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Abstract
This study investigates the influence of synthetic data on the accuracy of 6D pose estimation in RGB
images compared to RGB-Depth image-based methods. Additionally, it aims to examine how this per-
formance varies across different types of small chess pieces during a picking task with a robotic arm.
The methodology involves 3D scanning the chess pieces and generating a dataset of 61,910 synthetic
images with diverse domain randomization. Using this synthetic dataset, six unique 6D pose estimation
models were trained for each type of chess piece. The models were validated using a real-world 6D
pose estimation dataset, and the obtained results were compared with those from the estimations on
a synthetic dataset. It was observed that synthetic data can be used for bridging the visual simulation
to reality gap. However there is superior performance on synthetic data compared to real-world data.
This implies that results obtained in a synthetic environment cannot be directly projected to real-world
scenarios. Also a noticeable decrease in accuracy in both object detection and 6D pose estimation was
observed with respect to camera distance for real-world images, primarily linked to the reduced size
of chess pieces in the images. Notably, each chess piece exhibited improvement after depth refine-
ment, with accuracy closely linked to the performance of the depth camera. A picking experiment was
also conducted, revealing that models relying solely on RGB data achieved a positive grasping rate of
approximately 52%, while RGB-Depth-based methods reached around 70%. The findings underscore
the potential for successfully picking chess pieces with and without depth refinement, emphasizing the
feasibility of bridging the visual simulation to reality gap. Additionally, the study suggests several av-
enues for future research, including comparing synthetic data with real-world data, further exploring the
training process, and introducing domain randomization in the picking experiment, such as background
changes or different distractors. Furthermore, it suggests investigating diverse approaches to improve
depth accuracy.

iii



1
Introduction

Chess provides an interesting research domain, offering a simple yet multifaceted game that allows
exploration across various factors. Research in this field delves into physiological aspects, as demon-
strated in studies such as [1], where stress is examined through different chess problems. Furthermore,
chess offers a platform for technical research, as seen in studies like [2], which delves into gaze and
memory theory within a chess setting. In the domain of robotics research, particularly in human-robot
interaction, the study conducted in [3] explores the application of nonverbal emotion expression to eval-
uate the interactions between humans and machines in a chess match. A fundamental aspect of chess
playing also involves picking the game pieces. Some research papers have tackled the challenge of
chess piece manipulation by employing methods such as detecting the chessboard with corner detec-
tion or identifying ArUco markers on a custom chessboard [4, 5, 6]. These methods typically concen-
trate on distinguishing the elements in the surrounding environment and assuming the initial positions
of the chess pieces, rather than directly detecting the individual pieces themselves. While these meth-
ods are effective in scenarios where the chess pieces are already on the board, it’s important to note
that a crucial part of chess involves uncertain piece placement, like piece promotion. In this situation
a chess piece is located outside the board. The task of picking is a significant challenge in the field
of robotic manipulation and represents a key area of research within the broader robotics community.
Many challenges, such as the Amazon Picking Challenge [7] and the DHL Robotics challenge [8] have
been built around this task. The aim of these challenges is to enable robots to assist human workers
with tedious tasks, leading to increased efficiency, improved throughput, and reduced costs.

Figure 1.1: The picking problem pipeline

1.1. Problem statement
In many picking scenarios, it is essential to accurately estimate the transform of objects in the world.
For example, consider a scenario where a robotic arm retrieves items from amoving assembly line, with
objects situated in varying positions [9]. Similarly, in high-precision assembly tasks like the Siemens
Innovation Challenge, the assembly of gears within industrial settings with millimeter-accurate place-
ment [10]. The process of estimation the transform in the real world is known as six degree-of-freedom
(6D) pose estimation. A process that transforms the object from its object coordinate system into the
cameras coordinate system [11, 12]. The complete picking pipeline, which includes this critical step,
is depicted in Figure 1.1. The 6D pose is a 4x4 matrix that is composed of a 3D rotation and a 3D
translation of a frame with respect to another frame, as shown in equation (1.1). In equation (1.1), the
6D pose is represented as the transformation matrix A

BT , which describes the position and orientation
of frame B relative to frame A. In real life we do not know the exact pose, but we can estimate it,
done with RGB or RGB-Depth based images. The position and rotation of a known object model can
be obtained using various algorithms. Once the 6D pose is obtained and the position and rotation of
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1.2. Relevant work 2

the camera is captured with respect to the gripper, it becomes possible to determine how to move the
gripper towards the object for picking.

A
BT =

[
A
BR

BP
0 1

]
(1.1)

Figure 1.2: An example 6D pose from frame B to frame A

Modern object detection and 6D pose estimation algorithms mostly rely on neural networks. However,
the efficiency of these algorithms is tightly linked to the availability and quality of training data. Achieving
superior results often demands a substantial amount of data. In the early stages of object detection,
benchmark datasets such as ImageNet [13] and COCO [14] played crucial roles, featuring extensive
datasets with 1.2 million and 325,000 images, respectively. Recommendations for object detection
emphasize the crucial role of data quality in ensuring good performance, including aspects such as
accurate labeling [15]. In essence, the process of data collection poses a great challenge, demanding
both time and effort. Creating a 6D pose estimation dataset is extra challenging as obtaining real
6D pose data for objects requires accurate annotation of object poses in three-dimensional space.
The process involves capturing accurate information about the translation and rotation of objects as
observed by the camera.

1.2. Relevant work
Traditionally, 6D pose estimation methods based on images have relied on matching RGB feature
points between 3D models and images [16, 17], dating back to 1999 with [18]. These methods involve
extracting features from images, which can be RGB colors or more recent approaches that employ
neural networks. The goal is to match keypoints of objects in the image with keypoints from the object
stored in the database. By establishing these keypoint matches, 6D pose estimation can be performed.
However, one major limitation of this method is that objects require rich texture for detection of feature
points. With the introduction of affordable depth cameras, such as the Microsoft Kinect and Intel Re-
alSense, several new methods have emerged that that add depth information to match features of less
texture-rich objects [19, 20, 21].
The review [22] categorized the various pose estimation methods from RGB based to RGB-Depth
based methods. As outlined by the Benchmark for 6D Object Pose Estimation (BOP Challenge) [23],
an open challenge which aims to capture the state-of-the-art 6D pose estimation models, geometric
pose estimation techniques utilizing Pair Point Features (PPF) extracted from keypoints emerged as the
leading performers from 2010 to 2019 [24, 25]. However, starting in 2020, Deep Neural Network (DNN)
approaches that only utilized RGB inputs, trained on extensive datasets, and did not rely on keypoints,
emerged as contenders [26]. By 2022, DNN-based methods had surpassed PPF-based methods in
both speed and accuracy [27, 28]. In 2022 the best methods based on RGB even surpassed the best
RGB-Depth methods from 2020. Recent works [29, 30] still consider depth information crucial for the
task of 6D pose estimation, despite RGB methods becoming more competitive in recent years. This is
because the 2D projection of an object in an image may lack vital geometric details that are preserved
in depth information. In essence, the 3D representation contains richer information compared to an 2D
image. Also state-of-the-art results are still achieved with depth refinement looking at results from the
latest BOP challenge from 2022.
As already mentioned in Section 1.1, data collection for 6D pose estimation is challenging. There
are various open-source datasets available for testing 6D pose estimation algorithms. In 2022, the
BOP challenge incorporates twelve distinct datasets. The two most widely utilized datasets, namely
YCV-Video and Linemod Dataset, feature household objects such as a bench vise or soap dispenser.
These objects generally range from 150mm to 270mm in diameter. However, acquiring datasets for
other objects can prove to be challenging. In this context, the importance of synthetic data has grown,
allowing for the training of models using computationally generated data. This approach is particularly
beneficial in scenarios where obtaining accurate ground truths in simulation is more feasible than in
real-world. In delving into the realm of synthetic data, it becomes crucial to examine how simulation
can effectively narrow the gap between simulated and real-world scenarios, known as the sim2real gap.
Although simulated images may not be indistinguishable from real ones upon careful inspection, the
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objective is to expand the simulation domain extensively until it encapsulates the reality domain. The
overarching goal is to create a simulation environment so comprehensive that reality data points can
be interpolated between two synthetic data points.
Early instances of utilizing synthetic data can be found in papers such as [31], where OpenGL, a graph-
ics program for accelerated graphics, is employed to generate synthetic data for object detection. Ad-
ditionally, in [32], images for 6D pose estimation are computed by integrating a 3D object into a ran-
domly selected real photograph, also utilizing OpenGL. However, a significant drawback of employing
OpenGL for synthetic data creation is that the resultant images lack realism, with inconsistent shading
that deviates from real-world scenarios, as these images do not stick to the rules of the physical world.
That is why [33] developed Blenderproc, which is a modular procedural pipeline in Blender [34], which
helps in generating real looking images for training different networks. Blender, an open-source 3D
computer graphics software, serves a wide range of applications, for example 3D modeling, animation,
rendering, and shading. It utilizes a physically accurate light tracer for rendering to achieve realistic
shading and collaborates with different frameworks such as OptiX, HIP and Metal (NVIDIA, AMD and
Apple) to significantly accelerate computing times [35]. The paper [36] has demonstrated sim-to-real
results for instance segmentation with BlenderProc, which exhibit favorable comparisons against the
conventional render-and-paste method utilizing OpenGL renderings. The latest BOP challenge also
provide 50,000 training images per dataset and states that sim2real has shrank further since earlier
years [28]. The paper [37] illustrated that domain randomization, such as introducing distractors into
the scene or altering lighting conditions, proves to be an effective method for narrowing the visual
simulation-to-reality gap while the papers [38, 39] also train on simulated images for picking tasks.

1.3. Research question
Despite ongoing research in 6D pose estimation and advancements in synthetic data, it remains un-
proven whether relying only on synthetic data, particularly in the RGB format, is accurate enough for
real-world tasks such as picking the substantially smaller chess pieces. Consequently, a research gap
exists, questioning the feasibility of this approach and investigating whether depth information is still
necessary for refinement.
This study aims to investigate the applicability of synthetic data to chess pieces and assess whether it
is enough to bridge the visual simulation-to-reality gap. The objective is to enable trained models for de-
ployment in real-world picking tasks involving chess pieces while considering the potential requirement
of incorporating depth information. The overarching research question is: How does the utilization
of synthetic data impact the accuracy of 6D pose estimation for RGB images compared to RGB-
Depth images? Additionally, how does the performance vary across different types of chess
pieces during a picking task?

1.4. Main contributions
The main contributions in this work are as follows:

1. Generating 3D-scan models of chess pieces and constructing a synthetic dataset using them
2. Generating a real-world 6D pose estimation dataset using chess pieces
3. Conducting a comparative study of 6D pose estimation models with RGB and RGB-Depth based

methods focusing on substantially smaller objects than current datasets
4. Comparing 6D pose estimation results on a synthetic and real world dataset
5. Evaluating a 6D pose model in the context of a real-world robotic chess picking task



2
Methods

This chapter provides an overview of the methods employed in the creation of a synthetic dataset. It
covers the creation of 3D models and the selection of dataset attributes including domain randomiza-
tion techniques. The chapter proceeds to explain the metrics used for evaluating the performance of
various models utilized in this work. Furthermore, it delves into the explanation of the selected 6D pose
estimation model. The chapter also discusses the advantages and disadvantages of various meth-
ods for generating real-world 6D pose estimation data and explaining the chosen method in this work.
Finally, the methods for depth refinement are explained.

2.1. The synthetic dataset
2.1.1. The chess pieces
In this work only the white pieces are going to be analyzed. The objects are depicted in Figure 2.1a,
also showcasing the range of heights that vary from 37mm for the smallest to 80mm for the largest. To
generate CAD models of the objects, a 3D scanner is employed. Various methods exist for capturing
3D data, each with differences in accuracy and scanning distances. For instance, the Artec Ray II
is designed for extended scanning ranges exceeding 30 meters. However, for more detailed tasks,
handheld scanners such as the Artec Eva and Einscan H are preferred due to their greater accuracy,
which can reach up to 0.1mm.
In this particular application, the Artec Eva is utilized. The Artec Eva 3D scanner uses structured
light projection to capture the surface geometry of an object. An exemplary CAD model of the horse,
captured by the handscanner, is showcased in Figure 2.1b, where it is visualized in the 3D mesh
processing software Meshlab.

2.1.2. The synthetic dataset
For creating the synthetic dataset, the Blenderproc toolkit in blender is used, which streamlines a
pipeline for photorealistic rendering. This toolkit helps creating ground truth poses and bounding boxes
in the images. The images are generated using the 3D scanned chess pieces, but they also incorporate
six different distractor objects selected from a collection of 36 various household products that are used
in the YCB-Video and Linemod dataset. This inclusion of distractor objects highlights the variations in
object size compared to the chess pieces. These distractor objects are placed in a manner that ensures
they don’t collide with each other, all within a specially crafted ”box” featuring an unique texture. This

(a) The corresponding Chess Pieces. From left to right: king, queen,
bishop, horse, rook, and pawn.

(b) Example display of CAD
model of the horse

Figure 2.1: Chess Pieces and Horse Example

4

https://www.artec3d.com/portable-3d-scanners/laser-ray
https://www.artec3d.com/portable-3d-scanners/artec-eva
https://www.einscan.com/handheld-3d-scanner/einscan-h/


2.1. The synthetic dataset 5

Figure 2.2: Synthetic example images

texture is picked from a selection of 1627 textures, offering a wide range of backgrounds, including
options like sand, asphalt, leather, and brick. Exemplary images showcasing example scenes can be
found at Figure 2.2. Each time a scene is created, it results in the generation of 10 images capturing
that scene. The camera’s viewpoint is determined by sampling from a range between two spheres,
spanning from 200mm to 900mm away from the scene’s center. The camera’s elevation is also varied,
with a minimum angle of 5 degrees and a maximum of 85 degrees. Furthermore, the light source is
diversified for each scene by altering its placement within a spherical shell around the origin. Addition-
ally, both the color and strength of the light source are randomized. And finally, the texture of the chess
pieces is sampled from a pool of five distinct light wood textures, each assigned randomly for every
new scene.
A total of 61,910 images are generated, and this entire process takes approximately 32 hours to com-
plete when running on a Quadro T1000 GPU. It’s worth noting that the number of generated images
aligns with the benchmarks set by the BOP challenge papers, which utilize 50,000 training images
in their experiments. The histogram of all the camera distances to the chess pieces can be found in
Figure 2.3 where the distribution is around 900mm.

Figure 2.3: Histogram of camera distance to chess pieces
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2.2. Evaluation metrics
2.2.1. Bounding box metrics
Two key metrics that are often used for bounding boxes are known as Mean Average Precision (mAP)
at an IoU threshold of 0.50 (MaP@0.50) and Mean Average Precision across the range of Intersection
over Union (IoU) thresholds from 0.50 to 0.95 (MaP@0.50-0.95) [40]. Mean Average Precision is a
widely employed evaluation metric in bounding box evaluation. It calculates the Average Precision for
each class and at a specific IoU threshold. The IoU concept, visually explained in Figure 2.4, involves
defining true positives and false positives. A true positive occurs when the IoU between the predicted
bounding box and the ground truth exceeds the set IoU threshold, while a false positive arises when
the IoU falls below that threshold.

Figure 2.4: Intersection of Union explained

Precision is defined as the ratio of true positives to the sum of true positives and false positives, ex-
pressed by the formula TP

TP+FP . The mean Average Precision in the context of object detection involves
averaging precision values across a range of Intersection over Union thresholds for each class. For
mAP@0.50, only the IoU threshold of 0.50 is used. For mAP@0.50-0.95, the thresholds range from
0.50 to 0.95, with a step size of 0.05. The precision is determined for each class at the specified IoU
thresholds. The mAP@0.50-0.95 is then obtained by averaging these class precision values, providing
a comprehensive evaluation metric for bounding box performance across different IoU thresholds.

2.2.2. 6D pose estimation metrics
For non-symmetric objects, the commonly used evaluation metric is the Average Distance of Model
Points (ADD), introduced in [19], which measures the mean pairwise distance between transformed
points from the estimated and ground truth poses, see equation (2.1). In this notation, the symbols R
and T represent the ground truth rotation and translation, respectively. Similarly, the symbols R̃ and T̃
denote the estimated rotation and translation, respectively. M denotes the set of 3D points and m is
the number of points.

ADD =
1

m

∑
x∈M

||(Rx+ T )− (R̃x+ T̃ )|| (2.1)

When dealing with symmetric objects, the evaluation metric used is the Average Closest Point Distance
(ADD-S), introduced in [41]. This metric selects the average distance using the closest point distance
because matching points between symmetric objects can be ambiguous, see equation (2.2).

ADD − S =
1

m

∑
x1∈M

min
x2∈M

||(Rx1 + T )− (R̃x2 + T̃ )|| (2.2)

In the same vein, the ADD(-S) is mainly used to evaluate 3D object tracking, as it considers both
symmetric and non-symmetric objects, see equation (2.3). For non-symmetric objects, it calculates the
ADD distance, while for symmetric objects, it calculates the ADD-S distance.

ADD(−S) =

{
ADD if asymmetric,
ADD − S if symmetric.

(2.3)
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For pose estimation, accuracy is often determined by comparing the ADD(-S) with a pre-defined thresh-
old. In [41, 26], the evaluation is considered correct if the ADD(-S) falls below the threshold of 10%
of the object’s diameter. However, [29, 30, 42] also vary the threshold values and plot an accuracy-
threshold curve to visualize the performance of pose estimation over different thresholds relative to the
objects diameter. Varying thresholds allows for assessing pose estimation methods across various dif-
ficulty levels, with lower thresholds used to evaluate more accurate estimations and higher thresholds
for more tolerant evaluation. This approach provides a more comprehensive performance evaluation
of pose estimation methods. The Area Under the Curve (AUC) is then computed as a metric for pose
estimation accuracy. With this, a single metric can be obtained to quantify the performance of a model.

2.3. The 6D pose estimation model
The model that is chosen to estimate the accuracy of 6D pose estimation is EfficientPose [43]. Efficient-
Pose is a model that proposes a scalable model based on the popular EfficientDet [44]. The network
utilizes a convolutional neural network (CNN) architecture that takes RGB images as input and directly
predicts the 6D poses of the objects in the scene. This is achieved by incorporating two additional sub-
networks designed to predict the translation and rotation of objects, similar to the subnetworks handling
classification and bounding box regression. The employed loss in this model combines classification,
bounding box regression, and transformation losses, as outlined in equation (2.4). The loss serves as a
metric to evaluate how closely the model’s predictions align with the desired target values. It quantifies
the error between the model’s predicted outcomes and the actual targets. During training, the objective
is to minimize this loss, striving for a closer match between the model’s predictions and the ground truth.
Within this function, the classification loss, often referred to as the focal loss [45], presents a modifi-
cated version of the cross-entropy loss [46]. This loss function is designed to tackle the issue of class
imbalance in the dataset. Focal loss assigns higher weight to misclassified examples, which helps the
model focus on hard-to-classify objects. In essence, it emphasizes correcting the most challenging
cases during training. Additionally, the bounding box regression loss, also known as the Huber loss
[47, 48] or smooth L1 loss, offers a loss function that is less sensitive to outliers. In scenarios where
regression targets are unbounded for bounding boxes, other loss functions might need careful tuning
of learning rates to prevent exploding gradients. The smooth L1 loss avoids this issue. The employed
transformation loss is the ShapeMatch loss [41], which focuses on the 3D shape of the object. It calcu-
lates this loss for symmetric objects, as illustrated in equation (2.1), and asymmetric objects, as shown
in equation (2.2). This loss plays a crucial role in accurately calculating the 6D pose error and training
the model effectively by minimizing it. For training EfficientPose uses the Adaptive Moment Estimation
(ADAM) optimizer [49]. ADAM combines the benefits of two other optimization methods, RMSprop
and Momentum. ADAM maintains a moving average of the gradient and the square of the gradient’s
past values. This allows it to adapt its learning rates for each parameter individually, resulting in faster
convergence and efficient training.

L = λclass · Lclass + λbbox · Lbbox + λtrans · Ltrans (2.4)

Themodel is designed to be efficient making it suitable for training on large datasets but also suitable for
real time applications. The size of the model can be scaled with one hyperparameter ϕ to fit all different
computational resources. This model is chosen based of a couple factors. Firstly, it demonstrated State
of the Art performance in a prior study when tested on the Linemod dataset. Another advantage it holds
over alternative models is its end-to-end training capability. This means that unlike other models that
need separate networks for classification and/or bounding box detection, this model incorporates these
functionalities during the training process for 6D pose estimation. The best results have been achieved
with a separate model for each object, and that’s also the approach adopted in this work.

2.4. Real-world 6D Pose Estimation Datasets
A real-world dataset is essential to conduct a comparative analysis between synthetic and real-world
data, providing insights into the sim2real gap. To generate a real-world dataset for evaluating the
model’s performance, it is crucial to obtain the ground truth poses of the chess pieces. The two most
famous 6D pose estimation datasets both use a different method to capture the data. Linemod [19]
creates its dataset where they fix the objects on a flat board with attached markers, serving correspond-
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ing ground truth poses. In the case of the YCB-Video dataset [41], a video-based approach is utilized.
Initially, only the first frame is manually annotated. Subsequently, with the aid of Signed Distance
Function (SDF) representations for each object, the pose of each object in the initial depth frame is
refined. As the video progresses, object configurations are continuously tracked. Ultimately, a global
optimization process combines the camera trajectory and the relative object poses to yield accurate
results.
Both of these methods come with their own advantages and disadvantages. The ArUco board that is
used in the Linemod dataset is very useful due to their fast detection and their versatility. However, one
of the problems of ArUco markers is that the accuracy of their corner positions is not too high, even
after refinement. The YCB-Video approach offers greater flexibility in different objects scenes, whereas
the accuracy can be prone to errors in the initial pose measurement or depth map.
In this dataset, the Linemod approach is adopted, but instead of using an ArUco board, a ChArUco
board is employed [50]. A ChArUco board combines the advantageous features of both a chessboard
pattern and an ArUco board. It allows for more precise refinement of the corners of chessboard pat-
terns since each corner is enclosed by two black squares. However, it’s worth noting that identifying a
chessboard pattern is less versatile compared to locating an ArUco board, as it needs full visibility, and
occlusions are not tolerated. Therefore, the combination of the two methods proves to be an excellent
approach. By utilizing the ChArUco board, a predefined A3 board is generated to precisely dictate the
placement of the chess pieces. Refer Section 3.2 for a detailed explanation of the generation of the
real-world dataset used in this work.

2.5. Depth refinement
For the depth refinement the Iterative Closest Point (ICP) algorithm [51] is chosen. This classic method
is still the most used method for depth refinement in the BOP challenge. ICP is a method for point cloud
registration, which is a process that tries to allign two (or more) point clouds together. The idea is to
refine the initial guess of the transformation that maps one point cloud to another by minimizing the
distance between all corresponding points in the two clouds. An example can be seen in Figure 2.5
where the blue point cloud would be the (partial) depth map of the scene and the green point cloud the
initial 6D pose estimation.
Incorporating ICP algorithms often involves the utilization of plane segmentation techniques. This is
for instance useful, in the detection of ground planes [52]. The purpose of such segmentation is to
mitigate overfitting to the ground, a situation that can occur in real-world scenarios where the point
cloud only partially covers objects. The choice of Open3D’s plane segmentation method is motivated
by its ease of implementation, complementing the existing ICP algorithm, and the availability of great
documentation for integration. This method segments geometric primitives from point clouds using
the RANdom Sampling and Consensus (RANSAC) technique. RANSAC, as an iterative modeling
method, effectively handles data with outliers. It identifies and removes outliers, estimates the model
using outlier-free data, and extracts shapes based on minimal sets, a minimal number of data samples
required to uniquely define a model (e.g., three points for a plane, four for a sphere). The process
involves identifying points within a specified threshold of the plane represented by ax+ by+ cz+ d = 0,
referred to as inliers. The plane with the maximum number of inliers is considered the most accurate
estimation for the ground.

Figure 2.5: The Iterative Closest Point algorithm visualized [53]



3
Experiments

This chapter begins by detailing the training process for the 6D pose estimation model, providing in-
sights into the made decisions. Subsequently, it delves into the creation of a real-world dataset de-
signed specifically for validating the 6D pose models. Additionally, the chapter goes in detail on the
depth refinement pipeline used in the experiments. Towards the end, the chapter offers an overview
of the ROS-based picking experiment, exploring the picking capability. This section provides detailed
explanations and visualizations of the ROS node network, the training process of a lightweight object
detection model, and the execution of a hand-eye calibration process.

3.1. Training the 6D pose estimation model
3.1.1. Preparing the model
For each model, images are only chosen in which the object to be trained occupies a minimum of 30%
of the frame. Subsequently, the synthetic dataset is randomly partitioned into training and validation
sets, with a distribution of 97% for training and 3% for validation. Also a seperate test set is generated
and held back for the validation of the final models. This set can be compared against the real-world
dataset. The datasets size per object can be seen in Table 3.1. Most of the images are processed in
each epoch, amounting to 3,000 steps x 16 images per batch (48,000 images). The hyperparameter ϕ
is set to 0 to avoid computational resource constraints when running all six models in parallel at runtime.
The initial learning rate is set at 0.0001 and is halved if the average point distance does not decrease
during the last 35 evaluations. This adaptive learning rate strategy is implemented to address situations
where the model’s performance stagnates during training to help converging to a global minima and
help with stability. Additionally, image augmentation is disabled due to the dataset’s already substantial
size and potential challenges associated with transitioning from augmented synthetic data to real-world
images. Finally, the transformation loss, initially set at 0.02 as per the original paper’s findings, has been
adjusted through experimentation. In this particular experiment, a value of 1 has been determined to be
more effective, following a process of trial and error. This modification resulted in a notable decrease
in the transformation loss and an enhancement in the ADD(-S) metric performance over the validation
set. The hypotheses of this outcome can possibly be attributed to the small scale of the objects being
detected. A higher loss value helps the optimization process and enabling the model to converge to a
more favorable minimum. Without this adjustment, the classification loss and bounding box regression
loss could dominate the training process and hinder convergence for the transformation*.

Name Train size Validation size Test size
Rook 51597 1596 1555
Queen 52983 1639 1547
Pawn 50808 1572 1400
King 49838 1542 1146
Horse 47547 1471 1112
Bishop 45587 1410 1036

Table 3.1: Size of the image sets per object

*During the writing process, additional research was undertaken, and it was found that these hypotheses may be incorrect.
However, despite this discovery, the conclusions drawn in this work remain unchanged. For further details and additional results,
please refer to Appendix A.5.

9
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3.1.2. Training
The model training is carried out using an Nvidia RTX 3090ti GPU in conjunction with an AMD Ryzen
Threadripper PRO 83955WX 16-Cores CPU. All models undergo a minimum of 400 training epochs,
equivalent to approximately 5 days of training. The training process has been saved through different
logs with tensorboard. Evaluation of the validation set occurs following every 5 epochs, and if the ADD(-
S) metric exhibits improvement on the validation set, the model is saved. The graphs of all the losses
and the validation set metrics can be seen in Appendix A from Figures A.1 to A.6. In these graphs the
epoch where the best model is saved is shown with a red dot. What can be seen from all these graphs
is that while the model trains, the loss and mean distance decreases and the ADD(-S) increases. This
means that the model is actually learning. What can be seen for some models is that at a later stage
of training the model can become unstable where the loss diverges. This can be perfectly seen in the
loss figure of Figure A.5.

3.1.3. The synthetic test set
This test set is made to validate the 6D pose estimation results of the trained models on unseen syn-
thetic data. This test set is generated in addition to the training and validation sets. The only difference
lies in the distribution of the objects distance to the camera, which centers around 500mm, as this is
also the distribution for the real-world dataset, as can be read in section 3.2. Furthermore, only images
where the object is visible in at least 70% of the image are used. The 6D pose estimation results can
be found in chapter 4.

3.2. Real-world dataset creation
In the setup of dataset creation, the FRANKA RESEARCH 3 robotic arm is employed, and it operates
with libfranka and franka_ros, both version 0.10. The choice of a robotic arm is driven by the capability
to systematically arrange preprogrammed camera positions and maintain steady image quality. The
imaging is facilitated by the ZED2 camera, which operates on ZED SDK 4.0. The captured images have
dimensions of 1280x720 pixels, and the depth information is acquired using the neural depthmode. The
dataset creation setting is shown in Figure 3.1b. The board is deliberately positioned atop a box at the
end of the table, a decision made to prevent the robot arm’s workspace from being constrained by joint
limits. This arrangement guarantees that a wider range of poses can be accessed with few limitations.
The images are acquired while the box remains stationary, and the robotic arm undergoes a series of
movements to various locations in the environment, capturing images at each point. At each position,
a defined pose is set for the end effector.

(a) The ChArUco board with predefined
placements (b) The dataset creation scene

(c) The example hemisphere of the dataset
creation

Figure 3.1: The dataset creation
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These locations for the robotic end effector are determined by a hemisphere configuration with the theta
angle ranging from 15 to 75 degrees and the phi angle spanning from 30 to 150 degrees. Each hemi-
sphere contains 100 locations. The hemisphere is defined with radii of 300, 450, and 600 millimeters,
with the top of the box serving as the central reference point. Example locations from the hemisphere
can be seen at Figure 3.1c, showcasing both the central point and various end effector poses. An
image will be captured when the ChArUco detection method can reliably and accurately locate the 6D
pose of the board, as demonstrated in Figure 3.2b. However, it’s important to note that certain poses
may remain inaccessible due to restrictions imposed by the robot’s joint limitations, and in such cases,
images will also not be taken. For every reachable arm position, the camera takes a RGB image and
saves the whole point cloud that will be used for depth refinement. Within each iteration of 300 poses,
approximately 50% of the images are preserved, taking into account factors such as poses that cannot
be reached or unsuccessful ChArUco board detection. This process is iterated six times, during which
the entire board is rotated by 180 degrees, and the chess pieces are rearranged into different columns
of the ChAruco board. For example, the piece on A1 goes to A2, A2 is moved to A3, and A3 is moved
to A1. Furthermore, a standard deviation of 50mm is introduced for each pose in the [x, y, z] coordi-
nates. This variation is deliberately introduced in each iteration to introduce an element of randomness
and diversity in the dataset. The systematic introduction of randomness, the rotation of the box, and
the reshuffling of chess pieces are incorporated to ensure comprehensive coverage of the entire set of
chess pieces in the images that are captured. In total 944 images are taken in the dataset. Additionally,
objects that are not visible in the images, either due to falling off the frame or experiencing at least 50%
occlusion, are categorized as negative instances.

(a) The RGB image of the board (b) The ChArUco pose detection

Figure 3.2: An example image of the dataset

3.3. The depth refinement pipeline
For 6D pose estimation with depth refinement, the pointcloud is captured by the neural depth mode of
the ZED2 camera. An important note is that only the visible portions of the scene is captured. To limit
the ICP algorithm to points close to the object, only points within a 75mm radius of the initial estimation
are taken into account. Additionally, the ground plane is excluded from the refinement. The plane is
segmented with a distance threshold of 2.5mm, RANSAC is 3 and with 1000 refinement iterations. As
explained in Section 2.5 the distance threshold defines the maximum distance a point can have to an
estimated plane to be considered an inlier. The threshold is selected through a process of trial and error.
A smaller threshold imposes strict criteria for points to be classified as inliers to the plane, potentially
leaving some ground plane points unfiltered. In contrast, larger thresholds consider points further from
the plane as inliers, which may result in the removal of points belonging to the object. The number of
iterations defines how often a random plane is sampled and verified.
An example pipeline is depicted in Figure 3.3, showcasing the depth refinement process for the horse
object in the provided image, as seen in Figure 3.3a. Figure 3.3b displays the point cloud of the image
in red, with the initial estimation from an RGB image depicted in cyan. The estimated ground plane is
represented in yellow in Figure 3.3c. Subsequently, the ICP algorithm is applied to the relevant depth
points, with a maximum of 10 iterations. The resulting blue points denote the final pose estimation,
while the ground truth is presented in green in Figure 3.3d.



3.4. The picking experiment 12

(a) The provided RGB image (b) The point cloud of the image (c) Only the relevant points will
be considered

(d) The final estimations in cyan
and blue, the ground truth in

green

Figure 3.3: The depth refinement pipeline

3.4. The picking experiment
As the goal of the picking process goes beyond demonstrating the effectiveness of the pose estimation
model, an experiment involving real picking data is conducted. Chess pieces are positioned on top of
a box to create a more extensive range of joint movement, with a white paper underneath to enhance
the contrast between the background and the chess pieces. For consistent evaluation, each attempt
to pick up each chess piece is repeated 25 times, using a gripper with a width of 20mm, both with
and without depth refinement. The chess pieces are positioned and rotated randomly on the box. The
camera will determine the positions of the chess pieces from two predetermined joint states at the top
corner of the box. The evaluation is solely focused on categorizing the picking outcomes as either
”POSITVE” or ”NEGATIVE”. Prior to identifying which grasp to request, a lightweight object detection
model is employed to detect the presence of an object within the image. This choice is made to avoid
the simultaneous execution of the six EfficientPose models in parallel, as it would not scale efficiently
with computational costs. The lightweight classification model chosen for this purpose is YOLOv5 [54].
To accurately estimate the camera’s position within the scene, MoveIt is employed for determining
the transformation from the gripper to the camera. MoveIt [55] is an open-source software framework
designed for motion planning and manipulation in robotic systems. It provides a set of tools, libraries,
and APIs that streamline the development of robotic applications, particularly those involving robotic
arms and manipulation. MoveIt includes a package that facilitates the Hand-Eye calibration process.
The complete picking pipeline is illustrated in a simplified manner, outlining the steps in Figure 3.4.
Additional details are provided in Section 3.4.

Figure 3.4: The picking pipeline
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YOLOv5
YOLOv5 stands for the fifth iteration of the You Only Look Once [56] models. YOLO is a family of
real-time object detection models in computer vision. YOLO performs regions of interest proposal and
classifying objects within those regions both in a single step. The YOLOmodels are well-suited for real-
time applications because of their efficiency. YOLOv5 stands out as one of the most widely adopted
open-source classification models and has gained popularity within the computer vision community, ev-
ident from its 14,900 stars on its GitHub repository. In this training setting, a cluster of four Nvidia RTX
3090ti GPUs were employed alongside an AMD Ryzen Threadripper PRO 83955WX CPU featuring 16
cores. The training process utilized the data parallelization mode, which ensures gradient synchroniza-
tion across the models. The training batch size was set to 64, and there were 49,527 training images
compared to 12,382 test images, maintaining an 80-20 ratio. The weights of the yolov5x are used as
a pretrained model. This is the biggest pretrained model provided. YOLOv5 uses three distinct loss
components. The initial component relates to the loss associated with bounding box regression. The
second element focuses on the confidence of an object’s presence, termed the objectness loss, as
described in [57]. Finally, the third component is the traditional classification loss, which is computed
using Cross Entropy. The decrease of the losses can be seen in Figure 3.5 that show a stable learning
process within 24 epochs.

Figure 3.5: The losses of the YOLOv5 training

The model was trained within a single day and reached a stable minimum point where it didn’t exhibit
further improvements on the test set, as evident from the metrics displayed in Figure 3.6. What can
be seen from the graphs is that after the very first epochs the MaP@0.50 is already nearly perfect and
is stable at 4 epochs altough the MaP@0.50-0.95 is a stricter metric and shows that the model is only
stable after around 15 epochs.

Figure 3.6: Two different metrics on the test set of YOLO training

Hand-Eye calibration
The calibration problem, expressed as AX = BX, requires solving for the transformation matrix X.
Initial transforms A and B are known, including the base to the end effector through the robot’s kine-
matics and the camera to the target through an ArUco board detection. The transformation matrix X
can be determined through various poses. In Figure 3.7, the problem is visually depicted. In this work,
a solver employing dual quaternions from [58] is utilized with 10 different poses.
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Figure 3.7: The hand eye calibration problem

The picking pipeline
The picking experiment employs a Robotic Operating System (ROS) network, and the simplified flow
of the ROS node network pipeline is illustrated in Figure 3.4. In this figure the red lines represent the
data transfers between nodes and the black lines represent requests to different nodes. The initial
central point of the script is the master control node, responsible for two distinct actions. The first
action involves requesting the 6D pose estimation, while the second action is executed after obtaining
the 6D pose, focusing on grasping the object. The required data for object detection is received from
the ZED2 camera node. Upon obtaining the 6D pose of a specific chess piece, a predefined grasp
action is invoked to initiate the picking movement. The franka_ros package establishes a connection
between Franka Emika research robots and the entire ROS ecosystem. It incorporates URDF models
and intricate 3D meshes of both the robots and end effectors, facilitating visualization and kinematic
simulations. When requesting a grasp action, MoveIt is employed to plan the motion of the Franka
arm. The motion planning for the arm leverages MoveIt’s standard planning library. Once a plan is
generated, the specified joint states are transmitted to libfranka, the open-source C++ interface for the
robot, facilitating the movement of the actual robot arm.



4
Results

This chapter begins with an analysis of the two datasets, the real world 6D pose estimation dataset
and the synthetic test set, to explore the datasets data distribution. This is followed by a comparison
of 6D pose estimation performance for each object. Following this comparison, the accuracy of depth
refinement on real-world data is analysed. Finally, the picking capabilities are analyzed.

4.1. Analysing the datasets
Within the 944 images of the real-world dataset, a maximum of 39 negative instances per object were
detected because they were not visible in the image. The size of the synthetic test set can be found in
table 3.1. In both datasets chess pieces are placed at varying distances ranging from approximately
200mm to 900mm. The highest frequencies fall within the 400mm to 500mm range. The overall fre-
quency distribution of ground truths distance for all chess pieces is depicted in Figure 4.1. The his-
tograms for both datasets exhibit similar distributions.

(a) The histogram of all ground truth distances combined for the
real world dataset

(b) The histogram of all ground truth distances combined for
synthetic dataset

Figure 4.1: The dataset distance distribution

The ground truth locations are entirely known. Following the completion of 6D pose estimations. False
positives are identified when the ADD(-S) is greater than the diameter of the respective object, while
true positives are recognized when it falls below that threshold. To delve into the distances where the
model provides a true positive, for both datasets a histogram is generated for where the model gives a
true positive prediction, as can be seen in Figure 4.2.

(a) The histogram of all True Positives distances combined for
the real world dataset

(b) The histogram of all True Positives distances combined of the
synthetic dataset

Figure 4.2: The datasets true positives distribution
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Unlike the synthetic dataset, the ground truth histogram for the real-world dataset is noticeably much
smaller than the combined ground truth distances shown in figure 4.1a. Specifically, the synthetic data
had a true positive rate of 90%, whereas the real-world dataset showed a significantly lower rate of 30%.
In the real-world dataset, there is also a significant decrease in the positive rate of the model beyond
the 450mmmark. This decline is attributed to the objects becoming too small in the image. This finding
and additional analysis on object detection for the real-world dataset can be found in appendix A.3.

4.2. Analysing the models performance on 6D pose estimation
To assess the 6D pose estimation across various objects, two distinct metrics are used, that are ex-
plained in Section 2.2.2. With the traditional ADD(-S) metric this translates to a threshold of a mean
point distance below 3.9mm for the pawn and 7.9mm for the king, for instance. Additionally, the AUC is
derived from multiple thresholds, where in this work the threshold is varied from 0 to 100% with steps
of 0.1%. In Table 4.1, the various metric scores can be seen on synthetic and real-world data.

Chess Piece Real / Synthetic ADD(-S) metric [%] ADD(-S) metric
with ICP [%] AUC [%] AUC with ICP [%]

Rook Real 1.85 66.42 65.27 86.18
Synthetic 9.2 95.5 80.2 93.5

Queen Real 42.36 74.65 81.54 88.37
Synthetic 81.3 94.1 88.0 92.5

Pawn Real 15.60 39.01 75.65 82.49
Synthetic 47.0 97.0 83.3 95.0

King Real 58.91 74.32 86.84 89.28
Synthetic 76.4 92.1 86.8 91.9

Horse Real 0.0 20.0 61.59 74.64
Synthetic 22.5 74.6 68.7 85.2

Bishop Real 23.13 66.67 75.93 89.26
Synthetic 63.2 96.8 85.7 94.4

Table 4.1: Metrics for 6D pose estimation

Several observations stand out. Firstly, the synthetic data has much better metric scores, with the
ADD(-S) metric having an improvement of 1.5-3 times for each model. The AUC scores also improve
a lot, driven by better performance at stricter thresholds. Additionally, substantial enhancements are
evident in all metrics following depth refinement. Comparing depth refinement with synthetic data poses
a challenge due to the complete and perfect depth maps generated by the computer. This perfection
is the reason for the high scores observed with depth refinement on synthetic data. Real-world data
lack such perfect depth maps, still it shows good improvements in metrics with depth. The rook has in
particular a remarkable improvement, soaring from 1.85% to 66% in ADD(-S), a thirtyfold increase. The
horse, on the other hand, continues to pose challenges for the model in predicting rotation, reflected in
its lower score on both the synthetic and real-world dataset. Despite an enhancement in score following
depth refinement, it remains at the lower end of the scores.

4.3. The accuracy improvement of depth refinement
After comparing synthetic data with real-world data on 6D pose estimation, the accuracy improvement
of depth refinement is further analysed. To ensure a fair analysis, only real-world data is considered.
Two plots are generated where the ADD(-S) of all objects are plotted against their respective camera
distances, both with and without depth refinement. Polynomial trend lines are incorporated into these
plots. In figure 4.3a the values of the trend line is 3.15 ∗ 10−5 ∗ x2 − 1.95 ∗ 10−2 ∗ x + 3.96 and for
figure 4.3b the value of the trend line is 1.92 ∗ 10−7 ∗ x3 − 1.97 ∗ 10−4 ∗ x2 + 6.03 ∗ 10−2 ∗ x − 4.44.
For better comparability, the ADD(-S) of each object is scaled between 0 and 1. The observation is
that, without depth refinement, as illustrated in Figure 4.3a, the accuracy of the 6D pose estimation de-
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creases as the distance increases. Notably, the decline in accuracy becomesmore pronounced beyond
425-450mm, aligning intriguingly with the point where object detection experiences a drop in accuracy.
Consequently, the 6D pose estimation model encounters difficulties when dealing with smaller objects
as well. When examining the figure with depth refinement in Figure 4.3b, it becomes apparent that,
before reaching 325mm, the estimations not only failed to improve but even demonstrated a decline
in accuracy. Moreover, depth refinement also has a decline in accuracy, happening around the same
range of 425-450mm.

(a) Mean Distances without depth refinement (b) Mean Distances with depth refinement

Figure 4.3: The mean distance plotted against the camera distance

Furthermore, a detailed analysis of the significance of the number of points used in depth refinement
is conducted. The significance is showed in two visual representations as can be seen in Figure 4.4,
accompanied by polynomial trend lines. In figure 4.4a the values of the trend line is 5.27 ∗ 10−9 ∗ x2 −
1.84∗10−4∗x+1.71 and for figure 4.4b the value of the trend line is 1.43∗10−3∗x3−2.39∗x2+1.24∗103∗
x− 1.91 ∗ 105. In Figure 4.4a, the correlation between the number of points and ADD(-S) is illustrated.
Although there is still some variation in ADD(-S), it is noteworthy to emphasize the trend of increasing
accuracy associated with a greater number of points used in depth refinement. The greater number of
points enables a more thorough capture of texture, contributing to enhanced refinement precision.
In Figure 4.4b, the mean number of points is graphed against the camera distance. This plot reveals
a minimum camera distance of approximately 325mm and optimal camera performance at around
400mm. This trend aligns with the findings of Figure 4.3b, where depth refinement failed to yield im-
proved results before 325mm, and the optimal refinement occurred around 400mm. Subsequently, the
number of points decreases with an increase in camera distance. The observed behavior of a mini-
mum camera distance is attributed to the characteristics of the ZED2 camera, which is documented to
demonstrate optimal performance within the range of 300 to 1000mm. An important observation is that
the accuracy of depth refinement is tied to the performance of the camera in use.

(a) Number of points plotted against the mean distance (b) Number of points plotted against the camera distance

Figure 4.4: The significance of the number of points in depth refinement summarized in two plots
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4.4. Analysing the picking
The sum of the outcome of the picking experiment is depicted in Table A.3 and detailed plots are avail-
able in Table 4.2. These experiments reveal the feasibility of picking chess pieces solely based on
synthetic data. Notably, 52% of all detections were successful even without depth information. Further-
more, incorporating depth refinement significantly enhances the success rate, reaching approximately
70.5% for successful picking. Within the individual plots, it becomes evident that, for instance, pick-
ing the horse is notably simpler than predicting its 6D pose. This ease of picking can be attributed to
the fault tolerance provided by the wide gripping range of the horse’s head. Surprisingly, the smallest
object, the pawn, exhibited above mean performance with only RGB.

Gripping results rook
Negative Positive

Without depth 13 13
With depth 12 13

Gripping results horse
Negative Positive

Without depth 9 18
With depth 5 21

Gripping results queen
Negative Positive

Without depth 10 15
With depth 6 20

Gripping results king
Negative Positive

Without depth 12 14
With depth 7 18

Gripping results pawn
Negative Positive

Without depth 9 16
With depth 10 15

Gripping results bishop
Negative Positive

Without depth 14 11
With depth 5 20

Table 4.2: Individual Gripping Results for Each Chess Piece



5
Conclusion

In recent years, significant progress has been made in RGB-only pose estimation methods and study
to synthetic data. Various research studies indicate that the gap between simulation and reality has
been diminishing over the years. Additionally, recent 6D pose estimation papers demonstrate achieving
nearly perfect scores across various datasets. However is synthetic data accurate enough for bridging
the visual simulation to reality gap for tasks as picking chess pieces? Or do we also still need depth
for refinement? To adress this, this study aims to answer the following research questions: How does
the utilization of synthetic data impact the accuracy of 6D pose estimation for RGB images
compared to RGB-Depth images? Additionally, how does the performance vary across different
types of chess pieces during a picking task?

To investigate these research questions, six distinct chess pieces underwent 3D scanning to generate
CAD models, resulting in the creation of 61,910 synthetically generated images with diverse domain
randomization. Using this synthetic dataset, a dedicated 6D pose estimation model was trained for
each chess piece. Subsequently, a specific real-world dataset was generated. The models trained
on synthetic data were then compared on 6D pose estimation performance between the synthetic and
real-world datasets. Additionally, a real-world picking task was executed using a robotic arm. A ROS
node network was established, and attempts were made to pick up the chess pieces in 25 trials, both
with and without depth information.

5.1. Conclusion
In this work, it was observed that synthetic data can be used for bridging the visual sim2real gap.
However, the superior performance on a synthetic test set compared to real-world data implies that
results obtained in a synthetic environment cannot be directly projected to real-world scenarios.
Furthermore it was concluded that the models accuracy improves as the object gets closer. Beyond
450mm, there was a noticeable decline in accuracy in object detection, primarily attributed to the dimin-
ishing size of the chess pieces. Notably, each chess piece showed substantial improvement after depth
refinement. The horse consistently posed challenges for the model in predicting rotation, as evidenced
by its consistently lower score compared to other objects, even after depth refinement. Additionally,
the analysis of the number of points used in depth refinement revealed a clear correlation between
the number of points and accuracy. The ZED2 camera used, demonstrated suboptimal performance
for closer distances, as its depth accuracy was insufficient for distances before 300mm. The optimal
camera distance was found to be 400mm, where the maximum texture of the object is captured. After
this distance, there was an apparent decline in the number of points with respect to camera distance.
The picking results reveal that objects could be successfully picked up approximately 52% of the time
using RGB-only information. Surprisingly, even the smallest object, the pawn, demonstrated picking
performance above the mean with RGB-only data. Particularly noteworthy is the horse, which demon-
strated a notably high positive rate. Although its models achieved the lowest score, this can be at-
tributed to the wide fault tolerance of its head’s gripping range. The success rate of picking significantly
improved to around 70% with the incorporation of depth refinement.
In conclusion, these findings highlight the potential to narrow the visual sim2real gap. They emphasize
that while depth plays a crucial role in substantial improvement of 6D pose estimation, successfully
picking various small chess pieces is achievable both with and without depth refinement.

5.2. Discussion and future work
The outcomes of this study open up several potential directions for future research, aiming to advance
and expand the existing knowledge on synthetic data, 6D pose estimation and manipulation. Initially
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centered on synthetic data training, a valuable extension involves training the 6D pose estimationmodel
on the real-world dataset. This would enable a fair comparison between simulation-based and real-
world pose estimation models.
Secondly, a more extensive investigation could be undertaken to explore the training process further.
While Appendix A.5 already provides some insight into the current training configuration, a more com-
prehensive validation of these settings could significantly enhance the understanding of the training
dynamics. Possible research directions could include varying the number of training images, like [39],
to create an ablation study on how altering the dataset changes the performance on real-world data.
Another potential research direction involves investigating if alternative object detection models, such
as YoloV8, could be used instead of using EfficientDet as a backbone.
Furthermore, it’s worth noting that the real-world dataset and picking experiment lacked substantial
domain randomization, like different backgrounds or distractors. The gripping results might have been
different with a more diverse domain that is used in real-world settings. An extension to the real-world
dataset could also be annotating bounding boxes on the objects, enabling a better analysis of object
detection.
This study demonstrates the feasibility of successful picking using synthetic data, as demonstrated by
a total of 300 grasping attempts. To improve data quality and potentially gain different insights, there
is a possibility to further automate the picking process. For instance, in [38], the authors trained on
simulated grasping images and conducted a picking experiment with a significantly larger number of
grasps, totaling 25,000.
Additionally, since the chess pieces were positioned upright, the synthetic data reflected this orientation.
Future investigations could explore different grasping scenarios, such as chess pieces placed in a box
or scenarios where they are positioned differently, including instances where they may have fallen.
Alternatively, considering the evident correlation between the number of points used in depth refine-
ment and accuracy, an improved depth camera designed for shorter distances, like the ZED X MINI
which has a minimum distance of 100mm, could potentially enhance the estimation. Exploring ad-
vanced methods for capturing the entire point cloud, such as fusing point clouds from different angles
to generate additional points for depth refinement, similar to the approach employed by Open3D [59],
may also present promising avenues for real-world applications.
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A
Appendix

A.1. Validation Metrics and Loss plots of 6D pose model training

(a) Training Loss for the rook

(b) Validation Metrics for the rook

Figure A.1: Validation Metrics and Loss for the rook

(a) Training Loss for the queen

(b) Validation Metrics for the queen

Figure A.2: Validation Metrics and Loss for the queen
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(a) Training Loss for the pawn

(b) Validation Metrics for the pawn

Figure A.3: Validation Metrics and Loss for the pawn

(a) Training Loss for the king

(b) Validation Metrics for the king

Figure A.4: Validation Metrics and Loss for the king
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(a) Training Loss for the horse

(b) Validation Metrics for the horse

Figure A.5: Validation Metrics and Loss for the horse

(a) Training Loss for the bishop

(b) Validation Metrics for the bishop

Figure A.6: Validation Metrics and Loss for the bishop
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A.2. The picking experiment

Figure A.7: The picking test setting

A.3. Additional analysis on object detection for the real-world dataset
Following additional analysis, the focus is on the bounding boxes of true positives in relation to each
camera distance. This exploration gives insights into the size of chess pieces within the images. As
depicted in Figure A.8, The chess pieces are grouped according to camera distances of 50mm, and the
average bounding box size is calculated for all chess pieces. The findings indicate that, at the closest
camera distances, the identified objects have dimensions of 20mm along the x-axis and 27.5mm along
the y-axis. However, beyond 450mm, their estimated size reduces to 10mm to 12.5mm along the x-axis
and 15mm to 17.5mm along the y-axis. It becomes apparent that, beyond this threshold, the objects
diminish in size, making their reliable detection too difficult as can be seen by the polynomial trend line.

Figure A.8: Scatter plot of the size of chess pieces per each camera distance

Upon amore in-depth examination of the confusion matrix, essential metrics for object detection, includ-
ing precision, recall, accuracy, and F1 score, are extracted, as depicted in Table A.1. The outcomes
reveal a notable low score in recall, attributed to the multiple false negatives, potentially coming from
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reduced detection performance beyond 450mm. Another noteworthy observation relates to the pawn:
while the remaining objects exhibit relatively consistent scores with precision ranging from 0.7 to 0.8
and recall from 0.3 to 0.4, the pawn displays a higher recall but lower precision. This implies that the
pawn model generates more predictions, resulting in fewer false negatives but more false positives.
Consequently, the F1 score for the pawn even is the second-highest. Furthermore, the horse consis-
tently demonstrates the lowest scores across all object detection metrics.

Chess Piece Precision Recall Accuracy F1 Score
Rook 0.78 0.32 0.3125 0.46
Queen 0.7978 0.3337 0.3136 0.4706
Pawn 0.5081 0.4399 0.3305 0.4716
King 0.7770 0.4086 0.3920 0.5356
Horse 0.7878 0.2816 0.2680 0.4149
Bishop 0.6869 0.3698 0.3273 0.4808

Table A.1: Metrics for Object Detection Models

Predicted
Negative Positive

Actual Negative 8 66
Positive 625 245
(a) Confusion Matrix of the horse

Predicted
Negative Positive

Actual Negative 8 73
Positive 575 288
(b) Confusion Matrix of the queen

Predicted
Negative Positive

Actual Negative 39 95
Positive 479 331
(c) Confusion Matrix of the king

Predicted
Negative Positive

Actual Negative 15 134
Positive 501 294
(d) Confusion Matrix of the bishop

Predicted
Negative Positive

Actual Negative 30 273
Positive 359 282
(e) Confusion Matrix of the pawn

Predicted
Negative Positive

Actual Negative 24 43
Positive 483 394
(f) Confusion Matrix of the rook

Table A.2: All Confusion Matrices

A.4. Picking results

Gripping result
Negative Positive

Without depth 74 80
With depth 45 107

Table A.3: Matrix of the sum of all gripping results

A.5. Further analysis of transformation loss factor
This section delves into the distinction between a transformation factor of 0.02 and a transformation
factor of 1, as employed in this thesis. The comparison is illustrated with a focus on the rook and the
original 0.02 transformation factor, given the time-intensive nature of training. The hypothesis is that
the model will better learn the transformation, particularly due to the smaller size of the pieces. With a
factor of 1, there were instances of achieving 0.45 ADD(-S) on the test set (see Figure A.1b), while with
a factor of 0.02, the ADD(-S) hovered around 0.23 Figure A.9b. One notable distinction in training with
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a factor of 0.02 is the increased stability evident in the graph (refer to Figure A.9a). Conversely, in the
plots involving a transformation factor of 1, the stability at later epochs is notably lower with much losses
that fluctuate. This can be from many different factors, for example exploding gradients [60] where the
gradients of the loss function with respect to the model’s parameters become extremely large, often
leading to numerical instability.

Upon comparing the results of object detection between the original model and the 0.02 model in Ap-
pendix A.5 and Table A.5, it is evident that the 0.02 model outperforms the original across all categories,
indicating a convergence to a better classification performance.

Now, the transformation scores are being compared in Table A.5, and surprisingly, even in this as-
pect, the factor of 0.02 performs slightly better, although the difference is marginal. This suggests that
achieving convergence to an improved ADD(-S) score might simply be indicative of overfitting. How-
ever, since the differences in transformation scores are minimal, all the conclusions presented in this
paper remain valid. The results might even be more favorable with a transformation factor of 0.02.

(a) Training Loss for the rook with 0.02 transformation loss

(b) Validation Metrics for the rook with 0.02 transformation loss

Figure A.9: Validation Metrics and Loss for the rook with 0.02 transformation loss

Predicted
Negative Positive

Actual Negative 24 76
Positive 573 271

(a) Confusion Matrix of the rook with transformation factor of 1

Predicted
Negative Positive

Actual Negative 24 43
Positive 483 394

(b) Confusion Matrix of the rook with transformation factor of 0.02

Table A.4: Confusion Matrices comparison of the rook

Chess Piece Transf. factor Precision Recall Accuracy F1 Score
Rook 1 0.78 0.32 0.3125 0.46
Rook 0.02 0.9016 0.4493 0.4428 0.5997

Table A.5: Comparison of metrics for Object Detection Models

Chess Piece Transf. factor ADD(-S) ADD(-S) with ICP AUC AUC with ICP Diameter (mm)
Rook 1 1.85 66.42 65.27 86.18 47.76
Rook 0.02 3.30 63.20 68.60 86.24 47.76

Table A.6: Comparison of metrics for 6D pose estimation
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