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Overview of Constraint-Based Path Selection Algorithms

for QoS Routing

F.A. Kuipers, Delft University of Technology

T. Korkmaz, University of Texas at San Antonio

M. Krunz, University of Arizona

P. Van Mieghem, Delft University of Technology

Abstract

Constraint-based path selection aims at identifying a path that satisÞes a set of quality-of-

service (QoS) constraints. In general, this problem is known to be NP-complete, leading to the

proposal of many heuristic algorithms. In this paper, we provide an overview of these algorithms,

focusing on restricted shortest path and multi-constrained path algorithms.

1 Introduction

In recent years, there has been an increasing demand for Internet-based multimedia applications. In

response to this demand, the research community has been extensively investigating several quality-

of-service (QoS) based networking frameworks (e.g., IntServ, DiffServ, MPLS). One of the key issues

in all of these frameworks is how to identify efficient paths that can satisfy the given QoS constraints,

or what is commonly known as the QoS-based routing problem.

In general, routing (be it QoS-based or not) involves two entities: routing protocols and routing

algorithms. Routing protocols capture the network state information (e.g., available resources) and

disseminate it throughout the network, while routing algorithms use this information to compute

appropriate paths. While the current best-effort routing simply performs these tasks based on a

single, relatively static measure, QoS routing takes into account both the applications requirements

and the availability of network resources. As a result, QoS routing has to deal with some challenging

issues that are not present in the best-effort routing, including scalable dissemination of dynamic

(state-dependent) information, state aggregation, computation of constrained paths. In this paper,

our goal is to shed some light on the myriad of existing multi-constrained path selection algorithms

proposed for QoS-based unicast routing. In all of these algorithms, it is assumed that the network-

state information is temporarily static and has been disseminated throughout the network using the

underlying QoS-based routing protocols (e.g., QoS-enhanced OSPF).

Before formally deÞning the problem at hand, we Þrst describe the notation used throughout this

paper. Let G(N,E) denote a network topology, where N is the set of nodes and E is the set of links.

With a slight abuse of notation, we also use N and E to denote the number of nodes and the number

of links, respectively. The source and destination nodes are denoted by s and d, respectively. The

number of QoS measures (e.g., delay, hopcount) is denoted by m. Each link is characterized by an
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m-dimensional link weight vector, consisting of m non-negative QoS weights (wi(u, v), i = 1, ...,m,

(u, v) ∈ E) as components. QoS measures can be roughly classiÞed into additive (e.g., delay) and
non-additive (e.g., available bandwidth, policy ßags). In case of an additive measure, the QoS value

of a path is equal to the sum of the corresponding weights of the links along that path. For a non-

additive measure, the QoS value of a path is the minimum (or maximum) link weight along that path.

Constraints are denoted by Li, i = 1, ...,m. In general, non-additive measures can be easily dealt with

by pruning from the graph all links (and possibly disconnected nodes) that do not satisfy the requested

QoS constraint. Additive measures cause more difficulties. Hence, without loss of generality, we only

consider additive measures. The basic problem considered in this paper can be stated as follows:

DeÞnition 1 Multi-Constrained Path (MCP) problem: Consider a network G(N,E). Each link

(u, v) ∈ E is associated with m additive weights wi(u, v) ≥ 0, i = 1, ...,m. Given m constraints Li,

i = 1, ...,m, the problem is to Þnd a path P from s to d such that: wi(P )
def
=
P
(u,v)∈P wi(u, v) ≤ Li

for i = 1, ...,m.

A path obeying the above condition is said to be feasible. Note that there may be multiple feasible

paths between s and d. A modiÞed (and more difficult) version of the MCP problem is to retrieve

the shortest �length� path among the set of feasible paths. This problem is known as the multi-

constrained optimal path (MCOP) problem, and is attained by adding a second condition on the path

P in DeÞnition 1: l(P ) ≤ l(Q) for any feasible path Q between s and d, where l(.) is a path length

(or cost) function. A solution to the MCOP problem is also a solution to the MCP problem, but not

necessarily vice versa. Considerable work in the literature has focused on a special case of the MCOP

problem known as the restricted shortest path (RSP) problem, where the goal is to Þnd the least-cost

path among those that satisfy only one constraint denoted by D, which bounds the permissible delay

of a path.

The MCP problem and its variants are known to be NP-complete [3]. Therefore, they are consid-

ered to be intractable for large networks. Accordingly, many heuristics have been proposed for these

problems. In the rest of this paper, we brießy describe the lion�s share of the existing algorithms.

To simplify the discussion, we consider them under two categories: RSP algorithms in Section 2, and

MCP algorithms in Section 3. Finally, we conclude the paper in Section 4.

2 RSP Algorithms

Before presenting some of the efficient solutions for the RSP problem, we start by discussing its exact

(but computationally more strenuous) solutions.

2.1 Exact Algorithms

An exact solution to the RSP problem can be found by systematically examining every path between

s and d in a brute-force manner (e.g., using depth-Þrst search with backtracking). However, since the

number of paths grows exponentially with the size of the network, this method may not be useful in

practice. An alternative exact solution is known as the Constrained Bellman-Ford (CBF) algorithm.

The basic idea here is to systematically discover the lowest-cost paths while monotonically increasing
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their total delays. CBF maintains a list of paths from s to every other node with increasing cost

and decreasing delay. It selects a node whose list contains a path that satisÞes D and that has the

minimum cost. CBF then explores the neighbors of this node using a breadth-Þrst search, and (if

necessary) adds new paths to the list maintained at each neighbor. This process continues as long as

D is satisÞed and there exists a path to be explored. Although CBF exactly solves the RSP problem,

its execution time grows exponentially in the worst case.

The RSP problem can also be solved exactly via pseudo-polynomial-time algorithms. In general,

the complexity of pseudo-polynomial-time algorithms depends on the actual values of the input data

(e.g., link delays and the given delay constraint) as well as the size of the network [3]. Pseudo-

polynomial-time algorithms incur long execution times if the value of the input data is large. This

can happen if the granularity of link weights is very small.

2.2 ²-Optimal Approximation

One general approach to deal with NP-complete problems is to look for a polynomial-time algorithm

that guarantees Þnding an approximate, quantiÞable solution to the optimal one. An algorithm is said

to be ²-optimal if it returns a path whose cost is at most (1+²) times the cost of the optimal path,

where ² > 0. Two examples of ²-optimal approximation algorithms for the RSP problem were provided

in [5]. The Þrst ²-optimal approximation algorithm initially determines an upper bound (UB) and

a lower bound (LB) on the optimal cost denoted by OPT . For this, the algorithm initially starts

with LB = 1 and UB equals to the sum of the (N − 1) largest link-costs, and then it systematically
adjusts these bounds using a testing procedure. After computing LB and UB, the algorithm bounds

the cost of every link by rounding and scaling it by ²LB. It then applies a pseudo-polynomial-time

algorithm on these new weights. The second version is basically an extension of the Þrst one, and uses

a technique called interval partitioning. The performance of approximation algorithms improves with

smaller values of ² while causing an increased computational complexity.

2.3 Backward-Forward Heuristic

In backward-forward algorithms, the graph is explored based on the concatenation of two segments:

(1) the so-far explored path from s to an intermediate node u, and (2) the least-delay or the least-cost

path from node u to d. These algorithms are implemented in a centralized or distributed manner. In

a distributed implementation, probing and backtracking are used, as follows. The algorithm sends a

probe packet over the preferred links one at a time. If the receiving node accepts the probe packet, it

forwards it to the next node. Otherwise, if the packet is rejected, the algorithm tries the next preferred

link. In a centralized implementation, a backward-forward heuristic (BFH) can be implemented as

follows: Þrst determine the least-delay path (LDP) and the least-cost path (LCP) from every node u

to d. BFH then starts from s and explores the graph as in Dijkstra�s algorithm with the following

modiÞcation in the relaxation procedure: a link (u, v) is relaxed if it reduces the total cost from s to v,

while its approximated end-to-end delay obeys the delay constraint. The latter is obtained from the

path up to node v and the LDP from v to d. BFH extracts the next node that has the minimum cost

from the heap. The computational complexity of the centralized BFH is three times that of Dijkstra�s

algorithm.
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2.4 Lagrangian-Based Linear Composition

In the Lagrangian-based composition algorithms, the graph is searched based on a single weight that

is obtained by linearly combining the delay and cost of each link. Two multipliers, for delay and cost,

are used to obtain different linear combinations. A key issue here is how to determine appropriate

values for the multipliers. This can be done systematically by iteratively Þnding the shortest path

with respect to (w.r.t.) the linear combination and adjusting the multipliers� values in the direction

of the optimal solution. This technique is similar to the well-known Lagrangian relaxation technique

used in other constrained optimization problems. It can be shown that if the weights of the paths

are uniformly distributed in the delay-cost space, then the search terminates after a Þnite number of

iterations of Dijkstra�s algorithm. Several reÞnements have been proposed to the basic Lagrangian-

based composition approach. For example, one can use the k-shortest path algorithm1 to close the

gap between the optimal solution and the returned path based on the linear combination.

2.5 Hybrid Algorithms

It is also possible to devise efficient heuristics for the RSP problem using combinations of the afore-

mentioned approaches. One such heuristic has been provided in [4]. According to this heuristic, the

cost of the least-delay path is selected as the cost constraint. The problem is then solved by minimizing

a nonlinear length function, analogous to the one used in TAMCRA (see Section 3.3), that gives more

priority to lower-cost paths. To minimize the nonlinear length function, a k-shortest-path-based algo-

rithm called DCCR is used. The performance of the DCCR algorithm depends on k; if k is large, the

algorithm gives good performance at the expense of an increased execution time. In order to improve

the performance with smaller values of k, the search space can be reduced by using a Lagrangian-based

algorithm before applying DCCR. The complexity of this Þnal hybrid algorithm called SSR+DCCR

depends on that of the Lagrangian-based algorithm and the k-shortest path algorithm.

3 MCP Algorithms

In this section, we present a representative sample of the algorithmic solutions for the MCP problem,

and in some cases, for the more difficult MCOP problem.

3.1 Jaffe�s Approximation

In [6] Jaffe presented two algorithms for the MCP problem under two constraints (m = 2). The Þrst

is a pseudo-polynomial-time algorithm that has an unattractive worst-case complexity. The second is

an approximation algorithm which is simply called Jaffe�s algorithm and discussed here in detail. This

algorithm Þrst determines two positive multipliers, namely d1 and d2. It then uses these multipliers to

assign a composite weight w(u, v) to every link (u, v) ∈ E by linearly combining the original weights.
The algorithm then Þnds the shortest path w.r.t. w. This search process is illustrated pictorially in

Figure 1, where all possible paths between the source and destination nodes are indicated by black

circles. Equal-length paths w.r.t. w are indicated by a line. The search for the minimum-length

1A k-shortest path algorithm does not stop when the destination has been reached for the Þrst time, but continues

until it has been reached through k different paths succeeding each other in length.
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Figure 1: Pictorial representation of the search process in Jaffe�s algorithm.

path is equivalent to sliding this line outward from the origin until a path (black circle) is hit. This

path is the one returned by the algorithm. Figure 1 also illustrates that the returned path does

not necessarily reside within the feasibility region deÞned by the two constraints. Accordingly, Jaffe

suggested using a nonlinear function whose minimization guarantees Þnding a feasible path, if such

a path exists. However, no simple shortest path algorithm is available to minimize such a nonlinear

function. Instead, Jaffe provided the above approximation and showed how to determine d1 and d2

based on this nonlinear function. Note that Jaffe�s algorithm can be extended to an arbitrary number

of constraints.

3.2 Fallback Algorithm

In this approach, the algorithm computes the shortest path one at a time w.r.t. individual QoS

measures. If the current shortest path w.r.t. a given QoS measure satisÞes all the constraints, then

the algorithm stops. Otherwise, the search is repeated using another QoS measure until a feasible

path is found or until all QoS measures are examined. The worst-case complexity of the algorithm is

m times that of Dijkstra. One problem with the fallback approach is that there is no guarantee that

optimizing path selection w.r.t. any single measure would lead to a feasible path or even one that

is close to being feasible. The fallback approach performs good when the link weights are positively

correlated, because then if one weight is small, the other weights are also likely to be relatively small,

resulting in a path farthest from the constraints.

3.3 TAMCRA and SAMCRA

TAMCRA [2] and its exact companion SAMCRA [10] are based on three fundamental concepts: (1)

a nonlinear measure for the path length, (2) the k-shortest path approach, and (3) the principle of

non-dominated paths. Figure 2 explains the Þrst concept pictorially (when m = 2). Part (a) depicts

the search process using a linear composition function, similar to Jaffe�s algorithm. If the two path

weights are highly correlated, then the linear approach tends to perform well. However, if that is not
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Figure 2: Searching for a feasible path by minimizing: (a) a linear composite function, (b) nonlinear

composite function.

the case, then a nonlinear function is more appropriate. Part (b) of the Þgure depicts the search process

using a nonlinear function. Ideally, the equal-length lines should perfectly match the boundaries of

the constraints, scanning the constrained area without ever selecting a solution outside it. When all

QoS measures are equally treated, this can be achieved by Þnding a path that minimizes:

l(P ) = max
1≤i≤m

µ
wi(P )

Li

¶
(1)

An important characteristic of nonlinear path-length functions such as the one in (1) is that sub-paths

of shortest paths are not necessarily shortest paths. In the path computation, this suggests considering

more paths than only the shortest one, leading us to the k-shortest path approach. In TAMCRA the

k-shortest path concept is applied to intermediate nodes i on the path from s to d. While traversing

the graph, the algorithm keeps track of multiple sub-paths from s to i. Not all sub-paths are stored,

but an efficient distinction is made based on the non-dominance of a path. We say that a path Q

is dominated by a path P if wi(P ) ≤ wi(Q) for all i = 1, ..,m, with an inequality for at least one i.
TAMCRA only considers non-dominated (sub)-paths. This property allows it to efficiently reduce the

search space without compromising the solution in Þnding a feasible paths. Any path P that satisÞes

l(P ) ≤ 1 is a feasible path, and hence is an acceptable solution to the MCP problem. However, this
path may not be optimal in terms of its length. In addition to feasibility, SAMCRA address this issue

(i.e., provides a solution to the more difficult MCOP problem) by allowing different length functions.

As an exact algorithm, SAMCRA guarantees Þnding a feasible path, if one exists. Furthermore,

it allocates buffer space only when truly needed, and it self-adaptively adjusts the number of stored

paths k at each node. Unfortunately, in the worst case, this could lead to an exponentially growing

k. In TAMCRA k is predeÞned and Þxed, so its worst-case complexity is polynomial.
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3.4 Chen�s Approximate Algorithm

Chen and Nahrstedt [1] provided an approximate algorithm for the MCP problem. This algorithm Þrst

transforms the MCP problem into a simpler one by scaling down m−1 (real-valued) link weights into
integer weights, as follows: w∗i (u, v) =

l
wi(u,v)·xi

Li

m
for i = 2, 3, . . . ,m, where the xi�s are predeÞned

positive integers. The simpliÞed problem reduces to Þnding a path P that minimizes the Þrst (real)

weight provided that the other m− 1 scaled down (integer) weights are within the stricter constraints
xi. To exactly solve this simpliÞed MCP problem, Chen and Nahrstedt proposed two algorithms based

on dynamic programming: the Extended Dijkstra�s Shortest Path algorithm (EDSP) and the Extended

Bellman-Ford algorithm (EBF). When the graph is sparse and the number of nodes is relatively large,

EBF is expected to give better performance than EDSP in terms of execution time. However, to

achieve good performance, high xi�s are needed, which makes this approach rather computationally

intensive for practical purposes.

3.5 Randomized Algorithm

The concept behind randomization is to make random decisions during the execution of an algorithm

so that unforeseen traps can potentially be avoided when searching for a feasible path. Using this

approach, Korkmaz and Krunz [8] proposed a randomized algorithm for the MCP problem. The

algorithm consists of two parts: (a) initialization phase, (b) randomized search. In the initialization

phase, the algorithm computes the shortest paths from every node u to d w.r.t. each link weight

and w.r.t. a linear combination of all weights. The algorithm then starts from s and explores the

graph using a randomized breadth-Þrst search (BFS). In contrast to the conventional BFS, which

systematically discovers every node that is reachable from s, the randomized BFS discovers nodes

from which there is a good chance to reach d. By using the information obtained in the initialization

phase, the randomized BFS can check whether this chance exists before discovering a node. If there is

no chance, the algorithm foresees the trap and does not consider such nodes any further. Otherwise,

it continues searching by randomly selecting discovered nodes until d is reached. If the Þrst attempt

of randomized BFS fails, the search can be repeated again. Because of the nature of randomization,

subsequent attempts may succeed in returning a feasible path. The worst-case complexity of the

randomized algorithm is m+ 1 times that of Dijkstra.

3.6 H MCOP

Korkmaz and Krunz [7] also provided a heuristic algorithm called H MCOP. This heuristic attempts

to Þnd a feasible path for any number of constraints while simultaneously minimizing a path length

function. The search for a feasible path is done by approximating the nonlinear function (1), which is

also used in TAMCRA. To achieve its objectives, H MCOP executes two modiÞed versions of Dijkstra�s

algorithm in backward and forward directions. In the backward direction, H MCOP computes the

shortest paths from every node to d w.r.t. a linear combination of all weights. Later on, these (reverse)

paths are used to estimate how suitable the remaining sub-paths are. In the forward direction, using

Look Ahead Dijkstra, H MCOP starts from s and discovers every node u based on a path P , where P

is a heuristically determined complete s-d path that is obtained by concatenating the already traveled

sub-path from s to u and the estimated remaining sub-path from u to d. Since the algorithm considers

7



complete paths before reaching d, it can foresee some feasible paths during the search. If paths seem

feasible, then the algorithm can switch to explore these feasible paths for the one with minimum

length. If H MCOP is used for the MCP problem only, then the execution can be stopped once a

feasible path is found or foreseen, reducing the execution time.

3.7 Limited Path Heuristic

Yuan [11] presented two heuristics for the MCP problem; the �limited granularity� heuristic and the

�limited path� heuristic (LPH). LPH has a very high probability of Þnding a feasible path, provided

that such a path exists. LPH (which is better than the limited granularity, particularly whenm > 3) is

based on the Bellman-Ford algorithm and uses two of the fundamental concepts in TAMCRA, namely

non-dominance and storing at most k paths per node. However, while TAMCRA uses a k-shortest

path approach, LPH stores the Þrst k (not necessarily the shortest) paths. Moreover, LPH does not

check whether a sub-path obeys the constraints; it only does this when d is reached.

3.8 A*Prune

Liu and Ramakrishnan [9] considered the problem of Þnding not only one but multiple (K) shortest

paths that are within the constraints. The linear length function used is the same as that of Jaffe�s

algorithm. The authors proposed an exact algorithm called A*Prune. If there are no K feasible paths

present, the algorithm will only return those that are within the constraints.

For each QoS measure, A*Prune calculates the shortest paths from s to all nodes i ∈ N\{s} and
from d to all i ∈ N\{d}. The weights of these paths will be used to evaluate whether a certain sub-
path can indeed become a feasible path (similar look-ahead features were also used in the H MCOP

algorithm). After this initialization phase, the algorithm proceeds in a Dijkstra-like fashion. The node

with the shortest predicted end-to-end length is extracted from a heap and then all of its neighbors are

examined. The neighbors that cause a loop or lead to a violation of the constraints are pruned. The

A*Prune algorithm continues extracting/pruning nodes until K constrained shortest paths from s to

d are found or until the heap is empty. The worst-case complexity of A*Prune grows exponentially

with the size of the network. It is possible to implement a Bounded A*Prune algorithm, which runs

polynomial in time at the risk of losing exactness.

4 Conclusions

We provided a high-level overview of the main solutions available in the literature for constraint-

based path selection. Naturally, these solutions provide different trade-offs between computational

complexity and accuracy. An important property of multidimensional routing is that a nonlinear

length function is required to obtain exact results. QoS routing algorithms that use a linear deÞnition

for the path length will only prove useful when the link weights are positively correlated. In all other

cases a nonlinear function is necessary, which signiÞcantly complicates the problem, since no simple

shortest path algorithm is available to minimize such a nonlinear function. As a consequence, multiple

paths must be evaluated, requiring the use of a k-shortest path algorithm. The other important

techniques are non-dominance, look-ahead, search-space reducing, rounding and scaling the weights,
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and the constraint values themselves. Depending on the availability of resources, these techniques

allow for devising efficient tailor-made QoS algorithms.
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