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Abstract

Software is a centerpiece in today’s society. Because of that, much effort is spent
measuring various aspects of software. This is done using software metrics. Code
churn is one of these metrics. Code churn is a metric measuring change volumebe-
tween two versions of a system, defined as sum of added, modified and deleted lines.
We use code churn to gain more insight into the evolution of software systems. With
that in mind, we describe four experiments that we conductedon open source as well
as proprietary systems.

First, we show how code churn can be calculated on different time intervals and
the effect this can have on studies. This can differ up to 20% between commit-based
and week-based intervals. Secondly, we use code churn and related metrics to auto-
matically determine what the primary focus of a developmentteam was during a period
of time. We show how we built such a classifier with a precisionof 74%. Thirdly, we
attempted to find generalizable patterns in the code churn progression of systems. We
did not find such patterns, and we think this is inherent to software evolution. Finally
we study the effect of change volume on the surroundings and user base of a system.
We show there is a correlation between change volume and the amount of activity on
issue trackers and Q&A websites.
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Chapter 1

Introduction

1.1 Background

We have become irreversibly dependent on software systems.As these systems grow larger
and more complex, our understanding of them becomes weaker.Software metrics are used
for understanding software systems. Research into software metrics has been done for four
decades already, up to the point where it is unclear what the exact state of software metric
research is [26]. On another side of the software engineering spectrum, there is the rise
of Agile process methodologies like SCRUM [36] and eXtreme Programming [7], which
emphasize small iterations of changes and improvement. Theemphasis on the software
process is a result of the growing complexity of software. Byunderstanding what changes
a system went through, we can understand the system. To the best of our knowledge, there
has not been much been much work which combines metrics and the software process since
the rise of the Agile methodologies.

One of the studies which combines both software metrics and the development process
is the work by Basili et al. from 1996 [5]. They surveyed developers regarding the changes
they made to a piece of software when going from one version toa next, and gathered infor-
mation like amount of changed lines and the nature of the change. They show that knowing
what type of changes are made during a time period helps with software understanding and
the distribution of effort across a release. The downside oftheir study is that the developers
have to fill in a survey each time they make a change to gather the required information.

We want to combine software metrics, software process and software understanding. For
this, we decided to studycode churn[13]. Code churn is the most commonly used basic
metric for measuring change between two versions of the samesystem. Our goals for this
study are threefold. Firstly, we want to gather the same information as Basili et al. regarding
types of changes automatically. Secondly, we want to use code churn, the base measure of
change, to capture patterns in the software development process and further software under-
standing. Thirdly, we want to know whether code churn and thesoftware process have an
impact on the software’s surroundings, like user communities.

1
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Figure 1.1: An example of two different code churn measurements.

1.2 Research questions

As stated, our goal is to explore code churn’s characteristics to develop methods which
assist with software understanding. To this avail, we answer the following four research
questions.

1. What is the relationship between time between versions and code churn?
Code churn can be calculated for any two versions A and B of a system, as long as
A precedes B. However, the time in between the two versions can impact the results
gathered. For instance, the churn calculated once on versions a month apart will be
different than the sum of all calculated churns of the four consecutive weeks. An
example of this is shown in Figure 1.1. By answering this research question, we
research the influence of the decision of the time interval onthe results.

2. What churn-related metrics can be used to classify softwarechanges using automated
source code measurements?
Following the experiment performed by Basili et al. [5], which classified developer
activity between versions in different categories by usingsurveys, we would like
similar insight without bothering developers. By answering this research question,
we identify what churn-related metrics indicate which typeof change, and we show
what such a classifier looks like.

2



Code churn

3. Which generic patterns are detectable in code churn?As a next step, we want to
detect generic patterns in a system’s code churn progression. This can help with
detecting when a project is about to repeat a previous mistake like neglecting tests,
when it enters a specific phase of development or is not showing the correct priorities.
We study both inter- and intraproject churn patterns. By answering this question, we
want to create a clear mapping between a project’s process and its actual evolution as
it is measureable from the source code.

4. How much of an influence does churn have on the surroundings ofa system?Code
churn is a measure of change, but software change does not necessarily mean change
for the end user. By answering this question, we show the effect churn has on the
amount of reported issues on the issue tracker of systems, aswell as the amount of
questions asked on StackOverflow1. As such, by answering this question we show
how the volume of change (churn) impacts the community of a system.

1.3 Code churn

In the field of software engineering, churn is a measure of change, a measure of progression.
In this section, we explain what definition of churn we use throughout the document in
section 1.3.1. We show why churn is the preferred metric to measure change in a software
system in section 1.3.2. Then, we describe the choices and their effects with churn in section
1.3.3. Finally, we show how churn has been used in past research in section 1.3.4.

1.3.1 Definition

Code churn has been introduced by Elbaum and Munson in 1998 [13]. They define it as the
difference between two versions of the same system, as a sum of the added, modified and
deleted lines. If we define∆aA..B as the amount of added lines if we compare version A and
B, where A precedes B, then we define churn as follows:
CHURNA..B=∆aA..B+∆mA..B+∆dA..B, where the operators are added, modified and deleted
lines respectively. It should be noted that each line can be in at most one category, since the
way of measuring between two exact points in time cannot detect whether a line got added
first and then modified.

Like studies by, among others, Nagappan et al. [34] [35] and Moser et al. [32], we
modify the definition of code churn to only encompass added and modified lines. That is;
CHURNA..B = ∆aA..B+∆mA..B. This is because deleted lines generally have less impact on
the evolution of the system. Taking deleted lines of code in account seperately provides a
better view of the actual change that took place.

1http://www.stackoverflow.com
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1.3.2 Why code churn?

As per our definition, code churn is a metric for measuring thechange of a system. Since
our goal is to improve the understanding of software and the software process, we believe
the metric closest to source code changes, churn, is the mostapplicable.

Churn is a metric which measures the volume of change a systemwent through between two
moments in time. A comparable metric is the simpledelta-operation. As apposed to churn,
delta simply measures the size at pointt1 andt2, and gives the difference between the two as
result. Churn approximates actual change better than a delta for a simple reason: the size of
the system can remain roughly the same even though there havebeen many adjustments [1].

There are other alternatives for measuring the change a system went through, however.
One could look at a system on a higher level, like UML diagramsor API descriptions, but
a system goes through many changes which cannot be seen in such high level views. Al-
ternatively, it is possible to extract change information from an IDE instead of comparing
files. An approach like this has been proposed by Robbes and Lanza [37]. Using the IDE
to measure all the changes as they happen gives a wealth of information, but significantly
constraints the projects that can be used in such research. Given our research context, we
do not consider such methods since they tie in closely with a specific language. So, even
though it is less precise than the fine-grained changes exposed by an IDE, this leads to the
another notable advantage of code churn: it can be used in anyenvironment, regardless of
operating system, version control or editor used by each developer.

1.3.3 Churn taxonomy

To use churn to its fullest potential, it is necessary to choose the correct way of using it.
There are a number of options to choose from when using churn.

• Granularity.
Although we have focused on code churn so far, churn can be calculated on other
levels of granularity. A rule of thumb is that a smaller entity yields a more precise
approximation of the performed changes. That is, a code churn metric will give more
insight than a file churn metric. However, this does not mean code churn is the best or
most practical choice in all cases. We will use both when answering RQ2 in section
3.2.

• Interval.
Like explained when discussing RQ3, the choice of interval is often overlooked when
dealing with code churn. The relationship between commit-based and time-based
churn calculations is explored in section 3.1.

4
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• Relativity.
A relative measure is a better comparable result than an absolute one, since differ-
ently sized projects will have different churn influenced byits size and team size.
For instance, when creating a generalized model like Nagappan and Ball ([34]), the
purpose is to have the metrics be applicable to all types of systems. They normalize
the numbers based on the system’s size.

1.3.4 Churn uses in other research

Churn, and in particular code churn, has been used by researchers to varying success for
different goals. The most notable areas are fault detectionand software evolution analysis.

Churn as a surrogate for software faults

Elbaum and Munson first proposed code churn as a fault surrogate [13]. They showed churn
is a better surrogate than relative complexity, which is a fairly successful predictor too.
Nagappan and Ball used relative code churn to predict defectdensities up to an accuracy
of 89 % [34]. They use the eight churn-related metrics to achieve this result, likeCodechurn

Total LOC
and Filechurn

Total f iles. There are other approaches in the area of fault detection, like graph-based
approaches [8] and fine-grained source code changes [19], but these methods are not as
universally applicable as churn-related studies. At the time of writing, churn is still the
baseline to compare fault detection results against.

Churn for software evolution analysis

A side product of the study by Elbaum and Munson is that they showed the magnitude of
change is barely related to the number of developers involved with the change [13]. Eick et
al. showed that Lehman’s law of increasing complexity holdstrue on a large system using
code churn [12]. Gall et al. show it is possible to detect non-obvious (logical) coupling
between classes in Java using file churn [16]. As such, churn is a metric used for many
different purposes in the field of software evolution.

1.4 Research context

This research is conducted at the Software Improvement Group (SIG) in Amsterdam. The
SIG is a third party software evaluator and consultancy firm.They analyze hundreds of
industrial software systems on a weekly basis. Because the services of the SIG have to
be as general as possible, we perform this research with an extra emphasis on language
agnosticism.

5



Document structure

1.5 Document structure

The remainder of this work will be structured as follows. In Chapter 2 we discuss related
work with regards to code churn and our research questions. In Chapter 3 we describe the
design, implementation and results of our experiments to answer all four research questions.
We present our conclusions, contributions and suggestionsfor future work in Chapter 4.

6



Chapter 2

Related work

2.1 Software process and evolution

Ever since Lehman introduced his Laws of Software Evolution[30], it has become a com-
mon notion to say that software is never done. This also spurred popularity in the academic
field of software evolution. As it is our goal to find patterns in the code churn metric, and
that metric is a commonly used indicator of software change and evolution, we find some
works have overlapping intentions with ours.

First off, much work has been done to extract information from various types of software
repositories. Hipikat, created by Cubranic et al., tracks changes done on a system and uses
it to recommend actions to a developer [10]. Although it is closely tied with the Eclipse1

development environment, it shows how change metrics can beused to detect coupling be-
tween entities which are not evident from the code alone. Similarly, D’Ambros et al. have
created a model to extract facts from software repositoriescalled RHDB [11]. They use
their system to analyse software evolution from various different viewpoints: distribution
of work within a team, change coupling analysis and detecting design issues in an architec-
ture. These works are a basis for ours since they show how to gather metrics from various
data sources.

Lanza created a visualization called Evolution Matrix in 2001 [29]. An example use of
an evolution matrix is shown in Figure 2.1. Like us, he wantedto see what has happened
since a previous version of a system more clearly. He represents each class in a system
based on a box, where the box’s size depends on the number of methods and the number
of instance variables it contains. As such, it is possible tosee how each class evolves.
However, this method is limited in a couple of aspects. Firstly, as a visualization it scales
badly. It’s not uncommon for projects to have hundreds of classes, and a visualization of
all of them would be difficult to interpret. Secondly, we believe that number of methods
and number of instance variables does not capture each aspect related to a class’ evolution
completely. We do believe that the charaterization of events in the lifecycle of a system is

1http://www.eclipse.org
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Figure 2.1: An example evolution matrix as created by Lanza [29]

.

valuable, and we will work upon this notion when we characterize change activity types in
section 3.2.

Alija and Dumitrescu use code churn as one of their key metrics to understand product
line evolution [1]. They use the change metrics to determinewhether it is safe to release
a new version. On top of that, Alija and Dumitrescu mention briefly that for the systems
they studied, which are industrial, the majority (88%) of code churn is caused by new lines
of code. The relation between code churn and added lines is one we explore more as we
characterize activity types. They also note that the numberof modules or components of a
system does not influence the amount of code churn. This is a relationship we verify prop-
erly in section 3.2.

Barry et al. found four different patterns with regards to the volatility of open source sys-
tems [4]. That is, they look at the change of a system in terms of its amplitude, periodicity
and dispersion. Amplitude is the size of the change, the periodicity is the time it took for
the change, and dispersion means the difference in behaviour compared to what you would
expect given a set amplitude and periodicity. Based on thesethree aspects, they classify
each change as being part of one out of eight different software volatility classes. Then,
they perform phasic analysis to detect patterns in those classifications. The results of Barry
et al. are four different patterns of software evolution. However, to get to that point, they re-

8
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duce each set of change values to ordinal values. This means the change values are ordered
in increasing size, but the magnitude of the change is not taken into account. We think
valuable information is lost in this conversion. In their analysis, the absolute or relative
difference in values is not used, so the set of values{10,11} would give the same result as
{10,1000}. This means it is possible for very large or very small changes to not be taken
into account properly. Furthermore, they only consider snapshots a month apart, without
analyzing whether the choice of this time interval impacts their results. Finally, their set of
27 systems might not be enough for a pattern detection study,and we do not know about the
differences and similarities of those systems. Our patterndetection experiment, in which
we deal take those issues into account, is in section 3.3.

2.2 Software metric studies

There are countless software metric studies, but their numbers shrink greatly if we only look
at change metrics. German and Hindle presented a framework through which metrics for
change can be classified as one of four types [18]. Their framework is useful since it shows
that different metric types have different uses and pitfalls. They promote the use of metrics
as precise as possible (on a line level), rather than on a lessprecise level (like module level
or even system level). German and Hindle say that there is notmuch known about the use-
fulness of change metrics in software evolution, and more work is required.

Kagdi et al. surveyed and created a taxonomy of software repository mining approaches
in relation to software evolution [25]. They identified ten study categories, of which both
evolutionary patternsandchange classification and comprehensionare directly related to
our research questions. However, the evolutionary patterns mentioned refer to associations
between entities, like Gall et al.’s work on logical coupling [15]. Gall et al. group elements
together if they get changed at the same time, to create a viewof which elements are related
or even dependent on each other. Although they seek patternsin software evolution, they
are different from our goal as we look for repeatable patterns in time, whereas they attempt
to link entities together.

2.3 Classification of activities in software

Identifying what type a change in software is, has been the subject of studies ever since
Basili et al. classified different types of software tasks based on developer surveys at NASA
in 1996 [5]. They showed how the time spent by developers was split up between creating
enhancements, fixing bugs and adapting the system without enhancing its functionality.
This is basis for our RQ2, since we would like to do the same, but based on source code
measurements.

9
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In the footsteps of Basili et al., Mockus and Votta created the same distinction based on
textual representations of the changes [31]. Mockus and Votta rely on keyword clustering
to build a classification of these text descriptions, in the same categories as defined by Basili
et al. Although the aim is the same as our RQ2, they specify that they do not take the source
code into account. We believe textual descriptions, like commit messages, can be too am-
biguous, and has large differences between projects because of varying standards.

German developed a method to recover the evolution of software projects using its soft-
ware trails [17]. Software trails are source code releases,CVS logs, issue trackers, mailing
lists and change logs. From the source code, he extracted thesize in lines and the size in
files. He tried his approach on one open source system. Instead of classifying changes,
he is able to give more general information about the system as a whole, like that devel-
opers focus on their specific part of the system and that most modification requests require
changes in only a few files. Although thorough, German’s approach is difficult to replicate
on a different project because of all the required data sources. On top of that, he barely uses
the system’s source code besides size metrics. We believe the evolution of a project can be
made even more clear if more change metrics are used.

10



Chapter 3

Experiments

In this chapter, we describe the experiments performed to answer the research questions
described in section 1.2. First, we discuss how the choice ofinterval between versions code
churn influences the code churn metric, to answer RQ1.

3.1 The influence of the time interval on code churn calculation

Different studies use code churn in different ways, as shownin section 1.3.4. To see whether
those experiments can be compared to each other, we determine the relationship between
code churn results and time intervals in this experiment. This gives us an answer to RQ1,
and provides us with a basis for future experiments.

3.1.1 Goal and question

The goal of this experiment is to find out whether the intervalbetween the two versions
of a system matters significantly with respect to the calculated churn measurement. For
instance, how much of a difference exists between the sum of seven churn calculations of
versions a day apart, compared to a single measurement of versions a week apart?

An experiment as this has, to the best of our knowledge, not been documented yet.
Therefore, we assess the relationship between code churn atthe time interval it is measured
at, with two goals in mind. Firstly, we would like to know how different academic works
relate to each other when they use different intervals. Secondly, we want to ensure the
choice of time interval does not invalidate our results in our upcoming experiments.

The question we answer in this section is the following:

RQ1. What is the relationship between time between versions and the code churn
measurement?

Intuitively, we would expect that a longer time interval leads to lower code churn, since
the same line might have been changed twice in the same period. Consider the three fol-
lowing versions of the same system:

11



The influence of the time interval on code churn calculation

def f ooba r ( ) :
foo ( )

Version A

def f ooba r ( ) :
ba r ( )

Version B

def f ooba r ( ) :
ba r ( " a rg " )

Version C

Figure 3.1: Three versions of the same program.

The code churn when going from A to B is 1, and so is the code churn when going from
B to C. If we sum these, the total would be 2. If we calculate thecode churn between A and
C, we get 1. More formally, for the example comparison with intervals set to a day and a
week, we get:
CHURNt=7(System) ≤ Σt=1..7(CHURNt=1(System)).

At first glance, we suspect two things to be the case regardingthis question.

• H1. The influence of the interval between two versions of a systemwill show notice-
able differences.

• H2. The influence of the interval will vary greatly per project.

As such, we try to reject the following null hypotheses:

• H01. The interval between two versions of a system will not show noticeable differ-
ences.

• H02. This influence of the interval will not vary greatly per project.

3.1.2 Design

To answer the research question, we have to take into accountfor a number of things. We
want to ensure we have enough systems and enough time periodsto get statistically signif-
icant results. We want to measure at four different intervals: per commit, weekly, monthly
and yearly. We believe the results of this would in practise be discussed in terms of practical
time spawns, so this distribution is logical.

For this experiment, we need access to enough projects for which we can calculate the
different churn values. We want these projects to be active and large to avoid skewing with
regards to new or dead projects. We also want to only considersource code files belonging
to the project, and not for instance documentation or dependencies not part of the developed
system itself.

12



The influence of the time interval on code churn calculation

System Main language Start size (lines)1 End size (lines)2

Django Python 211751 342739
Git C 327718 425779
Linux C 13557478 15962285
MongoDB C++ 176113 355176
NodeJS Javascript 97534 192574
Ruby on Rails Ruby 237306 223583
Spring Framework Java 697469 815979
Symfony PHP 111336 195089
PostgreSQL C 1675161 2099975
Subversion C 792442 1037991

Table 3.2: The selected open source systems for the intervalexperiment.

3.1.3 Selection of systems

We decided to use a time period of two years, since with ten systems this would still give us
at least 20 data points for the yearly time measurement. For weekly and monthly measure-
ments, this gives us 1040 and 240 data points respectively. We choose active contributors
and code size as measures of maturity. A user is an active contributor if she created at least
20 commits during the past year. This leads us to the following inclusion criteria:

• The version control system (VCS) must be publicly accessible.

• The system must have been subject to ongoing changes during the time period [2011-
01-01, 2012-12-31].

• The system must have more than 15 active contributors.

• The system must be over 100.000 lines in size on 2012-12-31.

• The system must have a clear main branch which represents thestate of the system as
accepted by the maintainer(s).

The selected systems are shown in Table 3.2, and are also selected to be of varying sizes,
languages and levels of maturity to reduce selection bias.

1on 01-01-2011
2on 31-12-2012
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3.1.4 Implementation

We chose to select systems hosted on the online code collaboration platform GitHub3 for
two reasons. Firstly, this ensures we can select systems based on activity and popularity,
since GitHub allows us to quickly scan a repository’s activity. Secondly, choosing GitHub
ensures we can use Git for much data processing. Git is a lightweight version control
system which supports strong querying and reasoning over a repository, with algorithms to
calculate differences and code move detections already implemented.

To compare the churn numbers, we first need a uniform way of calculating churn. For
this experiment, we use thegit diff command. By default, this uses Myers’ Greedy Diff
algorithm [33]. Using this, it is possible to give two SHA1 hashes pointing to versions of
the system, and getting the number of added and deleted linesbetween those versions. A
modified line is shown as both an added and a deleted line. As per our definition of churn
explained in section 1.3.1, we use only the number of added lines returned by agit diff
command. To prevent that actions such as renaming, moving a file or changes in whites-
pace influence the results, we filter them by making use of the Git -w and -C flags. -w
ignores all whitespace differences between the two versions, whereas-C detects moves and
renames. The latter command is an implementation of a move detection algorithm which
works on code level. That is, it detects copies of lines or blocks of lines based on simi-
larities, and does not regard this as a change. As such, for this experiment we only detect
changes and additions.

The next step is splitting up the time span in lists of dates based on the chosen interval.
Based on each of those dates, it is then possible to extract the SHA1 hash identifying the
state of the master branch of a system at that moment in time. This can be done through
the git rev-list command. By passing two dates, it can return all the SHA1 identifiers in
between those dates in an ascending order. This means the state of branch at a certain time
is associated with the first SHA1 before the date. As a result,we can get an ordered list of
hashes all of which can be compared to each subsequent hash.

After having run and acquired the churn numbers for the selected systems, we noticed there
were some unwanted artifacts which skewed the results. For instance, some repositories
include dependencies and periodically update an dependency by copying the source code of
that dependency into the project folder. As a result, the churn numbers were much higher
even though the dependency should not be included in the analysis for that project. To rem-
edy this, and other changes in the repository which are not related to the evolution of the
actual system, we allowed for excluding specific folders from the analysis based on regular
expressions. Every file with a path matching the regular expression is excluded from the
analysis. Which folders to exclude is decided on a per project basis. As a guideline, we
excluded documentation, translation-related paths and external libraries. What paths have
been excluded for each project are shown in Table 3.3.

3http://github.com
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System Excluded folders
Django doc/, django/contrib/localflavor, django/conf/locale
Git Documentation/
Linux Documentation/
MongoDB docs/, src/third_party/, pcre/
NodeJS lib/, deps/
Ruby on Rails guides/
Spring Framework
Symfony
PostgreSQL doc/, contrib/
Subversion doc/, contrib/

Table 3.3: The excluded folders per system

As expected, absolute churn numbers are not readily comparable to each other. There-
fore, we must use relative churn instead. To calculate relative churn, we need the size of
the system in lines of code, adhering to the same path exclusion criteria. To gather the size
of each system, we listed each file in the system at the start ofthe time period and the end
of the time period, excluded the unnecessary paths, concatenated the remaining files and
performed a simple line count. This is also how the sizes in Table 3.2 are calculated.

To ensure we have enough data points especially for the yearly measurements, we split
up the experiment in two parts: one covering the year 2011, and one covering the year
2012.

3.1.5 Results

First off, we got the sizes and the number of total commits persystem for both the year 2011
and the year 2012. The results can be found in Table 3.4 and Table 3.5 respectively. We see
that not only the sizes of our selected systems differ greatly, also the growth numbers are
different. Ruby on Rails even shrunk a substantial amount in2012. We think these statistics
show how varying our selected systems are.

As for the code churn, we calculated relative values based onthe starting size of each
respective year. The relative churn values on the four intervals we described earlier are
shown in Table 3.6 and Table 3.7. Here we see the differences between the various inter-
vals. To get a more clear view of how large the difference between the numbers is, we
divide the code churn values per week, month and year by the corresponding commit-based
code churn value, resulting in the percentages shown in Table 3.8 and Table 3.9. Across
both these tables, the average value for week divided by commit is -9.58%, and month and
year yield -11.76% and -18.73% respectively. These values are much more consistent than
we expected with hypothesis H0.
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System Size on 2011-01-01 Size on 2011-12-31 Growth # Commits

Django 211751 304321 43.72% 1669
Git 327718 372678 13.72% 2076
Linux 13557478 14648745 8.05% 47082
MongoDB 176113 198467 12.69% 3982
NodeJS 97534 194294 99.21% 1511
Ruby on Rails 237306 246224 3.76% 5099
Spring Framework 697469 777515 11.48% 1242
Symfony 111336 191134 71.67% 4641
PostgreSQL 1675161 2096176 25.13% 1386
Subversion 792442 979926 23.66% 4511

Table 3.4: System statistics for the year 2011.

System Size on 2012-01-01 Size on 2012-12-31 Growth # Commits

Django 304231 342739 12.62% 1968
Git 372678 425779 14.25% 2098
Linux 14648745 15962285 8.97% 54430
MongoDB 198467 355176 78.96% 4020
NodeJS 194294 192574 -0.89% 1537
Ruby on Rails 246224 223583 -9.20% 4516
Spring Framework 777515 815979 4.95% 945
Symfony 191134 195089 2.07% 2809
PostgreSQL 2096176 2099975 0.18% 1537
Subversion 979926 1037991 5.93% 3819

Table 3.5: System statistics for the year 2012.
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Relative churn
System Per commit Weekly Monthly Yearly
Django 112.0% 106.7% 103.7% 93.6%
Git 19.3% 17.7% 17.5% 16.8%
Linux 22.9% 19.7% 19.6% 17.7%
MongoDB 70.1% 65.1% 64.0% 61.6%
NodeJS 149.3% 131.7% 126.7% 113.7%
Ruby on Rails 44.0% 38.8% 37.3% 32.0%
Spring Framework 23.7% 21.2% 19.8% 15.1%
Symfony 192.1% 158.6% 150.1% 120.0%
PostgreSQL 27.8% 26.5% 26.3% 25.6%
Subversion 26.7% 25.4% 25.0% 24.8%

Table 3.6: Relative code churn values for the year 2011.

Relative churn
System Per commit Weekly Monthly Yearly
Django 48.8% 44.6% 43.1% 41.0%
Git 41.9% 34.8% 34.3% 32.9%
Linux 19.1% 20.2% 20.1% 18.7%
MongoDB 129.0% 119.7% 115.6% 103.4%
NodeJS 46.7% 37.0% 36.3% 34.8%
Ruby on Rails 38.8% 33.9% 33.1% 28.0%
Spring Framework 17.5% 16.7% 16.4% 15.6%
Symfony 76.2% 66.0% 64.6% 60.1%
PostgreSQL 4.6% 4.4% 4.4% 4.1%
Subversion 15.5% 13.2% 12.8% 11.5%

Table 3.7: Relative code churn values for the year 2012.

17



The influence of the time interval on code churn calculation

Deviation (%)
System Week / Commit Month / Commit Year / Commit
Django -4.8% -7.5% -16.4%
Git -8.5% -9.3% -13.2%
Linux -13.9% -14.4% -22.4%
MongoDB -7.2% -8.7% -12.1%
NodeJS -11.8% -15.1% -23.9%
Ruby on Rails -12.0% -15.3% -27.3%
Spring Framework -10.4% -16.4% -36.1%
Symfony -17.4% -21.8% -37.5%
PostgreSQL -4.9% -5.7% -8.1%
Subversion -4.7% -6.2% -7.0%

Table 3.8: Relative deviation between intervals and commit-based code churn in 2011.

Deviation (%)
System Week / Commit Month / Commit Year / Commit
Django -8.8% -11.7% -15.9%
Git -16.9% -18.2% -21.5%
Linux 6.0% 5.6% -2.1%
MongoDB -7.2% -10.4% -19.9%
NodeJS -20.8% -22.2% -25.4%
Ruby on Rails -12.5% -14.6% -27.9%
Spring Framework -4.9% -6.3% -11.1%
Symfony -13.3% -15.2% -21.0%
PostgreSQL -2.9% -4.2% -9.7%
Subversion -14.9% -17.6% -25.8%

Table 3.9: Relative deviation between intervals and commit-based code churn in 2012.
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System Median CD - AD Mean CD - AD
Django 0 1.25
Git 0 2.7
Linux 3 18.26
MongoDB 0 1.87
NodeJS 0 5.23
Ruby on Rails 0 2.8
Spring Framework 0 3.18
Symfony 0 3.62
PostgreSQL 0 0.03
Subversion N/A N/A

Table 3.10: The median and mean differences between committer date and author date for
commits per system.

3.1.6 Threats to validity

As shown in Table 3.7, the results for the Linux project are not theoretically possible. That
it, it shows there was more churn when measured on a weekly basis than there was on a per
commit basis. This is an inaccuracy which arises from the different way we measure the
churn based on a per-commit basis. The time at which a commit occurs can be different
from the time it is inserted into the repository we monitor. This is the difference in author
date and committer date. The more time in between these two dates, the more inaccurate the
results of our experiment become since the commits which areincluded in the time based
approaches might be out of range when calculating the churn on a per-commit basis. This
is a threat to construct validity in the terms of Wohlin et al.[45].

This problem is inherent to our way of measuring, but we can mitigate the damage. For
each project, we calculate the median and mean difference between the committer date
(CD) and author date (AD). Low values mean our results are trustworthy, while high values
indicate a potential large differences in our results. These values are shown in Table 3.10.
N/A means there is no difference between the committer date and author date because of the
project’s version control organization. As shown, the meanand median difference between
the two dates are very low for each project except for Linux. Linux is famous for its strict
commit acceptance policy, so this is no surprise. Therefore, we note that the Linux results
are not reliable enough, but we are confident in the results for all other projects.

An experimental setup like this is susceptible to selectionbias. Although we attempted
to reduce the influence of this bias through our selection criteria, we note it it still possible
that the results are not fully generalizable to every other system.
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3.1.7 Answer to the research question

As we expected in hypothesis H1, there are clear differencesin the measured code churn
values between the different intervals. This leads us to reject null hypothesisH01. What
is most surprising though is that this relation is consistent across various projects, with
the percentage deviation not straying far from the mean. Therefore, we cannot reject null
hypothesisH02.

In this section, we set out to answer the following research question:

RQ1. What is the relationship between time between versions and the code churn
measurement?

We see that on average, for around 3-20% of lines which are changed, it holds that they
change again within a week. This range increases slightly when considering months in-
stead, and ends up being up to 37.5% if we look at an entire year.
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3.2 Using churn metrics to identify software activity types

Understanding software has been shown to be a difficult and time consuming task [42].
It becomes especially difficult when analyzing the code as a third party or when a new
employee first encountering an existing codebase. Storey surveyed work in program under-
standing and shows most of it is done in the area of visualization [41]. To the best of our
knowledge, no software understanding study has taken into account the change history of
the system to classify the type of work performed. When looking at a system’s history of
changes, specific types of changes can be linked to problems which occured, which in turn
can be avoided in the future.

3.2.1 Goal and question

In 1996, Basili et al. performed a case study on a set of NASA systems in so-called main-
tenance mode [5]. That is, software systems which are in active use still undergo evolution.
Basili et al. were concerned with the amount of effort spent to perform different types of
maintenance tasks, and wanted to estimate the cost of a new maintenance release better.
As part of their study, they analyzed the distribution of a release in different change types,
namelyerror correction, enhancementandadaptation. This is also show in Figure 3.2.

Basili et al. have interviewed the engineers working on the software systems, and had
them fill in a form each time they implemented a change. The form described the change,
how much time had been spent on the change, what type of changeit was and how many
lines of code belonged to the change, among other pieces of information. As a result , they
showed that 61% of all time was spent doing enhancement type changes, compared to 14%
for error correction and 5% for adaptation. The remaining 20% could not be fit in those
three categories.

The work by Basili et al. was focused on the predictive aspectof the change types, that
is - how well can they predict how much a new release will cost on this activity distribu-
tion? We think such a distribution is also valuable when interpreting information regarding
the pastevolution of a software system. Often times, software engineers do not have the

Maintenance change types

Error correction Enhancement Adaptation

Figure 3.2: Software change types as defined by Basili et al. [5]
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luxury of proper documentation or thorough change logs. This is even more relevant for
engineers who do not work on a system regularly, like for instance a third party evaluator.
Therefore, knowing how to characterize changes can assist with the understanding of the
program.

With this experiment, we show how it is possible to make it easier to understand a soft-
ware system’s evolution. To that avail, we answer the following question:

RQ2. What churn-related metrics can be used to classify softwarechanges using automated
source code measurements?

For the sake of generality, we wish to remain independent of any type of software or time
interval, as per our research context. As such, we restrict our method to a way which still
works based on only snapshots of a system, and not use the information pertained in for
instance commit logs of a version control system.

In the remainder of this section, we explain the approach to the problem, the results ob-
tained so far and an answer to the posed research question.

3.2.2 Design

When attempting to classify software changes based on source code measurements, we as-
sume there are metric profiles which group the different changes into groups. Like Basili et
al., we want to decide betweenbug fixes(error corrections),new features(enhancements)
andrefactorings(adaptations). As we do not know what metrics have a positivecorrelation
with a change belonging to a specific group, we take a black boxapproach.

It is possible to calculate a lot of change metrics based on two snapshots of a system. These
range from added, deleted and moved lines of code to the percentage of files with relatively
small changes. We gather as many of these change metrics as wecan to cover as many as-
pects as possible. These metrics are shown in Table 3.11. Thefirst step is finding out which
of these metrics are influential when it comes to classifyingthem in one of our three groups.
This is afeature selectionproblem, which is common in machine learning and statistics[21].

To be able to use existing feature selection algorithms, we need to build a reasonably sized
test set, which contains per change all the metrics, and a manually added classification. We
want this test set to be large enough and ensure the systems and snapshots are different
enough to represent a wide range of changes. As shown in experiment 1 (section 3.1), we
can take the metrics on any time interval. For this experiment, we choose a time interval of
one week. We think one week is long enough to capture enough change, but short enough
to not have too many changes in one go. To build the test set, weinspect 50 different time
spans of a week across different projects and classify them on their primary focus. We
validate our classification by letting an independent software developer perform the same
classification. We set up a checklist of aspects of a list of commits such a third party valida-
tor should consider when performing the classification. Anyjunior level software engineer

22



Using churn metrics to identify software activity types

Metric Description
CHURN The code churn of the entire system.
pCHURN The code churn of the part of the system which is production

code.
tCHURN The code churn of the part of the system which is test code.
ADDED The amount of added lines of the entire system.
pADDED The amount of added lines to production code.
tADDED The amount of added lines to test code.
CHANGED The amount of modified lines of the entire system.
pCHANGED The amount of modified lines of production code.
tCHANGED The amount of modified lines of test code.
DELETED The amount of deleted lines of the entire system.
pDELETED The amount of deleted lines from production code.
tDELETED The amount of deleted lines from test code.
FILECHURN The file churn of the entire system.
COMPGINI Code churn distribution among the system’s components, as

Gini coefficient [20].
pCOMPGINI Code churn distribution among production components, as

Gini coefficient.
tCOMPGINI Code churn distribution among test code components, as

Gini coefficient.
FILEGINI Code churn among the changed files, as Gini coefficient.
pFILEGINI Code churn among the production files, as Gini coefficient.
tFILEGINI Code churn among the test files, as Gini coefficient.
PERC_SMALLCHURN Percentage of changed files with less than 10 lines hanged.
PERC_MOSTLYADD Perc. of changed files where over 90% of the churn is lines

added.
PERC_MOSTLYCHN Perc. of changed files where over 90% of the churn is lines

changed.
PERC_MOSTLYDEL Perc. of changed files where over 90% of the total change is

deleted lines.
tCHURNDIVpCHURN tCHURN divided by pCHURN.
CHURNDIVDELETED CHURN divided by DELETED.
ADDEDDIVDELETED ADDED divided by DELETED.
RELCHURN Code churn of the system relative to its size.
RELpCHURN Code churn of the production code relative to the system size.
RELtCHURN Code churn of the test code relative to the system size.
... Similar relative metrics for all ADDED, CHANGED and

DELETED measures.

Table 3.11: The chosen churn-related metrics.
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should have enough knowledge to be a validator. As such, we have all the necessary ele-
ments to use an existing feature selection algorithm.

With the influential metrics selected, we have to use them to classify the change sets. Given
the nature of our problem and the fact that we already have a test set, machine learning is an
obvious choice. More precisely, we use supervised machine learning, which is common for
classification problems [27]. To decide which classifier algorithm best suits our need, we
consider linear classifiers, kernel estimation algorithms, neural networks and decision trees.
We also consider the difference between absolute and relative metrics, and the influence of
each on the resulting classifier.

With a classifier in place, we test its performance on the testset using a ten-fold cross
validation approach. Based on the results, we can iterate toimprove it. We rate the classi-
fier based on the precision it achieves on our test set and the Kappa statistic [9]. The Kappa
statistic indicates the probability of the results being pure chance, where 0 means the results
might be purely chance, and 1 means a perfect classifier. Landis and Koch state that a value
of 0 is poor, .10 - .20 is slight, .21 - .40 is fair, .41 - .60 is moderate, .61 - .80 is substantial
and > .80 is near perfect agreement [28]. We are satisfied whenwe reach a precision of over
65% and a moderate Kappa statistic.

System Year Dates

Django
2010 01-11, 01-25, 03-01, 04-12, 10-18
2011 10-17, 11-21
2012 06-11, 08-13, 10-01

PostgreSQL
2010 02-22, 03-29, 05-17, 06-28, 10-11, 11-15
2011 01-03, 08-22
2012 04-23, 10-01

Eclipse JDT Core
2010 02-22, 03-01, 04-26, 11-01, 12-20
2011 03-07, 04-18
2012 01-16, 04-16, 08-27

Subversion
2010 02-15, 03-22, 05-10, 05-31
2011 05-09, 05-30, 09-12, 10-03
2012 02-13, 07-09

Ruby on Rails
2010 03-15, 08-16, 09-06, 11-22
2011 02-21, 07-04, 03-28
2012 07-16, 09-10, 10-01

Table 3.12: The dates of activity on which we based our test set.
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3.2.3 Implementation

First, we perform the manual classification to create a test set. We selected ten different
dates from five different projects. The dates are chosen arbitrarily among the possibilities
where there was a peak in activity in the week preceding the date. Time periods in which
there was no activity are not considered for this experiment. The projects and dates are
shown in Table 3.12. We selected projects based on their popularity and mainly the differ-
ence between them. Django and Ruby on Rails are web frameworks written in Python and
Ruby, PostgreSQL is a database system written in C, Eclipse is an IDE written in Java, and
Subversion is a version control system written in C. These dates are chosen because they
are a peak in code churn compared to their neighbouring dates. The absolute values of the
code churn values differs greatly, however.

Classification of each date is done as follows. For each date,every commit on the project’s
repository for the period of seven days preceding the date isshown, including files changed,
the size of the changes and the commit messages created by authors. On top of that, all the
closed issues on the project’s issue tracker in the same timeperiod are listed. Using these
data sources, we aggregate related commits and issues, and classify them as either a refac-
toring, a bugfix or a new feature. Then, based on the most prevalent type, we determine the
main focus during the past week as one of those three categories. Doing this for all chosen
dates from the five projects, we have a test set of 50 entries. We validated our classification
against those of an independent software developer who is instructed to classify using the
same methodology. This yielded an interrater agreement of .94, meaning we disagreed on
three instances. After discussion, we came to a consensus onthe instances we disagreed
upon. The full test set is shown in Appendix A.

To perform the described tasks, we use Weka4. Weka is a software suite written in Java
which contains tools for data pre-processing, classification, regression, clustering, associa-
tion rules and visualization [22]. To use Weka, our input needs to be in Attribute-Relation
File Format (ARFF). This is a plain text data format similar to common separate values
(CSV) files, but with added type information instead. In our case, We combine the metric
data and test set classification into a single ARFF file, whichis given in Appendix B.

Creating a classifier in Weka is done by supplying a test set, indicating which field is the
target to classify, choosing algorithms for selecting the relevant metrics and building the ac-
tual classifier. Selecting the relevant metrics can be done afew ways. According to Hall, a
correlation-based feature selection approach is most suited when building a classifier which
groups entries in at most one category [23]. Therefore, we use Hall’s implementation of the
correlation-based feature selection algorithm in Weka.

Different classifiers work well in different situations. Weconsidered three approaches dis-
cussed by Hall: Naive Bayes, Decision Trees and IB1-Instance Based Learners. In the end,
we chose the Decision Tree approach because its intermittent output, the decision tree, is

4http://www.cs.waikato.ac.nz/ml/weka/
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easy to interpret by us. That said, all three approaches are known to work well, and the dif-
ference in performance on our data set was minimal. However,the Naive Bayes approach
was less precise, with a 64% precision when using all metrics, since it takes all our selected
metrics into account and tries to have all of them weigh in. Wethink this is unnecessary
because we selected redundant metrics, which often cover the same aspect of the system
and its changes.

3.2.4 Results

Using the J48graft decision tree algorithm by Webb [43], we used the commonly used ten-
fold cross validation approach to create and validate the classifier using the test set. We do
this for the set of metrics listed in table Table 3.11 and the set of only relative metrics. The
resulting decision trees are shown in Figure 3.3 and Figure 3.4. When using all the metrics,
we reach a 74% precision with a Kappa statistic of 0.60. When we only use the relative
metrics, we get a precision of 70% with a Kappa statistic of 0.54.

It is surprising to see that using all metrics yields a betterresult, since in other fields like
fault prediction metrics of different projects can be compared better using relative measures
only [14]. However, we think that the size of the system does not have a linear relation with
the change it is subject to. Therefore, absolute measures might be more close to each other
than the relative values are.

The threshold values seem a bit arbitrary at some points in the tree, especially the very
small relative values. This is most likely a result of our specific test set, and these threshold
values are subject to change as the test set is expanded in future work. However, the de-
cisions betweenlarger thanandsmaller or equal thanshow a logical reasoning across the
metrics to decide upon a change type.

The Kappa values of both results indicate that they are solidenough to draw tentative con-
clusions, according to the guidelines set by Landis and Koch[28]. Assessing whether a
larger test set indeed does further increase the precision and the Kappa agreement statistic
is part of future work.

3.2.5 Threats to validity

For this experiment we have not taken into account how many developers work on each
system. Of course, the absolute amount of churn depends partially on the number of de-
velopers and the time they work on each system. This effect may have an influence on the
numbers between different systems we have used to create ourtest set, but we believe the
impact of the differences is not significant enough because we have used various systems.
Determining the exact impact and validating that the impactreduces as the test set grows
larger is part of future work.

A threat to validity in this classification experiment is themanual classification done by
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ourselves. Although we used a second opinion approach, it isstill possible our classifi-
cations are not flawless. Of course, during a week’s time it ispossible for a development
team to do multiple types of changes. Therefore, working on adifferent test set and having
developers of the teams themselves classify the test set is part of future work. Alternatively,
improving the precision by classifying per system component instead of the entire system
will improve overall reliability of the manual classification.

3.2.6 Answer to the research question

In this section, we showed our approach to answering the following question:

RQ2. What churn-related metrics can be used to classify softwarechanges using automated
source code measurements?

As shown in this section, we can use software change metrics to build a classifier to de-
termine what change types have been most prevalent during specific time periods. The only
requirements for our approach are the two snapshots of the system’s code base which should
be compared against each other. By using a machine learning approach, we have set up a
general approach which allows for constant improvement. This is done by checking the
classifier’s output and using that to increase its test set.

The most influential metrics are found in our decision trees shown in Figure 3.3 and Figure
3.4, where the upper branches indicate more influence. This means absolute code churn,
changed lines, file churn, and amount of files with a small number of changes are among
the influential metrics. It also shows that activity in test code is an indicator of various types
of software activity.
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3.3 Pattern detection in code churn

With code churn being the basis for determining what activities have been the focus of a
development team, we can assist with understanding the process a project went through to
get to its current state. In this section, we attempt to find patterns in code churn to get a
view of the software process.

3.3.1 Goal and question

There has been much attention to different software processes since the rise of Agile meth-
ods like eXtreme Programming [7] and SCRUM [36] in the early 2000s. The aim of these
processes is to have small, consistent, iterations on the project to remain flexible with re-
gards to changing requirements. Older projects, often working with a traditional waterfall
process [39], also know iterations, but generally with a larger time frames in between. The
key here is the notion of iterations, or cycles.

Since each project supposedly has some sort of development cycle, we suspect there are
detectable, probably matching patterns in the resulting code too. To the best of our knowl-
edge, no such patterns have been found so far. We set out to answer the following question
in this section:

RQ3. Are there detectable patterns in code churn?

Patternsis left intentionally vague, since this is an exploratory question. We aim too see
whether we can detect peaks of activity based on time in between released versions, whether
there is a pattern followed by a set of projects, and whether the same project repeats its on
cycle according to its process description.

Although this is an exploratory experiment, we do have expectations based on our own
experiences. We formulate the following set of hypotheses:

• H3. The churn pattern of a project in between releases will approximate a normal
curve, as illustrated in Figure 3.5.

• H4. Projects with a similar process will show a similar churn pattern.

• H5. Within one project, there are recurring churn patterns which are repeated each
release cycle or even multiple times per release cycle.

• H6. The volume of production churn nearing a release will go down, while the vol-
ume of test churn goes up.
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Figure 3.5: An example code churn pattern, where most of the work is done in the middle
of the release cycle.

As such, we try to reject the following set of null hypothesis:

• H03. The churn pattern of a project in between releases will not approximate a normal
curve.

• H04. Projects with a similar process do not show a similar churn pattern.

• H05. Within one project, there are no recurring churn patterns.

• H06. There is no notable change in the relationship between production churn and
test churn nearing a release.

In the remainder of this section, we explain the design and implementation involved
with testing these hypotheses and answering the research question. Unlike the previous
experiments, we explain in a fully chronological order due to the exploratory nature of this
experiment.

3.3.2 Design

For this experiment, we take an exploratory approach, similar to the approach taken by
Barry et al. [4]. Unlike Barry et al., we look on a per week basis, instead of per month. We
believe this gives us more precision with regards to the actual size of the changes. Since we
are uncertain about what patterns exist, we set up a number ofsituations for which we can
test for patterns.

We use the database at SIG to acquire code churn for more than one hundred industrial
systems, as well as ten additional open source systems. The open source systems are the
ones listed in Table 3.2, except we substituted Linux with JQuery because of the issues we
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had studying Linux. We have a weekly snapshot of each system for at least 52 weeks per
system, and each system is larger than 10000 lines. We employdifferent pattern detection
strategies to find interproject patterns, if we can find any, on just the code churn metric,
both on the absolute and relative values. If we do not find anything substantial, we split up
the churn in a production part and a test part, and attempt to do the same again. We expect
some sort of consistency within the same projects, so we willlook specifically for approxi-
mations of distributions. We most expect an activity curve as shown in Figure 3.5 because
we suspect there will be more effort into designing solutions at the start of a release cycle,
and more effort into quality assurance near the end of a release cycle. Regardless, we also
check for constant activity distributions, monotonously increasing and decreasing series .
We do this for all projects while automatically smoothing step by step while we apply linear
regression to find a pattern. We stop smoothing when we have lost too much data and we
have not found a pattern, and mark the system as having nothing found.

As for intraproject patterns, we expect there to be multiplegroups of patterns as per hypoth-
esis H4. Therefore, we approach this as an unsupervised classification problem, similarly
to Barry et al. [4]. As such, we also choose a phase sequence analyzer.

For the purpose of testing hypothesis H3, we also gather the major release dates of the
open source systems involved in this experiment. This is done by manually inspecting each
system’s website and collecting the dates.

3.3.3 Implementation

First off, we attempt the naive approach. That is, we do not take into account multiple
releases or cross referencing between projects. We set up anexample function of values
approximating the normal distribution using SciPy5. We do the same for constant activity,
monotonously increasing and monotonously decreasing functions. We treat these as targets
for our curve fitting.

One by one, we take the entire weekly code churn time series and try to fit them onto
our target functions using least square approximation. Using this method, we do not find
any matches across more than 100 systems. We use smoothing techniques described by
Shumway and Stoffer [40] to smooth our data step by step and attempt least square ap-
proximation again until we find a fit, but each resulting fit is one onto the constant activity
function, when all the smoothing has resulted into a flat activity line. This means a naive
approach of taking as much code churn we have about a system does not work. Instead
of using purely the total code churn, we use the separated values of production churn and
test churn. If we apply the same methodology again, we do not find any results. To further
illustrate why this approach does not work, the initial churn pattern and the pattern after one
smoothing step for JQuery6 are shown in Figure 3.6.

5http://www.scipy.org/
6http://jquery.com/
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As the naive approach does not work, we gather the release dates of as many systems
as possible to only consider the time period between two major versions of a system. We
gathered these release dates from the websites of each open source system and by inquiring
people involved with the proprietary systems. If we only tryto fit code churn progression
from within a release cycle onto our example functions, we still do not get a single match.

Hence, we suspect none of our projects can be fitted onto our example functions. The
next step is to try and find recurring patterns within each project. This is similar to the goal
of Barry et al. [4], so we use the same approach which had been successful for them, with
different measurements. They use the WinPhaser software written by Holmes [24]. How-
ever, WinPhaser does not allow for anything else than ordinal values to be analyzed, and we
want to keep the relationship between different churn values on at least a ratio scale since
we get any number of invaluable patterns if we drop the ratio scale constraint. Instead, we
implement the Motif Tracker as more recently described by Wilson et al. [44]. The Motif
Tracker is meant to find recurring patterns in one single datastream. Although meant for
the financial market, we deem it suitable for our data sets too. Motif Tracker is also the
most recent and most efficient pattern detection algorithm we could find.

Using our Motif Tracker, there are only four systems out of more than 100 in which we
can detect a pattern. Each of these patterns is only found once after smoothing, and they do
not correspond with our known release cycles. When we attempt to group similar systems
together, like web frameworks or systems in the financial sector, we still cannot improve this
result. The same goes when we group the system based on primary programming language.

3.3.4 Results

As explained in the implementation section, we came up emptyhanded when trying to find
patterns in the churn progression of the systems. First, we tested for distributions and based
on the results obtained from our open source systems, we cannot reject null hypothesisH03.
Based on all activity in between the registered release dates, none of them resemble our test
distributions. Various degrees of smoothing the data does not change this.

Although some projects in the data set have overlap with themselves at some points, this did
not occur often. This leads us to believe that the overlapping points are by chance and not
a recurring pattern. We argue that the number of systems we used in this analysis is large
enough to make such a claim, since grouping them per primary technology or even business
area did not yield results. However, because we did not find the development process for
the large majority of the systems, we cannot readily reject null hypothesisH04.

When inspecting projects without comparing them to others,we find that the volume of
change changes drastically all the time. When we separate between production code and
test code, we see that the way test churn and production churnbehave is related, as shown
in Figure 3.6. However, we cannot reject null hypothesisH05 because none of the projects
had recurring patterns, regardless of our smoothing strategies.
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Finally, we found no inverse relationship between production and test code before a release,
like we hypothesized inH6. We note that production and test churn are both correlated
positively. Whenever there is more production churn, thereis often more test churn as well.
These findings are similar to the ones found by Zaidman et al. [46]. As such, we cannot
reject null hypothesisH06 either.

3.3.5 Threats to validity

As this is an exploratory experiment, there remains the threat that we were not thorough
enough in our analysis. Although our negative results do exclude the generic patterns for
which we have tested, there might be others which our method of analysis did not reveal.

Although we use over a hundred systems for this experiment, is still a possibility for se-
lection bias. The vast majority of systems are monitored actively by SIG, meaning there is
more supervision of the systems than most projects have.

Lastly, we have not verified the correctness of our Motif Tracker, although the pseudocode
supplied by Wilson et al. [44] was comprehensive. Future work would include verifying the
correctness and comparing its performance to other genericpattern detection algorithms.

3.3.6 Answer to the research question

As discussed, we could not rejected any null hypothesis. Although we anticipated we would
find patterns, this sends a strong signal with regards to the evolution of different software
projects. It points towards the observation that most likely no two systems are alike in terms
of the way they are evolved. This is supported by studies by Robles et al. ([38]) and Baysal
et al. ([6]), who studied the evolution in size of a number of open source systems. Baysal
et al. studied two open source browsers and found that, even though they share the same
domain and purpose, their developments differed greatly interms of when new version are
released. We confirm these findings on many more systems.

In this section, we set out to answer the following research question:

RQ3. Are there detectable patterns in code churn?

Regardless of us not finding any patterns, we cannot fully state there are no patterns in
code churn over time. We did not prove the absence of patterns. However, we believe that
if recurring patterns exist within software activity, theyare sufficiently blurred by other in-
fluences that they will have lost value. From our experiment,it seems likely that there are
no code churn patterns and every project distributes its activity in its own way.
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Figure 3.6: Weekly code churn progression for JQuery.
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3.4 Impact of code churn on users of open source software

A software system is nearly always part of an ecosystem of developers and users. Any
changes made to a software system can influence users in different ways, and due to the
nature of open source software, problems users run in to do not always reach the developer
again. Sometimes, new issues are created on the project’s issue tracker, and the developers
learn about introduced issues that way. However, often times when changes do not neces-
sarily lead to faults but simply introduce changes users do not understand, they look towards
the popular Q&A website Stack Overflow7 instead.

3.4.1 Goal and question

In line with the exploratory nature of this work, and after the lack of findings with regards
to RQ3, we would still like to know more about other aspects ofcode churn. Churn is a
measure of change, but change to the software does not necessarily mean change for the
user. In this section, we want to assess the influence code churn has on the end user of a
system. More specifically, we will answer the following question:

RQ3. How much of an influence does code churn have on the surroundings of a system?

In this context, we usesurroundingsloosely. For open source systems, it often holds that
its users are other developers. In the context of this experiment, we will restrict ourselves
to this case. To guide our gathering of data, we suspect a number of things to be the case.
These hypotheses are:

• H7. There exists a correlation between the number of reported issues and the number
of posed questions following a release.

• H8. Code churn influences the number of questions, answers and issues created after
a release.

As such, we aim to reject the following null hypotheses:

• H07. There is no correlation between the number of reported issues and the number
of posed questions following a release.

• H08. Code churn does not influence the number of questions, answers and issues
created after a release.

In the remainder of this section we discuss the design and implementation involved with
addressing these hypotheses and answering the research question.

7http://stackoverflow.com
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Table 3.13: The selected open source projects.

Name Language Versions used

CouchDB Erlang 0.9.0 - 1.1.0
Django Python 1.1 - 1.3
Node.js JavaScript 0.2.0 - 0.8.0
Ruby on Rails Ruby 2.3.0 - 3.1.0
Redis C 2.2.0 - 2.4.0

3.4.2 Design

To answer the question, we require different types of information. First of all, we once again
need a representative set of systems for which we can acquireenough release dates. We also
need churn data for each of these systems, as well as information about asked questions and
reported issues.

We can gather churn data for each of these newly selected systems as we described in
section 3.1. For issues, we have to query the issue tracker ofeach system individually. To
gather the number of questions and answers belong to a specific system, we use the Stack
Overflow database dump from August 2012 [3].

Using all the information, we apply a rank correlation test to test hypothesis H7. We ensure
the precision on this is significant enough to yield good results. To test hypothesis H8, we
correlate the code churn to each of the other entities.

Based on the availability of all the required data, we selected the systems and versions
shown in Table 3.13 for this experiment.

3.4.3 Mining the required data

Release dates

Each of the selected projects is hosted on GitHub as a Git repository. In Git, it is possible
to tag a specific state of the repository, which is often used to marka new version of the
system. From this list, we filtered out every entry matching an alpha, beta or release can-
didate tag. Each system uses similar numbering, so it was possible to determine whether
the release was a minor or a major release. The versions are ofthe form ‘a.b.c’ or a slight
deviation thereof. A change in ‘a’ indicates a major release, a change in ‘b’ shows a minor
release, and a change in ‘c’ marks a maintenance release. Each tag has an associated tag
date which we use to mark the moment of release. We limited ourselves to releases with
changes in ‘a’ or ‘b’, since ‘c’ versions are generally not influential with regards to a sys-
tem’s functionality. To avoid confusion with Stack Overflowtags, we refer to Git tags as
releases.
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This way, the set of release dates is dependent on the date a release got created in Git. This
limited the releases we could gather because of various reasons. For instance, the Django
project switched to Git late 2011, and all the versions whichhad been released before that
had an invalid date associated with it. To remedy this, we searched the project website for
earlier release dates and combined these with the automatically gathered data. The selection
of only ‘a’ and ‘b’ releases is done manually.

Reported issues

Each of the selected projects has a public issue tracker. These issues all have creation dates
and, where applicable, resolution dates. The CouchDB issuetracker is part of the large Jira-
based Apache one, which has a REST interface to communicate with it programmatically.
Django hosts their own TRAC server, which allowed for web requests to return comma
seperated value files with the requested information. The remaining projects, Node.js, Ruby
on Rails and Redis, all use the GitHub issue tracker, which isaccessible via the Github API.
We selected the creation dates of issues created during the time frame described by the first
and last release found earlier.

Stack Overflow questions and answers

To get access to the Stack Overflow questions, we used the database dump by Stack Over-
flow of August 2012 [3]. After importing the PostgreSQL dump into a database, we filtered
the posts to be of type ‘question’, and retrieved their creation date. Getting answers based
on a time frame and a tag proved a bit more tricky. Both questions and answers are in the
same table, but answers do not have specified tags. Answers have a field ‘parent_id’, which
questions do not have. Therefore, we got the answers by joining the table on itself based on
the id matching the parent_id, and then filtering on date and tag once again.

Churn

Similar to our experiment described in section 3.1, we queried Git to gather all the data.
This means we excluded folders which would skew the results and are not part of the system
we are interested in. For this experiment, we use the per commit measure to fully see the
amount of activity developers have put in.

Consolidation

The gathered releases, issues, questions and churn numbersdid not perfectly align. For
some cases, there were no issues for the time frame of a release, like for instance Ruby
on Rails’ 2.3.0 release. This is because the project moved towards using GitHub’s issue
tracker from their own solution from version 3.0.0. onwards. For others, the questions were
incomplete for a release since the Stack Overflow snapshot isfrom August 2012. We cut
out versions for which we lacked full question data. This left us with the versions described
in Table 3.13.
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System Number of weeks Spearman (ρ)

CouchDB 173 N/A (p= 0.13)
Django 192 0.36 (p< 0.01)
Node.js 160 0.91 (p< 0.01)
Ruby on Rails 190 0.83 (p< 0.01)
Redis 75 0.60 (p< 0.01)

Table 3.14: The Spearman results for the number of issues andnumber of asked questions.

3.4.4 Results

Reported issues and questions asked

For each of the selected projects, we found a time span as large as possible where the found
issues and questions overlapped. To correlate the two, we binned them in frames of one
week. This allowed us to count the number of issues and questions per week. We have
chosen to bin them per week since it is a large enough time spanto have each bin filled with
multiple questions or issues. On the other hand, it is a shortenough time span to observe
patterns over time. After grouping both issues and questions per week, it was possible to
correlate the two. Table 3.14 shows the relation between thenumber of questions and the
number of issues per project using the Spearman rank correlation.

We see that the results are inconclusive for CouchDB, but thefour other systems point
towards a strong correlation between issues and questions.Of course, this might be due to
projects gaining more users over time, automatically leading to more questions and raised
issues. It does show, however, that more questions can implymore issues and the other way
around and the relation between the two is worth inspecting further.

To see whether the amount of questions and the amount of issues raised is higher or lower
after a release, we selected four per-week groups from before and after a release. If the
mean number of questions from these weeks is higher after a release, we call it aquestion-
influential release. The same way, a higher number of issues after a release means it is
an issue-influentialrelease. To be comparable, the results are normalized by theamount of
questions or issues actually involved in the weeks before and after the release. To formalize,
the influence values are calculated asQa−Qb

Qtotal
, whereQa is the mean number of questions in

weeks after the release,Qb the mean number of questions in the weeks before the release,
andQtotal the total amount of questions involved. The formula for issues is similar. The
results are shown in Table 3.15.

The first finding is that the creation of Stack Overflow questions is largely release-agnostic.
Most values hover around 0, meaning there is not much of a difference between the amount
of questions asked before or after a release. The same is found for issues, which is more
surprising. Manual inspection shows that the phases leading up to the release have a similar
amount of bug reports due to beta and release candidate versions. This is similar to the
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Release Influence on questions Influence on issues

CouchDB 0.9.0 -0.250 -0.073
CouchDB 0.10.0 -0.028 0.067
CouchDB 0.11.0 0.000 0.010
CouchDB 1.0.0 0.005 -0.026
CouchDB 1.1.0 -0.057 -0.042
Django 1.1 0.000 0.000
Django 1.2 0.014 0.035
Django 1.3 0.010 0.035
Node.js 0.2.0 -0.003 0.024
Node.js 0.3.0 -0.027 -0.001
Node.js 0.4.0 0.045 0.023
Node.js 0.5.0 -0.002 0.044
Node.js 0.6.0 -0.031 0.038
Node.js 0.7.0 0.000 0.020
Node.js 0.8.0 -0.002 0.015
Ruby on Rails 2.3.0 0.003 N/A
Ruby on Rails 3.0.0 0.015 N/A
Ruby on Rails 3.1.0 -0.005 0.015
Redis 2.2.0 -0.014 -0.083
Redis 2.4.0 -0.061 -0.036

Table 3.15: The relation of number of questions and issues before and after a release.

findings of Anvik et al. in 2006, who studied the Eclipse and Firefox repositories [2]. They
also found that the amount of reported issues did not necessarily increase after a release,
but did see higher activity around a release. This does not explain why Stack Overflow
questions are release-agnostic though. A possible explanation is that users do not adopt a
new version straight away for various reasons. More research is required to confirm this,
however. Based on these findings, we cannot rejectH07, since it seems these releases have
no influence on either.

Amount of change

The amount of churn of a release is a measure for how much a system has changed be-
tween two versions. More churn implies more change. More change implies, for instance, a
higher probability of API changes, which might cause more questions to be asked on Stack
Overflow. According to Nagappan et al., this is the case for reported issues [34]. To verify
whether it holds for questions and answers, we tried to correlate the amount of total churn
before a version to the number of questions asked after a release. We performed the same
experiment for posted answers and reported issues. Due to the lack of available versions for
Redis, we excluded it from this experiment. To compare the different releases against each
other, we normalized the amount of questions, answers and issues per release by dividing

39



Impact of code churn on users of open source software

System (# versions) Questions (ρ) Answers (ρ)

CouchDB (5) N/A (p= 0.62) N/A (p= 0.62)
Django (3) 1.0 (p= 0) 1.0 (p= 0)
Node.js (7) N/A (p= 0.76) N/A (p= 0.76)
Ruby on Rails (3) N/A (p= 0.67) N/A (p= 0.67)
Combined (18) 0.68 (p< 0.01) 0.71 (p< 0.01)

Table 3.16: The Spearman results between release code churnand the number of questions
and answers posted on Stack Overflow

.

System (# versions) Questions + Answers (ρ) Issues (ρ)

CouchDB (5) N/A (p= 0.62) N/A (p= 0.50)
Django (3) 1.0 (p= 0) N/A (p= 0.67)
Node.js (7) N/A (p= 0.76) N/A (p= 0.64)
Ruby on Rails (3) N/A (p= 0.67) N/A (p= 0.67)
Combined (18) 0.70 (p< 0.01) N/A (p= 0.72)

Table 3.17: The Spearman results between release code churn, combined questions and
answers, and reported issues

them by the amount of days which passed until the new version.To see whether churn
influences the amount of questions, answers and issues, we performed Spearman rank cor-
relation tests on the systems. We chose the Spearman test since we have no knowledge
about the distribution of the data. The results can be found in Tables 3.16 and 3.17.

It is apparent that the values for the individual projects are meaningless because we do not
have enough releases per project. The values for Django are also not reliable due to the set
of versions being too small, even though the p-value is low. If we envision them being one
large project, however, it shows that code churn is correlated to the amount of questions be-
ing asked on Stack Overflow. However, this might be caused by the projects becoming more
popular over time. On top of that, the projects are very different and lumping them together
like this is not the preferred way of analyzing them. However, this crude analysis indicates
that more research is warranted to uncover the actual relationship between software change
and the number of questions and answers.

A similar story unfolds when we look at the reported issues after a release. None of the
individual projects can be used to say something meaningful, and even the combination of
all releases does not yield a reliable precision factor. Nagappan et al. [34] have shown that
this correlation is present in proprietary software, so expanding our experiment will assist in
verifying those findings on more recent OSS systems. Therefore, based on our findings, we
reject null hypothesisH08 since code churn, issues, questions and answers are correlated if
we group our data set together.
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We observe that there is barely any difference between questions and answers. This is to be
expected since the amount of answers depends on the amount ofquestions. The relationship
between the two proves to be very stable for questions about our selected systems.

3.4.5 Threats to validity

The relationship between issues and questions seems to be positive, but this can also be
explained by there naturally being more of both as the systemgets more popular. This can
in fact be the case for code churn as well, as more popular opensource systems tend to
attract more developers. This relationship and the correlation between these numbers is part
of future work.

The number of versions we studied in this section is limited.This is because of the strong
requirements of data from three different data sources. Although the individual systems
do not yield strict results, we believe the combined resultsare still statistically significant.
Expanding the set of systems and versions for this study is part of future work.

3.4.6 Answer to the research question

In this section, we set out to answer the following research question:

RQ3. How much of an influence does code churn have on the surroundings of a system?

As discussed, we have not enough data points to answer this with certainty, but our experi-
ment strongly points at a positive correlation between codechurn and number of questions
asked and answers given. Like said before, this can be causedby a correlation between the
two, the notion that both increase as the system gets more popular, or both. We think we
cannot fully attribute it to the growing popularity of the systems, since for instance Ruby on
Rails has not grown much across the past two years, as shown insection 3.1.

On the other hand, our data points at no correlation between code churn and number of
reported issues. This is surprising, since we hypothesizedthey would be related. This ob-
servation might be explained by some versions implementingnew features, which is a lot
of code churn for very few reported issues. Conversely, a lotof bugs can be solved using
very little code.
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Chapter 4

Conclusions and future work

In this chapter, we recap our findings, conclusions and contributions. We also indicate
possible future work which has presented itself throughoutthis work.

4.1 Conclusions

For each of our research questions, we summarize our findings.

1. What is the relationship between time between versions and code churn?
As shown in section 3.1, the relationship between commit-based and various interval-
based approaches are fairly consistent across projects. For week-based approaches,
the difference with commit-based measurement ranges between 3% and 20%. On a
monthly basis, this range becomes 4% to 22%. Finally, the range on an annual basis
is 7% to 37%. The mean values are 9.58%, 11.76% and 18.73% respectively.

2. What churn-related metrics can be used to classify softwarechanges using automated
source code measurements?
As shown in Figure 3.3 and Figure 3.4, absolute code churn, changed lines, file churn
andamount of files with a small number of changesare significant metrics when build-
ing a classifier. Test-related metrics, like added lines of test code are also influential
in determining the change type.

3. Which generic patterns are detectable in code churn?Based on all the approaches
described in section 3.3, we have not found any generic patterns across over a hundred
different systems. This might imply that each system is developed differently and is
evolving differently. More future work is required, however.

4. How much of an influence does churn have on the surroundings ofa system?We have
shown in Table 3.15 that a new release of a piece of software does not necessarily
impact the surroundings on a system. However, we have shown in Table 3.16 code
churn has a positive correlation with asked questions and posed answers. We have
found no such correlations for reported issues.
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4.2 Contributions

In this work, we have made the following contributions.

1. We have explored the influence of a chosen time interval on the code churn calcula-
tion.

2. We have shown how to create a classifier to determine the primary focus of developers
during a time period. This can be used to have a more high leveloverview of a
system’s evolution.

3. We have shown how we were unable to detect generic churn patterns in many software
systems. Although this does not mean patterns don’t exist, it shows the uniqueness of
each project and each iteration.

4. We have shown the influence code churn has on its surroundings, namely the system’s
issue tracker and Stack Overflow.

4.3 Future work

We built a successful classifier, but it can still be improvedby adding more and different
metrics to our possible pool. We also think expanding the test set will increase performance
and reliability of the classifier. Future work would be to create a self-improving classifier
which can use correctly classified instances as new entries to its test set.

Although we have not found any in this work, we think detecting generic patterns in evolv-
ing software systems can still be helpful. Therefore, extending this research to include more
measurements than just code churn for that purpose is part offuture work. Another option
is extending the work by Barry et al. [4] to work on a ratio scale instead of an ordinal scale,
to obtain more applicable patterns.

The ecosystem around pieces of software are arguably as important as the software itself.
Therefore, we argue that good future work is in the relationship between the product and
the process of the system and its surroundings. We have shownhow software releases do
not affect surroundings, but the size of changes of a releasedo have an impact. Finding
out what product and process metrics influence the surroundings can help developers with
predicting the impact their release will have up front.

43



Bibliography

[1] S.A. Ajila and R.T. Dumitrescu. Experimental use of codedelta, code churn, and
rate of change to understand software product line evolution. Journal of Systems and
Software, 80(1):74 – 91, 2007.

[2] J. Anvik, L. Hiew, and G.C. Murphy. Who should fix this bug?In International
Conference on Software Engineering, pages 361–370, New York, NY, USA, 2006.
ACM.

[3] A. Bacchelli. Mining challenge 2013: Stack overflow. InWorking Conference on
Mining Software Repositories, page to appear, 2013.

[4] E.J. Barry, C.F. Kemerer, and S.A. Slaughter. On the uniformity of software evolution
patterns. InInternational Conference on Software Engineering, pages 106–113, 2003.

[5] V. Basili, L. Briand, S. Condon, Y. Kim, W.L. Melo, and J.D. Valett. Understanding
and predicting the process of software maintenance release. In International Con-
ference on Software Engineering, ICSE ’96, pages 464–474, Washington, DC, USA,
1996. IEEE.

[6] O. Baysal, I. Davis, and M.W. Godfrey. A tale of two browsers. InWorking Conference
on Mining Software Repositories, MSR ’11, pages 238–241, New York, NY, USA,
2011. ACM.

[7] K. Beck and C. Andres.Extreme programming explained: embrace change. Addison-
Wesley Professional, 2004.

[8] P. Bhattacharya, M. Iliofotou, I. Neamtiu, and M. Faloutsos. Graph-based analysis
and prediction for software evolution. InInternational Conference on Software Engi-
neering, ICSE ’12, pages 419–429, Piscataway, NJ, USA, 2012. IEEE.

[9] J. Carletta. Assessing agreement on classification tasks: the kappa statistic.Compu-
tational linguistics, 22(2):249–254, 1996.

44



[10] D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. Hipikat: a project memory for
software development.International Conference on Software Engineering, 31(6):446–
465, 2005.

[11] M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger. Analysing software repositories to
understand software evolution. InSoftware Evolution, pages 37–67. Springer Berlin
Heidelberg, 2008.

[12] S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. Mockus. Does code decay?
assessing the evidence from change management data.Software Engineering, 27(1):1–
12, 2001.

[13] S. Elbaum and J. Munson. Code churn: a measure for estimating the impact of code
change. InInternational Conference on Software Maintenance, ICSM ’98, pages 24–
31. IEEE, 1998.

[14] N.E. Fenton and M. Neil. Software metrics: roadmap. InThe Future of Software
Engineering, pages 357–370, New York, NY, USA, 2000. ACM.

[15] H. Gall, K. Hajek, and M. Jazayeri. Detection of logicalcoupling based on product
release history. InInternational Conference on Software Maintenance, ICSM ’98.
IEEE, 1998.

[16] H. Gall, M. Jazayeri, and J. Krajewski. CVS release history data for detecting logical
couplings. InInternational Workshop on Principles of Software Evolution, pages 13–
23, 2003.

[17] D.M. German. Using software trails to reconstruct the evolution of software.Jour-
nal of Software Maintenance and Evolution: Research and Practice, 16(6):367–384,
2004.

[18] D.M. German and A. Hindle. Measuring fine-grained change in software: towards
modification-aware change metrics. InInternational Symposium on Software Metrics,
pages 10 pp.–28, 2005.

[19] E. Giger, M. Pinzger, and H.C. Gall. Comparing fine-grained source code changes and
code churn for bug prediction. InWorking Conference on Mining Software Reposito-
ries, MSR ’11, pages 83–92, New York, NY, USA, 2011. ACM/IEEE.

[20] C. Gini. Measurement of inequality of incomes.The Economic Journal, 31(121):124–
126, 1921.

[21] I. Guyon and A. Elisseeff. An introduction to variable and feature selection.Journal
of Machine Learning Research, 3:1157–1182, March 2003.

[22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The
weka data mining software: an update.SIGKDD Explorer Newsletter, 11(1):10–18,
November 2009.

45



[23] M.A. Hall. Correlation-based feature selection for machine learning. PhD thesis, The
University of Waikato, 1999.

[24] M.E. Holmes and M.S. Poole. Longitudinal analysis.Studying interpersonal interac-
tion, 286:301, 1991.

[25] H. Kagdi, M.L. Collard, and J.I. Maletic. A survey and taxonomy of approaches for
mining software repositories in the context of software evolution. Journal of Software
Maintenance and Evolution: Research and Practice, 19(2):77–131, 2007.

[26] B. Kitchenham. What’s up with software metrics? a preliminary mapping study.
Systems and Software, 83(1):37 – 51, 2010. SI: Top Scholars.

[27] S.B. Kotsiantis, I.D. Zaharakis, and P.E. Pintelas.Supervised machine learning: A
review of classification techniques. 2007.

[28] J.R. Landis and G.G. Koch. The measurement of observer agreement for categorical
data.Biometrics, pages 159–174, 1977.

[29] M. Lanza. The evolution matrix: recovering software evolution using software visu-
alization techniques. InInternational Workshop on Principles of Software Evolution,
pages 37–42, New York, NY, USA, 2001. ACM.

[30] M.M. Lehman. Programs, life cycles, and laws of software evolution.Proceedings of
the IEEE, 68(9):1060–1076, 1980.

[31] A. Mockus and L.G. Votta. Identifying reasons for software changes using historic
databases. InInternational Conference on Software Maintenance, pages 120–130,
2000.

[32] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency of
change metrics and static code attributes for defect prediction. In International Con-
ference on Software Engineering, pages 181–190, 2008.

[33] E.W. Myers. An o(nd) difference algorithm and its variations. Algorithmica, 1(1-
4):251–266, 1986.

[34] N. Nagappan and T. Ball. Use of relative code churn measures to predict system defect
density. InInternational Conference on Software Engineering, pages 284–292. IEEE,
2005.

[35] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, and M.Vouk. Preliminary results
on using static analysis tools for software inspection. InInternational Symposium on
Software Reliability Engineering, pages 429–439. IEEE, 2004.

[36] L. Rising and N.S. Janoff. The scrum software development process for small teams.
Software, 17(4):26–32, 2000.

46



[37] R. Robbes and M. Lanza. A change-based approach to software evolution.Electronic
Notes in Theoretical Computer Science, 166(0):93 – 109, 2007.

[38] G. Robles, J.J. Amor, J.M. Gonzalez-Barahona, and I. Herraiz. Evolution and growth
in large libre software projects. InInternational Workshop on Principles of Software
Evolution, pages 165–174, 2005.

[39] W.W. Royce. Managing the development of large softwaresystems. InWESCON,
volume 26. Los Angeles, 1970.

[40] R.H. Shumway and D.S. Stoffer. An approach to time series smoothing and forecasting
using the em algorithm.Time Series Analysis, 3(4):253–264, 1982.

[41] M. Storey. Theories, methods and tools in program comprehension: past, present and
future. InInternational Workshop on Program Comprehension, pages 181–191, 2005.

[42] A. von Mayrhauser and A.M. Vans. Program comprehensionduring software mainte-
nance and evolution.Computer, 28(8):44–55, 1995.

[43] G. Webb. Decision tree grafting from the all-tests-but-one partition. San Francisco,
CA, 1999. Morgan Kaufmann.

[44] W. Wilson, P. Birkin, and U. Aickelin. The motif tracking algorithm.Automation and
Computing, 5(1):32–44, 2008.

[45] C. Wohlin, P. Runeson, M. Hst, M.C. Ohlsson, B. Regnell,and A. Wessln.Experimen-
tation in Software Engineering. Springer Publishing Company, Incorporated, 2012.

[46] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deursen. In International
Conference on Software Testing, Verification, and Validation, ICST ’08.

47



Appendix A

Test set as a result of manual
classification

An online version of this appendix can be found at:
http://kaidence.org/thesis/appendixa.py

t e s t s e t = {
’ opensource_d ja ngo ’ : {

d a t e t i m e (2010 , 1 , 11) : " f e a t u r e " ,
d a t e t i m e (2010 , 1 , 25) : " f e a t u r e " ,
d a t e t i m e (2010 , 3 , 1) : " r e f a c t o r " ,
d a t e t i m e (2010 , 4 , 12) : " bug f i x " ,
d a t e t i m e (2010 , 10 , 18) : " r e f a c t o r " ,
d a t e t i m e (2011 , 10 , 17) : " r e f a c t o r " ,
d a t e t i m e (2011 , 11 , 21) : " f e a t u r e " ,
d a t e t i m e (2012 , 6 , 11) : " r e f a c t o r " ,
d a t e t i m e (2012 , 8 , 13) : " r e f a c t o r " ,
d a t e t i m e (2012 , 10 , 1) : " f e a t u r e "

} ,
’ o p e n s o u r c e _ p o s t g r e s ’ : {

d a t e t i m e (2010 , 2 , 22) : " f e a t u r e " ,
d a t e t i m e (2010 , 3 , 29) : " bug f i x " ,
d a t e t i m e (2010 , 5 , 17) : " f e a t u r e " ,
d a t e t i m e (2010 , 6 , 28) : " bug f i x " ,
d a t e t i m e (2010 , 10 , 11) : " r e f a c t o r " ,
d a t e t i m e (2010 , 11 , 15) : " bug f i x " ,
d a t e t i m e (2011 , 1 , 3) : " r e f a c t o r " ,
d a t e t i m e (2011 , 8 , 22) : " r e f a c t o r " ,
d a t e t i m e (2012 , 4 , 23) : " r e f a c t o r " ,
d a t e t i m e (2012 , 10 , 01) : " f e a t u r e "

} ,
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’ o p e n s o u r c e _ e c l i p s e _ j d t _ c o r e ’ : {
d a t e t i m e (2010 , 2 , 22) : " f e a t u r e " ,
d a t e t i m e (2010 , 3 , 1) : " f e a t u r e " ,
d a t e t i m e (2010 , 4 , 26) : " bug f i x " ,
d a t e t i m e (2010 , 11 , 1) : " f e a t u r e " ,
d a t e t i m e (2010 , 12 , 20) : " f e a t u r e " ,
d a t e t i m e (2011 , 3 , 7) : " r e f a c t o r " ,
d a t e t i m e (2011 , 4 , 18) : " bug f i x " ,
d a t e t i m e (2012 , 1 , 16) : " f e a t u r e " ,
d a t e t i m e (2012 , 4 , 16) : " bug f i x " ,
d a t e t i m e (2012 , 8 , 27) : " bug f i x "

} ,

’ o p e n s o u r c e _ r a i l s ’ : {
d a t e t i m e (2010 , 3 , 15) : " r e f a c t o r " ,
d a t e t i m e (2010 , 8 , 16) : " r e f a c t o r " ,
d a t e t i m e (2010 , 9 , 6) : " f e a t u r e " ,
d a t e t i m e (2010 , 11 , 22) : " f e a t u r e " ,
d a t e t i m e (2011 , 2 , 21) : " r e f a c t o r " ,
d a t e t i m e (2011 , 7 , 4) : " bug f i x " ,
d a t e t i m e (2011 , 3 , 28) : " bug f i x " ,
d a t e t i m e (2012 , 7 , 16) : " bug f i x " ,
d a t e t i m e (2012 , 9 , 10) : " r e f a c t o r " ,
d a t e t i m e (2012 , 10 , 1) : " f e a t u r e "

} ,

’ ope ns ou r c e _ s u b ve r s i on ’ : {
d a t e t i m e (2010 , 2 , 15) : " r e f a c t o r " ,
d a t e t i m e (2010 , 3 , 22) : " r e f a c t o r " ,
d a t e t i m e (2010 , 5 , 10) : " f e a t u r e " ,
d a t e t i m e (2010 , 5 , 31) : " bug f i x " ,
d a t e t i m e (2011 , 5 , 9) : " f e a t u r e " ,
d a t e t i m e (2011 , 5 , 3 0 ) : " f e a t u r e " ,
d a t e t i m e (2011 , 9 , 12) : " f e a t u r e " ,
d a t e t i m e (2011 , 10 , 3) : " bug f i x " ,
d a t e t i m e (2012 , 2 , 13) : " r e f a c t o r " ,
d a t e t i m e (2012 , 7 , 9) : " f e a t u r e "

} ,
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Appendix B

Training set in ARFF format

This appendix is limited to one entry. The full training set can be found at:
http://kaidence.org/thesis/appendixb.arff

@relation ’Software Event: System’

@attribute datetime date "yyyy-MM-dd HH:mm:ss"
@attribute name string
@attribute CHURN numeric
@attribute pCHURN numeric
@attribute tCHURN numeric
@attribute ADDED numeric
@attribute pADDED numeric
@attribute tADDED numeric
@attribute CHANGED numeric
@attribute pCHANGED numeric
@attribute tCHANGED numeric
@attribute DELETED numeric
@attribute pDELETED numeric
@attribute tDELETED numeric
@attribute FILECHURN numeric
@attribute GINI numeric
@attribute pGINI numeric
@attribute tGINI numeric
@attribute FILEGINI numeric
@attribute pFILEGINI numeric
@attribute tFILEGINI numeric
@attribute PERC_FILESSMALLCHURN numeric
@attribute PERC_FILESMOSTLYADDED numeric
@attribute PERC_FILESMOSTLYCHANGED numeric
@attribute PERC_FILESMOSTLYDELETED numeric
@attribute tCHURNDIVpCHURN numeric
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@attribute CHURNDIVDELETED numeric
@attribute ADDEDDIVDELETED numeric
@attribute RELCHURN numeric
@attribute RELpCHURN numeric
@attribute RELtCHURN numeric
@attribute RELADDED numeric
@attribute RELpADDED numeric
@attribute RELtADDED numeric
@attribute RELDELETED numeric
@attribute RELpDELETED numeric
@attribute RELtDELETED numeric
@attribute RELCHANGED numeric
@attribute RELpCHANGED numeric
@attribute RELtCHANGED numeric
@attribute POTENTIALLYMOVEDLINES numeric
@attribute sclass {bugfix,refactor,feature}

@data
{0 "2010-01-11 00:00:00", 1 opensource_django, 2 1322.0, 3 617.0, 4 705.0, 5

1259.0, 6 564.0, 7 695.0, 8 63.0, 9 53.0, 10 10.0, 11 269.0, 12 238.0, 13
31.0, 14 106, 15 0.7257942511346446, 16 0.7619997506545318, 17
0.3498817966903073, 18 0.6499106344950851, 19 0.6499106344950849, 20
0.7070422535211267, 21 0.839622641509434, 22 0.5943396226415094, 23
0.2830188679245283, 24 0.02830188679245283, 25 1.1426256077795787, 26
4.91449814126394, 27 4.680297397769516, 28 0.030543169373657093, 29
0.01425501929163875, 30 0.016288150082018345, 31 0.029087632557817156,
32 0.013030520065614675, 33 0.016057112492202482, 34

0.0062149111660467155, 35 0.0054986946376175405, 36
0.0007162165284291754, 37 0.0014555368158399372, 38
0.001224499226024074, 39 0.00023103758981586305, 41 feature}
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