
ሶ𝑥 = 𝐴𝑥 +𝐵𝑢 +𝑤
𝑦 = 𝐶𝑥 +𝐷𝑢+ 𝑧

𝑓(𝜇, 𝑢)𝐽 = lim
𝑇→∞

1

𝑇
𝔼 න

𝑡=0

𝑇

𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 𝑑𝑡

𝐴𝑃+ 𝑃𝐴𝑇− 𝑃𝐶𝑇Π𝑧𝐶𝑃 + Π𝑤
−1 = 0

𝐺 = −𝐶 መ𝐴−1𝐵 +𝐷

ሶ𝜇𝑥
ሶ𝜇𝑢
ሶ𝑢

=

𝒟 − 𝜅𝑥 ሚ𝐶
𝑇 ෩Π𝑧 ሚ𝐶 − 𝜅𝑥 𝒟 − ሚ𝐴

𝑇
෩Π𝑤 𝒟 − ሚ𝐴 −𝜅𝑥 ሚ𝐶

𝑇 ෩Π𝑧෩𝐷 + 𝜅𝑥 𝒟 − ሚ𝐴
𝑇
෩Π𝑤 ෨𝐵 0

−𝜅𝑢෩𝐷
𝑇 ෩Π𝑧 ሚ𝐶 + 𝜅𝑢 ෨𝐵

𝑇 ෩Π𝑤 𝒟 − ሚ𝐴 𝒟 −𝜅𝑢 ෩𝐷
𝑇෩Π𝑧෩𝐷 − 𝜅𝑢 ෨𝐵

𝑇 ෩Π𝑤 ෨𝐵 − 𝜅𝑢෩Π𝜂 0

𝜌 ෨𝐺𝑇 ෩Π𝑦 ሚ𝐶 𝜌 ෨𝐺𝑇 ෩Π𝑦 ෩𝐷 0

𝜇𝑥
𝜇𝑢
𝑢

+

𝜅𝑥 ሚ𝐶
𝑇 ෩Π𝑧 0

𝜅𝑢෩𝐷
𝑇 ෩Π𝑧 𝜅𝑢 ෩Π𝜂

−𝜌෩G𝑇෩Π𝑧 0

𝑦
ǁ𝜂

𝑝 = 0

𝜇𝑥

𝑢 = 0 0 𝐼
𝜇𝑥
𝜇𝑢
𝑢

+0
𝑦
ǁ𝜂

ሚ𝐴 = 𝐼𝑝+1⨂𝐴

𝑝(𝑥|𝑚)

𝒟 𝑥 = ሚ𝑓 𝑥 + 𝑤

෩Π𝑤 =

𝔼[𝑤(𝑡)𝑤(𝑡)] 𝔼[𝑤(𝑡) ሶ𝑤(𝑡)] 𝔼[𝑤(𝑡) ሷ𝑤(𝑡)] …

𝔼[ሶ𝑤(𝑡)𝑤(𝑡)] 𝔼[ሶ𝑤(𝑡) ሶ𝑤(𝑡)] 𝔼[ሶ𝑤(𝑡) ሷ𝑤(𝑡)] …

𝔼[ሷ𝑤(𝑡)𝑤(𝑡)] 𝔼[ሷ𝑤(𝑡) ሶ𝑤(𝑡)] 𝔼[ሷ𝑤(𝑡) ሷ𝑤(𝑡)] …
⋮ ⋮ ⋮ ⋱

−1

𝜌 → ∞

ሶ𝑥 = 𝐴𝑥 +𝐵𝑢 +𝑤, ሶ𝑥𝑤 = 𝐴𝑤𝑥𝑤 +𝐵𝑤𝜔, ሶ𝑥𝑧 = 𝐴𝑧𝑥𝑧 +𝐵𝑧𝜁
𝑦 = 𝐶𝑥 +𝐷𝑢+ 𝑧, 𝑤 = 𝐶𝑤𝑥𝑤, 𝑧 = 𝐶𝑧𝑥_𝑧

ሶ𝜇𝑥 = 𝐴− 𝐿𝐶 −𝐵𝐾 + 𝐿𝐷𝐾 𝜇𝑥 + 𝐿 𝐵𝐾𝐵 − 𝐿𝐷𝐾𝐵
𝑦
𝜂

𝑢 = −𝐾𝜇𝑥 + 0 𝐾𝐵
𝑦
𝜂

𝑦 =

𝑦
ሶ𝑦
⋮

𝑦 𝑝

=

𝐶𝑛
𝐶𝑛𝐴𝑛
⋮

𝐶𝑛𝐴𝑛
𝑝

𝑥𝑐 +

𝐷 0 ⋯ 0
𝐶𝑛𝐵𝑢 𝐷 ⋯ 0
⋮ ⋮ ⋱ ⋮

𝐶𝑛𝐴𝑛
𝑝−1𝐵𝑢 𝐶𝑛𝐴𝑛

𝑝−2𝐵𝑢 ⋯ 𝐷

𝑢+

0
0
⋮

𝐶𝑛𝐴𝑛
𝑝−1𝐵𝑛

𝑛

ሶ𝑥 = 𝑥′ = 𝑓(𝑥)+𝑤

ሶ𝑥 ′ = 𝑥′′ =
𝜕𝑓 𝑥

𝜕𝑥
𝑥′ + 𝑤 ′

ሶ𝑥 ′′ = 𝑥′′′ =
𝜕𝑓 𝑥

𝜕𝑥
𝑥′′ + 𝑤 ′′

⋮

0 =
𝜕𝑓 𝑥

𝜕𝑥
𝑥(𝑝)+ 𝑤 (𝑝)

→ 𝒟 𝑥 = ሚ𝑓 𝑥 + 𝑤

𝒟 =

0 1
0 ⋱

⋱ 1
0

⨂𝐼𝑛

𝐹 =
1

2
ǁ𝜖𝑇Π ǁ𝜖 −

1

2
ln |Π|

ሶ𝜇 = 𝒟 𝜇 −𝜅
𝜕𝐹

𝜕 𝜇

ሶ𝑢 = −𝜌
𝜕𝐹

𝜕𝑢
=−𝜌

𝜕 𝑦

𝜕𝑢

𝑇𝜕𝐹

𝜕 𝑦

𝑆 𝑗𝜔 = 𝐻 𝑗𝜔 2

= 𝐻 𝑗𝜔 𝐻(−𝑗𝜔)

𝜌 𝑡 =
𝛾 𝑡

𝜎2

𝔼 𝑤 𝑡 𝑧 𝑡 = න
−∞

∞

ℎ𝑤 𝜏 ℎ𝑧 𝜏 𝑑𝜏

𝐾𝑢 = 𝜅𝑢෩Π𝑢

𝐾 = 𝑅−1𝐵𝑇𝑆

𝑢 = −𝐾𝑥

𝑥𝑛 = 𝑀−1 𝑥1
𝑥2

𝐻2𝑀
−1

= 𝐻3 𝐻4

Delft Center for Systems and Control and Cognitive Robotics

A comparison of Active Inference
and Linear-Quadratic Gaussian
control
Equivalence and differences for two settings

J.D. Coehoorn

M
as

te
ro

fS
cie

nc
e

Th
es

is

A comparison of Active Inference and
Linear-Quadratic Gaussian control

Equivalence and differences for two settings

Master of Science Thesis

For the double degree of Master of Science in Systems and Control and
Mechanical Engineering at Delft University of Technology

J.D. Coehoorn

July 8, 2021

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright © Delft Center for Systems and Control (DCSC) and Cognitive Robotics (CoR)
All rights reserved.

Delft University of Technology
Departments of

Delft Center for Systems and Control (DCSC)
and

Cognitive Robotics (CoR)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
A comparison of Active Inference and Linear-Quadratic Gaussian

control
by

Jesse Daniël Coehoorn
in partial fulfillment of the requirements for the degrees of

Master of Science Systems and Control
and

Master of Science Mechanical Engineering

Dated: July 8, 2021

Supervisors:
prof.dr.ir. M. Wisse

dr. P. Mohajerin Esfahani

Readers:
prof.dr. R. Babuska

A. Anil Meera

Abstract

The Free Energy Principle, which underlies Active Inference (AI), is a way to explain human
perception and behaviour. Previous literature has hinted at a relation between AI and Linear-
Quadratic Gaussian (LQG) control, the latter being a textbook controller. AI and LQG
are, however, defined with different settings in mind: LQG has access to inputs, whereas
AI estimates these; LQG is optimal for White Gaussian Noise, whereas noise needs to be
coloured for AI, in order to make derivatives. Therefore, a comparison is provided on two
bases: the setting of LQG control; and the setting of AI. The optimal LQG controller is
obtained for both settings, and AI is applied to both settings as well. When AI is reduced
to the setting of LQG, an equivalent expression can be obtained by a proper choice of tuning
parameters. This entails choosing a matrix such that the closed-loop is stable, which contrasts
LQG control, which is always a stabilizing controller. When LQG is extended closer to the
normal AI setting, we find that tuning of AI becomes harder for more complex systems, but
that AI is mostly able to show optimal behaviour.

Master of Science Thesis J.D. Coehoorn

ii

J.D. Coehoorn Master of Science Thesis

Table of Contents

Acknowledgements ix

1 Introduction 1
1-1 Motivation . 1
1-2 Research goal and questions . 2
1-3 Outline . 2

2 Preliminaries 3
2-1 Setting . 3
2-2 Introduction to LQG control . 4

2-2-1 I: The standard infinite-horizon LQG problem 5
2-2-2 II: LQG control for a singular Kalman filter 6

2-3 I&II: Introduction to Active Inference . 7

3 Active Inference on LTI systems 11
3-1 AI controller for different formulations of the FE 11

3-1-1 II: Original formulation . 12
3-1-2 Inputs are equal to the priors . 13
3-1-3 I: Inputs are known . 13

3-2 Closed-loop . 14
3-3 Precision matrix . 17

3-3-1 From auto-correlation . 17
3-3-2 II: From impulse response . 18
3-3-3 I: For White Gaussian Noise . 19

4 Comparison of LQG control and AI 21
4-1 High-level comparison between the two controllers 21
4-2 Comparison I: Equivalence for WGN with knowledge of inputs 22
4-3 Comparison II: Filtered WGN without knowledge of inputs 24

Master of Science Thesis J.D. Coehoorn

iv Table of Contents

5 Conclusions and recommendations 29
5-1 Conclusions and discussion . 29
5-2 Recommendations . 30

A MATLAB code 33
A-1 Closed-loop LQG . 33
A-2 Closed-loop AI . 37
A-3 Precision matrix . 41
A-4 Random SISO systems . 44
A-5 Comparison . 46

Bibliography 51

Glossary 55
List of Acronyms . 55
List of Symbols . 56

J.D. Coehoorn Master of Science Thesis

List of Figures

4-1 Comparison of AI and LQG incurred costs on a single-input, single-output (SISO)
system with p = 2. 26

4-2 Comparison of AI and LQG incurred costs on a multiple-input, multiple-output
(MIMO) system with p = 2, m = q = 3. 27

4-3 Comparison of AI and LQG incurred costs on a SISO system with p = 5. 28

Master of Science Thesis J.D. Coehoorn

vi List of Figures

J.D. Coehoorn Master of Science Thesis

List of Tables

2-1 Overview of the settings for AI and LQG. 4

4-1 Comparison of the terms of the reduced AI controller and the nominal LQG controller. 23
4-2 Comparison of the tuning parameters of AI and LQG for equivalence as a function

of Â. 24

Master of Science Thesis J.D. Coehoorn

viii List of Tables

J.D. Coehoorn Master of Science Thesis

Acknowledgements

I would like to express my gratitude towards my supervisors Peyman Mohajerin Esfahani and
Martijn Wisse for their guidance during the past year. I have learned a lot from both of you. I
would like to thank Martijn explicitly for his enthusiastic presentation during the introduction
days of the BioMechanical Design track, which got me excited for this topic, and Peyman for
his helpful mathematical introductions and discussions. Last, but not least, I would like to
thank my wife and my family, who have given me the motivation and encouragement to work
on this at home.

Delft, University of Technology J.D. Coehoorn
July 8, 2021

Master of Science Thesis J.D. Coehoorn

x Acknowledgements

J.D. Coehoorn Master of Science Thesis

“There are far, far better things ahead than any we leave behind.”
— C.S. Lewis

Chapter 1

Introduction

This first chapter motivates the thesis work. Based on this motivation, a research goal and
corresponding research questions are stated. Lastly, the outline of the thesis is provided to
accommodate the reader with the structure of the thesis.

1-1 Motivation

For some time now, the Free Energy Principle (FEP), as first introduced by Friston in [12,16],
has been around to explain human behaviour and, essentially, life. By way of Dynamic
Expectation Maximization (DEM), it provides a mathematical formulation of perceptual
inference and learning [17], which can be extended to Active Inference (AI) to also explain
action and behaviour [15]. More recently, the FEP and AI have found their way into robotics
and control [24–28].

In the paper in which DEM was introduced, Friston et al. claim that DEM and Kalman
filtering give the same results in the case that noises are temporally uncorrelated (white), and
inputs are not considered [17, p.869]. A similar argument has been given in [2]. This leads to
the question whether these results can be extended to the full Kalman filtering setting, i.e.
also considering inputs.

Furthermore, in the robotics and control community, the Linear-Quadratic Gaussian (LQG)
controller is a textbook controller with a very similar derivation to the Kalman filter. In fact,
the Kalman filter is extended with the dual problem - control - and the two resulting parts are
put together [1,21,23]. The FEP has a similar intuitive extension from DEM to AI, so it is a
very reasonable question to ask whether AI and LQG control are similar or even equivalent,
and where similarities or differences come from.

AI and LQG are, however, defined with different settings in mind. As it turns out, when AI
is reduced to the same setting that LQG uses, an equivalent expression for the two controllers
can be obtained. This is the first time that such a result is shown, and gives an incentive for
further study into AI, as LQG is optimal in this setting. When LQG is extended to about the

Master of Science Thesis J.D. Coehoorn

2 Introduction

same setting as AI, it is no longer possible to obtain an equivalent representation. We are,
however, mostly able to tune AI such that it can show the same, and thus optimal, behaviour
as LQG.

1-2 Research goal and questions

Therefore, the research goal is to ‘compare AI with LQG control in a theoretical and practical
manner’. The theoretical comparison relates to the LQG setting, the practical comparison
is done using simulations for the setting that AI uses. To reach this goal, several research
questions need to be answered:

1. What are equivalences and differences in the state-space equations of the two controllers?

2. When are the two controllers equivalent?

3. Does the closed-loop of AI on a Linear Time-Invariant (LTI) system depend linearly on
the tuning parameters of AI?

4. How does tuned AI compare to LQG control in terms of LQG costs?

The first research question gives us a high-level overview of the differences between the two
controllers, which automatically leads to the answer of the second question. This second
question is the theoretical part of the comparison. The third question pertains to the tuning
of AI: if the closed-loop depends linearly on tuning parameters, there are several tuning pro-
cedures readily available, for instance using linear matrix inequalities [5] or the new approach
by control as optimization [7, 11]. The last question gives an answer to the practical part of
the comparison.

1-3 Outline

First of all, the setting and common concepts are introduced in chapter 2. When introducing
the setting, it is made clear that two comparisons are needed. LQG control is introduced for
both settings of the two comparisons, after which the basics of AI are presented. Starting
from chapter 3, we obtain new results. In this chapter, the equations and state-space repre-
sentations for AI on a LTI system for different formulations of the Free Energy (FE) (needed
for the two comparisons) are provided. In chapter 4, the theoretical and practical compari-
son is done, using simulations in MATLAB for the practical part. Lastly, in chapter 5, the
conclusions are summarized and recommendations for further research are given.

At the end of the document, the appendices together with a list of acronyms and list of
symbols can be found.

J.D. Coehoorn Master of Science Thesis

Chapter 2

Preliminaries

First, concepts common to both Active Inference (AI) and the Linear-Quadratic Gaussian
(LQG) problem are introduced. In order to facilitate a comparison, we make sure that we
use the same symbols for the same concepts. We also highlight the different settings between
the two controllers and show how this will affect the comparison. After that, the standard
infinite-horizon LQG controller is shortly introduced, consisting of the Kalman-Bucy filter
and the Linear-Quadratic Regulator (LQR). Additionally, a situation is shown where the
Kalman filter problem is singular, and the optimal solution to this new problem is given.
Lastly, AI is introduced for general systems; in the next chapter this will be applied to Linear
Time-Invariant (LTI) systems.

2-1 Setting

The setting that will be considered in this thesis work is a controllable and observable LTI
dynamical system that will be controlled using either LQG or AI. LQG is defined on linear
systems [1], in contrast to AI, which can be used on arbitrary dynamical systems [15]. The
LTI system is defined as follows:

ẋ = Ax+Bu+ w,

y = Cx+Du+ z,
(2-1)

where x ∈ Rn are the states of the system, u ∈ Rm are the inputs to the system and y ∈ Rq are
the outputs, observations or measurements available to the controller. w ∈ Rn is the process
noise and z ∈ Rq is the measurement noise, which are both additive and zero-mean Gaussian
distributed. Additionally, we have the state matrix A, input matrix B, output matrix C and
D, the feedthrough matrix.

To make a comparison possible, we thus have to derive AI on linear systems, which will
be done in chapter 3. Furthermore, the inputs are known to the standard LQG controller,
whereas AI estimates the inputs, eliminating the need to feed inputs back to the controller.

Master of Science Thesis J.D. Coehoorn

4 Preliminaries

So, in order to do a comparison on the level of LQG, AI should be formulated to include
knowledge of inputs, which is done in subsection 3-1-3. In subsection 3-1-2, a connection is
made to some existing literature, which might be seen as an intermediate step between no
knowledge and full knowledge of inputs.

Lastly, LQG control is optimal when the noises w and z are white, leading to White Gaussian
Noise (WGN), with covariance matrices E[w(t)w(t + τ)] = Π−1

w δ(τ) and E[z(t)z(t + τ)] =
Π−1
z δ(τ), respectively, where δ(t) denotes the Dirac delta function [1, p.180]. AI, on the other

hand, needs the noises to be dependent in time, such that derivatives of the outputs can be
taken. In Table 2-1, an overview of the settings is provided.

Table 2-1: Overview of the settings for AI and LQG.

AI LQG
Controlled system Arbitrary Linear
Knowledge of inputs Unknown (estimates) Known
Noise distribution Gaussian Gaussian
Noise time-dependency Dependent Independent (white)

There are now two main ways to deal with the various differences and do the comparison.
Firstly, we can reduce AI to the LQG setting, where we include knowledge of inputs and say
that the noises are WGN. Secondly, we can extend the LQG problem by assuming that the
noises w and z are given by filtering WGN with strictly proper LTI systems. This leads to
the description

ẋ = Ax+Bu+ w,

y = Cx+Du+ z,

ẋw = Awxw +Bwω,

w = Cwxw,

ẋz = Azxz +Bzζ,

z = Czxz,
(2-2)

where ω and ζ are normalized WGN, which means that Πω = Πζ = I. Both controllers need
to be specified for both comparisons, so we give an overview of the two comparisons and their
relevant chapters:

• Comparison I: Normal LQG and reduced AI
WGN setting with knowledge of inputs, performed in section 4-2. Relevant sections are
subsection 2-2-1, section 2-3 and subsection 3-1-3 and are marked with I. This leads to
an equivalent expression for the two controllers.

• Comparison II: Extended LQG and normal AI
Linearly filtered WGN, without knowledge of inputs for AI, performed in section 4-
3. Relevant sections are section 2-2, section 2-3 and subsection 3-1-1 and are marked
with II. An equivalent expression is no longer possible, but AI can mostly be tuned to
obtain the same (optimal) LQG costs. This comparison is performed numerically, using
MATLAB.

2-2 Introduction to LQG control

First, we show the standard infinite-horizon LQG problem for LTI systems, resulting in the
main controller equation to be used for the first comparison. After that, a solution is given

J.D. Coehoorn Master of Science Thesis

2-2 Introduction to LQG control 5

to obtain a LQG controller in the case of a singular covariance for the measurement noise,
resulting in MATLAB code to be used in the second comparison.

2-2-1 I: The standard infinite-horizon LQG problem

The book by Anderson and Moore [1] is used as main reference for this section. In the
standard infinite-horizon LQG problem (for LTI systems), we want to control the system as
in Equation 2-1, with the noises w and z being WGN. For simplicity, we assume that the
cross-covariance is 0. The LQG problem is now to control this system, such that the cost

J = lim
T→∞

1
T
E
[∫ T

t=0

(
x>Qx+ u>Ru

)
dt

]
(2-3)

is minimized. The matrix Q ≥ 0 gives a weighing on the states x, the matrix R > 0 a weighing
on the inputs u. Sometimes, a cross-term 2x>Nu is added, but is often omitted; it can be
made zero by doing an appropriate coordinate change.

The optimal controller consists of two independently designed parts, thanks to the separation
principle [1, p.218]. The first part is a filter, which gives optimal (unbiased, minimal variance)
estimates µx of the states x [23]. This filter is given by the equation

µ̇x = Aµx +Bu+ L(y − Cµx −Du), (2-4)

where L is the Kalman gain, calculated with L = PC>Σ−1
y . Here we have exchanged the

normally used x̂ with µx, to make the comparison with AI more clear. The matrix P in
this equation is the error covariance matrix, which is the solution to the Algebraic Riccatti
Equation (ARE)

AP + PA> − PC>ΠzCP + Π−1
w = 0.

The second part is given by the feedback law u = −Kx, where K = R−1B>S is the optimal
control feedback gain from the LQR problem, which is the dual problem to the filter problem
[21,22]. The matrix S is again the solution to an ARE, given by

A>S + SA− SBR−1B>S +Q = 0.

The optimal controller is now simply given by using the feedback law on the state estimates,
resulting in

µ̇x = (A− LC −BK + LDK)µx + Ly,

u = −Kµx.

A common practice is to add a feed-forward term if the states need to be steered to some
non-zero reference point Bη, where η is the equilibrium input for the reference point. This
feed-forward term is given by KBη, resulting in the controller

µ̇x = (A− LC −BK + LDK)µx +
[
L BKB − LDKB

] [y
η

]
,

u = −Kµx +
[
0 KB

] [y
η

]
.

(2-5)

Master of Science Thesis J.D. Coehoorn

6 Preliminaries

This controller equation is the main equation to be used in the first comparison and now
minimizes the cost function

J = lim
T→∞

1
T
E
[∫ T

0

(
(x−Bη)>Q(x−Bη) + u>Ru

)]
.

2-2-2 II: LQG control for a singular Kalman filter

In order to determine the LQG controller for the systems in Equation 2-2 so that we can do
the second comparison, we write them as one extended system: ẋẋw

ẋz

 =

A Cw 0
0 Aw 0
0 0 Az

︸ ︷︷ ︸

An

 xxw
xz

︸ ︷︷ ︸
xn

+

B0
0

︸ ︷︷ ︸
Bu

u+

 0 0
Bw 0
0 Bz

︸ ︷︷ ︸

Bn

[
ω
ζ

]
︸︷︷︸
n

,

y =
[
C 0 Cz

]
︸ ︷︷ ︸

Cn

 xxw
xz

+Du.

(2-6)

Because y now no longer directly depends on WGN, because the WGN first passes through
a filter, the matrix Π−1

z is singular. This also means that the Kalman problem is singular. In
order to solve this issue, we use the technique from [6] and extend it to also include inputs.
The main part of the technique is to take derivatives of the out- and inputs, which is similar
to AI, as will become clear later when AI is introduced.

Derivatives are taken until the WGN appears, and can be computed as follows:

ỹ =

y
ẏ
...
y(p)

 =

Cn
CnAn

...
CnA

p
n

xn +

D 0 · · · 0

CnBu D · · · 0
...

...
CnA

p−1
n Bu CnA

p−2
n Bu · · · D

 ũ+

0

CnBn
...

CnA
p−1
n Bn

n.

Of course, if the system has multiple outputs (q > 1), it could be that some outputs can
be differentiated more times than other outputs. To overcome this issue, one can simply
calculate the derivatives for each row of Cn separately. In this work, we assume that all the
outputs can be differentiated the same amount of times. After differentiating, the outputs
and its derivatives are decomposed into two vectors: x2, which is noise-free, and z, which
includes a white noise term:[

x2
z

]
= ỹ −Gũ =

[
M2
H2

]
xn +

[
0
D2

]
n.

We now actually have that x2 are ‘perfect’ measurements of linear combinations of xn, so it
is only necessary to estimate x1, which is linearly independent of x2:[

x1
x2

]
=
[
M1
M2

]
xn = Mxn,

J.D. Coehoorn Master of Science Thesis

2-3 I&II: Introduction to Active Inference 7

which means that xn = M−1
[
x1
x2

]
.

This is inserted into the original equation ẋn = Anxn +Buu+Bnn to obtain[
ẋ1
ẋ2

]
= Mẋn

= MAnM
−1
[
x1
x2

]
+MBuu+MBnn

=
[
F11 F12
F21 F22

] [
x1
x2

]
+
[
Bu,1
Bu,2

]
u+

[
Bn,1
Bn,2

]
n.

Remember that for the second row of equations we have perfect measurements, so only the
first row needs to be estimated with a Kalman filter. To do this, we can make use of the
‘measurements’ z, but this needs to be transformed such that x2 is no longer part of the
measurements, by setting H2M

−1 =
[
H3 H4

]
, resulting in:

z = H2xn +D2n

= H2M
−1
[
x1
x2

]
+D2n

= H3x1 +H4x2 +D2n.

The outputs which can be used for the Kalman filter on x1 can now be defined as:

y′ = z −H4x2

= H3x1 +D2n.

Now, the normal Kalman filter

µ̇x1 = F11µx1 +
[
Bu,1 F12

] [u
x2

]
+K(y′ −H3µx1),

µxn = M−1
[
µx1

x2

]
,

can simply be used in combination with the LQR controller, to obtain the optimal LQG con-
troller for the problem as posed in the beginning. In section A-1, a MATLAB implementation
for this can be found, which will be used for the second comparison.

2-3 I&II: Introduction to Active Inference

We will now shortly introduce AI on general systems. In chapter 3, this will be elaborated for
LTI systems for both settings that will be used in the comparison, but the general machinery
is introduced here. Only concepts that are relevant for this thesis are introduced, referring
the reader to [8,15] for further reference. We will start by explaining generalised coordinates
and generalised processes, after which AI itself will be described.

Master of Science Thesis J.D. Coehoorn

8 Preliminaries

A generalised coordinate consists of the coordinate itself and its time derivatives. We de-
note any generalisation with a tilde, e.g. for the states x of a system, this becomes x̃ =
[x, x′, x′′, . . .]> [13]. Generally, we only use the first p derivatives of such a coordinate. This
concept can also be applied to processes or systems. We consider a system m with the state
evolution equation ẋ = f(x) + w and measurement equation y = g(x) + z and only consider
the first p derivatives of this system. If we assume local linearity, we can write the generalised
process as [13]:

ẋ = x′ = f(x) + w

ẋ′ = x′′ = ∂f(x)
∂x

x′ + w′

ẋ′′ = x′′′ = ∂f(x)
∂x

x′′ + w′′

...

0 = ∂f(x)
∂x

x(p) + w(p)

y = g(x) + z

y′ = ∂g(x)
∂x

x′ + z′

y′′ = ∂g(x)
∂x

x′′ + z′′

...

y(p) = ∂g(x)
∂x

x(p) + z(p)

As can be seen, a generalised process consists of the actual process and its linearised time-
derivatives, and we can write that Dx̃ = f̃(x̃) + w̃ and ỹ = g̃(x̃) + z̃, with D a derivative
operator for the generalized coordinates, such that x̃′ = Dx̃. D is thus a block matrix with
identity blocks on the super-diagonal and zeros otherwise:

D =

0 1

0 . . .
. . . 1

0

⊗ In.

⊗ is the Kronecker product and In is an identity matrix of size n. This generalised process
can be extended to include inputs in the same manner, i.e. we obtain Dx̃ = f̃(x̃, ũ) + w̃ and
ỹ = g̃(x̃, ũ) + z̃. These equations are called the generative process.

Now, let us introduce AI. AI is a consequence of the Free Energy Principle (FEP), which
starts with the premise that a biological agent, or system m, needs to be within some set
of states to exist or survive. Bacteria, for example, have to be in a chemical mixture with
a certain concentration and within some temperature range. Using an ensemble density on
generalised states p(x̃|m), we can denote the probability distribution of the generalized states
(the trajectory) of the system. These states evolve according to the generative process. Now,
to adhere to the FEP, this ensemble density should have a narrow distribution or concentrated
mass, which corresponds to having low entropy. Using information theoretics and under some
assumptions, we can provide an upper bound on the entropy, which is given by the Free
Energy (FE) [8, 15].

The expression for the FE F is

F = 1
2 ε̃
>Πε̃− 1

2 ln |Π|,

ε̃ =

 ε̃y = ỹ − g(µ̃)
ε̃x = Dµ̃x − f(µ̃)
ε̃u = µ̃u − η̃

 , (2-7)

J.D. Coehoorn Master of Science Thesis

2-3 I&II: Introduction to Active Inference 9

where f(µ̃) and g(µ̃) are generative models for the states and outputs, respectively. These
denote our belief or desired belief of the generative process as specified by f̃(x̃, ũ) and g̃(x̃, ũ).
µ̃ = {µ̃x, µ̃u} are the generalized estimates of states and inputs, respectively, and η̃ the
generalized prior belief on the inputs. This can also be thought of as a generalised reference
signal in the same way as in Equation 2-5. Π is a block diagonal precision matrix with output
noise, system noise and input prior precisions, Π̃z, Π̃w and Π̃u, respectively.

So, if a system is to adhere to the FEP, it should minimize its entropy. This can be achieved
by minimizing the FE. This is usually done employing a generalised gradient descent on the
estimates µ̃, which constitutes Dynamic Expectation Maximization (DEM) [17]. To obtain
AI, we also do a regular gradient descent on the inputs, by noting that ỹ is influenced by
u [15]:

˙̃µ = Dµ̃− κ∂F
∂µ̃

,

u̇ = −ρ∂F
∂u

= −ρ∂ỹ
∂u

>∂F

∂ỹ
,

(2-8)

with κ and ρ the learning rates. These gradient descent equations, together with Equation 2-7,
form the main equations to be used in the next chapter.

Master of Science Thesis J.D. Coehoorn

10 Preliminaries

J.D. Coehoorn Master of Science Thesis

Chapter 3

Active Inference on LTI systems

In this chapter, the Active Inference (AI) controller on a Linear Time-Invariant (LTI) system
is derived. This is done for three different formulations of the Free Energy (FE), each resulting
in a different controller, the first and the last of which are necessary for the two comparisons.
After that, the closed-loop equations for the first formulation are given, to obtain an answer
to the third research question. Next, two ways to obtain the precision matrices for linearly
filtered White Gaussian Noise (WGN) are showed, together with some examples. Lastly, a
discussion on the precision matrix for plain WGN is provided.

3-1 AI controller for different formulations of the FE

In this section, we will specify the AI controller on LTI systems. For both of the settings on
which the two comparisons will be performed, we start with the FE Equation 2-7, and obtain
the controller using the gradient descents in Equation 2-8. The generative model that we use,
mirrors the generative process (Equation 2-1) and is given by:

f(µ̃) = Ãµ̃x + B̃µ̃u,

g(µ̃) = C̃µ̃x + D̃µ̃u,

with Ã = Ip+1 ⊗A, B̃ = Ip+1 ⊗B, C̃ = Ip+1 ⊗ C and D̃ = Ip+1 ⊗D.
In the original literature on AI, the FE expression as given by Equation 2-7 is used. This
expression will thus be used in the second comparison. There are, however, some alterations
possible. In [18] and [4], the implicit assumption is made that the estimates of the inputs µ̃u
are equal to the priors on the inputs η̃. This can be represented by setting Π̃u = λI, and
letting λ→∞. This case is quickly presented, but not further investigated.
One can also assume that the inputs are directly known, eliminating the need for estimating
the inputs. In most control problems, this is actually the case. This is also more similar to
the Linear-Quadratic Gaussian (LQG) control problem, where this assumption is also made.
This formulation will thus be used in the first comparison, the one on the grounds of LQG.
This is a new approach within AI, which has not been investigated before.

Master of Science Thesis J.D. Coehoorn

12 Active Inference on LTI systems

3-1-1 II: Original formulation

Writing out the expressions from Equation 2-7, we get the following FE equation:

F (µ̃, ỹ, η̃) = 1
2(ỹ−g(µ̃))>Π̃z(ỹ−g(µ̃))+1

2(Dµ̃x−f(µ̃))>Π̃w(Dµ̃x−f(µ̃))+1
2(µ̃u−η̃)>Π̃u(µ̃u−η̃).

Note that this FE is convex1 for linear system and that we omitted the constant ln |Π| term,
as it is not relevant for the subsequent derivations. This constant term will also be left out
in the rest of the thesis work.

The partial derivatives of the FE are then simply:

∂F

∂µ̃x
= −C̃>Π̃z(ỹ − g(µ̃)) + (D − Ã)>Π̃w(Dµ̃x − f(µ̃)),

∂F

∂µ̃u
= −D̃>Π̃z(ỹ − g(µ̃))− B̃>Π̃w(Dµ̃x − f(µ̃)) + Π̃u(µ̃u − η̃),

∂F

∂u
=
(
∂ỹ

∂u

)>
Π̃z(ỹ − g(µ̃)) = G̃>Π̃z(ỹ − g(µ̃)).

The forward model ∂ỹ
∂u = G̃, which denotes how the observations depend on the inputs, is

given by G̃> =
[
G> 0 · · · 0

]
=
[
(−CÂ−1B +D)> 0 · · · 0

]
, following the derivations

in [18, 20]. This is the steady-state gain matrix for a system with matrices Â, B, C and D,
where Â is Hurwitz. If one wants to best model the system, Â should be equal to A. In some
applications in robotics, just the identity matrix is used, letting the difference be resolved by
proper tuning of the control learning rate; see for example [3, 26].

Finally, the controller is obtained by employing the generalised gradient descent for the esti-
mates µ̃ and a normal gradient descent on the inputs u, as in Equation 2-8, after which the
output of the controller is the input state: ˙̃µx

˙̃µu
u̇

 =

D − κxC̃>Π̃zC̃ − κx(D − Ã)>Π̃w(D − Ã) −κxC̃>Π̃zD̃ + κx(D − Ã)>Π̃wB̃ 0
−κuD̃>Π̃zC̃ + κuB̃

>Π̃w(D − Ã) D − κuD̃>Π̃zD̃ − κuB̃>Π̃wB̃ − κuΠ̃u 0
ρG̃>Π̃zC̃ ρG̃>Π̃zD̃ 0

µ̃xµ̃u
u

+

κxC̃>Π̃z 0
κuD̃

>Π̃z κuΠ̃u

−ρG̃>Π̃z 0

[ỹ
η̃

]
,

u =
[
0 0 I

] µ̃xµ̃u
u

 ,
(3-1)

with κx the state estimation learning rate, κu the input estimation learning rate and ρ the
control learning rate. These matrix learning rates are the tuning parameters of the AI con-
troller. The precision matrix of the input prior Π̃u can also be considered to be a tuning

1In outputs ỹ, estimates µ̃ and priors η̃.

J.D. Coehoorn Master of Science Thesis

3-1 AI controller for different formulations of the FE 13

parameter, as it can be freely chosen. In section A-2, a MATLAB implementation for the
closed-loop of AI on a LTI system can be found, where use is made of MATLAB’s Control
System Tuner toolbox. This code is used in the second comparison.

3-1-2 Inputs are equal to the priors

When we set µ̃u = η̃, which is equivalent to the limiting case of Π̃u = λI, with λ → ∞, the
controller obtained from the original formulation reduces to:

[
˙̃µx
u̇

]
=
[
D − κxC̃>Π̃zC̃ − κx(D − Ã)>Π̃w(D − Ã) 0

ρG̃>Π̃zC̃ 0

] [
µ̃x
u

]

+
[
κxC̃

>Π̃z −κxC̃>Π̃zD̃ + κx(D − Ã)>Π̃wB̃

−ρG̃>Π̃z ρG̃>Π̃zD̃

] [
ỹ
η̃

]
,

u =
[
0 I

] [µ̃x
u

]
,

which is a more complete version of the controller found in [18]. A MATLAB implementation
for this can also be found in section A-2.

3-1-3 I: Inputs are known

Instead of estimating the inputs, when we know the inputs exactly, like in most control
systems, we can replace the FE with

F (µ̃x, ỹ, η̃, ũ) = 1
2(ỹ − g(µ̃x, ũ))>Π̃z(ỹ − g(µ̃x, ũ)) + 1

2(Dµ̃x − f(µ̃x, ũ))>Π̃w(Dµ̃x − f(µ̃x, ũ))

+ 1
2(ũ− η̃)>Π̃u(ũ− η̃).

This is closer to the setting on which LQG is defined, and the results from this section will
be used in the first comparison.

This FE leads to the partial derivatives:

∂F

∂µ̃x
=− C̃>Π̃z(ỹ − g(µ̃x, ũ)) + (D − Ã)>Π̃w(Dµ̃x − f(µ̃x, ũ)),

∂F

∂u
=
(
G̃> −

[
D> 0 · · · 0

])
Π̃z(ỹ − g(µ̃x, ũ))

−
[
B> 0 · · · 0

]
Π̃w(Dµ̃x − f(µ̃x, ũ))

+Im×m(p+1)Π̃u(ũ− η̃),

with Im×m(p+1) an identity matrix concatenated with zeros in the larger direction.

Master of Science Thesis J.D. Coehoorn

14 Active Inference on LTI systems

The controller then becomes[
˙̃µx
u̇

]
=
[

D − κxC̃>Π̃zC̃ − κx(D − Ã)>Π̃w(D − Ã)
−ρ

[
(CÂ−1B)> 0 · · · 0

]
Π̃zC̃ + ρB>1 Π̃w(D − Ã)

−κxC̃>Π̃zD̃1 + κx(D − Ã)>Π̃wB̃1

−ρ
[
(CÂ−1B)> 0 · · · 0

]
Π̃zD̃1 − ρB>1 Π̃wB̃1 − ρIm×m(p+1)Π̃uIm(p+1)×m

] [
µ̃x
u

]

+
[

κxC̃
>Π̃z 0

ρ
[
(CÂ−1B)> 0 · · · 0

]
Π̃z ρIm×m(p+1)Π̃u

−κxC̃>Π̃zD̃2 + κx(D − Ã)>Π̃wB̃2

−ρ
[
(CÂ−1B)> 0 · · · 0

]
Π̃zD̃2 − ρB>1 Π̃wB̃2 − ρIm×m(p+1)Π̃u

[
0
Imp

]
 ỹη̃
ũ2

 ,
u =

[
0 I

] [µ̃x
u

]
,

where B1 is the first block column of B̃ and B2 are the remaining columns; similarly for D1
and D2. ũ2 is given by ũ, excluding u.

Alternatively, one can take the partial derivative with respect to ũ to obtain

∂F

∂ũ
= (H̃ − D̃)>Π̃z(ỹ − g(µ̃x, ũ))− B̃>Π̃w(Dµ̃x − f(µ̃x, ũ)) + Π̃u(ũ− η̃),

with

H̃ =

−CÂ−1B +D −CÂ−2B · · · −CÂ−pB −CÂ−p−1B

0 −CÂ−1B +D · · · −CÂ−p+1B −CÂ−pB
...

...
...

0 0 · · · −CÂ−1B +D −CÂ−2B

0 0 · · · 0 −CÂ−1B +D

 ,

which is derived in [20], which results in the controller[
˙̃µx
˙̃u

]
=
[
D − κxC̃>Π̃zC̃ − κx(D − Ã)>Π̃w(D − Ã) −κxC̃>Π̃zD̃ + κx(D − Ã)>Π̃wB̃

ρ(H̃ − D̃)>Π̃zC̃ + ρB̃>Π̃w(D − Ã) ρ(H̃ − D̃)>Π̃zD̃ − ρB̃>Π̃wB̃ − ρΠ̃u

] [
µ̃x
ũ

]

+
[

κxC̃
>Π̃z 0

−ρ(H̃ − D̃)>Π̃z ρΠ̃u

] [
ỹ
η̃

]
,

u =
[
0 Im×m(p+1)

] [µ̃x
ũ

]
.

As it turns out, in the first comparison, both of these controllers reduce to the same expression
for p = 0 (the WGN case).

3-2 Closed-loop

In this section, we will answer the research question:

J.D. Coehoorn Master of Science Thesis

3-2 Closed-loop 15

Does the closed-loop of AI on a LTI system depend linearly on the tuning param-
eters of AI?

To be able to determine this answer, we obtain the closed-loop system description for the
original implementation of AI on the systems in Equation 2-2. If the answer is positive, we
can make use of several tuning methods available to optimally tune the AI controller for the
second part of the comparison.

Because of the derivatives of y, it is not easy to directly calculate the state-space representation
of the closed-loop. We can start by connecting the inputs u from Equation 2-6 and Equation 3-
1:

ẋ
ẋw
ẋz
˙̃µx
˙̃µu
u̇

=

A Cw 0
0 Aw 0
0 0 Az
0 0 0
0 0 0
0 0 0

0 0 B
0 0 0
0 0 0

D − κxC̃>Π̃zC̃ − κx(D − Ã)>Π̃w(D − Ã) −κxC̃>Π̃zD̃ + κx(D − Ã)>Π̃wB̃ 0
−κuD̃>Π̃zC̃ + κuB̃

>Π̃w(D − Ã) D − κuD̃>Π̃zD̃ − κuB̃>Π̃wB̃ − κuΠ̃u 0
ρG̃>Π̃zC̃ ρG̃>Π̃zD̃ 0

x
xw
xz
µ̃x
µ̃u
u

+

0 0 0 0
0 0 Bw 0
0 0 0 Bz

κxC̃
>Π̃z 0 0 0

κuD̃
>Π̃z κuΠ̃u 0 0

−ρG̃>Π̃z 0 0 0

ỹ
η̃
ω
ζ

 ,

y =
[
C 0 Cz 0 0 D

]

x
xw
xz
µ̃x
µ̃u
u

.

We write this in short as ẋcl = Aexcl + Beue and y = Cexcl. To make the final step in
obtaining the closed-loop, we need to take derivatives of y:

y = Cexcl,

ẏ = Ceẋcl = CeAexcl + CeBeue

=
[
CA 0 CzAz 0 0 CB

]
xcl +

[
−DρG̃>Π̃z 0 0 CzBz

]
ue

=
[
CA 0 CzAz 0 0 CB

]
xcl −DρG̃>Π̃z ỹ,

where we have made use of the fact that CzBz = 0 if the noise filter is of appropriate order
for the AI controller to have that amount of orders p. As we can see, the derivatives of y

Master of Science Thesis J.D. Coehoorn

16 Active Inference on LTI systems

depend on ỹ themselves, which is inconvenient. Due to the structure of Π̃z (as explained in
the following section), we can write that G̃>Π̃z ỹ = G>Πzy if p = 1. This leads to

ẏ =
[
CA 0 CzAz 0 0 CB

]
xcl −DρG̃>Π̃z ỹ

=
[
CA 0 CzAz 0 0 CB

]
xcl −DρG>Πzy

=
[
CA 0 CzAz 0 0 CB

]
xcl −DρG>ΠzCexcl

=
[
CA−DρG>ΠzC 0 CzAz −DρG>ΠzCz 0 0 CB −DρG>ΠzD

]
xcl.

As can be seen, if D 6= 0, the learning rates will appear quadratically in the closed-loop
system matrix due to them appearing in the first column of Be and in the equation for ẏ. For
D = 0 and p = 1, we have that

ẋ
ẋw
ẋz
˙̃µx
˙̃µu
u̇

=

A Cw 0 0
0 Aw 0 0
0 0 Az 0

κxC̃
>Π̃z

[
C
CA

]
0 κxC̃

>Π̃z

[
Cz
CzAz

]
D − κxC̃>Π̃zC̃ − κx(D − Ã)>Π̃w(D − Ã)

0 0 0 κuB̃
>Π̃w(D − Ã)

−ρG̃>Π̃z

[
C
CA

]
0 −ρG̃>Π̃z

[
Cz
CzAz

]
ρG̃>Π̃zC̃

0 B
0 0
0 0

κx(D − Ã)>Π̃wB̃ κxC̃
>Π̃z

[
0
CB

]
D − κuB̃>Π̃wB̃ − κuΠ̃u 0

0 −ρG̃>Π̃z

[
0
CB

]

x
xw
xz
µ̃x
µ̃u
u

+

0 0 0
0 Bw 0
0 0 Bz
0 0 0

κuΠ̃u 0 0
0 0 0

η̃ω
ζ

 ,

y =
[
C 0 HCz 0 0 0

]

x
xw
xz
µ̃x
µ̃u
u

.

The only tuning parameters that appear non-linearly in the closed-loop system matrix are
the input learning rate and input precision, in the term κuΠ̃u. This can be easily resolved
by doing a change of coordinates Ku = κuΠ̃u and obtaining the original precision matrix by
Π̃u = κ−1

u Ku, making sure that κu is non-singular.

J.D. Coehoorn Master of Science Thesis

3-3 Precision matrix 17

For higher generalised orders (p > 1), we can quickly verify that even if D = 0, the learning
rates will appear non-linearly in the closed-loop system matrix due to the fact that

ÿ =
[
CA 0 CzAz 0 0 CB

]
ẋcl

=
[
CA 0 CzAz 0 0 CB

]
Aexcl +

[
CA 0 CzAz 0 0 CB

]
Beue

depends on the learning rate ρ, which will get multiplied with the first column in Be, leading
again to quadratic terms.

This answers the research question. Only for p = 1 and D = 0, the learning rates appear
linearly in the closed-loop matrix. This means that for the second comparison, where the
orders will be higher, we will have to make use of tuning techniques that no longer have good
guarantees on optimality or convergence.

3-3 Precision matrix

The precision matrices have not yet been defined. They denote the inverse of the variances
of the Gaussian distribution that is assumed for the noises, which are given by

Σ =

E[w(t)w(t)] E[w(t)ẇ(t)] E[w(t)ẅ(t)] E[w(t)w(3)(t)] · · ·
E[ẇ(t)w(t)] E[ẇ(t)ẇ(t)] E[ẇ(t)ẅ(t)] E[ẇ(t)w(3)(t)] · · ·
E[ẅ(t)w(t)] E[ẅ(t)ẇ(t)] E[ẅ(t)ẅ(t)] E[ẅ(t)w(3)(t)] · · ·

E[w(3)(t)w(t)] E[w(3)(t)ẇ(t)] E[w(3)(t)ẅ(t)] E[w(3)(t)w(3)(t)] · · ·
...

...
...

... . . .

 .

There are multiple ways to calculate this matrix. First of all, a way is shown to calculate
this using the auto-correlation of the noise, which is the method that Friston also uses [17].
Secondly, one can calculate the matrix from the impulse response of the filter that is used to
convolute WGN. These methods can both be used to calculate the precision matrix for the
extended system in Equation 2-2, used in the second comparison. The input precision matrix
depends on the precision of the priors, which is more of a trade-off between estimation of
the inputs and setting the estimates of the inputs equal to the priors. This matrix can be
chosen freely by the designer. A MATLAB implementation to calculate the precision matrix
for different filters is provided in section A-3. Lastly, we provide a short discussion on the
precision matrix for WGN, which is needed in the first comparison.

3-3-1 From auto-correlation

We have that

Σ = σ2

1 0 ρ̈(0) 0 · · ·
0 −ρ̈(0) 0 −ρ(4)(0) · · ·
ρ̈(0) 0 ρ(4)(0) 0 · · ·

0 −ρ(4)(0) 0 −ρ(6)(0) · · ·
...

...
...

... . . .

 (3-2)

Master of Science Thesis J.D. Coehoorn

18 Active Inference on LTI systems

for stationary processes, the derivation for which has been shown in [10, Ch. 7.4]. γ(0) = σ2

and ρ(t) = γ(t)
σ2 , which is the normalized auto-correlation. To compute more than one order

of the precision matrix, ρ(t) thus has to be differentiable multiple times at 0. Note that the
one-order-difference cross-terms E[w(t)ẇ(t)], and similarly E[ẇ(t)ẅ(t)], etc., are always 0.
The auto-correlation of a Wide-Sense Stationary (WSS) process with auto-correlation γx(t)
passed trough a stable LTI filter h(t) is given by the convolution γy(t) = h ∗ ĥ ∗ γx(t), with
ĥ(t) = h∗(−t), where ∗ denotes the complex conjugate [19, Ch. 8.1]. For a (zero-mean,
normalized) WGN process, γx(t) = δ(t), where δ(t) is the Dirac delta function [19, p.251].
So, if we want to calculate the auto-correlation of WGN being passed trough a stable LTI
filter h, we can simply calculate γ(t) = h∗ ĥ(t). This can also be done in the spectral domain:
the Power Spectral Density (PSD) S(jω) of a WSS signal is the Fourier transform of the
auto-correlation [19, Ch. 8.2], so we can simply calculate

S(jω) = |H(jω)|2 = H(jω)H(−jω).

Using these relations, we can calculate the precision matrix.

Example Let’s say that we have WGN, that is fed through the causal and stable LTI filter
with transfer function H(s) = 1

(s+1)2 , or in time domain, is convoluted with h(t) = te−tu(t),
with u(t) the Heaviside step function. The spectral density is given by

S(jω) = H(jω)H(−jω)

= 1
(1 + jω)2

1
(1− jω)2

= 1
(1 + ω2)2 .

This leads to the auto-correlation γ(t) = 1
4

(
|t|e−|t| + e−|t|

)
, with σ2 = 1

4 and normalized
auto-correlation ρ(t) = |t|e−|t| + e−|t|. The derivatives of this are:

dρ(t)
dt

= ρ̇(t) = −te−|t|,

ρ̈(t) = |t|e−|t| − e−|t|,

ρ(3)(t) = −e
−|x|x(−2 + |x|)

|x|
.

The third derivative does not have a value at 0. The precision matrix will thus be of size 2
and become:

Π(ρ) = σ−2
[
1 0
0 −ρ̈(0)

]−1

=
[
4 0
0 4

]
.

3-3-2 II: From impulse response

To calculate the covariance E[w(t)z(t)] of two signals w(t) and z(t), which are obtained by
filtering WGN with filters with real impulse responses hw and hz, we can just calculate the

J.D. Coehoorn Master of Science Thesis

3-3 Precision matrix 19

integral
∫∞
−∞ hw(τ)hz(τ)dτ . This also extends to the derivatives, and follows simply from the

derivations in [19, Ch. 8.1].

Example Let us take the same example as in the previous section. We can simply directly
calculate the terms that are necessary:

E[w(t)w(t)] =
∫ ∞
−∞

h(τ)h(τ)dτ

=
∫ ∞
−∞

τe−τu(τ)τe−τu(τ)dτ

=
∫ ∞

0
τ2e−2τdτ

= 1
4 ,

E[w(t)ẇ(t)] =
∫ ∞
−∞

h(τ)ḣ(τ)dτ

= [h(τ)h(τ)]∞−∞ −
∫ ∞
−∞

ḣ(τ)h(τ)dτ (integration by parts)

= 1
2 [h(τ)h(τ)]∞−∞

= 1
2
[
τ2e−2τu2(τ)

]∞
−∞

= 0,

E[ẇ(t)ẇ(t)] =
∫ ∞
−∞

ḣ(τ)ḣ(τ)dτ

=
∫ ∞
−∞

(
e−τu(τ)− τe−τu(τ)

) (
e−τu(τ)− τe−τu(τ)

)
dτ

=
∫ ∞

0
e−2τdτ +

∫ ∞
0
−2τe−2τdτ +

∫ ∞
0

τ2e−2τdτ

= 1
2 −

1
2 + 1

4 = 1
4 .

Filling these terms in will result in the same precision matrix as derived earlier.

3-3-3 I: For White Gaussian Noise

In continuous time, the precision matrix of WGN is not defined very well. White noise
formally has a covariance of σ2δ(0) [19, p.251], which means that for a filter which just passes
the white noise through, the precision matrix is 0, leading to a trivial FE. In a Kalman filter,
which assumes WGN, the matrices that are commonly called the ‘covariance’ matrices are
actually the matrices containing the PSD of the noise signal.
When introducing the precision matrix, Friston et al. decompose the matrix in two parts: a
temporal and a stationary part. This corresponds to the matrix containing the normalized au-
tocorrelation and its derivatives and the σ2 in Equation 3-2, respectively. So in the reduction
to p = 0 when we have WGN, we should drop the temporal part of the covariance. Friston
et al. also omit this part when comparing Dynamic Expectation Maximization (DEM) and
Kalman filtering by assuming Gaussian noise with infinite roughness [17].

Master of Science Thesis J.D. Coehoorn

20 Active Inference on LTI systems

J.D. Coehoorn Master of Science Thesis

Chapter 4

Comparison of LQG control and AI

In this chapter, Linear-Quadratic Gaussian (LQG) control is compared to Active Inference
(AI). First, a high-level comparison is done between the two state-space representations to
answer the first research question. After that, the White Gaussian Noise (WGN) setting with
known inputs is considered for both controllers, and the theoretical equivalence between the two
is shown by choosing the tuning parameters in a certain way, answering the second question.
Finally, a practical comparison is done by simulating systems with colored noise, where the
noise is formed by convoluting WGN with a Linear Time-Invariant (LTI) filter, giving an
answer to the last research question.

4-1 High-level comparison between the two controllers

In this section, we will answer the research question:

What are equivalences and differences in the state-space equations of the two con-
trollers?

Looking at both controllers in Equation 2-5 and Equation 3-1, we can immediately see a few
differences. The AI controller has (p+1)(n+m)+m states, whereas the LQG controller only
has n states. Furthermore, AI does integral control, whereas the LQG controller is a static
feedback gain on the state estimates. A similarity in the controllers is that both do some kind
of filtering of the system states.

Even when p = 0 and we assume that we know the inputs, which is more similar to the LQG
setting, the AI controller has m states extra, corresponding to the integral control. One can
hypothesize that the LQG control feedback gain is some sort of steady-state solution to a
differential equation for the control input. So, if the two are to be equivalent, at the very
least inputs have to be known, p has to be 0 and we need to find the static solution to the
integral controller. In the next section, we show how this can be done.

Master of Science Thesis J.D. Coehoorn

22 Comparison of LQG control and AI

4-2 Comparison I: Equivalence for WGN with knowledge of inputs

In this section, we will answer the research question:

When are the two controllers equivalent?

Following the reasoning in the previous section, we start with AI where inputs are known. To
go to the p = 0 (WGN) case, we begin with the Free Energy (FE) for only one generalised
coordinate, which is given by

F (µ̃x, y, η, u) = 1
2(y − g(µx, u))>Πz(y − g(µx, u)) + 1

2(µx′ − f(µx, u))>Πw(µx′ − f(µx, u))

+ 1
2(u− η)>Πu(u− η),

where the generative model is given by g(µx, u) = Cµx +Du and f(µx, u) = Aµx +Bu. For
this FE, both controllers from subsection 3-1-3 are reduced to: µ̇xµ̇x′

u̇

 =

 −κx(C>ΠzC +A>ΠwA) I + κxA
>Πw −κx(C>ΠzD +A>ΠwB)

κx′ΠwA −κx′Πw κx′ΠwB

−ρ((CÂ−1B)>ΠzC +B>ΠwA) ρB>Πw −ρ((CÂ−1B)>ΠzD +B>ΠwB + Πu)

µxµx′

u

+

 κxC
>Πz 0
0 0

ρ(CÂ−1B)>Πz ρΠu

[y
η

]
,

u =
[
0 0 I

] µxµx′

u

 .
This reduction is similar to the reductions found in [18] and [4], where with p = 0 only the
first row of the generalised equations of motion Dx̃x = f(x̃, u)+w̃ is taken (x′ = Ax+Bu+w).
In [2], the reduction is done slightly differently, as there for p = 0 only the first order of x̃ is
kept (0 = Ax+Bu+w). Note that we take the inverse Power Spectral Density (PSD) for Πw

and Πz if we have WGN, instead of the inverse covariances, as explained in subsection 3-3-3.
As can be seen, the estimate of the first derivative (the second row in the state-space update
equations) does not depend on any inputs, and we can set the learning rate very high with
respect to the other updates, which leads to the static solution µx′ = Aµx + Bu, which we
can fill in to obtain[
µ̇x
u̇

]
=
[

A− κxC>ΠzC B − κxC>ΠzD

−ρ(CÂ−1B)>ΠzC −ρ((CÂ−1B)>ΠzD + Πu)

] [
µx
u

]
+
[

κxC
>Πz 0

ρ(CÂ−1B)>Πz ρΠu

] [
y
η

]
,

u =
[
0 I

] [µx
u

]
.

This is AI with p = 0. If we neglect the controller part, we can immediately see that this is
equivalent to the Kalman filter in Equation 2-4 for κx = P . We would now like to use the

J.D. Coehoorn Master of Science Thesis

4-2 Comparison I: Equivalence for WGN with knowledge of inputs 23

same trick to eliminate the extra controller states. The controller updates, however, depend
on the outputs y, which will lead to the static control action depending on y, which is not
the case for the Linear-Quadratic Regulator (LQR) in Equation 2-5. Thus, we assume that
the outputs are in expectation given by y = Gu = −CÂ−1Bu+Du. Doing this, we can write
the second row of the controller as

u̇ = −ρ(CÂ−1B)>ΠzCµx − ρ((CÂ−1B)>ΠzCÂ
−1B + Πu)u+ ρΠuη.

If we set the controller gain very high, just like we did earlier for the estimation gain for µx′ ,
we arrive at the solution to u̇ = 0:

u = ((CÂ−1B)>ΠzCÂ
−1B + Πu)−1(−(CÂ−1B)>ΠzCµx + Πuη),

which gives the final controller equation:

µ̇x = (A− LC −BK + LDK)µx +
[
L BR−1Πu − LDR−1Πu

] [y
η

]
,

u =−Kµx +
[
0 R−1Πu

] [y
η

]
,

with L = κxC
>Πz, K = R−1B>(CÂ−1)>ΠzC and R = (CÂ−1B)>ΠzCÂ

−1B + Πu. The
two reductions by setting a learning rate very high, essentially entail directly going to the
minimum of the FE function, instead of doing a descent. Not doing this for µx is similar
to a state observer: if a state observer gain is set very high, we only consider the most
recent measurements and do not take into account the model estimates and predictions. In
Table 4-1, the terms of the AI controller are compared with the nominal LQG controller from
Equation 2-5.

Table 4-1: A comparison of the terms of the reduced AI controller and the nominal LQG
controller. Differences are highlighted in bold.

AI LQG
Ac A− LC −BK + LDK A− LC −BK + LDK

Bc
[
L BR−1Πu − LDR−1Πu

] [
L BKB− LDKB

]
Cc −K −K
Dc

[
0 R−1Πu

] [
0 KB

]
L κxC

>Πz PC>Πz

K R−1B>(CÂ−1)>ΠzC R−1B>S
R (CÂ−1B)>ΠzCÂ−1B + Πu Given

Hence, the two controllers are equivalent if we set the estimation learning rate κx = P , the
solution to the estimation Algebraic Riccatti Equation (ARE), assume that the solution to
the control ARE is given by S = (CÂ−1)>ΠzC, which is not necessarily symmetric or positive
definite, and set the input precision matrix Πu = B>SB.

Master of Science Thesis J.D. Coehoorn

24 Comparison of LQG control and AI

Filling the obtained S and R into the controller ARE we obtain:

0 = A>(CÂ−1)>ΠzC + ((CÂ−1)>ΠzC)>A+Q

− ((CÂ−1)>ΠzC)>B((CÂ−1B)>ΠzCÂ
−1B +B>(CÂ−1)>ΠzCB)−1B>(CÂ−1)>ΠzC

Q =−A>Â−>C>ΠzC − C>ΠzCÂ
−1A

+ C>ΠzCÂ
−1B((CÂ−1B)>ΠzC(Â−1 + I)B)−1(CÂ−1B)>ΠzC

In Table 4-2, the different tuning parameters for equivalence of AI and LQG are summarized
as a function of Â. Note that the LQG terms Q, R and S are not necessarily positive (semi-
)definite, nor that S is guaranteed to be symmetric. This is also the case for the precision
matrix of the inputs Πu.

Table 4-2: Comparison of the tuning parameters of AI and LQG for equivalence as a function of
Â. S is included for ease of comparison, as it actually not a tuning parameter but dependent on
Q and R.

AI LQG
κx = P Q = C>ΠzCÂ

−1B((CÂ−1B)>ΠzC(Â−1 + I)B)−1(CÂ−1B)>ΠzC

κx′ →∞ −A>Â−>C>ΠzC − C>ΠzCÂ
−1A

ρ→∞ R = (CÂ−1B)>ΠzC(Â−1 + I)B
Πu = (CÂ−1B)>ΠzCB S = Â−>C>ΠzC

The closed-loop system matrix of this reduced AI on the system from Equation 2-1 is now
given by

Acl = A−B((CÂ−1B)>ΠzC(Â−1 + I)B)−1(CÂ−1B)>ΠzC.

We thus have to choose the Â matrix right to get a stabilizing controller, which is in contrast
to LQG, which guarantees a stabilizing controller for any Q ≥ 0, R > 0 on any linear system.

4-3 Comparison II: Filtered WGN without knowledge of inputs

In this section, we will answer the research question:

How does tuned AI compare to LQG control in terms of LQG costs?

We will do this by means of a numerical comparison between the extended LQG from subsec-
tion 2-2-2 and the original AI controller from Equation 3-1. As explained in section 4-1, there
are now inherent differences between the two controllers. Both controllers are run on the ex-
tended system from Equation 2-2. For the forward model for the AI controller, we simply set
Â = A, letting the rest of the tuning parameters stabilize the closed-loop. The main systems
are single-input, single-output (SISO) or multiple-input, multiple-output (MIMO) systems of
increasing orders n, with the noise filters having a relative order of 3 or 6, such that p = 2 or
p = 5, respectively. The filters have been scaled such that the precision at the first order is
1. The reference or prior η̃ was set to 0.
Tuning of the AI controller is done to minimize the same cost (Equation 2-3) as LQG does,
to ensure a fair comparison. The cost matrices are set to identity and the final obtained costs

J.D. Coehoorn Master of Science Thesis

4-3 Comparison II: Filtered WGN without knowledge of inputs 25

are scaled such that the costs obtained by LQG are 1. Because the tuning problem is not
easily solved, as elaborated in section 3-2, we make use of the systune option in MATLAB,
using 20 random starts. For Π̃u, only the elements on the main diagonal are set to be tunable,
with values greater than 0. Knowledge of the underlying noise systems is included during the
tuning phase. For the derivatives in AI, a high-pass filter was used as approximation.

The results are generated by running the controllers on 100 randomly generated extended
systems for one million time steps with MATLAB’s lsim command. The random noise
systems are generated by the code in section A-4; the code for a single realization can be
found in section A-5.

In Figure 4-1, a comparison is provided for SISO systems, with p = 2. As can be seen, we are
able to tune AI very close to the optimal costs that LQG obtained for small system orders.
For all of the six situations, there was at least one AI controller that achieved the optimal
solution within less than one percent, showing the potential of using more random starts.
Only for n ≤ 3, the medians were within 5%.

In Figure 4-2, a comparison is provided for MIMO systems, with p = 2. As is clear from
the incurred costs, it gets harder to tune the AI controller such that it behaves optimally,
especially for higher orders. Now, for n ≤ 3, the medians were within 100% of the optimal
solutions. Lastly, in Figure 4-3, a comparison is provided for SISO systems with p = 5.
Similarly for the MIMO case, it is hard to obtain optimal behaviour and now even the medians
are infinite, corresponding to failed tuning (unstable solution).

It thus seems that for higher-dimensional problems, i.e. n, p or m or q becomes higher, it
becomes increasingly hard to obtain a close-to-optimal controller. But this is of course to
be expected: the dimensionality of the optimization problem increases, while we are dealing
with a non-linear optimization problem. Of course, we could have tried more random starts
and might have ended up with better controllers, but this is not certain as of yet. For smaller
problems, we are able to tune AI such that its behaviour is very close to the optimal LQG
solution.

Master of Science Thesis J.D. Coehoorn

26 Comparison of LQG control and AI

Figure 4-1: A comparison of AI and LQG on the extended system from Equation 2-2. The base
system is a SISO system of varying order n. The noise systems have a relative order of 3, so
p = 2. The top figure shows a very zoomed-out plot of the incurred costs of AI compared to
LQG. The bottom figure shows the incurred AI costs within 11% of the optimal (LQG) costs.

J.D. Coehoorn Master of Science Thesis

4-3 Comparison II: Filtered WGN without knowledge of inputs 27

Figure 4-2: A comparison of AI and LQG on the extended system from Equation 2-2. The base
system is a MIMO system of varying order n, with m = q = 3. The noise systems have a relative
order of 3, so p = 2. The top figure shows a very zoomed-out plot of the incurred costs of AI
compared to LQG. The bottom figure shows the incurred AI costs within 110% of the optimal
(LQG) costs.

Master of Science Thesis J.D. Coehoorn

28 Comparison of LQG control and AI

Figure 4-3: A comparison of AI and LQG on the extended system from Equation 2-2. The base
system is a SISO system of varying order n. The noise systems have a relative order of 6, so
p = 5. The top figure shows a very zoomed-out plot of the incurred costs of AI compared to
LQG. The bottom figure shows the incurred AI costs within 110% of the optimal (LQG) costs.
The median values are not displaced, as they are now all infinite (failed tuning).

J.D. Coehoorn Master of Science Thesis

Chapter 5

Conclusions and recommendations

In this chapter, we give the conclusions of this thesis work. We also discuss Free Energy (FE)
as a Lyapunov function. Lastly, some recommendations for further research are given.

5-1 Conclusions and discussion

In this thesis work, we showed how Active Inference (AI) is formulated for Linear Time-
Invariant (LTI) systems. This was done for 3 different formulations of the FE. First, the
original implementation of Friston was given. After that, it was shown that this could be
reduced to the AI implementation in [18] by simply setting the prior precision very high.
Lastly, a new implementation was given, where it was assumed that the controller has access to
the inputs. This could be unlike some biological systems, where efferent copies are unavailable,
but is very natural for control systems as used by engineers.

As knowledge of inputs is one of the requirements for the Linear-Quadratic Gaussian (LQG)
controller, we reduced the known-inputs AI to the White Gaussian Noise (WGN) noise case -
the case when LQG is optimal. This reduction was done similarly to some existing literature.
After that, it was shown that for particular choices of the learning rates and the prior precision,
AI reduces to the same structure as LQG, which is the first time that such a result is shown
in the literature. A comparison was made between the learning rates and prior precision
for AI on the one hand, and the cost matrices for LQG on the other hand. Doing this, we
found that in order to stabilize AI, we should choose the forward model appropriately. This
stands in contrast to LQG, where a stabilizing controller is found for any system and any
cost function. Furthermore, the matrices that are normally used for LQG no longer adhere to
their positive (semi-)definite constraints, making it hard to obtain intuitive relations between
choices of cost matrices, prior precision and forward model.

Other than the reduction of AI to the LQG setting, we extended LQG to a setting closer to
AI. We obtained the optimal LQG controller for this new setting, and compared how close
the original AI implementation came to the behaviour of this optimal controller. It turned
out, that for small systems, i.e. number of states, inputs, outputs and generalised states

Master of Science Thesis J.D. Coehoorn

30 Conclusions and recommendations

relatively small, we could tune AI very close to optimal behaviour. When the systems grew
in size, however, the tuning became harder. The conception is that AI is still able to show
close-to-optimal behaviour for these larger systems, if the tuning is done optimally. This has,
however, not been proven or shown.

As a point of discussion, in the second comparison we obtained the optimal controller for the
LQG cost function (Equation 2-3), which is the LQG controller if the original noise is WGN.
So the comparison was more to see whether AI could reach the optimality of LQG. It would
be fair to also include a comparison where LQG is not guaranteed to be optimal, for example
for noises that cannot be modelled with LTI systems (e.g. Gaussian convolved noise). AI
might be better in that case; [2] has already made a start in comparing Dynamic Expectation
Maximization (DEM) and Kalman filtering and has found that DEM outperforms Kalman
filtering.

On a more fundamental note, Friston has argued that ‘under the Free Energy Principle (FEP)
(i.e., the brain changes to minimise its FE), the FE becomes a Lyapunov function for the
brain’ [16]. This is of course the very definition of a Lyapunov function: if a system only moves
downward on such a function, where the minimum is at the equilibrium, the equilibrium is
stable. But this statement can be mistaken for saying that the FE is a Lyapunov function
for running AI on any system. This is not the case, as still the condition needs to hold
that AI actually minimizes the FE, which really depends on the system being controlled,
the generative model that is assumed and the choice of tuning parameters. In another work,
Friston decomposes the flow of a generative model into a divergence- and curl-free part of
the FE [14]. The curl-free part is then the dissipative part, which ensures stability (so he
chooses a stable generative model). Doing this, he argues that the FE becomes a Lyapunov
function. But this rests on the assumption that ‘action eliminates (on average) the difference
between the actual and predicted flow’ [14], in other words: action needs to be such that the
controlled system behaves like a stable generative model. But that is of course the whole
point of control and, other than the gradient descent on the FE, Friston gives no methods to
achieve this condition.

5-2 Recommendations

As no research stands on its own, and there still remain open questions on this subject, we
give here some recommendations for further research:

• Relations between reduced AI and LQG control:
We obtained relations between the choice of forward model and choice of cost matrices.
However, these terms are quite advanced. What are their intuitive explanations?

• Tuning of AI:
From the results on the second comparison, it became clear that the tuning of the AI
controller is a non-trivial task. The tuning is not only needed for optimality, but also
even for stability. It is therefore essential that more research is conducted into tuning
procedures. During the work on this thesis, linear-matrix inequality techniques were
considered for tuning, but the problem becomes quickly non-linear for more generalised
coordinates. Also, as was clear from the results of the second comparison, the tuning

J.D. Coehoorn Master of Science Thesis

5-2 Recommendations 31

problem became harder for more complex systems. However, for low-order systems, we
were often able to find a close-to-optimal solution for AI. It would be worthwhile to
investigate whether these solutions always exist, even for more complex systems.

• AI and Online Optimization (OO):
AI has some stability issues, that have also been encountered in this thesis work. In a
literature survey that was performed earlier by the author, connections between the OO
framework and AI were investigated. Both deal with the minimization of a (quadratic)
cost function, and do so mostly using a gradient descent. For the OO framework,
a performance measure called regret is used. From the literature survey, it became
clear that minimizing regret does not directly ensure stabilizing dynamics. Recent
developments in OO, however, are increasingly in the direction of OO on LTI systems,
see for example [9,29] and related works. The controllers that are obtained using these
techniques are stabilizing. To tackle the stability issues of AI, making the connection
between AI and these recent developments could be a useful way forward.

• Comparison of AI and LQG:
In this thesis, we only considered cases where LQG was guaranteed to be optimal. It
would be fair if further comparative research could be done into situations closer to real
life, where noises are not easily modelled, white or formed linearly.

• AI on Linear Time-Varying (LTV) systems:
In this thesis work, we have made a comparison between AI and the infinite-horizon
time-invariant LQG problem. LQG controllers, however, can also be defined for LTV
systems. AI on LTV systems has not yet been investigated; it would be interesting to
see whether the same equivalency can be obtained as is this thesis work. Making the
step to LTV systems will require a rewriting of generative models to also include the
derivatives of the system matrices.

Master of Science Thesis J.D. Coehoorn

32 Conclusions and recommendations

J.D. Coehoorn Master of Science Thesis

Appendix A

MATLAB code

A-1 Closed-loop LQG

The following is code to calculate the closed-loop system of Linear-Quadratic Gaussian (LQG)
control on the systems in Equation 2-2.

1 function [sysclLQG , IP , p] = closedLoopLQG (sys , sysw , sysz , Q , R , N)
2 %CLOSEDLOOPLQG Closed -loop system of LQG on a ss system
3 %
4 % [sysclLQG ,IP,p] = CLOSEDLOOPLQG(sys,sysw,sysz,Q,R,N)
5 % gives the closed loop ss system sysclLQG that results from running

the
6 % optimal (LQG) controller on the system sys, with sysw and sysz the
7 % noise systems , having normalized WGN as inputs and the noise w and z

as
8 % output. Q, R and N are the normal LQR weighting matrices.
9 %

10 % Inputs:
11 % sys: System to be controlled , given by
12 % .
13 % x = Ax + Bu + Gw {State equation}
14 % y = Cx + Du + Hz {Measurements}
15 % such that sys = ss(A,[B G 0],C,[D 0 H])
16 %
17 % sysw: Process noise filter
18 % sysz: Measurement noise filter
19 %
20 % Q: Weighing matrix for states (x’Qx)
21 % R: Weighing matrix for inputs (u’Ru)
22 % N: Weighing matrix for states/inputs (x’Nu). Set to 0 if omitted.
23 %
24 % Outputs:
25 % sysclAI: Tuned closed -loop of AI on system sys
26 % IP: A boolean returning TRUE if the LQG controller is proper

Master of Science Thesis J.D. Coehoorn

34 MATLAB code

27 % p: The amount of derivatives that can be taken for each
output

28 %
29 %
30 % Jesse Coehoorn
31 % MSc Thesis Systems & Control and Mechanical Engineering
32
33 % Systems dimensions (n states , m inputs , q outputs)
34 nw = size (sysw . A , 2) ;
35 nz = size (sysz . A , 2) ;
36 mw = size (sysw . B , 2) ;
37 mz = size (sysz . B , 2) ;
38 qw = size (sysw . C , 1) ;
39 qz = size (sysz . C , 1) ;
40 n = size (sys . A , 2) ;
41 m = size (sys . B , 2)−qw−qz ;
42 q = size (sys . C , 1) ;
43
44 % Noisy system
45 An = [sys . A sys . B (: , m+1:m+qw) ∗sysw . C zeros (n , nz) ;
46 zeros (nw , n) sysw . A zeros (nw , nz) ;
47 zeros (nz , n) zeros (nz , nw) sysz . A] ;
48 Bu = [sys . B (: , 1 : m) ; zeros (nw , m) ; zeros (nz , m)] ;
49 Bn = [zeros (n , mw) zeros (n , mz) ;
50 sysw . B zeros (nw , mz) ;
51 zeros (nz , mw) sysz . B] ;
52 Cn = [sys . C zeros (q , nw) sys . D (: , m+qw+1:end) ∗sysz . C] ;
53 D = sys . D (: , 1 : m) ;
54
55 % Determine amount of derivatives that can be taken
56 p = ones (q , 1) ;
57 D2 = zeros (q , mw+mz) ;
58 for iq = 1 : q
59 OBBn = Cn∗An^(p (iq)−1)∗Bn ;
60 while sum (OBBn (iq , :)) == 0
61 p (iq) = p (iq) + 1 ;
62 OBBn = Cn∗An^(p (iq)−1)∗Bn ;
63 end
64 D2 (iq , :) = OBBn (iq , :) ;
65 end
66
67 % Determine transformation matrices
68 OB = obsv (An , Cn) ;
69 % Determine M
70 M2 = [] ;
71 for iq = 1 : q
72 M2 = [M2 ; OB (iq+q ∗ (0 : p (iq)−1) , :)] ;
73 end
74 nr = size (M2 , 1) ;
75 M = [null (M2) ’ ; M2] ;
76 % Determine H2
77 H2 = [] ;
78 for iq = 1 : q

J.D. Coehoorn Master of Science Thesis

A-1 Closed-loop LQG 35

79 H2 = [H2 ; OB (iq+q∗p (iq) , :)] ;
80 end
81 % Determine G
82 G = [] ;
83 for iq = 1 : q
84 for id = 1 : p (iq)
85 if id == 1
86 G = [G ; [D (iq , :) zeros (1 , max (p) ∗m)]] ;
87 else
88 CO = [OB (iq+q ∗(id −2:−1:0) , :) ∗Bu ; D (iq , :)] ’ ;
89 CO = CO (:) ’ ;
90 G = [G ; [CO zeros (1 , (max (p)+1−id) ∗m)]] ;
91 end
92 end
93 end
94 for iq = 1 : q
95 CO = [OB (iq+q ∗(p (iq) −1:−1:0) , :) ∗Bu ; D (iq , :)] ’ ;
96 CO = CO (:) ’ ;
97 G = [G ; [CO zeros (1 , (max (p)−p (iq)) ∗m)]] ;
98 end
99

100 % Determine transformed system
101 F = M∗An/M ;
102 F11 = F (1 : end−nr , 1 : end−nr) ;
103 F12 = F (1 : end−nr , end−nr+1:end) ;
104 Bu12 = M∗Bu ;
105 Bu1 = Bu12 (1 : end−nr , :) ;
106 Bn12 = M∗Bn ;
107 Bn1 = Bn12 (1 : end−nr , :) ;
108
109 % Transformation of observations
110 H34 = H2/M ;
111 H3 = H34 (: , 1 : end−nr) ;
112 H4 = H34 (: , end−nr+1:end) ;
113
114 % Kalman filter
115 sysk = ss (F11 , [Bu1 F12 Bn1] , H3 , [zeros (q , m+nr) D2]) ;
116 Qn = eye (mw+mz) ;
117 [Kest , ~ , ~] = kalman (sysk , Qn , []) ;
118 Kest . y (q+1:end) = ionames (’x1’ ,n+nw+nz−nr) ;
119 Kest . u (1 : m) = ionames (’u’ ,m) ;
120 Kest . u (m+1:m+nr) = ionames (’x2’ ,nr) ;
121 Kest . u (m+nr+1:end) = ionames (’yk’ ,q) ;
122
123 % LQR
124 try N ; catch N = zeros (n , m) ; end
125 Q = blkdiag (Q , zeros (nw+nz)) ;
126 N = [N ; zeros (nw+nz , m)] ;
127 [L , ~ , ~] = lqr (An , Bu , Q , R , N) ;
128 L (: , end−nz+1:end) = zeros (m , nz) ;
129
130 % Derivatives
131 s = tf (’s’) ;

Master of Science Thesis J.D. Coehoorn

36 MATLAB code

132 % G*utilde
133 du = [] ;
134 for idu = 0 : max (p)
135 du = [du ; s^idu∗eye (m)] ;
136 end
137 Gdu = G (1 : end−q , :) ∗du ;
138 Gddu = G (end−q+1:end , :) ∗du ;
139 Gdu . u = ’u’ ;
140 Gdu . y = ’Gdu’ ;
141 Gddu . u = ’u’ ;
142 Gddu . y = ’Gddu’ ;
143 % ytilde
144 dy = [] ;
145 for iq = 1 : q
146 I = zeros (1 , q) ;
147 I (iq) = 1 ;
148 for idy = 0 : p (iq)−1
149 dy = [dy ; s^idy∗I] ;
150 end
151 end
152 dy . u = ’y’ ;
153 dy . y = ’dy’ ;
154 ddy = [] ;
155 for iq = 1 : q
156 I = zeros (1 , q) ;
157 I (iq) = 1 ;
158 ddy = [ddy ; s^p (iq) ∗I] ;
159 end
160 ddy . u = ’y’ ;
161 ddy . y = ’ddy’ ;
162
163 % x2, z, and y’ signals
164 x2 = sumblk (’x2 = dy - Gdu’ , sum (p)) ;
165 z = sumblk (’z = ddy - Gddu’ ,q) ;
166 H4 = ss (H4) ;
167 H4 . u = ionames (’x2’ ,nr) ;
168 H4 . y = ionames (’H4x2’ ,q) ;
169 yk = sumblk (’yk = z - H4x2’ ,q) ;
170
171 % LQG system
172 K = connect (Kest , Gdu , Gddu , dy , ddy , x2 , z , yk , H4 , [{ ’u’ } ;{ ’y’ }] , [{ ’x1’ } ;{ ’x2’

}]) ;
173 sysLQG = −L/M∗K ;
174 sysLQG . y = ’u’ ;
175 IP = true ;
176 try sysLQG = ss (sysLQG , ’explicit’) ; catch , IP = false ; end
177
178 % Closed loop system
179 sys = ss (sys . A , sys . B , [sys . C ; eye (n)] , [sys . D ; zeros (n , m+qw+qz)]) ;
180 sys . y (1 : q) = ionames (’y’ ,q) ;
181 sys . y (q+1:end) = ionames (’x’ ,n) ;
182 sys . u (1 : m) = ionames (’u’ ,m) ;
183 sys . u (m+1:m+qw) = ionames (’w’ ,qw) ;

J.D. Coehoorn Master of Science Thesis

A-2 Closed-loop AI 37

184 sys . u (m+qw+1:end) = ionames (’z’ ,qz) ;
185 sysw . u = ’omega’ ;
186 sysw . y = ’w’ ;
187 sysz . u = ’zeta’ ;
188 sysz . y = ’z’ ;
189 sysclLQG = connect (sys , sysw , sysz , sysLQG , [{ ’omega’ } ;{ ’zeta’ }] , [{ ’y’ } ;{ ’x’

} ;{ ’u’ }]) ;
190
191 % Filter out artifacts due to inverses etc. Otherwise some poles/zeros

will
192 % not cancel out for explicit representation
193 sysclLQG . A (abs (real (sysclLQG . A))<1e−12) = 0 ;
194 sysclLQG . B (abs (real (sysclLQG . B))<1e−12) = 0 ;
195 sysclLQG . C (abs (real (sysclLQG . C))<1e−12) = 0 ;
196 sysclLQG . D (abs (real (sysclLQG . D))<1e−12) = 0 ;
197 if IP == false
198 sysclLQG = ss (sysclLQG , ’explicit’) ;
199 end
200
201 end
202
203
204 function ioname = ionames (ioname , n)
205
206 if n == 1
207 ioname = {ioname } ;
208 else
209 ioname = cellstr (ioname+"("+(1:n) ’+") ") ;
210 end
211 end

A-2 Closed-loop AI

The following is code to calculate the closed-loop system of Active Inference (AI) on the
systems in Equation 2-2.

1 function sysclAI = closedLoopAI (sys , sysw , sysz , Pixtilde , Piytilde , Piutilde ,
Q , R , N)

2 %CLOSEDLOOPAI Closed -loop system of AI on a ss system
3 %
4 % sysclAI = CLOSEDLOOPAI(sys,nw,nz,Pixtilde ,Piytilde ,Piutilde ,p,Q,R,N)
5 % gives the closed loop ss system sysclAI that results from running
6 % Active Inference on the system sys, where the last nz inputs is the
7 % measurement noise , the nw inputs before that the process
8 % noise. sysw and sysz are the noise systems , having normalized WGN as
9 % inputs and the noise w and z as output. Pixtilde and Piytilde are the

10 % generalised precision matrices for the process and measurement (noise
),

11 % respectively. Piutilde can be freely chosen , or set to Inf, in which
12 % case mu_u is given by eta. Q, R and N are the normal LQR weighting
13 % matrices.

Master of Science Thesis J.D. Coehoorn

38 MATLAB code

14 %
15 % Inputs:
16 % sys: System to be controlled , given by
17 % .
18 % x = Ax + Bu + Gw {State equation}
19 % y = Cx + Du + Hz {Measurements}
20 % such that sys = ss(A,[B G 0],C,[D 0 H])
21 %
22 % sysw: Process noise filter
23 % sysz: Measurement noise filter
24 %
25 % Pixtilde: Generalised precision matrix for the process
26 % Piytilde: Generalised precision matrix for the measurements
27 % Piutilde: Generalised precision matrix for inputs. Set to Inf for

AI
28 % with mu_u = eta
29 %
30 % p: Number of generalised states
31 %
32 % Q: Weighing matrix for states (x’Qx)
33 % R: Weighing matrix for inputs (u’Ru)
34 % N: Weighing matrix for states/inputs (x’Nu). Set to 0 if omitted.
35 %
36 % Outputs:
37 % sysclAI: Tuned closed -loop of AI on system sys
38 %
39 %
40 % Jesse Coehoorn
41 % MSc Thesis Systems & Control and Mechanical Engineering
42
43 % System dimensions
44 n = size (sys . A , 2) ; % state dimension of system
45 qw = size (sysw . C , 1) ; % output dimension of process noise filter
46 qz = size (sysz . C , 1) ; % output dimension of measurement noise

filter
47 m = size (sys . B , 2)−qw−qz ; % controllable input dimension of system
48 q = size (sys . C , 1) ; % output dimension of system
49 p = min (length (Pixtilde) /n+1,length (Piytilde) /q) ;
50
51 % Make sure that precision matrices have the same number of generalised
52 % states
53 if p∗n < length (Pixtilde)
54 Pixtilde = Pixtilde (1 : p∗n , 1 : p∗n) ;
55 else
56 Pixtilde = blkdiag (Pixtilde , zeros (n∗p−length (Pixtilde))) ;
57 end
58 if p∗q < length (Piytilde)
59 Piytilde = Piytilde (1 : p∗q , 1 : p∗q) ;
60 else
61 Piytilde = blkdiag (Piytilde , zeros (q∗p−length (Piytilde))) ;
62 end
63
64 % Generalised matrices

J.D. Coehoorn Master of Science Thesis

A-2 Closed-loop AI 39

65 Atilde = kron (eye (p) , sys . A) ; % Generalised A matrix
66 Btilde = kron (eye (p) , sys . B (: , 1 : m)) ; % Generalised B matrix
67 Ctilde = kron (eye (p) , sys . C) ; % Generalised C matrix
68 Dtilde = kron (eye (p) , sys . D (: , 1 : m)) ; % Generalised D matrix
69 Gtilde = [−sys . C/sys . A∗sys . B (: , 1 : m)+sys . D (: , 1 : m) ;
70 zeros (q ∗(p−1) ,m)] ; % Generalised forward matrix
71 Dx = [zeros (n∗p , n) . . .
72 [eye (n ∗(p−1)) ; zeros (n , n ∗(p−1))]] ; % Derivative matrix for states
73
74 % Learning rates
75 kappax = realp (’kappax’ , eye (n∗p)) ; % State estimates learning rate
76 rho = realp (’rho’ , eye (m)) ; % Control learning rate
77
78 if isinf (Piutilde) % the case where mu_u is set equal to eta
79
80 % AI controller
81 Aai = [. . .
82 [Dx−kappax∗Ctilde ’∗ Piytilde∗Ctilde−kappax ∗(Dx−Atilde) ’∗ Pixtilde ∗(Dx−

Atilde) ;
83 rho∗Gtilde ’∗ Piytilde∗Ctilde] . . .
84 zeros (n∗p+m , m)] ;
85 Bai = [kappax∗Ctilde ’∗ Piytilde . . .
86 −kappax∗Ctilde ’∗ Piytilde∗Dtilde+kappax ∗(Dx−Atilde) ’∗ Pixtilde∗

Btilde ;
87 −rho∗Gtilde ’∗ Piytilde rho∗Gtilde ’∗ Piytilde∗Dtilde] ;
88 Cai = [zeros (m , n∗p) eye (m)] ;
89 Dai = 0 ;
90 sysAI = ss (Aai , Bai , Cai , Dai) ;
91
92
93 else % the case where we estimate the inputs
94
95 % Obtain generalised matrices
96 Du = [zeros (m∗p , m) [eye (m ∗(p−1)) ; zeros (m , m ∗(p−1))]] ;
97
98 % Extra tuning parameters
99 kappau = realp (’kappau’ , ones (m∗p)) ; % Input estimates learning

rate
100 Piutilde = realp (’Piutilde’ , Piutilde) ; % Input precision matrix
101 Piutilde . Free = Piutilde . Value ;
102 Piutilde . Minimum (Piutilde . Free) = eps ;
103
104 % AI controller
105 Aai = [. . .
106 [Dx−kappax∗Ctilde ’∗ Piytilde∗Ctilde−kappax ∗(Dx−Atilde) ’∗ Pixtilde ∗(Dx−

Atilde) . . .
107 −kappax∗Ctilde ’∗ Piytilde∗Dtilde+kappax ∗(Dx−Atilde) ’∗ Pixtilde∗Btilde ;
108 −kappau∗Dtilde ’∗ Piytilde∗Ctilde+kappau∗Btilde ’∗ Pixtilde ∗(Dx−Atilde)

. . .
109 Du−kappau∗Dtilde ’∗ Piytilde∗Dtilde−kappau∗Btilde ’∗ Pixtilde∗Btilde−

kappau∗Piutilde ;
110 rho∗Gtilde ’∗ Piytilde∗Ctilde rho∗Gtilde ’∗ Piytilde∗Dtilde] . . .
111 zeros ((n+m) ∗p+m , m)] ;

Master of Science Thesis J.D. Coehoorn

40 MATLAB code

112 Bai = [kappax∗Ctilde ’∗ Piytilde zeros (n∗p , m∗p) ;
113 kappau∗Dtilde ’∗ Piytilde kappau∗Piutilde ;
114 −rho∗Gtilde ’∗ Piytilde zeros (m , m∗p)] ;
115 Cai = [zeros (m , (n+m) ∗p) eye (m)] ;
116 Dai = 0 ;
117 sysAI = ss (Aai , Bai , Cai , Dai) ;
118
119
120 end
121
122 % Output derivatives (approximated with high-pass filter)
123 s = tf (’s’) ;
124 d = [] ;
125 for gen_state = 0 : p−1
126 d = [d ; (s/(1e−4∗s+1))^gen_state∗eye (q)] ;
127 end
128
129 % AI controller with derivatives
130 sysAId = sysAI∗blkdiag (d , eye (m∗p)) ;
131
132 % Input and Output names. Append sys such that it also outputs the states

;
133 % used for tuning
134 sys = ss (sys . A , sys . B , [sys . C ; eye (n)] , [sys . D ; zeros (n , m+qw+qz)]) ;
135 sys . y (1 : q) = ionames (’y’ ,q) ;
136 sys . y (q+1:end) = ionames (’x’ ,n) ;
137 sys . u (1 : m) = ionames (’u’ ,m) ;
138 sys . u (m+1:m+qw) = ionames (’w’ ,qw) ;
139 sys . u (m+qw+1:end) = ionames (’z’ ,qz) ;
140 sysAId . y = ’u’ ;
141 sysAId . u (1 : q) = ionames (’y’ ,q) ;
142 sysAId . u (q+1:end) = ionames (’eta’ ,p∗m) ;
143
144 % Closed -loop system
145 sysw . u = ’omega’ ;
146 sysw . y = ’w’ ;
147 sysz . u = ’zeta’ ;
148 sysz . y = ’z’ ;
149 sysclAI = connect (sys , sysAId , sysw , sysz , . . .
150 [{ ’omega’ } ;{ ’zeta’ }] , [{ ’y’ } ;{ ’x’ } ;{ ’u’ }]) ;
151
152 % Tuning
153 try N ; catch N = zeros (n , m) ; end
154 opt = systuneOptions (’UseParallel’ ,true , ’RandomStart’ , 19) ;
155 goal = TuningGoal . LQG ([{ ’omega’ } ;{ ’zeta’ }] , [{ ’x’ } ;{ ’u’ }] , . . .
156 eye (qw+qz) , [Q N ; N ’ R]) ;
157 [sysclAI , ~ , ~ , ~] = systune (sysclAI , goal , [] , opt) ;
158
159 % Tuned closed -loop system
160 sysclAI = ss (sysclAI) ;
161
162
163 end

J.D. Coehoorn Master of Science Thesis

A-3 Precision matrix 41

164
165
166 function ioname = ionames (ioname , n)
167
168 if n == 1
169 ioname = {ioname } ;
170 else
171 ioname = cellstr (ioname+"("+(1:n) ’+") ") ;
172 end
173 end

A-3 Precision matrix

The following is code to calculate the precision matrix for different filters.
1 function Pi = filterPrecision (type , varargin)
2 %FILTERPRECISION Calculates precision matrix Pi for filtered white noise
3 % Options:
4 %
5 % Pi = FILTERPRECISION(’tf’,tf) calculates the precision matrix Pi for
6 % transfer function tf
7 %
8 % Pi = FILTERPRECISION(’zp’,zeros ,poles ,gain) calculates the precision
9 % matrix Pi for the vector zeros , vector poles and optional scalar gain

10 %
11 % Pi = FILTERPRECISION(’coeff ’,den,num) calculates the precision matrix
12 % Pi for the vector with denominator coefficients den and the vector

with
13 % numerator coefficients num
14 %
15 % Pi = FILTERPRECISION(’lp1’,H(s),p) calculates the precision matrix Pi
16 % for the onesided (causal) filter H(s) in Laplace domain , with p the
17 % desired precision matrix size
18 %
19 % Pi = FILTERPRECISION(’lp2’,H(s),p) calculates the precision matrix Pi
20 % for the twosided (non-causal) filter H(s) in Laplace domain , with p

the
21 % desired precision matrix size
22 %
23 % Pi = FILTERPRECISION(’fou1’,H(s),p) calculates the precision matrix

Pi
24 % for the onesided (causal) filter H(w) in Fourier domain , with p the
25 % desired precision matrix size
26 %
27 % Pi = FILTERPRECISION(’fou2’,H(s),p) calculates the precision matrix

Pi
28 % for the twosided (non-causal) filter H(w) in Fourier domain , with p

the
29 % desired precision matrix size
30 %

Master of Science Thesis J.D. Coehoorn

42 MATLAB code

31 % Pi = FILTERPRECISION(’time’,h(t),p) calculates the precision matrix
Pi

32 % for the filter h(t) in time-domain , with p the desired precision
matrix

33 % size
34 %
35 %
36 % Jesse Coehoorn
37 % MSc Thesis Systems & Control and Mechanical Engineering
38
39
40 % setup symbolic variables
41 syms s % Laplace variable
42 syms t real % time
43
44
45 switch type
46 case ’tf’
47
48 % make symbolic transfer function
49 H = varargin {1} ;
50 num (s) = poly2sym (H . Numerator {1} ,s) ;
51 den (s) = poly2sym (H . Denominator {1} ,s) ;
52 Hs (s) = num/den ;
53
54 % obtain precision matrix size
55 p = polynomialDegree (den)−polynomialDegree (num) ;
56
57 % time-domain version of filter
58 h (t) = simplify (ilaplace (Hs) ∗heaviside (t)) ;
59
60 case ’zp’
61
62 % make symbolic transfer function
63 z = varargin {1} ;
64 p = varargin {2} ;
65 try gain = varargin {3} ; catch , gain = 1 ; end
66 num (s) = prod (s−z) ;
67 den (s) = prod (s−p) ;
68 Hs (s) = gain∗num/den ;
69
70 % obtain precision matrix size
71 p = polynomialDegree (den)−polynomialDegree (num) ;
72
73 % time-domain version of filter
74 h (t) = simplify (ilaplace (Hs) ∗heaviside (t)) ;
75
76 case ’coeff’
77
78 % make symbolic transfer function
79 coeffp = varargin {1} ;
80 coeffz = varargin {2} ;
81 num (s) = poly2sym (coeffz , s) ;

J.D. Coehoorn Master of Science Thesis

A-3 Precision matrix 43

82 den (s) = poly2sym (coeffp , s) ;
83 Hs (s) = num/den ;
84
85 % obtain precision matrix size
86 p = polynomialDegree (den)−polynomialDegree (num) ;
87
88 % time-domain version of filter
89 h (t) = simplify (ilaplace (Hs) ∗heaviside (t)) ;
90
91 case ’lp1’
92
93 % time-domain version of filter
94 H = varargin {1} ;
95 h (t) = simplify (ilaplace (H) ∗heaviside (t)) ;
96
97 % obtain precision matrix size
98 p = varargin {2} ;
99

100 case ’lp2’
101
102 % time-domain version of filter
103 H = varargin {1} ;
104 h (t) = simplify (ilaplace (H)) ;
105
106 % obtain precision matrix size
107 p = varargin {2} ;
108
109 case ’fou1’
110
111 % time-domain version of filter
112 H = varargin {1} ;
113 h (t) = simplify (ifourier (H , t) ∗heaviside (t)) ;
114
115 % obtain precision matrix size
116 p = varargin {2} ;
117
118 case ’fou2’
119
120 % time-domain version of filter
121 H = varargin {1} ;
122 h (t) = simplify (ilaplace (H , t)) ;
123
124 % obtain precision matrix size
125 p = varargin {2} ;
126
127 case ’time’
128
129 % time-domain version of filter
130 h (t) = varargin {1} ;
131
132 % obtain precision matrix size
133 p = varargin {2} ;
134

Master of Science Thesis J.D. Coehoorn

44 MATLAB code

135 end
136
137
138 % compute derivatives of the filter
139 dh = h (t) ;
140 for j=1:p−1
141 dh = [dh ; simplify (diff (dh (end)))] ;
142 end
143
144
145 % calculate variances and precision matrix
146 Sigma = zeros (p) ;
147 for j=1:p
148 if mod (j , 2) % row 1, 3, etc.
149 for k=1:2:p % column 1, 3, etc.
150 if k < j % mirror entries below the main diagonal
151 Sigma (j , k) = Sigma (k , j) ;
152 else
153 Sigma (j , k) = vpaintegral (dh (k) ∗dh (j) ,−inf , inf) ;
154 end
155 end
156 else % row 2, 4, etc.
157 for k=2:2:p % column 2, 4, etc.
158 if k < j % mirror entries below the main diagonal
159 Sigma (j , k) = Sigma (k , j) ;
160 else
161 Sigma (j , k) = vpaintegral (dh (k) ∗dh (j) ,−inf , inf) ;
162 end
163 end
164 end
165 end
166
167
168 % invert to obtain precision matrix
169 Pi = inv (real (Sigma)) ;
170
171 end

A-4 Random SISO systems

The following is code to generate a random single-input, single-output (SISO) system within
certain bounds.

1 function [sys , p , z] = rsiso (np , nz , prange , zrange , pcomplex , pdouble)
2 %RSISO Generate random SISO system
3 %
4 % [sys,p,z] = RSISO(np,nz,prange ,zrange ,pcomplex ,pdouble)
5 %
6 % inputs:
7 % np: number of poles
8 % nz: number of zeros

J.D. Coehoorn Master of Science Thesis

A-4 Random SISO systems 45

9 % prange: [min max cmax], min and max value for real part of poles , max
10 % value for complex part of poles
11 % zrange: [min max cmax], min and max value for real part of zeros , max
12 % value for complex part of zeros
13 % pcomplex: chance of complex pole/zero, default: 0.5
14 % pdouble: chance of doubling a pole/zero, default: 0.05
15 %
16 % outputs:
17 % sys: generated random system in ss form
18 % p: poles of the system
19 % z: zeros of the system
20 %
21 %
22 % Jesse Coehoorn
23 % MSc Thesis Systems & Control and Mechanical Engineering
24
25
26 try pcomplex ; catch , pcomplex = 0 . 5 ; end % set default for pcomplex
27 try pdouble ; catch , pdouble = 0 . 0 5 ; end % set default for pdouble
28
29
30 p = rpoles (np , prange , pcomplex , pdouble) ; % obtain poles
31 z = rpoles (nz , zrange , pcomplex , pdouble) ; % obtain zeros
32
33
34 sys = ss (zpk (z , p , 1)) ; % set ss system
35
36
37 end
38
39
40 function p = rpoles (np , prange , pcomplex , pdouble)
41 % generate vector of poles (or zeros)
42
43
44 % functions for random numbers in the right ranges
45 prand = @ () rand ∗(prange (2) − prange (1)) + prange (1) ;
46 pcrand = @ () rand∗prange (3) ;
47
48
49 % initialize
50 inp = 0 ;
51 p = [] ;
52
53
54 % fill the vector till the limit is reached
55 while inp < np
56 if rand < pcomplex && inp < np−1 % complex pole/zero
57 s = prand () + pcrand () ∗1i ;
58 p = [p s conj (s)] ;
59
60 inp = inp + 2 ;
61

Master of Science Thesis J.D. Coehoorn

46 MATLAB code

62 while inp < np−1 % chance of doubling
63 if rand < pdouble
64 p = [p s conj (s)] ;
65
66 inp = inp + 2 ;
67 else
68 break ;
69 end
70 end
71
72 else % real pole/zero
73 p = [p prand ()] ;
74
75 inp = inp + 1 ;
76
77 while inp < np % chance of doubling
78 if rand < pdouble
79 p = [p p (end)] ;
80
81 inp = inp + 1 ;
82 else
83 break ;
84 end
85 end
86 end
87
88 end
89
90 end

A-5 Comparison

1 %% Code for a realization of AI and extended LQG on a random system
2 % The first block of code sets up the different systems. It generates a
3 % random MIMO SS system using rss. After that, SISO systems for the
4 % noises w and z are generated , one for each dimension. These are
5 % appended to form a single noise system. Then, the precision matrices
6 % are formed in the correct order.
7 % The second block of code obtains the closed -loop of extended LQG on
8 % these systems.
9 % The third block of code obtains the closed -loop of AI on these

systems.
10 % The last block of code performs the simulation and computes the
11 % incurred costs.
12 %
13 % Jesse Coehoorn
14 % MSc Thesis Systems & Control and Mechanical Engineering
15
16 clear variables ; close all ; clc ;
17

J.D. Coehoorn Master of Science Thesis

A-5 Comparison 47

18
19 %% Setup systems
20
21 % controlled MIMO system
22 n = 1 ; % state dimension
23 m = 1 ; % input dimension
24 q = 1 ; % output dimension
25 sys = rss (n , q , m) ;
26 sys = ss (sys . A∗randn (n) , [sys . B eye (n) zeros (n , q)] , . . .
27 sys . C , [sys . D zeros (q , n) eye (q)]) ;
28 if any (abs (real (pole (sys))) < 1e−9)
29 warning (’System has pole close to 0, gives problems for AI’)
30 end
31
32 % noise filters (poles -10 < p < 0, zeros -1 < z < 1)
33 % filter for process noise
34 nw = 6 ; % order of numerator
35 nzw = 0 ; % order of denominator
36 for i=1:n
37 [sysw , p , z] = rsiso (nw , nzw , [−10 −1 10] , [−1 1 1]) ;
38 Piw = filterPrecision (’zp’ ,z , p) ;
39 sysfw (i) . sysw = sysw∗sqrt (Piw (1 , 1)) ;
40 sysfw (i) . Piw = Piw/Piw (1 , 1) ;
41 end
42 % filter for measurement noise
43 nz = 6 ; % order of numerator
44 nzz = 0 ; % order of denominator
45 for i=1:q
46 [sysz , p , z] = rsiso (nz , nzz , [−10 −1 10] , [−1 1 1]) ;
47 Piz = filterPrecision (’zp’ ,z , p) ;
48 sysfz (i) . sysz = sysz∗sqrt (Piz (1 , 1)) ;
49 sysfz (i) . Piz = Piz/Piz (1 , 1) ;
50 end
51
52 % precision matrices
53 Piw = blkdiag (sysfw . Piw) ;
54 order = [] ;
55 for i=1:(nw−nzw)
56 order = [order i : (nw−nzw) : (n−1)∗(nw−nzw)+i] ;
57 end
58 Piwtilde = zeros ((nw−nzw) ∗n) ;
59 for i=1:(nw−nzw) ∗n
60 for j=1:(nw−nzw) ∗n
61 Piwtilde (i , j) = Piw (order (i) , order (j)) ;
62 end
63 end
64 Piz = blkdiag (sysfz . Piz) ;
65 order = [] ;
66 for i=1:(nz−nzz)
67 order = [order i : (nz−nzz) : (q−1)∗(nz−nzz)+i] ;
68 end
69 Piztilde = zeros ((nz−nzz) ∗q) ;
70 for i=1:(nz−nzz) ∗q

Master of Science Thesis J.D. Coehoorn

48 MATLAB code

71 for j=1:(nz−nzz) ∗q
72 Piztilde (i , j) = Piz (order (i) , order (j)) ;
73 end
74 end
75
76 % noise filters
77 sysw = append (sysfw . sysw) ;
78 sysz = append (sysfz . sysz) ;
79
80
81 %% LQG system
82
83 % cost matrices
84 Q = eye (n) ;
85 R = eye (m) ;
86
87 % closed -loop LQG
88 [sysclLQG , ~ , p] = closedLoopLQG (sys , sysw , sysz , Q , R) ;
89
90 if max (real (pole (sysclLQG))) > 0
91 warning (’Closed -loop LQG system is unstable , probably due to the

conversion to an explicit system not working properly (round -off
errors , etc.)’) ;

92 end
93
94
95 %% AI system
96
97 % amount of generalised states
98 p = min (p) ;
99

100 % initial Piutilde matrix
101 Piutilde = eye (m∗p) ∗1e0 ;
102
103 % closed -loop AI
104 sysclAI = closedLoopAI (sys , sysw , sysz , Piwtilde , Piztilde , Piutilde , Q , R) ;
105
106 if max (real (pole (sysclAI))) > 0
107 warning (’Closed -loop AI system is unstable , probably due to failed

tuning’) ;
108 end
109
110
111 %% Simulation
112
113 % time vector
114 time = 0 : 0 . 0 0 1 : 1 0 0 0 ;
115 nt = length (time) ;
116
117 % noise vector
118 w = randn (nt , n+q) ;
119
120 % costs incurred for LQG

J.D. Coehoorn Master of Science Thesis

A-5 Comparison 49

121 Y = lsim (sysclLQG , w , time) ;
122 cost = zeros (2 , nt) ;
123 for i=1:nt
124 cost (1 , i) = Y (i , q+1:q+n) ∗Q∗Y (i , q+1:q+n) ’ ;
125 cost (2 , i) = Y (i , q+n+1:q+n+m) ∗R∗Y (i , q+n+1:q+n+m) ’ ;
126 end
127 CLQG = sum (cost) ;
128
129 % costs incurred for AI
130 Y = lsim (sysclAI , w , time) ;
131 cost = zeros (2 , nt) ;
132 for i=1:nt
133 cost (1 , i) = Y (i , q+1:q+n) ∗Q∗Y (i , q+1:q+n) ’ ;
134 cost (2 , i) = Y (i , q+n+1:q+n+m) ∗R∗Y (i , q+n+1:q+n+m) ’ ;
135 end
136 CAI = sum (cost) ;

Master of Science Thesis J.D. Coehoorn

50 MATLAB code

J.D. Coehoorn Master of Science Thesis

Bibliography

[1] Brian D.O. Anderson and John B. Moore. Optimal control: linear quadratic methods.
Prentice-Hall International, Inc., 1989.

[2] Ajith Anil Meera and Martijn Wisse. Free energy principle based state and input observer
design for linear systems with colored noise. In 2020 American Control Conference
(ACC), pages 5052–5058. IEEE, 2020.

[3] Mohamed Baioumy, Paul Duckworth, Bruno Lacerda, and Nick Hawes. Active inference
for integrated state-estimation, control, and learning. arXiv preprint arXiv:2005.05894,
2020.

[4] Manuel Baltieri and Christopher L. Buckley. On kalman-bucy filters, linear quadratic
control and active inference. arXiv preprint arXiv:2005.06269, 2020.

[5] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan. Lin-
ear matrix inequalities in system and control theory. SIAM, 1994.

[6] Arthur E. Bryson and D.E. Johansen. Linear filtering for time-varying systems us-
ing measurements containing colored noise. IEEE Transactions on Automatic Control,
10(1):4–10, 1965.

[7] Jingjing Bu, Afshin Mesbahi, Maryam Fazel, and Mehran Mesbahi. LQR through the
lens of first order methods: Discrete-time case. arXiv preprint arXiv:1907.08921, 2019.

[8] Christopher L. Buckley, Chang S. Kim, Simon McGregor, and Anil K. Seth. The free
energy principle for action and perception: A mathematical review. Journal of Mathe-
matical Psychology, 81:55–79, 2017.

[9] Xinyi Chen and Elad Hazan. Black-box control for linear dynamical systems. arXiv
preprint arXiv:2007.06650, 2020.

[10] David R. Cox and Hilton D. Miller. The theory of stochastic processes, volume 134. CRC
press, 1977.

Master of Science Thesis J.D. Coehoorn

52 Bibliography

[11] Ilyas Fatkhullin and Boris Polyak. Optimizing static linear feedback: Gradient method.
arXiv preprint arXiv:2004.09875, 2020.

[12] Karl J. Friston. A theory of cortical responses. Philosophical transactions of the Royal
Society B: Biological sciences, 360(1456):815–836, 2005.

[13] Karl J. Friston. Hierarchical models in the brain. PLoS Comput Biol, 4(11):e1000211,
2008.

[14] Karl J. Friston and Ping Ao. Free energy, value, and attractors. Computational and
mathematical methods in medicine, 2012, 2012.

[15] Karl J. Friston, Jean Daunizeau, James Kilner, and Stefan J. Kiebel. Action and behav-
ior: a free-energy formulation. Biological Cybernetics, 102(3):227–260, 2010.

[16] Karl J. Friston, James Kilner, and Lee Harrison. A free energy principle for the brain.
Journal of Physiology-Paris, 100(1-3):70–87, 2006.

[17] Karl J. Friston, Nelson J. Trujillo-Barreto, and Jean Daunizeau. DEM: a variational
treatment of dynamic systems. Neuroimage, 41(3):849–885, 2008.

[18] Sherin Grimbergen. The state space formulation of active inference: Towards brain-
inspired robot control. Master’s thesis, Delft University of Technology, 2019.

[19] Bruce Hajek. Random processes for engineers. Cambridge university press, 2015.

[20] Iris L. Hijne. Generalised motions in active inference by finite differences - active inference
in robotics. Master’s thesis, Delft University of Technology, 2020.

[21] Rudolf E. Kálmán. Contributions to the theory of optimal control. Bol. Soc. Mat.
Mexicana, 5(2):102–119, 1960.

[22] Rudolf E. Kálmán. A new approach to linear filtering and prediction problems. Trans.
ASME Ser. D: J. Basic Eng., 82:35–45, 1960.

[23] Rudolf E. Kálmán and Richard S. Bucy. New results in linear filtering and prediction
theory. Trans. ASME Ser. D: J. Basic Eng., 83:95–108, 1961.

[24] Pablo Lanillos, Jordi Pages, and Gordon Cheng. Robot self/other distinction: active
inference meets neural networks learning in a mirror, 2020.

[25] Guillermo Oliver, Pablo Lanillos, and Gordon Cheng. Active inference body perception
and action for humanoid robots. arXiv preprint arXiv:1906.03022, 2019.

[26] Corrado Pezzato, Riccardo Ferrari, and Carlos H. Corbato. A novel adaptive controller
for robot manipulators based on active inference. IEEE Robotics and Automation Letters,
5(2):2973–2980, 2020.

[27] Léo Pio-Lopez, Ange Nizard, Karl J. Friston, and Giovanni Pezzulo. Active inference
and robot control: A case study. Journal of the Royal Society Interface, 13(122), 2016.

J.D. Coehoorn Master of Science Thesis

53

[28] Cansu Sancaktar, Marcel A.J. van Gerven, and Pablo Lanillos. End-to-end pixel-based
deep active inference for body perception and action. In 2020 Joint IEEE 10th In-
ternational Conference on Development and Learning and Epigenetic Robotics (ICDL-
EpiRob), pages 1–8. IEEE, 2020.

[29] Max Simchowitz, Karan Singh, and Elad Hazan. Improper learning for non-stochastic
control. arXiv preprint arXiv:2001.09254, 2020.

Master of Science Thesis J.D. Coehoorn

54 Bibliography

J.D. Coehoorn Master of Science Thesis

Glossary

List of Acronyms

3mE Mechanical, Maritime and Materials Engineering
CoR Cognitive Robotics
DCSC Delft Center for Systems and Control
I First comparison: Normal LQG and reduced AI

White Gaussian Noise (WGN) setting with knowledge of inputs, performed in
section 4-2. Relevant sections are subsection 2-2-1, section 2-3 and
subsection 3-1-3. This leads to an equivalent expression for the two controllers.

II Second comparison: Extended LQG and normal AI
Linearly filtered WGN, without knowledge of inputs for AI, performed in
section 4-3. Relevant sections are section 2-2, section 2-3 and subsection 3-1-1.
An equivalent expression is no longer possible, but AI can mostly be tuned to
obtain the same (optimal) LQG costs. This comparison is performed
numerically, using MATLAB.

AI Active Inference
ARE Algebraic Riccatti Equation
DEM Dynamic Expectation Maximization
FE Free Energy
FEP Free Energy Principle
LTI Linear Time-Invariant
LTV Linear Time-Varying
LQG Linear-Quadratic Gaussian
LQR Linear-Quadratic Regulator
MIMO multiple-input, multiple-output
OO Online Optimization
PSD Power Spectral Density

Master of Science Thesis J.D. Coehoorn

56 Glossary

SISO single-input, single-output
WGN White Gaussian Noise
WSS Wide-Sense Stationary

List of Symbols

δ(t) Dirac delta function
κu Input estimation learning rate
κx State estimation learning rate
ω Normalized WGN, input to Linear Time-Invariant (LTI) filter which forms w
Π Block diagonal matrix with precisions on output noise, system noise and input

priors
Πw Precision (inverse covariance) matrix of the process noise w
Πz Precision (inverse covariance) matrix of the measurement noise z
ρ Control learning rate
ρ(t) Normalized auto-correlation of a signal
η̃ Generalized prior belief on inputs
µ̃ = {µ̃x, µ̃u} Generalized estimates, of states and inputs
Π̃u Precision matrix on the prior η̃
ζ Normalized WGN, input to LTI filter which forms z

Â (Desired) state matrix used in the forward model G̃
D Derivative operator for generalized variables, such that (̃·)′ = D(̃·). D is thus

a block matrix with identity matrices on the block super-diagonal and zeros
otherwise

Ã = Ip+1 ⊗A Generalised state matrix
B̃ = Ip+1 ⊗B Generalised input matrix
C̃ = Ip+1 ⊗ C Generalised output matrix
D̃ = Ip+1 ⊗D Generalised feedthrough matrix
G̃ Generalised forward model
A State matrix of a linear state-space system
B Input matrix of a linear state-space system
C Output matrix of a linear state-space system
D Feedthrough matrix of a linear state-space system
F Free Energy
In Identity matrix of size n
K Control gain
L Estimator (Kalman) gain
m System
P Solution to the estimation Algebraic Riccatti Equation (ARE)

J.D. Coehoorn Master of Science Thesis

57

p Number of derivatives for a generalised coordinate
Q ≥ 0 State costs matrix
R > 0 Input costs matrix
S Solution to the control ARE
S(jω) The Power Spectral Density (PSD) of a signal
u ∈ Rm Inputs to a system
w ∈ Rn Process noise, zero-mean additive Gaussian distributed
x ∈ Rn States of a system
y ∈ Rq Outputs/observations/measurements of a system, available to the controller
z ∈ Rq Measurement noise, zero-mean additive Gaussian distributed

E[·] Expectation of a signal
⊗ Kronecker product
f(µ̃) Our belief or desired belief of f̃(x̃, ũ)
g(µ̃) Our belief or desired belief of g̃(x̃, ũ)

Master of Science Thesis J.D. Coehoorn

58 Glossary

J.D. Coehoorn Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Motivation
	Research goal and questions
	Outline

	Preliminaries
	Setting
	Introduction to LQG control
	I: The standard infinite-horizon LQG problem
	II: LQG control for a singular Kalman filter

	I&II: Introduction to Active Inference

	Active Inference on LTI systems
	AI controller for different formulations of the FE
	II: Original formulation
	Inputs are equal to the priors
	I: Inputs are known

	Closed-loop
	Precision matrix
	From auto-correlation
	II: From impulse response
	I: For White Gaussian Noise

	Comparison of LQG control and AI
	High-level comparison between the two controllers
	Comparison I: Equivalence for WGN with knowledge of inputs
	Comparison II: Filtered WGN without knowledge of inputs

	Conclusions and recommendations
	Conclusions and discussion
	Recommendations

	Appendices
	MATLAB code
	Closed-loop LQG
	Closed-loop AI
	Precision matrix
	Random SISO systems
	Comparison

	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

