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ISAE / Université de Toulouse, Toulouse, France

Email: firstname.lastname@isae.fr
François Le Chevalier

MS3,Delft University of Technology, Delft, The Netherlands
Email: F.LeChevalier@tudelft.nl

Abstract—In this paper, we consider the problem of estimating
a signal of interest embedded in noise using a sparse signal
representation (SSR) approach. This problem is relevant in many
radar applications. In particular, estimating a radar scene con-
sisting of targets with wide amplitude range can be challenging
since the sidelobes of a strong target can disrupt the estimation
of a weak one. Within a Bayesian framework, we present a new
sparse-promoting prior designed to estimate this specific type
of radar scene. The main strength of this new prior lies in its
mixed-type structure which decorrelates sparsity level and target
power, as well as in its subdivided support which enables the
estimation process to span the whole target power range. This
algorithm is implemented through a Monte-Carlo Markov chain.
It is successfully evaluated on synthetic and semiexperimental
radar data and compared to state-of-the-art algorithms.

Index Terms—sparse representation, Bayesian estimation,
Monte Carlo Markov Chain.

I. INTRODUCTION

A recurrent problem in radar applications is the estimation
of weak targets in radar scenes with high dynamic range, for
example a drone masked by a liner or a vehicle. The CLEAN
algorithm was first described in [1] as a means to address
this issue. This algorithm “successively removes large targets
and their sidelobe responses by subtracting the point spread
function of the receiving system centered at the locations of
the bright targets” [2]. In other words, when using the CLEAN
algorithm on a radar scene with a weak target and a strong one,
the latter will first be removed, and the weak target will then
appear as the brightest and be estimated. Later on, the so-called
“greedy methods”, such as matching pursuit (MP) [3] and
orthogonal matching pursuit (OMP) [4], [5], were developed
in order to solve the same problem and were based on the same
principle as the CLEAN algorithm. In fact, these algorithms
rely on a sparse representation of the target scene, which
allows the estimation of a sidelobe-less signal of interest (SOI),
leading to an increased target dynamic range. Consequently,
such sparse signal representation (SSR) methods seem to be
of particular interest when dealing with target scenes with
both weak and strong targets. In SSR, the signal is described
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as a linear combination of a finite number of atoms from a
dictionary, and the problem is written as

y = Fx+ n (1)

with
F ∈ CM×M̄ a sparsifying dictionary of size M × M̄

where usually M̄ ≥ M , M being for in-
stance the number of pulses;

x ∈ CM̄ the sparse vector having ideally exactly N
nonzero components, N being the number
of scatterers in the target scene;

n ∈ CM the noise vector of size M .
Within the SSR scope, the greedy methods are very effective in
terms of calculation load but several algorithms having higher
complexity give better performance, such as the `1-penalized
least-squares algorithm (e.g., basis pursuit de-noising, i.e.,
BPDN [6], and LASSO [7]). In fact, these methods are
equivalent to a Bayesian estimation using a Laplacian sparse-
promoting prior distribution [8, p.160].

The Laplacian prior distribution is part of the general class
of “normal variance mixture” [9] (also called “scale mixture
of Gaussians”) that consists of a hierarchical prior distribution
π(x) subject to (s.t.)

π(x) =

∫
π(x|σ2

x)π(σ2
x)dσ2

x (2)

where

π(x|σ2
x) =

M̄−1∏
m̄=0

π(xm̄|0, σ2
xm̄) =

M̄−1∏
m̄=0

N
(
xm̄|0, σ2

xm̄

)
(3)

is the conditional prior assigned to the sparse vector x, and
π(σ2

x) is the “mixing distribution”;N
(
xm̄|0, σ2

xm̄

)
designates

the normal distribution assigned to xm̄ with mean 0 and
variance σ2

xm̄.
Extensive work has been conducted on the normal variance

mixtures, most of it consisting in changing the mixing distribu-
tion π(σ2

x), leading to new priors π(x). In particular, a Jeffreys
mixing distribution leads to a Jeffreys prior [10], a Gamma
mixing distribution to a Laplace prior [11] and an inverse-
Gamma mixing distribution to a Student’s t-prior [12]. In
general, the hierarchical nature of the normal variance mixture
model (2) is used to derive efficient inference procedures.
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A distinct sparse-promoting prior was presented in [13] that
differs from the normal variance mixtures thanks to its mixed
type structure. It consists of an atom at 0 and a hierarchical
Student’s t-prior (denoted “HBerStu” in the rest of the paper),
and hence is part of the class of “spike and slab” priors [14].
It is formulated as

π(xm̄|w, σ2
x) = (1− w)δ(|xm̄|) + w

1

πσ2
x

exp

{
−|xm̄|

2

σ2
x

}
(4a)

π(σ2
x|β0, β1) ∝ e−β1/σ

2
x

(σ2
x)β0+1

I[0,+∞)(σ
2
x). (4b)

The atom at zero is added to the normal variance mix-
ture in order to force the sparsity. Then, the continuous
part of the prior only deals with the estimation of non-
zero targets and does not address the sparsity constraint.
It can be seen in (4b) that the mixing distribution is an
inverse-gamma distribution with shape and scale parame-
ters (β0, β1); its mean and variance, if they exist, are de-

noted
(

mσ2
x

=
β1

β0 − 1
, varσ2

x
=

β2
1

(β0 − 1)2(β0 − 2)

)
respec-

tively (resp.). In order to facilitate the upcoming comparison
with the new prior proposed, in the following the prior from
(4) is reformulated in polar coordinates. In particular, the prior
distribution of the modulus ρm̄ = |xm̄| is then expressed as

π(ρm̄|β0, β1) =

∫ ∫
π(ρm̄|σ2

x)π(σ2
x)π(w)dσ2

xdw

=
1

2
δ(ρm̄) + ρm̄

β0

β1

[
1 +

ρ2
m̄

β1

]−(β0+1)

(5)

where we considered that the level of occupancy w is a
priori uniformly distributed over [0, 1]. When using such a
prior the operator needs to adjust the hyperparameters of the
mixing distribution (β0, β1). In Fig.1(a), the continuous part
of the prior π(ρm̄) from (5) is represented for different tuning
of these hyperparameters corresponding to an informative
prior centered on either low-power, or high-power targets, or
corresponding to a flat non-informative prior. Note that the
latter is a priori the most appropriate when no information is
available about the power of the targets present in the scene.
Nonetheless, it can be seen that even in the case of a flat/non-
informative mixing distribution, it is not possible to efficiently
scan the whole power range. In practice, and as shown later
in Section IV, we have observed that when using such prior,
weak targets are not properly estimated in presence of strong
ones.

In this paper, we focus on the estimation of radar scenes
with high dynamic range, and more precisely on the estimation
of weak targets that are possibly hidden by strong ones. Our
approach is to consider different classes of power amongst
the targets present in the scene (with at least two classes
to discriminate weak and strong targets) in order to better
estimate the weak targets. The proposed prior is detailed
later in Section II; note that the new prior proposed also
includes an atom at zero that corresponds to the case when
no target is present at the m̄-th bin. Its continuous part is
represented in Fig.1(b); it can be seen that the new prior is
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Fig. 1. Prior pdf of ρm̄ = |xm̄|. 1(a) Hierarchical Student’s t-prior on xm̄ for
different tuning of the hyperparameters of the mixing distribution: “flat” Non-
informative prior, “lpower” Informative prior centered on low-power targets:
(mσ2

x
,
√

varσ2
x

) = (15, 15) dB, “hpower” Informative prior centered on
high-power targets: (mσ2

x
,
√

varσ2
x

) = (60, 15) dB. 1(b) New approach
with three target power classes.

more flexible than a normal variance mixture so far as setting
up the hyperparameters in order to efficiently scan a predefined
choice of power range scanning is more of an automatic
process. To support this point, an automatic setup of the
power class boundaries {ρ−c , ρ+

c }c=1,...,C is proposed for high
dynamic range scenarii. This new prior and the corresponding
estimation algorithm lead to better performance on a wide
variety of scenarii of interest with weak and strong targets, as
shown later in Section IV.

The rest of the paper is organized as follows. First, the new
Bayesian model adopted is presented in Section II. Then, the
estimation process is detailed in Section III. To conclude, the
proposed algorithm is successfully evaluated and compared
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φ σ2
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{wc}c=0...C{(ρ−c , ρ+c )}c=1...C

{θc}c=0...CNew prior proposed

Fig. 2. Directed acyclic graph associated with the hierarchical Bayesian model
proposed. The parameters in the dotted circles need to be adjusted by the
operator.

to state-of-the-art algorithms in Section IV via numerical
simulations on both synthetic and semiexperimental data.

II. BAYESIAN MODEL

In this section, we describe the hierarchical Bayesian model
adopted, represented graphically in Fig. 2. In particular, a new
sparse-promoting prior distribution is presented, that has been
designed to estimate radar scenes consisting of targets with
very different amplitude.

A. Likelihood

The observation model (1) is adopted. The additive noise
n is considered white and distributed following a centered
Gaussian distribution with power σ2

n|σ2 ∼ CNM

(
0, σ2I

)
(6)

where I is the identity matrix. The likelihood function is thus
given by

f(y|x, σ2) =
1

πMσ2M
exp

{
−
‖y − Fx‖22

σ2

}
. (7)

B. Prior pdfs of the parameters

1) Sparse vector x: As mentioned in Section I, the aim is
to estimate a radar scene with targets having wide amplitude
range. A new approach is considered and the prior is designed
knowing first that the target amplitude is limited by the
receiver dynamic range [8, chap.11]. Then, the power range
is divided into several classes, within the dynamic range
limitation.

In this paper, instead of considering x ∈ CM̄ we
parametrize x in terms of modulus ρ and angle φ subject
to (s.t.)

x , ρ� eiφ, (8)

where � refers to the Hadamard product. (8) is equivalent to
the formulation ∀m̄ ∈

{
0, . . . , M̄ − 1

}
, xm̄ = ρm̄e

iφm̄ .
The elements in ρ and φ are independent and identically
distributed (iid) a priori. Then, we design the new sparse-
promoting prior of the modulus vector ρ that consists of an
atom at zero and a mixture of uniform distributions

π(ρm̄|w) = w0 δ(ρm̄) +

C∑
c=1

wckcI[ρ−c ,ρ+
c )(ρm̄) (9)

where w = [wc]c=0,...,C is the vector of class probabilities
with w0 = 1 −

∑C
c=1 wc. kc is a scaling constant easily

calculated as kc = 1/(ρ+
c − ρ−c ). Using the prior (9) means

that ρm̄ is null with probability w0; it belongs to class c
with probability wc and is uniformly distributed within this
class. Hence, a new approach is considered and the prior is
designed knowing first that the target amplitude is limited by
the receiver dynamic range, represented by the upper limit
ρ+
C , and then several classes with desired length ρ+

c − ρ−c and
weight wc are created in order to scan the power range as
desired.

The prior distribution assigned to the phase φ is

π(φm̄|ρm̄ = 0) = δ(φm̄) (10a)

π(φm̄|ρm̄ 6= 0) =
1

2π
I[0,2π](φm̄). (10b)

Note that the difference between the new prior proposed
and the one used by the authors in [13] does not lie in a
simple change of mixing distribution as usually done in normal
variance mixture models (2).

2) Noise power σ2: An inverse gamma prior distribution is
classically assigned to the white noise power σ2, mainly for
mathematical tractability since it is conjugate to the likelihood
(7). The prior pdf of σ2 is denoted σ2|γ0, γ1 ∼ IG (γ0, γ1)
and expressed as

f(σ2|γ0, γ1) ∝ e−γ1/σ
2

(σ2)γ0+1
I[0,+∞)(σ

2) (11)

where γ0, γ1 are the shape and scale parameters respec-
tively (resp.). Adequate choice of the hyperparameters (γ0, γ1)
allows to select an informative, or on the contrary non-
informative flat prior distribution. The white noise model can
be used in several radar applications (e.g., look-up mode in
airborne radars).

C. Prior pdfs of the hyperparameters

1) Vector of class probabilitiesw: Using a conventional so-
lution for class probability vectors, a multivariate Dirichlet dis-
tribution is assigned to w [15], denoted w ∼ Dir (θ0, ..., θC)

π(w|θ0, . . . , θC) ∝ wθ0−1
0 I[0,1](w0)×

C∏
c=1

wθc−1
c I[0,1](wc)

(12)
where θ0, . . . , θC > 0 are the concentration parameters. They
can be adjusted in order to favor some classes over the
other ones, or on the contrary be equal to 1 to form a non-
informative symmetric Dirichlet distribution.
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Remark. The new hierarchical prior proposed requires ad-
justing more hyperparameters (number of classes C, power
class boundaries {ρ−c , ρ+

c }c=1,...,C) than the hierarchical Stu-
dent’s t-prior with an atom at 0 from [13] which needs only
the two hyperparameters of the mixing distribution (β0, β1).
Despite this apparent difficulty, it is easy to set up the hyperpa-
rameters of the new prior and this will lead to better estimation
performance. Both models require approximate information
about the thermal noise level σ2, which is relevant in many
radar applications.

III. BAYESIAN ESTIMATION

Herein we propose an estimation scheme of the target scene
x based on the Bayesian hierarchical model described in (7),
(9), (10), (11), (12). In general, the minimum mean square
error (MMSE) estimator is calculated

x̂MMSE =

∫
xf(x|y)dx. (13)

If this integral is intractable to derive analytically, a Monte-
Carlo Markov chain method can be adopted, and more pre-
cisely a Gibbs sampler can be implemented [13]. Generally
speaking, considering a target distribution f(ζ|y) where ζ is
a parameter vector, a Gibbs sampler consists in drawing iter-
atively samples ζi(t) according to their conditional posterior
distribution f(ζi|y, ζ−i), where ζ−i is the vector ζ whose
ith element has been removed. Convergence of the sampling
chain ζ(t) and of each sub-chain ζi

(t) is assured, and the
sampling chain (resp. each sub-chain) is distributed following
the posterior distribution f(ζ|y) (resp. f(ζi|y)) [16].

In this paper, we use the decomposition x = ρ� eiφ so we
calculate a different estimator of the target scene x

x̂class = E
{
ρ� eiφ|y

}
(14a)

=

∫
ρ,φ

{ρ� eiφ}f(ρ,φ|y)dρdφ. (14b)

Since this last integral is intractable to derive analytically, we
demarginalize it as

x̂class =

∫
σ2,ρ,φ,w

{ρ� eiφ}f(σ2,ρ,φ,w|y)dσ2dρdφdw.

(15)
Then, a Gibbs sampler is implemented to obtain
samples following the joint posterior distribution
f(σ2,ρ,φ,w|y) and compute x̂class. More specifically,
samples ζ(t) = [σ2(t)

,ρ(t),φ(t),w(t)] are generated
iteratively according to their conditional posterior distribution.
The estimator x̂class is built empirically using Nr samples
drawn after a burn-in period Nbi as

x̂class = N−1
r

Nr∑
t=1

ρ(t+Nbi) � eiφ
(t+Nbi)

(16)

which is the empirical mean of all the samples
x(t) = ρ(t) � eiφ

(t)

. The conditional posterior distributions
used in the Gibbs sampler are obtained from the joint
posterior pdf of ρ,φ, σ2,w|y

f(ρ,φ, σ2,w|y) ∝ f(y|ρ,φ, σ2)π(ρ|w)π(φ|ρ)π(σ2)π(w).
(17)

They are expressed in the remaining of this Section.

200 400 600 800 1000 1200 1400 1600
ρm̄

f(ρm̄|y,σ
2
,ρ

−m̄,φ,w)

Fig. 3. Conditional posterior distribution (18) of ρm̄ with µm̄ = 500, ηm̄ =
150 andwm̄ = [10, 15, 60, 15]%. The dashed lines represent the limits of the
three non-zero power classes. The dotted curve is the Gaussian N

(
µm̄, η2

m̄

)
.

A. Sampling of ρ

The elements in ρ are a priori iid so the vector can be easily
sampled element-wise. (9) and (17) are used to calculate the
conditional posterior pdf of ρm̄

f(ρm̄|y, σ2,ρ−m̄,φ,w) ∝ f(y|ρ,φ, σ2)π(ρm̄|w)

∝ exp
{
−σ−2

[
ρ2
m̄ ‖ f m̄ ‖2 −2ρm̄Re

{
eHm̄f m̄e

iφm̄
}]}

×

[
w0 δ(ρm̄) +

C∑
c=1

wckcI[ρ−c ,ρ+
c )(ρm̄)

]
∝ wm̄,0 δ(ρm̄) (18)

+

C∑
c=1

wm̄,ckm̄,c√
2πη2

m̄

exp

{
−η
−2
m̄

2
(ρm̄ − µm̄)2

}
I[ρ−c ,ρ+

c )(ρm̄)

where for c = 1, . . . , C

η2
m̄ =

1

2
σ2 ‖ f m̄ ‖−2 (18a)

µm̄ = ‖ f m̄ ‖−2 Re
{
eHm̄f m̄e

iφm̄
}

(18b)

wm̄,c =

wc ×
kc
km̄,c

(2πη2
m̄)1/2 exp

{
1

2
η−2
m̄ µ2

m̄

}
w0 +

∑C
c=1 wc

kc
km̄,c

(2πη2
m̄)1/2 exp

{
1

2
η−2
m̄ µ2

m̄

} (18c)

and wm̄,0 = 1 −
∑C
c=1 wm̄,c. km̄,c is a scaling constant

consecutive to the truncation of the Gaussian with mean µm̄
and variance η2

m̄ on the interval [ρ−c , ρ
+
c ); this truncated normal

distribution is denoted N[ρ−c ,ρ
+
c )

(
µm̄, η

2
m̄

)
. The conditional

posterior distribution of ρm̄ (18) is a mixed-type distribution:
it has an atom at 0 and a continuous component which is
a mixture of truncated Gaussian distributions. Note that the
mean and variance (µm̄, η

2
m̄) of each Gaussian do not depend

on the class c, but that the distributionN
(
µm̄, η

2
m̄

)
is weighted

differently on each class by wm̄,c. This is illustrated in Fig. 3
where we can see an example of the continuous part of the
conditional posterior pdf of ρm̄.

Remark. When using a Fourier dictionary as in the numerical
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simulations, ‖ f m̄ ‖2= 1 so that η2
m̄ = η2 does not depend

on the grid index m̄.

B. Sampling of φ

Vector φ can also be sampled element-wise easily since its
elements are supposed a priori iid. (10) and (17) are used to
calculate the conditional posterior pdf of φm̄

f(φm̄|y, σ2,φ−m̄,ρ) ∝ f(y|ρ,φ, σ2)π(φm̄|ρm̄)

∝ exp
{
−σ−2

[
−2ρm̄Re

{
eHm̄f m̄e

iφm̄
}]}

π(φm̄|ρm̄)

∝ exp
{

2σ−2ρm̄|fHm̄em̄| cos (φm̄ − ψm̄)
}
π(φm̄|ρm̄).

According to (10a), we have
f(φm̄|y, σ2,φ−m̄,ρ; ρm̄ = 0) = δ(φm̄) (19)

and

f(φm̄|y, σ2,φ−m̄,ρ; ρm̄ 6= 0) ∝ (20)
exp {κm̄ cos (φm̄ − ψm̄)} I[0,2π)(φm̄).

We recognize from (20) a von Mises-Fisher distribution,
denoted as φm̄|y, σ2,φ−m̄,ρ; ρm̄ 6= 0 ∼ VM(κm̄, ψm̄), with
concentration parameter and mean direction resp. [17]

κm̄ = 2ρm̄σ
−2|fHm̄em̄| (20a)

ψm̄ = ∠fHm̄em̄, (20b)

where ∠ represents the angle in [0, 2π).

C. Sampling of σ2

The conditional posterior distribution of σ2 is simply cal-
culated as

σ2|y,ρ,φ ∼ IG
(
γ0 +M,γ1+ ‖ y − F (ρ� eiφ) ‖22

)
. (21)

D. Sampling of w

The conditional posterior distribution of w is calculated
using (12) and (17)

f(w|y,ρ) ∝ π(ρ|w)π(w)

∝
M̄−1∏
m̄=0

{
w0 δ(ρm̄) +

C∑
c=1

wckcI[ρ−c ,ρ+
c )(ρm̄)

}
×

C∏
c=0

wθc−1
c

∝wn0+θ0−1
0 ×

C∏
c=1

wnc+θc−1
c (22)

where nc = #{m̄|ρm̄ ∈ [ρ−c , ρ
+
c )}, i.e., the number of scat-

terers in class c, and n0 = M̄ −
∑C
c=1 nc. We recognize from

(22) a multivariate Dirichlet distribution with concentration
parameters (n0+θ0, n1+θ1, . . . , nC+θC). w is sampled after
the method proposed in [18, chap.11], which uses a gamma
distribution with parameters (nc + θc, 1).

The Gibbs sampler computed is summarized in Fig. 4 where
the sampling of each parameter is detailed. Note that the
algorithm does not require the number of targets in the scene
as an input parameter.

Require: y, (γ0, γ1), (ρ−c , ρ
+
c )c=1,...,C , [θc]c=0,...,C

Ensure: x̂class
{Initialization}
ρ(0), φ(0), α(0)

{Iterations}
for n = 1 to Nbi +Nr do
σ2(n)|y,x(n−1) ∼ IG

(
γ0 +M,γ1+ ‖ y − Fx ‖22

)
w(n)|ρ(n−1) ∼ Dir (θ0 + n0, ..., θC + nC)
for m̄ = 0 to M̄ − 1 do
αm̄

(n) ∼ discrete ({0, ..., C},wm̄)
if αm̄(n) = c with c 6= 0 then
ρm̄

(n)|y, σ2(n)
,ρ−m̄

(n),φ(n) ∼ N
[ρ−c ,ρ

+
c )

(
µm̄, η

2
m̄

)
φm̄

(n)|y, σ2(n)
,φ−m̄

(n),ρ(n) ∼ VM(κm̄, ψm̄)
else
ρm̄

(n) = 0
φm̄

(n) = 0
end if
xm̄

(n) = ρm̄
(n)eiφm̄

(n)

end for
end for
{Estimator}
x̂class = 1

Nr

∑Nr
t=1 ρ

(t+Nbi) � eiφ
(t+Nbi)

Fig. 4. Gibbs sampler used in the proposed algorithm. αm̄ is the label
associated with the m̄th element of vectors ρ and φ; it is described
in Appendix A. It follows a discrete distribution within {0, ..., C} with
corresponding probabilities {wm̄,0, ..., wm̄,C}.

IV. NUMERICAL SIMULATIONS

The proposed algorithm is evaluated via numerical simu-
lations on both synthetic and semiexperimental radar data.
It is compared with the algorithm based on the hierarchical
Student’s t-prior with an atom at 0 from [13] for different
tuning of the mixing distribution: flat prior, prior adjusted
to low-power targets or high-power targets (numerical values
given in Fig. 1). It is also compared to state-of-the-art algo-
rithm CLEAN [1], [2] and displayed with a classical spectral
estimate, namely APES [19].

Since we are considering conventional radar data, a simple
Fourier matrix is used as a sparsifying dictionary F . The pro-
posed algorithm is adjusted to the following values. Three non-
zero target power classes are used, and the class boundaries
{ρ−c , ρ+

c }c=1,...,C are:
• (−∞, σ2

dB) dB,
• [σ2

dB , 30 + σ2
dB) dB,

• [30 + σ2
dB , 65 + σ2

dB) dB
where σ2

dB = 10 log 10(σ2). The hyperparameters {θc}c=0...C

adjusting the vector of class probabilities w are set to 1 (non-
informative prior). A non-informative Jeffreys prior is chosen
for the noise power σ2, so that (γ0, γ1) = (0, 0).

A. Synthetic data

The performance of the proposed algorithm is first evaluated
on synthetic radar data via the calculation of the normalized
mean square error (nMSE) of the reconstructed target scene
F x̂class (see discussion in [20], [21]) and the nMSEs of the
elements of x̂class where a target is present in order to evaluate
the estimation performance of each target individually. These
performance metrics are calculated after Nmc = 200 Monte-
Carlo simulations as
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nMSE(F x̂class) =
1

Nmc

Nmc∑
n=1

‖ F x̂class
(n) − Fx ‖22

‖ Fx ‖22
(23a)

nMSE(x̂classi) =
1

Nmc

Nmc∑
n=1

|x̂(n)
classi − xi|

2

|xi|2
. (23b)

The synthetic data are generated following a model usually
used in radar applications where the SOI is modeled by a
sum of cisoids embedded in additive white noise n generated
using (6) [22]; the noise power σ2 is set to 1. The sparsifying
dictionary F is a simple 1D-Fourier matrix.

1) Performance of the proposed algorithm: In the first
scenario, the target scene consists of a strong target with a
post-processing signal-to-noise ratio (SNR) of 60 dB, defined
as (the columns of F being unitary)

SNR = |xm̄|2/σ2, (24)

surrounded by two weak targets with varying SNR located on
the previous and next frequency bins of the analysis grid, i.e.,
fdl1 = 0, fds = fdl1 + 1/M̄ = fdl2 − 1/M̄ where fdl1 (resp.
fdl2 , fds ) is the normalized Doppler frequency of the left-hand
side low-power target (resp. right-hand side low-power target,
strong target). Note that with definition (24), the integration
gain 10 log10(M) is already comprised in the SNR value.

a) Result after one realization: Fig. 5 shows an example
of the target scene estimated by the proposed algorithm and the
one based on the hierarchical Student’s t-prior with an atom
at 0 from [13] for different tuning of the mixing distribution.
In this scenario, the weak targets have a post-processing SNR
of 14 dB. It can be seen that both algorithms estimate the
strong target, but that the proposed algorithm is more accurate
in terms of amplitude estimation of the weak targets (the
latter are even missed in this specific realization when using
a flat mixing distribution). Note that the weak targets are
not resolved by the APES algorithm. This first realization
highlights tendencies that are confirmed in the following
Monte-Carlo simulations.

b) Monte Carlo results for different SNRs of weak tar-
gets: The performance of the algorithm with respect to (wrt)
the SNR of the weak targets is evaluated through the calcu-
lation of the nMSE of the target scene F x̂class, the nMSE of
x̂l1 (which corresponds to the left-hand side weak target) and
the nMSE of x̂s (which corresponds to the strong target). The
results are presented in Fig. 6. It can be seen that the proposed
algorithm outperforms the algorithm based on the hierarchical
Student’s t-prior with an atom at 0 from [13] in terms of
reconstruction of the target scene Fx, regardless of the tuning
of the mixing distribution. In fact, both algorithms give the
same performance in terms of estimation of the strong target
(xs, Fig. 6(c)) but the proposed algorithm better estimates the
weak targets (e.g., xl1 , Fig. 6(b)) (the corresponding figure for
xl2 is not depicted but similar). More precisely, it should be
noted that the nMSE of F x̂class is not monotonic in Fig. 6(a):

- in the first part, the normalized MSE increases with the
SNR of the weak targets. The nMSE obtained with the
hierarchical Student’s t-prior with an atom at 0 from

−0.5 0 0.5
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40
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80

100
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d
B

Amplitude estimation of x

 

 
trueapes
proposed ssr algo
ssr - HBerStu prior: lpower
ssr - HBerStu prior: hpower
ssr - HBerStu prior: flat

Fig. 5. Example after one realization of the proposed SSR algorithm and the
one based on the hierarchical Student’s t-prior with an atom at 0 from [13]
(“ssr - HBerStu prior”) for different shape of the mixing distribution: flat prior
(“flat prior”), prior adjusted to low-power targets (“lpower”) or high-power
targets (“hpower”). The scenario consists in a strong target (SNR=60 dB)
surrounded by two weak targets with SNR=14 dB. M̄ = M = 16, Nr =
1000, Nbi = 200.

[13] (square-markers) matches the theoretical normalized
MSE when both weak targets are missed (green line),
namely 10 log10

(
2|xl|2/

(
|xs|2 + 2|xl|2

))
. Thus, we can

affirm that the weak targets are missed by the estimation
algorithm based on the hierarchical Student’s t-prior with
an atom at 0 when their SNR is below 14 dB.

- in the second part, the nMSE decreases, meaning that the
weak targets are more often seen and correctly estimated
by the algorithm.

Thus, misdetection of the very low targets is more recurrent
with the algorithm based on the hierarchical Student’s t-prior
with an atom at 0 from [13] than with the proposed algorithm.

2) Discussion of the choice of power classes: As men-
tioned in Section II, the radar operator needs to adjust the
hyperparameters controlling the target power classes. Thus, the
influence of these classes on the performance of the proposed
algorithm is investigated. Using the scenario of Section IV-A1
and considering σ2 = 1, five different choices of power classes
are studied:

1) (−∞ 65) dB
2) (−∞ 0), [0 30), [30 65) dB
3) (−∞ 0), [0 30), [30 55), [55 65) dB
4) [0 30), [30 65) dB
5) (−∞ 30), [30 65) dB

These choices will first indicate if it really is necessary to
subdivide the truncated power range into several classes. They
will also show the importance of the first non-zero class
(−∞ 0) dB, and the nonnecessity of a fine subdivision
within the high-power range.

The performance of the proposed algorithm with the dif-
ferent choices of target power classes is assessed on this
scenario via the calculation of the nMSE of the reconstructed
target scene F x̂class as represented in Fig. 7. First, it can be
seen that using only one class (−∞ 65) dB gives the worst
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(a) nMSE of F x̂class
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(b) nMSE of x̂l1
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(c) nMSE of x̂s

Fig. 6. Comparison between the performance of the proposed algorithm (black
plain line and circles) and the one based on the hierarchical Student’s t-prior
with an atom at 0 from [13] for different shape of the mixing distribution:
flat prior (dash-dotted line and squares), prior centered on low-power targets
(dashed line and squares) and high-power targets (dotted line and squares).
The scenario consists of a strong target (SNR=60 dB) surrounded by two weak
targets with varying SNR s.t. fdl1 = 0, fds = fdl1

+1/M̄ = fdl2
−1/M̄ .

M̄ = M = 16, Nr = 1000, Nbi = 200.

performance: the weak targets are not seen by the algorithm.
Then, comparing choices 2 and 3 shows that it does not
seem necessary to finely subdivide the high-power range: the
strong targets belonging to classes [30 55), [55 65) dB are
way above noise level so the algorithm easily estimates their
amplitude, whatever the power classes used. To finish, by
focusing on choices 2 and 4, it can be seen that adding the class
(0 1), i.e., (−∞ 0) dB improves the performance. Indeed,
it gives the algorithm an alternative when it hesitates between
the two choices “no target” (zero class) and “a target above
noise level” (class [0 30) dB). Comparing choices 2 and 5
supports the affirmation that a subdivision of the low-power
range via the class (−∞ 0) dB is necessary.

Thus, an adequate setup of the class boundaries would be
(in dB):

1) a first class (−∞ σ2
dB),

2) a second class [σ2
dB σ2

dB + 30),
3) a last class [σ2

dB + 30 Amax),

where Amax designates the maximum detectable amplitude
(corresponding to the receiver limitation). Note that the op-
erator needs to first estimate the noise level σ2, which is quite
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choice 1: (-∞ 65) dB
choice 2: (-∞ 0),[0 30),[30 65) dB
choice 3: (-∞ 0),[0 30),[30 55),[55 65) dB
choice 4: [0 30),[30 65) dB
choice 5: (-∞ 30),[30 65) dB

Fig. 7. Performance of the proposed algorithm for different choice of power
classes (nMSE of F x̂class). The scenario is the same as in Section IV-A1.
M̄ = M = 16, Nr = 1000, Nbi = 200.

common in radar applications. Robustness of the algorithm
towards the σ2-estimate used when setting up the power
classes is discussed in Section IV-A3.

The selected setup of the target power classes has been
tested on many different scenarii and shown to be appropriate
compared to other settings. In order to illustrate this point,
we have evaluated the proposed algorithm on a new scenario
consisting of five targets randomly situated on the frequency
axis. The post-processing amplitude of three out of five targets
is uniformly distributed over the interval [10 14] dB, the
amplitude of the other two over the interval [30 65] dB. The
performance of the algorithm is assessed via the calculation of
the MSE of the reconstructed target scene F x̂class, the MSE
of the lowest target in the scene xl and of the strongest target
xs; the results are presented in Table I. It can be seen that
the proposed algorithm is always more accurate than the one
based on the hierarchical Student’s t-prior with an atom at 0
from [13]: the MSE of the reconstructed target scene F x̂class
is lower by more than 4 dB. More precisely, the weak targets
are correctly estimated by the proposed algorithm, while this
is not always the case with the one based on the hierarchical
Student’s t-prior with an atom at 0. This confirms the adequacy
of the proposed target power classes setup.

3) Robustness towards thermal noise approximation: As
explained earlier, an approximate value of the thermal noise
σ2 is required to setup the power classes used in the algo-
rithm, and usually in radar applications it is rather accurately
known. Nonetheless, we evaluate the algorithm’s robustness
towards the thermal noise approximation via the calculation
of the nMSE of F x̂class for different choices of power classes
corresponding to an error of δσ2 = ±5 dB on the thermal
noise approximate. The target power classes used are
• (−∞ 5), [5 35), [35 65) dB corresponding to an er-

ror of δσ2 = +5 dB,
• (−∞ −5), [−5 25), [25 65) dB corresponding to an

error of δσ2 = −5 dB.
The scenario considered is the same as that of Section IV-A1,
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TABLE I
COMPARISON BETWEEN THE ALGORITHM WITH OR WITHOUT POWER CLASSES VIA DIFFERENT METRICS ON A SCENARIO WITH 5 RANDOMLY-LOCATED
TARGETS (THREE WEAK AND TWO STRONG). THE MSE OF xs (RESP. xl) CORRESPONDS TO THE MSE ON THE STRONGEST ELEMENT OF x (RESP. THE

LOWEST).

pw classes npwclasses: lpower npwclasses: hpower npwclasses: flat
MSE of F x̂class 12.14 16.50 16.95 16.75
MSE of xs -0.34 -0.33 -0.34 -0.33
MSE of xl 6.71 10.54 10.93 10.73
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choice 2: (-∞ 0),[0 30),[30 65) dB
choice 2+: (-∞ 5), [5 35),[35 65) dB
choice 2−: (-∞ -5), [-5 25),[25 65) dB

Fig. 8. Robustness of the proposed algorithm wrt the thermal noise approx-
imate (nMSE of F x̂class). The scenario is the same as in Section IV-A1.
M̄ = M = 16, Nr = 1000, Nbi = 200.

and the results are presented in Fig. 8. It can be seen that the
results do not dramatically change with an error of ±5 dB on
the thermal noise approximate. Nonetheless, underestimating
σ2 is more advantageous.

On the other hand, we explained in Section IV-A that a
non-informative prior is chosen for σ2. This choice aims
at facilitating the σ2-hyperparameters setup, and has proven
to give accurate results. For the sake of transparency, we
represent in Fig. 9 the nMSE of the reconstructed target
scene F x̂class estimated by the proposed algorithm when σ2

is known, which corresponds to a clairvoyant estimation wrt
σ2. The scenario is also the same as in Section IV-A1. It can
be seen that using a non-informative prior in the proposed
algorithm does not dramatically decrease the performance
when compared to the σ2-clairvoyant case.

4) Influence of the level of occupation: To finish, we study
the influence of sparsity level, and thus test the proposed
algorithm on a scenario with a strong target and an increasing
number of weak targets. The post-processing amplitude of
the strong target is uniformly distributed within [30 65] dB
and that of the weak targets within [10 14] dB. The MSE of
F x̂class is calculated and displayed in Fig.10. The results are
consistent with the well-known assumption that lower sparsity
degrades the performance of SSR algorithms. However, it can
be seen that the proposed sparse-promoting prior gives better
performance than the hierarchical Student’s t-prior with an
atom at 0 from [13].
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Fig. 9. Performance of the proposed algorithm when the thermal noise
parameter σ2 is known compared with the ones when it is drawn and a
non-informative prior is used (nMSE of F x̂class). The scenario is the same
as in Section IV-A1. M̄ = M = 16, Nr = 1000, Nbi = 200.
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Fig. 10. MSE of F x̂class evaluated after 200 Monte-Carlo simulations on
a scenario with one strong target and an increasing number of weak targets
(from 1 to 7). M = M̄ = 16, Nr = 1000, Nbi = 200.
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B. Semiexperimental data

To finish, the proposed algorithm is evaluated on semiexper-
imental data recorded in November 2014 using the PARSAX
radar [23] installed at TU Delft, The Netherlands. The semiex-
perimental data were built adding synthetic two-dimensional
targets to a deramped thermal noise signal (the target signature
is a two-dimensional cisoid with given range and Doppler
frequency). Thus, the proposed algorithm is tested on realistic
noise while having cooperative targets. The target scene is
represented in Fig. 11(a); the strong targets present in the scene
have a post-processing SNR of 60 dB, the weak ones of 12 dB
and the medium one of 30 dB. The semiexperimental data is
normalized beforehand, so that σ2 ≈ 1. In order to process
this type of target scene, a two-dimensional Fourier matrix is
used as a sparsifying dictionary F .

Fig. 11(b) shows that the proposed algorithm accurately
estimates the target scene. In particular, the weak targets
are accurately estimated whereas the algorithm based on the
hierarchical Student’s t-prior with an atom at zero from [13]
cannot see them if they are competing with a strong one
(Fig. 11(d)). It is also interesting to note that both algorithms
estimate zero-velocity components that most probably corre-
spond to offsets of the coders. For the sake of comparison, the
target scene estimated by the CLEAN algorithm is represented
in Fig. 11(c). Following the approach described in [24],
the stopping criterion adopted is reached when the standard
deviation of the signal after removing the targets is lower than
the noise standard deviation σ ≈ 1. It can be seen that the
CLEAN algorithm does estimate the weak targets at 12 dB,
but more importantly it estimates several false targets.

V. CONCLUSION

In this paper, a new sparse-promoting prior and the corre-
sponding MCMC estimation algorithm have been presented,
and were proved to give accurate estimation of a radar
scene consisting of weak and strong targets. This new prior
enforces sparsity and decorrelates it from the target power
level via its mixed-type structure. The novelty resides in the
subdivision of the prior’s support into several classes which
corresponds to target power. In addition, an automatic setup
of the class boundaries is proposed for high dynamic range
scenarii. The proposed algorithm was tested on both synthetic
and semiexperimental data, and showed that it outperforms
state-of-the-art algorithms. More precisely, it is able to recover
weak targets the estimation of which can be disrupted by
strong ones. Hence, it could lead to a more recurrent detection
of these weak targets. Nonetheless, the proposed algorithm
lacks computational efficiency, especially when compared to
the CLEAN algorithm.

In the future, the problem of finding a bound for the MSE of
the reconstructed target scene within the scope of SSR could
be investigated. Furthermore, the new sparse-promoting prior
could be used with a non-optimal estimation algorithm in order
to decrease the calculation load, for example a variational
Bayes approximation.
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APPENDIX A
IMPLEMENTATION

The aim of this section is to provide the reader with details
about the implementation of the algorithm. More precisely, an
equivalent formulation of (9) and (10) consists in using labels
αm̄ = [α]m̄ s.t. αm̄ ∈ {0, 1, . . . , C} that indicate in which
class lands the m̄th element of ρ

Pr [αm̄ = c] = wc, c = 0, . . . , C{
π(ρm̄|αm̄ = 0) = δ(ρm̄)

π(ρm̄|αm̄ = c) = kcI[ρ−c ,ρ+
c )(ρm̄), c = 1, . . . , C{

π(φm̄|αm̄ = 0) = δ(φm̄)

π(φm̄|αm̄ = c) = 1
2π I[0,2π](φm̄), c = 1, . . . , C.

In order to facilitate the implementation of the algorithm, (18)
and (20) are reformulated using the label vector α as

Pr [αm̄ = c] = wm̄,c, c = 0, . . . , C{
f(ρm̄|αm̄ = 0) = δ(ρm̄)

f(ρm̄|αm̄ = c) = N[ρ−c ,ρ
+
c )

(
µm̄, η

2
m̄

)
, c = 1, . . . , C.{

f(φm̄|αm̄ = 0) = δ(φm̄)

f(φm̄|αm̄ = c) = VM(κm̄, ψm̄).

Thus, αm̄ is sampled following a discrete distribution within
{0, ..., C} with corresponding probabilities {wm̄,0, ..., wm̄,C};
it is denoted as αm̄ ∼ discrete ({0, ..., C},wm̄). Then, de-
pending on the value of αm̄, the method proposed in [25]
can be used to draw samples of ρm̄ that follow a truncated
Gaussian distribution; the samples φm̄ follow a von Mises-
Fisher distribution and can be drawn following the method
described in [17].
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