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As our main result, we supply the missing characterization of the Lp(μ) →
Lq(λ) boundedness of the commutator of a non-degenerate Calderón–Zygmund 
operator T and pointwise multiplication by b for exponents 1 < q < p < ∞
and Muckenhoupt weights μ ∈ Ap and λ ∈ Aq. Namely, the commutator 
[b, T ] : Lp(μ) → Lq(λ) is bounded if and only if b satisfies the following new, 
cancellative condition:

M#
ν b ∈ Lpq/(p−q)(ν),

where M#
ν b is the weighted sharp maximal function defined by

M#
ν b := sup

Q 
1Q

ν(Q)

ˆ

Q 
|b− ⟨b⟩Q| dx

and ν is the Bloom weight defined by ν1/p+1/q′ := μ1/pλ−1/q.
In the unweighted case μ = λ = 1, by a result of Hytönen the boundedness of the 
commutator [b, T ] is, after factoring out constants, characterized by the boundedness 
of pointwise multiplication by b, which amounts to the non-cancellative condition 
b ∈ Lpq/(p−q). We provide a counterexample showing that this characterization 
breaks down in the weighted case μ ∈ Ap and λ ∈ Aq. Therefore, the introduction 
of our new, cancellative condition is necessary.
In parallel to commutators, we also characterize the weighted boundedness of 
dyadic paraproducts Πb in the missing exponent range p ̸= q. Combined with 
previous results in the complementary exponent ranges, our results complete 
the characterization of the weighted boundedness of both commutators and of 
paraproducts for all exponents p, q ∈ (1,∞). 

© 2025 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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r é s u m é

Notre résultat principal établit la caractérisation de la bornitude Lp(μ) → Lq(λ)
des commutateurs entre opérateurs de Calderón–Zygmund non dégénérés T et 
opérateurs de multiplication ponctuelle par b, pour les exposants 1 < q < p < ∞
et les poids de Muckenhoupt μ ∈ Ap et λ ∈ Aq. Plus précisément, le commutateur 
[b, T ] : Lp(μ) → Lq(λ) est borné si et seulement si b satisfait la nouvelle condition

M#
ν b ∈ Lpq/(p−q)(ν),

portant sur les oscillations de b, òu M#
ν b est la fonction maximale dièse, définie par

M#
ν b := sup

Q 
1Q

ν(Q)

ˆ

Q 
|b− ⟨b⟩Q| dx

et ν est le poids de Bloom défini par ν1/p+1/q′ := μ1/pλ−1/q.
Dans le cas sans poids μ = λ = 1, par un résultat de Hytönen, la bornitude du 
commutateur [b, T ] est, après avoir factorisé les constantes, caractérisée par celle 
de la multiplication ponctuelle par b, ce qui équivaut à la condition b ∈ Lpq/(p−q)

portant uniquement sur la taille de b. Nous fournissons un contre-exemple montrant 
qu’une telle caractérisation est fausse dans le cas pondéré μ ∈ Ap et λ ∈ Aq. Donc, 
l’introduction de notre nouvelle condition est nécessaire et celle-ci fait intervenir les 
oscillations de b.
Parallèlement aux commutateurs, nous caractérisons également la bornitude 
Lp(μ) → Lq(λ) des paraproduits dyadiques Πb lorsque p ̸= q. Nos résultats 
complètent la caractérisation de la bornitude pondérée des commutateurs et des 
paraproduits pour tous les exposants p, q ∈ (1,∞). 

© 2025 The Authors. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Commutators

The boundedness of the commutator [b, T ] of a Calderón–Zygmund singular integral operator T and 
pointwise multiplication by b ∈ L1

loc plays an important role in harmonic analysis, which dates back to the 
work of Nehari [36] on the boundedness of [b,H] on Lp, where H denotes the Hilbert transform. This result 
was later extended by Coifman, Rochberg, and Weiss [9], who showed that [b, T ] : Lp → Lp is bounded 
for a wide class of Calderón–Zygmund operators T with convolution kernels, b ∈ BMO and p ∈ (1,∞). 
Subsequent works have yielded a full characterization of those b ∈ L1

loc for which [b, T ] : Lp → Lq is bounded 
for non-degenerate Calderón–Zygmund operators. The state-of-the-art result can be formulated as follows: 
For p, q ∈ (1,∞), T a non-degenerate Calderón–Zygmund operator and b ∈ L1

loc, there holds

http://creativecommons.org/licenses/by/4.0/
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⃦⃦
[b, T ]

⃦⃦
Lp→Lq ≂

⎧⎪⎪⎨⎪⎪⎩
∥b∥BMO p = q, [9],
∥b∥Ċ0,α

α
d =

1 
p − 1

q p < q, [29],
∥b∥L̇r

1
r = 1

q − 1 
p p > q, [27],

where Ċ0,α denotes the space of all α-Hölder continuous functions and L̇r denotes the Lebesgue space Lr

modulo constants. We refer to [27,29] and [22, Section 1.1] for a survey of all results leading up to this 
full characterization. An analogous characterization in a different context, namely on the boundedness of a 
Toeplitz type operator between Hardy spaces on the unit ball, was obtained by Pau and Perälä [39].

Weighted versions of commutator estimates in the case p = q date back to the work of Strömberg, who 
gave an alternative proof of the boundedness of [b,H] on Lp using the Fefferman–Stein maximal function, 
which also showed the boundedness of [b,H] on Lp(w) for any Muckenhoupt weight w ∈ Ap (cf. [43, p. 
419]). A sharp version of this result in terms of the weight characteristic [w]Ap

was obtained by Chung [6], 
which was afterwards extended to any Calderón–Zygmund operator by Chung, Pereyra and Perez [8]. In 
particular, they showed that any Calderón–Zygmund operator T satisfies

⃦⃦
[b, T ]

⃦⃦
Lp(w)→Lp(w) ≲ [w]2 max{1, 1 

p−1}
Ap

∥b∥BMO (1.1)

for all w ∈ Ap and p ∈ (1,∞) and the dependence on [w]Ap
is sharp.

These results have been generalized to a two-weight setting by taking weights μ, λ ∈ Ap and asking for 
a characterization of those b ∈ L1

loc such that [b, T ] is bounded from Lp(μ) to Lp(λ). In this setting, long 
before even the one-weight works [6,8], Bloom [3] proved that for μ, λ ∈ Ap and p ∈ (1,∞), it holds that 
[b,H] : Lp(μ) → Lp(λ) is bounded if and only if b ∈ BMOν . Here ν := μ1/pλ−1/p and BMOν is defined as 
the space of all f ∈ L1

loc such that

∥f∥BMOν
:= sup

Q 

1 
ν(Q)

ˆ

Q 

|f − ⟨f⟩Q|dx < ∞,

where ⟨f⟩Q = 1 
|Q|

´
Q
f and the supremum is taken over all cubes Q in Rd. Note that BMOν = BMO when 

μ = λ. The sufficiency of b ∈ BMOν for the boundedness of [b, T ] from Lp(μ) to Lp(λ) was later extended 
to general Calderón–Zygmund operators by Segovia and Torrea [42].

The study of characterizing the boundedness [b, T ] : Lp(μ) → Lq(λ) of commutators (or other operators) 
for p, q ∈ (1,∞) by means of conditions on the Bloom weight ν, which is connected to the weights μ and λ
by the relation ν

1 
p+ 1 

q′ := μ
1 
pλ− 1 

q , is now called the Bloom setting. In this setting, the weights μ and λ are 
typically satisfying the a priori assumption μ ∈ Ap and λ ∈ Aq. We refer to [35, Section 6] for a discussion 
of the necessity of the conditions μ, λ ∈ Ap for the boundedness of the commutator [b, T ] from Lp(μ) to 
Lp(λ).

The Bloom setting has in recent years attracted renewed attention, starting with the works [19,20] of 
Holmes, Lacey and Wick. This has led to the following current state-of-the-art result: For 1 < p ≤ q < ∞, 
μ ∈ Ap, λ ∈ Aq, T a non-degenerate Calderón–Zygmund operator and b ∈ L1

loc, there holds

⃦⃦
[b, T ]

⃦⃦
Lp(μ)→Lq(λ) ≲

{︄(︁
[μ]Ap

[λ]Aq

)︁max{1, 1 
p−1}∥b∥BMOν

p = q, [34],
Cμ,λ ∥b∥BMOα

ν

α
d =

1 
p − 1

q p < q, [22],

and

⃦⃦
[b, T ]

⃦⃦
Lp(μ)→Lq(λ) ≳ Cμ,λ

{︄
∥b∥BMOν

p = q, [27],
∥b∥BMOα

ν

α
d =

1 
p − 1

q p < q, [22].
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Here ν
1 
p+ 1 

q′ := μ
1 
pλ− 1 

q and BMOα
ν is defined as the space of all f ∈ L1

loc such that

∥f∥BMOα
ν

:= sup
Q 

1 
ν(Q)1+α

d 

ˆ

Q 

|f − ⟨f⟩Q|dx < ∞,

where the supremum is taken over all cubes Q in Rd. We note that these results recover the unweighted 
setting for p ≤ q, since BMOα

1 = Ċ0,α. Moreover, we note that BMO0
ν = BMOν . We refer to [22, Section 

1.2] for a survey of the results leading up to this characterization.
Any characterization for the off-diagonal (upper triangular) case p > q in the Bloom setting has been 

missing so far. In this paper, we will characterize the boundedness of [b, T ] for non-degenerate Calderón--
Zygmund operators in this case 1 < q < p < ∞ by introducing a new cancellative condition on b. This 
completes the characterization of the boundedness of [b, T ] from Lp(μ) to Lq(λ) for all p, q ∈ (1,∞) in the 
Bloom setting. The case q < p is important, for example, for questions related to the Jacobian problem 
(see, e.g., [28,30,31]).

Fix 1 < q < p < ∞ and 1
r := 1

q − 1 
p . In the unweighted case, the sufficiency of the condition b ∈ Lr for 

the boundedness of [b, T ] is very simple. Indeed, this is a direct consequence of the boundedness of T on Lp

and Lq and Hölder’s inequality:

∥[b, T ]f∥Lq ≤ ∥bTf∥Lq + ∥T (bf)∥Lq ≤ ∥b∥Lr∥Tf∥Lp + ∥T∥Lq→Lq∥bf∥Lq

≤ (︁∥T∥Lp→Lp + ∥T∥Lq→Lq

)︁∥b∥Lr∥f∥Lp .

The surprising fact from [27] is that b ∈ L̇r is actually also necessary for the boundedness of [b, T ] from Lp

to Lq, proving that, after factoring out constants, there is no mutual cancellation between the two terms 
of the commutator. This is in stark contrast with the case p = q and thus r = ∞, in which case the two 
individual terms are only bounded if b ∈ L∞ but combined one can allow b ∈ BMO by the seminal result 
of Coifman, Rochberg and Weiss [9].

In the weighted setting, it is well known that a Calderón–Zygmund operator T is bounded on Lp(μ) for 
μ ∈ Ap. Translating the observations above to the Bloom setting, one may therefore conjecture that the 
boundedness of [b, T ] from Lp(μ) to Lq(λ) for μ ∈ Ap and λ ∈ Aq can be characterized by the boundedness 
of the multiplication map f ↦→ bf , modulo constants. By Hölder’s inequality, one easily checks that

∥f ↦→ bf∥Lp(μ)→Lq(λ) = ∥bν−1∥Lr(ν),

which would suggest the right-hand side, modulo constants, as the canonical condition on b for the bounded
ness of [b, T ] from Lp(μ) to Lq(λ). However, although this condition is clearly sufficient for the boundedness 
of [b, T ], it turns out to be non-necessary, as we shall prove in Section 5. Thus, in the Bloom setting, [b, T ]
can be bounded from Lp(μ) to Lq(λ) for more b ∈ L1

loc than those b for which the individual terms of the 
commutator are bounded, i.e. cancellation plays a role in the Bloom setting. To characterize boundedness 
of [b, T ] from Lp(μ) to Lq(λ) we therefore have to introduce a new, cancellative condition on b.

To state our condition on b, let us introduce a weighted sharp maximal function. For b ∈ L1
loc and a 

weight ν, we define

M#
ν b := sup

Q 

1Q

ν(Q)

ˆ

Q 

|b− ⟨b⟩Q| dx.

We will show that boundedness of [b, T ] from Lp(μ) to Lq(λ) for μ ∈ Ap and λ ∈ Aq for p > q can be 
characterized by the assumption M#

ν b ∈ Lr(ν) with ν1/p+1/q′ := μ1/pλ−1/q. Note that when ν = 1, and c
denotes a constant, we have
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⃦⃦
M#

ν b
⃦⃦
Lr(ν) ≂ inf

c 

⃦⃦
(b− c)ν−1⃦⃦

Lr(ν),

by the classical result of Fefferman and Stein [11], which actually extends to the case ν ∈ Ar′ (see Proposi
tion 5.1). However, the assumptions on μ and λ only yield ν ∈ A2r′ (see Lemma 2.23), which explains why 
we cannot characterize the boundedness of [b, T ] from Lp(μ) to Lq(λ) by

inf
c 

⃦⃦
(b− c)ν−1⃦⃦

Lr(ν) < ∞.

Our main result for commutators reads as follows. We refer to Subsection 2.6 for the definition of a 
non-degenerate ω-Calderón-Zygmund operator.

Theorem A. Let 1 < q < p < ∞, μ ∈ Ap and λ ∈ Aq. Set 1
r := 1

q − 1 
p and ν

1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . Let T be a 
non-degenerate ω-Calderón-Zygmund operator with ω satisfying the Dini condition. For b ∈ L1

loc, we have

⃦⃦
[b, T ]

⃦⃦
Lp(μ)→Lq(λ) ≲ [μ]max{1, 1 

p−1}
Ap

[λ]max{1, 1 
q−1}

Aq
∥M ♯

νb∥Lr(ν),

and

⃦⃦
[b, T ]

⃦⃦
Lp(μ)→Lq(λ) ≳ Cμ,λ∥M ♯

νb∥Lr(ν).

The proof of the upper estimate in Theorem A can be found in Theorem 3.4 and the lower estimate in 
Corollary 4.3. These theorems actually prove more general statements:

• In Theorem 3.4 we also revisit the upper bound in the case 1 < p < q < ∞ from [22]. Indeed, we obtain 
a quantitative bound on ∥[b, T ]∥Lp(μ)→Lq(λ) in terms of [μ]Ap

and [λ]Aq
, which recovers the known sharp 

one-weight estimate in (1.1) for μ = λ and q → p. Tracking this dependence in the proof of [22, Theorem 
2.4] would yield a worse dependence on [μ]Ap

and [λ]Aq
.

• In Theorem 4.1 we replace the conditions μ ∈ Ap and λ ∈ Aq in the lower bound by a weaker condition 
on the pair of weights (μ, λ).

In a follow-up paper, we will characterize when [b, T ] is compact from Lp(μ) to Lq(λ) in the case 1 <

q < p < ∞, which in the unweighted setting was recently characterized by Hytönen, Li, Tao and Yang in 
[18]. Combined with the case 1 < p < q < ∞ from [22], this will also complete the characterization of the 
compactness of commutators in the Bloom setting.

1.2. Paraproducts

Paraproducts also play a vital role in harmonic analysis, for example in the celebrated dyadic represen
tation theorem for Calderón–Zygmund operators by Hytönen [25,26]. A paraproduct Πb with a b ∈ L1

loc is 
typically less singular than the commutator [b, T ] for a Calderón–Zygmund operator T . Indeed, using the 
aforementioned dyadic representation theorem, one can write the commutator [b, T ] as the sum of compo
sitions of paraproducts and Haar shift operators (cf. [20, Section 5]). Consequently, the sharp exponent in 
the dependence on a weight characteristic is typically smaller for paraproducts than for commutators. For 
example, in the one-weight setting, it is well-known (see e.g. [38]) that for p ∈ (1,∞), w ∈ Ap and b ∈ L1

loc
the paraproduct Πb is bounded on Lp(w) with sharp dependence on [w]Ap

given by

∥Πb∥Lp(w)→Lp(w) ≲ [w]max{1, 1 
p−1}

Ap
∥b∥BMO,
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which should be compared to (1.1).
In the recent work [14] by Fragkiadaki and Holmes Fay, the Bloom setting has also been investigated for 

paraproducts in the case p = q. They showed for p ∈ (1,∞), μ, λ ∈ Ap and ν := μ1/pλ−1/p that

∥Πb∥Lp(μ)→Lp(λ) ≲ [μ]
1 

p−1
Ap

[λ]Ap
∥b∥BMOν

,

which should be compared to the result for commutators in [34] mentioned before. Moreover, they showed 
that in case p = 2 and λ = μ−1 their estimate is sharp.

In this paper, we will give a full characterization of the boundedness of Πb from Lp(μ) to Lq(λ) for 
p, q ∈ (1,∞) and b ∈ L1

loc in the Bloom setting. Our main result for paraproducts reads as follows. We refer 
to Subsection 2.8 for the definition of the paraproduct Πb.

Theorem B. Let 1 < p, q < ∞, μ ∈ Ap and λ ∈ Aq. Set 1
r := 1

q − 1 
p , 

α
d :=

1 
p − 1

q and ν
1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . For 
b ∈ L1

loc we have

∥Πb∥Lp(μ)→Lq(λ) ≲ [μ]
1 

p−1
Ap

[λ]Aq

{︄
∥b∥BMOα

ν
p ≤ q,

[ν]1/rA∞∥M ♯
νb∥Lr(ν) p > q,

and

∥Πb∥Lp(μ)→Lq(λ) ≳ Cμ,λ

{︄
∥b∥BMOα

ν
p ≤ q,

∥M ♯
νb∥Lr(ν) p > q.

We note that, in the setting of Theorem B, we always have ν ∈ A2r′ and hence ν ∈ A∞. The proof of the 
upper estimate in Theorem B can be found in Theorem 3.10 (see also Remark 3.11) and the lower estimate 
in Theorem 4.4. Once again, these theorems actually prove more general statements:

• Viewing a paraproduct as a bilinear operator, one would expect the upper bound in Theorem B to hold 
for the pair of weights (μ, λ) in a genuinely multilinear weight class (cf. [1, Section 4.6]). In Theorem 3.10
we will show that it suffices to assume the weaker condition

sup
Q 

⟨︁
μ1−p′⟩︁ 1 

p′
Q ⟨λ⟩

1 
q

Q⟨ν⟩
1 
p+ 1 

q′
Q < ∞

for the upper bound to hold. In fact, this condition on the weights is also necessary for the stated upper 
bound, as we will show in Lemma 3.8.

• For the lower estimate, we again replace the conditions μ ∈ Ap and λ ∈ Aq in Theorem 4.4 by a weaker 
condition on the pair of weights (μ, λ).

1.3. Outline

This paper is organized as follows:

• In Section 2, we will discuss some preliminaries on dyadic analysis, weights, Calderón–Zygmund operators 
and paraproducts.

• In Section 3 we will prove the upper bounds for both commutators and paraproducts using sparse 
domination techniques.

• In Section 4 we will prove the lower bounds for both commutators and paraproducts.
• Finally, in Section 5 we will give an example of a b ∈ L1

loc which does not satisfy infc
⃦⃦
(b−c)ν−1

⃦⃦
Lr(ν) < ∞, 

but for which the commutator [b, T ] and the paraproduct Πb are bounded.
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2. Preliminaries

2.1. Notation

The standard or most used notation is summarized in the following table:

Q Cube with sides parallel to the coordinate axes.
ℓ(Q) Sidelength of cube Q.
aQ Cube concentric to cube Q with sidelength aℓ(Q).
𝒟 Dyadic lattice.ˆ︁Q Dyadic parent: Smallest cube R ∈ 𝒟 such that Q ⊊ R.
⟨f⟩μQ Average: ⟨f⟩μQ := 1 

μ(Q)
´
Q
f dμ.

DQf Difference of averages: DQf :=
∑︁

R: ˆ︁R=Q⟨f⟩R1R − ⟨f⟩Q1Q.

p′ Conjugate exponent of p: 1 
p′ + 1 

p := 1.
α Exponent defined by αd :=

1 
p − 1

q .
r Exponent defined by 1

r := 1
q − 1 

p .
μ′ Dual weight of μ w.r.t. exponent p defined by μ′ := μ−p′/p.
λ′ Dual weight of λ w.r.t. exponent q defined by λ′ := λ−q′/q.
ν Bloom weight defined by ν

1 
p+ 1 

q′ := μ1/pλ−1/q.

∥f∥BMOα
ν

∥f∥BMOα
ν

:= supQ
1 

ν(Q)1+
α
d 
´
Q
|f − ⟨f⟩Q|dx

∥f∥Lp(μ) Lebesgue norm: ∥f∥Lp(μ) :=
(︁´

Rd |f |p dμ
)︁1/p.

Πbf Dyadic paraproduct: Πbf :=
∑︁

Q∈𝒟 DQb⟨f⟩Q.
Mμf Maximal operator: Mμf := supQ⟨|f |⟩μQ1Q.
M#

ν b Weighted sharp maximal operator:

M#
ν b := sup

Q 

1Q
ν(Q)

ˆ

Q 

|b− ⟨b⟩Q| dx.

If μ is the Lebesgue measure, ``μ'' is omitted from the notation; similarly with λ and ν. The supremum 
supQ is either over all cubes Q or over all dyadic cubes Q ∈ 𝒟 in a dyadic lattice 𝒟, as understood from 
the context. We will make extensive use of the notation ``≲'' to indicate inequalities up to an implicit 
multiplicative constant. These constants may depend on p, q, d and also on e.g. the Calderón–Zygmund 
operator T and properties of its kernel and sparseness constants, but not on any of the functions under 
consideration. If these implicit constants depend on the weights μ, λ, ν, this will be denoted by ``≲μ,λ,ν''.

2.2. Dyadic lattices

By a cube Q we mean a cube in Rd with sides parallel to the coordinate axes.

Definition 2.1 (Dyadic lattice). A collection of cubes 𝒟 is called a dyadic lattice on the Euclidean space Rd

if 𝒟 =
⋃︁

k∈Z𝒟k, where 𝒟k is a partition of the Euclidean space Rd by cubes of side length 2−k and the 
partition 𝒟k+1 refines the partition 𝒟k. The cubes Q ∈ 𝒟 of a dyadic lattice 𝒟 are called dyadic cubes. If 
𝒟 is a dyadic lattice and Q0 ∈ 𝒟, we denote

𝒟(Q0) := {Q ∈ 𝒟 : Q ⊆ Q0}.
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From the definition, it follows that the dyadic lattice 𝒟 is a countable collection of cubes with the dyadic 
nestedness property: Q∩R ∈ {Q,R, ∅} for all Q,R ∈ 𝒟. For Q ∈ 𝒟 we define its dyadic parent ˆ︁Q to be the 
smallest R ∈ 𝒟 such that Q ⊊ R.

Example. The dyadic lattice

𝒟0 := {2−k([0, 1) + j) : k ∈ Z, j ∈ Zd}

is called the standard dyadic lattice and the dyadic lattices

𝒟α := {2−k([0, 1) + j + (−1)kα) : k ∈ Z, j ∈ Zd} where α ∈ {0, 1
3 ,

2
3}d,

are examples of shifted dyadic lattices.

The geometric observation that generic cubes can be approximated by shifted dyadic cubes is known as 
the one-third trick [37] and can be stated as follows (e.g. [21, Lemma 3.2.26]):

Lemma 2.2 (Shifted dyadic cubes approximate generic cubes). For each cube Q ⊆ Rd there are α ∈ {0, 1
3 ,

2
3}d

and R ∈ 𝒟α such that Q ⊆ R and ℓ(R) ≤ 3ℓ(Q).

Thanks to this approximation, dyadic and non-dyadic quantities are often comparable when measures 
are doubling. As an example that we will use in what follows, we can compare dyadic and non-dyadic sharp 
maximal functions.

Corollary 2.3 (Dyadic and non-dyadic sharp maximal functions are comparable). Let ν be a doubling measure 
and f ∈ L1

loc. Then

M#
ν f(x) ≂ν sup 

α∈{0, 13 , 23}d

M#
ν,𝒟αf(x), x ∈ Rd,

where in M#
ν,𝒟αf the defining supremum is taken over cubes Q ∈ 𝒟α.

Proof. Let Q be a cube. Then there are α ∈ {0, 1
3 ,

2
3}d and R ∈ 𝒟α such that Q ⊆ R and ℓ(R) ≤ 3ℓ(Q). 

The observation that R ⊆ 5Q together with the assumption that ν is doubling gives

1 
ν(Q) = ν(5Q)

ν(Q) 
1 

ν(5Q) ≤ Cν
1 

ν(R) .

Moreover, because Q ⊆ R, we obtain
ˆ

Q 

|b− ⟨b⟩Q| dx ≤ 2 inf
c 

ˆ

Q 

|b− c| dx ≤ 2 inf
c 

ˆ

R

|b− c| dx ≤ 2
ˆ

R

|b− ⟨b⟩R| dx,

which finishes the proof. □
2.3. Dyadic analysis

In what follows, we introduce Carleson and sparse collections, the basic estimates for them, and the 
related theory of the A∞ measures. The results are well-known but perhaps somewhat scattered, so we 
hope that the systematic exposition in this section will be convenient for the reader.
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Throughout this section an arbitrary dyadic lattice 𝒟 is fixed; for brevity ``𝒟'' is suppressed in most 
notation. A basic tool in dyadic analysis is the well-known Hardy–Littlewood maximal inequality. The 
dyadic Hardy–Littlewood maximal operator Mμ is defined by

Mμf := sup 
Q∈𝒟

⟨|f |⟩μQ1Q.

Lemma 2.4 (Dyadic Hardy–Littlewood maximal inequality). Let μ be a locally finite Borel measure and 
p ∈ (1,∞). Then

∥Mμ∥Lp(μ) ≤ p′∥f∥Lp(μ)

for all f ∈ Lp(μ).

The Hardy–Littlewood maximal inequality and the Carleson embedding theorem are closely tied: each 
can be derived from the other. A family {sQ}Q∈𝒟 of complex numbers indexed by dyadic cubes satisfies the 
μ-Carleson packing condition if there is a constant C > 0 such that∑︂

Q′∈𝒟:Q′⊆Q

|sQ′ |μ(Q′) ≤ Cμ(Q)

for all cubes Q ∈ 𝒟. The least constant in the estimate is called the Carleson norm and is denoted by 
∥s∥Car(μ), i.e.

∥s∥Car(μ) := sup 
Q∈𝒟

1 
μ(Q)

∑︂
Q′∈𝒟:Q′⊆Q

|sQ′ |μ(Q′).

Lemma 2.5 (Dyadic Carleson embedding theorem). Let μ be a locally finite Borel measure and let p ∈ (1,∞). 
Then (︂∑︂

Q∈𝒟
|⟨f⟩μQ|psQμ(Q)

)︂1/p
≤ p′∥s∥1/p

Car(μ)∥f∥Lp(μ)

for all {sQ}Q∈𝒟 ∈ Car(μ) and f ∈ Lp(μ).

In this context the A∞-class enters because it is precisely the class that preserves the Carleson packing 
condition. A locally finite Borel measure w is said to satisfy the dyadic Fujii–Wilson A∞-condition with 
respect to a locally finite Borel measure μ, and this is denoted by w ∈ A∞(μ), if

ˆ

Q 

sup 
R∈𝒟(Q):x∈R

w(R)
μ(R) dμ(x) ≤ Cw(Q) (2.1)

for all cubes Q ∈ 𝒟. The least admissible constant C is denoted by [w]A∞(μ) and is called the dyadic 
Fujii-Wilson A∞-characteristic.

The following lemma can be found, for example, in [24, Proposition 3.7].

Lemma 2.6 (Carleson condition is preserved by A∞ measures). Let w, μ be locally finite Borel measures. 
Then

[w]A∞(μ) = sup 
s:={sQ}Q∈𝒟

∥s∥Car(w)

∥s∥Car(μ)
.
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This fact, combined with Lemma 2.5, implies the weighted version of the Carleson embedding theorem:

Lemma 2.7 (Weighted version of the dyadic Carleson embedding theorem). Let μ be a locally finite Borel 
measure, w ∈ A∞(μ) and let p ∈ (1,∞). Then

(︂∑︂
Q∈𝒟

|⟨f⟩wQ|psQw(Q)
)︂1/p

≤ p′[w]1/pA∞(μ)∥s∥1/p
Car(μ)∥f∥Lp(w)

for all {sQ}Q∈𝒟 ∈ Car(μ) and f ∈ Lp(w).

A collection 𝒮 of dyadic cubes is called (C, μ)-Carleson if there exists a constant C > 0 such that∑︂
S′∈𝒮:S′⊆S

μ(S′) ≤ Cμ(S)

for all S ∈ 𝒮. The associated Carleson norm is given by

∥𝒮∥Car(μ) := ∥1𝒮(Q)∥Car(μ) = sup 
S∈𝒮

1 
μ(S)

∑︂
S′∈𝒮:S′⊆S

μ(S′).

Thus, a Carleson collection 𝒮 of dyadic cubes is a special case of a Carleson family of complex numbers via 
the correspondence sQ := 1𝒮(Q). Iterated stopping time arguments typically generate sparse collections, 
which are collections of large disjoint parts and hence in particular satisfy the Carleson packing condition.

Definition 2.8 (Sparseness). Let μ be a locally finite Borel measure and let γ ∈ (0, 1). A collection 𝒮 of 
dyadic cubes is called (γ, μ)-sparse if for each S ∈ 𝒮 there exists ES ⊆ S such that μ(ES) ≥ γμ(S) and 
such that the sets {ES}S∈𝒮 are disjoint. If μ is the Lebesgue measure, it is omitted from the notation.

Every γ-sparse collection 𝒮 satisfies the γ−1-Carleson packing condition:

∥𝒮∥Car(μ) := sup 
S∈𝒮

1 
μ(S)

∑︂
S′∈𝒮:S′⊆S

μ(S′) ≤ 1 
γ

sup 
S∈𝒮

1 
μ(S)

∑︂
S′∈𝒮:S′⊆S

μ(ES′) ≤ 1 
γ
.

An obstruction for the converse is a point mass: a mass point can not be divided between two sets. Excluding 
this obstruction, the converse also holds (see [44, Corollary 6]):

Lemma 2.9 (Carleson and sparse are equivalent). Let μ be a locally finite Borel measure with no point 
masses. Then each (C, μ)-Carleson collection of dyadic cubes is ( 1 

C , μ)-sparse.

For different proofs and generalizations, see [2,7,13,17,32,40]. As an immediate corollary of the equivalence 
of being Carleson and being sparse, we see that A∞-measures do not only preserve Carleson, but also 
sparseness:

Corollary 2.10 (A∞-measures preserve sparseness). Let μ and w be locally finite Borel measures with no 
point masses. Assume that w ∈ A∞(μ). Then every (γ, μ)-sparse collection is (γ[w]−1

A∞(μ), w)-sparse.

Proof. The statement follows by combining Lemma 2.6 and Lemma 2.9. □
For many purposes Carleson (or in particular sparse) collections behave like disjoint collections. An 

instance of this is captured by the following lemma:
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Lemma 2.11. Let μ be a locally finite Borel measure. Assume that 𝒮 is a μ-Carleson (or in particular 
μ-sparse) collection of dyadic cubes. Then

⃦⃦⃦∑︂
S∈𝒮

aS1S
⃦⃦⃦
Lp(μ)

≤ p∥𝒮∥1/p′

Car(μ)

(︂∑︂
S∈𝒮

|aS |pμ(S)
)︂1/p

for all families {aS}S∈𝒮 of complex numbers.

Proof. By Hölder’s inequality, we have

ˆ

Rd

(︂∑︂
S∈𝒮

aS1S
)︂
g dμ ≤

(︂∑︂
S∈𝒮

|aS |pμ(S)
)︂1/p(︂∑︂

S∈𝒮
(⟨|g|⟩μS)p

′
μ(S)

)︂1/p′

.

From this the statement follows by Lp − Lp′ duality and the dyadic Carleson embedding theorem 
(Lemma 2.5). □

As before, the fact that an A∞-measure preserves the Carleson packing condition leads to a weighted 
version of this lemma:

Lemma 2.12. Let μ be a locally finite Borel measure and w ∈ A∞(μ). Assume that 𝒮 is a μ-Carleson (or, 
in particular, μ-sparse) collection of dyadic cubes. Then

⃦⃦⃦∑︂
S∈𝒮

aS1S
⃦⃦⃦
Lp(w)

≤ p[w]1/p
′

A∞(μ)∥𝒮∥1/p′

Car𝒟(μ)

(︂∑︂
S∈𝒮

|aS |pw(S)
)︂1/p

.

Proof. The statement follows by combining Lemma 2.6 and Lemma 2.11. □
When measures are doubling, the above estimates involving dyadic cubes translate easily into their 

counterparts involving generic cubes, by using shifted dyadic lattices (Lemma 2.2) in a typical fashion. In 
particular, we will need the following non-dyadic counterpart:

Lemma 2.13 (Weighted basic lemma for sparse collections of generic cubes). Let p ∈ (1,∞). Assume that w
and μ are doubling measures and that w ∈ A∞(μ). Assume that 𝒮 is a (γ, μ)-sparse countable collection of 
cubes. Then ⃦⃦⃦∑︂

S∈𝒮
aS1S

⃦⃦⃦
Lp(w)

≲μ,w [w]1/p
′

A∞(μ)

(︂∑︂
S

|aS |pw(S)
)︂1/p

.

The implicit constant depends on the measures μ and w via their doubling constants.

Proof. The lemma follows from its dyadic counterpart in Lemma 2.12 via shifted dyadic cubes (see 
Lemma 2.2). □
2.4. Muckenhoupt weights

A locally integrable function w : Rd → (0,∞) is called a weight. By associating the measure w(E) :=´
E
w dx for measurable E ⊆ Rd to a weight w, the statements of the previous subsection are applicable to 

w.
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For p ∈ (1,∞) the (non-dyadic) Ap-characteristic [w]Ap
is defined by

[w]Ap
:= sup

Q 
⟨w⟩Q⟨w−p′/p⟩p/p′

Q ,

and for p = ∞ the (non-dyadic) Fujii-Wilson A∞-characteristic from the previous section takes the form

[w]A∞ := sup
Q 

1 
w(Q)

ˆ

Q 

sup 
R∋x

w(Q ∩R)
|R| dx,

where the suprema are over all cubes. We will write w ∈ Ap if [w]Ap
< ∞.

Remark 2.14. The dyadic version of the Ap-characteristic is defined similarly, but with the suprema over 
dyadic cubes instead of generic cubes. The dyadic version is used in the context of dyadic operators (e.g. 
dyadic paraproducts), while in the context of non-dyadic operators (e.g. commutators) the non-dyadic 
version is used; this distinction is suppressed in the notation and understood from the context.

Example. The power weight wδ(x) := |x|δ satisfies wδ ∈ Ap if and only if −d < δ < (p− 1)d.

We will only need the following well-known properties for the Ap-characteristic:

Lemma 2.15 (Duality and monotonicity of the Ap characteristic). Let w be a weight.

• (Duality) [w]1/pAp
= [w−p′/p]1/p

′

Ap′
for p ∈ (1,∞).

• (Monotonicity) [w]Ap
≥ [w]Aq

and [w]Ap
≳ [w]A∞ for 1 < p ≤ q < ∞.

Proof. The duality is clear from the definitions. The inequality [w]Ap
≥ [w]Aq

for 1 < p ≤ q < ∞ follows 
by Jensen’s inequality and for [w]Ap

≳ [w]A∞ we refer to [23, Proposition 2.2]. □
We will use the following bound for the weighted norm of the maximal operator.

Lemma 2.16 ([4]). Let p ∈ (1,∞) and w ∈ Ap. Then

∥Mf∥Lp(w) ≲ [w]
1 

p−1
Ap

∥f∥Lp(w)

for all f ∈ Lp(w).

2.5. Bloom weight and the Bloom–Muckenhoupt joint characteristics

Let p, q ∈ (1,∞) and let μ, λ be weights. An operator U : Lp(μ) → Lq(λ) is bounded if and only if

⃓⃓⃓ˆ
Rd

(Uf)g dx
⃓⃓⃓
≤ C∥f∥Lp(μ)∥g∥Lq′ (λ−q′/q)

for all f ∈ Lp(μ) and g ∈ Lq′(λq′/q). The weight λ−q′/q appearing in this bilinear estimate is called the dual 
weight of the weight λ with respect to the weighted space Lq(λ) and is denoted by λ′ := λ−q′/q. Similarly, 
we write μ′ := μ−p′/p for the dual weight of the weight μ with respect to the weighted space Lp(μ).
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Definition 2.17 (Bloom weight). Let μ, λ be weights and let p, q ∈ (1,∞). The Bloom weight ν = νLp(μ)→Lq(λ)
associated with Lp(μ) → Lq(λ)-boundedness is defined by

ν
1 
p+ 1 

q′ := μ1/p(λ′)1/q
′
= μ1/pλ−1/q. (2.2)

Remark 2.18. An operator U : Lp(μ) → Lq(λ) is bounded if and only if U∗ : Lq′(λ′) → Lp′(μ′) is bounded, 
where U∗ is the adjoint with respect to the unweighted integral dual pairing. Note that the Bloom weight 
is invariant under duality in the sense that

νLq′ (λ′)→Lp′ (μ′) = νLp(μ)→Lq(λ).

In our main theorems, Theorems A and B, we assume that μ ∈ Ap and λ ∈ Aq. However, as we shall 
see in Sections 3 and 4, one can sometimes use weaker, joint weight characteristics in the upper and lower 
bounds in the Bloom setting. We will introduce these joint characteristics in the following definition and 
afterwards show that these characteristics are finite in case μ ∈ Ap and λ ∈ Aq and ν

1 
p+ 1 

q′ = μ1/pλ−1/q.

Definition 2.19 (Joint Bloom–Muckenhoupt characteristics). Let p, q ∈ (1,∞) and let μ, λ, ν be weights.

(i) (Characteristic for upper bounds) We define

[μ′, λ, ν]Bp′,q := sup
Q 

⟨μ′⟩1/p′

Q ⟨λ⟩1/qQ ⟨ν⟩1/p+1/q′
Q ,

and write (μ′, λ, ν) ∈ Bp′,q if [μ′, λ, ν]Bp′,q < ∞.
(ii) (Characteristic for lower bounds) We define

[μ, λ′]Bp,q′ (ν) := sup
Q 

(︂μ(Q)
ν(Q) 

)︂1/p(︂λ′(Q)
ν(Q) 

)︂1/q′

and write (μ, λ′) ∈ Bp,q′(ν) if [μ, λ′]Bp,q′ (ν) < ∞.

Remark 2.20. 

(i) Interpreting the lower bound Bloom characteristic as an assumption on the triplet of weights (μ, λ′, ν)
through

[μ, λ′, ν]Bp,q′ (ν) := sup
Q 

(︂μ(Q)
ν(Q) 

)︂1/p(︂λ′(Q)
ν(Q) 

)︂1/q′(︂ν(Q)
ν(Q)

)︂1/p′+1/q
,

we see that the notation for the lower and upper bound Bloom characteristics could be unified, 
identifying the upper bound Bloom weight class with Bp′,q(1).

(ii) The class Bp′,q is exactly the class that plays an important role in the weighted Lp × Lq′ → Lr′
boundedness of bilinear operators for 1 

r′ = 1 
p + 1 

q′ (cf. [33]).
(iii) The class of weights Bp,q′(ν) is closely related to the Muckenhoupt classes used in weighted Lp′ → Lq′

boundedness of linear operators, using ν as the base measure on Rd (cf. [10]).

Remark 2.21. Note that, for a fixed b ∈ L1
loc, the norm ∥b∥BMOα

ν
decreases as ν increases. Similarly, the norm 

∥M#
ν b∥Lr(ν) is comparable to a discrete version (as stated in Lemma 4.7), which decreases as ν increases. 

Moreover, we have:
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• For weights (μ, λ, ν) ∈ Bp′,q we have by the Lebesgue differentiation theorem that

μ′(x)1/p
′
λ(x)1/qν(x)1/p+1/q′ ≤ [μ′, λ, ν]Bp′,q , x ∈ Rd

and thus

ν
1 
p+ 1 

q′ ≤ [μ′, λ, ν]Bp′,q · μ1/pλ−1/q.

• Similarly, for weights (μ, λ) ∈ Bp,q′(ν) we have

μ1/pλ−1/q ≤ [μ, λ′]Bp′,q(ν) · ν
1 
p+ 1 

q′ .

Therefore, we will always assume to be in the Bloom setting ν
1 
p+ 1 

q′ = μ1/pλ−1/q when proving upper bounds 
for weights in the class Bp′,q or lower bounds for weights in the class Bp′,q(ν).

As already announced, the assumption that the joint Bloom–Muckenhoupt characteristics in Defini
tion 2.19 are finite relaxes the typical Bloom-setting assumption that μ ∈ Ap and λ ∈ Aq separately.

Lemma 2.22 (Separate Muckenhoupt conditions imply the joint Bloom–Muckenhoupt conditions). Let p, q ∈
(1,∞), μ ∈ Ap, λ ∈ Aq and let ν

1 
p+ 1 

q′ := μ1/pλ−1/q. Then

[μ′, λ, ν]Bp′,q ≤ [μ]1/pAp
[λ]1/qAq

,

[μ, λ′]Bp,q′ (ν) ≤ [μ]1/pAp
[λ]1/qAq

.

Proof. The first estimate is a direct corollary of Hölder’s inequality. The second estimate follows from 
Jensen’s inequality, see [22, Proposition 3.1]. □

We end this subsection with two lemmata on properties of μ and λ induced by the joint Muckenhoupt--
Bloom conditions.

Lemma 2.23 (Bloom–Muckenhoupt characteristic for upper bounds). Let p, q ∈ (1,∞) and set 1 
r′ := 1 

p + 1 
q′ . 

Let μ, λ be weights and set ν1/r′ := μ1/pλ−1/q.

(i) (μ′, λ, ν) ∈ Bp′,q if and only if μ′ ∈ A2p′ , λ ∈ A2q and ν ∈ A2r′ and in this case

[ν]A2r′ ≤ [μ′, λ, ν]r
′

Bp′,q .

In particular, if μ ∈ Ap, λ ∈ Aq, then ν ∈ A2r′ with

[ν]A2r′ ≤ [μ]r
′/p

Ap
[λ]r

′/q
Aq

.

(ii) For 1 < s < 2r′ there exist weights μ ∈ Ap and λ ∈ Aq such that ν / ∈ As.
(iii) For each power weight w ∈ A2r′ there exist power weights μ ∈ Ap and λ ∈ Aq such that w1/r′ =

μ1/pλ−1/q =: ν1/r′ .

Proof. For (i) we refer to [33, Theorem 3.6] and Lemma 2.22. Part (ii) follows from using power weights 
μ(x) := |x|α and λ(x) := |x|β and choosing the exponents suitably, using the fact that a power weight 
wδ := |x|δ satisfies wδ ∈ As, 1 < s < ∞, if and only if −d < δ < (s − 1)d. The statement in (iii) follows 
similarly. □



T.S. Hänninen et al. / J. Math. Pures Appl. 203 (2025) 103772 15

Lemma 2.24 (Bloom–Muckenhoupt characteristic for lower bounds). Let p, q ∈ (1,∞), let μ, λ be weights 
and set ν

1 
p+ 1 

q′ := μ1/pλ−1/q. Then

[μ]A∞(ν) ≲ [μ, λ′]pBp,q′ (ν),

[λ′]A∞(ν) ≲ [μ, λ′]q
′

Bp,q′ (ν)

for the dyadic versions of the weight characteristics.

Remark 2.25. Assuming that the weights μ, λ, ν are doubling, these estimates hold also for the non-dyadic 
versions of the weight characteristics, but with the implicit constant depending on the doubling constants. 
This follows from the one-third trick in Lemma 2.2.

Lemma 2.24 could be deduced from viewing the class Bp,q′(ν) as a bilinear Muckenhoupt weight class 
and then using [33, Theorem 3.6] combined with the monotonicity of Muckenhoupt classes in Lemma 2.15
(now considering weights with respect to the measure dν instead of the Lebesgue measure dx). For the 
reader’s convenience, however, we write down the following, more transparent proof.

Proof of Lemma 2.24. Fix a cube Q. By Hölder’s inequality and the definition of the dyadic weight charac
teristic,

ˆ

Rd

sup 
R⊆Q

1R
μ(R)
ν(R) dν

≤
ˆ

Rd

(︃
sup 
R⊆Q

1R
μ(R)
ν(R) 

)︃1/p (︂
sup 
R⊆Q

1R
μ(R)
ν(R) 

)︂1/p′

dν

≤ [μ, λ′]Bp,q′ (ν)

ˆ

Rd

(︂
sup 
R⊆Q

1R
λ′(R)
ν(R) 

)︂−1/q′(︂
sup 
R⊆Q

1R
μ(R)
ν(R) 

)︂1/p′

dν

≤ [μ, λ′]Bp,q′ (ν)

(︂ˆ
Rd

(︂
sup 
R⊆Q

1R
λ′(R)
ν(R) 

)︂−p/q′

dν
)︂1/p(︂ˆ

Rd

sup 
R⊆Q

1R
μ(R)
ν(R) dν

)︂1/p′

.

Therefore, via a monotone convergence argument to ensure finiteness, we have
ˆ

Rd

sup 
R⊆Q

1R
μ(R)
ν(R) dν ≤ [μ, λ′]pBp,q′ (ν)

ˆ

Rd

(︂
sup 
R⊆Q

1R
λ′(R)
ν(R) 

)︂−p/q′

dν.

Note that λ′(Q) =
´
Q
λ′ν−1 dν and hence λ

′(Q)
ν(Q) = ⟨λ′ν−1⟩νQ. Let α ∈ (1,∞) be an auxiliary exponent. Note 

that t ↦→ t−p/(q′α) is convex. By Jensen’s inequality, we have

(︂λ′(Q)
ν(Q) 

)︂−p/q′

≤
(︂⟨︁

(λ′ν−1)−p/(q′α)⟩︁ν
Q

)︂α

.

Therefore, by the dyadic Hardy–Littlewood maximal inequality,
ˆ

Rd

(︂
sup 
R⊆Q

1R
λ′(R)
ν(R) 

)︂−p/q′

dν ≤ (α′)α
ˆ

Q 

(λ′ν−1)−p/q′ dν =
ˆ

Q 

(λ′ν−1)−p/q′ν dx.

Since (λ′ν−1)−p/q′ν = μ by assumption, choosing α = 2 yields
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1 
μ(Q)

ˆ

Rd

sup 
R⊆Q

1R
μ(R)
ν(R) dν ≤ 4 [μ, λ′]pBp,q′ (ν)

Taking the supremum over all dyadic cubes yields the first estimate, the second is proven similarly. □
2.6. Calderón–Zygmund operators and kernels

We now turn to the definition of the operators under consideration. We start with the definition of 
Calderón–Zygmund operators and their kernels.

A function ω : [0,∞) → [0,∞) is called a modulus of continuity if it is increasing and satisfies 
limt→0 ω(t) = 0. It is said to satisfy the Dini condition if 

´ 1
0

ω(t)
t dt < ∞.

Definition 2.26 (Non-degenerate ω-Calderón--Zygmund kernel). Let ω : [0,∞) → [0,∞) be a modulus of 
continuity. A kernel K : Rd ×Rd \ {x = y} → C is called a (two-variable) ω-Calderón--Zygmund kernel if it 
satisfies the standard size and continuity conditions: for x ̸= y

|K(x, y)| ≲K
1 

|x− y|d ,

and for |x− x′| ≤ 1
2 |x− y|

|K(x, y) −K(x′, y)| + |K(y, x) −K(y, x′)| ≤ 1 
|x− y|d ω

(︃ |x− x′|
|x− y| 

)︃
.

The kernel K : Rd×Rd \{x = y} → C is called non-degenerate if for each x ∈ Rd and r > 0 there is y ∈ Rd

with |x− y| ≳K r and

|K(y, x)| ≳K
1 
rd

.

The notion of non-degeneracy in Definition 2.26 was introduced by Hytönen in [27], to which we refer 
for an overview of preceding non-degeneracy assumptions in the literature.

Definition 2.27 (ω-Calderón--Zygmund operator). Let p ∈ (1,∞) and let T : Lp → Lp be a bounded linear 
operator. Then T is called an ω-Calderón--Zygmund operator if there is an ω-Calderón--Zygmund kernel K
such that for every f ∈ L∞

c one has the kernel representation

Tf(x) =
ˆ

Rd

K(x, y)f(y) dy x / ∈ supp(f).

Estimates involving a Calderón–Zygmund operator will implicitly depend on the operator norm of T on 
Lp, the modulus of continuity ω, and the implicit constant in the definition of the kernel.

2.7. Commutators

Next, we turn to the definition of commutators between an ω-Calderón--Zygmund operator and pointwise 
multiplication by b ∈ L1

loc. In general, the commutator

[b, T ]f := bT (f) − T (bf)
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may be undefined for f ∈ L∞
c , since for such f we only have bf ∈ L1. If T is weak L1-bounded, this is 

not an issue, which is for example the case when ω satisfies the Dini condition. In this case we have the 
following identity:

Lemma 2.28. Let T be a ω-Calderón--Zygmund operator and b ∈ L1
loc. Suppose that T : L1 → L1,∞ is 

bounded. For f ∈ L∞
c and g ∈ L∞

c with supports separated by a positive distance, we have

⟨g, [b, T ]f⟩ = ⟨b, gTf − fT ∗g⟩.

Proof. We start by noting that, by the support condition on f and g and the kernel estimates, we have 
gTf, fT ∗g ∈ L∞

c , so the right-hand side is well-defined. It remains to show that

⟨g, T (bf)⟩ = ⟨b, fT ∗g⟩. (2.3)

Define h = bf ∈ L1 and note that T (h) ∈ L1,∞ is well-defined. Moreover T (h1|h|≤n) → T (h) in L1,∞

and thus T (h1|h|≤nk
) → T (h) pointwise a.e. for some subsequence (nk)k≥1. Therefore, for x / ∈ supp(f), we 

have by the dominated convergence theorem

T (bf)(x) = lim 
k→∞

ˆ

Rd

K(x, y)h(y)1|h|≤nk
dy =

ˆ

Rd

K(x, y)b(y)f(y) dy,

from which (2.3) follows by Fubini’s theorem. □
Note that

⟨b, gTf − fT ∗g⟩ =
ˆ

Rd

ˆ

Rd

(b(x) − b(y))K(x, y)f(y)g(x) dy dx

for f ∈ L∞
c and g ∈ L∞

c with supports separated by a positive distance, where the integrand is Lebesgue 
integrable due to the estimates for ω-Calderón--Zygmund kernels.

In our lower bounds for commutators we will avoid well-definedness issues of [b, T ] for b ∈ L1
loc without 

assuming the T : L1 → L1,∞ boundedness. Indeed, as in [27], we will work under the assumption that we 
study an operator Ub with off-support kernel representation with ω-Calderón--Zygmund kernel,

⟨g, Ubf⟩ =
¨

(b(y) − b(x))K(y, x)f(x)g(y) dx dy,

for f ∈ L∞
c and g ∈ L∞

c with supports separated by a positive distance. Assumptions are formulated 
entirely in terms of the boundedness of Ub and this kernel representation, with no reference to T or [b, T ]. 
The prototype of such an operator is of course the commutator Ub := [b, T ] with T an ω-Calderón--Zygmund 
operator with ω satisfying the Dini condition.

2.8. Paraproducts

We end our preliminaries with the introduction of paraproducts. Let 𝒟 be a dyadic lattice and b ∈ L1
loc

The difference of averages DQb for Q ∈ 𝒟 is defined by

DQb :=
∑︂

R∈𝒟: ˆ︁R=Q

⟨b⟩R1R − ⟨b⟩Q1Q.
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The difference DQb can also be written in terms of Haar projections

DQb =
∑︂

i∈{0,1}d\{0}
⟨b, hi

Q⟩hi
Q,

where (hi
Q)i∈{0,1}d are the Haar functions associated with Q.

The paraproduct Πb associated with b ∈ L1
loc is formally defined as

Πbf :=
∑︂
Q∈𝒟

DQb⟨f⟩Q

for f ∈ L∞
c . Since the assumption b ∈ L1

loc alone is insufficient to make sense of convergence of the sum over 
all dyadic cubes, we include into the definition an a priori unconditional convergence assumption:

Definition 2.29 (Paraproduct). Let b ∈ L1
loc. Assume moreover that b is such that for each f ∈ L∞

c the sum∑︂
Q∈𝒟

DQb⟨f⟩Q

converges unconditionally in L1
loc, by which we mean unconditional convergence in L1(K) for every compact 

set K. Then the operator Πb : L∞
c → L1

loc defined by

Πbf := Πb,𝒟f :=
∑︂
Q∈𝒟

DQb⟨f⟩Q

is called the dyadic paraproduct associated with the function b.

We write Πb,𝒟′f :=
∑︁

Q∈𝒟′ DQb⟨f⟩Q when 𝒟′ ⊆ 𝒟.
Stronger conditions on b ensure stronger unconditional convergence. In the unweighted setting, for exam

ple, if b ∈ BMO, then for every f ∈ Lp the sum Πb,𝒟f converges unconditionally in Lp for every p ∈ (1,∞). 
In the extension of this to the Bloom setting, Burkholder’s weak L1-inequality is a useful tool:

Lemma 2.30 (Burkholder). Let 𝒟 be a dyadic lattice and let (vQ)Q∈𝒟 be a finitely nonzero sequence of 
scalars. We have for f ∈ L1 ⃦⃦⃦∑︂

Q∈𝒟
vQDQf

⃦⃦⃦
L1,∞

≤ 2 sup 
Q∈𝒟

|vQ| ∥f∥L1 .

Proof. Viewing 𝒟 as a filtration on Rd, and rescaling such that 
∑︁

Q∈𝒟 vQDQf is supported on [−1
2 ,

1
2 ]d, 

we can view 
∑︁

Q∈𝒟 vQDQf as a martingale transform. The statement then follows from Burkholder’s weak 
L1-inequality for martingale transforms [5]. □
Remark 2.31. In Rd, there are two more paraproducts of interest, which can be treated using similar methods 
as employed in the current paper. We refer to [14] for a discussion of these paraproducts in the context of 
Bloom boundedness with p = q.

3. Upper bounds

In this section we will give sufficient conditions for the Bloom boundedness of commutators and para
products for all 1 < p, q < ∞. The results in the case q < p are entirely new, whereas in the case p ≤ q the 
results for paraproducts are new and for commutators we obtain sharper quantitative bounds in terms of 
the weight characteristics than currently available in the literature.
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3.1. Commutators

We start with the upper bound for commutators, for which we will use the main sparse domination result 
of [34]. To state their result, for f, b ∈ L1

loc and a sparse family of cubes 𝒮, we define the auxiliary sparse 
operator

𝒜𝒮,bf(x) =
∑︂
Q∈𝒮

|b− ⟨b⟩Q|⟨f⟩Q 1Q(x), x ∈ Rd,

and its formal adjoint

𝒜⋆
𝒮,bf(x) =

∑︂
Q∈𝒮

⟨︁|b− ⟨b⟩Q|f
⟩︁
Q

1Q(x), x ∈ Rd.

Theorem 3.1 ([34, Theorem 1.1]). Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini 
condition and let b ∈ L1

loc. For every f ∈ L∞
c , there exist 3d dyadic lattices 𝒟k and 1 

2·9d -sparse families 
𝒮k ⊆ 𝒟k such that

⃓⃓
[b, T ]f(x)

⃓⃓
≲

3d∑︂
k=1

(︁𝒜𝒮k,b|f |(x) + 𝒜⋆
𝒮k,b

|f |(x)
)︁
, x ∈ Rd.

In view of Theorem 3.1, to prove Bloom upper estimates for the commutators [b, T ], it suffices prove 
Bloom estimates for 𝒜𝒮,b and 𝒜⋆

𝒮,b. We will need the following lemma, which is a special case of the main 
result in [10].

Lemma 3.2 ([10]). Let 1 < p ≤ q < ∞, set 1
s :=

1 
p + 1 

q′ and let w ∈ Aq. Let 𝒟 be a dyadic lattice. For any 
γ-sparse collection 𝒮 ⊆ 𝒟 we have

⃦⃦⃦∑︂
Q∈𝒮

(︂ 1 
|Q|s

ˆ

Q 

|f |s dx
)︂1/s

1Q

⃦⃦⃦
Lp(wp/q)→Lq(w)

≲ [w]
max{ 1 

p′ +
1 
q ,

1 
q−1}

Aq

Proof. Let f ∈ Lp(w) and write

𝒜𝒮,sf :=
∑︂
Q∈𝒮

(︂ 1 
|Q|s

ˆ

Q 

|f |s dx
)︂1/s

1Q.

Using [10, Theorem 1.1] with parameters p = p/s, q = q/s, r = 1/s, α = s, ω = w and σ = w−q′/q = w′, we 
obtain

∥𝒜𝒮,sf∥Lq(w) =
⃦⃦
(𝒜𝒮,sf)s

⃦⃦1/s
Lq/s(w)

≲
(︂

sup 
Q∈𝒮

|Q|−s
w(Q)

s 
q w′(Q)

p−s
p 
(︁
[w]

s 
p′
A∞ + [w′]

s 
q

A∞

)︁)︂1/s⃦⃦⃦ |f |s
w′

⃦⃦⃦1/s

Lp/s(w′)

≲ sup 
Q∈𝒮

|Q|−1
w(Q)1/qw′(Q)

1 
q′
(︁
[w]

1 
p′
A∞ + [w′]

1 
q

A∞

)︁∥f∥Lp(wp/q),

where we used
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(1 − q′)
(︂
1 − p

s 

)︂
= (1 − q′) p 

q′
= p

q

p− s

ps 
= 1

s 
− 1 

p
= 1 

q′
,

in the last step. Noting that

sup 
Q∈𝒮

|Q|−1
w(Q)1/qw′(Q)

1 
q′ ≤ [w]

1 
q

Aq
,

and by Lemma 2.15

[w]
1 
p′
A∞ + [w′]

1 
q

A∞ ≤ [w]
1 
p′
Aq

+ [w]
1 

q(q−1)
Aq

≤ 2 [w]
max{ 1 

p′ ,
1 

q−1− 1 
q }

Aq
,

finishes the proof. □
Using Lemma 3.2, we can now prove Bloom estimates for 𝒜⋆

𝒮,b.

Proposition 3.3. Let 1 < p, q < ∞ and define 1
r := 1

q − 1 
p and α

d := 1 
p − 1

q . Take μ ∈ Ap, λ ∈ Aq and set 
ν

1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . Let 𝒟 be a dyadic lattice. For any γ-sparse collection 𝒮 ⊆ 𝒟 and b ∈ L1
loc we have

∥𝒜⋆
𝒮,b∥Lp(μ)→Lq(λ) ≲ [μ]max{1, 1 

p−1}
Ap

⎧⎨⎩[λ]
max{ 1 

p′ +
1 
q ,

1 
q−1}

Aq
· ∥b∥BMOα

ν
p ≤ q,

[λ]max{1, 1 
q−1}

Aq
· ∥M ♯

νb∥Lr(ν) p > q.

Proof. We start by noting that by [34, Lemma 5.1], there is a γ
4 -sparse collection ˜︁𝒮 ⊂ 𝒟 with 𝒮 ⊆ ˜︁𝒮 so 

that for any Q ∈ 𝒮 we have
ˆ

Q 

|b− ⟨b⟩Q||f |dx ≲
ˆ

Q 

∑︂
R∈ ˜︁𝒮:R⊆Q

⟨︁|b− ⟨b⟩R|
⟩︁
R
|f |1R dx

=
∑︂

R∈ ˜︁𝒮:R⊆Q

ˆ

R

|b− ⟨b⟩R| · ⟨|f |⟩R dx.
(3.1)

Furthermore, in order to use Lemma 3.2 efficiently, we define for s ∈ (0,∞)

𝒜𝒮,sf :=
∑︂
Q∈𝒮

(︂ 1 
|Q|s

ˆ

Q 

|f |s dx
)︂1/s

1Q .

We first consider the case p ≤ q. Since 1
s :=

1 
p + 1 

q′ ≥ 1, we have by Minkowski’s inequality

∑︂
R∈ ˜︁𝒮:R⊆Q

ˆ

R

|b− ⟨b⟩R| · ⟨|f |⟩R dx ≤ ∥b∥BMOα
ν

∑︂
R∈ ˜︁𝒮:R⊆Q

ν(R)1/s⟨|f |⟩R

= ∥b∥BMOα
ν

∑︂
R∈ ˜︁𝒮:R⊆Q

(︂ˆ
Q 

⟨|f |⟩sR 1R dν
)︂1/s

≤ ∥b∥BMOα
ν

(︂ˆ
Q 

(︂ ∑︂
R∈ ˜︁𝒮:R⊆Q

⟨|f |⟩R 1R

)︂s

dν
)︂1/s

.
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And thus, combined with (3.1), Lemma 3.2 and the definition of ν, we obtain for f ∈ Lp(μ)

∥𝒜⋆
𝒮,bf∥Lq(λ) ≲ ∥b∥BMOα

ν

⃦⃦𝒜𝒮,s

(︁𝒜 ˜︁𝒮,1f · ν1/s)︁⃦⃦
Lq(λ)

≲ ∥b∥BMOα
ν
[λ]

max{ 1 
p′ +

1 
q ,

1 
q−1}

Aq

⃦⃦𝒜 ˜︁𝒮,1f · ν1/s⃦⃦
Lp(λp/q)

= ∥b∥BMOα
ν
[λ]

max{ 1 
p′ +

1 
q ,

1 
q−1}

Aq
∥𝒜 ˜︁𝒮,1f∥Lp(μ)

≲ ∥b∥BMOα
ν
[λ]

max{ 1 
p′ +

1 
q ,

1 
q−1}

Aq
[μ]max{1, 1 

p−1}
Ap

∥f∥Lp(μ),

finishing the case p ≤ q.
Next, we consider the case p > q. We have

∑︂
R∈ ˜︁𝒮:R⊆Q

ˆ

R

|b− ⟨b⟩R| · ⟨|f |⟩R dx =
ˆ

Q 

∑︂
R∈ ˜︁𝒮:R⊆Q

1 
ν(R)

ˆ

R

|b− ⟨b⟩R|dx · ⟨|f |⟩R 1R dν

≤
ˆ

Q 

M ♯
νb · 𝒜 ˜︁𝒮,1f dν.

Thus, combined with (3.1) and Lemma 3.2, we obtain for f ∈ Lp(μ)

∥𝒜⋆
𝒮,bf∥Lq(λ) ≲

⃦⃦𝒜𝒮,1
(︁
M ♯

νb · 𝒜 ˜︁𝒮,1f · ν)︁⃦⃦
Lq(λ)

≲ [λ]max{1, 1 
q−1}

Aq

⃦⃦
M ♯

νb · 𝒜 ˜︁𝒮,1f · ν⃦⃦
Lq(λ).

Finally, using Hölder’s inequality, the definition of ν and Lemma 3.2 once more, we obtain⃦⃦
M ♯

νb · 𝒜 ˜︁𝒮,1f · ν⃦⃦
Lq(λ) =

⃦⃦
M ♯

νb · ν1/r · 𝒜 ˜︁𝒮,1f · ν1/r′λ1/q⃦⃦
Lq

≤ ⃦⃦
M ♯

νb · ν1/r⃦⃦
Lr

⃦⃦𝒜 ˜︁𝒮,1f · ν1/r′λ1/q⃦⃦
Lp

= ∥M ♯
νb∥Lr(ν) ∥𝒜 ˜︁𝒮,1f∥Lp(μ)

≲ [μ]max{1, 1 
p−1}

Ap
∥M ♯

νb∥Lr(ν) ∥f∥Lp(μ),

finishing the proof. □
Since 𝒜⋆

𝒮,b is the formal adjoint of 𝒜𝒮,b, we can also deduce upper Bloom estimates for 𝒜𝒮,b from 
Proposition 3.3. Combining Theorem 3.1 and Proposition 3.3, we therefore obtain our desired result.

Theorem 3.4 (Bloom upper estimate for commutators). Let p, q ∈ (1,∞) and define 1
r := 1

q − 1 
p and α

d :=
1 
p − 1

q . Take μ ∈ Ap, λ ∈ Aq and set ν
1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . Let T be an ω-Calderón-Zygmund operator with ω
satisfying the Dini condition and let b ∈ L1

loc. We have

⃦⃦
[b, T ]

⃦⃦
Lp(μ)→Lq(λ) ≲ [μ]max{1, 1 

p−1}
Ap

[λ]max{1, 1 
q−1}

Aq
·
{︄
∥b∥BMOα

ν
p ≤ q,

∥M ♯
νb∥Lr(ν) p > q.

Proof. By Proposition 3.3 and duality, using 1 
p′ + 1

q ≤ 1 when p ≤ q, we have

∥𝒜𝒮,b∥Lp(μ)→Lq(λ) = ∥𝒜⋆
𝒮,b∥Lq′ (λ′)→Lp′ (μ′)
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≲ [μ′]
max{1, 1 

p′−1}
Ap′

[λ′]
max{1, 1 

q′−1}
Aq′

·
{︄
∥b∥BMOα

ν
p ≤ q

∥M ♯
νb∥Lr(ν) p > q

= [μ]max{1, 1 
p−1}

Ap
[λ]max{1, 1 

q−1}
Aq

·
{︄
∥b∥BMOα

ν
p ≤ q

∥M ♯
νb∥Lr(ν) p > q.

Therefore, the theorem follows from Theorem 3.1 and the density of the bounded, compactly supported 
functions in Lp(μ). □
Remark 3.5. For p = q, Theorem 3.4 was already obtained in [20]. We generalized the proof that uses sparse 
domination from [34], where the case p = q is considered as well. If μ = λ = w for w ∈ Ap, it is known that 
the dependence on [w]Ap

in Theorem 3.4 is sharp, see [6,38] and the references therein.
A qualitative version of Theorem 3.4 for p ≤ q was recently obtained in [22]. Tracking the constants in 

[22, Theorem 2.4] would yield quantitatively worse behavior in [μ]Ap
and [λ]Aq

than Theorem 3.4. Note 
that the dependence on [μ]Ap

and [λ]Aq
in Theorem 3.4 can be slightly improved in the case p ≤ q, using 

the full power of Proposition 3.3. Since we do not know if the obtained bound is sharp, we leave this to the 
interested reader.

3.2. Paraproducts

Next, we consider Bloom upper bounds for paraproducts. We start our analysis with a sparse domination 
result for finite truncations of Πb for b ∈ L1

loc, which generalizes [14, Theorem 4.1]. We will employ a stopping 
time argument that has two innovative features: ``coupled stopping conditions'' and ``uniformity over parts 
of the input data''. In our further considerations it will be crucial that this sparse domination result still 
contains the terms 

⟨︁|b−⟨b⟩Q|
⟩︁
Q

rather than the more typical sparse estimate of paraproducts using ∥b∥BMO.

Theorem 3.6 (Sparse domination of paraproducts). Let f, b ∈ L1
loc(Rd), and let 𝒟 be a dyadic lattice. For 

every Q0 ∈ 𝒟, there exist a 1 
2d+2 -sparse family 𝒮 ⊆ 𝒟(Q0) such that for all finite collections ℱ ⊆ 𝒟(Q0)⃓⃓⃓∑︂

Q∈ℱ
DQb⟨f⟩Q

⃓⃓⃓
≲

∑︂
Q∈𝒮

⟨︁|b− ⟨b⟩Q|
⟩︁
Q
⟨|f |⟩Q 1Q .

Proof. We will show that for each Q ∈ 𝒟 there exists a collection of pairwise disjoint cubes {Pk}k ⊆ 𝒟(Q)
such that 

∑︁
k|Pk| ≤ 1

2 |Q| and such that⃓⃓⃓ ∑︂
R∈𝒟(Q)∩ℱ

DRb⟨f⟩R
⃓⃓⃓
≤ 26⟨︁|b− ⟨b⟩Q|

⟩︁
Q
⟨|f |⟩Q 1Q

+
∑︂
k

|D ˆ︁Pk
b|⟨|f |⟩ ˆ︁Pk

1Pk
+
∑︂
k

⃓⃓⃓ ∑︂
R∈𝒟(Pk)∩ℱ

DRb⟨f⟩R
⃓⃓⃓ (3.2)

uniformly over all finite collections ℱ ⊆ 𝒟. Note that

|D ˆ︁Pk
b|1Pk

= |⟨b⟩Pk
− ⟨b⟩ ˆ︁Pk

|1Pk
.

Iterating the estimate (3.2), starting at the cube Q0, we obtain a 1
2 -sparse collection 𝒮 ⊆ 𝒟(Q0) such that⃓⃓⃓∑︂

Q∈ℱ
DQb⟨f⟩Q

⃓⃓⃓
≤

∑︂
Q∈𝒮

26⟨︁|b− ⟨b⟩Q|
⟩︁
Q
⟨|f |⟩Q 1Q

+
∑︂

Q∈𝒮\{Q0}
|⟨b⟩Q − ⟨b⟩ ˆ︁Q|⟨|f |⟩ ˆ︁Q 1Q

(3.3)
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uniformly over all finite collections ℱ ⊆ 𝒟(Q0). Noting that

𝒮 := 𝒮 ∪ {︁ ˆ︁Q : Q ∈ 𝒮 \ {Q0}
}︁ ⊆ 𝒟(Q0)

is 1 
2d+2 -sparse and for every Q ∈ 𝒟 we have

|⟨b⟩Q − ⟨b⟩ ˆ︁Q|⟨|f |⟩ ˆ︁Q 1Q ≤ 2d
⟨︁|b− ⟨b⟩ ˆ︁Q|⟩︁ ˆ︁Q⟨|f |⟩ ˆ︁Q 1 ˆ︁Q

then yields the result.
Let us prove (3.2). Let {Pk}k be the collection of maximal cubes P ∈ 𝒟(Q) such that

⟨|f |⟩P > 4 ⟨|f |⟩Q (3.4)

or there exists a finite collection ℱP such that on P we have⃓⃓⃓ ∑︂
R∈ℱP :P⊊R⊆Q

DRb⟨f⟩R
⃓⃓⃓
> 25 ⟨︁|b− ⟨b⟩Q|

⟩︁
Q
⟨|f |⟩Q =: aQ. (3.5)

We remark that the left-hand side is constant on P .
For R ∈ 𝒟(Q) define

vR :=
{︄
⟨f⟩R R ∈ ⋃︁

k{S ∈ ℱPk
: Pk ⊊ S ⊆ Q}

0 otherwise.

By the stopping condition (3.4) we have |vR| ≤ 4⟨|f |⟩Q for R ∈ 𝒟(Q). Therefore, using the stopping 
conditions (3.4) and (3.5), Burkholder’s weak L1-inequality for martingale differences (see Lemma 2.30) 
and the weak L1-boundedness of the dyadic maximal operator, we have∑︂

k

|Pk| ≤
⃓⃓⃓{︂⃓⃓ ∑︂

R∈𝒟(Q)

vRDRb
⃓⃓
> aQ

}︂⃓⃓⃓
+
⃓⃓⃓{︂

sup 
R∈𝒟(Q)

⟨|f |⟩R > 4 ⟨|f |⟩Q
}︂⃓⃓⃓

≤ 2 
aQ

· sup 
R∈𝒟(Q)

|vR| ·
⃦⃦⃦ ∑︂
R∈𝒟(Q)

DRb
⃦⃦⃦
L1

+ 1 
4 ⟨|f |⟩Q

· ∥f 1Q∥L1

≤ 2 
25
⟨︁|b− ⟨b⟩Q|

⟩︁
Q
⟨|f |⟩Q

· 4⟨|f |⟩Q · ∥b− ⟨b⟩Q∥L1 + |Q|
4 

= 1
2 |Q|.

Now, to show (3.2), let ℱ ⊆ 𝒟 be a finite collection of cubes and write⃓⃓⃓ ∑︂
R∈𝒟(Q)∩ℱ

DRb⟨f⟩R
⃓⃓⃓
≤

⃓⃓⃓ ∑︂
R∈𝒟(Q)∩ℱ

DRb⟨f⟩R
⃓⃓⃓
1Q\⋃︁k Pk

+
∑︂
k

⃓⃓⃓ ∑︂
R∈ℱ : ˆ︁Pk⊊R⊆Q

DRb⟨f⟩R
⃓⃓⃓
1Pk

+
∑︂
k

|D ˆ︁Pk
b|⟨|f |⟩ ˆ︁Pk

1Pk

+
∑︂
k

⃓⃓⃓ ∑︂
R∈𝒟(Pk)∩ℱ

DRb⟨f⟩R
⃓⃓⃓
.
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By the stopping condition (3.5), we have

1Q\⋃︁k Pk

⃓⃓⃓ ∑︂
R∈𝒟(Q)∩ℱ

DRb⟨f⟩R
⃓⃓⃓
≤ 25⟨︁|b− ⟨b⟩Q|

⟩︁
Q
⟨|f |⟩Q,

and

∑︂
k

1Pk

⃓⃓⃓ ∑︂
R∈ℱ : ˆ︁Pk⊊R⊆Q

DRb⟨f⟩R
⃓⃓⃓
≤ 25 ⟨︁|b− ⟨b⟩Q|

⟩︁
Q
⟨|f |⟩Q,

both uniformly over all finite collections ℱ ⊆ 𝒟. This concludes the proof of (3.2) and thus finishes the 
proof of the theorem. □
Remark 3.7. The estimate in (3.3) is interesting in its own right, since it does not use the doubling property 
of the Lebesgue measure. In fact, it directly generalizes to the setting where one has a locally finite Borel 
measure μ on Rd instead of the Lebesgue measure.

Let μ, λ, ν be weights and f, b ∈ L1
loc. In the case 1 < p ≤ q < ∞ the sparse operator arising in 

Theorem 3.6 can be estimated as follows

⃦⃦⃦∑︂
Q∈𝒮

⟨︁|b− ⟨b⟩Q|
⟩︁
Q
⟨|f |⟩Q 1Q

⃦⃦⃦
Lq(λ)

≤
⃦⃦⃦∑︂
Q∈𝒮

ν(Q)
1 
p

+ 1 
q′

|Q| ⟨|f |⟩Q 1Q

⃦⃦⃦
Lq(λ)

∥b∥BMOα
ν
.

Therefore, to prove the Bloom-weighted boundedness of the (finitely truncated) paraproduct Πb,ℱf , one 
could analyze the Bloom-weighted boundedness of the sparse operator

f ↦→
∑︂
Q∈𝒮

ν(Q)
1 
p+ 1 

q′

|Q| ⟨|f |⟩Q 1Q .

In the case p = q and μ, λ ∈ Ap, this operator was studied in [14, Theorem 3.9]. Note that, viewing a 
paraproduct as a bilinear operator, one expects weighted boundedness to hold for (μ, λ) in a genuinely 
multilinear weight class (cf. [1, Section 4.6]).

The next lemma identifies the canonical weight class for Bloom estimates of paraproducts for all p, q ∈
(1,∞). In Proposition 3.9, we will study Bloom estimates for the sparse operator arising in Theorem 3.6
using this weight class.

Lemma 3.8 (Bloom weight class for paraproducts). Let 1 < p, q < ∞ and define 1
r := 1

q − 1 
p and αd :=

1 
p − 1

q . 
Let μ, λ, ν be weights and μ′ = μ−p′/p. Suppose that for all b ∈ L1

loc we have

∥Πb∥Lp(μ)→Lq(λ) ≲
{︄
∥b∥BMOα

ν
p ≤ q,

∥M ♯
νb∥Lr(ν) p > q.

Then we have (μ′, λ, ν) ∈ Bp′,q.

Proof. For a fixed cube Q ∈ 𝒟, define b = 1Q+ −1Q− , where Q+ and Q− are the right and left halves of Q
along the first coordinate axis respectively. Note that
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∥b∥BMOα
ν

= |Q|
ν(Q)

1 
p+ 1 

q′
p ≤ q,

∥M ♯
νb∥Lr(ν) = |Q|

ν(Q)∥M
ν 1Q∥Lr(ν) ≤ r′

|Q|
ν(Q)

1 
p+ 1 

q′
p > q.

Applying the boundedness of Πb to f := 1Q μ′, we get

⟨μ′⟩Q · ∥1Q∥Lq(λ) ≲
|Q|

ν(Q)
1 
p+ 1 

q′
·
(︂ˆ
Q 

μ− p 
p−1 dμ

)︂ 1 
p

.

Rearranging the terms, we obtain

⟨μ′⟩
1 
p′
Q ⟨λ⟩

1 
q

Q⟨ν⟩
1 
p+ 1 

q′
Q ≤ C,

for some C > 0 independent of Q. □
By Lemma 3.8 and Remark 2.21 it is canonical to assume the Bloom relation ν

1 
p+ 1 

q′ := μ
1 
pλ− 1 

q when 
studying upper bounds for paraproducts. In this setting, the assumption (μ′, λ, ν) ∈ Bp′,q is exactly the 
same as the assumption that (μ, λ′) ∈ A(p,q′), where A(p,q′) denotes a multilinear weight class (see [33]). 
This assumption is strictly weaker than μ ∈ Ap and λ ∈ Aq (see Lemma 2.23).

In the following proposition, we will prove the Bloom estimates for the sparse operator arising in Theo
rem 3.6 for weights (μ′, λ, ν) ∈ Bp′,q satisfying the Bloom relation ν

1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . Note that μ′, λ, ν ∈ A∞
by Lemma 2.23.

Proposition 3.9. Let 1 < p, q < ∞ and define 1
r := 1

q − 1 
p and α

d := 1 
p − 1

q . Let (μ′, λ, ν) ∈ Bp′,q with 

μ′ = μ−p′/p and ν
1 
p+ 1 

q′ = μ
1 
pλ− 1 

q . Let 𝒟 be a dyadic lattice and γ ∈ (0, 1). For any γ-sparse family 𝒮 ⊆ 𝒟
and b ∈ L1

loc we have

⃦⃦⃦
f ↦→

∑︂
Q∈𝒮

⟨︁|b− ⟨b⟩Q|
⟩︁
Q
⟨|f |⟩Q 1Q

⃦⃦⃦
Lp(μ)→Lq(λ)

≲ Cμ,λ,ν ·
{︄
∥b∥BMOα

ν
p ≤ q,

∥M ♯
νb∥Lr(ν) p > q,

where

Cμ,λ = [(μ′, λ, ν)]Bp′,q · [μ′]1/pA∞ [λ]1/q
′

A∞ [ν](1/r)+A∞ .

Proof. Throughout the proof we will write r+ = 1 
(1/r)+ . Note that

∥h∥Lp(μ) = ∥h/μ′∥Lp(μ′), h ∈ Lp(μ),

so, by duality, it suffices to show

∑︂
Q∈𝒮

ˆ

Q 

|b− ⟨b⟩Q|
⟨︁|f |μ′⟩︁

Q

⟨︁|g|λ⟩︁
Q

dx ≲ Cμ,λ∥f∥Lp(μ′)∥g∥Lq′ (λ) ·
{︄
∥b∥BMOα

ν
p ≤ q,

∥M ♯
νb∥Lr(ν) p > q,

for f ∈ Lp(μ′) and g ∈ Lq′(λ). Since 1 
p + 1 

q′ + 1 
r+

≥ 1, we have by Hölder’s inequality and Lemma 2.7
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∑︂
Q∈𝒮

ˆ

Q 

|b− ⟨b⟩Q| ·
⟨︁|f |μ′⟩︁

Q

⟨︁|g|λ⟩︁
Q

dx

=
∑︂
Q∈𝒮

1 

ν(Q)
1 
p+ 1 

q′

ˆ

Q 

|b− ⟨b⟩Q| · ⟨|f |⟩μ
′

Q ⟨|g|⟩λQ⟨μ′⟩Q⟨λ⟩Q · ν(Q)
1 
p+ 1 

q′ dx

≤ [(μ′, λ, ν)]Bp′,q

∑︂
Q∈𝒮

1 

ν(Q)
1 
p+ 1 

q′

ˆ

Q 

|b− ⟨b⟩Q| · ⟨|f |⟩μ
′

Qμ′(Q)
1 
p · ⟨|g|⟩λQλ(Q)

1 
q′ dx

≤ [(μ′, λ, ν)]Bp′,q

(︂∑︂
Q∈𝒮

(︁⟨|f |⟩μ′

Q

)︁p
μ′(Q)

)︂1/p(︂∑︂
Q∈𝒮

(︁⟨|g|⟩λQ)︁q′λ(Q)
)︂1/q′

·
(︂∑︂
Q∈𝒮

(︂ 1 

ν(Q)
1 
p+ 1 

q′

ˆ

Q 

|b− ⟨b⟩Q|dx
)︂r+)︂1/r+

≤ pq′

γ
1 
p+ 1 

q′
[(μ′, λ, ν)]p,q[μ′]1/pA∞ [λ]1/q

′

A∞ ∥f∥Lp(μ′)∥g∥Lq′ (λ)

·
(︂∑︂
Q∈𝒮

(︂ 1 
ν(Q)1/r′

ˆ

Q 

|b− ⟨b⟩Q|dx
)︂r+)︂1/r+

.

Now if p ≤ q, we have r+ = ∞, in which case we see directly that

(︂∑︂
Q∈𝒮

(︂ 1 
ν(Q)1/r′

ˆ

Q 

|b− ⟨b⟩Q|dx
)︂r+)︂1/r+ ≤ ∥b∥BMOα

ν
.

For the case that p > q, we have r+ = r and by Corollary 2.10

(︂∑︂
Q∈𝒮

(︂ 1 
ν(Q)1/r′

ˆ

Q 

|b− ⟨b⟩Q|dx
)︂r+)︂1/r+

≤ [ν]1/rA∞

γ1/r

(︂∑︂
Q∈𝒮

(︂ 1 
ν(Q)

ˆ

Q 

|b− ⟨b⟩Q|dx
)︂r

ν(EQ)
)︂1/r

≤ [ν]1/rA∞

γ1/r

(︂∑︂
Q∈𝒮

ˆ

EQ

(M ♯
νb)r dν

)︂1/r
≤ [ν]1/rA∞

γ1/r ∥M ♯
νb∥Lr(ν),

finishing the proof. □
Combining Theorem 3.6 and Proposition 3.9, we now obtain a Bloom upper bound for paraproducts for 

weights (μ′, λ, ν) ∈ Bp′,q with ν
1 
p+ 1 

q′ = μ
1 
pλ− 1 

q . The case p = q, μ ∈ Ap and λ ∈ Aq has previously been 
obtained in [14].

Theorem 3.10 (Bloom upper estimate for paraproducts). Let 1 < p, q < ∞ and define 1
r := 1

q − 1 
p and 

α
d :=

1 
p − 1

q . Let (μ′, λ, ν) ∈ Bp′,q with μ′ = μ−p′/p and ν
1 
p+ 1 

q′ = μ
1 
pλ− 1 

q . Let 𝒟 be a dyadic lattice. For any 
b ∈ L1

loc we have

∥Πb∥Lp(μ)→Lq(λ) ≲ [(μ′, λ, ν)]Bp′,q [μ
′]1/pA∞ [λ]1/q

′

A∞ ·
{︄
∥b∥BMOα

ν
p ≤ q,

[ν]1/rA∞∥M ♯
νb∥Lr(ν) p > q,
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where

Πbf :=
∑︂
Q∈𝒟

DQb⟨f⟩Q, f ∈ Lp(μ),

converges unconditionally in Lq(λ) if b ∈ BMOα
ν when p ≤ q and if M ♯

νb ∈ Lr(ν) when p > q.

Proof. Let f ∈ Lp(μ). By density we may assume without loss of generality that f has compact support. 
Moreover, by considering quadrants separately if needed, we may assume that there is a Q0 ∈ 𝒟 such that 
supp f ⊆ Q0. By Theorem 3.6, we can find a 1 

2d+2 -sparse family of cubes 𝒮 ⊆ 𝒟(Q0) such that for all finite 
collections ℱ ⊆ 𝒟(Q0) we have⃓⃓⃓∑︂

Q∈ℱ
DQb⟨f⟩Q

⃓⃓⃓
≲

∑︂
Q∈𝒮

⟨︁|b− ⟨b⟩Q|
⟩︁
Q
⟨|f |⟩Q 1Q .

Now set ˜︁𝒮 = 𝒮 ∪ {Q ∈ 𝒟 : Q0 ⊊ Q}, which is 1 
2d+2 -sparse as well. Since, for any Q ∈ 𝒟, we have

|DQb| =
⃓⃓⃓ ∑︂
P∈𝒟: ˆ︁P=Q

⟨b⟩P 1P −⟨b⟩Q 1Q

⃓⃓⃓
≤

∑︂
P∈𝒟: ˆ︁P=Q

⟨︁|b− ⟨b⟩Q|
⟩︁
P

1P ≤ 2d
⟨︁|b− ⟨b⟩Q|

⟩︁
Q

1Q,

it follows that for all finite collections ℱ ⊆ 𝒟 we have⃓⃓⃓∑︂
Q∈ℱ

DQb⟨f⟩Q
⃓⃓⃓
=

⃓⃓⃓ ∑︂
Q∈ℱ∩𝒟(Q0)

DQb⟨f⟩Q
⃓⃓⃓
+

∑︂
Q∈ℱ :Q0⊊Q

|DQb|⟨|f |⟩Q

≲
∑︂
Q∈ ˜︁𝒮

⟨︁|b− ⟨b⟩Q|
⟩︁
Q
⟨|f |⟩Q 1Q .

Since the right-hand side is finite a.e. and does not depend on ℱ , this implies that 
∑︁

Q∈𝒟|DQb⟨f⟩Q| converges 
pointwise a.e. and for any choice of ϵQ ∈ {0, 1} we have⃓⃓⃓∑︂

Q∈𝒟
ϵQDQb⟨f⟩Q

⃓⃓⃓
≲

∑︂
Q∈ ˜︁𝒮

⟨︁|b− ⟨b⟩Q|
⟩︁
Q
⟨|f |⟩Q 1Q .

The norm estimate now follows from Proposition 3.9 and the unconditional convergence follows from the 
dominated convergence theorem. □
Remark 3.11. Let p, q ∈ (1,∞), μ ∈ Ap and λ ∈ Ap and set ν

1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . By Lemma 2.15 and 
Lemma 2.22 we have

[(μ′, λ, ν)]Bp′,q [μ
′]1/pA∞ [λ]1/q

′

A∞ ≲ [μ]
1 

p−1
Ap

[λ]Aq
,

so, in particular, Theorem 3.10 proves the upper bound in Theorem B.
Let w ∈ A2. In the case p = q = 2, μ = w, λ = w−1 and thus ν = w, it was shown in [14, Section 4.1] 

that there is a b ∈ BMOw such that

∥Πb∥L2(w)→L2(w−1) ≳ ∥b∥BMOw
[w]2A2
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In this setting we have

[μ]A2 [λ]A2 = [w]2A2
,

so our result, as well as [14, Theorem 3.9], is sharp. We do not know if Theorem 3.10 is also sharp for other 
parameters.

Remark 3.12. We note that the claimed unconditional convergence in Theorem 3.10 is not automatic, since 
we do not have λ ∈ Aq in general (see Lemma 2.23). As a consequence, we note that the functions with 
finite Haar expansion are not necessarily dense in Lq(λ).

4. Lower bounds

Next, we turn to lower bounds for commutators and paraproducts. Throughout the section, recall the 
following for weights μ, λ, ν:

• We set λ′ := λ−q′/q and

[μ, λ′]Bp,q′ (ν) := sup
Q 

(︂μ(Q)
ν(Q) 

)︂1/p(︂λ′(Q)
ν(Q) 

)︂1/q′

.

• Suppose ν
1 
p+ 1 

q′ = μ
1 
pλ− 1 

q . Then the condition (μ, λ′) ∈ Bp,q′(ν) implies the conditions μ ∈ A∞(ν) and 
λ′ ∈ A∞(ν) by Lemma 2.24.

4.1. Statement and overview of proof for commutators

We start by proving that, in the Bloom setting, the sharp maximal function condition

∥M#
ν b∥Lr(ν) < +∞

is necessary for the Lp(μ) → Lq(λ) boundedness of commutators [b, T ] in the range 1 < q < p < ∞. We will 
prove this under weaker assumptions on the weights than μ ∈ Ap, λ ∈ Aq.

The main challenge in the Bloom setting for 1 < q < p < ∞ is finding a condition that is not only 
sufficient but also necessary. The proof of the lower bound builds upon techniques from [16,27,22], and upon 
weighted sparse analysis.

Theorem 4.1 (Sharp maximal function condition is necessary in the Bloom setting). Let 1 < q < p < ∞
and set 1

r := 1
q − 1 

p . Let b ∈ L1
loc and let K be a non-degenerate ω-Calderón--Zygmund kernel. Assume the 

following:

• (Weights) Let μ and λ be weights and set λ′ := λ−q′/q and ν
1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . Assume that μ, λ′, ν are 
doubling and (μ, λ′) ∈ Bp,q′(ν).

• (Boundedness) Assume that Ub : Lp(μ) → Lq(λ) is a bounded linear operator.
• (Off-support bilinear integral form representation) Assume that

ˆ

Rd

gUbf dx =
ˆ

Rd

ˆ

Rd

(b(y) − b(x))K(y, x)f(x)g(y) dx dy

whenever the functions f ∈ L∞
c and g ∈ L∞

c have supports separated by a positive distance.
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Then

∥M#
ν b∥Lr(ν) ≲μ,λ′,ν [μ, λ′]Bp,q′ (ν)[μ]1/p

′

A∞(ν)[λ
′]1/qA∞(ν)∥Ub∥Lp(μ)→Lq(ν),

where the implicit constant depends on the doubling constants of μ, λ′, ν.

Remark 4.2 (Unweighted setting). In the unweighted case μ = λ = ν = 1 the theorem recovers [27, Theorem 
2.5.1] because of the well-known comparison

∥M#b∥Lr ≂ inf
c 
∥b− c∥Lr .

From Theorem 4.1 we can easily deduce the lower bound in Theorem A.

Corollary 4.3 (Lower bound for commutator). Let 1 < q < p < ∞, μ ∈ Ap and λ ∈ Aq. Set 1
r := 1

q − 1 
p and 

ν1/p+1/q′ := μ1/pλ−1/q. Let T be a non-degenerate ω-Calderón-Zygmund operator with ω satisfying the Dini 
condition, and let b ∈ L1

loc. Then

∥M ♯
νb∥Lr(ν) ≲ Cμ,λ

⃦⃦
[b, T ]

⃦⃦
Lp(μ)→Lq(λ).

Proof of Corollary 4.3. This follows from observing that the assumptions of Corollary 4.3 imply the as
sumptions of Theorem 4.1, as follows. From μ ∈ Ap and λ ∈ Aq (or equivalently λ′ ∈ Aq′) it follows that 
(μ, λ′) ∈ Bp,q′(ν) by Lemma 2.22 and that ν ∈ A2r′ by Lemma 2.23. In particular, μ, λ′, ν are doubling 
since they are A∞-weights. Since ω satisfies the Dini condition, T is bounded from L1 to L1,∞. Therefore, 
by Lemma 2.28, we have the kernel representation

ˆ
f [b, T ]g =

ˆ

Rd

ˆ

Rd

(b(x) − b(y))K(x, y)f(y)g(x) dy dx

whenever the functions f ∈ L∞
c and g ∈ L∞

c have supports separated by a positive distance. □
Proof of Theorem 4.1. The proof proceeds in three main steps: (1) discretization of the Lebesgue norm of 
the sharp maximal function, (2) control of mean oscillations by bilinear forms, and (3) use of a sequential
type testing condition on bilinear forms for general abstract operators. Each of these steps is stated as a 
separate lemma. How the lemmas are combined to yield the theorem is detailed in what follows.

First, we discretize. Fix a parameter γ ∈ (0, 1). By combining Corollary 2.3 and Lemma 4.7, we obtain

∥M#
ν b∥Lr(ν) ≂ν sup

𝒟
sup 
𝒮⊆𝒟

(︂∑︂
S∈𝒮

(︂ 1 
ν(S)

ˆ

S

|b− ⟨b⟩S |dx
)︂r

ν(S)
)︂1/r

,

where the supremum is taken over all dyadic lattices 𝒟 and over all collections 𝒮 ⊆ 𝒟 that are (γ, ν)-sparse.
Second, we control each oscillation by testing a bilinear form against a pair of test functions. By 

Lemma 4.8, for each cube S ∈ 𝒮 there exist a cube S̃ with ℓ(S̃) ∼ ℓ(S) and dist(S̃, S) ∼ ℓ(S) and functions 
f i
S , g

i
S̃

with |f i
S | ≲ 1S , |gi

S̃
| ≲ 1S̃ for i = 1, 2 such that

ˆ

S

|b− ⟨b⟩S |dx ≲
2 ∑︂

i=1 

⃓⃓⃓ˆ
Rd

gi
S̃
Ubf

i
S dx

⃓⃓⃓

Therefore,
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(︂∑︂
S∈𝒮

(︂ 1 
ν(S)

ˆ

S

|b− ⟨b⟩S |dx
)︂r

ν(S)
)︂1/r

≤
2 ∑︂

i=1 

(︂∑︂
S∈𝒮

⃓⃓⃓ 1 
ν(S)

ˆ

Rd

gi
S̃
Ubf

i
S dx

⃓⃓⃓r
ν(S)

)︂1/r
.

Finally, the right hand-side, the so-called sequential testing condition on bilinear forms, is bounded by 
the operator norm by Lemma 4.10, which completes the proof. □
4.2. Statement and overview of proof for paraproducts

The lower bound for dyadic paraproducts is stated and proved as for commutators, except that the 
structure of dyadic paraproducts, in particular the use of dyadic cubes instead of generic cubes, simplifies 
estimations.

Theorem 4.4 (Necessity in the Bloom setting for paraproducts). Let p, q ∈ (1,∞), set 1
r := 1

q − 1 
p and 

α
d := 1 

p − 1
q . Let μ and λ be weights and set λ′ := λ−q′/q and ν

1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . Let b ∈ L1
loc, assume that 

Πb : Lp(μ) → Lq(λ) is bounded and (μ, λ′) ∈ Bp,q′(ν). Then the following hold:

∥b∥BMOα
ν
≲ [μ, λ′]Bp,q′ (ν)∥Πb∥Lp(μ)→Lq(λ) p ≤ q,

∥M#
ν b∥Lr(ν) ≲ [μ, λ′]Bp,q′ (ν)[μ]1/p

′

A∞(ν)[λ
′]1/qA∞(ν)∥Πb∥Lp(μ)→Lq(λ) p > q.

Remark 4.5. In this dyadic context the suprema in the weighted sharp maximal function, the space BMOα
ν

and in all the weight characteristics are taken over the dyadic lattice associated with the paraproduct.

Remark 4.6. Note that the assumption (μ, λ′) ∈ Bp,q′(ν) is weaker than the assumption μ ∈ Ap and λ ∈ Aq

by Lemma 2.22.

Proof of Theorem 4.4. The case q < p follows from combining Lemmas 4.7, 4.9, and 4.10. Note that no 
dependence on doubling constants occurs in this dyadic context because of the following:

(1) The dyadic version of the weighted dyadic sharp maximal function is used.
(2) The pairs of test functions that Lemma 4.9 gives to Lemma 4.10 are of the form (fQS

, gQS
) = (1S , 1S). 

Therefore, inside the proof of Lemma 4.10, we can use Lemma 2.12 (dyadic estimate) instead of 
Lemma 2.13 (non-dyadic estimate).

The case p ≤ q follows by combining Lemma 4.9 and Lemma 4.13. □
4.3. Discretizing the norm of the weighted sharp maximal function

The first step in our proofs for both commutators and paraproducts is the discretization of the Lr(ν)-norm 
of the weighted sharp maximal function.

Lemma 4.7 (Discretized norm of the weighted sharp maximal function). Let b ∈ L1
loc, γ ∈ (0, 1), and 𝒟 a 

dyadic lattice. Let ν be a locally finite Borel measure and r ∈ (0,∞). Then

⃦⃦⃦
sup 
Q∈𝒟

1Q
ν(Q)

ˆ

Q 

|b− ⟨b⟩Q|dx
⃦⃦⃦
Lr(ν)

≂ sup 
𝒮⊆𝒟

(︂∑︂
S∈𝒮

(︂ 1 
ν(S)

ˆ

S

|b− ⟨b⟩S |dx
)︂r

ν(S)
)︂1/r

,

where the supremum is taken over all (γ, ν)-sparse collections 𝒮 ⊆ 𝒟.
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Proof. Since for every cube Q

inf
c 

ˆ

Q 

|b− c| dx ≂

ˆ

Q 

|b− ⟨b⟩Q|dx,

the claimed conclusion is equivalent to the comparison

⃦⃦⃦
sup 
Q∈𝒟

1Q
ν(Q) inf

c 

ˆ

Q 

|b− c| dx
⃦⃦⃦
Lr(ν)

≂ sup 
𝒮⊆𝒟

(︂∑︂
S∈𝒮

(︂ 1 
ν(S) inf

c 

ˆ

Q 

|b− c| dx
)︂r

ν(S)
)︂1/r

.

This comparison follows from a standard stopping time argument. Indeed, the classical stopping time ar
gument of principal cubes is abstracted in [16, Lemma 2.4], whose particular case τQ := infc

´
Q
|b − c| dx

recovers the comparison. □
4.4. Controlling oscillations by testing bilinear forms against pairs of test functions

Mean oscillation can be controlled by testing the bilinear form of the operator against pairs of test 
functions. This is the only step in the proof of the lower bounds that relies on the concrete structure of the 
operator.

For commutators [b, T ], the argument for the Beurling transform T = S is classical [9]. The argument for 
a very general class of Calderón–Zygmund singular kernels, together with a discussion on previous results, 
can be found in [27] (cf. [22, Proposition 4.2]):

Lemma 4.8 (Oscillations are dominated by testing the commutator against test functions; [27]). Let b ∈
L1

loc(Rd,C) and let K be a non-degenerate ω-Calderón--Zygmund kernel. Let ⟨g, [b, T ]f⟩ denote (as conve
nient self-explanatory abbreviation) the off-support bilinear form

⟨g, [b, T ]f⟩ :=
ˆ

Rd

ˆ

Rd

(b(y) − b(x))K(y, x)f(x)g(y) dx dy

for functions f ∈ L∞
c and g ∈ L∞

c with supports separated by a positive distance.
Then, for each cube Q, there exist a cube Q̃ with ℓ(Q̃) ∼ ℓ(Q) ∼ dist(Q̃,Q) and functions f i

Q, g
i
Q̃

with 

|f i
Q| ≤ 1Q, |gi

Q̃
| ≤ 1Q̃ for i = 1, 2 such that

ˆ

Q 

|b− ⟨b⟩Q|dx ≲
2 ∑︂

i=1 

⃓⃓⟨gi
Q̃
, [b, T ]f i

Q⟩
⃓⃓
.

In the case of paraproducts, the argument and test functions are particularly simple.

Lemma 4.9 (Oscillations are dominated by testing paraproduct against indicators of cubes). Let b ∈ L1
loc and 

let 𝒟 be a dyadic lattice. Then, for every Q ∈ 𝒟, we have
ˆ

Q 

|b− ⟨b⟩Q| dx ≲
ˆ

Rd

|1QΠb,𝒟(1Q)| dx.

Proof. Let Q ∈ 𝒟. Using the triangle inequality to replace ⟨b⟩Q by a term more appropriate for a paraprod
uct, we obtain formally
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ˆ

Q 

|b− ⟨b⟩Q| dx ≤ 2 inf
c 

ˆ

Q 

|b− c| dx

≤ 2
ˆ

Q 

|b− ⟨b⟩Q +
∑︂
R⊋Q

DRb⟨1Q⟩R| dx

= 2
ˆ

Q 

|
∑︂
R⊆Q

DRb⟨1Q⟩R +
∑︂
R⊋Q

DRb⟨1Q⟩R| dx

= 2
ˆ

Rd

|1QΠb(1Q)| dx.

Rigorously, we consider the truncations

𝒟M,N := {Q ∈ 𝒟 : 2−M ≤ ℓ(Q) ≤ 2N},

so that the term ∑︂
R∈𝒟M,N :R⊋Q

DRb⟨1Q⟩R

is finite. Recall that for each f ∈ L∞
c the sum Πb,𝒟f converges unconditionally in L1

loc by the definition of 
dyadic paraproducts. Then, by a similar calculation as above, combined with the unconditional convergence 
in L1(Q), we obtain

ˆ

Q 

|b− ⟨b⟩Q| dx ≤ lim 
N→∞

lim 
M→∞

ˆ

Rd

|1QΠb,𝒟M,N
1Q| dx =

ˆ

Rd

|1QΠb1Q| dx. □

4.5. Sequential testing condition for general operators

The final steps in our arguments for the lower bounds for paraproducts and commutators is the necessity 
of a sequential testing condition for general operators. We consider the cases p < q and p ≥ q separately.

Lemma 4.10 (Sequential testing condition on bilinear form is necessary). Let 1 < q < p < ∞ and set 
1
r := 1 

p − 1
q . Let μ and λ be weights and U : Lp(μ) → Lq(λ) a bounded linear operator. Assume the following:

• (Weights) Set λ′ := λ−q′/q and ν
1 
p+ 1 

q′ := μ
1 
pλ− 1 

q . Assume that μ, λ′, ν are doubling and (μ, λ′) ∈ Bp,q′(ν).
• (Test functions) To each cube P assign a cube QP with ℓ(QP ) ≲ ℓ(P ) and dist(QP , P ) ≲ ℓ(P ) and a 

function fQP
with |fQP

| ≲ 1QP
. Similarly, to each cube P assign a cube RP with ℓ(RP ) ≲ ℓ(P ) and 

dist(RP , P ) ≲ ℓ(P ) and a function gRP
with |gRP

| ≲ 1RP
.

• (Sparse collection) Assume that 𝒮 is a (δ, ν)-sparse collection of cubes.

Then (︂∑︂
S∈𝒮

⃓⃓⃓ 1 
ν(S)

ˆ

Rd

gRS
UfQS

dx
⃓⃓⃓r
ν(S)

)︂1/r

≲μ,λ′,ν [μ, λ′, ν]Bp,q′ (ν)[μ]1/p
′

A∞(ν)[λ
′]1/qA∞(ν)∥U∥Lp(μ)→Lq(λ).

The implicit constant depends on the doubling constants of the weights μ, λ′, ν.
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Remark 4.11 (Formulation in terms of bilinear form and weak-form boundedness). As in [27, Theorem 2.5.1], 
Lemma 4.10 can be formulated entirely in terms of a bilinear form I : L∞

c × L∞
c → C. The boundedness 

then takes the following weaker form:

N∑︂
i=1 

|I(fQi
, gRi

)| ≲
⃦⃦⃦ N∑︂
i=1 

∥fQi
∥L∞(Qi)1Qi

⃦⃦⃦
Lp(μ)

⃦⃦⃦ N∑︂
i=1 

∥gRi
∥L∞(Ri)1Ri

⃦⃦⃦
Lq′ (λ′)

whenever (fQi
, gRi

) ∈ L∞(Qi) × L∞(Ri) for i = 1, . . . , N and N ∈ N. In the case of commutators, the 
pairs of test functions (fQi

, gQi
) ∈ L∞(Qi) × L∞(Ri) are such that dist(Qi, Ri) ∼ ℓ(Qi) ∼ ℓ(Ri), as in 

Lemma 4.8.

Remark 4.12 (Weak-form boundedness in case q ≥ p). When q ≥ p, the weak-form boundedness becomes

|I(fQ, gR)| ≲ ∥fQ∥L∞(Q)∥gR∥L∞(R)μ(Q)1/pλ′(Q)1/q
′
.

For instances of uses of such L∞-type testing-conditions in the context of stopping time arguments, see for 
example [41,15,12].

Proof of Lemma 4.10. The argument builds upon ideas from [27] and [22]. By the ℓr(ν)-ℓr′(ν) duality, the 
estimate of the conclusion is equivalent to the estimate

∑︂
S∈𝒮

(︂ 1 
ν(S)

ˆ

Rd

gRS
UfQS

dx
)︂
γSν(S) ≲

(︂∑︂
S∈𝒮

γr′
S ν(S)

)︂1/r′

.

By assumption we have 1 = r′
q′ + r′

p , so

γS ≤ [μ, λ′]Bp,q′ (ν)

(︂
γr′
S

ν(S) 
λ−q′/q(S)

)︂1/q′

·
(︃
γr′
S

ν(S) 
μ(S)

)︃1/p

=: [μ, λ′]Bp,q′ (ν) βS · αS .

Therefore,

∑︂
S∈𝒮

ˆ

Rd

gRS
UfQS

dx γS ≲μ,λ′,ν

ˆ

Rd

∑︂
S∈𝒮

(βSgRS
)(UαSfQS

) dx.

Randomization is used to decouple the factors in the summands. Let (ϵS)S∈𝒮 be independent Rademacher 
variables on a probability space, i.e. E(ϵSϵT ) = δS,T for all S, T ∈ 𝒟 and |ϵS | = 1. Now,

ˆ

Rd

∑︂
S∈𝒮

βSgRS
UαSfQS

dx = E

ˆ

Rd

(︂∑︂
T∈𝒮

ϵTβT gRT

)︂
U
(︂∑︂
S∈𝒮

ϵSαSfQS

)︂
dx

=: E
ˆ

g̃ϵUf̃ϵ dx.

By Hölder’s inequality and boundedness of U from Lp(λ) to Lq(μ), we have
ˆ

g̃ϵUf̃ϵ dx =
ˆ (︁

g̃ϵ(λ′)−1/q′)︁U(︁
f̃ϵλ

1/q)︁dx

≤ ∥g̃ϵ∥Lq′ (λ′)∥Uf̃ϵ∥Lq(λ)

≤ ∥U∥Lp(μ)→Lq(λ)∥g̃ϵ∥Lq′ (λ′)∥f̃ϵ∥Lp(μ).
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The proof is completed by checking the estimates

∥f̃ϵ∥Lp(μ) ≤
(︂∑︂

S

γr′
S ν(S)

)︂1/p
,

∥g̃ϵ∥Lq′ (λ′) ≤
(︂∑︂

S

γr′
S ν(S)

)︂1/q′

,

and taking expectations.
We tackle the estimate for f̃ϵ; the estimate for g̃ϵ is tackled similarly. Let us first write out what suffices 

to be checked. On the one hand, recalling that f̃ϵ :=
∑︁

S ϵSαSfQS
and that by assumption fQP

≲ 1QP
, we 

see that

∥f̃ϵ∥Lp(μ) ≲
⃦⃦⃦∑︂
S∈𝒮

αS1QS

⃦⃦⃦
Lp(μ)

.

On the other hand, recalling that αS :=
(︂
γr′
S

ν(S) 
μ(S)

)︂1/p
, we see that

∑︂
S

αp
Sμ(S) ≤

∑︂
S

γr′
S ν(S).

Thus, it suffices to check that

⃦⃦⃦∑︂
S∈𝒮

αS1QS

⃦⃦⃦
Lp(μ)

≲μ,ν

(︄∑︂
S

αp
Sμ(S)

)︄1/p

.

This estimate is checked as follows. By assumption dist(QS , S) ≲ ℓ(S) and ℓ(QS) ≲ ℓ(S), so there is an 
a ≥ 1 such that aS ⊇ QS . Therefore,⃦⃦⃦∑︂

S∈𝒮
αS1QS

⃦⃦⃦
Lp(μ)

≤
⃦⃦⃦∑︂

S

αS1aS
⃦⃦⃦
Lp(μ)

.

Since 𝒮 is (δ, ν)-sparse by assumption, for each S ∈ 𝒮 there is a ES ⊆ S such ν(ES) ≥ δν(S) and such that 
the sets {ES}S∈𝒮 are disjoint. Since ν is doubling, we have

ν(ES) ≥ δν(S) ≥ δca,νν(aS).

Since a ≥ 1, we also have ES ⊆ S ⊆ aS, so {aS}S∈𝒮 is (δca,ν , ν)-sparse.
Now, since by the preceding {aS}S∈𝒮 is ν-sparse and by assumption μ ∈ A∞(ν), it follows by Lemma 2.13

that

⃦⃦⃦∑︂
S∈𝒮

αS1aS
⃦⃦⃦
Lp(μ)

≲μ,ν [μ]1/p
′

A∞(ν)

(︂∑︂
S∈𝒮

αp
Sμ(aS)

)︂1/p
.

Since μ is doubling, we have μ(aS) ≲a,μ μ(S), finishing the proof. □
We end this section with the necessity of testing condition for general operators in the case p ≤ q, which 

is much simpler than the case p > q.
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Lemma 4.13 (Testing condition in case p ≤ q, cf. [22]). Let 1 < p ≤ q < ∞. Let μ, λ and ν be weights and 
set λ′ := λ−q′/q. Assume that U : Lp(μ) → Lq(λ) is bounded and (μ, λ′) ∈ Bp,q′(ν). Then

sup
Q 

1 
ν(Q)1/p+1/q′

ˆ

Rd

1Q|U1Q|dx ≤ [μ, λ′]Bp,q′ (ν)∥U∥Lp(μ)→Lq(λ).

Proof. By the relation (λ′)1/q′λ1/q = 1 and Hölder’s inequality,

ˆ

Rd

1Q|U1Q|dx =
ˆ

Rd

(︁
(λ′)1/q

′
1Q

)︁(︁|U1Q|λ1/p)︁dx

≤ ∥1Q∥Lq′ (λ′)∥U1Q∥Lq(λ)

≤ ∥U∥Lp(μ)→Lq(λ)∥1Q∥Lq′ (λ′)∥1Q∥Lp(μ).

The claim now follows from the definition of [μ, λ′]Bp,q′ (ν). □
5. The multiplier condition

Let 1 < q < p < ∞ and set 1/r := 1/q − 1/p. Let μ, λ be weights and set ν
1 
p+ 1 

q′ := μ1/pλ−1/q. In this 
final section we will compare the multiplier condition

inf
c 
∥f ↦→ (b− c)f∥Lp(μ)→Lq(λ) = inf

c 
∥(b− c)ν−1∥Lr(ν) < ∞,

and sharp maximal condition M#
ν b ∈ Lr(ν) and prove that, unlike in the unweighted setting, the multiplier 

condition is not necessary for the boundedness of the commutator or for the boundedness of the paraproduct 
when p > q.

5.1. Conditions under which the multiplier and sharp maximal conditions are equivalent

In this subsection we show that under the assumption that ν ∈ Ar′ , the multiplier norm and the Lr(ν)
norm of the sharp maximal function are comparable. In the next subsection we will see that this is not 
possible in general. In particular, the comparability result of this subsection shows that in the proof of 
Theorem 5.3(ii) in the next subsection it will be crucial to use a weight ν / ∈ Ar′ .

Proposition 5.1. Let b ∈ L1
loc, r ∈ (1,∞) and let ν be a weight.

(i) If ν is doubling, we have

∥M ♯
νb∥Lr(ν) ≲ν inf

c 
∥(b− c)ν−1∥Lr(ν).

(ii) If ν ∈ Ar′ , we have

inf
c 
∥(b− c)ν−1∥Lr(ν) ≲ [ν]r−1

Ar′
[ν]A∞∥M ♯

νb∥Lr(ν).

To prove Proposition 5.1, we will need the following weighted version of [27, Lemma 3.6]. The proof is 
almost identical.
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Lemma 5.2. Let b ∈ L1
loc, 1 < r < ∞ and ν ∈ Ar′ . If we have for all cubes Q that

∥(b− ⟨b⟩Q)ν−1∥Lr(ν 1Q) ≤ C,

then there is a constant c such that

∥(b− c)ν−1∥Lr(ν) ≤ C.

Proof. Let us consider a sequence of cubes Q1 ⊆ Q2 ⊆ · · · with 
⋃︁∞

j=1 Qj = Rd. For j ≤ k, we have

|⟨b⟩Qk
− ⟨b⟩Qj

| = |(b(x) − ⟨b⟩Qj
) − (b(x) − ⟨b⟩Qk

)|

and hence, multiplying by ν−1/r′ , taking the Lr-average over Qj and using Minkowski’s inequality, we have

(︂ 1 
|Qj |

ˆ

Qj

|⟨b⟩Qk
− ⟨b⟩Qj

|rν1−r(x) dx
)︂1/r

≤ |Qj |−1/r∥(b− ⟨b⟩Qj
)ν−1∥Lr(ν 1Qj

) + |Qj |−1/r∥(b− ⟨b⟩Qk
)ν−1∥Lr(ν 1Qj

)

≤ C|Qj |−1/r + |Qj |−1/r∥(b− ⟨b⟩Qk
)ν−1∥Lr(ν 1Qk

)

≤ 2C|Qj |−1/r.

Rearranging the terms in this estimate, we obtain

|⟨b⟩Qk
− ⟨b⟩Qj

| ≤ 2C · ν1−r(Qj)−1/r. (5.1)

Note that because ν ∈ Ar′ , we know that ν1−r ∈ Ar. Furthermore, any A∞ weight gives infinite measure 
to Rd and thus ν1−r(Qj)1−r → 0 as j → ∞. Thus inequality (5.1) implies that (⟨b⟩Qj

)∞j=1 is a Cauchy 
sequence and thus converges to some c. We conclude by Fatou’s lemma that

ˆ

Rd

|b− c|rν1−r dx =
ˆ

Rd

lim 
j→∞

1Qj
|b− ⟨b⟩Qj

|rν1−r dx

≤ lim inf
j→∞ 

ˆ

Qj

|b− ⟨b⟩Qj
|rν1−r dx ≤ Cr.

This finishes the proof. □
We are now ready to prove Proposition 5.1.

Proof of Proposition 5.1 (i). Let c be a constant. Note that for x ∈ Rd we have

M#
ν b(x) ≤ 2 sup 

Q∋x

1 
ν(Q)

ˆ

Q 

(b− c) dx = 2 Mν
(︁
(b− c)ν−1)︁(x).

So the claim follows from the Hardy–Littlewood maximal inequality. The non-dyadic versions of the maximal 
functions are used in this context. Therefore, due to the one-third trick, the constant in the Hardy–Littlewood 
maximal inequality depends on the doubling constant of the measure ν.
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For (ii) it suffices to estimate

∥(b− ⟨b⟩Q)ν−1∥Lr(ν 1Q) = ∥(b− ⟨b⟩Q)1Q∥Lr(ν1−r)

uniformly over all cubes Q by Lemma 5.2. Fix a cube Q. By, e.g., [27, Lemma 3.1.2], there exists a 1
2 -sparse 

family 𝒮 such that

1Q|b− ⟨b⟩Q| ≲
∑︂
S∈𝒮

1 
|S|

ˆ

R

|b− ⟨b⟩S |dx.

Let g ∈ Lr′(ν) be positive. By Hölder’s inequality, we estimate
ˆ

Q 

|b(x)−⟨b⟩Q|g(x) dx

≲
∑︂
S∈𝒮

1 
ν(S)

(︂ˆ
S

|b− ⟨b⟩S |dx
)︂
⟨g⟩Sν(S)

≤
(︂∑︂
S∈𝒮

(︂ 1 
ν(S)

ˆ

S

|b− ⟨b⟩S |dx
)︂r

ν(S)
)︂1/r(︂∑︂

S∈𝒮
⟨g⟩r′S ν(S)

)︂1/r′

.

For the first term, we estimate using Corollary 2.10(︂∑︂
S∈𝒮

(︂ 1 
ν(S)

ˆ

S

|b− ⟨b⟩S |dx
)︂r

ν(S)
)︂1/r

≲ [ν]1/rA∞

(︂∑︂
S∈𝒮

(︂ 1 
ν(S)

ˆ

S

|b− ⟨b⟩S |dx
)︂r

ν(ES)
)︂1/r

= [ν]1/rA∞

(︂∑︂
S∈𝒮

ˆ

ES

(︂ 1 
ν(S)

ˆ

S

|b− ⟨b⟩S |dx
)︂r

dν
)︂1/r

≤ [ν]1/rA∞∥M ♯
νb∥Lr(ν).

For the second term, we have using Corollary 2.10 and Lemma 2.16 that

(︂∑︂
S∈𝒮

⟨g⟩r′S ν(S)
)︂1/r′

≲ [ν]1/r
′

A∞

(︂∑︂
S∈𝒮

⟨g⟩r′S ν(ES)
)︂1/r′

= [ν]1/r
′

A∞

(︂∑︂
S

ˆ

ES

⟨g⟩r′S dν
)︂1/r′

≤ [ν]1/r
′

A∞ ∥Mg∥Lr′ (ν)

≲ [ν]1/r
′

A∞ [ν]
1 

r′−1
Ar′

∥g∥Lr′ (ν).

Combining these estimates and using duality, we get

∥(b− ⟨b⟩Q)1Q∥Lr(ν1−r) ≲ [ν]r−1
Ar′

[ν]A∞∥M ♯
νb∥Lr(ν),

finishing the proof. □
5.2. Multiplier condition is in general non-necessary for boundedness

In the previous subsection, we have seen that the pointwise multiplication condition and the sharp 
maximal condition are equivalent for ν ∈ Ar′ , which combined with Theorem A yields the following. We 
have
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∥[b, T ]∥Lp(μ)→Lq(λ) ≂μ,λ inf
c 
∥(b− c)ν−1∥Lr(ν), assuming ν ∈ Ar′ , (5.2)

for 1 < q < p < ∞, 1
r := 1

q − 1 
p , μ ∈ Ap, λ ∈ Aq and ν

1 
p+ 1 

q′ := μ1/pλ−1/q, which is a direct analog of the 
unweighted setting in [27]. In this subsection we will prove that the multiplier condition

inf
c 
∥(b− c)ν−1∥Lr(ν) < ∞

is in general not necessary for the Lp(μ) → Lq(λ)-boundedness of commutators or paraproducts. From (5.2), 
we know that a counterexample must satisfy ν ∈ A2r′ \Ar′ .

Theorem 5.3. Let T be an ω-Calderón-Zygmund operator with ω satisfying the Dini condition.

(i) (Sufficiency) Suppose 1 < p, q < ∞, μ ∈ Ap and λ ∈ Aq. For every b ∈ L1
loc,

∥[b, T ]∥Lp(μ)→Lq(λ) ≤
(︁∥T∥Lp(μ)→Lp(μ) + ∥T∥Lq(λ)→Lq(λ)

)︁
· inf

c 
∥f ↦→ (b− c)f∥Lp(μ)→Lq(λ).

(ii) (Non-necessity) Suppose 1 < q < p < ∞. Then there are μ ∈ Ap, λ ∈ Aq and b ∈ L1
loc such that

inf
c 
∥f ↦→ (b− c)f∥Lp(μ)→Lq(λ) = ∞,

∥[b, T ]∥Lp(μ)→Lq(λ) < ∞.

Proof. The proof of (i) is straightforward and well-known. Let c be a constant and denote Θ(c) := ∥f ↦→
(b− c)f∥Lp(μ)→Lq(λ). Then

∥[b, T ]f∥Lq(λ) = ∥[b− c, T ]f∥Lq(λ)

≤ ∥(b− c)Tf∥Lq(λ) + ∥T ((b− c)f)∥Lq(λ)

≤ Θ(c)∥Tf∥Lp(μ) + ∥T∥Lq(λ)→Lq(λ)∥(b− c)f∥Lq(λ)

≤ Θ(c)
(︁∥Tf∥Lp(μ) + ∥T∥Lq(λ)→Lq(λ)∥f∥Lp(μ)

)︁
≤ Θ(c)

(︁∥T∥Lp(μ)→Lp(μ) + ∥T∥Lq(λ)→Lq(λ)
)︁∥f∥Lp(μ).

For (ii) the idea is to use Lemma 5.6 below. Let b ∈ L∞
c be given by b := 1B(0,1), where B(0, 1) is the unit 

ball. Set 1
r := 1

q − 1 
p , let γ := d(r′− 1) and define ν(x) := |x|γ . Then ν ∈ A2r′ since −d < γ < d(2r′− 1). By 

Lemma 2.23, there exist power weights μ ∈ Ap and λ ∈ Aq such that ν1/r′ = μ1/pλ−1/q. By Theorem 3.4
and Lemma 5.6(i) we deduce that

∥[b, T ]∥Lp(μ)→Lq(λ) ≲μ,λ ∥M#
ν b∥Lr(ν) < ∞.

Also, because for all constants c we have by Hölder’s inequality that

∥f ↦→ (b− c)f∥Lp(μ)→Lq(λ) = ∥(b− c)ν−1∥Lr(ν), (5.3)

Lemma 5.6(ii) shows that

inf
c 
∥f ↦→ (b− c)f∥Lp(μ)→Lq(λ) = ∞. □
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We get a similar result to Theorem 5.3 for paraproducts instead of commutators. The sufficiency is 
an immediate consequence of Theorem 3.10, Proposition 5.1(i) and equality (5.3). The non-necessity part 
follows by using Theorem 3.10 instead of Theorem 3.4, in an otherwise identical proof to the non-necessity 
part of Theorem 5.3. We write this result as follows:

Theorem 5.4. Let 1 < q < p < ∞.

(i) (Sufficiency) Suppose μ ∈ Ap and λ ∈ Aq. For every b ∈ L1
loc,

∥Πb∥Lp(μ)→Lq(λ) ≲ [μ]
1 

p−1
Ap

[λ]Aq
[ν]1/q−1/p

A∞ · inf
c 
∥f ↦→ (b− c)f∥Lp(μ)→Lq(λ).

(ii) (Non-necessity) There are μ ∈ Ap, λ ∈ Aq and b ∈ L1
loc such that

inf
c 
∥f ↦→ (b− c)f∥Lp(μ)→Lq(λ) = ∞,

∥Πb∥Lp(μ)→Lq(λ) < ∞.

We will prove the non-necessity using power weights. We start by documenting a useful property of power 
weights with a non-negative power:

Lemma 5.5. Suppose γ ≥ 0 and ν(x) := |x|γ . Then we have for all cubes Q

ℓ(Q)γ+d ≲ ν(Q)

In particular, for all α > 0 we have

sup 
Q:ℓ(Q)≥α

|Q| 
ν(Q) ≲ α−γ .

Proof. Let Q be a cube. Note that, since γ ≥ 0, we have ν(Q) ≥ ν(Q′), where Q′ is the cube with center 0
and side length ℓ(Q). Integrating in polar coordinates shows that ν(Q′) ≳ ℓ(Q)γ+d proving the first estimate. 
The second estimate is an immediate corollary of the first. □

The following lemma is the key in the proof of the non-necessity.

Lemma 5.6. Let r ∈ (1,∞) and set b := 1B(0,1), where B(0, 1) is the unit ball.

(i) Let ν(x) := |x|γ for γ ≥ 0. Then

∥M ♯
νb∥Lr(ν) < ∞.

(ii) Let ν(x) := |x|d(r′−1). Then

inf
c 
∥(b− c)ν−1∥Lr(ν) = ∞.

Proof. We use the notation B(a, s) = {x ∈ Rd : |x− a| ≤ s}. For (i) we write
ˆ

Rd

(M ♯
νb)rν dx =

(︂ ˆ

B(0, 12 )

+
ˆ

B(0,2)\B(0, 12 )

+
ˆ

Rd\B(0,2)

)︂
(M ♯

νb)rν dx,
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and estimate M ♯
νb separately in each of the three domains.

For |x| ≤ 1/2 suppose Q ∋ x. If ℓ(Q) < 1 
2
√
d
, then Q ⊆ B(0, 1) and thus

ˆ

Q 

|b− ⟨b⟩Q| dx = 0.

For cubes Q with ℓ(Q) ≥ 1 
2
√
d
, we use the estimate

ˆ

Q 

|b− ⟨b⟩Q| dx ≤ 2|Q|,

which yields

M#
ν b(x) ≤ 2 sup 

Q∋x:ℓ(Q)≥ 1 
2
√

d

|Q| 
ν(Q) .

An application of Lemma 5.5 shows that M#
ν b(x) ≲ 1.

For 1/2 < |x| ≤ 2 we again estimate

M#
ν b(x) ≤ 2 sup 

Q∋x

|Q| 
ν(Q) .

We split into two cases: ℓ(Q) ≤ 1 
4
√
d

and ℓ(Q) ≥ 1 
4
√
d
. In the first case, we have Q ⊆ {y ∈ Rd : |y| ≥ 1/4}

and therefore

|Q| ≤ 4γν(Q).

In the second case, we use Lemma 5.5 to get

|Q| ≲ ℓ(Q)γ+d ≲ ν(Q).

Combining these estimates, we again obtain M#
ν b(x) ≲ 1.

For |x| > 2 note first that for any cube Q,
ˆ

Q 

|b− ⟨b⟩Q| dx ≤ 2
ˆ

Q 

|b| dx ≤ 2
ˆ

Rd

|b| dx ≲ 1.

If Q ∩B(0, 1) = ∅, we trivially have
ˆ

Q 

|b− ⟨b⟩Q| dx = 0.

Thus, by Lemma 5.5, we get

M#
ν b(x) ≲ sup 

Q∋x,Q∩B(0,1) ̸=∅

1 
ν(Q) ≲ sup 

Q∋x,Q∩B(0,1) ̸=∅

1 
ℓ(Q)γ+d

.

Note that for all cubes Q in the supremum we have
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ℓ(Q)
√
d ≥ |x| − 1 ≥ 1

2 |x|

and thus ℓ(Q) ≳ |x|. This yields

M#
ν b(x) ≲ 1 

|x|γ+d
.

The three domains have been considered and using the achieved pointwise estimates respectively, we get
ˆ

Rd

(M ♯
νb)rν dx ≲

ˆ

B(0,2)

|x|γ dx +
ˆ

Rd\B(0,2)

|x|−r(γ+d)+γ dx.

Because γ ≥ 0 and r > 1, we have −r(γ + d) + γ = −γ(r − 1) − dr < −d. Therefore both the first and the 
second integral is finite.

For (ii) suppose first that c = 0. Then

∥(b− c)ν−1∥rLr(ν) ≥
ˆ

B(0,1)

|x|d(r′−1)(1−r) dx = ∞,

because d(r′ − 1)(1 − r) = −d. Next, suppose that c ̸= 0. Then

∥(b− c)ν−1∥rLr(ν) ≥ |c|r
ˆ

Rd\B(0,1)

|x|d(r′−1)(1−r) dx = ∞,

again because d(r′ − 1)(1 − r) = −d. □
Acknowledgements

The authors thank Tuomas Hytönen and Tuomas Oikari for helpful and inspiring discussions. Further
more, the authors express their gratitude to Pascal Auscher and Pierre Portal for help with the abstract in 
French. All the authors are supported by the Academy of Finland (through Projects 332740 and 336323).

References

[1] E. Airta, K. Li, H. Martikainen, Two-weight inequalities for multilinear commutators in product spaces, Potential Anal. 
59 (4) (2023) 1745--1792.

[2] A. Barron, Sparse bounds in harmonic analysis and semiperiodic estimates, PhD thesis, Brown University, 2019.
[3] S. Bloom, A commutator theorem and weighted BMO, Trans. Am. Math. Soc. 292 (1) (1985) 103--122.
[4] S. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Am. Math. Soc. 

340 (1) (1993) 253--272.
[5] D.L. Burkholder, A sharp inequality for martingale transforms, Ann. Probab. 7 (5) (1979) 858--863.
[6] D. Chung, Sharp estimates for the commutators of the Hilbert, Riesz transforms and the Beurling-Ahlfors operator on 

weighted Lebesgue spaces, Indiana Univ. Math. J. 60 (5) (2011) 1543--1588.
[7] C. Cascante, J.M. Ortega, Two-weight norm inequalities for vector-valued operators, Mathematika 63 (1) (2017) 72--91.
[8] D. Chung, M.C. Pereyra, C. Perez, Sharp bounds for general commutators on weighted Lebesgue spaces, Trans. Am. Math. 

Soc. 364 (3) (2012) 1163--1177.
[9] R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math. (2) 103 (3) 

(1976) 611--635.
[10] S. Fackler, T.P. Hytönen, Off-diagonal sharp two-weight estimates for sparse operators, N.Y. J. Math. 24 (2018) 21--42.
[11] C. Fefferman, E.M. Stein, Hp spaces of several variables, Acta Math. 129 (3--4) (1972) 137--193.
[12] T.S. Hänninen, Two-weight inequality for operator-valued positive dyadic operators by parallel stopping cubes, Isr. J. 

Math. 219 (1) (2017) 71--114.
[13] T.S. Hänninen, Equivalence of sparse and Carleson coefficients for general sets, Ark. Mat. 56 (2) (2018) 333--339.
[14] I. Holmes Fay, V. Fragkiadaki, Paraproducts, Bloom BMO and sparse BMO functions, Rev. Mat. Iberoam. 39 (6) (2023) 

2079--2118.

http://refhub.elsevier.com/S0021-7824(25)00116-3/bib49BA12718A2B355FE54161CD6EC1BB7Ds1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib49BA12718A2B355FE54161CD6EC1BB7Ds1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib2521F50A1E7141553A0ADEBA9CE617DAs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib97BC0EE3200B80AA1354DC3BA65EDD3Cs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib5F9F96420992D84678C1F5DD3AA83FA5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib5F9F96420992D84678C1F5DD3AA83FA5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib39A6B25556B58D50FDCB62AB352F789Bs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib0D6BE2DB771230EF378DCB9445D2AEF9s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib0D6BE2DB771230EF378DCB9445D2AEF9s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibEE78B076E532C9F8CA1BAEAB23D073EAs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib73330806812E6DCA586B9D9C7FAE7F9Es1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib73330806812E6DCA586B9D9C7FAE7F9Es1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib7B722F5CE87AFD3A4ECFF49D2D383A57s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib7B722F5CE87AFD3A4ECFF49D2D383A57s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib3D1F09EC113C5B034D1F219C0A9853A8s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA7C0B67D4D58F7C7DF728EDA68F1A1E1s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib0CD518C2041BA96324669CDF11B88E26s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib0CD518C2041BA96324669CDF11B88E26s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib5730CF7EF2A88EE643913F00C3584331s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibFF16ACAA17AF746D3B6250E6B2EBB19Es1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibFF16ACAA17AF746D3B6250E6B2EBB19Es1


42 T.S. Hänninen et al. / J. Math. Pures Appl. 203 (2025) 103772 

[15] T.S. Hänninen, T.P. Hytönen, Operator-valued dyadic shifts and the T (1) theorem, Monatshefte Math. 180 (2) (2016) 
213--253.

[16] T.S. Hänninen, T.P. Hytönen, K. Li, Two-weight Lp-Lq bounds for positive dyadic operators: unified approach to p ≤ q
and p > q, Potential Anal. 45 (3) (2016) 579--608.

[17] E.A. Honig, E. Lorist, Optimization algorithms for Carleson and sparse collections of sets, arXiv:2501.07943, 2025.
[18] T. Hytönen, K. Li, J. Tao, D. Yang, The Lp-to-Lq compactness of commutators with p > q, Stud. Math. 271 (1) (2023) 

85--105.
[19] I. Holmes, M.T. Lacey, B.D. Wick, Bloom’s inequality: commutators in a two-weight setting, Arch. Math. (Basel) 106 (1) 

(2016) 53--63.
[20] I. Holmes, M.T. Lacey, B.D. Wick, Commutators in the two-weight setting, Math. Ann. 367 (1--2) (2017) 51--80.
[21] T.P. Hytönen, J.M.A.M. van Neerven, M.C. Veraar, L. Weis, Analysis in Banach Spaces, Vol. I, Martingales and Littlewood

Paley Theory (Ergebnisse der Mathematik und ihrer Grenzgebiete), vol. 63, Springer, Cham, 2016.
[22] T. Hytönen, T. Oikari, J. Sinko, Fractional Bloom boundedness and compactness of commutators, Forum Math. 35 (3) 

(2023) 809--830.
[23] T.P. Hytönen, C. Pérez, Sharp weighted bounds involving A∞, Anal. PDE 6 (4) (2013) 777--818.
[24] T.S. Hänninen, I.E. Verbitsky, On two-weight norm inequalities for positive dyadic operators, Potential Anal. 55 (2) (2021) 

229--249.
[25] T.P. Hytönen, The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math. 175 (3) (2012) 1473--1506.
[26] T.P. Hytönen, Representation of singular integrals by dyadic operators, and the A2 theorem, Expo. Math. 35 (2) (2017) 

166--205.
[27] T.P. Hytönen, The Lp-to-Lq boundedness of commutators with applications to the Jacobian operator, J. Math. Pures 

Appl. 9 (156) (2021) 351--391.
[28] T.P. Hytönen, Of commutators and Jacobians, in: Geometric Aspects of Harmonic Analysis, in: Springer INdAM Ser., 

vol. 45, Springer, Cham, 2021, pp. 455--466.
[29] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978) 263--270.
[30] S. Lindberg, On the Hardy space theory of compensated compactness quantities, Arch. Ration. Mech. Anal. 224 (2) (2017) 

709--742.
[31] S. Lindberg, A note on the Jacobian problem of Coifman, Lions, Meyer and Semmes, J. Fourier Anal. Appl. 29 (6) (2023) 

68.
[32] A.K. Lerner, F. Nazarov, Intuitive dyadic calculus: the basics, Expo. Math. (2018).
[33] A.K. Lerner, S. Ombrosi, C. Pérez, R.H. Torres, R. Trujillo-González, New maximal functions and multiple weights for 

the multilinear Calderón-Zygmund theory, Adv. Math. 220 (4) (2009) 1222--1264.
[34] A.K. Lerner, S. Ombrosi, I.P. Rivera-Ríos, On pointwise and weighted estimates for commutators of Calderón-Zygmund 

operators, Adv. Math. 319 (2017) 153--181.
[35] A.K. Lerner, S. Ombrosi, I.P. Rivera-Ríos, On two weight estimates for iterated commutators, J. Funct. Anal. 281 (8) 

(2021) 109153.
[36] Z. Nehari, On bounded bilinear forms, Ann. Math. 65 (1957) 153--162.
[37] K. Okikiolu, Characterization of subsets of rectifiable curves in Rn, J. Lond. Math. Soc. (2) 46 (2) (1992) 336--348.
[38] M.C. Pereyra, Dyadic harmonic analysis and weighted inequalities: the sparse revolution, in: New Trends in Applied 

Harmonic Analysis, in: Harmonic Analysis, Geometric Measure Theory, and Applications, Appl. Numer. Harmon. Anal., 
vol. 2, Birkhäuser/Springer, Cham, 2019, pp. 159--239.

[39] J. Pau, A. Perälä, A Toeplitz-type operator on Hardy spaces in the unit ball, Trans. Am. Math. Soc. 373 (5) (2020) 
3031--3062.

[40] G. Rey, Greedy approximation algorithms for sparse collections, Publ. Mat. 68 (1) (2024) 251--265.
[41] J. Scurry, A characterization of two-weight inequalities for a vector-valued operator, arXiv:1007.3089, 2010.
[42] C. Segovia, J.L. Torrea, Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Am. Math. Soc. 

336 (2) (1993) 537--556.
[43] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics, vol. 123, Academic Press, 

Inc., Orlando, FL, 1986.
[44] I.E. Verbitsky, Imbedding and multiplier theorems for discrete Littlewood-Paley spaces, Pac. J. Math. 176 (2) (1996) 

529--556.

http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA0A529752C9B6DBD398148243BC56F49s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA0A529752C9B6DBD398148243BC56F49s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA6784CE9D252D8A4DD40E467940A5F26s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA6784CE9D252D8A4DD40E467940A5F26s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibC0BAD5D32E65BEECADE89CAF79A5B317s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibCA11B0098BBCC14D0E75D3170FBD5407s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibCA11B0098BBCC14D0E75D3170FBD5407s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib810766787D9172669F96F5549A1A8913s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib810766787D9172669F96F5549A1A8913s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib1A04BD06D76AD09610886E57A3ACFCD4s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib39A8A9BDAEE577296F46D5B635CEC634s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib39A8A9BDAEE577296F46D5B635CEC634s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib1AE8F78E07C9F293B7A286A362BEF7D5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib1AE8F78E07C9F293B7A286A362BEF7D5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib9CB2A5A223B353B4D52DB4EA6261DC48s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibEF9BC2428BE934D42E79167151635564s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibEF9BC2428BE934D42E79167151635564s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA6823E0E3254C21798DF192C089F893Cs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA1F09980F2DA3053364B5B18BDC2FCA5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA1F09980F2DA3053364B5B18BDC2FCA5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibD4148FFAA386D75D678E137672CA614Es1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibD4148FFAA386D75D678E137672CA614Es1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibC0D4FC829F3F5AC9B36A974D6202C87Es1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibC0D4FC829F3F5AC9B36A974D6202C87Es1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibFD1D2F1CFAF33D1240697E71D515F74Bs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib82581268E23AAEE51A1E932CD42C9D99s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib82581268E23AAEE51A1E932CD42C9D99s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA027AABD496C4532CCC59994F024B0FFs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA027AABD496C4532CCC59994F024B0FFs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib0E38F4B7F962AFC80DA9311223767389s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibEB2ECECAB3E10F52B41EF0E39A3A5177s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibEB2ECECAB3E10F52B41EF0E39A3A5177s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibB2CCAC5E440A24731CB09AB177611008s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibB2CCAC5E440A24731CB09AB177611008s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibE549315AAEAA7780B12C040FADB36CEAs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibE549315AAEAA7780B12C040FADB36CEAs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibABBBCE3C2D9F877547DBDB7BB96F8A07s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibF6929A853FAB01A8AF1CF00039E36887s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib22EFB0A46A8AB031EB5C8A3B321DCEC5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib22EFB0A46A8AB031EB5C8A3B321DCEC5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib22EFB0A46A8AB031EB5C8A3B321DCEC5s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibDC5F4B062CEA758A668CF56934C9661Cs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibDC5F4B062CEA758A668CF56934C9661Cs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib59B05EEB6B16A577A8EB1F72EE08F973s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib0D6632BA42762E2F766D566F18E87D33s1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA5F1E6ACDA319061E6A54CA269C5AF9Fs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibA5F1E6ACDA319061E6A54CA269C5AF9Fs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib037D770ED2A01E27AE2311A26DD0DF5Cs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bib037D770ED2A01E27AE2311A26DD0DF5Cs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibD0239A137BEDC0C48E709EC890FB3CADs1
http://refhub.elsevier.com/S0021-7824(25)00116-3/bibD0239A137BEDC0C48E709EC890FB3CADs1

	Weighted Lp→Lq-boundedness of commutators and paraproducts in the Bloom setting
	1 Introduction
	1.1 Commutators
	1.2 Paraproducts
	1.3 Outline

	2 Preliminaries
	2.1 Notation
	2.2 Dyadic lattices
	2.3 Dyadic analysis
	2.4 Muckenhoupt weights
	2.5 Bloom weight and the Bloom--Muckenhoupt joint characteristics
	2.6 Calderón--Zygmund operators and kernels
	2.7 Commutators
	2.8 Paraproducts

	3 Upper bounds
	3.1 Commutators
	3.2 Paraproducts

	4 Lower bounds
	4.1 Statement and overview of proof for commutators
	4.2 Statement and overview of proof for paraproducts
	4.3 Discretizing the norm of the weighted sharp maximal function
	4.4 Controlling oscillations by testing bilinear forms against pairs of test functions
	4.5 Sequential testing condition for general operators

	5 The multiplier condition
	5.1 Conditions under which the multiplier and sharp maximal conditions are equivalent
	5.2 Multiplier condition is in general non-necessary for boundedness

	Acknowledgements
	References


