Exploring Characteristics of Code
Churn

Master’'s Thesis

Jos Kraaijeveld

Exploring Characteristics of Code

Churn

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

by

Jos Kraaijeveld

born in Gouda, the Netherlands

%
TUDelft

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

Wy, ewi . tudel ft.nl

-y
-l
Software Improvement Group
Rembrandt Tower, 15floor
Amstelplein 1 - 1096HA

Amsterdam, the Netherlands
WM. Si g. eu

(©2013 Jos Kraaijeveld. All rights reserved.

Exploring Characteristics of Code
Churn

Author: Jos Kraaijeveld
Student id: 1509225
Email; mai | @ai dence. or g

Abstract

Software is a centerpiece in today’s society. Because of inach effort is spent
measuring various aspects of software. This is done usifiz@® metrics. Code
churn is one of these metrics. Code churn is a metric measanange volumde-
tween two versions of a system, defined as sum of added, nibdifig deleted lines.
We use code churn to gain more insight into the evolution &fvsre systems. With
that in mind, we describe four experiments that we conduatedpen source as well
as proprietary systems.

First, we show how code churn can be calculated on differsr intervals and
the effect this can have on studies. This can differ up to 2@¥wvben commit-based
and week-based intervals. Secondly, we use code churn &tddenetrics to auto-
matically determine what the primary focus of a developnteann was during a period
of time. We show how we built such a classifier with a precigibi4%. Thirdly, we
attempted to find generalizable patterns in the code churgression of systems. We
did not find such patterns, and we think this is inherent tovgaoe evolution. Finally
we study the effect of change volume on the surroundings aadhase of a system.
We show there is a correlation between change volume andhibarat of activity on
issue trackers and Q&A websites.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. A.E. Zaidman, Faculty EEMCS, Deélft
Company supervisor: Prof. Dr. Ir. J. Visser, Software Inweraent Group B.V.

Company co-supervisor: Dr. E. Bouwers, Software Improvan@roup B.V.
Committee Member: Dr. M.T.J. Spaan, Faculty EEMCS, TU Delft

Preface

This thesis is the product of my graduation project for thestdaof Science degree at the
Delft University of Technology. | would like to thank my supésor from the university,
Andy Zaidman, for all the insights and support during thisjgct. The same goes for my
company supervisor, Eric Bouwers, who always knew how tdemge me during my time
at the Software Improvement Group (SIG). | am grateful favsld/isser as my other su-
pervisor at SIG, and all of my colleagues there as well. Binhwant to thank my two
friends and housemates Zhi Kang Shao and Pascal 't Hart fiog laesource of motivation
throughout my project. All these people played a a crucikd helping me improve as an
engineer, a scientist and a person over the past year.

Jos Kraaijeveld
Delft, the Netherlands
September 5, 2013

List of Figures \

List of Tables Vi

1 Introduction 1
1.1 Background e 1
1.2 Researchquestions 2
1.3 Codechurn 3
1.4 Researchcontext o e 5
1.5 Documentstructure e e e e e e e 6

2 Related work 7
2.1 Software process and evolution 7
2.2 Software metric studies 9
2.3 Classification of activities in software 9

3 Experiments 11
3.1 The influence of the time interval on code churn calooihati 11
3.2 Using churn metrics to identify software activity types. 21
3.3 Patterndetectionincodechurn 29
3.4 Impact of code churn on users of open source software 35

4 Conclusions and future work 42
4.1 Conclusions e 42
4.2 Contributions 43
4.3 Futurework 43

Bibliography 44

A Test set as a result of manual classification 48

Contents

B Training set in ARFF format

50

1.1

2.1

3.1
3.2
3.3
3.4
3.5

3.6

List of Figures

An example of two different code churn measurements. 2
An example evolution matrix as created by Lanza[29] 8
Three versions of the same program. 12
Software change types as defined by Basilietal. [5] 21
Decision tree when using all our selected metrics asiphigss. 27
Decision tree when only using relative metrics.27
An example code churn pattern, where most of the Workmsedmthe mlddle
ofthereleasecycle. 0 3
Weekly code churn progression forJQuery. 34

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13
3.14
3.15
3.16

3.17

List of Tables

The selected open source systems for the interval emeeti 13
The excluded folders persystem 15
System statistics for the year 2011. 16
System statistics fortheyear2012. oL 16
Relative code churn values for the year 2011. 17
Relative code churn values for the year 2012.17
Relative deviation between intervals and commit-baseld churn in 2011 .. 18
Relative deviation between intervals and commit-baseié churn in 2012. . . 18
The median and mean differences between committeaddtauthor date for
COmMItS per System. e e e e e e 19
The chosen churn-related metrics. 23
The dates of activity on which we based ourtestset. 24
The selected open source projects. 36
The Spearman results for the number of issues and nwhasked questions. 38
The relation of number of questions and issues befatafier arelease. . .. 39
The Spearman results between release code churn amghtiser of questions

and answers posted on Stack Overflow 40
The Spearman results between release code churn,reshtpiestions and an-
swers, andreported iSSUES e 40

Vi

Chapter 1

Introduction

1.1 Background

We have become irreversibly dependent on software systégihese systems grow larger
and more complex, our understanding of them becomes weB&#ware metrics are used
for understanding software systems. Research into saftmatrics has been done for four
decades already, up to the point where it is unclear whatxhet state of software metric
research is [26]. On another side of the software engingespectrum, there is the rise
of Agile process methodologies like SCRUM [36] and eXtremnegPamming [7], which
emphasize small iterations of changes and improvement. eifjghasis on the software
process is a result of the growing complexity of software.uBgerstanding what changes
a system went through, we can understand the system. To $hefo@ur knowledge, there
has not been much been much work which combines metrics arsmbftware process since
the rise of the Agile methodologies.

One of the studies which combines both software metrics haddevelopment process
is the work by Basili et al. from 1996 [5]. They surveyed deyars regarding the changes
they made to a piece of software when going from one versiamixt, and gathered infor-
mation like amount of changed lines and the nature of thegdahhey show that knowing
what type of changes are made during a time period helps witivare understanding and
the distribution of effort across a release. The downsideaif study is that the developers
have to fill in a survey each time they make a change to gateeretiuired information.

We want to combine software metrics, software process aftdbaz@ understanding. For
this, we decided to studgode churn[13]. Code churn is the most commonly used basic
metric for measuring change between two versions of the system. Our goals for this
study are threefold. Firstly, we want to gather the sametinéion as Basili et al. regarding
types of changes automatically. Secondly, we want to use chdrn, the base measure of
change, to capture patterns in the software developmeoegsand further software under-
standing. Thirdly, we want to know whether code churn andstifevare process have an
impact on the software’s surroundings, like user commesiiti

Research questions

1.2

Two churn measurements at different intervals

- - Four weeks |/
— Weekly

q ~1

- -

s _ -

< _ -

& -7

< g

g -

o _ -7

) _-

= = | | |
0 1 2 3 4

Time (in weeks)

Figure 1.1: An example of two different code churn measurdéme

Research questions

As stated, our goal is to explore code churn’s charactesidth develop methods which
assist with software understanding. To this avail, we anghe following four research
guestions.

1.

What is the relationship between time between versions age churn?

Code churn can be calculated for any two versions A and B ofteny, as long as
A precedes B. However, the time in between the two versiondgropact the results
gathered. For instance, the churn calculated once on wersianonth apart will be
different than the sum of all calculated churns of the founsazutive weeks. An
example of this is shown in Figure 1.1. By answering this aed®e question, we
research the influence of the decision of the time intervaherresults.

. What churn-related metrics can be used to classify softelaamges using automated

source code measurements?

Following the experiment performed by Basili et al. [5], whiclassified developer
activity between versions in different categories by ussugveys, we would like

similar insight without bothering developers. By answgrthis research question,
we identify what churn-related metrics indicate which tyfehange, and we show
what such a classifier looks like.

Code churn

3. Which generic patterns are detectable in code churk® a next step, we want to
detect generic patterns in a system’s code churn progressitiis can help with
detecting when a project is about to repeat a previous nadtlai neglecting tests,
when it enters a specific phase of development or is not slgath@ncorrect priorities.
We study both inter- and intraproject churn patterns. Byamig this question, we
want to create a clear mapping between a project’s procekssasctual evolution as
it is measureable from the source code.

4. How much of an influence does churn have on the surroundingssg$tem?Code
churn is a measure of change, but software change does restsagity mean change
for the end user. By answering this question, we show theteffeurn has on the
amount of reported issues on the issue tracker of systenvgelhas the amount of
questions asked on StackOverflowAs such, by answering this question we show
how the volume of change (churn) impacts the community ofstesy.

1.3 Code churn

In the field of software engineering, churn is a measure afighaa measure of progression.
In this section, we explain what definition of churn we usetighout the document in
section 1.3.1. We show why churn is the preferred metric tasae change in a software
system in section 1.3.2. Then, we describe the choices aircffects with churn in section
1.3.3. Finally, we show how churn has been used in past i@sé&asection 1.3.4.

1.3.1 Definition

Code churn has been introduced by Elbaum and Munson in 1398They define it as the
difference between two versions of the same system, as a &tira added, modified and
deleted lines. If we definfaa g as the amount of added lines if we compare version A and
B, where A precedes B, then we define churn as follows:

CHURN\ g =Aaa g+Ama g+Ada g, Where the operators are added, modified and deleted
lines respectively. It should be noted that each line camlag imost one category, since the
way of measuring between two exact points in time cannotctietbether a line got added
first and then modified.

Like studies by, among others, Nagappan et al. [34] [35] amdavl et al. [32], we
modify the definition of code churn to only encompass addetinaadified lines. That is;
CHURNy g = Aaa g +Ama g. This is because deleted lines generally have less impact on
the evolution of the system. Taking deleted lines of codecooant seperately provides a
better view of the actual change that took place.

http:/iwww.stackoverflow.com

Code churn

1.3.2 Why code churn?

As per our definition, code churn is a metric for measuringdh@nge of a system. Since
our goal is to improve the understanding of software and dffigsvare process, we believe
the metric closest to source code changes, churn, is theappktable.

Churn is a metric which measures the volume of change a sysésthrough between two
moments in time. A comparable metric is the simgiédta-operation. As apposed to churn,
delta simply measures the size at pairandt,, and gives the difference between the two as
result. Churn approximates actual change better thanafdela simple reason: the size of
the system can remain roughly the same even though therdbawemany adjustments [1].

There are other alternatives for measuring the change amysient through, however.
One could look at a system on a higher level, like UML diagram&PI descriptions, but
a system goes through many changes which cannot be seerhimigiclevel views. Al-
ternatively, it is possible to extract change informatiooni an IDE instead of comparing
files. An approach like this has been proposed by Robbes amzal[&7]. Using the IDE
to measure all the changes as they happen gives a wealthoahiation, but significantly
constraints the projects that can be used in such reseaigan Gur research context, we
do not consider such methods since they tie in closely withegific language. So, even
though it is less precise than the fine-grained changes eddmsan IDE, this leads to the
another notable advantage of code churn: it can be used irrafionment, regardless of
operating system, version control or editor used by eachldper.

1.3.3 Churn taxonomy

To use churn to its fullest potential, it is necessary to seothe correct way of using it.
There are a number of options to choose from when using churn.

e Granularity.
Although we have focused on code churn so far, churn can loelletéd on other
levels of granularity. A rule of thumb is that a smaller gntiields a more precise
approximation of the performed changes. That is, a codenaietric will give more
insight than a file churn metric. However, this does not mealechurn is the best or
most practical choice in all cases. We will use both when anislg RQ2 in section
3.2.

e Interval.
Like explained when discussing RQ3, the choice of intervalfien overlooked when
dealing with code churn. The relationship between comm#te and time-based
churn calculations is explored in section 3.1.

Research context

e Relativity.
A relative measure is a better comparable result than anubsane, since differ-
ently sized projects will have different churn influenceditsysize and team size.
For instance, when creating a generalized model like Nagyappd Ball ([34]), the
purpose is to have the metrics be applicable to all typesstbgsys. They normalize
the numbers based on the system'’s size.

1.3.4 Churn uses in other research

Churn, and in particular code churn, has been used by részarto varying success for
different goals. The most notable areas are fault deteatmahsoftware evolution analysis.

Churn as a surrogate for software faults

Elbaum and Munson first proposed code churn as a fault suer§@z]. They showed churn
is a better surrogate than relative complexity, which isidyfauccessful predictor too.
Nagappan and Ball used relative code churn to predict defatsities up to an accuracy
of 89 % [34]. They use the eight churn-related metrics toaghthis result, likekodechurn
and 'Ilf(l)ltea(lj}?lrens There are other approaches in the area of fault detectiangtaph-based
approaches [8] and fine-grained source code changes [19ihése methods are not as
universally applicable as churn-related studies. At theetof writing, churn is still the

baseline to compare fault detection results against.

Churn for software evolution analysis

A side product of the study by Elbaum and Munson is that theyvsid the magnitude of
change is barely related to the number of developers indohith the change [13]. Eick et
al. showed that Lehman’s law of increasing complexity hatde on a large system using
code churn [12]. Gall et al. show it is possible to detect nbwious (logical) coupling
between classes in Java using file churn [16]. As such, cluanmetric used for many
different purposes in the field of software evolution.

1.4 Research context

This research is conducted at the Software Improvement@3(®1lG) in Amsterdam. The
SIG is a third party software evaluator and consultancy fifthey analyze hundreds of
industrial software systems on a weekly basis. Becauseettwicas of the SIG have to
be as general as possible, we perform this research with team @xphasis on language
agnosticism.

Document structure

1.5 Document structure

The remainder of this work will be structured as follows. lhapter 2 we discuss related
work with regards to code churn and our research question€hépter 3 we describe the
design, implementation and results of our experimentss$aanall four research questions.
We present our conclusions, contributions and suggestirigture work in Chapter 4.

Chapter 2

Related work

2.1 Software process and evolution

Ever since Lehman introduced his Laws of Software Evoluf8f, it has become a com-
mon notion to say that software is never done. This also sduyropularity in the academic
field of software evolution. As it is our goal to find patternstihie code churn metric, and
that metric is a commonly used indicator of software changkevolution, we find some
works have overlapping intentions with ours.

First off, much work has been done to extract informationmfrearious types of software
repositories. Hipikat, created by Cubranic et al., tradk@nges done on a system and uses
it to recommend actions to a developer [10]. Although it issely tied with the Eclipse
development environment, it shows how change metrics carsée to detect coupling be-
tween entities which are not evident from the code alone.il&ilyy D’Ambros et al. have
created a model to extract facts from software repositaréded RHDB [11]. They use
their system to analyse software evolution from variougedéit viewpoints: distribution

of work within a team, change coupling analysis and detgdisign issues in an architec-
ture. These works are a basis for ours since they show howthemgaetrics from various
data sources.

Lanza created a visualization called Evolution Matrix if020J29]. An example use of
an evolution matrix is shown in Figure 2.1. Like us, he warttedee what has happened
since a previous version of a system more clearly. He reptesmach class in a system
based on a box, where the box’s size depends on the numbertiobaseand the number
of instance variables it contains. As such, it is possiblede how each class evolves.
However, this method is limited in a couple of aspects. Kirsis a visualization it scales
badly. It's not uncommon for projects to have hundreds ofs#a, and a visualization of
all of them would be difficult to interpret. Secondly, we leete that number of methods
and number of instance variables does not capture eachtasfzed to a class’ evolution
completely. We do believe that the charaterization of ev@nthe lifecycle of a system is

Thttp://www.eclipse.org

Software process and evolution

item: Gass MSEMooseFinderUl [<(NOM: 30)(-:0)> <(-:0)> <(-:0)(-: 0)>] belongs to model Moosef

°°°]H’ﬂl’“ﬂ1 = ey
:nn]n-nln"n] = e
nnnlnnnls"n] a1
nnn]nunlr"n] o 1o
seeqpeatger 7 ottopi

Dnn]“”“l’““‘

FIRST VERSION

— o e pm— o p—

LEAP 1T———

ST T
onjreos1guEgp)eee)eee)rureper = ¢
egresgQugpeee]eseypeisger * *enpt
R TEC L LT L R TR L
og] (0oL gguEgJra0]eeeyericqer = oy

=
=
o

-

L]
-
=
=
"
=
o
i
a
a
a
—
=]
=
=
=]
—
=
—
=
=
=
—
=
=1
=
—
=
=

"0] 1007 1pgaEgj]eo0
"]t 1pgaig)eee
SRR TGV N

feggronergnotnpptee

TR T DL

lllllnﬁ[llnnu;uﬂ“unnlnn{lnu]n-”."nl ,

o T T

/
P
STAGNATION

Figure 2.1: An example evolution matrix as created by La2ga [

valuable, and we will work upon this notion when we chardetechange activity types in
section 3.2.

Alija and Dumitrescu use code churn as one of their key metidcunderstand product
line evolution [1]. They use the change metrics to determihether it is safe to release
a new version. On top of that, Alija and Dumitrescu mentioefly that for the systems
they studied, which are industrial, the majority (88%) oflechurn is caused by new lines
of code. The relation between code churn and added lineseisvenexplore more as we
characterize activity types. They also note that the nuroberodules or components of a
system does not influence the amount of code churn. This iat@oreship we verify prop-
erly in section 3.2.

Barry et al. found four different patterns with regards te ttolatility of open source sys-
tems [4]. That is, they look at the change of a system in terfnits amplitude, periodicity
and dispersion. Amplitude is the size of the change, theogiity is the time it took for
the change, and dispersion means the difference in behasémpared to what you would
expect given a set amplitude and periodicity. Based on ttiese aspects, they classify
each change as being part of one out of eight different soétwalatility classes. Then,
they perform phasic analysis to detect patterns in thossifizations. The results of Barry
et al. are four different patterns of software evolutionwdéwer, to get to that point, they re-

Software metric studies

duce each set of change values to ordinal values. This meamhange values are ordered
in increasing size, but the magnitude of the change is nantakto account. We think
valuable information is lost in this conversion. In theiradysis, the absolute or relative
difference in values is not used, so the set of valigs11} would give the same result as
{10,100C}. This means it is possible for very large or very small chartgenot be taken
into account properly. Furthermore, they only considempshats a month apart, without
analyzing whether the choice of this time interval impahbtsrtresults. Finally, their set of
27 systems might not be enough for a pattern detection stmdlyye do not know about the
differences and similarities of those systems. Our paitetection experiment, in which
we deal take those issues into account, is in section 3.3.

2.2 Software metric studies

There are countless software metric studies, but their eosrdhrink greatly if we only look
at change metrics. German and Hindle presented a framewakgh which metrics for
change can be classified as one of four types [18]. Their fnarieis useful since it shows
that different metric types have different uses and p#fallhey promote the use of metrics
as precise as possible (on a line level), rather than on giessse level (like module level
or even system level). German and Hindle say that there immnoh known about the use-
fulness of change metrics in software evolution, and monkugrequired.

Kagdi et al. surveyed and created a taxonomy of softwaresigEpg mining approaches
in relation to software evolution [25]. They identified temdy categories, of which both
evolutionary patternsndchange classification and comprehensare directly related to
our research questions. However, the evolutionary patterentioned refer to associations
between entities, like Gall et al.'s work on logical couplifi5]. Gall et al. group elements
together if they get changed at the same time, to create aofieuich elements are related
or even dependent on each other. Although they seek paitestgtware evolution, they
are different from our goal as we look for repeatable pastémrtime, whereas they attempt
to link entities together.

2.3 Classification of activities in software

Identifying what type a change in software is, has been tigestiof studies ever since
Basili et al. classified different types of software tasksduzhon developer surveys at NASA
in 1996 [5]. They showed how the time spent by developers wlitsup between creating
enhancements, fixing bugs and adapting the system withdw#neing its functionality.
This is basis for our RQ2, since we would like to do the samébbsed on source code
measurements.

Classification of activities in software

In the footsteps of Basili et al., Mockus and Votta createsl §ame distinction based on
textual representations of the changes [31]. Mockus anthVety on keyword clustering
to build a classification of these text descriptions, in #y®e categories as defined by Basili
et al. Although the aim is the same as our RQ2, they specifythies do not take the source
code into account. We believe textual descriptions, likecat messages, can be too am-
biguous, and has large differences between projects bechwarying standards.

German developed a method to recover the evolution of softyeojects using its soft-
ware trails [17]. Software trails are source code releaS¥S§ logs, issue trackers, mailing
lists and change logs. From the source code, he extractezizéhén lines and the size in
files. He tried his approach on one open source system. thstealassifying changes,
he is able to give more general information about the system &hole, like that devel-
opers focus on their specific part of the system and that moditfization requests require
changes in only a few files. Although thorough, German'’s aggh is difficult to replicate
on a different project because of all the required data ssur©n top of that, he barely uses
the system’s source code besides size metrics. We believavthution of a project can be
made even more clear if more change metrics are used.

10

Chapter 3

Experiments

In this chapter, we describe the experiments performed swanthe research questions
described in section 1.2. First, we discuss how the choiget@fval between versions code
churn influences the code churn metric, to answer RQL1.

3.1 The influence of the time interval on code churn calculaon

Different studies use code churn in different ways, as shiowection 1.3.4. To see whether
those experiments can be compared to each other, we detetiheimelationship between
code churn results and time intervals in this experimenis fives us an answer to RQ1,
and provides us with a basis for future experiments.

3.1.1 Goal and question

The goal of this experiment is to find out whether the intehetiween the two versions
of a system matters significantly with respect to the catedlahurn measurement. For
instance, how much of a difference exists between the suraveischurn calculations of
versions a day apart, compared to a single measurementsidnela week apart?

An experiment as this has, to the best of our knowledge, neh licumented yet.
Therefore, we assess the relationship between code chilma tithe interval it is measured
at, with two goals in mind. Firstly, we would like to know hoviffdrent academic works
relate to each other when they use different intervals. @#Hgowe want to ensure the
choice of time interval does not invalidate our results in@ocoming experiments.

The question we answer in this section is the following:

RQ1. What is the relationship between time between versionstanddde churn
measurement?

Intuitively, we would expect that a longer time interval deato lower code churn, since
the same line might have been changed twice in the same peCiodsider the three fol-
lowing versions of the same system:

11

The influence of the time interval on code churn calculation

def foobar (): def foobar (): def foobar ():
foo () bar () bar("arg")
Version A Version B Version C

Figure 3.1: Three versions of the same program.

The code churn when going from Ato Bis 1, and so is the codencivien going from
B to C. If we sum these, the total would be 2. If we calculatecth@e churn between A and
C, we get 1. More formally, for the example comparison witteiials set to a day and a
week, we get:
CHURN_7(System< %;_; 7(CHURN_1(Systen).

At first glance, we suspect two things to be the case regattiagjuestion.

e H1. The influence of the interval between two versions of a systédhshow notice-
able differences.

e H2. The influence of the interval will vary greatly per project.
As such, we try to reject the following null hypotheses:

e Hpl. The interval between two versions of a system will not shoticeable differ-
ences.

e Hp2. This influence of the interval will not vary greatly per prcije

3.1.2 Design

To answer the research question, we have to take into act@muathumber of things. We
want to ensure we have enough systems and enough time perigdsstatistically signif-
icant results. We want to measure at four different intervper commit, weekly, monthly
and yearly. We believe the results of this would in practiseliscussed in terms of practical
time spawns, so this distribution is logical.

For this experiment, we need access to enough projects fmhwie can calculate the

different churn values. We want these projects to be actiddage to avoid skewing with

regards to new or dead projects. We also want to only consil@ice code files belonging
to the project, and not for instance documentation or degeeids not part of the developed
system itself.

12

The influence of the time interval on code churn calculation

System Main language| Start size (lines) | End size (lines)
Django Python 211751 342739
Git C 327718 425779
Linux C 13557478 15962285
MongoDB C++ 176113 355176
NodeJS Javascript 97534 192574
Ruby on Rails Ruby 237306 223583
Spring Framework Java 697469 815979
Symfony PHP 111336 195089
PostgreSQL C 1675161 2099975
Subversion C 792442 1037991

Table 3.2: The selected open source systems for the inexpakiment.

3.1.3 Selection of systems

We decided to use a time period of two years, since with tetesysthis would still give us

at least 20 data points for the yearly time measurement. Eekly and monthly measure-
ments, this gives us 1040 and 240 data points respectivetychose active contributors
and code size as measures of maturity. A user is an activalmaor if she created at least
20 commits during the past year. This leads us to the follgvnglusion criteria:

The version control system (VCS) must be publicly accessibl

The system must have been subject to ongoing changes dieittignie period [2011-

01-01, 2012-12-31].

The system must have more than 15 active contributors.

The system must be over 100.000 lines in size on 2012-12-31.

The system must have a clear main branch which represergtatieeof the system as
accepted by the maintainer(s).

The selected systems are shown in Table 3.2, and are alsteskte be of varying sizes,
languages and levels of maturity to reduce selection bias.

1on 01-01-2011
20n 31-12-2012

13

The influence of the time interval on code churn calculation

3.1.4 Implementation

We chose to select systems hosted on the online code cataroplatform GitHuB for
two reasons. Firstly, this ensures we can select systenesl lmsactivity and popularity,
since GitHub allows us to quickly scan a repository’s attivBecondly, choosing GitHub
ensures we can use Git for much data processing. Git is awgight version control
system which supports strong querying and reasoning owasitory, with algorithms to
calculate differences and code move detections alreadigimgnted.

To compare the churn numbers, we first need a uniform way euking churn. For
this experiment, we use ttgit diff command. By default, this uses Myers’ Greedy Diff
algorithm [33]. Using this, it is possible to give two SHAldm@s pointing to versions of
the system, and getting the number of added and deleteddatesen those versions. A
modified line is shown as both an added and a deleted line. Asyselefinition of churn
explained in section 1.3.1, we use only the number of addess lreturned by git diff
command. To prevent that actions such as renaming, movirg arfchanges in whites-
pace influence the results, we filter them by making use of thevand-C flags. -w
ignores all whitespace differences between the two vessiohereasC detects moves and
renames. The latter command is an implementation of a maeetien algorithm which
works on code level. That is, it detects copies of lines ockdoof lines based on simi-
larities, and does not regard this as a change. As such,ifoexperiment we only detect
changes and additions.

The next step is splitting up the time span in lists of datesetieon the chosen interval.
Based on each of those dates, it is then possible to ext@&HAL hash identifying the
state of the master branch of a system at that moment in tirhes ¢cen be done through
the git rev-list command. By passing two dates, it can return all the SHA 1tifilers in
between those dates in an ascending order. This means th@fksanch at a certain time
is associated with the first SHAL before the date. As a res@ltcan get an ordered list of
hashes all of which can be compared to each subsequent hash.

After having run and acquired the churn numbers for the sedesystems, we noticed there
were some unwanted artifacts which skewed the results. rfistarice, some repositories
include dependencies and periodically update an dependigreopying the source code of
that dependency into the project folder. As a result, thercihhumbers were much higher
even though the dependency should not be included in thgsasébr that project. To rem-
edy this, and other changes in the repository which are natek to the evolution of the
actual system, we allowed for excluding specific foldersrfithe analysis based on regular
expressions. Every file with a path matching the regularesgion is excluded from the
analysis. Which folders to exclude is decided on a per ptdjasis. As a guideline, we
excluded documentation, translation-related paths atetred libraries. What paths have
been excluded for each project are shown in Table 3.3.

Shttp://github.com

14

The influence of the time interval on code churn calculation

System Excluded folders

Django doc/, django/contrib/localflavor, django/conf/locdle
Git Documentation/

Linux Documentation/

MongoDB docs/, src/third_party/, pcre/

NodeJS lib/, deps/

Ruby on Rails guides/
Spring Framework

Symfony
PostgreSQL doc/, contrib/
Subversion doc/, contrib/

Table 3.3: The excluded folders per system

As expected, absolute churn numbers are not readily comlpata each other. There-
fore, we must use relative churn instead. To calculateivelahurn, we need the size of
the system in lines of code, adhering to the same path emadl@siteria. To gather the size
of each system, we listed each file in the system at the sténedfme period and the end
of the time period, excluded the unnecessary paths, coratatt the remaining files and
performed a simple line count. This is also how the sizes biela.2 are calculated.

To ensure we have enough data points especially for theyyeaghsurements, we split
up the experiment in two parts: one covering the year 201d, care covering the year
2012.

3.1.5 Results

First off, we got the sizes and the number of total commitsgstem for both the year 2011
and the year 2012. The results can be found in Table 3.4 arld dbrespectively. We see
that not only the sizes of our selected systems differ greal$o the growth numbers are
different. Ruby on Rails even shrunk a substantial amou®i?. We think these statistics
show how varying our selected systems are.

As for the code churn, we calculated relative values basetherstarting size of each
respective year. The relative churn values on the fourvaterwe described earlier are
shown in Table 3.6 and Table 3.7. Here we see the differenewgekn the various inter-
vals. To get a more clear view of how large the difference betwthe numbers is, we
divide the code churn values per week, month and year by thesmonding commit-based
code churn value, resulting in the percentages shown ireTal8l and Table 3.9. Across
both these tables, the average value for week divided by ¢oisir®.58%, and month and
year yield -11.76% and -18.73% respectively. These valtmsach more consistent than
we expected with hypothesis HO.

15

The influence of the time interval on code churn calculation

| System | Size on 2011-01-01 Size on 2011-12-31 Growth | # Commits |
Django 211751 304321 43.72% 1669
Git 327718 372678 13.72% 2076
Linux 13557478 14648745| 8.05% 47082
MongoDB 176113 198467 12.69% 3982
NodelS 97534 194294 | 99.21% 1511
Ruby on Rails 237306 246224 3.76% 5099
Spring Framework 697469 777515| 11.48% 1242
Symfony 111336 191134| 71.67% 4641
PostgreSQL 1675161 2096176| 25.13% 1386
Subversion 792442 979926| 23.66% 4511

Table 3.4: System statistics for the year 2011.

| System | Size on 2012-01-01 Size on 2012-12-31 Growth | # Commits |
Django 304231 342739 | 12.62% 1968
Git 372678 425779 14.25% 2098
Linux 14648745 15962285| 8.97% 54430
MongoDB 198467 355176| 78.96% 4020
NodeJS 194294 192574 | -0.89% 1537
Ruby on Rails 246224 223583| -9.20% 4516
Spring Framework 777515 815979 4.95% 945
Symfony 191134 195089| 2.07% 2809
PostgreSQL 2096176 2099975 0.18% 1537
Subversion 979926 1037991| 5.93% 3819

Table 3.5: System statistics for the year 2012.

16

The influence of the time interval on code churn calculation

Relative churn

System Per commit | Weekly | Monthly | Yearly
Django 112.0%| 106.7%| 103.7%| 93.6%
Git 19.3%| 17.7% 17.5%| 16.8%
Linux 22.9% | 19.7% 19.6% | 17.7%
MongoDB 70.1% | 65.1% 64.0% | 61.6%
NodeJS 149.3%| 131.7%| 126.7%| 113.7%
Ruby on Rails 44.0% | 38.8% 37.3%| 32.0%
Spring Framework 23.7% | 21.2% 19.8%| 15.1%
Symfony 192.1% | 158.6% | 150.1% | 120.0%
PostgreSQL 27.8% | 26.5% 26.3% | 25.6%
Subversion 26.7% | 25.4% 25.0% | 24.8%

Table 3.6: Relative code churn values for the year 2011.

Relative churn

System Per commit | Weekly | Monthly | Yearly
Django 48.8% | 44.6% 43.1% | 41.0%
Git 41.9% | 34.8% 34.3% | 32.9%
Linux 19.1%| 20.2% 20.1%| 18.7%
MongoDB 129.0%| 119.7%| 115.6% | 103.4%
NodeJS 46.7% | 37.0% 36.3% | 34.8%
Ruby on Rails 38.8% | 33.9% 33.1% | 28.0%
Spring Framework 17.5%| 16.7% 16.4%| 15.6%
Symfony 76.2% | 66.0% 64.6% | 60.1%
PostgreSQL 4.6% 4.4% 4.4% 4.1%
Subversion 155% | 13.2% 12.8% | 11.5%

Table 3.7: Relative code churn values for the year 2012.

17

The influence of the time interval on code churn calculation

Deviation (%)
System Week / Commit | Month / Commit | Year/ Commit
Django -4.8% -7.5% -16.4%
Git -8.5% -9.3% -13.2%
Linux -13.9% -14.4% -22.4%
MongoDB -71.2% -8.7% -12.1%
NodeJS -11.8% -15.1% -23.9%
Ruby on Rails -12.0% -15.3% -27.3%
Spring Framework -10.4% -16.4% -36.1%
Symfony -17.4% -21.8% -37.5%
PostgreSQL -4.9% -5.7% -8.1%
Subversion -4.7% -6.2% -7.0%

Table 3.8: Relative deviation between intervals and cortmasted code churn in 2011.

Deviation (%)
System Week / Commit | Month / Commit | Year/ Commit
Django -8.8% -11.7% -15.9%
Git -16.9% -18.2% -21.5%
Linux 6.0% 5.6% -2.1%
MongoDB -71.2% -10.4% -19.9%
NodeJS -20.8% -22.2% -25.4%
Ruby on Rails -12.5% -14.6% -27.9%
Spring Framework -4.9% -6.3% -11.1%
Symfony -13.3% -15.2% -21.0%
PostgreSQL -2.9% -4.2% -9.7%
Subversion -14.9% -17.6% -25.8%

Table 3.9: Relative deviation between intervals and corfrasted code churn in 2012.

18

The influence of the time interval on code churn calculation

System Median CD - AD | Mean CD - AD
Django 0 1.25
Git 0 2.7
Linux 3 18.26
MongoDB 0 1.87
NodeJS 0 5.23
Ruby on Rails 0 2.8
Spring Framework 0 3.18
Symfony 0 3.62
PostgreSQL 0 0.03
Subversion N/A N/A

Table 3.10: The median and mean differences between coenrdéte and author date for
commits per system.

3.1.6 Threats to validity

As shown in Table 3.7, the results for the Linux project aretheoretically possible. That

it, it shows there was more churn when measured on a weekily thas there was on a per
commit basis. This is an inaccuracy which arises from thieinht way we measure the
churn based on a per-commit basis. The time at which a conuuitre can be different

from the time it is inserted into the repository we monitohidTis the difference in author

date and committer date. The more time in between these tige,dhe more inaccurate the
results of our experiment become since the commits whiclinataeded in the time based

approaches might be out of range when calculating the chuamer-commit basis. This

is a threat to construct validity in the terms of Wohlin et[4b].

This problem is inherent to our way of measuring, but we catigate the damage. For
each project, we calculate the median and mean differentveeba the committer date
(CD) and author date (AD). Low values mean our results amwiarthy, while high values
indicate a potential large differences in our results. €hedues are shown in Table 3.10.
N/A means there is no difference between the committer dat@athor date because of the
project’s version control organization. As shown, the maad median difference between
the two dates are very low for each project except for Linukuk is famous for its strict
commit acceptance policy, so this is no surprise. Therefgeenote that the Linux results
are not reliable enough, but we are confident in the resultalfother projects.

An experimental setup like this is susceptible to selech@s. Although we attempted

to reduce the influence of this bias through our selecticeriai, we note it it still possible
that the results are not fully generalizable to every otlystesn.

19

The influence of the time interval on code churn calculation

3.1.7 Answer to the research question

As we expected in hypothesis H1, there are clear differemcése measured code churn
values between the different intervals. This leads us tectejull hypothesidHpl. What
is most surprising though is that this relation is consistaross various projects, with
the percentage deviation not straying far from the meanrefbee, we cannot reject null
hypothesidHy2.

In this section, we set out to answer the following researgstion:

RQ1. What is the relationship between time between versionstenddde churn
measurement?

We see that on average, for around 3-20% of lines which aregeh it holds that they

change again within a week. This range increases slightlgrmdonsidering months in-
stead, and ends up being up to 37.5% if we look at an entire year

20

Using churn metrics to identify software activity types

3.2 Using churn metrics to identify software activity types

Understanding software has been shown to be a difficult and Gonsuming task [42].
It becomes especially difficult when analyzing the code akiral fparty or when a new
employee first encountering an existing codebase. Storegyed work in program under-
standing and shows most of it is done in the area of visuaizdd1]. To the best of our
knowledge, no software understanding study has taken otoumt the change history of
the system to classify the type of work performed. When logkat a system’s history of
changes, specific types of changes can be linked to probldrith wccured, which in turn
can be avoided in the future.

3.2.1 Goal and question

In 1996, Basili et al. performed a case study on a set of NASAesys in so-called main-
tenance mode [5]. That is, software systems which are imeagse still undergo evolution.

Basili et al. were concerned with the amount of effort sperperform different types of

maintenance tasks, and wanted to estimate the cost of a navemance release better.
As part of their study, they analyzed the distribution of lease in different change types,
namelyerror correction enhancemerandadaptation This is also show in Figure 3.2.

Basili et al. have interviewed the engineers working on thiwsare systems, and had
them fill in a form each time they implemented a change. Thefdescribed the change,
how much time had been spent on the change, what type of cliawgs and how many

lines of code belonged to the change, among other piece$oofriation. As a result , they

showed that 61% of all time was spent doing enhancement tygeges, compared to 14%
for error correction and 5% for adaptation. The remainingoe2uld not be fit in those

three categories.

The work by Basili et al. was focused on the predictive aspéthe change types, that
is - how well can they predict how much a new release will costhis activity distribu-

tion? We think such a distribution is also valuable whenrjreting information regarding
the pastevolution of a software system. Often times, software exgis do not have the

Maintenance change types

N

Error correction Enhancement Adaptation

Figure 3.2: Software change types as defined by Basili ebhl. [

21

Using churn metrics to identify software activity types

luxury of proper documentation or thorough change logs.s Thieven more relevant for
engineers who do not work on a system regularly, like foranse a third party evaluator.
Therefore, knowing how to characterize changes can aséisttie understanding of the
program.

With this experiment, we show how it is possible to make itiega® understand a soft-
ware system’s evolution. To that avail, we answer the falhgnquestion:

RQ2. What churn-related metrics can be used to classify softelzmages using automated
source code measurements?

For the sake of generality, we wish to remain independennhpftgpe of software or time
interval, as per our research context. As such, we restuicthr@ethod to a way which still
works based on only snapshots of a system, and not use thenatfon pertained in for
instance commit logs of a version control system.

In the remainder of this section, we explain the approachhéoproblem, the results ob-
tained so far and an answer to the posed research question.

3.2.2 Design

When attempting to classify software changes based onesacode measurements, we as-
sume there are metric profiles which group the different gharinto groups. Like Basili et
al., we want to decide betwednug fixes(error corrections)new featuregenhancements)
andrefactorings(adaptations). As we do not know what metrics have a positiveslation
with a change belonging to a specific group, we take a blaclkappxoach.

It is possible to calculate a lot of change metrics based orstvapshots of a system. These
range from added, deleted and moved lines of code to themgagmeof files with relatively
small changes. We gather as many of these change metrics@swe cover as many as-
pects as possible. These metrics are shown in Table 3.11fir$h&tep is finding out which
of these metrics are influential when it comes to classifyivegm in one of our three groups.
This is afeature selectioproblem, which is common in machine learning and stati¢fits

To be able to use existing feature selection algorithms, @eelrio build a reasonably sized
test set, which contains per change all the metrics, and aatlgradded classification. We
want this test set to be large enough and ensure the systaimsnapshots are different
enough to represent a wide range of changes. As shown iniegrerl (section 3.1), we
can take the metrics on any time interval. For this experimea choose a time interval of
one week. We think one week is long enough to capture enougihgeh but short enough
to not have too many changes in one go. To build the test seyspect 50 different time
spans of a week across different projects and classify therher primary focus. We
validate our classification by letting an independent safendeveloper perform the same
classification. We set up a checklist of aspects of a list offoits such a third party valida-
tor should consider when performing the classification. Amyjor level software engineer

22

Using churn metrics to identify software activity types

Metric Description

CHURN The code churn of the entire system.

pCHURN The code churn of the part of the system which is production
code.

tCHURN The code churn of the part of the system which is test code.

ADDED The amount of added lines of the entire system.

pADDED The amount of added lines to production code.

tADDED The amount of added lines to test code.

CHANGED The amount of modified lines of the entire system.

pCHANGED The amount of modified lines of production code.

tCHANGED The amount of modified lines of test code.

DELETED The amount of deleted lines of the entire system.

pDELETED The amount of deleted lines from production code.

tDELETED The amount of deleted lines from test code.

FILECHURN The file churn of the entire system.

COMPGINI Code churn distribution among the system’s components, as
Gini coefficient [20].

pCOMPGINI Code churn distribution among production components; as
Gini coefficient.

tCOMPGINI Code churn distribution among test code components|, as
Gini coefficient.

FILEGINI Code churn among the changed files, as Gini coefficient,

pFILEGINI Code churn among the production files, as Gini coefficient.

tFILEGINI Code churn among the test files, as Gini coefficient.

PERC_SMALLCHURN| Percentage of changed files with less than 10 lines hanged.

PERC_MOSTLYADD

Perc. of changed files where over 90% of the churn is lines

added.

PERC_MOSTLYCHN

Perc. of changed files where over 90% of the churn is lines

changed.

PERC_MOSTLYDEL

Perc. of changed files where over 90% of the total chang
deleted lines.

eis

tCHURNDIVpCHURN | tCHURN divided by pCHURN.

CHURNDIVDELETED | CHURN divided by DELETED.

ADDEDDIVDELETED | ADDED divided by DELETED.

RELCHURN Code churn of the system relative to its size.

RELpCHURN Code churn of the production code relative to the system size
RELtCHURN Code churn of the test code relative to the system size.

Similar relative metrics for all ADDED, CHANGED an
DELETED measures.

Table 3.11: The chosen churn-related metrics.

23

Using churn metrics to identify software activity types

should have enough knowledge to be a validator. As such, we &lathe necessary ele-
ments to use an existing feature selection algorithm.

With the influential metrics selected, we have to use thenhesdy the change sets. Given
the nature of our problem and the fact that we already havet aé& machine learning is an
obvious choice. More precisely, we use supervised mackaraihg, which is common for
classification problems [27]. To decide which classifiealtym best suits our need, we
consider linear classifiers, kernel estimation algorithnesiral networks and decision trees.
We also consider the difference between absolute andvelaitrics, and the influence of
each on the resulting classifier.

With a classifier in place, we test its performance on the destusing a ten-fold cross
validation approach. Based on the results, we can iterdtafmove it. We rate the classi-
fier based on the precision it achieves on our test set andappa<statistic [9]. The Kappa
statistic indicates the probability of the results beinggehance, where 0 means the results
might be purely chance, and 1 means a perfect classifier.idand Koch state that a value
of 0 is poor, .10 - .20 is slight, .21 - .40 is fair, .41 - .60 isdeaate, .61 - .80 is substantial
and > .80 is near perfect agreement [28]. We are satisfied wharach a precision of over
65% and a moderate Kappa statistic.

System Year Dates
2010 01-11, 01-25, 03-01, 04-12, 10-18
Django 2011 10-17,11-21
2012 06-11, 08-13, 10-01
2010 | 02-22, 03-29, 05-17, 06-28, 10-11, 11-15
PostgreSQL 2011 01-03, 08-22
2012 04-23, 10-01
2010 02-22, 03-01, 04-26, 11-01, 12-20
Eclipse JDT Coreg 2011 03-07, 04-18
2012 01-16, 04-16, 08-21
2010 02-15, 03-22, 05-10, 05-31
Subversion 2011 05-09, 05-30, 09-12, 10-08
2012 02-13, 07-09
2010 03-15, 08-16, 09-06, 11-22
Ruby on Rails 2011 02-21, 07-04, 03-28
2012 07-16, 09-10, 10-01

Table 3.12: The dates of activity on which we based our tdst se

24

Using churn metrics to identify software activity types

3.2.3 Implementation

First, we perform the manual classification to create a teftst We selected ten different
dates from five different projects. The dates are choseitraribi among the possibilities
where there was a peak in activity in the week preceding the ddame periods in which
there was no activity are not considered for this experimérite projects and dates are
shown in Table 3.12. We selected projects based on theidaiyuand mainly the differ-
ence between them. Django and Ruby on Rails are web framewgitten in Python and
Ruby, PostgreSQL is a database system written in C, Eclipae IDE written in Java, and
Subversion is a version control system written in C. Thegesdare chosen because they
are a peak in code churn compared to their neighbouring .datesabsolute values of the
code churn values differs greatly, however.

Classification of each date is done as follows. For each dagy commit on the project’s
repository for the period of seven days preceding the dateas/n, including files changed,
the size of the changes and the commit messages createdhioysaudn top of that, all the
closed issues on the project’s issue tracker in the samep@ried are listed. Using these
data sources, we aggregate related commits and issuedaanifycthem as either a refac-
toring, a bugfix or a new feature. Then, based on the most lerevgpe, we determine the
main focus during the past week as one of those three catsg@bing this for all chosen
dates from the five projects, we have a test set of 50 entriesrdlilated our classification
against those of an independent software developer wheatisiated to classify using the
same methodology. This yielded an interrater agreemer@4dofmeaning we disagreed on
three instances. After discussion, we came to a consenstigednstances we disagreed
upon. The full test set is shown in Appendix A.

To perform the described tasks, we use Wekd/eka is a software suite written in Java
which contains tools for data pre-processing, classificatiegression, clustering, associa-
tion rules and visualization [22]. To use Weka, our inputdse® be in Attribute-Relation
File Format (ARFF). This is a plain text data format similardommon separate values
(CSV) files, but with added type information instead. In oas&, We combine the metric
data and test set classification into a single ARFF file, wisajiven in Appendix B.

Creating a classifier in Weka is done by supplying a test sdicating which field is the
target to classify, choosing algorithms for selecting #lewant metrics and building the ac-
tual classifier. Selecting the relevant metrics can be ddeevavays. According to Hall, a
correlation-based feature selection approach is mostcsuihen building a classifier which
groups entries in at most one category [23]. Therefore, weHadl's implementation of the
correlation-based feature selection algorithm in Weka.

Different classifiers work well in different situations. Wensidered three approaches dis-
cussed by Hall: Naive Bayes, Decision Trees and IB1-Ingt@ased Learners. In the end,
we chose the Decision Tree approach because its interindttegput, the decision tree, is

4http://www.cs.waikato.ac.nz/ml/weka/

25

Using churn metrics to identify software activity types

easy to interpret by us. That said, all three approachesrangrkto work well, and the dif-
ference in performance on our data set was minimal. HowéwerNaive Bayes approach
was less precise, with a 64% precision when using all mesiose it takes all our selected
metrics into account and tries to have all of them weigh in. tililek this is unnecessary
because we selected redundant metrics, which often cogesaime aspect of the system
and its changes.

3.2.4 Results

Using the J48graft decision tree algorithm by Webb [43], wedithe commonly used ten-
fold cross validation approach to create and validate thesdier using the test set. We do
this for the set of metrics listed in table Table 3.11 and #teo§only relative metrics. The
resulting decision trees are shown in Figure 3.3 and Figre\Bhen using all the metrics,
we reach a 74% precision with a Kappa statistic of 0.60. Wheronly use the relative
metrics, we get a precision of 70% with a Kappa statistic 540.

It is surprising to see that using all metrics yields a bettsult, since in other fields like
fault prediction metrics of different projects can be conggbetter using relative measures
only [14]. However, we think that the size of the system damshave a linear relation with
the change it is subject to. Therefore, absolute measuig# imé more close to each other
than the relative values are.

The threshold values seem a bit arbitrary at some pointseartrde, especially the very
small relative values. This is most likely a result of ourdfie test set, and these threshold
values are subject to change as the test set is expandediia fubrk. However, the de-
cisions betweetarger thanandsmaller or equal tharshow a logical reasoning across the
metrics to decide upon a change type.

The Kappa values of both results indicate that they are solaligh to draw tentative con-
clusions, according to the guidelines set by Landis and Ha8h Assessing whether a
larger test set indeed does further increase the precisidrthe Kappa agreement statistic
is part of future work.

3.2.5 Threats to validity

For this experiment we have not taken into account how mawgldpers work on each
system. Of course, the absolute amount of churn dependallyadn the number of de-
velopers and the time they work on each system. This effegtlmage an influence on the
numbers between different systems we have used to createsiiget, but we believe the
impact of the differences is not significant enough becausé&ave used various systems.
Determining the exact impact and validating that the impadtices as the test set grows
larger is part of future work.

A threat to validity in this classification experiment is th@nual classification done by

26

Using churn metrics to identify software activity types

CHURN
> 549?

N

RELtCHANGED
> 0.0003667

> 0.3255817

PERC_MOSTLYCHN

CHANGED

Refactor

<= 417
N N
FILECHURN
<= 397
&N
TADDED
<= 12887
N
CHANGED2
<= 507

Figure 3.3: Decision tree when using all our

selected metrics as possibilities.

RELADDED
<=0.0006547

N

RELtCHANGED
> 0.0003667

X

PERC_SMALLCHURN

> 0.9?

Refactor

PERC_MOSTLYCHN
>0.3255817?

N

RELtADDED
>0.0010837?

/

CHURNDIVDELETED
>2.4267097

Figure 3.4: Decision tree when only using rel-
ative metrics.

27

Using churn metrics to identify software activity types

ourselves. Although we used a second opinion approach,stilligossible our classifi-
cations are not flawless. Of course, during a week’s time possible for a development
team to do multiple types of changes. Therefore, working diffarent test set and having
developers of the teams themselves classify the test sattisffuture work. Alternatively,
improving the precision by classifying per system compomestead of the entire system
will improve overall reliability of the manual classificati.

3.2.6 Answer to the research question

In this section, we showed our approach to answering theviiallg question:

RQ2. What churn-related metrics can be used to classify softal@ages using automatgd
source code measurements?

As shown in this section, we can use software change metribsitd a classifier to de-

termine what change types have been most prevalent durawifisgime periods. The only

requirements for our approach are the two snapshots of stersis code base which should
be compared against each other. By using a machine learpprgach, we have set up a
general approach which allows for constant improvementis hdone by checking the

classifier's output and using that to increase its test set.

The most influential metrics are found in our decision trdws in Figure 3.3 and Figure
3.4, where the upper branches indicate more influence. Ta@amabsolute code churn,
changed lines, file churn, and amount of files with a small remaf changes are among
the influential metrics. It also shows that activity in testle is an indicator of various types
of software activity.

28

Pattern detection in code churn

3.3 Pattern detection in code churn

With code churn being the basis for determining what adtivihave been the focus of a
development team, we can assist with understanding thegsax project went through to
get to its current state. In this section, we attempt to finttiepas in code churn to get a
view of the software process.

3.3.1 Goal and question

There has been much attention to different software presesiace the rise of Agile meth-
ods like eXtreme Programming [7] and SCRUM [36] in the eaMp@s. The aim of these
processes is to have small, consistent, iterations on thjegbrto remain flexible with re-
gards to changing requirements. Older projects, often iwgrwith a traditional waterfall
process [39], also know iterations, but generally with géaitime frames in between. The
key here is the notion of iterations, or cycles.

Since each project supposedly has some sort of developmelet eve suspect there are
detectable, probably matching patterns in the resultirg doo. To the best of our knowl-
edge, no such patterns have been found so far. We set outvieratte following question
in this section:

|RQ3. Are there detectable patterns in code ch{im?

Patternsis left intentionally vague, since this is an exploratoryestion. We aim too see
whether we can detect peaks of activity based on time in ltwaleased versions, whether
there is a pattern followed by a set of projects, and whetesame project repeats its on
cycle according to its process description.

Although this is an exploratory experiment, we do have etgiems based on our own
experiences. We formulate the following set of hypotheses:

e H3. The churn pattern of a project in between releases will afiprate a normal
curve, as illustrated in Figure 3.5.

e H4. Projects with a similar process will show a similar churntgat.

e H5. Within one project, there are recurring churn patterns tiie repeated each
release cycle or even multiple times per release cycle.

e H6. The volume of production churn nearing a release will go dowdnile the vol-
ume of test churn goes up.

29

Pattern detection in code churn

Code churn

Verlsion A Verst{ B

Time

Figure 3.5: An example code churn pattern, where most of th ¥g done in the middle
of the release cycle.

As such, we try to reject the following set of null hypothesis

e Hp3. The churn pattern of a project in between releases will npt@pmate a normal
curve.

e Ho4. Projects with a similar process do not show a similar chuttepa
e Hpb. Within one project, there are no recurring churn patterns.

e Hpb. There is no notable change in the relationship between ptimtuchurn and
test churn nearing a release.

In the remainder of this section, we explain the design armglementation involved
with testing these hypotheses and answering the reseasdtioqu Unlike the previous
experiments, we explain in a fully chronological order do¢hte exploratory nature of this
experiment.

3.3.2 Design

For this experiment, we take an exploratory approach, amd the approach taken by
Barry et al. [4]. Unlike Barry et al., we look on a per week sagistead of per month. We
believe this gives us more precision with regards to theshsiue of the changes. Since we
are uncertain about what patterns exist, we set up a numisgtuations for which we can
test for patterns.

We use the database at SIG to acquire code churn for more trehundred industrial
systems, as well as ten additional open source systems. peresmurce systems are the
ones listed in Table 3.2, except we substituted Linux withid@ because of the issues we

30

Pattern detection in code churn

had studying Linux. We have a weekly snapshot of each systemt fleast 52 weeks per
system, and each system is larger than 10000 lines. We erdjffesent pattern detection
strategies to find interproject patterns, if we can find amyjust the code churn metric,
both on the absolute and relative values. If we do not findrangtsubstantial, we split up
the churn in a production part and a test part, and attemp thelsame again. We expect
some sort of consistency within the same projects, so wedawlk specifically for approxi-
mations of distributions. We most expect an activity curgeslaown in Figure 3.5 because
we suspect there will be more effort into designing soludiahthe start of a release cycle,
and more effort into quality assurance near the end of agelegcle. Regardless, we also
check for constant activity distributions, monotonousigreasing and decreasing series .
We do this for all projects while automatically smoothingsby step while we apply linear
regression to find a pattern. We stop smoothing when we hat¢édo much data and we
have not found a pattern, and mark the system as having gdibimd.

As for intraproject patterns, we expect there to be muligptips of patterns as per hypoth-
esis H4. Therefore, we approach this as an unsupervisesifidagon problem, similarly
to Barry et al. [4]. As such, we also choose a phase sequeatgzan

For the purpose of testing hypothesis H3, we also gather thjermelease dates of the
open source systems involved in this experiment. This i dgrnmanually inspecting each
system’s website and collecting the dates.

3.3.3 Implementation

First off, we attempt the naive approach. That is, we do nke fato account multiple
releases or cross referencing between projects. We set apaample function of values
approximating the normal distribution using SGAPyVe do the same for constant activity,
monotonously increasing and monotonously decreasingitunsc We treat these as targets
for our curve fitting.

One by one, we take the entire weekly code churn time seridstrgno fit them onto
our target functions using least square approximationndJgiis method, we do not find
any matches across more than 100 systems. We use smootblimgqtees described by
Shumway and Stoffer [40] to smooth our data step by step aedhpt least square ap-
proximation again until we find a fit, but each resulting fit ilemnto the constant activity
function, when all the smoothing has resulted into a flatvvégtline. This means a naive
approach of taking as much code churn we have about a systesnndd work. Instead
of using purely the total code churn, we use the separatedwalf production churn and
test churn. If we apply the same methodology again, we do ndtdiy results. To further
illustrate why this approach does not work, the initial chpattern and the pattern after one
smoothing step for JQuétare shown in Figure 3.6.

Shttp://www.scipy.org/
Shttp:/ljquery.com/

31

Pattern detection in code churn

As the naive approach does not work, we gather the releass détas many systems
as possible to only consider the time period between two masions of a system. We
gathered these release dates from the websites of eachaper system and by inquiring
people involved with the proprietary systems. If we onlytimyfit code churn progression
from within a release cycle onto our example functions, wkedsi not get a single match.

Hence, we suspect none of our projects can be fitted onto amm@e functions. The
next step is to try and find recurring patterns within eachaato This is similar to the goal
of Barry et al. [4], so we use the same approach which had hemessful for them, with
different measurements. They use the WinPhaser softwattenvby Holmes [24]. How-
ever, WinPhaser does not allow for anything else than ordaiaes to be analyzed, and we
want to keep the relationship between different churn \sabhreat least a ratio scale since
we get any number of invaluable patterns if we drop the rat&desconstraint. Instead, we
implement the Motif Tracker as more recently described bistvi et al. [44]. The Motif
Tracker is meant to find recurring patterns in one single dagam. Although meant for
the financial market, we deem it suitable for our data sets Motif Tracker is also the
most recent and most efficient pattern detection algorittercould find.

Using our Motif Tracker, there are only four systems out ofrenthan 100 in which we
can detect a pattern. Each of these patterns is only foursl after smoothing, and they do
not correspond with our known release cycles. When we attéongroup similar systems
together, like web frameworks or systems in the financiabsewe still cannot improve this
result. The same goes when we group the system based onyppngramming language.

3.3.4 Results

As explained in the implementation section, we came up etmatygled when trying to find
patterns in the churn progression of the systems. Firstested for distributions and based
on the results obtained from our open source systems, wetejact null hypothesibly3.
Based on all activity in between the registered releasesdatme of them resemble our test
distributions. Various degrees of smoothing the data doeshange this.

Although some projects in the data set have overlap with seéras at some points, this did
not occur often. This leads us to believe that the overlappivints are by chance and not
a recurring pattern. We argue that the number of systems agtinghis analysis is large

enough to make such a claim, since grouping them per prinreahnblogy or even business
area did not yield results. However, because we did not fiadd#velopment process for
the large majority of the systems, we cannot readily rejatithypothesisHp4.

When inspecting projects without comparing them to otheses,find that the volume of
change changes drastically all the time. When we separateeée production code and
test code, we see that the way test churn and production tlalnave is related, as shown
in Figure 3.6. However, we cannot reject null hypothé#js because none of the projects
had recurring patterns, regardless of our smoothing gieste

32

Pattern detection in code churn

Finally, we found no inverse relationship between productnd test code before a release,
like we hypothesized itH6. We note that production and test churn are both correlated
positively. Whenever there is more production churn, tiemdten more test churn as well.
These findings are similar to the ones found by Zaidman et4#)]. [As such, we cannot
reject null hypothesisip6 either.

3.3.5 Threats to validity

As this is an exploratory experiment, there remains theathtteat we were not thorough
enough in our analysis. Although our negative results ddéuelecthe generic patterns for
which we have tested, there might be others which our methadalysis did not reveal.

Although we use over a hundred systems for this experimergtill a possibility for se-
lection bias. The vast majority of systems are monitoretvelgtby SIG, meaning there is
more supervision of the systems than most projects have.

Lastly, we have not verified the correctness of our Motif Keagcalthough the pseudocode
supplied by Wilson et al. [44] was comprehensive. Futurdawauld include verifying the
correctness and comparing its performance to other gepettiern detection algorithms.

3.3.6 Answer to the research question

As discussed, we could not rejected any null hypothesisioligh we anticipated we would
find patterns, this sends a strong signal with regards towbleitgon of different software
projects. It points towards the observation that mostyikel two systems are alike in terms
of the way they are evolved. This is supported by studies byl¢zcet al. ([38]) and Baysal
et al. ([6]), who studied the evolution in size of a number péo source systems. Baysal
et al. studied two open source browsers and found that, évemgh they share the same
domain and purpose, their developments differed greatlgrims of when new version are
released. We confirm these findings on many more systems.

In this section, we set out to answer the following researgstion:

|RQ3. Are there detectable patterns in code ch{im?

Regardless of us not finding any patterns, we cannot fullie dtzere are no patterns in
code churn over time. We did not prove the absence of pattetowever, we believe that
if recurring patterns exist within software activity, thage sufficiently blurred by other in-
fluences that they will have lost value. From our experimirggems likely that there are
no code churn patterns and every project distributes itgityan its own way.

33

Pattern detection in code churn

JQuery

}
I
1

Production code

Test code

I
I
I
1h

|AAIA~V‘MAAA

1

A

1
m
AL

2500

S
o
S
o~
9)

Z10Z das

zZ102 Aep

Z10C uef

110z das

TT0C Aep

TT0C uef

0T0CZ das

010Z Aely

0TOCZ uef

o
£
~

JQuery smoothed

Production code

Test code

250

200

—

DOT Ul wImny)

o o o
5 0 5
I

CT0¢C NON

Z10z bny

Z102Z Aep

¢10C 9=4

TT0Z NON

110Z bny

110Z Aen

T10Z 9=4

0TOCZ NON

010Z bny

0T0C Aen

Time

Figure 3.6: Weekly code churn progression for JQuery.

34

Impact of code churn on users of open source software

3.4 Impact of code churn on users of open source software

A software system is nearly always part of an ecosystem oéldpers and users. Any

changes made to a software system can influence users irediffe@ays, and due to the

nature of open source software, problems users run in to tlalways reach the developer

again. Sometimes, new issues are created on the projexts tisacker, and the developers
learn about introduced issues that way. However, oftengiwigen changes do not neces-
sarily lead to faults but simply introduce changes usersadoinderstand, they look towards
the popular Q&A website Stack Overfldunstead.

3.4.1 Goal and question

In line with the exploratory nature of this work, and aftee tlack of findings with regards

to RQ3, we would still like to know more about other aspectsade churn. Churn is a

measure of change, but change to the software does not agjessean change for the

user. In this section, we want to assess the influence codae tlas on the end user of a
system. More specifically, we will answer the following gtis:

‘ RQ3. How much of an influence does code churn have on the surrogmdina systemP

In this context, we ussurroundingsloosely. For open source systems, it often holds that
its users are other developers. In the context of this exjyari, we will restrict ourselves

to this case. To guide our gathering of data, we suspect a &wudailthings to be the case.
These hypotheses are:

e H7. There exists a correlation between the number of reporsegésand the number
of posed questions following a release.

e H8. Code churn influences the number of questions, answers sungkisreated after
arelease.

As such, we aim to reject the following null hypotheses:

e Hp7. There is no correlation between the number of reported $sand the number
of posed questions following a release.

e Hp8. Code churn does not influence the number of questions, assamel issues
created after a release.

In the remainder of this section we discuss the design antkimgntation involved with
addressing these hypotheses and answering the reseastiogue

http://stackoverflow.com

35

Impact of code churn on users of open source software

Table 3.13: The selected open source projects.

| Name | Language | Versions used|
CouchDB Erlang 0.9.0-1.1.0
Django Python 1.1-1.3
Node.js JavaScript| 0.2.0-0.8.0
Ruby on Rails| Ruby 2.3.0-3.1.0
Redis C 2.2.0-2.4.0

3.4.2 Design

To answer the question, we require different types of inftiam. First of all, we once again
need a representative set of systems for which we can aanotgh release dates. We also
need churn data for each of these systems, as well as infomaiout asked questions and
reported issues.

We can gather churn data for each of these newly selectednsysas we described in
section 3.1. For issues, we have to query the issue trackeaabf system individually. To

gather the number of questions and answers belong to a spgafiem, we use the Stack
Overflow database dump from August 2012 [3].

Using all the information, we apply a rank correlation testast hypothesis H7. We ensure
the precision on this is significant enough to yield good lteso test hypothesis H8, we
correlate the code churn to each of the other entities.

Based on the availability of all the required data, we seldhe systems and versions
shown in Table 3.13 for this experiment.

3.4.3 Mining the required data
Release dates

Each of the selected projects is hosted on GitHub as a Gisitepp In Git, it is possible
to tag a specific state of the repository, which is often used to naamkew version of the
system. From this list, we filtered out every entry matchingalpha, beta or release can-
didate tag. Each system uses similar numbering, so it wasipedo determine whether
the release was a minor or a major release. The versions #ne @rm ‘a.b.c’ or a slight
deviation thereof. A change in ‘a’ indicates a major releasehange in ‘b’ shows a minor
release, and a change in ‘c’ marks a maintenance releasé. t&gbas an associated tag
date which we use to mark the moment of release. We limitedebtes to releases with
changes in ‘a’ or ‘b’, since ‘c’ versions are generally ndtuential with regards to a sys-
tem’s functionality. To avoid confusion with Stack Overfléags, we refer to Git tags as
releases.

36

Impact of code churn on users of open source software

This way, the set of release dates is dependent on the ddaaaeyot created in Git. This
limited the releases we could gather because of variousmeas-or instance, the Django
project switched to Git late 2011, and all the versions wiiad been released before that
had an invalid date associated with it. To remedy this, wecbeal the project website for
earlier release dates and combined these with the aut@ihatiathered data. The selection
of only ‘a’ and ‘b’ releases is done manually.

Reported issues

Each of the selected projects has a public issue trackeselibsues all have creation dates
and, where applicable, resolution dates. The CouchDB isaaker is part of the large Jira-
based Apache one, which has a REST interface to communidgtitet wrogrammatically.
Django hosts their own TRAC server, which allowed for webuesis to return comma
seperated value files with the requested information. Timainging projects, Node.js, Ruby
on Rails and Redis, all use the GitHub issue tracker, whialeégssible via the Github API.
We selected the creation dates of issues created duringriedérame described by the first
and last release found earlier.

Stack Overflow questions and answers

To get access to the Stack Overflow questions, we used thiesdataump by Stack Over-
flow of August 2012 [3]. After importing the PostgreSQL dumpoi a database, we filtered
the posts to be of type ‘question’, and retrieved their éoeatlate. Getting answers based
on a time frame and a tag proved a bit more tricky. Both questand answers are in the
same table, but answers do not have specified tags. Answerslii@ld ‘parent_id’, which
guestions do not have. Therefore, we got the answers bygthie table on itself based on
the id matching the parent_id, and then filtering on date agdhce again.

Churn

Similar to our experiment described in section 3.1, we quefit to gather all the data.
This means we excluded folders which would skew the resotsage not part of the system
we are interested in. For this experiment, we use the per ¢omeasure to fully see the
amount of activity developers have put in.

Consolidation

The gathered releases, issues, questions and churn nudiberst perfectly align. For
some cases, there were no issues for the time frame of aeeldas for instance Ruby
on Rails’ 2.3.0 release. This is because the project mowsdrtts using GitHub’s issue
tracker from their own solution from version 3.0.0. onwarer others, the questions were
incomplete for a release since the Stack Overflow snapsHairis August 2012. We cut
out versions for which we lacked full question data. This lesfwith the versions described
in Table 3.13.

37

Impact of code churn on users of open source software

| System | Number of weeks| Spearman) |
CouchDB 173 N/A (p=0.13)
Django 192 0.36 (p < 0.01)
Node.js 160 0.91 (p< 0.01)
Ruby on Rails| 190 0.83 (p < 0.01)
Redis 75 0.60 (p < 0.01)

Table 3.14: The Spearman results for the number of issueswander of asked questions.

3.4.4 Results
Reported issues and questions asked

For each of the selected projects, we found a time span asdargossible where the found
issues and questions overlapped. To correlate the two, meedithem in frames of one
week. This allowed us to count the number of issues and gqussper week. We have
chosen to bin them per week since it is a large enough timetsy@ave each bin filled with
multiple questions or issues. On the other hand, it is a gfraytigh time span to observe
patterns over time. After grouping both issues and questpmr week, it was possible to
correlate the two. Table 3.14 shows the relation betweemtngber of questions and the
number of issues per project using the Spearman rank ciiorela

We see that the results are inconclusive for CouchDB, bufdbeother systems point
towards a strong correlation between issues and questitfisourse, this might be due to
projects gaining more users over time, automatically legqudido more questions and raised
issues. It does show, however, that more questions can imgig issues and the other way
around and the relation between the two is worth inspectintpér.

To see whether the amount of questions and the amount ofisaised is higher or lower
after a release, we selected four per-week groups from defod after a release. If the
mean number of questions from these weeks is higher aftéeases we call it @uestion-
influential release. The same way, a higher number of issues after @eefe@ans it is
anissue-influentiakelease. To be comparable, the results are normalized tgntbent of
guestions or issues actually involved in the weeks befodeafter the release. To formalize,
the influence values are calculated%ﬁ%, whereQ; is the mean number of questions in
weeks after the releas@, the mean number of questions in the weeks before the release,
and Qotal the total amount of questions involved. The formula for éssis similar. The
results are shown in Table 3.15.

The first finding is that the creation of Stack Overflow quasits largely release-agnostic.
Most values hover around 0, meaning there is not much of ardifice between the amount
of questions asked before or after a release. The same id foussues, which is more
surprising. Manual inspection shows that the phases Igagirio the release have a similar
amount of bug reports due to beta and release candidat@ngrsihis is similar to the

38

Impact of code churn on users of open source software

| Release | Influence on questions| Influence on issues|
CouchDB 0.9.0 -0.250 -0.073
CouchDB 0.10.0 -0.028 0.067
CouchDB 0.11.0 0.000 0.010
CouchDB 1.0.0 0.005 -0.026
CouchDB 1.1.0 -0.057 -0.042
Django 1.1 0.000 0.000
Django 1.2 0.014 0.035
Django 1.3 0.010 0.035
Node.js 0.2.0 -0.003 0.024
Node.js 0.3.0 -0.027 -0.001
Node.js 0.4.0 0.045 0.023
Node.js 0.5.0 -0.002 0.044
Node.js 0.6.0 -0.031 0.038
Node.js 0.7.0 0.000 0.020
Node.js 0.8.0 -0.002 0.015
Ruby on Rails 2.3.Q 0.003 N/A
Ruby on Rails 3.0.0 0.015 N/A
Ruby on Rails 3.1.0 -0.005 0.015
Redis 2.2.0 -0.014 -0.083
Redis 2.4.0 -0.061 -0.036

Table 3.15: The relation of number of questions and issussdand after a release.

findings of Anvik et al. in 2006, who studied the Eclipse ancbféix repositories [2]. They
also found that the amount of reported issues did not nedgssrease after a release,
but did see higher activity around a release. This does rgaiexwhy Stack Overflow
guestions are release-agnostic though. A possible exjana that users do not adopt a
new version straight away for various reasons. More rebearcequired to confirm this,
however. Based on these findings, we cannot réjgeét since it seems these releases have
no influence on either.

Amount of change

The amount of churn of a release is a measure for how much ensysas changed be-
tween two versions. More churn implies more change. Moragbamplies, for instance, a
higher probability of API changes, which might cause moresions to be asked on Stack
Overflow. According to Nagappan et al., this is the case fpored issues [34]. To verify
whether it holds for questions and answers, we tried to @ieréhe amount of total churn
before a version to the number of questions asked after aseléNe performed the same
experiment for posted answers and reported issues. Due tadk of available versions for
Redis, we excluded it from this experiment. To compare tfferéint releases against each
other, we normalized the amount of questions, answers anéssper release by dividing

39

Impact of code churn on users of open source software

| System (# versions) Questions p) | Answers () |
CouchDB (5) N/A (p=0.62) | N/A (p=0.62)
Django (3) 1.0(p=0) 1.0(p=0)
Node.js (7) N/A(p=0.76) | N/A (p=0.76)
Ruby on Rails (3) | N/A(p=0.67) | N/A (p=0.67)
Combined (18) 0.68 (p<0.01) | 0.71 (p< 0.01)

Table 3.16: The Spearman results between release codeatithe number of questions
and answers posted on Stack Overflow

| System (# versions)| Questions + Answers) | Issues p) |
CouchDB (5) N/A (p = 0.62) | N/A (p = 0.50)
Django (3) 1.0(pP=0) | NA(p=0.67)
Node.js (7) N/A (p= 0.76) | N/A (p = 0.64)
Ruby on Rails (3) N/A(p=0.67) | N/A(p=0.67)
Combined (18) 0.70 (p<0.01) | NJA(p=0.72)

Table 3.17: The Spearman results between release code, dwmbined questions and
answers, and reported issues

them by the amount of days which passed until the new versi@nsee whether churn
influences the amount of questions, answers and issues,rfeemped Spearman rank cor-
relation tests on the systems. We chose the Spearman testwgeéhave no knowledge
about the distribution of the data. The results can be fooriables 3.16 and 3.17.

It is apparent that the values for the individual projects meaningless because we do not
have enough releases per project. The values for Djangdsar@et reliable due to the set
of versions being too small, even though the p-value is Iéwuel envision them being one
large project, however, it shows that code churn is cordl&d the amount of questions be-
ing asked on Stack Overflow. However, this might be causetidptojects becoming more
popular over time. On top of that, the projects are very tiiffic and lumping them together
like this is not the preferred way of analyzing them. Howetleis crude analysis indicates
that more research is warranted to uncover the actualaefitip between software change
and the number of questions and answers.

A similar story unfolds when we look at the reported issuderad release. None of the
individual projects can be used to say something meaningful even the combination of
all releases does not yield a reliable precision factor.dgagn et al. [34] have shown that
this correlation is present in proprietary software, scegxfing our experiment will assist in
verifying those findings on more recent OSS systems. Thexgf@sed on our findings, we
reject null hypothesi$lp8 since code churn, issues, questions and answers areatedrél
we group our data set together.

40

Impact of code churn on users of open source software

We observe that there is barely any difference betweenigussind answers. This is to be
expected since the amount of answers depends on the amayu@stions. The relationship
between the two proves to be very stable for questions ahogedected systems.

3.4.5 Threats to validity

The relationship between issues and questions seems toshizggobut this can also be
explained by there naturally being more of both as the sysfetsimore popular. This can
in fact be the case for code churn as well, as more popular sperce systems tend to
attract more developers. This relationship and the cdioeldetween these numbers is part
of future work.

The number of versions we studied in this section is limif€lis is because of the strong
requirements of data from three different data sourcesho@igh the individual systems
do not yield strict results, we believe the combined resadésstill statistically significant.
Expanding the set of systems and versions for this studyrtsopfuture work.

3.4.6 Answer to the research question

In this section, we set out to answer the following researaston:

‘ RQ3. How much of an influence does code churn have on the surrogmdina systemP

As discussed, we have not enough data points to answer tiisc@ritainty, but our experi-
ment strongly points at a positive correlation between aden and number of questions
asked and answers given. Like said before, this can be céwysedorrelation between the
two, the notion that both increase as the system gets momdagppr both. We think we
cannot fully attribute it to the growing popularity of thestgms, since for instance Ruby on
Rails has not grown much across the past two years, as shaection 3.1.

On the other hand, our data points at no correlation betwedre churn and number of
reported issues. This is surprising, since we hypothestzeywould be related. This ob-
servation might be explained by some versions implementaw features, which is a lot
of code churn for very few reported issues. Conversely, afltugs can be solved using
very little code.

41

Chapter 4

Conclusions and future work

In this chapter, we recap our findings, conclusions and itmrions. We also indicate
possible future work which has presented itself througlioistwork.

4.1 Conclusions

For each of our research questions, we summarize our findings

1. What is the relationship between time between versions ate churn?
As shown in section 3.1, the relationship between comnsetland various interval-
based approaches are fairly consistent across projectsvdak-based approaches,
the difference with commit-based measurement ranges bat&% and 20%. On a
monthly basis, this range becomes 4% to 22%. Finally, thga@m an annual basis
is 7% to 37%. The mean values are 9.58%, 11.76% and 18.73%ctesy.

2. What churn-related metrics can be used to classify softelaamges using automated
source code measurements?
As shown in Figure 3.3 and Figure 3.4, absolute code chuangdd lines, file churn
andamount of files with a small number of changes significant metrics when build-
ing a classifier. Test-related metrics, like added linessf tode are also influential
in determining the change type.

3. Which generic patterns are detectable in code chuB&sed on all the approaches
described in section 3.3, we have not found any genericrpatseross over a hundred
different systems. This might imply that each system is pes differently and is
evolving differently. More future work is required, howeve

4. How much of an influence does churn have on the surroundirgsystem2Ve have
shown in Table 3.15 that a new release of a piece of softwaee dot necessarily
impact the surroundings on a system. However, we have showalile 3.16 code
churn has a positive correlation with asked questions aseganswers. We have
found no such correlations for reported issues.

42

Contributions

4.2 Contributions

In this work, we have made the following contributions.

1. We have explored the influence of a chosen time intervahercode churn calcula-
tion.

2. We have shown how to create a classifier to determine theapyifocus of developers
during a time period. This can be used to have a more high yaiview of a
system'’s evolution.

3. We have shown how we were unable to detect generic chuerpsin many software
systems. Although this does not mean patterns don'’t ekspiws the uniqueness of
each project and each iteration.

4. We have shown the influence code churn has on its surragsdiamely the system'’s
issue tracker and Stack Overflow.

4.3 Future work

We built a successful classifier, but it can still be improwgdadding more and different
metrics to our possible pool. We also think expanding thesietswill increase performance
and reliability of the classifier. Future work would be toatea self-improving classifier
which can use correctly classified instances as new entri¢s test set.

Although we have not found any in this work, we think detegtiyeneric patterns in evolv-
ing software systems can still be helpful. Therefore, aditemthis research to include more
measurements than just code churn for that purpose is partusé work. Another option
is extending the work by Barry et al. [4] to work on a ratio sciistead of an ordinal scale,
to obtain more applicable patterns.

The ecosystem around pieces of software are arguably astempas the software itself.
Therefore, we argue that good future work is in the relatigmbetween the product and
the process of the system and its surroundings. We have showrsoftware releases do
not affect surroundings, but the size of changes of a reldadeave an impact. Finding
out what product and process metrics influence the surragadian help developers with
predicting the impact their release will have up front.

43

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

S.A. Ajila and R.T. Dumitrescu. Experimental use of catkdta, code churn, and
rate of change to understand software product line evaiutlournal of Systems and
Software 80(1):74 — 91, 2007.

J. Anvik, L. Hiew, and G.C. Murphy. Who should fix this bug™ International
Conference on Software Engineeringages 361-370, New York, NY, USA, 2006.
ACM.

A. Bacchelli. Mining challenge 2013: Stack overflow. Working Conference on
Mining Software Repositoriepage to appear, 2013.

E.J. Barry, C.F. Kemerer, and S.A. Slaughter. On theaunifty of software evolution
patterns. Innternational Conference on Software Engineeripgges 106—113, 2003.

V. Basili, L. Briand, S. Condon, Y. Kim, W.L. Melo, and J.Valett. Understanding
and predicting the process of software maintenance relebsinternational Con-
ference on Software EngineeringCSE '96, pages 464-474, Washington, DC, USA,
1996. IEEE.

O. Baysal, I. Davis, and M.W. Godfrey. A tale of two browselnWorking Conference
on Mining Software Repositorie$ISR '11, pages 238-241, New York, NY, USA,
2011. ACM.

K. Beck and C. AndresExtreme programming explained: embrace charfygdison-
Wesley Professional, 2004.

P. Bhattacharya, M. lliofotou, |I. Neamtiu, and M. Falsos. Graph-based analysis
and prediction for software evolution. International Conference on Software Engi-
neering ICSE '12, pages 419-429, Piscataway, NJ, USA, 2012. IEEE.

J. Carletta. Assessing agreement on classificatiorstable kappa statisticCompu-
tational linguistics 22(2):249-254, 1996.

44

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

D. Cubranic, G.C. Murphy, J. Singer, and K.S. Booth. ik a project memory for
software developmeninternational Conference on Software Engineeridf)(6):446—
465, 2005.

M. D’Ambros, H. Gall, M. Lanza, and M. Pinzger. Analygisoftware repositories to
understand software evolution. 8oftware Evolutionpages 37-67. Springer Berlin
Heidelberg, 2008.

S.G. Eick, T.L. Graves, A.F. Karr, J.S. Marron, and A. ®8kas. Does code decay?
assessing the evidence from change managemenStdtaare Engineerin®27(1):1—
12, 2001.

S. Elbaum and J. Munson. Code churn: a measure for estgnide impact of code
change. Irinternational Conference on Software Maintengn€&sSM '98, pages 24—
31. IEEE, 1998.

N.E. Fenton and M. Neil. Software metrics: roadmap. Thre Future of Software
Engineering pages 357-370, New York, NY, USA, 2000. ACM.

H. Gall, K. Hajek, and M. Jazayeri. Detection of logicaupling based on product
release history. Idnternational Conference on Software Maintengnt@SM '98.
IEEE, 1998.

H. Gall, M. Jazayeri, and J. Krajewski. CVS releasedristata for detecting logical
couplings. Ininternational Workshop on Principles of Software Evolnfipages 13—
23, 2003.

D.M. German. Using software trails to reconstruct thkeleation of software. Jour-
nal of Software Maintenance and Evolution: Research anctfrg 16(6):367—-384,
2004.

D.M. German and A. Hindle. Measuring fine-grained cleig software: towards
modification-aware change metrics.liriernational Symposium on Software Metrics
pages 10 pp.—28, 2005.

E. Giger, M. Pinzger, and H.C. Gall. Comparing fine-geal source code changes and
code churn for bug prediction. MWorking Conference on Mining Software Reposito-
ries, MSR '11, pages 83-92, New York, NY, USA, 2011. ACM/IEEE.

C. Gini. Measurement of inequality of incomd&e Economic JournaB1(121):124—
126, 1921.

I. Guyon and A. Elisseeff. An introduction to variabledafeature selectionJournal
of Machine Learning ResearcB:1157-1182, March 2003.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemaand I.H. Witten. The
weka data mining software: an updat8lGKDD Explorer Newsletterl1(1):10-18,
November 2009.

45

[23] M.A. Hall. Correlation-based feature selection for machine learniRgD thesis, The
University of Waikato, 1999.

[24] M.E. Holmes and M.S. Poole. Longitudinal analyssudying interpersonal interac-
tion, 286:301, 1991.

[25] H. Kagdi, M.L. Collard, and J.l. Maletic. A survey andktmomy of approaches for
mining software repositories in the context of softwareleton. Journal of Software
Maintenance and Evolution: Research and Practit®(2):77-131, 2007.

[26] B. Kitchenham. What's up with software metrics? a prnétiary mapping study.
Systems and Softwai@3(1):37 — 51, 2010. Sl: Top Scholars.

[27] S.B. Kotsiantis, 1.D. Zaharakis, and P.E. Pintel&upervised machine learning: A
review of classification technique2007.

[28] J.R. Landis and G.G. Koch. The measurement of obsegrereament for categorical
data.Biometrics pages 159-174, 1977.

[29] M. Lanza. The evolution matrix: recovering softwarelesion using software visu-
alization techniques. Imternational Workshop on Principles of Software Evolatio
pages 37-42, New York, NY, USA, 2001. ACM.

[30] M.M. Lehman. Programs, life cycles, and laws of softevavolution.Proceedings of
the IEEE 68(9):1060-1076, 1980.

[31] A. Mockus and L.G. Votta. Identifying reasons for sofine changes using historic
databases. linternational Conference on Software Maintengnpages 120-130,
2000.

[32] R. Moser, W. Pedrycz, and G. Succi. A comparative anslgs the efficiency of
change metrics and static code attributes for defect giedicln International Con-
ference on Software Engineeringages 181-190, 2008.

[33] E.W. Myers. An o(nd) difference algorithm and its vaieas. Algorithmicg 1(1-
4):251-266, 1986.

[34] N. Nagappan and T. Ball. Use of relative code churn meessto predict system defect
density. Ininternational Conference on Software Engineeripgges 284—-292. IEEE,
2005.

[35] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, andWluk. Preliminary results
on using static analysis tools for software inspectioninternational Symposium on
Software Reliability Engineeringpages 429-439. IEEE, 2004.

[36] L. Rising and N.S. Janoff. The scrum software developinpeocess for small teams.
Software 17(4):26—32, 2000.

46

[37] R. Robbes and M. Lanza. A change-based approach toaeftsyolution.Electronic
Notes in Theoretical Computer Sciené€6(0):93 — 109, 2007.

[38] G. Robles, J.J. Amor, J.M. Gonzalez-Barahona, and fitdite Evolution and growth
in large libre software projects. limternational Workshop on Principles of Software
Evolution pages 165-174, 2005.

[39] W.W. Royce. Managing the development of large softwarstems. INWESCON
volume 26. Los Angeles, 1970.

[40] R.H. Shumway and D.S. Stoffer. An approach to time sesieoothing and forecasting
using the em algorithmTime Series Analysi8(4):253-264, 1982.

[41] M. Storey. Theories, methods and tools in program caing@nsion: past, present and
future. Ininternational Workshop on Program Comprehensipages 181-191, 2005.

[42] A.von Mayrhauser and A.M. Vans. Program comprehendiaing software mainte-
nance and evolutionComputey 28(8):44-55, 1995.

[43] G. Webb. Decision tree grafting from the all-tests-boe partition. San Francisco,
CA, 1999. Morgan Kaufmann.

[44] W. Wilson, P. Birkin, and U. Aickelin. The motif trackgnalgorithm. Automation and
Computing 5(1):32—-44, 2008.

[45] C.Wohlin, P. Runeson, M. Hst, M.C. Ohlsson, B. Regraaild A. WessInExperimen-
tation in Software EngineeringSpringer Publishing Company, Incorporated, 2012.

[46] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van Deurde International
Conference on Software Testing, Verification, and ValidatiCST '08.

a7

Appendix A

Test set as a result of mar)ual
classification

An online version of this appendix can be found at:
http://kaidence.org/thesis/appendixa.py

testset = {
'opensource_django’ : {
datetime (2010, 1, 11) : "feature",
datetime (2010, 1, 25) : "feature",

datetime (2010, 3, 1) : "refactor",
datetime (2010, 4, 12) : "bugfix",
datetime (2010, 10, 18) : "refactor",
datetime (2011, 10, 17) : "refactor",
datetime (2011, 11, 21) : "feature",
datetime (2012, 6, 11) : "refactor",
datetime (2012, 8, 13) : "refactor",

datetime (2012, 10, 1) : "feature"

H

'opensource_postgres’ : {
datetime (2010, 2, 22) : "feature",
datetime (2010, 3, 29) : "bugfix",
datetime (2010, 5, 17) : "feature",
datetime (2010, 6, 28) : "bugfix",
datetime (2010, 10, 11) : "refactor",
datetime (2010, 11, 15) : "bugfix",
datetime (2011, 1, 3) : "refactor",
datetime (2011, 8, 22) : "refactor",
datetime (2012, 4, 23) : "refactor",
datetime (2012, 10, 01) : "feature"

|

48

'opensource_eclipse_jdt_core’ : {

},

datetime (2010,
datetime (2010,
datetime (2010,
datetime (2010,
datetime (2010,
datetime (2011,
datetime (2011,
datetime (2012,
datetime (2012,
datetime (2012,

'opensource_rails’

},

datetime (2010,
datetime (2010,
datetime (2010,
datetime (2010,
datetime (2011,
datetime (2011,
datetime (2011,
datetime (2012,
datetime (2012,
datetime (2012,

2, 22)
3, 1)

4, 26)
11, 1)
12, 20)
3, 7)
4, 18)
1, 16)
4, 16)
8, 27)

3, 15)
8, 16)
9, 6) :
11, 22)
2, 21)
7, 4)
3, 28)
7, 16)
9, 10)
10, 1)

'opensource_subversion’

datetime (2010,
datetime (2010,
datetime (2010,
datetime (2010,
datetime (2011,
datetime (2011,
datetime (2011,
datetime (2011,
datetime (2012,
datetime (2012,

2, 15)
, 22)
, 10)

3
5
5
5, 9) :
5, 30):
9, 12)
10, 3)
2
-

. 9)

. 31)

13) ;

"feature",
"feature",
"bugfix",

"feature",

"feature"

. "refactor",

"bugfix",
"feature",
"bugfix",
"bugfix"

"refactor",
"refactor",
feature",
"feature"
"refactor",

. "bugfix",

"bugfix",
"bugfix",
"refactor™,
"feature™

"refactor™,
"refactor",
"feature",
"bugfix",
feature",
'feature",
"feature",
"bugfix",
"refactor™,
"feature”

49

Appendix B

Training set in ARFF format

This appendix is limited to one entry. The full training sehde found at:
http://kaidence.org/thesis/appendixb.arff

@elation ' Software Event: Systemni

@ttribute datetine date "yyyy-Mtdd HH nm ss”
@ttribute name string

@ttribute CHURN nuneric

@ttribute pCHURN nuneric

@ttribute t CHURN nuneric

@ttribute ADDED nuneric

@ttribute pADDED numeric

@ttribute t ADDED nuneric

@ttribute CHANGED nuneric

@ttribute pCHANGED nuneric

@ttribute t CHANGED nuneric

@ttribute DELETED nuneric

@ttribute pDELETED nuneric

@ttribute tDELETED nuneric

@ttribute FI LECHURN nuneric

@ttribute G N nureric

@ttribute pGN nuneric

@ttribute tAN nuneric

@ttribute FILEGN nuneric

@ttribute pFILEG N nuneric

@ttribute tFILEGN nuneric

@ttribute PERC FI LESSMALLCHURN nurreric
@ttribute PERC FI LESMOSTLYADDED numneric
@ttribute PERC FI LESMOSTLYCHANGED numeric
@ttribute PERC FI LESMOSTLYDELETED nuneric
@ttribute t CHURNDI VpCHURN nuneric

50

@t tribute CHURNDI VDELETED nuneric
@ttribute ADDEDD VDELETED nuneric
@ttribute RELCHURN nuneric

@ttribute RELPCHURN nuneric

@ttribute RELt CHURN nuneric

@ttribute RELADDED nuneric

@ttribute RELpADDED numeric

@ttribute RELt ADDED nuneric

@ttribute RELDELETED nuneric

@ttribute RELpDELETED numeric
@ttribute RELt DELETED nuneric
@ttribute RELCHANGED nuneric

@ttribute RELpCHANGED numeric
@ttribute RELt CHANGED numeric
@ttribute POTENTI ALLYMOVEDLI NES numeric
@ttribute sclass {bugfix,refactor,feature}

@lat a
{0 "2010-01-11 00:00:00", 1 opensource_django, 2 1322.0, 3 617.0, 4 705.0, 5
1259.0, 6 564.0, 7 695.0, 8 63.0, 9 53.0, 10 10.0, 11 269.0, 12 238.0, 13
31.0, 14 106, 15 0.7257942511346446, 16 0.7619997506545318, 17
0. 3498817966903073, 18 0.6499106344950851, 19 0.6499106344950849, 20
0.7070422535211267, 21 0.839622641509434, 22 0.5943396226415094, 23
0.2830188679245283, 24 0.02830188679245283, 25 1.1426256077795787, 26
4.91449814126394, 27 4.680297397769516, 28 0.030543169373657093, 29
0. 01425501929163875, 30 0.016288150082018345, 31 0.029087632557817156
32 0.013030520065614675, 33 0.016057112492202482, 34
0.0062149111660467155, 35 0.0054986946376175405, 36
0.0007162165284291754, 37 0.0014555368158399372, 38
0.001224499226024074, 39 0.00023103758981586305, 41 feature}

51

