes the deviation from perfect braiding. The corresponding infidelity is

1−F = sin2(2ϵ) ≈ 4ϵ2 (5.26)
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when ϵ≪ 1. Calculating ε in Eq. (5.25) explicitly, we find forΓL,max = ΓR,max =µD,max = Γ0

ϵ≈ 1p
2Γ0

(
ΓL,min +ΓR,min +µD,min

)
(5.27)

in leading order of the residual coupling of the Majoranas (see App. 5.12). We note
that Eq. (5.27) coincides with the result in Ref. [61] when ΓL,min = ΓR,min = µD,min. As-
suming no residual coupling of the Majoranas on the ancillary dot, i.e. µD,min ≡ 0 in
the absence of Coulomb repulsion, we find through Eq. (5.26) that the infidelity scales
quadratically with the residual tunnel coupling,

1−F ∝
(
Γmin

Γ0

)2

. (5.28)

We can find an analytical correction to the geometrical error when excluding the
presence of leakage errors, that is in the limit ΓL,max = ΓR,max = Γ0 ≪ µD,max. We then
obtain

ϵ≈ 1p
2Γ0

(
ΓL,min +ΓR,min +

p
2µD,min

)
, (5.29)

to leading order in residual tunnelings and inΓ0/µD,max. The key observation now is that,
despite Γa,min/Γa,max > 0 for any applied voltage to the tunnel gates, one can change the
sign of µD,min with respect to µD,max by tuning the dot to chemical potentials below the
resonance of dot with the Kitaev chains. In particular, the geometrical error vanishes up
to the leading (quadratic) order in Γmin/Γ0 when one chooses

µD,min =−p2Γmin < 0. (5.30)

Figure 5.4 (a) shows the infidelity of the double braid protocol in the (µD.min,Γmin)
plane for ∆µD = 10Γ0. The dotted red line indicates the numerical minimum of the
infidelity, 1− F , for fixed Γmin in dependence of µD,min while the solid red line shows
Eq.(5.30). Indeed, the optimized µD,min take negative values as predicted. Moreover, the
analytic result in Eq. (5.30) matches well with the numerical result in the weak residual
tunneling regime . We furthermore find that our analysis remains well valid even in the
presence of Coulomb repulsion when additionally applying the correction suggested in
Sec. 5.4, i.e. µD →µD +µ∗

D as visible in Fig. 5.4 (c) and (d).

5.6. SUPERCONDUCTING PHASE DIFFERENCE
Satisfying the phase condition ϕ = π is crucial for a successful braiding experiment.
The phase is controlled via the magnetic flux through the superconducting loop, i.e.
ϕ = 2πeΦ/h + const ., see Fig. 5.1(a). Here we propose two experiments to find where
ϕ = π, which are similar in spirit to those discussed in Sec. 5.4. The first one is a trans-
port measurement. Figure 5.5(a) shows the tunnel spectroscopy of GDD in the (eV ,ϕ)
plane. The signature of ϕ = π is a zero-bias conductance peak, which is induced by
the Majorana zero modes formed at the trijunction and splits linearly when the phase
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is away from π. Our second proposed experiment is to measure the double-braid infi-
delity 1−F as a function of ϕ, as shown in Fig. 5.5(b). Interestingly, in addition to ϕ=π,
there are multiple other values ofϕ also giving zeros of 1−F . These zeros are due to Rabi
oscillations induced by the undesired ground-state degeneracy splitting, similar to the
observations in Ref. [68, 75]. However, a fundamental distinction between them is that
the outcome of non-Abelian braiding does not depend on the precise control of the pro-
tocol time as the dynamical effects such as Rabi oscillations. Therefore, after averaging
over different lengths of protocol time T , while keeping the adiabaticity constraint still
satisfied, only the infidelity at ϕ=π remains zero [see Fig. 5.7(c)], indicating the robust-
ness of a geometrical braid operation.

In addition, we notice that both the conductance spectroscopy and the infidelities in
Fig. 5.5 are 2π-periodic inϕ, or equivalently h/2e-periodic in magnetic fluxΦ. However,
the tunneling ΓR in Eq. (5.1) at ϕ= 3π acquires a minus sign relative to ϕ=π, giving

B3π = B−1
π , (5.31)

where Bπ is defined in Eq. (5.9). This is a consequence of the 4π Josephson effect due to
fractionalized Majorana zero modes. In particular, single braids Bπ and B3π give (|ee〉±
i |oo〉)/

p
2, respectively. However, it is challenging to distinguish the different phases ±i

here from a measurement of P|ee〉 and P|oo〉 only. Thus we propose the following three-
step experiment.

1. apply Bπ on |ee〉 twice to obtain |oo〉

2. apply B3π on |ee〉 twice to obtain |oo〉

3. apply Bπ on |ee〉 once followed by another B3π to obtain |ee〉
Here in each step the system should be initialized at |ee〉. A successful implementation
of the above experiments would manifest 4π-periodicity in a fractional Josephson junc-
tion. We demonstrate our proposal in Fig. 5.5 for the system described in Sec. 5.3.3 for
∆µD = 1 and without Coulomb repulsion. We see that, if the phase stays constant over
the double braid, the Majoranas exchange as expected and the quantum state of the sys-
tem changes. If, however, the phase is adiabatically changed for the second exchange
the state returns to the initial state due to the 4π-Josephson effect.

5.7. DIABATIC AND DEPHASING EFFECTS
We now consider the impact of diabatic and dephasing errors when executing the braid
protocol. Figure 5.7 shows the infidelity as a function of the protocol step time T at time
t = 6T for different values of ∆µD and U . The infidelity decreases exponentially with
the protocol time, consistent with the behavior of diabatic error in holonomy or anyonic
braiding [76]. Interestingly, by comparing the blue and orange lines in Fig. 5.7(a), we
find that increasing ∆µD decreases the diabatic error. Physically, although the change of
µD (t ) becomes faster, the energy gap of the effective trijunction increases, which com-
pensates the former effect as long no Landau-Zener transitions into the excited man-
ifold are induced. This means that we can suppress the leakage in Eq. (5.23) without
increasing the diabatic error. Additionally, with finite Coulomb, the infidelity saturates
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Figure 5.5: (a) Tunnel spectroscopy, GDD , over the ancillary dot in the (V ,ϕ) plane. Only at odd integer mul-
tiples of π the conductance indicates the necessary degeneracy at V = 0. Additionally, the linear splitting of
that degeneracy with phase indicates the lack of protection of the protocol against phase noise. (b) Infidelity,
1−F , as a function of ϕ for a single T . The oscillations indicate Rabi oscillations between the states in the
ground-state manifold. (c) Infidelity of the double braid protocol averaged over multiple T . Since the outcome
of the non-Abelian exchange does not depend on any specific choice of T , the perfect fidelities at odd interger
multiples of π persist while the Rabi oscillations present in (b) average away.

at 1−F ≈ 10−3 for T → ∞, which is due to the higher-order corrections to µ∗
D from Γa

that are not included in leading-order result shown in Eq. (5.18).
In semiconducting quantum dot devices, charge noise is the primary source of noise,

which can be caused by charge impurities or gate voltage fluctuations [77–84]. Since it
is 1/ f noise, which is dominated by the low-frequency component, we can model the
noises using the quasi-static disorder approximation [85, 86]. In particular, we focus on
the effect of noise in the ancillary dot that does not exhibit any protection, whereas noisw
in the short Kitaev chains could be mitigated by extending the chain length. Moreover,
the dephasing effects of noise within the Kitaev chains were studied in previous work in
the context of imperfect Majorana polarizations [59].

We assume the noise on the ancillary dot chemical potential can be modeled as

µD (t ) →µD (t )+δµD , , (5.32)

where δµD is a constant shift drawn from a normal distribution with width σµD and cen-
tered around zero for each execution of the protocol(see App. 5.10). To quantify the
effect of the noise we perform an ensemble average over 100 different noise values. As
shown in Fig. 5.7(b), the main effect of µD -noise is to deteriorate the fidelity around
µD,min = µ∗

D (= 0 when Ua = 0). Since the width of the 1−F dip is of the order of Γ0,
a necessary condition for observing this signature is a characteristic disorder strength
µD,dis ≪ Γ0 to indicate the success of the braid.

In contrast to chemical potential noise, the modeling of the tunneling noise, Γ, differs
due to its distinct dependence on the electrostatic potential. In particular, the quantum
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Figure 5.7: (a) Logarithm of the infidelity, log1−F , in dependence of protocol step time T showing oscillations
due to leakage into excited states. The reduced fidelity at finite U is due to perturbative corrections to µ∗D Γa
not taken into account in Eq. (5.18). (b) Ensemble averaged infidelity of the double braid in dependence of
µD,min for different variances of quasistatic noise onµD averaged over 100 realizations . (c) Ensemble averaged
infidelity in dependence of µD,min at fixed residual tunneling Γmin = 0 over 100 noise values. Solid and dashed
lines correspond to noise with a variance of 0 and 0.35Γ0 on the tunnel coupling Γa respectively.

dot energy has a linear dependence because it is capacitively coupled to the electrostatic
potential nearby, while the electron transfer rate has an exponential dependence since it
is determined by the transmission probability through a tunnel barrier. Therefore, noise
in Γa is proportional to Γa itself, i.e.

Γa(t ) → (1+α)Γa(t ), (5.33)
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Hereα is a dimensionless coefficient which we draw from a normal distribution of width
σΓ and mean zero. We use this simple model of noise on tunneling, as it avoids taking
into account details of the tunnel barrier, but we expect it is sufficient to demonstrate
the principal effect of noise in the tunnel barriers when ensuring σΓ ≪ 1. As shown in
Fig. 5.7(c), although the 1−F dip is again lifted by the noise, its effect is much weaker
to the effect of chemical potential noise as shown in Fig. 5.7(b). This feature can be well
understood using Eq. (5.33). When the tunneling Γa is in the off -state, the fluctuation is
strongly suppressed due to the small residual tunneling amplitude. On the other hand,
the deviation of Γa strength in the on-state predominantly changes the energy gap of the
effective trijunction, without greatly affecting the outcome braiding operation. Thus,
tunneling noise is less detrimental than noise on µD in this braid setup.

5.8. DISCUSSION
It has been shown that braiding of non-Abelian anyons can take place only in two-dimensional
space, which seemingly contradicts with the conclusions of the current work. However,
we emphasize that although the quantum dot-superconductor array has a linear struc-
ture at the first glance, it is quasi-one-dimensional in nature. In particular, since ϕ = π

is a crucial requirement for a successful Majorana braid, a superconducting loop [see
Fig. 5.1(a)] has to be formed along with a controllable magnetic flux Φ, which extends
the setup geometry to the second dimension. Moreover, the proposed braiding setup al-
lows a "minimal braiding" experiment in the sense that the outcome is not topologically
protected, but depends on fine-tuning of parameters, in particular µD and φ.

We here discuss several relevant time scales of the braiding protocol. First, the proto-
col time should be sufficiently long in order to satisfy the adiabatic condition. Although
there is no common standard, here we choose a threshold diabatic error to be 10−2 for
concrete discussions. According to Fig. 5.7(a), the protocol time needs to be larger than
∼ 300ħ/Γ0, which correponds to a time scale of ∼ 20 ns for a typical single electron tun-
neling strength of Γ0 ∼ 10 µeV.

Second, as discussed in Sec. 5.7, the dephasing effect from noises in µD and those
within Kitaev chains should be sufficiently mitigated. In particular, in order to experi-
mentally observe Fig. 5.2(c) or (f), which is regarded as one of the signatures of a suc-
cessful Majorana braiding, the amplitude of the µD noise must be smaller than the char-
acteristic single electron tunneling strength, i.e.,

µD,dis ≪ Γ0, (5.34)

as shown in Fig. 5.7(b). Additionally, the energy splitting between the instantaneous
ground states should also be much weaker than Γ0 to avoid decoherence. This can be
achieved by either enhancing the excitation gap of a Kitaev chain [27, 28, 33] or extending
the chain length [30, 31, 40, 43]. By contrast, based on our simulations and arguments,
the noises in ΓL/R are less detrimental.

The third time scale is the quasiparticle poisoning effect. For example, a random
incoming electron from outside the system can flip the total fermion parity, causing
leakage errors that cannot be corrected. The poisoning time is reported to be around
∼ 1 ms in devices of InSb/InAs semiconductor nanowires proximitized by Al supercon-
ductors [87], which has a very similar nanostructure to the Kitaev chain devices [26–31].
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As long as the adiabatic condition is satisfied (e.g., ∼ 20 ns for diabatic error < 10−2)
within that time scale, the quasiparticle poisoning effect should not be a major concern
in this braid experiment.

5.9. SUMMARY
In summary, we have investigated a minimal Majorana braiding protocol in quantum-
dot-based Kitaev chains, focusing on the physical phenomena that are peculiar to quan-
tum dot devices, e.g., interdot Coulomb repulsion and residual single electron tunneling.
We find that the detrimental errors from them can be efficiently mitigated by optimal
control of the ancillary quantum dot via µD,min and µD,max. Furthermore, we propose a
series of experiments to find this optimal operating regime and predict signatures of a
successful braiding. We also analyze the diabatic errors and dephasing effect from vari-
ous types of noises.

ACKNOWLEDGEMENTS
We acknowledge useful discussions with Alberto Bordin, Bart Roovers, Florian Bennebroek
Evertsz, and Juan Daniel Torres Luna about current experiments and their analysis. This
work was supported by a subsidy for top consortia for knowledge and innovation (TKI
toeslag), by the Dutch Organization for Scientific Research (NWO) and Microsoft Station
Q. S.M. acknowledges funding of NWO through OCENW.GROOT.2019.004.

DATA AVAILABILITY
The code and the data that was generated for the plots are available in the repository of
Ref. [88]

5.10. DETAILS OF THE NUMERICAL CALCULATION
In this appendix we expand on the numerical tools used to generate the figures of this
work. The associated repository containing all codes used for this work can be found in
Ref. [88].

To simulate braiding in the setup described in Sec. 5.2, we use the QUTIP [89] Python
package to calculate the time evolution. The perturbation theory results of Sec. 5.4 and
App. 5.11 are generated with Pymablock [90].

To model the time dependent coupling between the different Majoranas (cf. Fig. 5.1
c)) we have to specify the profiles for µD ,ΓL , and ΓR . We model each parameter by the
time dependent function

p(t , pmi n , pmax ,σp ) = (pmax −pmi n)

(
1

2
+ tanh

(
t̃ − T

2

tr amp

)
− tanh

(
t̃ − 3T

2

tr amp

)
+ tanh

(
t̃ − 7T

2

tr amp

))
,

(5.35)

t̃ = (t + t0) mod 3T. (5.36)

Choosing t0 = T generates the profile of µD , t0 = 0 ΓL , and t0 = 2T yields ΓR . The
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Figure 5.8: Parameters of the double braid protocol depending on time. (a) chemical potential µD (t ) of the
ancillary dot. (c) and (d), tunnel coupling of the ancillary dot to the left and right Kitaev chain respecitvely.

resulting profiles can be found in Fig. 5.8.
The parameters for the time evolution need to obey the adiabaticity constraint T ∼

h/Γ0 of the protocol. To find parameters for the time evolution that both, obey the adia-
baticity constraint and deliver unit fidelities, we construct the full Hamiltonian as given
in Eq. (5.1). We fix all the parameters at their optimal point (tL = ∆L = tR = ∆R = 5Γ0,
and ϕ = π). We choose the stepsize of the time discretization to ∆t = 0.2h/Γ corre-
sponding to ∼ 0.1ns given typical coupling strengths of Γ0 ∼ 10µeV . We then optimize
numerically for T and the ramping time tr amp by demanding that P|oo〉(3T ) = 1/2 and
P|oo〉(6T )=1. This results in (Topt , tr amp,opt ) = (200.54,21.21)ħ/Γ0 which is our default
parameter choice unless specified otherwise. When changing T away from the opti-
mized value, we have to adjust the ramping time accordingly. This we do by letting
tr amp → T tr amp,opt /Topt such as to coincide with the optimal choice when T = Topt .

5.11. EFFECTIVE ODD PARITY HAMILTONIAN AND EXCITATION

MINIMUM

5.11.1. EFFECTIVE HAMILTONIAN IN ODD AND EVEN PARITY SECTORS
As discussed in the main text, it suffices to only consider a single PMM coupled to the
ancillary dot to understand the physics relevant for the Coulomb repulsion. The Hamil-
tonian of this system reads

HLD = HK ,L +Htunn,L +HC ,L +HD , (5.37)

HK ,L =µL1nL1 +µL2nL2 + tc†
L2cL1 +∆cL2cL1 +h.c.,

HD =µD nD ,

Htunn,L = ΓL

(
c†

D cL2 +c†
L2cD

)
,

HC ,L =ULnD nL2.

Since the system preserves the total fermionic parity we can separate the Hilbert
space into the even and odd total parity subspaces. In the even parity sector consist-
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ing of the basis |eL ,0D〉, |oL ,1D〉, |e ′L ,0D〉, |o′
L ,1D〉 we find Eq. (5.16), i.e.

H (even)
LD =


0 ΓL

2 0 ΓL
2

ΓL
2 µD + UL

2
ΓL
2 −UL

2
0 ΓL

2 2∆L
ΓL
2

ΓL
2 −UL

2
ΓL
2 2∆L +µD + UL

2

 . (5.38)

In the odd parity basis, consisting of |eL ,1D〉, |oL ,0D〉, |e ′L ,1D〉, |o′
L ,0D〉, we find through

an analogous calculation the Hamiltonian

H (odd)
LD =


UL
2 +µD

ΓL
2

UL
2 −ΓL

2
ΓL
2 0 −ΓL

2 0
UL
2 −ΓL

2
UL
2 +2∆L +µD

ΓL
2

−ΓL
2 0 ΓL

2 2∆L

 , (5.39)

Due to the aforementioned parity conservation the spectrum will be strongly degenerate
between parity sectors.

5.11.2. EXCITATION GAP MINIMUM

The excitation gap can be found through Eq. (5.17) from the main text. We find the eigen-
values of the effective Hamiltonian to be

ϵ± = 1

2

(
µD + UL

2
+∆L −λ

)
±

√
Γ2

L

4
(a +b)2 + 1

4

(
µD + UL

2
+∆L −λ

)2

. (5.40)

The excitation gap is the difference of these two eigenvalues given as

∆ϵ=
√
Γ2

L(a +b)2 +
(
µD + UL

2
+∆L −λ

)2

(5.41)

Inspecting Eq. (5.41), it becomes apparent that the excitation gap becomes minimal
exactly for the predicted value of µD = µ∗

D as given in Eq. (5.18). We find the value of the
excitation gap to be

∆ϵmin = ΓL

√√
4∆2

L +U 2
L +2∆L +

√√
4∆2

L +U 2
L −2∆L

p
2(4∆2

L +U 2
L )1/4

(5.42)

for a single Kitaev chain attached to the ancillary dot.
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5.12. CALCULATION OF THE NON-ABELIAN BERRY PHASE
In this section, we show the details for calculating the non-Abelian Berry’s phase in the
presence of residual couplings. The calculation is similar in spirit to Ref. [61], but we
generalize it to asymmetric couplings. The Hamiltonian is given by

H =
3∑

k=1
∆k iγ0γk , (5.43)

which involves four Majoranas in total. We thus define fermionic operators as below

f1 = (γ1 + iγ2)/2, f2 = (γ0 + iγ3)/2, (5.44)

so that we can further define the four-dimensional Fock space as

|00〉 , (5.45)

|10〉 = f †
1 |00〉 ,

|01〉 = f †
2 |00〉 ,

|11〉 = f †
1 f †

2 |00〉 .

As such, the Hamiltonian can now be written as

H =


|00〉
|11〉
|10〉
|01〉


T 

−∆3 i∆1 +∆2 0 0
−i∆1 +∆2 ∆3 0 0

0 0 −∆3 −i∆1 +∆2

0 0 i∆1 +∆2 ∆3



〈00|
〈11|
〈10|
〈01|

 . (5.46)

We note that here the even- and odd-parity subspaces are block diagonalized due to
fermion parity conservation. The dimension of each subspace is two.

We first focus on the even-parity subspace, where the ground-state energy is

Ee,g s =−ε=−
√
∆2

1 +∆2
2 +∆2

3, (5.47)

and the wavefunction is

|e〉 =
√
ε−∆3

2ε

(
−i ∆3+ε

∆1+i∆2

1

)
. (5.48)

Using sympy, we obtain that

Ae,1 = 〈e| d

d∆1
|e〉 = ∆2

∆2
1 +∆2

2

i (ε+∆3)

2ε
, Ae,2 = 〈e| d

d∆2
|e〉 = −∆1

∆2
1 +∆2

2

i (ε+∆3)

2ε
,Ae,3 = 0.

Using the same calculation method, we find that

Eo,g s =−ε=−
√
∆2

1 +∆2
2 +∆2

3, (5.49)
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and the wavefunction is

|o〉 =
√
ε−∆3

2ε

(
i ∆3+ε
∆1−i∆2

1

)
. (5.50)

Note that the odd-parity wavefunction is different from the even one by i → −i . Thus
the signs of the Berry connections are simply reversed, i.e.

A⃗o =−A⃗e . (5.51)

Due to parity conservation, the matrix elements between even- and odd-parity states are
zero.

The unitary evolution for the Majorana braiding is defined as

U = exp

(
−

∮
c

∑
k

Ak d∆k

)
. (5.52)

Here the Berry connection shown in Eq. (5.49) is singular when ∆1 = ∆2 = 0 because
of the presence of a term ∆1/(∆2

1 +∆2
2). To avoid the singular points, we assume that

the couplings have some residual amplitudes even when they are “switched off”, i.e.,
ηk ≤∆k ≤ Γ. Here we first assume that the maximal strengths of all ∆k ’s are assumed to
be the same and equal to Γ to simplify the calculation. In particular, in the three-step
braid operation, we assume six contours in the parameter path as below

C 1 : (η1,η2,Γ) → (Γ,η2,Γ),

C 2 : (Γ,η2,Γ) → (Γ,η2,η3),

C 3 : (Γ,η2,η3) → (Γ,Γ,η3),

C 4 : (Γ,Γ,η3) → (η1,Γ,η3),

C 5 : (η1,Γ,η3) → (η1,Γ,Γ),

C 6 : (η1,Γ,Γ) → (η1,η2,Γ),

where each bracket denotes (∆1,∆2,∆3). We note that only 4 out of the 6 contours con-
tribute to the Berry’s phase. We name them as C 1 → I1,C 4 → I2,C 3 → I3,C 6 → I4.

−
∮

c

∑
k

Ak d∆k =
(−i

2

)
I =

(−i

2

)
(I1 + I2 + I3 + I4), (5.53)

In particular

I1 =
∫ Γ

η1

A1(∆1,η2,Γ)d∆1 =
∫ Γ

η1

d∆1
η2

∆2
1 +η2

2

1+ Γ√
∆2

1 +Γ2

 . (5.54)

Here the first integral is
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I11 =
∫ Γ

η1

d∆1
η2

∆2
1 +η2

2

=
∫ b

a
d x

1

x2 +1
= arctan(b)−arctan(a), (5.55)

where b = Γ/η2 and a = η1/η2. The second part is

I12 =
∫ Γ

η1

d∆1
η2

∆2
1 +η2

2

Γ√
∆2

1 +Γ2
=

∫ b

a
d x

1

x2 +1

bp
x2 +b2

. (5.56)

We obtain the result for the indefinite integral as given below∫
d x

1

x2 +1

bp
x2 +b2

= bp
1−b2

tanh−1

( p
1−b2

p
b2 +x2

x

)
≈ arctan

(
bxp

b2 +x2

)
, (5.57)

where we assume b ≫ 1 and use the relation of tanh−1(i b) = i arctan(b). Therefore we
have

I12 = arctan

(
bp

2

)
−arctan(a) ≈ π

2
−
p

2

b
−arctan(a), (5.58)

where we consider a ∼ O(1) ≪ b and use the identity of arctan(x) = π/2− arctan(1/x).
We thus have

I1 = arctan
(
Γ/η2

)−2arctan
(
η1/η2

)+ π

2
−
p

2η2

Γ
. (5.59)

Next, the second integral is

I2 =
∫ η1

Γ
A1(∆1,Γ,η3)d∆1 =−

∫ Γ

η1

d∆1
Γ

∆2
1 +Γ2

1+ η3√
∆2

1 +Γ2


=−

[
arctan(1)−arctan

(
η1/Γ

)+ η3p
2Γ

]
. (5.60)

And the third integral is

I3 =
∫ Γ

η2

A2(Γ,∆2,η3)d∆2 (5.61)

=
∫ Γ

η2

d∆2
−Γ

∆2
2 +Γ2

1+ η3√
∆2

2 +Γ2

 =−
[

arctan(1)−arctan
(
η2/Γ

)+ η3p
2Γ

]
.

Lastly, the fourth integral is

I4 =
∫ η2

Γ
A2(η1,∆2,Γ)d∆2

= arctan
(
Γ/η1

)+ π

2
−
p

2η1

Γ
−2arctan

(
η2/η1

)
. (5.62)
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After summing them up, we obtain

I =
4∑

i=1
Ii = π

2
−
p

2

Γ
(η1 +η2 +η3), (5.63)

giving the unitary evolution matrix as below

U = exp

(−i

2
Iσz

)
= exp

(
−i

(π
4
−ϵ

)
σz

)
, (5.64)

where

ϵ= (η1 +η2 +η3)p
2Γ

+O(ηi /Γ)2. (5.65)

In the notation for braiding Majoranas in Kitaev chains, it becomes

Ubraid = exp
(
−i

(π
2
−ϵ

)
γ2γ3

)
, (5.66)

where

ϵ= (ΓL,mi n +ΓR,mi n +µD,mi n)p
2Γ

+O(ηi /Γ)2 (5.67)

A similar calculation can be performed assuming ∆1,max =∆2,max ≪∆3,max . It yields

ϵ= 1p
2

(
ΓL,min

Γ
+ ΓR,min

Γ
+
p

2µD,min

Γ

)
+O(ηi /Γ,Γ/µD,max ). (5.68)
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CONCLUSION

In this thesis we have discussed methods, designs, and operation protocols relevant to
the development of quantum dot based platforms for topological quantum computing.

We began by introducing Pymablock, a Python package that allows efficient compu-
tation of effective Hamiltonians. Calculating effective Hamiltonians is a standard task
in the study of condensed matter systems. The most common method for their calcu-
lation is known by the name Schrieffer-Wolff perturbation theory. Automating this task
allows to progress on projects more efficiently while enhancing reliability. The package
has been utilized in the various projects related to Kitaev chains presented here, but also
for studies on superconductivity in interacting systems [1], superconducting junctions
[2, 3], and effective models of semiconducting wires [4].

Using these tools, we then demonstrated how the physics of Kitaev chains can be re-
alized in chains of quantum dots featuring less constituents than the original proposals
[5–7]. In regimes of limited Zeeman splitting, the excited Andreev bound state medi-
ates an effective coupling equivalent to that of a single Andreev bound state coupled to
two quantum dots. While the design allows to reduce the number of quantum dots, it
highlights the challenges associated with next-nearest neighbor couplings upon scaling.
Specfically, the previously exact zero energy crossing of a sweet spot is lifted regardless of
the coupling strength between quantum dots. Similar next nearest neighbor couplings
have later been discussed also for extended poor man’s Majorana chains [8]. Despite the
challenges, we foresee that our proposed design is well suited to demonstrate conver-
gence to the topological limit in sufficiently long chains.

Next, we turned to a system of two quantum dots coupled via an Andreev bound state
in the limit of zero magnetic field and strong on-site Coulomb repulsion. We showed that
such a system hosts zero modes that can be associated with parafermions. To the best of
our knowledge, this establishes the poor man’s Majorana system as the simplest system
to host parafermions that are robust against local detuning. Experimental demonstra-
tion of the nature of the zero modes however remains an important challenge. While ex-
perimental signatures of degeneracies have recently been observed [9], demonstrating
the parafermionic nature of these modes is likely to remain experimentally prohibitive
due to the stringent conditions required for their realization.

Finally, we have proposed a protocol to realize braiding in a system composed of
two minimal Kitaev chains coupled via a normal quantum dot to verify the non-Abelian
nature of the zero modes. Demonstrating the the non-Abelian nature of the zero modes
is a necessary step to uniquely identify Majoranas. Additionally, the protocol realizes
an elementary operation for the purpose of topological quantum computing. The main
experimental challenge in realizing the proposal will be the noise in the system. While
the realization of the protocol is a hard experimental task, avoiding the most impeding
noise sources and reliable local parity read-out are the central challenges to overcome for
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scalable quantum dot based platforms for topological quantum computing. We expect
our protocol and system to provide valuable guidance in future experimental efforts.
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