




Propositions

belonging to the thesis

Nuclear Architecture: Image Processing and Analyses

Bart Vermolen
Februari 13, 2009

1. Results produced by computer programs, designed by humans, are subjective
(chapter 1).

2. The cost for breaking Abbe’s diffraction limit is always time (chapter2).

3. The 3D Gaussian profile is a good approximation of a deconvolved 3D image
of a point source (chapter 3).

4. The use of an open internet source, like Wikipedia, is only justified when it is
not used to strengthen an argument.

5. The fact that people are more fanatic when playing a game, like poker, for
money instead of honor, shows that money is more important than honor.

6. Modern medicine is an extension of evolution.

7. The world is smaller when one is farther away.

8. To keep capitalism working, every 30 years a financial crisis, like the credit
crisis, is needed.

9. When a proposition is not decisive, one should keep it to oneself.

10. Taking acting lessons improves giving lectures.

These propositions are considered opposable and defendable and as such have
been approved by the supervisors, Prof. Dr. I.T. Young and Prof. Dr. Y. Garini.



Stellingen

behorende bij het proefschrift

Nuclear Architecture: Image Processing and Analyses

Bart Vermolen
13 februari 2009

1. Resultaten verkregen van computer programma’s, door mensen ontworpen,
zijn subjectief (hoofdstuk 1).

2. Het verbreken van Abbe’s diffractie limiet gaat altijd ten koste van tijd (hoofd-
stuk 2).

3. Het 3D Gaussische profiel is een goede benadering van een gedeconvolueerd
3D beeld van een puntbron (hoofdstuk 3).

4. Alleen wanneer inhoud van een open internet bron, zoals Wikipedia, niet wordt
gebruikt als argument om een stelling te bekrachtigen, is het gebruik hiervan
gerechtvaardigd.

5. Het feit dat mensen fanatieker zijn in het spelen van een spelletje, zoals poker,
wanneer om geld in plaats van eer wordt gespeeld laat zien dat geld belangrij-
ker is dan eer.

6. De moderne geneeskunde is een extensie van de evolutie.

7. Hoe verder je weg bent, hoe kleiner de wereld wordt.

8. Een financiële crisis, zoals de kredietcrisis, is ongeveer elke 30 jaar nodig om
het kapitalisme werkend te houden.

9. Wanneer een stelling niet resoluut is, moet men haar voor zich houden.

10. Het volgen van toneellessen verbetert het geven van college.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig
goedgekeurd door de promotoren, prof. dr. I.T. Young en prof. dr. Y. Garini.
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Nothing shocks me. I’m a scientist.

— Indiana Jones and the Temple of Doom
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1

Introduction

”People who look for the first time through a
microscope say now I see this and then I see
that and even a skilled observer can be fooled. On
these observations I have spent more time than
many will believe, but I have done them with joy.”

— Antoni van Leeuwenhoek, 1701

Biology, microscopy and image processing go hand-in-hand starting from the
17th century. In 1665 Robert Hooke published the book Micrographia. In this
book he is the first to have named the cell, after looking at plant cells and,
what he found, a striking resemblance to the cells of a monk. It is believed
that this book inspired Antoni van Leeuwenhoek to design a microscope of
his own. While Hooke’s compound microscope could magnify up to 30x, it is
said that Van Leeuwenhoek’s single lens microscope could magnify up to 500x.
In figure 1.1 we see a drawing of both microscopes. Here we also see that to
report findings done with the microscope, there was only one option: to draw
it yourself. The human eye acts as the camera, the mind acts as the image
processor and the drawing hand as the screen or printer.

Although Van Leeuwenhoek was regarded as an ’amateur’, he is now known
as the father of microbiology.

1.1 Nuclear architecture

In 1970 Francis Crick repostulated his central dogma theory (originally postu-
lated in 1958) in molecular biology stating ”The central dogma of molecular
biology deals with the detailed residue-by-residue transfer of sequential infor-
mation. It states that such information cannot be transferred back from protein
to either protein or nucleic acid (Crick, 1970).” In other words, gene expression

1



2 Chapter 1 - Introduction

(a) (b)

(c) (d)

Figure 1.1: (a) Hooke’s compound microscope. (b) Van Leeuwenhoek’s single lens micro-
scope. (c) Hooke’s Drawing of a flea. (d) Van Leeuwenhoek’s drawing of sperm
cells.

is regulated by the information encoded in the linear sequence of nucleotides
in deoxyribonucleic acid (DNA) as seen in figure 1.2. This central dogma has
been undermined for quite some time. It is now known that gene expression is
regulated by a far more complex system. One of the factors that has become
to be known to play a major role is chromatin structure. In 1885, Carl Rabl
was one of the first to hypothesize that the organization of chromosomes in
the interphase cell is not random (Rabl, 1885). This has been confirmed by
many studies in the last two decades. A nice overview about the architecture of
the nucleus can be found in several reviews (Parada and Misteli, 2002; Misteli,
2007; Kumaran et al., 2008; Dekker, 2008; Cremer et al., 2004; Cremer and
Cremer, 2001).

The transcription of DNA is one of the most important functions of the
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Figure 1.2: Central Dogma of molecular biology. In the top we see the DNA in its dou-
ble stranded (double helix) form. DNA can replicate or be transcribed into
ribonucleic acid (RNA) (middle, single stranded). RNA can be translated into
proteins (bottom).

nucleus. To understand why the structure of nuclear components, like chromo-
somes, and sub-chromosomal components, like telomeres, might be important,
one first has to recognize that gene regulation is a structural process. Gene
regulating factors have to be at a certain position at a certain time. This pro-
cess is likely to be more efficient when the nucleus is ordered and stays ordered
throughout its lifetime. Evidence for this ordering has been shown; functions
like transcription, replication and repair of the DNA are compartmentalized
within the nucleus (Misteli, 2005). Also, chromosomes themselves are com-
partmentalized in what is known as Chromosomal Territories (CT) (Cremer
and Cremer, 2001; Meaburn and Misteli, 2007). Every chromosome has a dis-
tinct space in the nucleus which is well separated from each other. This means
that there is no intermingling of the different chromosomes.

The relationship between structure and function is still unknown. Two
possible models are given by Misteli (2007). First the deterministic model
where structure is the cause for function. In other words the compartments
are there, independent of the ongoing function. This model is based on the
assumption that the lamin network, short actin filaments or nuclear bodies
may act as scaffolds and disruption of these scaffolds may disrupt function.
The other model is based on self-organization. Here the structure is dictated
by the ongoing functions in the nucleus. Evidence for this models includes the
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fact that when some new functional sites appear, a new structural element also
appears.

In 2002 cancer was responsible for 25% of deaths in developed countries
(Jemal et al., 2005). It is a class of diseases where cells show uncontrolled
growth resulting in a tumor. For most types of cancers the exact pathogen-
esis is still unknown, but it is known that cancer is a chromosomal disease
(Duesberg et al., 2005). In all types of cancer there is abnormality of the kary-
otype, mostly showing aneuploidy, a deviation in normal ploidy (the number
of copies of chromosomes which is two (diploid) in normal cells), and a number
of other chromosomal aberrations (like mutations, translocations, breakage-
fusion-bridges, etc.). One of the unanswered questions is what causes these
aberrations.

1.2 Nuclear organization and imaging

Three elements in the nucleus have been studied in this thesis, telomeres, cen-
tromeres and lamin. Telomeres are the repetitive sequences of DNA at the ends
of the chromosomes. In mouse and humans the repeating sequence consists of
TTAGGG. The main function of telomeres is to solve the DNA end replication
problem. When DNA replicates in the cell a small part at the end is unable
to replicate and this part is lost. The telomere acts as a buffer, since losing
a part of the telomere prevents the DNA from any information loss. Another
important feature of telomeres is that they prevent ’sticky’ ends of DNA from
fusing together. It is therefore believed that telomeres play an important role
in chromosome stability. A comprehensive review about this subject can be
found in (Mai and Garini, 2006). Centromeres are also satellite repeats and
serve as anchor points for the mitotic spindle to attach during cell division.
They also have a role in transcriptional silencing. The third element is the
lamins. These proteins form the nuclear membrane, but are also present inside
the nucleus. They have also been associated with transcription and replication
sites. It is believed there might be some tethering function of the lamins of
chromatin to the periphery of the nucleus and also tethering particular chro-
matin regions in the nucleus. Hutchinson-Gilford progeria syndrome is a disease
showing extreme aging with children leading to death at about 13 years. This
disease is an effect of a point mutation in the gene Lamin A (LMNA) coding for
the proteins lamin A and lamin C. A review of the possible structural versus
functional mechanisms of telomeres, centromeres and lamins can be found in
(Parada et al., 2004).

In situ and in vivo three-dimensional (3D) microscopy studies have be-
come increasingly popular over the recent years. Although in vitro studies can
give a lot of information or even answer specific questions, ’seeing is believ-
ing’ is appreciated even more. The last three decades, fluorescent microscopy
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methods have become more and more mature. The combination of newer and
better hardware (microscopes, cameras, computers) and wetware (new fluores-
cent dyes and proteins) is able to produce an enormous amount of data that
needs to be processed and analyzed. Van Leeuwenhoek already introduced the
first problem, people who process the images are subjective (see the quote at
the beginning of this section). Another problem is the amount of data. Tens,
hundreds, thousands or even more images need to be analyzed (this is of course
dependent on the question asked and the statistics related to the specific prob-
lem). The third problem is that the 3D images are eventually looked at by
the eye, which is, inherently, a two-dimensional (2D) imaging system. This
makes it extremely hard for humans to analyze 3D data. To solve these issues
also software (image processing and analysis) has significantly evolved. Faster
computers in combination with smarter algorithms can solve these problems.
The first problem of objectiveness is partially solved, the analyses done will be
the same every time the algorithm is used. The algorithm, however, is designed
by a human and will therefore be subjective. This reasoning shows that the
development of applied image processing algorithms is highly dependent on the
research question asked and the person who develops them.

A popular method to study chromosomal arrangements in the nucleus is
by radial distribution analysis. Here the amount of stained DNA is measured
against the relative radius of the nucleus. To characterize the chromatin distri-
bution in nuclei Young et al. (1986) developed several measures, one of them
being the radial distribution of the chromatin. In (Mayer et al., 2005) several
mouse cell types were studied and showed non-random correlations in radial
CT position. Bolzer et al. (2005) use a combinatorial labeling for all chromo-
somes so they can be imaged simultaneously giving a complete map of all CTs
in human fibroblast nuclei. Again a non-random correlation of radial positions
was found. In the same study, correlations between CT size, gene-density and
radial position were shown. In (Gerlich et al., 2003) photobleaching experi-
ments were done where bleached parts in the nucleus remained constant after
cell division. CT and gene-density radial distributions of higher primates have
also been studied and compared to humans showing evolutionary conservation
(Tanabe et al., 2002). The gene-density distributions have been modeled in
(Kreth et al., 2004), where the measurements correlate better to the model
when the gene position is dependent on gene density and CT sequence length.

A different class is detection and analysis of dot-like structures in the nu-
cleus. Here we can think of labeling specific genes, telomeres or centromeres.
In (Netten et al., 1997) chromosome specific sites were labeled to perform dot
counting and study aneuploidy. Here, in 2D images of interphase nucleus, dots
were segmented after which they were counted. A model-based approach to
segmentation was used in (Thomann et al., 2002) after which the dots where
tracked in time. Chromatin components (CC) , like telomeres and centromeres,
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have been studied to get either information indirectly about the chromosome
position as done by (Bin Sun et al., 2000) or to get information about the
CCs themselves. In (Nagele et al., 2001) it is suggested that telomeres play
a role in interphase chromosome topology. Telomeres are manually segmented
and positions and intensity are measured. The relationship between function
and nuclear organization of telomeres has been studied extensively in baker’s
yeast (Saccharomyces cerevisiae). Telomeres in yeast are normally clustered
into three to seven foci and reside near the nuclear envelope. When transcrip-
tion sites are near the nuclear envelope, especially near non-pore sites, they can
become inhibited, this effect is increased in the presence of telomeres (Akhtar
and Gasser, 2007; Tham and Zakian, 2002; Feuerbach et al., 2002; Galy et al.,
2000). This latter effect is known as the Telomere Position Effect (TPE) .
In (Therizols et al., 2006) it is suggested that also the repair of DNA double-
strand breaks in subtelomeric regions is dependent on telomeres tethering to
the nuclear envelope. In (Taddei and Gasser, 2006) the mechanism of double-
strand break repair is described more. Metazoan cell nuclei are more than
10-fold larger than yeast cells. This gives a smaller surface-volume ratio which
might be problematic for tethering all the silenced chromatin (Sexton et al.,
2007). Ku, a telomere binding protein complex involved in telomere mainte-
nance (Fisher et al., 2004) and tethering to the nuclear envelope, and other
telomere binding factors have been reviewed by Fisher and Zakian (2005) and
Tham and Zakian (2000).

1.3 Scope

The primary goal of this thesis is the development of image processing and
analyses methods to study the organization of nuclear elements, based on 3D
fluorescence microscopy images. As described in the previous section, many
methods and algorithms already exist. This thesis will follow some existing
methods and show newly developed methods specific to research questions from
molecular biology. The basic structure of the thesis is found in figure 1.3.

Deconvolution
Fluorescent

Sample
Imaging
System

Image
Processing

Analyses

Chapter 2 Chapter 3 Chapter 4,5 and 6

Figure 1.3: Basic overview of the thesis.

In chapter 2 the tools of the trade are described. Specific DNA sequences
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of interest need to be labeled before they can be imaged. Here we describe
two methods: Fluorescence in situ Hybridization (FISH) and fused proteins.
Furthermore the principles of wide-field microscopy and confocal microscopy
are discussed. Although this is not in the scope of this thesis, new, ground-
breaking methods in microscopy are reviewed. To acquire 3D images several
methods exist. Confocal microscopy is a hardware solution. Another method
is to acquire an image stack of 2D wide-field images at sequential focus depths.
This requires a post-acquisition processing step called deconvolution, which
is explained in chapter 3. The principle of the ”poor-mans” confocal micro-
scope is explained together with a deconvolution method developed for this
microscope. It is well known that 2D images of small spots (smaller then the
diffraction limit, so-called point sources) can be approximated by a 2D Gaus-
sian profile (Zhang et al., 2007). The ability to approximate deconvolved 3D
images of point-sources by a 3D Gaussian profile has been studied in chapter
3.

Chapter 4 deals with the segmentation and localization of these small spots.
A newly developed segmentation algorithm will be used to characterize the
spatial organization of telomeres in normal mouse lymphocytes during the cell
cycle. No algorithms were available to measure and analyze the relative size of
telomeres from 3D fluorescent microscopy images. Therefore a new algorithm
was developed in chapter 5. Analysis from the measurements from this method
includes a method to statistically determine aggregating telomeres. Together
with a method to measure the overlap of chromosomes in the interphase nu-
cleus, these new methods can be used to analyze and understand remodeling of
the cell nucleus after induction of external factors like activation of the c-Myc
gene (chapter 5), which is associated with 70% of all cancers (Nesbit et al.,
1999). The techniques developed in chapter 4 were also used to study the
radial redistribution of nuclear components like telomeres, centromeres and
Promyelocytic Leukemia (PML) nuclear bodies (chapter 6).





2

Fluorescence microscopy

Although father and son Janssen from Middelburg, the Netherlands, had al-
ready constructed a compound microscope in the 16th century and the first
fluorescent microscopes were developed in the beginning of the 20th century,
fluorescence microscopy really became more useful when Ploem invented the
filter cube in 1967 (Ploem, 1967) and, with it, epifluorescence microscopy. This
breakthrough was followed by the development of Minsky’s confocal microscope
in 1979 by Brakenhoff (Minsky, 1961; Brakenhoff, 1979; Brakenhoff et al., 1979),
which made it possible to perform true optical sectioning.

In section 2.1 we will discuss the basics of fluorescence and touch upon some
labeling techniques to visualize the DNA. Section 2.2 will discuss wide-field
microscopy, the point spread function (PSF) , optical transfer function (OTF)
and the microscope’s image formation. The same subjects will be handled in
2.3 for confocal microscopy. In section 2.4 some microscopy methods will be
presented where the diffraction limit is broken.

2.1 Fluorescence

In 1852 Sir George G. Stokes first observed and described fluorescence. He no-
ticed that, when illuminating a mineral called fluorspar (also known as fluorite)
with ultra violet light, the mineral radiates blue light. This change in color is
what we now call the Stokes shift. The phenomenon of fluorescence can be
described by a Jablonski energy diagram, see figure 2.1. In such a diagram we
can see the different possible energy levels of an electron in a molecule. When
a photon interacts with this electron there is a chance that the electron will
absorb the photon’s energy, and be excited into a higher energy state, i.e. any
vibrational state of the singlet state. After some vibrational relaxation the
electron can drop back into a vibrational state of the ground state and radiate
a photon. It is evident that the emission photon will at least have the same
wavelength as the excitation photon, but is likely to be longer. Herein lies
the origin of the Stokes shift. The function describing the relative chance of
a photon being absorbed as a function of wavelength is called the excitation

9
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Figure 2.1: Jablonski energy diagram. An incoming photon can excite an electron into a
higher energy state. After some relaxation (time scale in the order of picosec-
onds) to the singlet state (a meta-stable state where the electron can live in the
order of nanoseconds) the electron will fall back into its ground state, emitting
a photon with a wavelength which will be longer then the wavelength of the
original photon.

spectrum. Such a function can also be made for the radiated photon, which is
called the emission spectrum. In figure 2.2 the excitation and emission spectra
for Texas Red are shown. The Stokes shift is defined here as the difference in
wavelength between the maximum of the emission spectrum and the maximum
of the excitation spectrum and is about 20 nm in this example. In fluorescence
microscopy this shift is used to our advantage. With the use of filters the ex-
citation light can be separated from the emission light as described in section
2.2.

2.1.1 Labeling Techniques

To detect specific DNA sequences we must use labels that are targeted to
those sequences. A wide range of methods is available. Here we will discuss
two methods: FISH and fused proteins. When several nuclei are present in
the field of view of the microscope we also need a method to distinguish the
individual nuclei. This is done by a counterstain, i.e. we stain all of the DNA.
A well known method is by using DAPI. This is an intercalating fluorescent
molecule that binds to A/T-rich sequences in the minor grooves of the DNA.
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Figure 2.2: Excitation and emission spectra of Texas Red. We can also see the Stokes shift
for this fluorescent dye1.

Fluorescence in situ Hybridization (FISH)

FISH is a technique to label specific parts of the DNA (Rudkin and Stollar,
1977). In figure 2.3 we see the principle of FISH. Since the specific DNA
sequence of interest is not visible as such, it needs to be labeled. This is done
by use of the fact that single stranded (ss)DNA will anneal to a complementary
sequence of ssDNA. The success of FISH lies in the fact that the ssDNA has
a higher chance of annealing to added sequences of ssDNA with a fluorescent
label attached to it than to its original complementary part.

Fluorescent proteins

In contrast to FISH one can also follow proteins that are co-localized with the
DNA of interest, e.g. trf1 (telomere repeat binding factor 1) which is one of the
proteins in the nucleoprotein complex surrounding the telomere. To visualize
the protein of interest, the DNA of the cell is genetically altered, see figure 2.4.
Before the stop codon of the DNA that translates to the protein, extra DNA

1Texas Red Spectrum, Invitrogen/Molecular Probes, Carlsbad, California, USA, data at
<http://www.invitrogen.com/site/us/en/home/support/Product-Technical-Resources/Pro
duct-Spectra.1395lip.reg.us.html>
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Figure 2.3: The principle of Fluorescence in situ Hybridization. Here we see the DNA
sequence of interest (black). After denaturation of the DNA (by heating),
probes, consisting of a sequence of complementary DNA, and a label (green), are
added. If enough probes are added the chance is high that a probe will anneal
instead of the original DNA. The label can consist of a fluorescent molecule
(direct labeling) or a hapten molecule after which another step is needed to add
a conjugate of a fluorescent molecule and a molecule that has a high affinity to
the hapten molecule (indirect labeling), e.g. biotin-streptavidin.

is inserted. This DNA codes for a fluorescent protein. Now every time the
protein of interest is expressed it will be conjugated to the fluorescent protein.
Although green fluorescent protein (GFP) was the first protein to be used, a
wide range of fluorescent proteins are now available (Shaner et al., 2005).

2.2 Wide-field microscopy

In figure 2.5 we see a sketch of an epi-fluorescence wide-field microscope. The
main light source is usually a mercury or xenon arc lamp, depending on the
application. The mercury lamp emits only some lines in the spectrum, but at
high brightness levels. The xenon lamp has a much flatter spectrum, but is less
bright. The main components of this microscope are the filter cube and the
objective. The filter cube is the component in the microscope which needs to
be matched to the excitation and emission spectra of the fluorescent molecules.
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Figure 2.4: Fused Proteins. In the top row we see the DNA that codes for TRF1. To
visualize this protein, DNA of GFP is inserted. Now a conjugated (or fused)
protein will be expressed (bottom row). Because TRF1 is a protein associated
with the telomeres, fluorescent signals from the GFP are likely to be colocalized
with the telomeres.

In figure 2.6 we see an example of the spectra of the filters and the dichroic
mirror.

The objective lens is the defining part of the microscope. It defines the point
spread function (PSF), which in turn defines the resolution of the system. The
PSF is the impulse response of the lens, in other words it is the image of a
mathematical point. The PSF is formed because the lens is diffraction limited.
This means that not all the diffracted light will pass through the lens, so the
higher order interference that is needed to form a point in the image will not
reach the image plane. This results in a three-dimensional interference pattern.
This interference pattern is the PSF. Now, because the object can be seen as
an infinite number of points and the superposition principle holds, the image
of an object is the object convolved with the PSF of the imaging lens. Since
the PSF has the properties of a distribution function (it is positive and the
sum is finite) it acts as a blurring function: the image is a blurred version
of the object. It should be noted that this is only valid for a PSF which is
spatially invariant. In practice this is never the case. For example the object
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Figure 2.5: Wide-field microscopy sketch. On the left we see the excitation path of the light.
After the light passes the filter cube, it hits the sample. Fluorescent molecules
in the sample with an excitation spectrum which matches the excitation filter
and dichroic mirror reflectance spectra can be excited. On the right we see
the emission path of the microscope. The excited molecules can emit photons
which, if matching the emission filter and dichroic mirror transmittance spectra,
can reach the charged-coupled-device (CCD) camera.

itself will influence the PSF, which could result in a different PSF in every focal
plane of the object. In figure 2.7 we see an example of a PSF. This PSF is a
simulation according to the model derived by Gibson and Lanni (1991). We
used a wavelength, λ = 600 nm, magnification, M = 63x, numerical aperture,
NA = 1.3, and an isotropic sampling distance of, dr = dz = 40 nm.

Lord Rayleigh (born John William Strutt) saw that the blurring because
of the PSF, which is an intrinsic property of the microscope system, results in
a limited spatial resolution. He therefore defined the resolution of an imaging
system as the distance between two point sources which can still be resolved
by the human eye (Strutt, 1879, 1880). To make it less arbitrary, he defined
it by the distance from the middle of the PSF to the first zero crossing, so
the maximum of the PSF from the second point source is on top of the first
zero crossing of the first point source. In figure 2.8 we see an example. This
distance, δR, given by the Rayleigh criterion is:

δR = 0.61
λ

NA
(2.1)

Note that this is close to the Abbe diffraction limit (Abbe, 1873):

δA =
λ

2NA
(2.2)
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Figure 2.6: Transmission spectra of an excitation filter, dichroic mirror and emission filter.
In the ideal case for the dichroic mirror this means that in the spectral region
where the mirror is not transmitting it is reflecting. This filter can be used for
a molecule which absorbs blue and excites green light, for example FITC, Cy2
or GFP.1

In our example of figure 2.7 this results in δR = 282 nm and δA = 231 nm.
Karl Ernst Abbe discovered this fundamental limit of resolving power of a

lens when he was hired by Carl Zeiss by the end of the 19th century to optimize
the manufacturing process of lenses. He saw that to image an object, at least
the first order of diffraction has to pass the lens. Since light passing an object
with structures with higher spatial frequencies will diffract in a higher angle,
there must be a highest frequency that can be imaged, giving the diffraction
limit. More information can be obtained when we take the Fourier transform of
the PSF. This will give us the so-called optical transfer function (OTF). It tells
us which spatial frequencies are passed through the objective. We immediately
see that the OTF has cut-off frequencies in the lateral direction, fr,c, and in
the axial direction, fz,c. These cut-off frequencies are given by (Wilson and

1Chroma Technology Corp, Rockingham, Vermont, USA, Excitation filter data:
ET470/40x<http://www.chroma.com/index.php?option=com products&Itemid=53&task=
details&productType=part&id=938>, Emission filter data: ET525/50m <http://www.chro
ma.com/index.php?option=com products&Itemid=53&task=details&productType=part&i
d=852>Dichroic mirror data: T495LP<http://www.chroma.com/index.php?option=com p
roducts&Itemid=53&task=details&productType=part&id=851>
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Figure 2.7: (a) shows a middle lateral (xy) section of a simulated wide-field PSF. (b) shows
the middle axial (xz) section of the PSF. (c) shows a mesh representation of
(a). In (d) and (e) we see the same as in (a) and (b) respectively where the
intensities have undergone a logarithmic stretch. (f) shows a simulated OTF
of the wide-field microscope.
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Figure 2.8: The dashed lines show the single point spread functions of two single point
sources. The black line is the image of the two sources (superposition). The
contrast (the relative difference between the maxima and the minimum in be-
tween) is approximately 26.5%.

Tan, 1993):

fr,c =
2NA
λ

(2.3)

fz,c =
n−
√
n2 −NA2

λ
(2.4)

where n is the refractive index of the immersion medium. This information
is useful because these frequencies also define the Nyquist frequencies, (fN =
fc/2) and therefore the Nyquist sampling distance, d = 1/fN . In our example
this results in a sampling rate in the lateral direction of dr ≤ 115 nm and in the
axial direction of dz ≤ 407 nm. Note that the cut-off frequency in the lateral
direction is the reciprocal of the Abbe diffraction limit.

The OTF also shows why a simple wide-field setup cannot give true optical
sectioning, i.e. 3D imaging. In the middle of the OTF we see the so-called
”missing cone”, see also figure 2.12. Low frequencies in the lateral direction in
the object are not imaged outside of the focus plane. In practice this means
that, when imaging in the focus plane, we also image objects that are far out
of the focus plane and therefore blurred. In the next section we will describe
confocal microscopy, which solves the problem of the ”missing cone”.
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2.3 Confocal microscopy

The confocal microscope, also known as the laser scanning confocal microscope
(LSCM) , owes its name to the fact that it has pinholes in the conjugate fo-
cal planes as seen in figure 2.9. The object is illuminated by a single spot
which of course is defined by the PSF. Note that this PSF is excitation wave-
length dependent and therefore different from the emission PSF from wide-field
microscopy. In figure 2.10 we see the principal of the confocal microscope.

Figure 2.9: Confocal microscopy sketch. On the left we see the excitation path of the light.
The object is illuminated with a laser light source through a pinhole. After
the light passes the filter cube, it hits the sample. Fluorescent molecules in
the sample with an excitation spectrum which matches the excitation filter
and dichroic mirror reflectance spectra can be excited. On the right we see
the emission path of the microscope. The excited molecules can emit photons
which, if matching the emission filter and dichroic mirror transmittance spectra,
can reach the PMT through a pinhole. Because of the setup with pinholes the
object needs to be scanned.

Although the sample is mostly illuminated in the focal plane, it is also illu-
minated in regions in the out-of-focus planes. So fluorophores in this region
will also be excited and emit photons. The image of the out-of-focus point
will ”arrive” blurred at the detection plane. The simple solution is to block
this light with a second pinhole, so that most of the light in the pinhole are
photons from the in-focus plane. It is easy to see from this construction that
the total confocal PSF, hcon, can be derived from the excitation PSF, hex, and
the emission PSF, hem:

hcon = hex · hem (2.5)

In figure 2.11 we see an example of a confocal PSF. The most striking point is
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Figure 2.10: Principal of the confocal microscope: after the object is illuminated, most of
the emission arriving at the pinhole will originate from the in-focus plane.
Most of the light from the out-of-focus plane will be blocked at the pinhole.

that when we compare the wide-field PSF (Figure 2.7c) with the confocal PSF
(Figure 2.11c) it does not look very different. But when we take a look at the
confocal OTF we see that the ”missing cone” has disappeared. This is because
one of the properties of Fourier transforms is that a multiplication in one do-
main gives a convolution in the other. So the confocal OTF, Hcon, can also be
derived from the excitation and emission OTF, Hex and Hem respectively:

Hcon = Hex ⊗Hem (2.6)

where ⊗ is the convolution operator. In figure 2.12 we see a sketch of a compar-
ison of the wide-filed OTF with the confocal OTF. Because of the convolution
we see two differences. First, the cut-off frequencies have doubled. This also
means that the sampling distances should be halved in confocal microscopy
when compared to wide-field microscopy. Second, the ”missing cone” is filled.
This is the most important property of the confocal microscope: it has optical
sectioning capabilities.

In figure 2.13 we see an image of a thick section of the root of a convallaria
which is autofluorescent. Both images have been acquired with a confocal
microscope. In figure 2.13a the pinhole has been opened as far as possible
(1000 µm) to mimic a wide-field microscope. During acquisition of the image
in figure 2.13b the pinhole has been set to the optimal conditions for confocal
imaging: the size of 1 Airy disk (given by the system as 96 µm). The images are
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Figure 2.11: (a) shows a middle lateral (xy) section of a simulated confocal PSF. (b) shows
the middle axial (xz) section of the PSF. (c) shows a mesh representation of
(a). In (d) and (e) we see the same as in (a) and (b) respectively where the
intensities have undergone a logarithmic stretch. (f) shows a simulated OTF
of the confocal microscope.
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Figure 2.12: Sketch of the wide-field and the confocal OTF. We see that for the confocal
OTF the cut-off frequencies have been doubled and the ”missing cone” has
been filled compared to the wide-field OTF.

acquired with a Zeiss LSM510 confocal system with a Plan-Apochromat 63x
Oil objective with NA = 1.4. The sample was excited with a laser at 488 nm
and a long pass 505 nm filter was used to detect mostly emitted light from the
sample. In figure 2.13c we clearly see the advantage of the confocal microscope:
out-of-focus light has been blocked resulting in less blur and the two lines at
approximately 8 µm are now resolved.

2.4 Microscopy beyond Abbe

In section 2.2 the Abbe diffraction limit is discussed. The objective of the
microscope works as a low pass filter for spatial frequencies, giving a highest
possible resolving power of:

δA =
λ

2NA
(2.7)

One basic research focus in life-science microscopy the last two decades is to
be able to image details as small as possible, smaller than δA, and therefore
to break the Abbe diffraction limit. This diffraction limit tells us that this is
not possible using conventional imaging: a wide-field setup. In section 2.3 the
confocal microscope is discussed, where basically the diffraction limit has been
broken by a factor of two in both the lateral and axial direction. The diffraction
limit is closely related to the Heisenberg’s uncertainty principle (Heisenberg,
1927), which basically tells us that the more accurately one can measure the
position of a particle the less accurately one can measure its momentum. This
means that breaking the diffraction limit will always come at a cost. Since
confocal imaging is inherently a scanning system the cost therefore is time.
Basically, in all high resolution imaging techniques the cost is time. Discussing
all these techniques is beyond the scope of this thesis. In the following para-
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Figure 2.13: Image of the root of a convallaria. (a) wide-field image with the pinhole
opened (1000 µm). (b) confocal image with the pinhole at 1 Airy disk (96
µm). The white line in both (a) and (b) is where the line profile is measured
and is 20 µm long. (c) the line profile from the wide-field image (blue) clearly
is less resolved then the line profile from the confocal image (red).



2.4. Microscopy beyond Abbe 23

graphs four methods will be discussed shortly. More techniques are reviewed
in (Garini et al., 2005; Hell, 2007).

2-Photon microscopy

Another method to square the PSF and thus get a better resolution and optical
sectioning is to use 2-photon microscopy (Denk et al., 1990). To excite a
fluorophore a specific amount of energy is needed. This does not have to be
one photon with energy E = hf , where h is Planck’s constant and f the
frequency of the photon. Two photons arriving simultaneously with an energy
E/2 = hf ′ = h f2 can also excite the fluorophore. Now, every one of these
two photons has a spatial distribution given by the PSF. So the chance of two
photons arriving at the same position is again PSF2. Not only do the photons
need to arrive at the same position but also at the same time. This is achieved
by using a pulsed laser.

4Pi

The 4Pi microscope is an example of a method using the interference properties
of light (Hell and Stelzer, 1992). The basic idea lies in the fact that to catch
as much higher order diffractions as possible, is to collect all the light coming
from the sample in a solid angle of 4π sr. Achieving this is impossible, but to
mimic this the setup consists of two objectives on either side of the sample. If
the excitation light now comes from both sides an interference excitation spot
can be created in the sample with a better resolution than the conventional
PSF. A second possibility is that the sample is excited conventionally (with one
objective) but the interference is created at the detection using both objectives.
The third method is to combine the first two methods, thus having interference
in both the illumination and detection. An advantage of the 4Pi microscope
is that, on top of an improved resolution in both the lateral as axial direction,
it gives an almost spherical PSF. The improvement is most noticeable in the
axial direction where resolutions up to 80 nm have been shown.

The disadvantage of this method is that the interference pattern not only
has a main lobe but also two significantly large side lobes. So the acquired
image always needs to be deconvolved to remove the influence of the side lobes.
Another disadvantage is the alignment; since the principle of the microscope is
based on interference, the two objectives need to be aligned with high accuracy.
Besides that, the interference pattern is also dependent on the sample itself and
therefore the alignment needs to be performed for each individual sample.
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STED

STimulated Emission Depletion (STED) microscopy excites a normal PSF spot
in the sample with a pulsed laser (Hell and Wichmann, 1994). Then, within the
lifetime of the excited state, a second pulse is generated and the beam is shaped
into a donut-like interference pattern. This donut-like pattern is projected onto
the original PSF where the ’hole’ of the donut coincides with the maximum of
the PSF creating stimulated emission. Since the stimulated emission is a non-
linear process, the emission PSF of the remaining excited fluorophores, which
will emit nanoseconds later, will be much narrower then the original PSF.

The resolution of STED is dependent on the ratio of intensity of the non-
depleted region, Imax, and the intensity of the depleted region, Is, and is given
by (Hofmann et al., 2005):

δSTED =
λ

2NA
√

1 + Imax
Is

(2.8)

PALM

The criterion for resolution is the smallest distance for which to point sources
can be resolved after imaging. This does not mean that a single point source
can not be localized with a better precision than this. The localization precision
δx is approximately given by:

δx ≈
σ√
N
, (2.9)

where σ is the standard deviation of the PSF and N the number of col-
lected photons. In (fluorescent) Photo-Activatable Localization Microscopy
((f)PALM) (Betzig et al., 2006; Hess et al., 2006) or STOachastic Reconstruc-
tion Microscopy (STORM) (Rust et al., 2006) the sample is labeled with a
protein that has an ’on’ and ’off’ state. When starting the acquisition, the
proteins need to be in a ’off’ state, that is they will not be fluorescent. Using
light with the appropriate wavelength the protein can be switched into the ’on’
state and now is fluorescent. The key to PALM is to use such a low power of
switching light that only a sparse subset of the proteins will switch form the
’off’ to the ’on’ state. If the distances between the ’on’ proteins are far enough
they can be seen as point sources, and therefore the localization precision is
dependent on N . After switching, the subset of proteins can be imaged until
they are photobleached. Now sub-images are created from the acquired images
by fitting a 2D Gaussian distribution on the image of the single protein to get
its position and replacing the wide PSF spot (with width σ) in the image with
a spot at this position with a narrower spot (with width σ√

N
). The total image

is constructed by simply adding the sub-images. This cycle of switching ’on’
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some proteins and acquiring an image is repeated until enough proteins have
been imaged to form a nice total image.

The disadvantage of PALM method is time. In the original article (Betzig
et al., 2006) one image would take 2∼12 hours. This has improved to a couple of
minutes in PALMIRA (PALM with Independent Running Acquisition) (Egner
et al., 2007).

2.5 Conclusions and discussion

In this chapter fluorescence microscopy is discussed. Some terms of fluorescence
are explained, like the Stokes shift and the Jablonski diagram. To detect specific
DNA sequences or specific proteins in the cell nucleus we can label these with
a fluorescent marker. Two popular methods to do so are FISH, where the
DNA is labeled, and fused proteins, where a protein is coupled to a fluorescent
protein. Then the wide-field and confocal microscopes are explained. The most
important properties are given using the point spread function and the optical
transfer function. The main difference being that the confocal microscope is
able to, unlike the wide-field microscope, perform optical sectioning. Finally
we presented some new state-of-the art high resolution techniques that have
been developed in the last two decades, like 2-photon-, STED-, 4PI-microscopy
and PALM.
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Image restoration

This chapter will discuss several image restoration techniques. In section 3.2 the
well-known Tikhonov-Miller (TM) filter , a linear restoration filter, is derived.
Then section 3.3 will handle a restoration technique for a ”poor-mans” confocal
microscope. For this purpose a Maximum A-Posteriori restoration algorithm
assuming Poisson noise and Gaussian priors (MAPPG) is chosen. It is adjusted
to be able to handle two images that have been acquired simultaneously and
is therefore named MAPPG2 . In section 3.4 we will show that a deconvolved
image of a small fluorescent object can be approximated by a Gaussian profile.

3.1 The inverse problem

The goal of image restoration is to recover some physical property of the object
from its image. To do this we need to have knowledge of the image formation.
The most fundamental form for this image formation can be given by the
following matrix notation (Pratt, 1978):

g = Hf (3.1)

Here the object, f , and the PSF, H, are both sampled and g is the result-
ing image. When the image has size M = m × n × k voxels, both f and g
will be column vectors with size 1 ×M and H a matrix with size M ×M .
In this formalism the PSF can be spatially variant. However when the PSF
is spatially invariant this equation can be most efficiently implemented in the
Fourier domain where the spatial matrix multiplication becomes an element-
by-element multiplication in the frequency domain. Equation 3.1 has to be
rewritten if we want to include a known background and a noise process. The
inclusion of a known background will lead to better results in restoration algo-
rithms using a non-negativity constraint (i.e. the object can only have zero or
positive values). The most commonly used models for noise are Gaussian and
Poisson noise. The image formation equation that takes into account both the

27
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background and noise is given by:

g = N(Hf + b) (3.2)

where b is the known background and N(·) is the noise process.
When we look at equation 3.1, the most intuitive restoration algorithm

would be:
f̂ =

g

H
(3.3)

Here f̂ is the restored object. The problem is that, in general, H does not
have an inverse because some of its eigenvalues are zero. For example, if the
one-dimensional transfer function is a rectangular pulse, than its Fourier trans-
form is a sinc-function. This function has zero-crossings and that is where
spectral information of the object is lost after convolution. Because of these
zero-crossings we cannot restore by simple division in the Fourier domain; we
would be dividing by zero.

Another approach is minimizing the squared difference between the blurred
object and the image, which leads to minimizing the functional:

Ψ =‖ Hf − g ‖2 (3.4)

The least squares estimate is obtained by setting the derivative of this func-
tional to zero, which results in the pseudo-inverse:

f̂ =
HT g

HTH
(3.5)

where HT is the transpose of matrix H. This also doesn’t work because some
of the non-zero eigenvalues are still too small. These kinds of problems, where
eigenvalues are small or zero, are called ill-posed. Image recovery without any
other knowledge than the blurring matrix H, is, therefore, impossible.

This means we need some other information. This can be information on
smoothness, non-negativity or some other physically meaningful a priori con-
straint. Some examples of linear filters that are commonly used are Tikhonov-
Miller and Wiener filters. But because these filters are still linear they have
the big drawback that they cannot recover lost frequencies. Especially in wide-
field imaging, where the ”missing cone” problem exists, but also in confo-
cal imaging, we want to recover those lost frequencies. This is called super-
resolution restoration. Non-linear algorithms have shown this super-resolution
property (Conchello, 1998; Markham and Conchello, 2001).

3.2 Tikhonov-Miller (TM) restoration

The TM filter makes use of the Lagrange multiplier. Besides minimizing the
squared difference in equation 3.4, we also make use of the fact that energy, E,
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in the image has to be constant:

E =‖ f ‖2 (3.6)

The method of the Lagrange multiplier states that the gradient of the function
to be minimized is proportional to the gradient of some side condition. Here
the side condition is derived from equation 3.6 and is:

ϕ =‖ f ‖2 −E = 0 (3.7)

Then the equation to be solved is:

∇Ψ + γ∇ϕ = 0 (3.8)

where γ is the Lagrange multiplier. Solving this equation gives the TM esti-
mate:

f̂TM =
HT g

HTH + γ
(3.9)

In image restoration the Lagrange multiplier is also called the regularization
parameter, because it regularizes the amount of smoothing in the restoration
result. Increasing this parameter will increase smoothing. Setting it to zero
will again give us the least squares estimate.
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3.3 3D Restoration with multiple images acquired by a mod-
ified conventional microscope

B.J. Vermolen, Y. Garini, I.T. Young
This section was first published in Microscopy Research and Technique (Ver-
molen et al., 2004).

3.3.1 Abstract

A problem in high magnification microscopy is the blurring in the imaging of
an object. In this article we demonstrate a restoration technique that simul-
taneously makes use of the confocal image and the wide-field image. These
images can be acquired by a modified conventional microscope. In front of the
light-source there is an array of pinholes. There are no pinholes at the detec-
tion plane. Instead one or more pixels from the CCD camera are used, where
the pinholes would have been. Using all pixels gives the wide field image, but
using a selected subset can give a confocal image. The array is used to speed
up the process of acquiring the image. Note that the speed of acquisition is
proportional to the number of pinholes. We show that the restoration from the
two images can lead to a better result than using only one of the images. If
this is the case, we show that a distance of 5 times the diameter of the pinholes
can give the same results as a distance of 20 times after deconvolution. This
offers an increase in acquisition time of a factor 16.

3.3.2 Introduction

In applications such as fluorescent in situ hybridization (FISH) where specific
DNA sequences can be stained, e.g. the telomeres, it is desirable to acquire
images with the highest possible resolution. A problem in microscopy is that the
lens system has limited resolving power; it acts as a low-pass filter. There are
several ways to improve the resolution. Using a confocal microscope will pass
higher spatial frequencies, especially in the direction of the optical axis, but at
the cost of blocking photons. Another way is to deconvolve the image. This is
a mathematical process done after the image has been acquired. Deconvolution
can be done on the wide-field image but also on the confocal image. We use
an algorithm that involves two images that are simultaneously acquired. This
is done using a modified conventional microscope where an array of pinholes is
placed in front of the light-source and a CCD camera is placed in the detection
plane. A trade off is implied between speed and confocality. There are more
pinholes in the array if they are placed close together, which increases speed
of acquisition but this setup will have less optical sectioning power (Verveer
et al., 1998). The extreme case, where the pinholes are placed infinitesimally
close to one another, is equivalent to a wide-field microscope. In this article
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Figure 3.1: Setup of our epi-fluorescence microscope. The in-focus information from one
pinhole is acquired by the black pixel. The surrounding pixels contain the
out-of-focus blur.

we show the modified microscope and an algorithm for restoration. We discuss
some practical problems to consider when doing simulations of acquisition and
restoration. This includes topics like choice of the regularization parameter,
noise, background and initial estimates for the restoration algorithm. Then
we discuss the results from the simulations. Here we show that when we take
images of spheres with a low signal-to-noise ratio (SNR) the pinholes can be
placed as close together as 5 times the diameter of a single pinhole and, after
restoration, the results will be equivalent to pinholes placed at a distance that
is 20 times this diameter.

3.3.3 Materials and methods

Hardware and software

The presented results are all simulations done on an AMD Athlon XP 2700+
system. The software was written in MatLab code and run in MatLab 6.5
(R13). The software also makes extensive use of DIPimage 1.4.1 (Luengo Hen-
driks et al., 1999).

A modified microscope

In figure 3.1 we see the proposed microscope. The setup is similar to a con-
ventional epi-fluorescent microscope with some modifications. In front of the
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= +

Iwf = Ic + Inc
total image pinhole image remainder image

(wide-field image) (conjugate image) (non-conjugate image)

Figure 3.2: The total image is the actual acquired image by the camera, the pinhole image
that would have been acquired if pinholes were used and the remainder image
is the total image minus the pinhole image. Scanning the object gives a series
of images which will form the conjugate, the non-conjugate and the wide-field
image.

light-source, in the conjugate focal plane, is an array of pinholes and in the
detection plane, the other conjugate focal plane, a CCD camera. A normal con-
focal microscope achieves its optical sectioning properties through two pinholes
where the pinhole in front of the detector, blocks the out-of-focus blur. This
microscope does the same by taking into account the pixels with coordinates
corresponding to the place where the pinhole would have been, as illustrated
in figure 3.2. Scanning the object using only these CCD pixel-‘pinholes’ forms
the conjugate image. With one pinhole we would call it the confocal image; the
remainder of the pixels form the non-conjugate image. Note that adding the
conjugate, Ic, and the non-conjugate image, Inc, gives the wide-field image:

Iwf = Ic + Inc (3.10)

Assuming a spatially-invariant PSF, H, the generic image formation can be
represented as a convolution of the object, O, with the PSF:

I = H ∗O (3.11)

The wide-field image is then formed by replacing H with the emission PSF,
Hem. The PSF of the conjugate image formation, Hc, is given by Verveer et al.
(1998):

Hc(xo, yo, zo) = Hem(xo, yo, zo;λem)
∫ +∞∫
−∞

G(
q

M
,
r

M
)×

Hex(
q

M
− xo,

r

M
− yo, zo;λex)dq dr (3.12)
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where (x0, y0, z0) is the 3D coordinate system in object space, G is the array
function, M is the magnification of the lens and λem and λex respectively the
emission and excitation wavelengths. The PSF of the non-conjugate image
formation, Hnc is the conjugate PSF subtracted from the wide-field PSF:

Hnc = Hem −Hc (3.13)

Restoration

Another way of writing equation 3.11 in its most fundamental form is by using
the following matrix notation (Pratt, 1978):

g = Hf (3.14)

Here the object, f , and the PSF, H, are both sampled and g is the resulting
image. Introducing a background, b, and noise process, N(·), equation 3.14
becomes:

g = N(Hf + b) (3.15)

For this study we have chosen to implement the MAPPG restoration algorithm
(Verveer and Jovin, 1997). MAPPG is an abbreviation for Maximum A Pos-
teriori with Poisson statistics and a Gaussian prior. A MAP algorithm implies
maximizing the a posteriori density function, p(f | g), which is according to
Bayes’ rule:

p(f | g) =
p(g | f)p(f)

p(g)
(3.16)

In words, we would like to find the most likely image f that led to the measured
image g. Because p(g) is constant, maximizing the left side of equation 3.16
is equivalent to maximizing the numerator of the right side of equation 3.16.
This means that we must choose a prior density, p(f), and a conditional density
function, p(g | f).

For the prior density we choose a Gaussian distribution:

p(f) ∝ exp(− 1
2τ2
‖ C(f −m) ‖2) (3.17)

where τ can be used as a penalty term and C and m are in image restoration,
commonly known as, the regularization matrix and the model respectively.
Choosing a Gaussian distribution for the prior density is an arbitrary choice.
Because we have no prior knowledge of the object, any assumption of a model
would be arbitrary. Still a Gaussian distribution is chosen because the Gaussian
distribution is computationally simple and because one could argue that the
intensity distribution in images often resembles a superposition of Gaussian
distributions.
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The conditional density function will be a statistical model. Poisson statis-
tics are chosen because the acquisition of an image can best be described as
a photon counting process (Mandel and Wolf, 1995). If we assume pixel inde-
pendence we can write this as:

p(g |f) =
K∏
i=1

µNii exp(−µi)
Ni!

(3.18)

where µi = β[Hf + b]i is the mean, Ni = βgi is the number of photons, β is
the photon-conversion factor, and K is the size of the image (in pixels).

Now we obtain the MAPPG functional ΨPG by substituting equation 3.17
and equation 3.18 in equation 3.16 and taking the negative of the logarithmic.
Leaving out the terms that are independent of f gives us the functional:

ΨPG =
∑

Hf − gT ln(Hf + b) + γ ‖ C(f −m) ‖2 (3.19)

Here γ is the regularization parameter and T the transpose operator. In the
rest of this report the regularization matrix, C, will be chosen as unity and m
zero as in Verveer (Verveer and Jovin, 1997).

To implement a non-negativity constraint a transformation of variables is
made: f = e2. If E is given by the diagonal matrix with Eii = ei, then the
new functional is given by

ΨPG =
∑

He2 − gT ln(He2 + b) + γ ‖ e2 ‖2 (3.20)

and its gradient by:

∇ΨPG = 2E(HT (1− g

He2 + b
) + 2γe2) (3.21)

By minimizing ΨPG with respect to e we obtain our MAP estimates. This
minimization is described in Verveer (Verveer and Jovin, 1997) and uses the
nonlinear conjugate gradient algorithm.

The MAPPG algorithm is made suitable for multiple images by replacing
one image, g, by a vector of images:

g =
(
c1g1 c2g2 . . . cNgN

)
(3.22)

The same is done for the PSF:

H =
(
c1H1 c2H2 . . . cNHN

)
(3.23)

Here ci is a weighting factor which will be discussed later and N is the number
of images. Substituting equations 3.22 and 3.23 in equations 3.20 and 3.21
gives the new functional:

ΨPG =
N∑
i=1

(∑
ciHie

2 − cigi ln ciHi

)
+ γ ‖ e2 ‖2 (3.24)
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and its gradient:

∇ΨPG = 2E
( N∑
i=1

ciHi(1−
cigi
ciHie2

) + 2γe2
)

(3.25)

In our case N = 2, the conjugate and the non-conjugate image. We call this
multi-image restoration algorithm MAPPG2.

Weighting factors

The choice of the weighting factors has a high impact on the quality of the
restoration. A simple choice is to consider the fact that the noise in the images
is Poisson noise. This means that for both images the conversion factor, β,
should be the same. So we choose as weighting factors:

c1
c2

=
β1

β2
(3.26)

Because in our system β1 = β2 we simply choose c1 = c2 = 1. There are
similar systems, where a conjugate and non-conjugate image are acquired si-
multaneously, e.g. the Programmable Array Microscope (PAM) (Verveer et al.,
1998). The difference is that there the detectors do not have to be the same.
MAPPG2 can be applied there but because β1 6= β2 we need to use these
weighting factors.

Regularization parameter

The regularization parameter is calculated with the method of generalized cross
validation (GCV) (Galatsanos and Katsaggelos, 1992).

The basic idea is that a regularization parameter is calculated using a leave-
one-out principle with the Tikhonov-Miller filter (Tikhonov and Arsenin, 1977).
Tikhonov-Miller restoration is applied to all pixels except the pixel under con-
sideration. Then the mean squared error (MSE) is calculated between the
original data and the restoration result derived by filtering each pixel with its
associated Tikhonov-Miller filter. We therefore have to minimize (Galatsanos
and Katsaggelos, 1992):

GCV (γ) =
∑
|(I −HA(γ))g|2

[trace(I −HA(γ))]2
(3.27)

with respect to γ. This gives us an estimate of the regularization parameter to
be used for the Tikhonov-Miller filter, γTM . Here I is the identity matrix and
A the Tikhonov-Miller filter:

A(γ) =
HT

HTH + γ
(3.28)
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Figure 3.3: Test-objects. These images are the center slices of the full 3D image stack.
Note that the spheres look oblate because the pixel distance in the z-direction
is larger than in the x-direction.

Equation 3.27 can be written in the Fourier domain, where ω is the spatial
frequency:

GCV (γ) =

∑
ω

γ2|G(ω)|2
(|H(ω)|2+γ|)2

(
∑
ω

γ
|H(ω)|2+γ )2

(3.29)

Minimizing is done using Brent’s minimization algorithm (Press et al., 1992).
As explained in (Kempen, 1998) we now have to simply divide the outcome,
γTM , by 2 and the mean of the image, g to determine the regularization pa-
rameter to be used in MAPPG:

γMAPPG =
γTM
2g

(3.30)

This regularization parameter has shown to be quite effective. For a better
understanding and derivation of the GCV function see (Golub et al., 1979).

Test-objects

The test-objects in the simulations have been created with DIPimage (Lu-
engo Hendriks et al., 1999). Here band-limited images of objects can be made.
These are implemented in Fourier space and then transformed into the spatial
domain (Kempen, 1998). Because a real object has spatial frequencies into
infinity and a simulation of an object is sampled, the Nyquist criterion can
never be met. To avoid aliasing effects the object is convolved with a Gaus-
sian. According to van Vliet and Verbeek (1994) only simulated objects free
from aliasing can give a good representation of the real object.

Different test-objects have been chosen. In figure 3.3 are spheres with vary-
ing diameter (1 µm, 800 nm, 650 nm, 350 nm, 200 nm) and a maximum in-
tensity of 200 ADU (Analog-to-Digital Unit) . A shell with an outer diameter
of 2 µm which is 200 nm thick with a maximum intensity of 200 ADU. The
same shell combined with a shifted sphere (-200 nm in the x-direction) of 1
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µm where the sphere has a maximum intensity of 200 ADU and the shell a
maximum of 100 ADU. All these objects are convolved with an anti-aliasing
Gaussian with σ = 40 nm as previously described. Furthermore all images are
shifted a random sub-pixel distance, creating asymmetry.

Noise

Acquiring images introduces noise. Poisson noise dominates other noise sources
such as thermal noise, KTC-noise or quantization noise (Young et al., 1998).
Therefore, only Poisson noise is simulated. An algorithm has been implemented
in DIPimage (Luengo Hendriks et al., 1999) which uses the reciprocal of the
photon conversion factor, β, as a parameter to vary the SNR:

SNR = 10 log(βµ) (3.31)

The algorithm for Poisson noise can be found in Knuth (1969). In our sim-
ulations we used a β that corresponds to an SNR of 25 dB and 40 dB in the
wide-field image. Since Poisson noise is dependent on the signal, we had to
choose some µ as the signal. Here we chose the maximum of the wide-field
image:

β =
10

SNR
10

max(gwide−field)
(3.32)

This means that the SNRs of the conjugate images are far less then this 25 or
40 dB, because the signal, µ, is smaller.

Background

In all simulations we assume a constant background. As shown in figure 3.4,
the image has size 2 x 2 and the total image acquired by the camera consists
of a confocal and a non-confocal part. The number in the pixel represents
its background and not the signal. For every pixel in the resulting confocal
image we need to take one total image. One of the pixels of the total image
is for the confocal image and the others for the non-confocal image. This
leads to a total background in the resulting confocal image of intensity 1, the
resulting background in the non-confocal image of intensity 3, and the resulting
background value for the conventional wide-field image of intensity 4. It is now
easy to see that if one pinhole has to scan over an area with size M ×N and
the wide-field image has a known background bg then the conjugate image has
a background of

bgc = bg
1

M ×N
(3.33)

and the non-conjugate image a background of

bgnc = bg(1− 1
M ×N

) (3.34)
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Figure 3.4: An example of the relation between the background of the confocal, non-
confocal and wide-field image. The number in the pixels represent the intensity
of the background.

The example of figure 3.4 is consistent with this. Note that bg = 4 and so
bgc = 1 and bgnc = 3.

Initial estimate

An initial estimate is necessary for the MAPPG and MAPPG2 algorithm. It is
important to choose a suitable image for this. Choosing a wrong image will not
always converge to the solution that was expected. Some alternatives for initial
estimates are: the original wide-field data, the original confocal data, smoothed
versions of these. Another way is to calculate the estimate with the Tikhonov-
Miller filter, see equation 3.28, using the wide-field or the confocal data. The
Tikhonov-Miller estimate from the confocal data gave the best overall results
in our simulations, therefore was chosen as the initial estimate.

Comparing results

To compare the different restorations the MSE is used as a measure. The MSE
between the object, f , and the restored image, f̂ , is defined as:

MSE(f, f̂) =
1
K

∑
i

(f̂i − fi)2 (3.35)
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Figure 3.5: Flow diagram, from top to bottom, illustrating the simulation

Algorithm of simulations

The algorithm is presented in figure 3.5. First the test-object, f , was simulated
in an image of 64 x 64 x 32 pixels with a pixel distance of 40 nm in the xy-
direction and 120 nm in the z-direction. Then we simulated the excitation, Hex,
and the emission PSF, Hem, with excitation wavelength 488 nm and emission
wavelength 590 nm (e.g. SNARF-1), the refractive index of the immersion oil
is 1.518 and a numerical aperture of 1.4 (Voort and Brakenhoff, 1990). The
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diameter of the back-projected pinholes, Dpinhole, was 200 nm. The lattice
distance of the array, G, was δxy = {2, 5, 10, 20} · Dpinhole. From these we
construct the conjugate, Hc, and the non-conjugate PSF, Hnc. To simulate
the fact that fewer photons are used in the conjugate image than in the wide-
field image we chose to divide the conjugate PSF by r = {50, 100, 150}. So
r is the ratio between the sum of the wide-field PSF and the conjugate PSF.
We determine the non-conjugate PSF by subtracting the conjugate PSF from
the wide-field PSF. After convolution of the object with the conjugate and the
non-conjugate PSF we add background, bg, and corrupt the data with Poisson
noise, N(·). The wide-field image, gwf , is then simply the sum of the conjugate
image, gc, and the non-conjugate image, gnc. Then we apply restoration on
the conjugate image and the wide-field image separately with MAPPG, which
gives us the estimates f̂c and f̂wf . And on the conjugate and non-conjugate
image combined we apply MAPPG2 which gives us f̂mappg2.

3.3.4 Results

In figure 3.6 to figure 3.12 we see the results of the simulations. For every
object, noise level of the wide-field image and ratio, r, there is a graph. The
first thing we notice is that the restorations from the wide-field images almost
always perform better than the restorations from the conjugate image. This is
easily explained, because, as mentioned in the section on noise, the SNR of the
conjugate image is lower because of the lower signal.

Compared to the restorations from the wide-field images it looks like the
MAPPG2 restorations perform better if the SNR is smaller. We suspect that
this is an effect of the difference in ratio of the SNR of the wide-field image
and the SNR of the conjugate image. Take for example the 1 µm sphere with
r = 50. There are 2 situations. Situation 1 is when the SNR of the wide-
field image is 25, then in the conjugate image: SNR= 8.4. So the SNR in the
conjugate image is 3 times smaller then in the wide-field image. The second
situation: if the SNR for the wide-field image is 40, then in the conjugate image:
SNR= 23.4. So here the SNR is 1.7 times smaller. For the first situation the
minimization algorithm will relatively look more at the conjugate image then
in the second situation. In this case, where the MAPPG2 restoration performs
better than the wide-field restoration, we also see that most of the time this will
happen with an array that has pinholes distances down to 5 times the diameter
of the pinhole. Compared to 20 times this diameter this means an increase of
acquisition speed of a factor 16.

The object where we have a sphere in a shell shows that the optical section-
ing powers become important. In contrast to what was mentioned before, the
higher SNR MAPPG2 restoration performs better compared to the wide-field
restoration. The structure of a sphere close to a shell is better preserved in the
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Figure 3.6: The figures show the MSE values of the MAPPG restored conjugate and wide-
field images and of the MAPPG2 restored image. These are plotted against
the distance between the pinholes normalized by the diameter of the pinhole.
The object is a sphere with 1 µm diameter.
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Figure 3.7: The figures show the MSE values of the MAPPG restored conjugate and wide-
field images and of the MAPPG2 restored image. These are plotted against
the distance between the pinholes normalized by the diameter of the pinhole.
The object is a sphere with 800 nm diameter.
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Figure 3.8: The figures show the MSE values of the MAPPG restored conjugate and wide-
field images and of the MAPPG2 restored image. These are plotted against
the distance between the pinholes normalized by the diameter of the pinhole.
The object is a sphere with 650 nm diameter.
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Figure 3.9: The figures show the MSE values of the MAPPG restored conjugate and wide-
field images and of the MAPPG2 restored image. These are plotted against
the distance between the pinholes normalized by the diameter of the pinhole.
The object is a sphere with 350 nm diameter.
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Figure 3.10: The figures show the MSE values of the MAPPG restored conjugate and wide-
field images and of the MAPPG2 restored image. These are plotted against
the distance between the pinholes normalized by the diameter of the pinhole.
The object is a sphere with 200 nm diameter.
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Figure 3.11: The figures show the MSE values of the MAPPG restored conjugate and wide-
field images and of the MAPPG2 restored image. These are plotted against
the distance between the pinholes normalized by the diameter of the pinhole.
The object is a shell with an outer diameter of 2 µm and which is 200 nm
thick.
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Figure 3.12: The figures show the MSE values of the MAPPG restored conjugate and wide-
field images and of the MAPPG2 restored image. These are plotted against
the distance between the pinholes normalized by the diameter of the pinhole.
The object is a shell with an outer diameter of 2 µm and which is 200 nm
thick. In the shell is a sphere with a diameter of 1 µm which is shifted -200
nm in the x-direction.
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conjugate image than in the wide-field image. For low r this even leads to a
better restoration from the conjugate image than from the wide-field image.

In the case of the 650 nm sphere we see in SNR= 40 at r = 100 and 150 we
see a larger value for δ = 20. This shows that the algorithm is not always as
stable. It depends on the object, initial estimate and if the noise ‘falls right’.
Here we mean that if the noise in the image by accident looks to have some
structure the algorithm will try to comply to this structure.

3.3.5 Discussion

In this article we show that it is possible to do restorations on images acquired
by a modified conventional microscope. The quality of these restorations are
dependent on a number of factors: the object, the initial estimate, the ratio r,
and the SNR of the acquired images.

In most all cases it seems that the conjugate image is not a good choice to
use for restoration. This is because the SNR of the conjugate image is much
lower than the SNR of the wide-field image. Only in the case where there is
more structure, like in the sphere in the shell, the benefits of better optical
sectioning compensates for the lower SNR.

With smaller spheres and low SNR the MAPPG2 restoration algorithm
shows improvement in the resulting restored image compared to restoring the
wide-field image. Here the distance of the pinholes in the array can be close
together, down to 5 times the diameter of the pinholes. This means an increase
of speed of a factor 16 compared to an array with a distance of 20 times the
pinhole.
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3.4 Gaussian approximation of deconvolved images acquired
by a wide-field microscope

3.4.1 Introduction

In (Zhang et al., 2007) it is shown that the 3D confocal PSF is a close approx-
imation of a 3D Gaussian profile. They also show that the 3D wide-field PSF
cannot be approximated by a 3D Gaussian. In this section we will show that the
deconvolved wide-field image of a small fluorescent object can be approximated
by a 3D Gaussian.

3.4.2 Methods

To simulate a small object we made a test object, f , by constructing an im-
age with size 128 x 128 x 128 voxels. The sampling distance in the lateral
direction is dr = 26.5 nm, and in the axial direction dz = 50 nm. These are
approximately the sampling distances according to the Nyquist sampling the-
orem, divided by four. In the middle of this image we create an object with a
Gaussian profile with width σ = 1 pixel. Now we have an oversampled image
of the object, which is a point source; an object smaller than the PSF spot. We
also create a PSF, h, according to Gibson and Lanni (1991) with wavelength
λ = 560 nm, magnification M = 63x, numerical aperture NA = 1.32 and re-
fractive index of the immersion fluid n = 1.515. We create an intermediate
image, gint, by convolving the object with the PSF:

gint = h⊗ f (3.36)

where ⊗ is the convolution operator. Now we simulate an image recorded by the
camera by integrating a region of 4 x 4 pixels in every xy-slice and subsampling
by a factor of 4 in the z direction. This gives us new sampling distances in the
lateral direction dr = 106 nm, and in the axial direction dz = 200 nm. Hereafter
we corrupt the resulting image with Poisson noise:

g = N(gint) (3.37)

where N(·) is a Poisson noise process. We have chosen to normalize the mean
of the maximum number of counted photons in gint to be µ =100, which gives
a signal-to-noise ratio of µ

σ = µ√
µ =
√
µ =10 according to Poisson noise theory.

The next step is to deconvolve the image using the MAPPG deconvolution
method as described by (Verveer and Jovin, 1997) and in section 3.3.3. We will
use a set regularization parameter, γ = 10−6, which gives satisfactory results.

Then we will do a least squares fit of a Gaussian as in Zhang et al. (2007)
using the L1 constraint, which conserves energy. Practically it means we will
normalize the sum of the pixels in the image. The L∞ constraint, where the
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image is normalized to its maximum, cannot be used here because this will
normalize to the noise introduced in the simulations. Two fitting parameters
are used, the lateral and the axial standard deviation of the Gaussian profile.

The performance measure used here is the relative squared error (RSE)
(Zhang et al., 2007):

RSEgauss =
‖gf − fd‖2

‖fd‖2
(3.38)

where fd is the deconvolved image and gf is the fitted Gaussian profile.
RSEgauss will show how well a Gaussian profile can be fitted to the deconvolved
image.

We have repeated this simulation 300 times with a different noise realization
for every instance.

3.4.3 Results

In figure 3.13 we see the results after fitting the Gaussian to the deconvolved
image. The mean RSE is 1.3% with a standard deviation of 0.5%. In figure
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Figure 3.13: Histogram showing the distribution of RSEgauss. 300 simulations have been
performed with different noise realizations.

3.14 we see an example how well the deconvolved image fits the object and the
Gaussian profile fits the deconvolved image.
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Figure 3.14: Sections through the middle of the simulated image, the deconvolved image
and the Gaussian profile fit. Left: lateral sections, right: axial sections.

3.4.4 Conclusions

The result of RSE = 1.3% is comparable to results from (Zhang et al., 2007),
where the conclusion is made that some PSFs are close approximations of
3D Gaussian profiles. Therefore we conclude that that deconvolved wide-field
images of small fluorescent objects can also be approximated by a Gaussian
profile. This result is not surprising, since the effect of the regularization in the
MAPPG algorithm is smoothing of the data.

This result will be used in section 4.2.2 where a Gaussian scale space method
is used to segment fluorescently labeled components in the cell nucleus.

3.5 Conclusions and discussion

This chapter deals with image restoration. Several methods of deconvolution
have been explained including the Tikhonov-Miller filter, linear restoration
filter, and MAPPG, an iterative algorithm, capable of super-resolution. A
poor-man’s confocal microscope has been introduced where no pinhole in the
detection path is needed, together with a restoration scheme which permits the
pinholes to be closer together and therefore has a 16 fold increase in scanning
speed. Finally we show that, when dealing with small objects, deconvolved
images can be approximated by a 3D Gaussian profile.
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Three-dimensional organization of telomeres

4.1 Introduction

Telomeres are the repetitive sequences of DNA at the ends of the chromosomes.
When the DNA is being synthesized in the S phase of the cell cycle, the ends
of the DNA strand will not be fully copied. To prevent valuable genomic
information being lost, the ends of the chromosomes have a buffer of repeating
base pairs without any genes. These repeating parts (TTAGGG in mouse and
in humans) are called the telomeres. A review of the significance of studying
the spatial distribution of telomeres in the cell nucleus can be found in (Mai
and Garini, 2006).

This chapter will focus on the spatial distribution of telomeres in the cell
nucleus. We will present two methods of segmentation in section 4.2. Using
the spatial coordinates of the found telomere signals, a parameter, ρT , is de-
fined to characterize the spatial distribution of the telomeres during cell cycle in
section 4.3 and a statistical correction method in section 4.4. These algorithms
have been bundled in TeloView, a program initially aimed for analysis of telom-
ere signals, in section 4.5. The results of the measurements with TeloView of
ρT will be shown in section 4.6. Parts of this chapter have been previously pub-
lished in BMC Biology (Chuang et al., 2004), Proceedings of SPIE (Vermolen
et al., 2005b), Cytometry Part A (Vermolen et al., 2005a, 2008).

4.1.1 Cell Preparation

We have studied a mouse B lymphocyte cell nuclei population. The immortal-
ized cells were sorted according to their DNA content for the determination of
G0/G1, S or G2 phase. Cell cycle fractions were quantified through fluorescent-
activated cell sorting analysis (Chuang et al., 2004). Flow analyses were per-
formed on an EPICS AltraTMcytometer operating under MulticycleTMsoftware
(Beckman-Coulter, France). Approximately 10-15 nuclei from each phase were
analyzed for this study, representing a total of 35 cell nuclei.

53
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To further study the phase transition timing along the cell cycle, we used the
synchronous bromodeoxyuridine (BrdU) sorting method (Chuang et al., 2004).
The mouse B lymphocytes were labeled in vivo with BrdU. All BrdU-positive
cells (i.e. cells in S phase, replicating their DNA) were live sorted and placed
into culture. Populations of nuclei were then harvested at different times (3,
3.5, 4.5, 5.5, 6.5, 7.5, 8, 8.5 and 9.5 hours) of which approximately 20 nuclei
were analyzed, representing a total of 180 cell nuclei.

For measurements of the telomeric disk the cells were first fixed and then
telomere fluorescence in situ hybridization (FISH) was performed as described
in Figueroa et al. (2000) using a Cy3-labeled PNA probe (DAKO, Glostrup,
Denmark). DAPI was used as a DNA-specific counterstain. Telomere hy-
bridizations were specific and we verified the correct number of telomeric sig-
nals observed at the ends of chromosomes prepared from primary cells using
2D FISH metaphase spreads. The lymphocytes were fixed in such a way that
the 3D structure of the nuclei was conserved (Chuang et al., 2004).

4.1.2 3D Image Acquisition

For analysis of the telomere distribution, images were acquired with a Zeiss
Axioplan 2 with a cooled AxioCam HR CCD in combination with a PlanApo
63x/1.4 oil immersion objective (Zeiss). This gives a pixel (sampling) distance
in the lateral plane of ∆x = ∆y = 106 nm. The axial sampling distance
between the planes was ∆z = 200 nm. The point spread function (PSF) of
the objective, which determines the optical resolution, gave a Full Width at
Half Maximum (FWHM) of approximately FWHM = 200 nm in the lateral
direction and 400 nm in the axial direction. Typical image size was 200 x 200 x
100 pixels. Table 4.1 gives a summary of these values for this imaging system.
Figure 4.1 illustrates the system resolution. An image of a pair of telomeres
relatively far apart and an image of a pair close together is shown. It is clear
that the telomeres at a distance of 1200 nm can be easily distinguished and
telomeres at a distance of 400 nm are just barely separable.

4.1.3 3D Image Processing

The 3D digital images were processed to improve the resolution using a con-
strained iterative maximum-likelihood deconvolution (Schaefer et al., 2001)
which is available in the AxioVision 3.1 (Zeiss) software. This deconvolution
method was chosen for this work because it has been shown to provide the best
results (Verveer et al., 1999).
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Table 4.1: Characteristics of the microscope system

FWHMlateral 200 nm

FWHMaxial 400 nm

∆x 106 nm

∆y 106 nm

∆z 200 nm

M 63x

NA 1.4

Filters DAPI, Cy3

Typical image size 200 x 200 x 100

4.2 Segmentation of telomere signals

To localize the telomeres inside the cell nucleus we can make use of different
segmentation algorithms. The first uses a TopHat transform to remove some of
the shading (varying background signal) present in the images. The second is a
scale space method which enhances spot signals involving both size and signal
strength. Both algorithms include a thresholding step for segmentation after
which the center of mass is calculated to obtain the position of the telomeric
signal.

4.2.1 TopHat segmentation

Before starting the segmentation we pre-process the data by smoothing with
a 3D Gaussian kernel. Figure 4.2 shows how the data are transformed during
the different steps of segmentation. For segmentation of the individual signals
we have chosen an algorithm based on a morphological TopHat transformation
(Meyer, 1979; Meyer and Beucher, 1990). The TopHat transform on an image
A with structuring element B is defined as follows (Young et al., 1998). To
find objects with high intensity (”light” objects):

TopHat(A,B) = A−max
B

(min
B

(A)) (4.1)

The ”structuring element”, B, can be a quite general three-dimensional, gray-
value object but in our case we have chosen for the simple case that B is
spherical. The size of B should be bigger than the objects that are being
sought but smaller than any shading in the background. For a gray-scale image
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Figure 4.1: Demonstration of the spatial resolution of our measurements, Two pairs of
telomeres are shown: 1200 nm apart (top), which can be easily separated, and
400 nm apart (bottom). The inserts show the original image and the graphs a
section through the telomeres.

of telomeres, the telomeres would be our objects and any non-specific binding
of Cy3 uniformly spread over the nucleus gives us shading. Thus, for our case,
this translates to a spherical B with radius of 742 nm (7 pixels). After the
TopHat transform the resulting image is thresholded with a user chosen value
to produce a binary mask. To eliminate noise spikes that may still remain,
we conclude with an erosion with a structuring element of 318 nm (3 pixels).
This algorithm gives satisfying results for small telomeres. Using the binary
image mask from the segmentation, the center of gravity of each dot is found.
This gives coordinates (xi, yi, zi) for each individual dot, where i is the index
number of the dot.
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Figure 4.2: Working of the algorithm. First we see the raw ”image data”. A line through
the center of this image gives a line section seen in ”original data”. After
we ”smooth”, we perform a ”TopHat” transform. Note that shading is now
removed. We ”threshold” and end up with two spots. One last ”erosion” is
performed to make sure that there are no remaining noise spikes.

4.2.2 Scale Space segmentation

To segment the probe signal of interest in the image a derivative scale-space
method has been chosen. In (Chuang et al., 2004; Vermolen et al., 2005a)
we have suggested using the morphological TopHat transformation (Meyer,
1979) to segment labeled telomeres in the mouse lymphocytes. Although this
algorithm gave satisfactory results we chose to implement a new and faster
algorithm and compared it to the TopHat method. This method is based on
a robust method developed by Olivo-Marin (2002) where spots in a highly
variable and noisy background can be segmented. The kernel used in (Olivo-
Marin, 2002) is [1/16,1/4,3/8,1/4,1/16], which is an approximation of the B3-
spline function and also an approximation of the 1D Gaussian with standard
deviation σ = 1. We therefore propose to adjust this method in order to find
objects that resemble 3D Gaussian intensity profiles of spots with a lateral size
around 200 nm, as described below. This choice has been made because the
signals in the nucleus are smaller than the optical resolution of the microscope
system, and therefore the intensity profiles resemble the point spread function
(PSF). The 3D Gaussian is an appropriate approximation of the 3D confocal
PSF (Zhang et al., 2007) and it is also an approximation of deconvolved images
of small fluorescent spots acquired by wide-field imaging as shown in section
3.4. Furthermore, the 3D Gaussian has a number of the same features as the
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proposed à trous wavelet algorithm in (Olivo-Marin, 2002): it is translation
invariant, the images after convolution with the 3D Gaussian are correlated and
the implementation is fairly simple. The feature that it needs to be isotropic
is let go, since the 3D PSF is anisotropic. The algorithm is implemented
using 3D Gaussian profiles with different widths characterized by the standard
deviation, σ, of the Gaussian function. In the axial (z) direction the width
is three times larger than that in the lateral (x, y) direction because of the
fundamental anisotropy in the 3D PSF. The PSF is longer in the axial direction
than in the lateral direction. The image, g, is now convolved with Gaussian
profiles with different widths to produce a Gaussian scale space of the image:

gi = g ⊗G(σi) (4.2)

with i = 0 . . . 2 and where ⊗ is the convolution operator, G is the Gaussian
profile with width σi in the lateral direction and 3σi in the axial direction.
The factor 3 corresponds to the typical ratio of axial to lateral dimensions in
confocal microscopy:

G(σi) =
1

3σ3
i (2π)

3
2

exp(−1
2

(
x2

σ2
i

+
y2

σ2
i

+
z2

9σ2
i

)) (4.3)

Next we choose a scale base to define the different widths:

σi = base ∗
√

2i (4.4)

with base ≈ 100 nm, so we are looking for spots of size ≈ 200 nm, which
is approximately the full width at half maximum of a confocal PSF. After
multiplying the differences in the Gaussian scale space, we produce the result:

gproduct = (g − g0)(g0 − g1)(g1 − g2) (4.5)

For further noise reduction we convolve gproduct with a 3D Gaussian profile
(σ = 1 pixel). This resulting image is thresholded at a value, T :

gbin =
{

1 gproduct > T
0 gproduct ≤ T

(4.6)

We propose to define the threshold T by treating the high intensity values in
gproduct as outliers. This means we will define T using the mean, µ, and the
standard deviation, σ, of the intensity values of gproduct:

T = µ+ 3σ (4.7)

In most cases this gives a satisfactory result, indicating that the signal-to-noise
ratio is sufficient for accurate segmentation of the probe. Otherwise the user
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can alter this threshold level. The result is a binary mask, gbin, with objects
representing probe locations. We compute the center of gravity of intensities
for every object in the resulting mask to estimate the sub-pixel (xn, yn, zn)
coordinate for the nth probe signal. This spot detection and localization al-
gorithm has been embedded in TeloView (Vermolen et al., 2005a) (see section
4.5), which further offers the operator the ability to visually check the local-
ization results within a matter of seconds, and manually add or remove the
coordinates of probe signals if needed. This includes separation of touching
objects.

4.2.3 Contrast enhancement of the TopHat and Scale Space method

Introduction

Both segmentation algorithms involve a contrast enhancement followed by a
simple threshold. Therefore to test the methods we chose to see how well they
enhance the contrast.

Methods

Figure 4.3 gives a definition of the contrast. We can define two intensity levels,
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Figure 4.3: The contrast is defined as the ratio of Imax−Imin
Imax

Imax and Imin. The intensity Imax is the intensity at the position of the peak
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of one of the spots. Note that this does not have to be the intensity of a peak
of one spot alone, since we add intensities of the other neighboring spots. The
intensity, Imin, is the intensity in the middle of the peak positions of the two
spots. Now we can define the contrast, c, as:

c =
Imax − Imin

Imax
(4.8)

If the spots come close together Imin will be larger then Imax and consequently
c < 0.

We have simulated images, g, of two fluorescent spots, f , by modeling them
as small sphere-like objects convolved by a Gaussian profile, G, after which we
introduce a background, b, and some Poisson noise, N(·):

g = N(G⊗ f + b) (4.9)

The Gaussian profile has a standard deviation of σr = 1 pixel in the lateral
direction and σz = 3 pixels in the axial direction. With a given radius, r, of
the spots we chose a random position of the two spots with distance d, which
is varied. We have measured the contrast before and after the two methods.
The size of the structuring element in equation 4.1 in the TopHat method is
2 pixels and the size of the base from equation 4.4 is 1 pixel. This gave the
best results for the smallest sized spots we chose (1 pixel3 which corresponds
to r = 0.62 pixels). By keeping these scale parameters constant and increasing
the size of the spots we can see where the algorithms break down, i.e. there is
no improved contrast.

Results

In figure 4.4 we can see the results of the contrast enhancements of the TopHat
algorithm and of the scale space algorithm. We have performed the simulation
100 times for every spot size. Then we ordered the measured contrasts before
enhancement and plotted these together with the results from the TopHat and
scale space methods. Note that it is possible for the contrast to be negative
when the spots are in close vicinity. In figure 4.4a we see the results for spots
with r = 0.62 pixels. We have used a Wilcoxon rank sum test to test the null-
hypothesis that the median of the differences of the two methods gives zero. The
results are shown in table 4.2. For such small spots there is no statistical reason
that this median is zero. In other words, looking at individual measurements,
no method is preferred. The spread in the contrast in the TopHat method is
clearly larger then in the scale space method. In figure 4.4b we see the results
for spots with r = 1.7 pixels. Using the same statistic we can say there is a clear
difference between the two methods. Again the spread in the TopHat method
is higher. We sometimes see that the TopHat has a lower contrast then the
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m(TopHat-Original) m(Scale space-original) m(Scale Space-TopHat)

r p(TopHat,original) p(Scale space,original) p(Scale space,TopHat)

0.1 0.1 0.01
0.62 4e-10 3e-11 0.1

0.1 0.1 0.02
0.78 4e-11 2e-11 0.2

0.1 0.2 0.02
1.1 2e-11 2e-12 4e-3

0.09 0.10 0.01
1.3 1e-10 5e-11 0.4

0.07 0.1 0.03
1.7 7e-9 7e-13 1e-6

0.04 0.2 0.09
2.3 2e-3 6e-18 8e-14

0.03 0.2 0.09
2.9 4e-3 3e-17 7e-14

0.02 0.2 0.2
3.6 0.5 2e-17 1e-14

-0.08 0.2 0.3
4.9 6e-4 4e-18 5e-16

-0.2 0.2 0.3
6.2 2e-5 2e-16 3e-16

-0.04 0.3 0.4
7.8 2e-3 2e-13 2e-12

-0.09 0.4 0.5
11 7e-5 2e-3 3e-5

Table 4.2: The upper values m is the median value of the differences of the paired out-
comes, where the original contrast > 0. The lower values are the p-values of the
Wilcoxon Rank Sum test giving the chance that these medians are zero.



62 Chapter 4 - Three-dimensional organization of telomeres

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

Signal number

C
on

tr
as

t
r = 0.62035 pixels

 

 

Contrast Scale space
Contrast TopHat
Original Contrast

0 20 40 60 80 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
r = 1.6839 pixels

Signal number

C
on

tr
as

t

(a) (b)

0 20 40 60 80 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
r = 2.8794 pixels

Signal number

C
on

tr
as

t

0 20 40 60 80 100
−200

−100

0

100

200

300

400

500

600

700

800
r = 10.6078 pixels

Signal number

C
on

tr
as

t

(c) (d)

Figure 4.4: Here we show the results of the two contrast enhancement methods. In (a)
we see that both methods improve the contrast and the difference between the
Scale space method is not big. In (b) we see that the Scale space method
performs better then the TopHat method. In (c) the TopHat method begins to
loose its enhancement properties. In (d) the spots are so big that both methods
loose their contrast enhancement properties.

original contrast even for higher starting contrasts. It should be noted that the
original contrast is measured before adding the noise. So this result could be a
result from the noise. Nevertheless, the scale space method is never smaller then
the original contrast when the original contrast is high enough (approximately
> 0.2). In figure 4.4c we see the results for spots with r = 2.9 pixels. Here we
see that the TopHat method shows no improvement in contrast anymore. If
we even make the spot size larger, like in figure 4.4d with spots with r = 11,
we see that the Scale space method behaves even more unpredictably.



4.3. Characterization of the structure 63

Conclusions

In this section we show that both the TopHat and the Gaussian Scale space
method enhance the contrast of two spots lying in close vicinity as long as the
spots are not too large. For small spots both the TopHat and the Scale space
method show similar results, although the Scale Space method seems to have
a smaller statistical variation. So it is easier to find a proper threshold for the
Scale space method than for the TopHat method. If we leave the scale of the
methods constant we see that the TopHat looses its enhancement properties
faster than the Scale space algorithm with increasing spots sizes. So for images
with small and large signals the Scale space method is preferable.

4.3 Characterization of the structure

Observing the organization of telomeres in many cells, we see that the envelope
shape of the telomeres is usually a spheroid, as illustrated in figure 4.5. A

Figure 4.5: The telomeric territory can be given by a convex body containing all the telom-
eres. In most cases this envelope can be approximated by a geometric figure
called a spheroid. Figure courtesy of Yuval Garini.



64 Chapter 4 - Three-dimensional organization of telomeres

spheroid is a geometric figure, like an ellipsoid, where the two main axes have
equal length, a = b and the third axis has a different length, c. This is shown
in figure 4.6. If a = c we have a sphere, if a < c we have a prolate spheroid

a b 

c 

Figure 4.6: The telomeric territory is characterized as an oblate spheroid, where two of the
main axes, a and b, are of equal length and the third main axis, c, is shorter.
The ratio ρT = a

c
now gives a measure of the flatness of the spheroid.

and if a > c we have an oblate spheroid. We can, therefore, define a telomere
ratio parameter, ρT , which gives us a measure of the disk-like nature of this
organization, given by:

ρT =
a

c
(4.10)

If ρT ≈ 1 then the telomeres are distributed in a spherical way within the
cell. If, however, ρT > 1 then the telomeric territory is more disk-like. In the
following, we describe how we determine ρT . Given the spatial coordinates of
every spot (xi, yi, zi|i = 1, 2, . . . , N), we translate the original spatial coordi-
nates (x, y, z) to a new orthogonal coordinate system such that the origin of
the new coordinate system is in the center of the spots and rotated such that
the distance from the spots to the new axes is maximized. This procedure is
known as a principal component analysis (Wall et al., 2003). To accomplish
this we calculate the singular values (eigenvalues) of the covariance matrix of
the data points. The three singular values, λ1 ≥ λ2 ≥ λ3, are real, positive and
can be ordered. They are the variances of the distances from the spots to the
new principal axes. The standard deviation for each new axis is then given by:

σi =
√
λi (4.11)
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From these standard deviations we then define the dimensionless ρT as:

ρT =
√
σ1σ2

σ3
(4.12)

That is, the geometric mean
√
σ1σ2 is taken as the value for a and σ3 is the

value for c. Given that we work with ordered λ’s we have:

ρT ≥ 1 (4.13)

4.4 Correction of ρT by model fitting

For an infinite number of spots in a spheroid, the parameter, ρT , would give
us the ratio of the length of the principal axes: a

c . Because we have a finite
number of spots, N , this does not hold anymore. We have done Monte-Carlo
simulations to see what the effect is on the observed ρT,o with respect to the
real ρT,r and N .

For this we used MatLab to generate a set of uniformly distributed pseudo-
random numbers (x, y, z) in the interval (−1.0, 1.0). Then we calculate the
squared distance to the center of the sphere

r2 = x2 + y2 + (ρT,r · z)2. (4.14)

Here ρT,r scales the spheroid to a sphere. If

r2 ≤ 1, (4.15)

we accept the point, because it is inside the spheroid. This process is repeated
until N points are accepted. From this set of coordinates, (xi, yi, zi), i =
1 . . . N , we can compute ρT,o. For every ρT,r we compute 10000 values of ρT,o.
This gives us the probability distribution, p(ρT,o|ρT,r), for a given N . Using
Bayes’ rule we can now obtain the distribution, p(ρT,r|ρT,o), for a given N :

p(ρT,r|ρT,o) =
p(ρT,r)p(ρT,o|ρT,r)

p(ρT,o)
. (4.16)

Because no information is known about the a-priori probability we assume, for
practical reasons, p(ρT,r) to be uniform. The ρT,r which gives us the maximum
of p(ρT,r|ρT,o) is the maximum likelihood estimator, ρ̂T,r. In figure 4.7 we can
see ρ̂T,r plotted against ρT,o for N = 40.

The next step is to model a curve for a given N . This is done by cutting
the curve in two:̂̂ρT,r = 1 for ρT,o < d,̂̂ρT,r = ρT,o − ac(d−1)

(ρT,o−b)c for ρT,o ≥ d.
(4.17)
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Figure 4.7: Figure showing maximum likelihood estimators ρ̂T,r plotted against ρT,o

(pluses) and the fitted curve (line).

Here a, b, c and d are the model parameters, where b is dependent on d and a:

b = d− a, (4.18)

to make the function continuous. Now we can model the independent param-
eters a, c and d as a function of N :

a = γ1,
c = γ2N + γ3,
d = γ4

Nγ5 + 1.
(4.19)

This gives us the fitting parameters, γi (i = 1 . . . 5), for our model. Next, we fit
the model to our data points using a least squares approach, i.e. we minimize
the error:

ε =
∑
ρT,o,N

(̂̂ρT,r(γi)− ρ̂T,r)2, (4.20)

which gives us γi. In figure 4.7 we see the result of the model fitting for N = 40.
Using this result we can correct our estimate of ρT,o for a finite sample size N .
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Table 4.3: Results of phase sorted cells.

Before correction After correction
Phase Mean ρT Stand. dev. ρT Mean ρT Stand. dev. ρT
G0/G1 1.4 0.2 1.03 0.10

S 1.5 0.3 1.02 0.06
G2 14 3 13 3

4.5 TeloView

Image segmentation and analysis of deconvolved 3D images of cells with la-
beled telomeres have been performed with a sequence of procedures that we
have bundled together and named TeloView. The procedures themselves are
from our image software library DIPImage which is available as public domain
software at <http://www.DIPlib.org/>. The version of DIPImage used in this
development operates under MatLab (The MathWorks, Natick, MA, USA).

TeloView loads the 3D image and displays a maximum projection along the
three main optical axes. While thresholds and other parameters can be adjusted
for display purposes, the analysis is performed on the original 3D data. After
segmentation, the 2D display indicates the location of the automatically found
spots for verification. At this point the user can decide to remove falsely labeled
spots or add spots that were not found. A screenshot of the user interface is
shown in figure 4.8.

4.6 Organization during the cell cycle in mouse lymphocytes

Results of the analysis of the cell-sorted mouse lymphocytes before and after
the correction are presented in table 4.3. The values of ρT are somewhat smaller
after correction. Here we see small values (close to 1) of ρT for nuclei in G0/G1
and S phases, which indicates that the telomeres are distributed throughout
the cell in a spherical like structure. For the telomeres in G2, however, there
is a high value of ρT , indicating that the telomeres form a disk. A statistical
analysis, using a two-sample Student’s t test with unequal variances, indicates
a significant difference in ρT between G0/G1 and G2 phases (P < 1e-6) and
between S and G2 phases (P < 1e-6).

The results of the BrdU synchronization experiment can be seen in fig-
ure 4.9. In the left graph we see the results of nuclei counted by a human
observer. The observer was presented with a 2D computer display of the 3D
distribution. A display of the DAPI counterstain indicated the position of the
total DNA. In this graph we see the fraction of nuclei with the telomeres in
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Figure 4.8: Screenshot of the user interface of TeloView. The screen shows the three dis-
plays with maximum intensity projections along the three main optical axes.
It also shows crosses at the locations where the software identified a telomere.
After automatic identification the user can interactively add or remove crosses.

a disk. At 3.5 h, 90% of the nuclei show a telomeric disk. Based on timing
since S phase, most nuclei are believed to be in late G2. After this point, cells
continue through the cell cycle, enter into prometaphase and metaphase (i.e.
mitosis), and the number of cells in G2, accordingly, decreases. This correlates
with the observation that the fraction of cells with a telomeric disk decreases.

In the right graph of figure 4.9 we show the results of ρT calculations on
the same population of nuclei. The right graph however, does not correspond
exactly to the left graph calculated by the observer, because it calculates the
average ρT value of the complete population of nuclei at that time point; the
nuclei can be in different cell-phases. By using a threshold on the ρT value,
it is possible to imitate the classification of nuclei in a disk. If we choose
a threshold of 6.7 between nuclei in a disk (ρT > 6.7) and others, we can
calculate the fraction of these nuclei and get approximately the same curve as
the human observer got. Apparently this is the subjective threshold that was
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Figure 4.9: Results of synchronous BrdU sorting experiment. In the left graph we show
the results obtained by a human observer (black line with circles). For each
time point approximately 20 nuclei were analyzed and the fraction of nuclei
with a telomeric disk was plotted. In the right graph we show a boxplot of ρT

calculations on the same population. The asterisks give the mean ρT at every
time point and the boxes and whiskers give the 0th, 25th, 50th, 75th and 100th
percentile of the measurement. The plus-signs denote outliers. The blue line
in the left graph shows the fraction of nuclei with ρT > 6.7.

selected when the left graph of figure 4.9 was created.
In the boxplot in figure 4.9 we also see outliers which are easily explained if

the data within the box and whiskers are from the population with low ρT and
the outliers are from the population with high ρT . The outliers in figure 4.9 at
t = 8.5 hours, for example, are due to the last few cells from the G2 population
that have not yet entered mitosis.

4.7 Conclusions and discussion

In this chapter we have presented two methods to segment signals of fluores-
cently labeled telomeres in mouse lymphocytes. First we have discussed the
TopHat method. Second we have adapted the method introduced by Olivo-
Marin (2002), which was initially a 2D wavelet method. We have adapted the
method for 3D and replaced the wavelet by the computationally more favor-
able Gaussian profile. We have compared these methods with respect to their
ability to enhance the contrast of small spots in a 3D image. The scale space
method gives more stable results and is also more suitable for larger signals.
Following the localization of the telomeres we have defined a parameter ρT .
This parameter measures if the spatial distribution of the telomeres is sphere-
like (ρT ≈ 1) or disk-like (ρT > 1). We introduced a statistical correction,
correcting for the fact that we do not have an infinite number of signals. These
tools have been implemented in TeloView. We have used TeloView to study
mouse lymphocytes during the cell cycle. First we have cell sorted nuclei for
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the different phases. We found that the telomeres in G0/G1 phase and S phase
have a more sphere-like volume. We emphasize that this does not mean that
the telomeres are randomly situated in the cell nucleus. In late G2 phase, be-
fore the chromosomes have condensed, the spatial distribution of the telomeres
changes into a disk-like volume. A BrdU synchronization experiment has given
more evidence for this disk-like structure in G2. A human observer classified
the images of the cell nuclei into disk/no-disk. We can give a threshold after
calculation of ρT giving a classification which correlates nicely with the human
observer.

Because the next step in the cell cycle is mitosis, it could be that this order-
ing of the telomeres is a first ordering of the chromosomes into the equatorial
plate.



5

Telomere and chromosome remodeling in the
interphase nucleus

In (Louis et al., 2005b) we have studied the effect of topological remodeling of
the nucleus after overexpression of c-Myc. We found that, deregulation cycles
of telomeric aggregates appear directly proportional to the duration of the c-
Myc. I will discuss a way to assess the relative length of a telomere, section 5.2,
and a way to find aggregates, 5.2.2. Also chromosome overlap will be discussed
in section 5.3. Parts of this chapter are based on (Louis et al., 2005b).

5.1 Introduction

Constitutive expression of c-Myc due to chromosomal translocations, mutation,
or amplification contributes to the development and progression of many can-
cers (Nesbit et al., 1999; Potter and Marcu, 1997). c-Myc deregulation directly
promotes genomic instability (Mai and Mushinski, 2003), causing locus-specific
and karyotypic instability (Mai, 1994; Mai et al., 1996b,a; Felsher and Bishop,
1999a; Rockwood et al., 2002). Additionally, c-Myc induces illegitimate repli-
cation initiation (Kuschak et al., 2002; Louis et al., 2005a), DNA breakage
(Vafa et al., 2002), alterations of DNA repair (Hironaka et al., 2003; Karlsson
et al., 2003a), and a low level of point mutations (Mac Partlin et al., 2003; Chi-
ang et al., 2003). Effects of c-Myc on genomic instability are reversible after
a transient experimental activation of c-Myc (Mai et al., 1996b). However, c-
Myc continues to generate instability after constitutive deregulation (Mai et al.,
1996a). In vivo, c-Myc deregulation directly initiates and promotes tumorige-
nesis (Adams et al., 1985; Potter and Wiener, 1992; Pelengaris et al., 2002;
Felsher and Bishop, 1999b; Marinkovic et al., 2004). When c-Myc deregulation
is abolished, in vivo tumorigenesis is reversible, provided that no additional
mutations had occurred (Felsher and Bishop, 1999b; Marinkovic et al., 2004;
D’Cruz et al., 2001; Jain et al., 2002; Karlsson et al., 2003b; Shachaf et al.,
2004). Prompted by the complexity of downstream genetic alterations that
result from c-Myc deregulation, we investigated whether c-Myc affected the 3D
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organization of the mammalian interphase nucleus and whether this remodeling
had an impact on genomic stability. We show that c-Myc deregulation causes
remodeling of the 3D nuclear organization of telomeres and chromosomes, thus
creating the topological conditions that initiate genomic instability. In previ-
ous work (Chuang et al., 2004), we showed that telomeres of normal cells are
organized within the 3D space of the interphase nucleus in a non-overlapping
and cell cycle-dependent manner. This order is distorted in tumor cell nuclei
where telomeres are found in close association forming aggregates of various
numbers and sizes. In (Louis et al., 2005b) we show that c-Myc overexpression
induces telomeric aggregations in the interphase nucleus. Directly proportional
to the duration of c-Myc deregulation, we observe three or five cycles of telom-
eric aggregate formation in interphase nuclei. These cycles reflect the onset
and propagation of breakage-bridge-fusion cycles that are initiated by end-
to-end telomeric fusions of chromosomes. Subsequent to initial chromosomal
breakages, new fusions follow and the breakage-bridge-fusion cycles continue.
During this time, nonreciprocal translocations are generated. c-Myc-dependent
remodeling of the organization of telomeres thus precedes the onset of genomic
instability and subsequently leads to chromosomal rearrangements. Our find-
ings reveal that c-Myc possesses the ability to structurally modify chromosomes
through telomeric fusions, thereby reorganizing the genetic information.

This chapter will focus on two aspects of (Louis et al., 2005b).
1. Telomeric aggregates. These aggregates have been counted manually in this
study. In this chapter we will propose an automatic method to measure the
relative intensity of telomeric fluorescent signals and find outliers (aggregates).
2. Chromosome overlap. We have implemented a relatively simple algorithm
to measure the volume overlap of two chromosome fluorescent signals in the
cell nucleus.

5.2 Telomere length assessment and aggregates

5.2.1 Introduction

In (Louis et al., 2005b) aggregates are counted manually from a screen after
thresholding and rendering of a isosurface of the 3D images. Although we
believe that this can give a good indication of the increase in telomeric signal
aggregation, we propose to use a new and automatic algorithm to define and
find aggregates.
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5.2.2 Methods

Telomere length

The integrated intensity is proportional to the size of the telomere because
the size is proportional to the amount of fluorochrome that is attached to
the telomere and therefore to the telomere length (Lansdorp et al., 1996). The
binary mask, gbin (as defined in section 4.2.2), is not suitable for calculating the
intensities, because the objects in the mask do not cover the complete volume
of voxels that include intensities coming from a telomere. A different approach,
used here, is to first create a binary mask with the watershed algorithm (Verwer
et al., 1993) of the image data, g, convolved with a Gaussian profile with σ = 1
pixel for noise reduction. The telomere coordinates (xn, yn, zn), determined in
4.2.2, tell us which objects in this mask are telomere regions. Simply integrating
intensities in these regions will also give the wrong answer because background
pixels are not excluded from these regions and will bias our calculations. Our
solution is to calculate the integrated intensity in a region of interest with
(xn, yn, zn) as middle point within this mask resulting from the watershed. The
region of interest is a small sphere, with radius r, convolved with a Gaussian
profile with width σ = 1 pixel in the lateral and σ = 3 pixels in the axial
direction, which results in an elongated sphere. We will call this region of
interest, which is gray-scale, spheregray and the region from the watershed,
which is binary, we will call mask. The next binary region with which we work
with is spherebin. This is a binary sphere with radius r + 3σ (with σ = 1 or 3
pixels depending on the direction). Now we define the mean of the gray values
of g at the coordinates where mask has value one and spherebin has value zero
as our background level, b. Our signal image, gsignal, becomes:

gsignal = g(mask)− b (5.1)

We normalize both spheregray and gsignal for their maximum value and cal-
culate their mean squared difference, εnew, using spheregray as a weighting
function:

εnew =

∑
i

spheregray,i(spheregray,i − gsignal)2∑
i

spheregray,i
(5.2)

This weighted least squares function gave satisfactory results after a trial and
error process using several least squares methods. The process starts with
r = 1. First we rename εnew:

εold = εnew (5.3)

Now we grow the region by using r = r+ 1 for the next iteration and calculate
εnew again. The iterative process is stopped when

εnew > εold (5.4)



74 Chapter 5 - Remodeling in the interphase nucleus

Table 5.1: Results of the intensity measurements.

Ground truth Before processing After processing
SNR = 25 SNR = 100

Mean Std Mean Std Mean Std
1.600 1.577 0.004 1.543 0.007 1.526 0.006
2.700 2.677 0.004 2.613 0.009 2.560 0.007
3.840 3.832 0.003 3.86 0.01 3.803 0.007
5.625 5.617 0.004 5.78 0.05 5.468 0.04

The integrated intensity, In, for the nth telomere is now

In =
∑

gsignal(spherebin) (5.5)

In figure 5.1 we show a flow chart of the algorithm.

Simulation

Given the simulation technique described in (Kempen, 1998), where it is ex-
plained how to simulate a ellipsoid-like object in an image, we have simulated
an object with 16 fluorescent spots. In figure 5.2a we can see a section of the 3D
image, we see 12 small spots (radius, r = 1 pixel) and four spots with different
larger sizes (radius, r = {2, 3, 4, 5} pixels). The relative integrated intensities
are known and given in table 5.1. We also simulated the PSF according to
Gibson and Lanni (1991) with a lateral sampling distance, δr = 106 nm, ax-
ial sampling distance, δz = 200 nm, wavelength, λ = 550 nm, magnification,
M = 63, numerical aperture, NA = 1.3, and refractive index of the immersion
oil, n = 1.515. After convolution of the object with the PSF we corrupt the
image with Poisson noise and then deconvolve as described in section 3.3.3. To
get some statistics we have repeated this process 100 times. In each instance all
spots in the object have been given a random sub-pixel shift. We also repeated
this experiment for two levels of noise, SNR =

√
N = {25, 100}, where N is

the number of photons of the maximum in the image. In figure 5.2 we can see
one realization of the simulated image and a restoration result.

We have chosen to show the relative integrated intensities. For every image,
we have normalized the intensity of the four larger spots to the mean intensity
of the 12 small spots. We measured these intensities before we do the convolu-
tion and deconvolution and after. The results of these measurement are given
in table 5.1. In this table three main columns are present. The ’ground truth’
is given by the simulation. The results of intensity measurements ’before pro-
cessing’, thus on figure 5.2a. And the results ’after processing’, thus on figure
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Figure 5.1: Flow chart showing the algorithm to calculate the integrated intensity of a
telomere signal. The basic idea is to calculate the integrated intensity in a
growing region of interest until no more intensity is added. The growing is
confined by a mask created by a watershed.
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(a) (b) (c)

Figure 5.2: (a) Shows the simulated object. There are 12 small spots and four larger
spots. (b) Shows the image of the object after convolution with the PSF and
corruption with Poisson noise. (c) Shows the result of the restoration. These
images are the middle lateral sections of a 64x64x64 pixel object. All images
have been stretched linearly to give more contrast.

5.2c. We see that all results of the measurements fall within 5% of the ground
truth. We therefore conclude that our method gives an accurate representation
of the relative integrated intensities with a majority of small spots with some
outlying larger spots.

Aggregates

Introduction To find aggregates of telomeres one has to first define an
aggregate. Officially aggregation would be multiple telomeres clumping to-
gether. Since this would be below the resolution of the microscope, aggregates
in TeloView are defined as signals with an unexpectedly high intensity. To find
these outliers we have to choose what is normal. In TeloView two versions of
normal intensities have been defined. First, we use intensities that show a lin-
ear function when ordered from small to large. This method will be explained
in section 5.2.2. Second, we use intensities that show a distribution around one
’normal’ intensity. This method is defined in section 5.2.2.

Line Method After calculating the intensities of the telomeres signals,
TeloView orders the intensities from small to large. In figure 5.3 we see that
we can draw a straight line through the signals with small intensities. We can
also see that the two larger signals do not fall on this line. We have chosen to
use robust statistics and weighted linear regression (Fox, 2002; Hampel et al.,
1986) to find the line and the outliers (i.e. data not on the line). We start with
an initial estimate of the line coefficients, a, with a least squares fit:

a =
xty

xtx
(5.6)
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Figure 5.3: Graph showing the telomere signal intensities ordered from low to high. We
can draw a straight line through the signals if we ignore the two highest signals.

Where, y, is the telomere signal intensity, x the ordered telomere signal number
and (·)t is the matrix transpose operation. We can calculate the residuals, r,
from the data to the line:

r = y − xa (5.7)

Now we calculate weights, w, for the Huber M-estimator and calculate a weighted
least squares fit:

a =
xtwy

xtwx
(5.8)

Now we repeat equations 5.7 and 5.8 until the line coefficient-vector a converges.
Now we calculate the one-step M-estimator (Hampel et al., 1986):

Tn = T (0)
n + Sn

n∑
i=1

ψ(
ri − T (0)

n

S
(0)
n

)/
n∑
i=1

ψ′(
ri − T (0)

n

S
(0)
n

) (5.9)
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where ψ is the Huber estimator defined as:

ψ = min(b,max(ri, b)) (5.10)

with b = 1.345. For T (0)
n and Sn we take robust estimators:

T (0)
n = median(r) (5.11)

Sn = 1.483MAD(r) (5.12)

where MAD is the median absolute deviation. Now we define two groups,
inliers and outliers as:

xi, yi ∈

{
inliers if ri−Tn

Sn
≤ t

outliers if ri−Tn
Sn

> t
(5.13)

where t is a threshold defined by the student’s-t distribution with p = 0.01.
Then we normalize the intensity signals to the mean intensity of the inliers.
In figure 5.4 we see the result of the algorithm.
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Figure 5.4: Left: graph showing the result of the ’line method’. Using robust linear regres-
sion we can estimate a line (blue line) through the telomere signal intensities.
Using a threshold (red line) on the residuals we can define aggregates (red
crosses) and normal sized telomeres (blue dots). Right: maximum intensity
projection in the axial direction of the 3D image of the telomeres. The arrows
indicate the found aggregates.

Normal Method The second method is based on the assumption of nor-
mality in the data. We start by calculating normalized intensities, Zi,n, of sets
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of increasing signal intensities:

Zi,n =
yi − µn
σn

i = 1:N,n = 2:N (5.14)

where

µn =
∑n
i=1 yi
n

(5.15)

and σn =

√∑n
i=1(yi − µn)2

n− 1
(5.16)

and N is the total number of signals. Example: if n = 13 we calculate the
mean and standard deviation of the 13 smallest intensities, then we use these
to calculate the normalized intensities of all signals.

We use an iterative scheme to find the outliers:

1. j = 0

2. Define a threshold, t, with the student’s-t distribution with p = 0.01 and
N − j − 1 degrees of freedom

3. Calculate the number of signal intensities of Zi,N−j > t and call it
noutliers

4. If
noutliers > j
then
telomere signal N − j is an outlier
j = j + 1
repeat step 2, 3 and 4
else
we stop the iterations

Now the noutliers highest signal intensities are outliers and the others inliers.
We normalize the intensity signals to the mean intensity of the inliers. In
figure 5.5 we see the result of the algorithm.

5.3 Chromosome overlap

5.3.1 Introduction

Telomeric aggregates and the initiation of breakage-bridge-fusion cycles with
subsequent chromosomal rearrangements prompted us to investigate whether
chromosomes were affected in their 3D nuclear positions during MycER acti-
vation. To this end, we examined the overlap of specific chromosomes over the
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Figure 5.5: Left: graph showing the result of the ’normal method’. Using the iterative
scheme from section 5.2.2 we can define a threshold (red line) and define aggre-
gates (red crosses) and normal sized telomeres (blue dots). Right: maximum
intensity projection in the axial direction of the 3D image of the telomeres. The
arrow indicates the found aggregates.

120 hour period. SKY (Spectral Karyotyping) of MycER-activated PreB cells
suggested chromosomal rearrangements involving chromosomes 7, 13, and 17.
Additional rearrangements were found but did not reach significant levels (data
not shown). We examined three combinations of chromosomes over a 96 hour
period. This period covered all peaks of telomere aggregate formation (Fig. 4B
in (Louis et al., 2005b)).

5.3.2 Methods

Cells and Conditional Myc Activation.

Culture conditions have been described for Ba/F3 (Fest et al., 2002) and PreB
(Mai et al., 1999) cells. The plasmacytoma cell line MOPC460D was a gift of
J. Mushinski (National Institutes of Health, Bethesda). Cell viability was de-
termined by hemocytometer counts by using trypan blue. The primary mouse
plasmacytoma DCPC21 was isolated from a BALB/c mouse (Wiener et al.,
1999). v-abl/ myc-induced plasmacytomas (Wiener et al., 1995) and primary
lymphocytes were collected from BALB/c mice (Central Animal Care protocol
02-039). To activate MycER (Littlewood et al., 1995) in Ba/F3 or PreB cells,
105 cells per ml were treated with 100 nM 4-hydroxytamoxifen (4HT). Cells
were split 24 h before 4HT treatment. Non-4HT treated control cells were cul-
tivated in ethanol, which is used to dissolve 4HT (Chiang et al., 2003; Adams
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et al., 1985; Littlewood et al., 1995). Two different MycER activation schemes
were performed. First, analyses of c-Myc-induced changes in 3D telomere or-
ganization were carried out after a single addition of 4HT that was left in the
culture medium until its biological effects subsided (Grenman et al., 1988a,b;
Mandlekar et al., 2000). Nuclei were examined every 24 h over a 10-day pe-
riod. A second time course was performed every 6 h for 120 h (Fig. 5.6). To
enable a time-dependent analysis of Myc activation, 4HT was given for 2 or
12 h and was removed. Alternatively, 4HT was added every 12 h or was given
once but left in the culture. MycER activation was determined by fluorescent
immunohistochemistry. Further details can be found in (Louis et al., 2005b).
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Figure 5.6: MycER activation scheme. The effects of 4HT last 15-24 h in cell lines (40-42),
as indicated by dashed lines. Cells were harvested every 6 h over a time period
of 120 h. Mock-treated control cells were processed in parallel.

Imaging and processing

Fixation and chromosome painting was carried out as described in (Beatty
et al., 2002) by using paints for mouse chromosomes 5 (Cy3), 13 (FITC), 7
(Cy3), 10 (FITC), and 17 (FITC) from Applied Spectral Imaging (Vista, CA).
3D image acquisition of painted nuclei was performed as described above. Mea-
surements of chromosomal overlaps were performed after 3D image acquisition
and constrained iterative deconvolution as follows (Fig. 5.7): (i) based on
the DAPI counterstain image, we determined the 3D boundary of the nuclear
volume. Data outside that volume were ignored. (ii) For each one of the chro-
mosomes, we determined an intensity threshold and referred only to voxels that
were above the threshold that belonged to the specific chromosomes. The total
volume occupied by each one of the chromosome pairs is measured (V1 and
V2). (iii) The volume occupied by both chromosome pairs is measured, Vo. By
dividing this value by V1 and by V2, the level of overlap relative to the total
volume of each chromosome pair was measured, Vo/V1, Vo/V2.
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Figure 5.7: We clearly see that the larger part is background and the smaller parts are the
chromosomes (left). We also see this in the histogram (middle). The large peak
is from the background (with the lower intensities), and the smaller peak is from
the chromosomes (higher intensities). The threshold is chosen where the fitted
Gaussian shaped curve of the background histogram and of the chromosome
histogram intersect. When we do this for both channels (chromosome pair
A and B, right), we can calculate the volume occupied by chromosome pair
A (green plus yellow), chromosome pair B (red plus yellow) and the overlap
(only yellow). A more detailed description of these steps is as follows: (i) The
region of interest (ROI) is selected by using the DAPI channel. The grayscale
image from this channel is thresholded by using an isodata algorithm (Ridler
and Calvard, 1978). This threshold is the mean value of the object intensities
plus the mean value of the background intensities divided by two. We fill the
holes of the resulting binary image by binary propagation with the edge as seed
and the inverted DAPI binary as a mask. Now we invert the resulting binary
image, leaving us with the holes filled. (ii) Now that we have the ROI (i.e., the
location of the DNA), we can use this finding to make a histogram in this ROI
of the channel of interest (i.e., the red or green channel). We use an adaptation
of minimum-error thresholding (Rosenfeld and Kak, 1976). Here, we estimate
the background level from the histogram by fitting a Gaussian curve on the
lower (large) part of the histogram, assuming the larger part of the image to
be background. We use a least squares fit for this. After we subtract this fitted
Gaussian curve, we end up with the histogram belonging to the signal, in our
case, the chromosomes. After this step, we threshold where the signal histogram
and the background fitted curve intersect. (iii) Performing this algorithm on
both channels leaves us with two binary images. After a logical AND operation
(Young et al., 1998), where we input these binary images we end up with a
binary image of the overlap. The sum of the voxels divided by the sum of the
voxels of either the red or green binary image gives us a normalized parameter
indicating the level of overlap.
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5.3.3 Results
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Figure 5.8: Chromosome positions in Myc-activated nuclei. (Top) Representative nuclei
painted with chromosome paints over a period of 96 h after 4HT (Fig. 5.6).
(Top row) Chromosomes 5 and 13. (Middle row) Chromosomes 7 and 10.
(Bottom row) Chromosomes 7 and 17. (Bottom) Measurements of chromosomal
overlaps in nuclei of c-Myc deregulated cells for chromosomes 5 and 13 (Left),
7 and 10 (Center), and 7 and 17 (Right) over a 96-h period.

As shown in Fig. 5.8, we observed a change in overlaps between chromo-
somes 5 (red) and 13 (green) over the time course (Figs. 7 A and B). Both
chromosomes were found in closer vicinity as the cells entered into the first
telomere aggregate cycle. Chromosomes 10 (green) and 7 (red) also showed
increases in the percentage of overlap (Fig. 5.8), as did chromosomes 7 (red)
and 17 (green) (Fig. 5.8). Representative 3D movies are shown in Movies 1-3
of the supplemental materials of (Louis et al., 2005b).

5.3.4 Conclusions and discussion

Local chromosome movement increases chromosomal overlap in the nucleus.
This temporal change in local positioning may permit the direct contact of
chromosomal ends and facilitate recombinations and/or fusions. Such move-
ments were observed after c-Myc deregulation and suggested an impact of the
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oncoprotein on local nuclear positioning of chromosomes. Chromosome move-
ments were previously studied and found by others as well (Zink and Cremer,
1998; Walter et al., 2003; Vourc’h et al., 1993; Ferguson and Ward, 1992; Bridger
et al., 2000). Several regulatory pathways involving oncogene deregulation may
affect the 3D nuclear organization. Oncoproteins, including c-Myc, can alter
the 3D nuclear organization and the organization of chromatin (Fischer et al.,
1998a,b; Chadee et al., 1999).

5.4 Conclusions and discussion

In this chapter we have developed a method to measure the relative telomere
length in 3D images of nuclei. We see a clear correlation between given relative
intensities and measured intensities in simulations of a large number of small
spots with several larger spots. We feel combining this tool together with one
of the proposed methods to find aggregates will facilitate studying structural
telomeric behavior in normal and cancerous cases. These tools have been used
in several of these studies (Raz et al., 2006).

We also propose a method to measure chromosomal overlap of two chro-
mosomes in cell nuclei. A higher overlap was measured after 40-80 hours after
c-Myc activation.
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Analysis of the three-dimensional redistribution of
nuclear components in human mesenchymal stem

cells

Abstract

Background To better understand the impact of changes in nuclear architec-
ture on nuclear functions it is essential to quantitatively elucidate the three-
dimensional organization of nuclear components using image processing tools.

Methods We have developed a novel image segmentation method, which in-
volves a contrast enhancement and a subsequent thresholding step. In addition,
we have developed a new segmentation method of the nuclear volume using the
fluorescent background signal of a probe. After segmentation of the nucleus, a
first order normalization is performed on the signal positions of the component
of interest to correct for the shape of the nucleus. This method allows us to
compare various signal positions within a single nucleus, and also on pooled
data obtained from multiple nuclei, which may vary in size and shape. The
algorithms have been tested by analyzing the spatial localization of nuclear
bodies in relation to the nuclear center. Next, we have used this new tool to
study change in the spatial distribution of nuclear components in cells before
and after caspase-8 activation, which leads to cell death.

Results Compared to the morphological TopHat method, this method gives
similar but significantly faster results. A clear shift in the radial distribu-
tion of centromeres has been found, while the radial distribution of telomeres
was changed much less. In addition, we have used this new tool to follow
changes in the spatial distribution of two nuclear components in the same nu-
cleus during activation of apoptosis. We show that after caspase-8 activation,
when centromeres shift to a peripheral localization, the spatial distribution of
promyelocytic leukemia nuclear bodies (PML-NBs) does not change while that
of centromeres does.

85
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Conclusions We propose that the use of this new image segmentation method
will contribute to a better understanding of the 3D spatial organization of the
cell nucleus.

Parts of this chapter are based on Vermolen et al. (2008).

6.1 Introduction

The major function of the cell nucleus is to regulate gene activity which depends
on well-studied molecular mechanisms such as transcription, pre-mRNA splic-
ing and ribosome assembly. In contrast to what is known about the molecular
regulation of these mechanisms, far less is understood about the extent that
the dynamics of nuclear components and the three-dimensional (3D) structural
organization of the nucleus contribute to the regulation of nuclear functions.
Recent models of high-order genome organization suggest a non-random spatial
localization of chromosome territories in the interphase nucleus (Cremer et al.,
2004). Further, sub-chromosomal domains are suggested to be non-randomly
positioned. Centromeres containing pericentric satellite repeats show a prefer-
ential peripheral orientation in G0-arrested human cells (Solovei et al., 2004)
as well as in differentiated cells (Solovei et al., 2004; Wiblin et al., 2005; Stadler
et al., 2004). Telomeres, which are satellite repeats at the ends of chromosomes,
reveal a cell cycle-dependent localization in B-lymphocytes. Throughout the
cell cycle, telomeres exhibit a spherical organization but in G2 they reorganize
to a disk shape (Chuang et al., 2004). Together, these studies indicate a non-
random organization of heterochromatic regions in the nucleus, and suggest
that a functional correlation exists between the spatial organization of hete-
rochromatic regions and gene activity (Stadler et al., 2004; Parada et al., 2004;
Kim et al., 2004). The mechanism by which heterochromatic regions are orga-
nized in the cell nucleus is currently unknown. There is emerging genomic and
biochemical evidence that give a role to the nuclear lamina proteins (which sup-
port the structure of the nucleus) in chromatin organization and control of gene
activity (Gruenbaum et al., 2005; Kosak and Groudine, 2004; Pickersgill et al.,
2006). Thus, if changes in lamina organization lead to changes in chromatin
organization, correlation should be found using quantitative image analysis. In
a recent study, we found that in cells, which are activated for apoptosis via the
caspase-8 pathway, changes in lamina organization are followed by changes in
the spatial organization of telomeres and centromeres (Raz et al., 2006). In this
work we developed a new quantitative image analysis tool which facilitates our
studies of the 3D localization of multiple (e.g. two or three) nuclear compo-
nents relative to the lamina structure in a single cell. To test whether this tool
is able to quantify changes in spatial localization, we have compared the spa-
tial organization of different nuclear components (i.e. telomeres, centromeres
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and PML-NBs) in human mesenchymal stem cells (hMSCs) before and after
caspase-8 activation. Image processing and analysis have been carried out in
four basic steps:

1. segmentation of the nuclear bodies
2. segmentation of the nucleus
3. normalization of the nuclear body positions
4. analysis of the nuclear body radial distribution

Several methods to detect spots, e.g. fluorescently marked telomere, cen-
tromere, and chromosomal loci signals, have been reported in the past. Most
studies have been done in 2D (Netten et al., 1997; Feuerbach et al., 2002; Galy
et al., 2000; Figueiredo et al., 2002) or semi-3D (Grigoryan et al., 2002); detec-
tion was done sequentially on the 2D slices of the 3D image stack. Few studies
have implemented true 3D detection methods. In (Thomann et al., 2002, 2003)
a Gaussian model driven segmentation algorithm has been used with the as-
sumption of a high intensity curvature and high intensity. In (Therizols et al.,
2006) a 3D wavelet method is used to segment the signals. Previously we seg-
mented spots of varying intensities using a TopHat algorithm (Chuang et al.,
2004; Vermolen et al., 2005a; Meyer, 1979).

In this study we applied a model driven segmentation approach, which is
suitable for spots with varying intensities. To segment the nuclear bodies in
three dimensions, we have adapted a method developed by Olivo-Marin (Olivo-
Marin, 2002) and extended it to 3D. Together with an interactive correction
step, this method allows us to accurately determine the spatial positioning of
nuclear bodies. We also present and compare three segmentation algorithms to
segment the nuclear volume. We show that the three methods give comparable
results. Since one of the segmentation methods does not require imaging of the
nuclear lamina it is technically easier and therefore preferable. Furthermore, as
the nucleus of hMSCs vary in size and shape; we introduce a normalization of
the nuclear size, which makes it possible to perform quantitative image analysis
on pooled data. After normalization, the radial distribution of different nuclear
components within a single nucleus has been analyzed. This provides a means
to compare different components in a single cell and also to pool the different
data from different cells, that is, a cell population. Using this new image
processing tool, we show that changes in nuclear architecture can be monitored
after activation of apoptosis by caspase-8.
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6.2 Materials and Methods

6.2.1 Segmentation

Probe

Segmentation of the marker is described in section 4.2.

Nucleus

To position the molecular markers within the nucleus we had to define the
nuclear sphere. We have used three methods to segment the nucleus (Fig. 6.1):

1. The lamina is labeled with lamin A or lamin B fused to a fluorescent
gene product and the segmentation of the nucleus is carried out on the
fluorescent signal of the lamina protein (Fig. 6.1Ai, labeled as ’la’).

2. The lamina is labeled in the same way as in 1, but the segmentation of
the nucleus is carried out after a logarithmic stretch of the lamina signal
(Fig. 6.1Aii, labeled as ’nla’).

3. The lamina is not labeled, but a logarithmic stretch is performed on
the background signal of the probe. The background is probably caused
by fluorescent molecules unbound to structural nuclear elements. This
logarithm stretch highlights the probe background, which is sufficient
to define the shape of the nucleus (Fig. 6.1Aiii, named as ’n’), now
segmentation is carried out on this stretched background.

In all three methods we segment the nucleus with an isodata thresholding
algorithm (Ridler and Calvard, 1978) after noise reduction by a convolution
with a Gaussian filter. This easy algorithm is sufficient because there is only
one nucleus per image and we do not need to separate touching objects. While
method 3 differs from method 1 and 2 by using a different probe, method 1
and 2 differ from each other because the logarithmic stretch causes the iso-
data thresholding algorithm to choose a different thresholding level. Although
method 3 is more sensitive to the signal-to-noise ratio compared to the other
methods, nuclear segmentation worked for all our images with all three meth-
ods. This results in three different segmentations of the nucleus.

6.2.2 Probe distribution

Radial position with a segmented nucleus

In order to calculate the radial distribution of the components inside the nu-
cleus, a method is required that eliminates the effect of the nuclear size and the
non-spherical shape. We use a method that produces a normalized distance of
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Figure 6.1: Comparison of three methods for segmentation of the nuclear sphere. A. Image
representations of the different segmentation methods in one nucleus. The red
line outlines the nuclear boundary, which was found by each of the segmentation
methods. The n segmentation is calculated from the logarithmic stretched
image of the background of the probe signal (i). The nla segmentation is
calculated from the logarithmic stretched image of the lamina signal (ii). The
la segmentation is calculated from the image of the lamina signal (iii). B.
Cumulative distribution function plot of Trf1-DsRed spatial distribution. Plots
show the distribution of pooled data from 5 cells after activation of caspase-8 at
passage 4 using the three segmentation methods, object background (n), lamina
in background mode (nla) and the lamina (la). C. Linear regression analyses
of the pooled data (B) reveals that the nla and la segmentation methods are
statistically equivalent. The n method, however, gives a good estimation of the
spatial localization of the probes in the nucleus, as compared with the other
two methods.

a probe, rnorm, from the center of a nucleus to the nuclear boundary. Thus
rnorm = 0 means that a probe is at the center and rnorm = 1 means that a
probe is at the boundary. Our method approximates the nucleus shape of the
hMSCs by an ellipsoid. To normalize the probe position we used the coor-
dinates of the pixels obtained from the segmented nucleus to find the center
of the nucleus. We also use these coordinates to transform the coordinates of
the probe signals (xi, yi, zi). From the nuclear coordinates we calculate the
covariance matrix (the second order moments of inertia of the nuclear voxels).
We then perform a singular value decomposition on this matrix. This gives a
rotation matrix, Sn, and a matrix with the singular values, Vn. The singular
values represent the variances, σ2

i , in the different principal directions given by
the rotation matrix. The principal directions are the directions in which the
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variances are largest. The singular matrix has the form:

Vn =

 σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 (6.1)

where:
σ1 > σ2 > σ3 (6.2)

The singular values, σ2
i , for a sphere with radius R are given by the standard

integral for the variance:

σ2
x =

∫ R

−R
P (x)x2dx (6.3)

where

P (x) =
3
4
R2 − x2

R3
(6.4)

The product of the integral gives 1
5R

2. Now we rotate and normalize the
variances of the probe signal coordinates to the unit sphere:

(xnew, ynew, znew) = (xi, yi, zi)× Sn ×
√
V −1
n ×

√
1
5

(6.5)

A schematic presentation of this transformation is shown in Fig. 6.2. After
this transformation the normalized radius, rnorm, is simply:

rnorm =
√
x2
new + y2

new + z2
new (6.6)

6.2.3 Cell preparation and molecular labeling

Human MSCs were isolated from bone marrow samples of adult donors and
were cultured as described in (Raz et al., 2006). To visualize nuclear proteins,
we expressed lamin A, lamin B (components of the nuclear lamina), Trf1, Trf2
(both associated with the telomeres) and CenpA (associated with the cen-
tromeres) as fusion proteins with GFP and DsRed in hMSCs as previously
described (Raz et al., 2006). PML-NBs were visualized after fixation of the
cells using a specific anti-PML antibody as described in (Raz et al., 2006).

6.2.4 Image acquisition and processing

3D images from live or fixed cells were acquired using a confocal microscope
(Leica, model TCS-2) equipped with an argon/krypton laser and a 100x/1.3
NA Apo objective. The 3D images were loaded in TeloView, a custom non-
commercial in-house developed analysis program for MatLab (The Mathworks,
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Figure 6.2: Schematic representation of the normalization procedure. A. 2D example of a
nucleus (red) with a signal (black dot). B. The same nucleus (A) after normal-
ization. The normalized radius, rnorm, is given by r/R. If R = 1 (green circle,
the unit sphere), rnorm is given by equation 6.5.

Natick, MA). TeloView makes use of DIPimage (Luengo Hendriks et al., 1999)
developed at the Quantitative Imaging Group (TU-Delft, The Netherlands,
http://www.diplib.org). The typical sampling distances in the lateral direction
were on the order of ∆x = ∆y = 40 nm and in the axial direction on the order
of ∆z =160 nm. This anisotropy in the sampling distances makes weighing
of pixel values and distances necessary during segmentation and analysis; we
have solved this by interpolating the images to get isotropic sampling distances.
Typical image size was 512 x 512 x 40. Before segmentation, the images are
interpolated linearly in the z direction from ∆z to ∆z′ so that the sampling
distance in all three directions is the same: ∆x = ∆y = ∆z′. Note that our
remark about the fundamental anisotropy in the confocal PSF in section 4.2
still holds after this interpolation, since the PSF it is an intrinsic property of
the microscope system and is therefore independent of the sampling.

6.2.5 Statistics

The spatial distribution of the probe is plotted in a cumulative distribution
function (CDF) plot. We have chosen this representation to avoid the problem
of choosing a binning size in a histogram (the conventional way of showing the
empirical data distribution function), which can heavily influence the appear-
ance of the distribution. The CDF of the radius, F(r), is defined as:

F (rnorm) =
number of observations ≤ rnorm

total number of observations
(6.7)

Distributions were compared with the Wilcoxon rank-sum test (Mann and
Whitney, 1947; Wilcoxon, 1945) and the two sample Kolmogorov-Smirnov test
(Hollander and Wolfe, 1973).
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6.3 Results

6.3.1 Probe segmentation

We have compared the scale space segmentation algorithm with a TopHat
transformation method. For the scale space segmentation we used three scales
(i = 0, 1, 2) and base = 100 nm. The TopHat transformation uses parameters
for the structuring element (SE) as previously described in (Vermolen et al.,
2005a); a spherical SE with radius 742 nm. A total of 14 images with 524
telomere signals have been analyzed. On average we find 37 telomeres per cell.
This number is lower than expected since not all telomeres are labeled with
this method and also possibly due to telomere merging. We have chosen the
threshold for the scale-space method, T (see section 4.2.2), so that the number
of interactive corrections (signals added and signals removed) in each image is
minimized. This resulted in 26 corrections (≈ 2 corrections per image). For
the threshold in the TopHat method we chose a threshold for each image in
the same manner, resulting in 30 corrections (≈ 2 corrections per image). This
number of corrections is acceptable for practical use. While no significant differ-
ences in the number of corrections have been found between the two methods,
the new method, based on scale space, gives significant advantages in compu-
tation time. Typical computation time of the TopHat method is 5-15 minutes
versus 1-3 minutes with the scale space method on an AMD OpteronTM244 1.8
GHz processor with 8 GB RAM. We have, therefore, chosen to use the scale
space method.

6.3.2 Nuclear segmentation

We have used the fluorescent protein-tagged lamin A or lamin B proteins to
visualize the nuclear envelope. During apoptosis, before degradation of the
lamina proteins, the nuclear envelope changes from a round-flat to a convo-
luted shape. In addition, as previously described, the spatial organization of
centromeres and telomeres changes (Raz et al., 2006). At this point we are
interested in developing a more accurate quantitative image analysis tool that
will allow us to study the spatial distribution of nuclear components with re-
spect to the nuclear shape. We therefore tested three methods for segmentation
of the nucleus (Fig. 6.1A). The segmentation methods are described in 6.2.
The performance of the three segmentation methods has been tested on telom-
ere signals. 3D confocal images were taken from hMSCs after activation of
caspase-8 at passage 4, expressing Trf1-DsRed and lamin B-GFP. An example
of a nucleus expressing both fluorescent fusion proteins is shown in Fig. 6.3A.
After nuclear segmentation, using each of the methods, nuclear boundaries were
indicated by a red line (Fig. 6.1A, red line). The nuclear shape was determined
by segmenting the Lamin B-GFP signal without a contrast stretch (la), or after
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Figure 6.3: Changes in the spatial distribution of telomeres and centromeres during activa-
tion of apoptosis. A. Left: maximum intensity projection of a mock-treated cell
expressing lamin A-DsRed (blue) together with CenpA-GFP (green). Right:
maximum intensity projection of a cell expressing Lamin B-GFP (green), Ttrf1-
DsRed (red) and FKC8, after AP20187 treatment. Lamin A and B expression
marks the inner nuclear membrane, B. Cumulative distribution function plot
of the spatial distribution of CenpA-GFP before (blue line) and 4 hours after
caspase-8 activation with 100 nM AP20187 (red line). Segmentation of the
nuclear sphere was carried out using the nla segmentation. The graph shows
pooled data from 4 cells for each treatment. The P value of the Wilcoxon rank-
sum test is given by P (W ). C. Cumulative distribution function plot of the
spatial distribution of Trf1-DsRed analyzed in cells expressing lamin B-GFP
before (blue line) and 6 hours after caspase-8 activation (green line). Segmen-
tation of the nuclear sphere was carried out using the nla segmentation method.
The graph shows pooled data from 9 cells and 5 cells before and after caspase-8
activation respectively. The P value of the Wilcoxon rank-sum test is given by
P (W ).
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a logarithmic stretch (nla), or by segmenting the nuclear background signal de-
rived from Trf1-DsRed (n) (Fig. 6.1Ai, ii and iii, respectively). Comparisons of
the three methods revealed little differences (Fig. 6.1B and 6.1C). Therefore,
when analyzing the change in distribution of nuclear bodies from the center
of mass it is possible to use the n method for nuclear segmentation as it is
significantly faster and simpler. During apoptosis however, the shape of the
nuclear envelope changes and in addition, the lamina forms intranuclear struc-
tures (Raz et al., 2006). Thus it would be interesting to analyze the change in
the spatial distribution relative to the lamina. As changes in lamina organiza-
tion precede changes in the spatial organization of centromeres and telomeres
(Raz et al., 2006), it is possible that changes in lamina spatial organization
affect the spatial organization of nuclear bodies. We emphasize that the im-
ages contain single nuclei, so that more sophisticated segmentation algorithms
(Ortiz de Solórzano et al., 1999; Sarti et al., 2000; Parvin et al., 2007), where
multiple cells or nuclei are present in one image, are unnecessary in this study.
Next, the spatial distribution of the telomeres was quantified within each of
the segmented nuclei and the frequency of telomeres was plotted against the
nuclear radius. To perform statistical tests on pooled data, it was essential to
first normalize the radius of the nuclei, as illustrated in Fig. 6.2 and in equation
6.5. The pooled data from five nuclei, representing 343 Trf1-DsRed fluorescent
dots, revealed no significant differences between the three segmentation meth-
ods (Fig. 6.1B and 6.1C). However, a detailed comparison revealed that the
la and the nla methods show a high level of correlation, R = 0.99 (Fig. 1C).
This is not surprising since the la and the nla method are both based on the
lamina signal. The correlation of the la or nla methods with the n method
was less, R = 0.78 and R = 0.77 respectively (Fig. 6.1C). We suggest that
the n method for nuclear segmentation gives a good estimation for the spatial
localization of nuclear components. This method, however, does not outline
the nuclear envelop as precisely when we visually evaluate the resulting seg-
mentation and compare it to the lamina segmentation methods. Finally some
general notes on the effect of radial positioning with respect to the accuracy
of the segmentation. The segmentation might give two kinds of errors: with
and without a bias. Statistically, these errors will not affect the final results in
our application. For the non-biasing errors this is trivial: the ellipse fitting as
explained in the section on probe distribution will reduce this error to a very
small contribution. When a bias exists it will not affect differences in the ra-
dial position distributions we report. The accuracy of the nuclear segmentation
should be further explored, depending on the specific application. Neverthe-
less, as the n segmentation method is the fastest and requires significantly less
work, it can be used to estimate the nuclear shape.
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6.3.3 Changes in spatial distribution during activation of apoptosis

To test whether the n segmentation method can be used to study changes in the
spatial organization of multiple nuclear components, we applied it to images
from cells expressing both CenpA-GFP and Trf1-DsRed (Fig. 6.4A). These
cells were induced to go into apoptosis by expressing the FKC8 gene, which
was activated after AP20187 treatment (Raz et al., 2006; Carlotti et al., 2005).
To study eventual differences between centromere and telomere spatial orga-
nization we developed a method that finds the radial distribution of multiple
nuclear components in a single nucleus. Live hMSCs were imaged before and
4 and 6 hours after AP20187 treatment.

First we tested this method on single living cells. For a mock-treated cell,
the CDF plots show that the centromeres have a higher preference for a central
localization as compared with telomere positioning (Fig. 6.4B, mock-treated).
This observation confirms previous studies done on fixed cells, showing a more
central localization of centromeres as compared to telomeres in interphase nu-
clei in various cell types (Amrichová et al., 2003; Weierich et al., 2003). The
CDF plot revealed that few telomeres are localized at the nuclear periphery
in untreated hMSCs (Fig. 6.4B). This observation is consistent with previous
studies showing that few telomeres are physically associated with the nuclear
lamina (Ludérus et al., 1996). After apoptosis activation by AP20187 treat-
ment, we observed in the round-shaped nucleus that the centromeres were posi-
tioned near the nuclear periphery (Fig. 6.4B, round, and (Kosak and Groudine,
2004)). At that time, in the same nucleus, the spatial distribution of telom-
eres was more central than the centromeres (Fig. 6.4B, round). At a later
stage, in the convoluted-shaped nucleus, the radial distribution of centromeres
and telomeres did not differ, as shown by the statistical tests. These analyses
suggest that both centromeres and telomeres change position within the three-
dimensional space of the cell nucleus at different rates. In addition, the shift
in centromere localization is more significant than the telomere shift.

Unlike centromeres and telomeres that show changes in spatial organization
upon caspase-8 activation, PML-NB organization is initially unchanged, even
in cells showing a convoluted nuclear shape. The distribution of PML-NBs is
disrupted only when the lamina shows massive degradation (Raz et al., 2006).
Here we used our newly developed method to quantitatively compare the spa-
tial localization of centromeres and PML-NBs in mock-treated cells showing
a round nuclear shape and in caspase-8 activated cells showing a convoluted
nuclear shape. To visualize PML-NBs, cells were fixed and incubated with
the appropriate antibodies (Fig. 6.5A). The frequency distributions of both
centromeres and PML-NBs were plotted in histograms against radial rings.
Representative results are shown in Fig. 6.5B. The analysis of this one cell
reveals a peripheral localization of several CenpA molecules in caspase-8 acti-
vated cells, while the spatial distribution of PML-NBs does not change. This
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Figure 6.4: Distribution analysis of centromeres and telomeres in a single nucleus. A. Max-
imum intensity projections of single hMSC expressing CenpA-GFP (green)
and Trf1-DsRed (Red), before (mock-treated) and after caspase-8 activation
(+AP20187, 4 hours treatment). B. Cumulative distribution function plots
showing changes in the relative distribution of CenpA and Trf1 signals during
caspase-8 activation in a single representative cell. Analyses were carried out
in cells expressing the FKC8 vector before and after caspase-8 activation (+
AP20187). Four hours after AP20187 treatment the nucleus showed a round
shape and after 6 hours a convoluted shape. The plots show that in nor-
mal hMSCs, the spatial distribution of CenpA is more central compared with
that of Trf1. Upon caspase-8 activation, the cumulative distribution func-
tion plots reveal a clear shift in CenpA localization towards the periphery in
round-shape nuclei. A very similar distribution of CenpA and Trf1 is found in
convoluted nuclei. The P values of the Wilcoxon rank-sum test and the two
sample Kolmogorov-Smirnov test are given by P (W ) and P (KS) respectively.
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observation is consistent with previous results, showing shift in CenpA distri-
butions in apoptotic cells (Raz et al., 2006)
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Figure 6.5: PML-NB and CenpA distribution in a single nucleus. A. Maximum inten-
sity projection of CenpA-GFP (green) and PML-NB (red) within single hM-
SCs expressing FKC8, before (mock-treated) and after caspase-8 activation
(+AP20187, 6 hours treatment). B. Histograms show the fraction of cen-
tromeres (green) or PML-NBs (red) distributed in a normalized nucleus of a
representative cell. Analyses were carried out on mock-treated cells and on cells
6 hours after AP20187 treatment. In mock-treated hMSCs, CenpA and PML-
NBs have a similar spatial distribution pattern but upon caspase-8 activation,
some CenpA molecules show a peripheral localization while the distribution of
PML-NBs is not affected.

Next, we analyzed pooled data obtained from multiple cells expressing
both CenpA-GFP and Trf1-DsRed before or 4 hours after caspase-8 activa-
tion. When we visually (by eye) analyzed the localization of centromeres with
respect to the center of the nucleus, centromeres were shown to be centrally
localized, while after caspase-8 activation their spatial distribution shifted to-
wards the nuclear periphery (Fig. 6.3A). A clear shift in centromere localiza-
tion towards the nuclear periphery is also shown by the CDF plot of the pooled
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data of four cells before and after treatment with P < 1e− 7 calculated by the
Wilcoxon rank sum test, using the nuclear background segmentation method
(Fig. 6.3B). In contrast, the P values calculated by the Wilcoxon rank sum
test did not show a significant change in Trf1 localization between nine normal
nuclei, and five convoluted-shaped nuclei, in caspase-8 activated cells. From the
CDF plot, we estimate that 20% of the telomeres are localized to the nuclear
periphery (r > 0.8) in both untreated and AP20187 treated cells. Thus, the
radial distribution of centromeres shifts to the periphery in convoluted-shaped
nuclei, whereas the telomere distribution is not changed.

6.4 Discussion

We have presented a new segmentation method to analyze probe distribution
in the cell nucleus. This method shows a clear improvement over the conven-
tional thresholding method especially with respect to computation time. We
have also developed an improved segmentation method for the nucleus itself,
which is based on background signals derived from expressed fluorescent fusion
proteins. Using this method, the preparation of samples and the acquisition of
images is technically easier and therefore superior. Segmented images allow us
to quantify the spatial distribution of centromeres and telomeres relative to the
nuclear center. This tool also allows us to quantitatively relate the radial distri-
bution between two or three nuclear components in a single cell nucleus. It also
allows a quantitative comparison of the distribution of a nuclear components
between cells and between treatments under varying biological situations. As
an example, we have shown how the distribution of centromeres and telomeres
changes after activation of caspase-8, which results in cell death.

Nuclear architecture not only describes the organization of the nucleus, but
recent studies indicate that the spatial and temporal organization of the genome
is likely to have functional consequences. Changes in nuclear architecture are
among the most dramatic hallmarks of development and differentiation pro-
cesses and defects in architectural elements of the cell nucleus are responsible
for several human diseases. Yet, it is not clear how the spatial localization of
nuclear bodies is changed during change in cell function. Two major models
have been suggested (Misteli, 2005). In the structural scaffold concept, struc-
tural proteins, like the lamina proteins, confine the activation regions of the
genome. The self-reinforcing concept suggests that the spatial organization of
nuclear bodies reflects the transcriptional activity of the genome. Following the
self-reinforcing concept, we have examined the spatial localization of nuclear
probes relative to the center of mass. However, it is possible that changes in the
nuclear lamina also contribute to the spatial localization of nuclear structures,
as in human diseases with mutations in lamina genes (Broers et al., 2006) or cell
death (Broers et al., 2006; Misteli, 2005; Raz et al., 2006). Therefore it would
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be interesting to test the change in the spatial localization of nuclear probes
using the distance transform approach (Mullikin, 1992), where the smallest
distance to the lamina will be found. The distance from the center of the nu-
cleus to the nuclear component, as described in this study, and the distance
from the lamina to the nuclear component are fundamentally different metrics
and can give complementary information. Finally, it would be most interesting
to compare the two methods with respect to the biological models. A broad
application of both tools will eventually lead to a better understanding of the
nuclear architecture and its relation to nuclear function.
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Conclusions and summary

Cancer is one of the most well-known groups of diseases that finds its cause
in cells having chromosomal aberrations. How and why these aberrations can
occur is one of the most important questions asked in modern molecular bi-
ology. In the last decades it has become clear that gene regulation in the
nucleus, where the chromosomes reside, is strongly correlated with structural
organization of nuclear components like the telomeres, centromeres and the
chromosomes themselves. With new microscopes, better cameras and new flu-
orescent labels, the demand for analyses of all the images that can be made
is growing. This thesis is devoted to provide a framework of image processing
and data analyses tools to answer some of these questions.

This thesis describes methods to process and analyze images of the cell
nucleus. The distribution of the molecules in the nucleus is strongly correlated
to its function (see chapter 1). The images that have been analyzed are acquired
by fluorescence microscopy (see chapter 2). Because we have worked with 3D
images, the images have been deconvolved (see chapter 3).

In chapter 3 we also show the effect of deconvolution on images acquired
by a modified conventional microscope. This modification consists of an array
of pinholes in the illumination path and a CCD camera where the image from
pixels which coincide with the holes from the array is separated from the image
from the other pixels. We show that using both of these images gives the
advantage that the holes can be put together as close as five times the hole
diameter. This produces the ability to acquire the images 16 times faster.

In chapter 4 we describe two methods, a TopHat transform and a Scale-
Space method, which make it easier to segment images of telomeres. These
two methods have been tested on their ability to enhance the contrast of two
neighboring signals. The Scale-Space method performs, in general, better then
the TopHat transform. This Scale-Space method is used to segment telomeres.
A parameter, ρT , is defined to analyze how flat the spatial distribution of
telomeres is. Using this parameter we show that telomeres in lymphocytes
from healthy mice are distributed in a sphere-like volume during the G0/1 and
S phase of the cell cycle. However, during the G2 phase (before chromosomes
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condense) this distribution changes and the telomeres position in a disk-like
spatial distribution.

In chapter 5 a method to determine the relative length of a telomere is
described. With the help of outlier-statistics, an extraordinarily high intensity,
which is an indication of aggregation, can be determined. Through image
processing we show that the organization of telomeres and chromosomes is
disrupted after activation of c-Myc. Telomeres aggregate after chromosomes
overlap. This is followed by a so called ’breakage-fusion-bridge’ cycles and
associated chromosomal aberrations.

A different mechanism which changes the distribution of nuclear compo-
nents is induction of caspase-8, which is a protein which plays a role in apopto-
sis (programmed cell death). In chapter 6 the Scale-Space method from chapter
4 is used to segment fluorescent signals related to telomeres, centromeres and
PML-NBs. The shape of the nucleus is determined using the background sig-
nal (non-specific signal). The radial distribution of the localized components is
determined and normalized with respect to the nuclear shape. This technique
is used to show a redistribution of the centromeres to the periphery of the
nucleus, as opposed to the distribution of the telomeres, which is preserved.



Conclusies en samenvatting

Kanker is een van de bekendste groepen ziektes die zijn oorzaak vindt in af-
wijkingen in de chromosomen. Hoe en waarom deze afwijkingen ontstaan is
één van de meest belangrijke vragen in de moderne moleculaire biologie. In de
afgelopen twintig jaar is het duidelijk geworden dat regulatie van de genen in
de celkern gecorreleerd is met de structuur van componenten, zoals telomeren,
centromeren en chromosomen zelf, in de celkern. Met nieuwe microscopen,
betere camera’s en nieuwe fluorescerende labels, is de vraag om alle beelden
die gemaakt kunnen worden te kunnen analyseren gestegen. Dit proefschrift
is toegespitst om een raamwerk te verschaffen om een gedeelte van de gestelde
vragen te kunnen beantwoorden.

Dit proefschrift behandelt methoden om beelden van de celkern te verwer-
ken en analyseren. De distributie van de moleculen in de celkern zijn nauw
verbonden met de functie (zie hoofdstuk 1). De beelden die geanalyseerd wor-
den zijn verkregen door middel van fluorescentiemicroscopie (zie hoofdstuk 2.
Omdat gewerkt wordt met drie dimensionale beelden zijn deze ook gedecon-
volueerd (zie hoofdstuk 3).

In hoofdstuk 3 laten we ook zien wat het effect is van deconvolutie op
beelden gemaakt met een gemodificeerde conventionele microscoop. De mod-
ificatie bestaat uit een matrix van gaatjes in het belichtingspad en een CCD
camera waarbij een onderscheid wordt gemaakt tussen een beeld opgebouwd
uit de pixels die overeenkomen met de gaatjes en een beeld opgebouwd uit de
andere pixels van de CCD. We laten zien dat het gebruik van beide beelden in
de deconvolutie een voordeel oplevert, waarbij de gaatjes tot 5 keer hun grootte
van elkaar verwijderd kunnen zijn. Dit zorgt voor een 16 keer snellere beeld
acquisitie.

In hoofdstuk 4 beschrijven we twee methoden, een TopHat transformatie
en een Scale-Space methode, om makkelijker beelden van telomeren te seg-
menteren. Deze twee methoden zijn getoetst op hun vermogen om het contrast
van twee dicht bij elkaar liggende signalen te verhogen. De Scale-Space meth-
ode geeft over het algemeen betere resultaten dan de TopHat transformatie.
Deze Scale-Space methode is gebruikt om de telomeren te segmenteren. Om de
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ruimtelijke distributie van de telomeren te analyseren hebben we een parameter
gedefinieerd die aangeeft hoe plat deze structuur is: ρT . Gebruik makende van
deze parameter zien we dat in lymfocyten van gezonde muizen tijdens de G0/1
en S fasen van de cel cyclus de distributie van de telomeren in een bol struc-
tuur zitten. Echter tijdens de G2 fase (nog voor de chromosomen condenseren)
verandert de distributie en vormen de telomeren een schijf.

In hoofdstuk 5 beschrijven we een methode om de relatieve lengte van een
telomeer te bepalen. Door middel van ’outlier’ statistiek kan dan bepaald wor-
den of een signaal een buitengewoon hoge intensiteit, wat een indicatie is voor
een samenklontering, heeft. Mede door middel van beeldverwerking laten we
zien dat de organisatie van telomeren en chromosomen verstoord wordt door het
activeren van c-Myc. Na overlap van bepaalde chromosomen plakken sommige
telomeren samen. Dit word dan weer gevolgd door zogenaamde ’breakage-
fusion-brigde’ cyclussen en daarmee gepaarde chromosomale afwijken.

Een ander mechanisme waarin de distributie van componenten in de cel-
kern veranderd is de inductie van caspase-8, een eiwit die een rol speelt in
apoptose (gereguleerde celdood). In hoofdstuk 6 wordt de Scale-Space segmen-
tatie methode uit hoofdstuk 4 gebruikt om fluorescente signalen gerelateerd
aan telomeren, centromeren en PML-lichamen te lokaliseren. Aan de hand van
het achtergrond signaal (het niet-specifieke signaal) wordt de vorm van de cel-
kern bepaald. Van de gelokaliseerde componenten wordt een radiële distributie
bepaald welk genormaliseerd is aan de hand van de vorm van de celkern. Met
behulp van deze technieken wordt een verschuiving van de distributie van de
centromeren naar de rand van de celkern getoond, waarbij de radiële distributie
van de telomeren gehandhaafd blijft.
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