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A B S T R A C T   

Understanding the passenger demand impacts of public transport service changes is a fundamental aspect of 
transport planning. The main objective of this study is to derive an updated Generalised Journey Time (GJT) 
elasticity for urban and metropolitan public transport networks, by applying a revealed preference approach 
using individual passenger journey data. Based on more than 25 million empirical journeys subject to 9 different 
service interventions within the Greater London area, we find an average GJT elasticity of − 0.61. The value 
implies that for every 1% increase in generalised journey time, on average public transport demand is expected to 
reduce by 0.61%, and vice versa. We also find that the demand response to service changes is most elastic during 
the midday period between the peak hours and most inelastic during the AM peak and early morning, possibly 
caused by a higher share of mandatory journeys. Our study results confirm the existence of a build-up rate from 
the initial short-run elasticity to a somewhat stronger longer-run elasticity. Besides, we find that at least within 
the short- and medium-term demand is more elastic to service degradations compared to service improvements. 
Our findings imply that it requires more time for demand to increase in response to a service quality 
improvement, compared to demand to decrease after a service quality reduction.   

1. Introduction 

1.1. Study relevance 

Understanding the passenger demand impacts of public transport 
(PT) service changes is a fundamental aspect of transport planning. It is 
important when evaluating the demand changes, revenue impact and 
wider societal benefits as a result of a change in journey time, service 
volume or service quality. Such changes include improvements or deg-
radations to the journey quality, planned (track closures, bus network 
changes) or unplanned (disruptions), in a small or large scale, and can be 
measured shortly or a long period of time after the service change. For 
example, a better understanding and forecasting of passenger demand 
impacts is key during appraisal studies for opening a new PT stop or 
extending a line to a new development area, as well as when assessing 
the impact of temporary rail closures due to track maintenance and 
upgrade works. 

A key concept when assessing PT demand changes due to changes in 
service quality is service elasticity. The PT service elasticity represents the 
demand responsiveness to the change of the public transport service 

provision. Various types of elasticities exist to estimate the PT demand 
change resulting from a change of a certain aspect of the PT supply, such 
as fare elasticities (see Kholodov et al., 2021; Wardman, 2022), 
in-vehicle time elasticities, service frequency elasticities and journey 
time elasticities, applied either as short-run or long-run elasticity. A 
generalised journey time (GJT) elasticity is a comprehensive metric as it 
captures the demand response resulting from changes to the full pas-
senger journey, including in-vehicle time, out-of-vehicle time and 
crowding, and the passenger valuation of the respective journey time 
elements (Balcombe et al., 2004). This GJT elasticity can be applied in 
scheme appraisals to estimate the PT demand impact of different alter-
natives, and as such inform the effectiveness of the change planning and 
investment decision making. 

A GJT based service elasticity allows for a more direct and more 
transparent approach to appraise the benefits (or disbenefits) of 
schemes. In the absence of a credible GJT elasticity, a more circuitous 
appraisal method needs to be deployed by monetising the expected 
journey time savings using a value of time (VOT), which is then con-
verted to financial impacts using a fare elasticity. This method involves 
various assumptions and often homogenised parameters. Instead, a GJT 
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elasticity enables planners to directly estimate the demand impact from 
the forecast GJT change without further intermediate assumptions, 
which can directly be converted to revenue impacts based on the 
average yield per passenger journey (Fig. 1). 

1.2. Relevant literature 

There is a large body of research on deriving the fare elasticity to 
understand the PT demand responsive to fare changes. Most of these 
studies are based on stated preference (SP) experiments or aggregated 
time-series or cross-sectional analysis. For example, higher fare elastic-
ities are found for longer journeys (Balcombe et al., 2004) and outside 
the peak hours (Wang et al., 2015). Litman (2019) found that the de-
mand response is larger for fare increases compared to a similar fare 
reduction. Dargay and Hanly (2002) studied bus fare elasticities in six 
metropolitan areas in the United Kingdom (excluding London), 
concluding with an overall short-run fare elasticity of − 0.4 and a 
long-run elasticity of − 0.9. Specifically for the London metro and bus 
network, Jain (2011) found a short-run conditional price elasticity of 
− 0.19 (metro) and − 0.35 (bus), respectively. With the availability of 
large scale, disaggregated passenger data from Automated Fare Collec-
tion (AFC) systems, in more recent years some revealed preference (RP) 
studies have been conducted to derive fare elasticities based on empir-
ical data from smartcards. For example, Wang et al. (2018) evaluated 
the change from a flat fare to distance based fare system in Beijing, 
resulting in an average fare elasticity of − 0.32. Kholodov et al. (2021) 
studied the demand response when replacing a fare zone system by a flat 
fare system in Stockholm, Sweden, finding an overall fare elasticity of 
− 0.46. 

The majority of studies to PT journey time elasticities are based on 
stated preference or aggregated data and focus on mode-specific elas-
ticities with a relatively strong focus on inter-urban rail travel. Wardman 
(2012) carried out an extensive review and meta-analysis of 427 PT 
journey time elasticities derived from 69 studies in the UK. This work 
was further expanded by Wardman (2022), in which a review of journey 
time elasticities was undertaken based on 741 elasticities drawn from 
102 UK studies in total. The journey time elasticities obtained in these 
studies are primarily derived from stated preference or indirectly from 
time-series, cross-sectional and pooled aggregated ticket sales data 
rather than actual journey data. Revealed preference studies directly 
using disaggregate, individual passenger data are limited. Wardman 
(2012) found that the mean GJT elasticity among all values for rail 
travel reviewed was − 0.81, and that GJT elasticities did not vary by 
journey purpose but increase by distance. In Wardman (2022) the mean 
GJT elasticity found for rail journeys – expressed as a function of journey 
time (in-vehicle time), service headway and the number of interchanges 
between stations as time unit equivalent – was − 0.90, comparable to the 
figure found in Wardman (2012). Furthermore, Wardman (2012) found 
that the long-run GJT elasticity (represented by a one-year period) is 
around 3.5 times stronger than the short-run elasticity (represented by a 
four-week period), which has subsequently been revised down to factor 
2.3 in Wardman (2022). In the PT industry the Rail Delivery Group 
(RDG) commissioned research particularly focused on inter-urban train 
services in the UK and market capture from car and air markets. In the 

resulting Passenger Demand Forecasting Handbook (PDFH), which 
serves as reference guide for rail service planning in the UK, the implied 
GJT elasticity for inter-urban rail journeys is recommended to be be-
tween − 0.5 and − 1.4 (Rail Delivery Group, 2018). In addition, several 
studies aimed at analysing the PT demand impacts specifically for 
planned disruptions such as strikes or planned maintenance works. Ex-
amples are the evaluation of a 13-day strike in New York City in 1966 
(Zhu and Levinson, 2012), PT strikes in California (Ferguson, 1992) and 
an evaluation of 13 different strikes by Van Exel and Rietveld (2001). 
Shires et al. (2019) studied the demand impacts of planned engineering 
works affecting long-distance trains in the UK. 

In recent years, PT elasticity research has moved towards using mass- 
collected smartcard data from AFC systems. Smartcard transaction data 
collects much more granular details of each passenger journey over a 
longer period of time. It enables a disaggregated, more extensive de-
mand and origin-destination analysis including the demand response to 
network changes and the therefrom resulting elasticity. Eltved et al. 
(2021) used smartcard data to analyse the change in PT demand 
resulting from a 3-month closure of a rail line in the Greater Copenhagen 
area. In this study a relatively simple PT rail network is studied without 
capturing changes in passenger route choice. This method is therefore 
less suitable for high-density urban PT networks. By analysing PT de-
mand derived from smartcard data before and during four closures, Yap 
et al. (2018) found that a Generalised Journey Cost elasticity of − 0.7 
resulted in the highest prediction accuracy to forecast the PT demand 
reduction during planned closures on the urban tram network of The 
Hague, the Netherlands. Although based on individual AFC transactions, 
this study compared aggregated demand by PT line before and during 
each closure. Yap and Cats (2022) derived a GJT elasticity of − 0.99 
during a planned track closure on the Amsterdam tram network in 2019 
by contrasting GJT and demand changes for affected origin-destination 
(OD) pairs. This study uses a disaggregated approach to analyse affected 
origin-destination pairs; however it only considers one planned PT 
closure in a pre-pandemic context. 

1.3. Study contribution 

The main objective of this study is to derive an updated GJT elasticity 
for urban and metropolitan PT networks, by applying a revealed pref-
erence approach using individual passenger journey data. A generic 
method is proposed which can consistently be applied to multiple his-
toric and future case studies, which we apply to several case studies in 
the Greater London area. Compared to previous studies, the main con-
tributions of this work are the following:  

• Use of extensive, disaggregated data. Compared to most previous 
studies which use stated preference data or indirect / aggregated 
ticket sales data, we derive the PT GJT elasticity based on empirical, 
individual passenger data from AFC systems. This enables an analysis 
based on many millions of observed passenger journeys, thus sub-
stantially increasing the sample size and representativeness of the 
source data.  

• Derive mode-agnostic GJT elasticities. Contrary to most studies which 
derive elasticities for a specific PT mode (e.g. buses, long-distance 

Fig. 1. Appraisal process without (top) and with (bottom) GJT service elasticity.  
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trains or inter-urban rail), our derived GJT elasticity applies to 
multimodal PT journeys and are thus mode-agnostic. We link indi-
vidual passenger journey legs made by different modes together and 
construct full PT journeys in the urban / metropolitan area of 
consideration. This is especially relevant given our focus on urban / 
metropolitan areas, where interchanges between modes are com-
mon. Our mode-agnostic approach captures mode changes within 
the PT system resulting from service changes, which aligns with the 
pan-PT perspective of public transport authorities in urban / 
metropolitan areas. It implies that our found elasticities better reflect 
the full passenger journey and better align with multimodal PT de-
mand matrices used in strategic transport models.  

• Analyse a variety of service improvements and degradations. Whilst 
several studies derived service elasticities specifically for closures or 
disruptions, we study 9 different case studies in London where PT 
service quality was either improved or (temporarily) reduced. This 
provides insights in the PT demand response to different types of 
service changes and helps understanding to what extent the PT de-
mand response is symmetrical for service improvements compared to 
service degradations. Furthermore, given that many case studies 
included are post-COVID, our results shine light on the most recent 
GJT elasticities which reflect recent changes to commuting patterns 
and PT use in a post-pandemic era.  

• Analyse demand responses over time. For several case studies we 
evaluate the demand response at several moments since the inter-
vention (e.g. after 3, 6 and 9 months), providing quantitative evi-
dence on how the GJT elasticity develops over time from short-run to 
longer-run elasticity. 

The key contribution of this study is the development of a generic 
methodology to derive a PT service elasticity based on a variety of urban 
/ metropolitan PT service changes using millions of individual passenger 
journeys. Compared to previous studies we use actual, disaggregated 
passenger journey data and rely on empirical evidence obtained from 
different types of service changes measured at various time periods since 
the intervention, providing recent and robust evidence on PT passen-
gers’ demand response to service changes. 

The paper is structured as follows. In chapter 2 we discuss the 
methodology used to derive service elasticities and the input data 
required. Chapter 3 describes the 9 service changes used as case study. 
Chapter 4 discusses the resulting service elasticity values, including a 
breakdown of elasticities by time of day, time since intervention and 
service improvement versus degradation. At last, in chapter 5 we 
formulate main conclusions and recommendations for follow-up 
research. 

2. Methodology 

In this section we first describe the input data processing steps 
(Section 2.1), followed by the calculation of nominal journey time (NJT) 
and generalised journey time (GJT) in Section 2.2. In Section 2.3 the 
calculation of a GJT based service elasticity is defined. 

2.1. Data processing 

We define the urban or metropolitan PT network of interest as a 
graph G(S,E) using a L-space network representation. Each node of this 
graph represents a PT stop s ∈ S and each edge e ∈ E reflects a direct PT 
connection between two stops. The GJT elasticity is calculated from the 
ratio between the change in volume of PT demand d and the change in 
GJT between affected origin-destination pairs. This implies that demand 
data and journey time data is required before and after an intervention 
or event that prompts a change in the GJT. We use passenger data 
generated from the AFC system in place for a consistent and controlled 
comparison of demand levels before and after the intervention. For the 
specific case of London the AFC data provides a complete coverage of PT 

journeys made by metro, bus and urban rail within the Greater London 
area using an Oyster Card or Contactless Payment Card (such as bank 
cards), thereby enabling a multimodal, mode-agnostic perspective on 
urban PT demand. Inter-urban and long-distance rail journeys which 
start or end outside this area are not captured in this data, as they fall 
outside the study focus on urban PT journeys. Almost all journeys made 
within the metro network are captured in the AFC data, as 99% of all 
metro stations in London are equipped with ticket barriers (Transport 
for London, 2022). For bus journeys AFC data captures the vast majority 
of passengers, except for a small proportion (ranging between 7% and 
12%) of passengers who use magnetic or paper tickets when boarding 
who are excluded from our analysis. 

Each AFC transaction reflects (part of) a passenger journey and 
contains information on the time and location of both the origin and 
destination of this journey (leg). For journeys made on the metro and rail 
network in London, boarding and alighting information is directly 
empirically available for the entry station and exit station where each 
passenger is required to tap in and out. For bus journeys where pas-
sengers are only required to tap in upon boarding, information on 
boarding time, boarding stop and route is empirically available. As 
alighting information is not empirically available, the alighting stop can 
be inferred using a destination inference algorithm such as proposed by 
Trépanier et al. (2007), Munizaga and Palma (2012) and 
Sánchez-Martinez (2017). In this study the destination inference logic as 
proposed by Gordon (2012) is used, where the downstream alighting 
stop and alighting time are inferred from Automated Vehicle Location 
(AVL) data based on the assumption that passengers alight at the stop 
closest to their subsequent transaction location or closest to their first 
daily boarding location in case of the last observed PT trip of the day. For 
each individual AFC transaction this results in empirical boarding in-
formation and empirical (for metro and rail) / inferred (for bus) 
alighting information (Table 1). The destination inference algorithm 
used to infer the bus alighting stop is widely adopted in science and 
practice (see the publications by Gordon, 2012; Gordon et al., 2013 and 
Sánchez-Martinez, 2017) and validated against observed data. The al-
gorithm is able to derive the most plausible alighting stop directly for 
75% of the bus journeys (Gordon, 2012). For the remainder of bus 
journeys – in particular for passengers making one single bus journey 
which prohibits linking the bus journey to a next journey – the alighting 
stop is derived probabilistically using the alighting stop distribution for 
a given boarding stop from the bus journeys for which the alighting stop 
could be inferred directly. 

A PT journey comprises of one or more journey legs made by the 
same smartcard, traversing on the same or different PT modes. Complete 
PT journeys are constructed by linking individual AFC transactions 
made using the same pseudonymised unique card identifier on the same 
day when several linkage criteria are met. In this work we use the 
linkage logic as developed by Gordon et al. (2013), meaning that 
journey legs are linked depending on the interchange time and distance 
between the alighting stop of the preceding leg and the boarding stop of 
the succeeding leg to distinguish an interchange movement from a final 
destination. This step results in the construction of individual, multi-
modal PT passenger journeys from the first PT origin stop so ∈ S to the 
ultimate PT destination stop sd ∈ S. 

Table 1 
An illustration of the structure of the AFC dataset.  

Mode Route Start Time Start 
Stopcode 

End Time End 
Stopcode 

Metro - 2022–06–15 
08:01:12 

778 2022–06–15 
08:19:53 

729 

Bus 43 2022–06–17 
16:44:05 

BP3065 2022–06–17 
16:59:22a 

BP2336a  

a inferred, not empirically available. 
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2.2. GJT calculation 

For each individual passenger journey i constructed from the AFC 
data the nominal journey time (NJT) and generalised journey time (GJT) 
need to be calculated. This means that the observed NJT needs to be 
converted into GJT by applying various weights to the different com-
ponents of a journey and its legs. As can be seen in the GJT formulation 
in Eq. (1), the GJT is the sum of the in-vehicle time tivt , the out-of-vehicle 
waiting and walking time twtt and the number of transfers ntf for each 
journey. For metro and rail journeys twtt reflects the initial walking time 
from the station entry – where the first AFC transaction takes place – to 
the platform, as well as the platform waiting time. For bus journeys twtt 

only captures the initial waiting time at the bus stop. Additionally, twtt 

also captures the subsequent interchange walking and waiting time 
when appropriate. Walking time to the first station or bus stop is not 
captured within this variable. The coefficients in Eq. (1) reflect the 
average time valuation of the different journey components. For the case 
of London β= 2.0 is used, reflecting that passengers value waiting and 
walking time on average twice as negative as uncrowded in-vehicle 
time. This is in line with results from previous Stated Preference and 
Revealed Preference studies (Wardman, 2004; Bovy and Hoogendoorn, 
2005; Yap et al., 2023). A fixed transfer penalty of γ= 3.5 min is used for 
each interchange made, consistent with Revealed Preference results 
found by Yap et al. (2020) and values adopted within UK transport 
planning practice (Transport for London, 2017). Parameter α reflects the 
in-vehicle time perception as function of the on-board crowding level. 
This value typically equals 1.0 as lower bound αmin during uncrowded 
circumstances when the passenger load q does not exceed the seat ca-
pacity cseat , and increases proportional to the on-board standing density 
(average number of standing passengers per square metre) up to a 
certain maximum value αmax. In line with Transport for London’s Busi-
ness Case Development Manual (Transport for London, 2017) this upper 
value αmax is set equal to 2.5 when the total (seated plus standing) ca-
pacity ctot has been reached. The calculation of α is shown in Eq. (2). 

GJTi = α⋅tivt
i + β⋅twtt

i + γ⋅ntf
i (1)  

α = min
(

αmax,max
(

αmin, αmin +
(q − cseat)

(ctot − cseat)
⋅(αmax − αmin)

))

(2) 

For bus journeys tivt can be computed by simply taking the difference 
between the inferred end time and observed start time of each journey 
leg in the AFC data, which can be summed over all journey legs 
constituting a full passenger journey. The initial waiting time at the bus 
stop twtt is derived from AVL data containing the actual departure time of 
each bus from each stop. The actual headway is calculated for each bus 
route and hour of the day of consideration based on this AVL data. Given 
the high frequencies of bus routes in urban / metropolitan areas, we can 
assume that most passengers arrive uniformly distributed at bus stops 
without explicitly consulting the timetable. This implies that twtt is equal 
to half the actual headway for initial boardings. When a passenger in-
terchanges, the interchange walking / waiting time is calculated as the 
difference between the end time of the previous journey leg and the start 
time of the consecutive leg. It is not possible to further disentangle 
interchange waiting time from walking time without making explicit 
assumptions on the passenger walking speed and without knowledge of 
the detailed street layout to derive the interchange distance. As the 
valuation of walking time and waiting time is often found to be similar 
(see e.g. Wardman, 2004; Yap et al., 2020), this is not expected to impact 
the accuracy of the GJT calculation. By merging AFC and AVL data the 
total number of passengers boarding, alighting and on-board a bus is 
calculated for each individual bus trip and stop. Based on the vehicle 
capacity of the bus type operating on each route the on-board load q can 
be contrasted to the capacity, resulting in an average in-vehicle 
crowding multiplier α for each bus route and hour of each day consid-
ered in the dataset. The number of transfers ntf can be computed directly 

based on the number of journey legs of each journey. 
For rail journeys the observed NJT between station entry and station 

exit includes the in-vehicle time, but also the walking time to/from the 
platform and waiting time at the platform. For trains not equipped with 
an Automated Passenger Count (APC) system, train loads and crowding 
levels are therefore not directly available from the AFC data. The GJT 
calculation is further complicated as multiple feasible routes can exist 
between two metro or rail stations in a high-density urban PT network. 
To address this, we apply an assignment model to derive the route choice 
probabilities for each feasible route between two stations. Based on 
these probabilities, the total origin-destination passenger volume is 
assigned to different routes and aggregated to derive the average train 
crowding levels for each 15-minute interval. The assignment procedure 
is calibrated based on loads derived from APC systems for selected lines 
where available. This process enables the calculation of crowding 
multiplier α, as well as tivt based on the observed train running times 
available from AVL data. The remaining time between station entry and 
exit is then allocated to twtt . Similar as for bus journeys it is not possible 
to separate station walking time from waiting time, as this would require 
detailed information on the layout and crowding levels of each station to 
estimate the station walking times. The abovementioned approach 
computes the GJT between each station pair and provides a regular ratio 
between the NJT and GJT for each unique station origin-destination 
pair, day of week and 15-minute time window. Subsequentially, the 
observed NJT for each individual passenger journey is scaled using the 
respective ratio to derive the GJT for this journey. 

2.3. Service elasticity calculation 

In this study we use GJT as passenger focused metric reflecting PT 
service quality. We identify several PT service changes resulting in 
either a service improvement or service degradation for affected pas-
sengers. To derive the GJT elasticity from AFC and AVL data, we extract 
PT journeys (Section 2.1) and calculate their generalised journey time 
(Section 2.2) for selected days before the intervention (ante) and after 
the intervention (post). Depending on the duration of the service change 
the post-intervention data is derived for one or multiple time periods 
since the intervention. As we do not include the exact same passengers in 
our ante- and post-dataset, we make use of repeated cross-sectional data 
rather than panel data. 

For each individual passenger journey we classify the first origin stop 
and ultimate destination stop into larger zones. This is of importance to 
capture passengers who change their first or last PT stop due to this 
intervention. Furthermore, aggregating to larger zones yields larger 
absolute demand volumes which is preferable as small absolute values 
can result in inflated relative demand changes and hence result in un-
realistic elasticity values (Eq. (3)). When selecting the appropriate zone 
size one needs to strike a balance between capturing possible changes in 
boarding or alighting stop, and limiting the intrazonal flows as this 
would result in a loss of valuable information. For the spatial aggrega-
tion in this study, we classify PT stops into postcode districts due to the 
relative low proportion of intrazonal journeys and reasonable journey 
volumes for the origin-destination pairs used in the case studies. In 
addition, postcode districts are commonly used as part of the addressing 
and postal system in the UK and cover an area with a recognisable name 
for the neighbourhood, thus improving interpretability of the results. 
The Greater London area covering a total surface of 620 km2 consists of 
265 postcode districts, implying an average postcode district size of 
2.34 km2. Temporally weekday demand is aggregated into time periods 
as this enables us to report elasticity figures broken down by time of day. 
A timeband is assigned based on the journey departure time: Early 
(0500–0700), AM Peak (0700–1000), Midday (1000–1600), PM Peak 
(1600–1900) and Evening (1900–0500). Applying both the spatial and 
temporal aggregation results in a total PT demand volume dod,t and an 
average generalised journey time GJTod,t between each origin postcode 
district o ∈ O and destination postcode district d ∈ D in time period 
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t ∈ T, which can be compared for the ante- and post-intervention 
dataset. 

The calculation of the GJT point elasticity ηGJT
od,t for each origin- 

destination-timeband combination is shown in Eq. (3). When using 
repeated cross-sectional data, it is important to correct for background 
demand changes unrelated to the intervention itself. Background de-
mand changes between the baseline period prior to intervention and 
monitoring period after intervention can stem from macro-level changes 
such as seasonality, school holidays, COVID-19 travel restrictions or 
generic post-pandemic PT demand recovery. It is often challenging to 
separate the demand changes resulting from the intervention from other 
drivers impacting demand, particularly in an era still affected by the 
pandemic where PT demand has shown to be much more volatile than 
pre-pandemic. In our work we have introduced an additional global 
demand adjustment factor dc to scale dante

od,t (Eq. (3)). We derive the total 
number of PT journeys made on the entire PT network of consideration 
from the AFC data and determine a background demand growth factor 
dc between baseline and monitoring period. We correct dante

od,t by dc, 
meaning that for the OD pairs included it is implicitly assumed that all 
demand changes other than the background correction are attributed to 
the intervention. Whilst this approach has its limitations, it is not trivial 
how to use a more disaggregated background correction factor (e.g. 
specifically for selected bus routes, rail lines or London areas), since we 
consider multimodal PT journeys which can traverse several parts of the 
city using various modes and lines. We therefore opt for a relatively 
simple, generic correction term. We have performed a sensitivity anal-
ysis to test the extent to which the found elasticity changes when a lower 
or higher generic demand correction factor dc is applied. This sensitivity 
analysis resulted in relatively limited changes of the value of ηGJT, 
confirming that our results are robust against variations in dc. 

ηGJT
od,t =

(
dpost

od,t
dante

od,t •dc

)

− 1
(

GJTpost
od,t

GJTante
od,t

)

− 1
(3) 

The total GJT elasticity ηGJT for a case study is calculated by taking 
the demand-weighted average GJT elasticity over all included origin- 
destination-timeband combinations (Eq. (4)). We combine a top-down 
and bottom-up approach to determine which PT journeys to include in 
the elasticity calculation for a given intervention. Based on the 
geographical location of the intervention we loosely define a list of 
postcode districts around this intervention for which PT journey times 
are likely affected. We first filter top-down for journeys that either start 
or finish in one of the listed postcode districts. As not necessarily all 
journeys to or from postcode districts near the intervention will be 
affected, secondly we filter bottom-up and only include origin- 
destination-timeband combinations satisfying the following four 
conditions.  

• First, we set a minimum GJT change threshold δ (either as increase or 
decrease) resulting from service changes, to only include OD pairs 
where the GJT notably changed after the intervention. In this study 
we set δ= 4%: based on the average GJT of 38.8 min for our case 
study network, this corresponds on average to a minimum GJT 
change of 1.5 min and a minimum unweighted journey time change 
of just over 1 min. Depending on the average journey time of the 
study area of consideration, this threshold can be adjusted 
accordingly.  

• Second, there should not be more than 10% demand increase (for 
service degradations) / decrease (for service improvements). 
Generally a demand increase is expected for service improvements, 
meaning that an observed demand reduction is not expected to be 
related to the service change. However, to account for the possibility 
that certain OD pairs might be negatively affected despite an overall 
positive service change, we accept the inclusion of OD pairs with a 

limited observed demand reduction during a service improvement 
(and vice versa for service degradations).  

• Third, we set 
⃒
⃒
⃒ηGJT

od,t

⃒
⃒
⃒ ≤ ε, with ε= 3 in this study. The calculation of a 

point elasticity is naturally sensitive to small absolute demand vol-
umes and small GJT changes. In case dante

od,t is small it is possible that 
the numerator of Eq. (3) becomes very large, resulting in an inflated 
elasticity value especially in case the GJT change in the denominator 
is small. Based on the range of GJT elasticity values found in previous 
studies we exclude OD pairs where the elasticity value is unrealisti-
cally large in absolute terms as a result of this effect.  

• Fourth, we exclude intrazonal journeys where origin and destination 
postcode districts are equal. 

ηGJT =
∑

t∈T

∑

o∈O

∑

d∈D
ηGJT

od,t • dante
od,t

/
∑

t∈T

∑

o∈O

∑

d∈D
dante

od,t (4) 

Furthermore, we also estimate several pooled models where we 
combine the observations from multiple case studies in order to derive 
an overall GJT elasticity across all case studies and segmented for 
different times of day and different types of interventions. Where the 
elasticity defined in Eq. (3) implies a linear relation between a relative 
change in GJT and a relative demand change, additionally we assess 
whether using a non-linear function provides a better fit. In addition to a 
simple linear function, we therefore estimate non-linear functions by 
fitting the datapoints of our total pooled model to a power function, 
logarithmic function and a negative exponential function. The latter is a 
commonly used impedance function in transport economics (Eq. (5)) 
(see for example Neutens et al., 2010). In this equation %ΔGJT reflects 
the relative change in GJT – equivalent to the denominator of Eq. (3) – 
whilst %Δd reflects the relative change in PT demand – equivalent to the 
numerator of Eq. (3). Parameters κ, λ and μ represent the scale param-
eter, the growth / decay rate parameter of the exponential function and 
a constant, respectively. For this function we set parameter μ equal to 
− κ to fit the curve through the origin, so that no demand change is 
predicted if there is no GJT change. 

%Δd = κ⋅exp( − λ • %ΔGJT) + μ (5)  

3. Application 

3.1. London case study area 

We demonstrate the proposed methodology on 9 separate case 
studies whereby there were various significant changes to the PT 
network between 2018 and 2022 in the Greater London area. These 
cases cover positive and negative changes to the service provision, have 
long and short-term impact, have localised and city-wide implications 
and affect bus, metro and urban rail in various extents. Depending on the 
duration of the service change and current data availability we extract 
the demand and GJT changes within the first 3 months after interven-
tion, between 3 and 6 months, 6–9 months and 9–12 months. This 
provides a range of service elasticities from short-run when measured 
within the first three months since the intervention towards a longer-run 
elasticity. In total, 16 case-timepoint combinations are included in our 
study. Across all 9 case studies, 25.48 million passenger journeys (before 
each intervention) are included in our analysis, meaning that our esti-
mation results are based on a large body of empirical evidence. These 
cases are described in more detail in Section 3.2. 

The passenger demand and journey time data in our study is derived 
from the AFC and AVL system of Transport for London as transport 
authority of the Greater London area. Transport for London maintains an 
AFC system that accepts Oyster Card and Contactless Payment Cards 
(CPC) across its bus and rail networks. Rail network AFC data includes 
all travel data from the London Underground metro network (consisting 
of 11 metro lines) and from all urban rail networks including London 
Overground, the newly opened Elizabeth Line and journeys made on 
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National Rail trains within the Greater London boundary using Oyster or 
CPC. The AFC system is supplemented by a destination and transfer 
inference system – known as ODX – that connects legs to journeys and 
infers missing leg destination information using card-level journey 
pattern data and service performance data, performing the data pro-
cessing steps described in Section 2.1. 

3.2. Case study description 

Table 2 summarises the main characteristics of each case study, 
including the date of the service change and the selected period for the 
pre-intervention baseline and post-intervention monitoring period. In 
both the ante- and post-dataset we only focus on travel behaviour in the 
mid-week (Tuesday, Wednesday, Thursday) when the demand pattern 
and reason for travel is most stable and predictable. 

Case 0_HSB refers to the closure of Hammersmith Bridge for vehic-
ular traffic due to engineering issues since April 2019. The closure 
severed a number of bus routes used to operate across River Thames 
linking Hammersmith town centre and the suburbs of Barnes and Mor-
tlake in southwest London. In case 1_GOB, the service on the orbital 
Gospel Oak-Barking (GOB) rail line operated by London Overground 
was suspended for four weeks when a freight train derailed in January 
2020 and damaged a large section of tracks. The Northern line Extension 
(case 2_NLE) opened in September 2021, connecting the Nine Elms 
Battersea opportunity area with many housing and office developments 
to the London Underground metro network. Four different monitoring 
periods are included since the opening of this two-stop extension. The 
last monitoring period in September 2022 also captures the doubling of 
the service frequency on this extension since June 2022. 

The Northern Line Closure (case 3_NLC) was a major closure of the 
Bank branch on the London Underground Northern line for 17 weeks 
from January 2022. The closure severed a direct access from south 
London to the City where the main financial district is located. As 
forecast traffic impact was significant, Transport for London carried out 
a big communication campaign to inform prospective passengers and 
businesses well ahead of the closure, and laid out additional bus services 
on routes that were expected to be exceptionally busy. The closure 
happened when the Covid Omicron variant was highly prevalent in the 
UK, meaning that background demand was heavily suppressed. In Fig. 2 
the top-down spatial filtering process of journeys as addressed in Section 
2.3 is illustrated for this case study. It shows the selected postcode dis-
tricts in the vicinity of the service change, meaning that only passenger 
journeys to or from the identified postcode districts are included in the 
dataset for this specific case study. 

Case 4 focuses on the demand response related to the opening of the 
new Elizabeth Line. In May 2022 the central section was opened. This 

entirely new rail line provides direct, fast connections between central 
London and southeast London (Canary Wharf financial area) and alle-
viates crowding on busy metro lines. In November 2022 two train lines – 
a western line from Reading previously terminating at Paddington and 
an eastern line from Shenfield previously terminating at Liverpool Street 
station – were integrated into the Elizabeth Line. Both the western 
section (Case 4w_EZL) and eastern section (Case 4e_EZL) were connected 
under central London through the new central section which was opened 
in May 2022. As one of the largest transport projects in Europe, the 
opening and through-running of Elizabeth Line services has resulted in 
major journey time reductions. For Case 4_EZL we only include moni-
toring points after completion of the full service pattern including the 
through-running of the western and eastern section, to capture a more 
stable demand pattern. 

Case 7_MHE reflects a small timetable change on the Northern Line 
metro where the shuttle operation on the relatively quiet branch be-
tween Mill Hill East and Finchley Central was replaced by a direct 
connection to central London. This improvement only applied to the 
midday period between the peak hours. Lastly, case 8_BRE is the 4.5 km 
extension of the London Overground rail service from Barking to the 
new housing development area Barking Riverside in northeast London. 
As this area was previously only connected by bus, the provided train 
services result in substantial, albeit localised, journey time reductions. 

Table 2 
Case study characterisation.  

Case Description Service Impact Duration Mode Affected Intervention Date Baseline Period Monitor Period 

0_HSB Hammersmith Bridge Closure Negative > 12 months Bus April 2019 Sep-Nov 2018 3m: July 2019 
6m: Sep-Nov 2019 

1_GOB Freight train derailment 
Gospel Oak – Barking 

Negative < 1 month Rail January 2020 Nov 2019 1m: Jan-Feb 2020 

2_NLE Northern Line Extension (Battersea) Positive structural Metro September 2021 Aug-Sep 2021 1m: Oct 2021 
3m: Dec 2021 
6m: March 2022 
12m: Sep 2022 

3_NLC Northern Line Closure (Bank) Negative 4 months Metro January 2022 Nov 2021 1m: Jan 2022 
4_EZL Opening Elizabeth Line (central section) Positive structural Rail May 2022 May 2022 6m: Nov 2022 

9m: Jan 2023 
4e_EZL Opening Elizabeth Line (eastern section) Positive structural Rail November 2022 May 2022 3m: Jan 2023 
4w_EZL Opening Elizabeth Line (western section) Positive structural Rail November 2022 May 2022 3m: Jan 2023 
7_MHE Northern Line timetable change (Mill Hill East) Positive structural Metro September 2021 Aug-Sep 2021 3m: Dec 2021 

6m: March 2022 
8_BRE LO rail extension Barking Riverside Positive structural Rail July 2022 June 2022 3m: Sep 2022 

6m: Jan 2023  

Fig. 2. Selection of relevant postcode districts for Northern Line Closure 
case study. 
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4. Results and discussion 

4.1. Results 

The estimated GJT elasticities ηGJT
t for each case study and moni-

toring period are summarised in Table 3, with the t-statistic indicated 
between parentheses. The negative values of the GJT elasticity for all 
cases and all times of the day demonstrate a plausible, negative relation 
between journey time change and demand change. For all service deg-
radations (0_HSB, 1_GOB, 3_NLC: see Table 3) this implies that the 
journey time increase following from the removal and detouring of 
direct services results in an overall PT demand reduction. Conversely, 
the service extensions, frequency increases and introduction of through- 
running trains in all service improvement cases result in an overall de-
mand increase and subsequentially a revenue increase. As mentioned in 
Section 3.2, the service improvement in Case 7_MHE only applies to the 
midday period between the AM and PM peak. Therefore, no elasticity 
values are provided for the other time periods. The Barking Riverside 
Extension case (8_BRE) is the only case returning a statistically insig-
nificant elasticity value for Early (t ≤ |1.96|, p ≥ 0.05). All other cases 
and time periods show significant results (p < 0.05). With the exception 
of the Midday elasticity for the Mill Hill East Case (7_MHE_6), the ab-
solute t-value is larger than 2.58 for all other cases and time periods, 
confirming that those results are highly statistically significant 
(p < 0.01). 

The empirical results from all case studies together are shown in a 
scatterplot in Fig. 3. Each point reflects the relative change in GJT and 
PT demand for an origin-destination-timeband combination included in 
the elasticity calculation. The size of the dots reflects the absolute pre- 
intervention demand volume. As mentioned in Section 2.3, we experi-
mented fitting a simple linear function, an exponential function, a log-
arithmic and a power function to obtain a best fitting curve. From these 
models fitting an exponential function yielded the highest r2 score. In 
Fig. 3 the best fitting exponential function is shown for the pooled model 
with all cases and time periods together. The results from Table 3 show 
there is quite some variance in found elasticity values between different 
case studies, which explains why the prediction accuracy when fitting 
one generic function for all cases together (r2 =0.52) is not very high. A 
higher r2 is obtained when fitting a curve for each individual case study. 
With parameter value λ= 0.73 using Eq. (5), we find that in line with 
transport economics theory a negative exponential function results in 
the highest fit overall. As mentioned in Section 2.3, parameter μ (− 1.20) 
is constrained to be equal to − κ (1.20) to fit the curve through the 
origin. The r2 for the exponential curve (0.52) is somewhat higher than 

the r2 when fitting a simple linear function through the data points of the 
pooled model (r2 =0.45). This indicates that applying a linear elasticity 
figure can be a reasonable approximation for the expected PT demand 
response to service changes, albeit that a more accurate forecast can be 
obtained when applying the fitted negative exponential function. 

4.2. Discussion and policy implications 

4.2.1. Results by time period 
The overall GJT elasticity found from the pooled model across all 

cases and time periods is − 0.61 and highly statistically significant 
(bottom right cell in Table 3). This value implies that a 1% increase in 
GJT on average results in a 0.61% reduction in PT demand, and vice 
versa. When comparing this overall value to previously found figures in 
literature, we conclude that this value falls within a plausible range. The 
value is somewhat less negative than the average value of − 0.81 and 
− 0.90 found by Wardman (2012) and Wardman (2022). However, fig-
ures from the latter are predominantly based on inter-urban and 
long-distance rail journeys where average journey lengths are substan-
tially higher than within an urban or metropolitan PT network. When 
studying fare elasticities (Balcombe et al., 2004) and journey time 
elasticities (Wardman, 2012), both studies conclude that elasticities 
become more negative with increasing journey length. It is therefore 
expected to find a somewhat less negative GJT elasticity in our study 
entirely based on urban / metropolitan case studies. Furthermore, our 
overall GJT value is within the plausible GJT range [− 0.5,− 1.4] as 
recommended by the Rail Delivery Group (2018). 

Based on the pooled model results shown in the last row of Table 3 
we are able to compare the GJT elasticity between different times of the 
day. It should be noted that we currently only included weekday data in 
our study, meaning that the time breakdown as presented does not 
necessarily apply to weekend days. We find that the PT demand response 
is strongest during the midday period (− 0.68), followed by the PM peak 
(− 0.64), AM peak (− 0.55), evening (− 0.53) and early morning (− 0.46). 
This can be explained by the different mix of journey purposes for which 
passengers use the PT network during different times of the day. The 
proportion of journeys with a discretionary character such as leisure or 
shopping is highest during midday, followed by the PM peak with 
typically a mix between commuting and leisure / shopping journeys. 
The less mandatory character of these trips means that a stronger de-
mand response to service improvements or reductions is expected, as 
there is a higher degree of flexibility for these passengers to change 
mode, destination or date of travel. This finding is consistent with the 
conclusion by Wang et al. (2015) on fare elasticities, where a more 

Table 3 
GJT elasticity estimation results.  

Case ηGJT
Early ηGJT

AM ηGJT
Midday ηGJT

PM ηGJT
Evening ηGJT 

0_HSB_3 -0.47 (− 4.13) -0.71 (− 3.86) -0.66 (− 16.3) -0.66 (− 11.8) -0.73 (− 6.49) -0.67 (¡17.0) 
0_HSB_6 -1.10 (− 8.38) -0.90 (− 33.8) -0.69 (− 39.8) -0.76 (− 40.9) -0.80 (− 30.6) -0.78 (¡68.8) 
1_GOB_1 -0.45 (− 20.4) -0.30 (− 44.7) -0.31 (− 41.9) -0.33 (− 43.9) -0.18 (− 29.5) -0.30 (¡81.4) 
2_NLE_1 -0.46 (− 13.2) -0.52 (− 24.8) -0.22 (− 13.0) -0.60 (− 20.6) -0.46 (− 14.6) -0.43 (¡36.0) 
2_NLE_3 -0.18 (− 12.1) -0.47 (− 23.2) -0.59 (− 25.4) -0.38 (− 19.0) -0.38 (− 20.3) -0.47 (¡45.8) 
2_NLE_6 -0.24 (− 12.8) -0.69 (− 29.2) -0.41 (− 18.6) -0.61 (− 27.3) -0.37 (− 24.2) -0.48 (¡47.2) 
2_NLE_12 -0.51 (− 16.4) -0.16 (− 16.3) -0.65 (− 29.9) -0.71 (− 23.0) -0.36 (− 23.2) -0.56 (¡50.9) 
3_NLC_1 -0.60 (− 32.5) -0.79 (− 57.0) -0.68 (− 55.1) -0.77 (− 60.7) -1.01 (− 54.9) -0.79 (¡121.7) 
4_EZL_6 -0.59 (− 17.2) -0.29 (− 25.0) -1.01 (− 43.3) -0.56 (− 30.1) -0.50 (− 33.6) -0.64 (¡70.7) 
4_EZL_9 -0.54 (− 20.3) -0.58 (− 25.1) -1.11 (− 45.5) -0.75 (− 34.0) -0.40 (− 30.9) -0.73 (¡74.3) 
4e_EZL_3 -0.72 (− 14.5) -0.75 (− 16.3) -1.04 (− 21.8) -0.74 (− 16.0) -1.15 (− 25.1) -0.90 (¡41.4) 
4w_EZL_3 -0.80 (− 11.5) -0.77 (− 12.4) -0.93 (− 18.0) -0.82 (− 17.7) -1.34 (− 18.6) -0.92 (¡34.3) 
7_MHE_3 n/a n/a -0.54 (− 3.70) n/a n/a -0.54 (¡3.70) 
7_MHE_6 n/a n/a -0.57 (− 2.43) n/a n/a -0.57 (¡2.43) 
8_BRE_3 n/s (− 1.43) -0.40 (− 7.78) -1.18 (− 13.9) -0.84 (− 6.98) -0.11 (− 6.00) -0.63 (¡18.1) 
8_BRE_6 n/s (− 1.77) -0.64 (− 8.36) -1.19 (− 12.2) -0.83 (− 7.62) -0.52 (− 4.95) -0.78 (¡17.3) 
Pooled (all) -0.46 (− 54.7) -0.55 (− 106.6) -0.68 (− 114.9) -0.64 (− 112.7) -0.53 (− 103.8) -0.61 (− 228.2) 

t-values in parentheses. 
n/s: elasticity not statistically significant (t ≤ |1.96|). 
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negative value was found outside the peak hours. Journeys made during 
the AM peak and early morning are typically composed of a high pro-
portion of commuting trips with a more mandatory character, which 
explains the weaker demand response found for these two periods. 

We might hypothesise that the difference in found elasticity between 
the AM peak (− 0.55) and early morning (− 0.46) is related to the share 
of blue-collar workers, especially in a post-pandemic context. Since the 
COVID-19 outbreak there is a higher degree of flexibility for some white- 
collar (office) workers to work from home, whilst this is not an option for 
jobs where physical attendance is required, such as construction or 
medical workers. Specifically within the context of London blue-collar 
workers tend to travel earlier in the morning (for example to start 
shift work) compared to office workers, which is a possible explanation 
for the less elastic demand observed during the early morning period. 
The relatively weak demand response found in the evening might be 
driven by the fact that most of these journeys are return journeys to 
home, for which the decision to travel was taken earlier in the day. 
Another explanation is that the average value-of-time in the evening is 
relatively low due to the low share of commuting and business trips, 
meaning that passengers are less sensitive to journey time changes 
compared to other times of day. 

4.2.2. Results by case study 
Table 4 presents the elasticities per case study and time since inter-

vention. For all case studies with more than one monitoring point we can 
see that the elasticity gradually becomes more negative when more time 
has passed since the intervention, confirming a build-up rate before the 
PT demand response to a journey time change stabilises. 

The relatively low elasticity of − 0.30 for the 1_GOB derailment case 
study can be explained by the unplanned nature of the disruption – an 
unplanned train derailment – combined with a relatively short duration 
of the total disruption. It is possible that passengers had fewer oppor-
tunities to adjust their travel plans unexpectedly on short notice, or that 
they were willing to accept a longer journey time due to the clearly 
temporary nature of this event. In contrast, we find a strong elasticity of 
− 0.79 for the 3_NLC Northern Line closure compared to other service 
reductions within the first three months since the intervention. This 
might be explained by the extensive travel demand management 
campaign which was rolled out before and during this closure. As 

overcrowding on alternative routes was expected, Transport for London 
carried out a big information campaign on alternative routes and travel 
times, working together with large companies affected by this closure, 
whilst supplying additional bus capacity around the impacted area. It is 
plausible that this has resulted in more awareness and a stronger de-
mand response from affected passengers. 

Furthermore, for all three Elizabeth Line cases we observe a rela-
tively strong demand response. This is possibly not only driven by the 
pure changes in journey time, but also by the substantial improvement 
in travel comfort and ambiance. In contrast to parallel metro routes, 
Elizabeth Line trains are equipped with air conditioning, are more 
spacious and operate from brand new stations, which might have 
contributed to a larger behavioural change. We can also conclude that 
the elasticity for Case 4_EZL – serving an entirely new route – is some-
what lower than the elasticities for Case 4e_EZL and 4w_EZL – where an 
existing train line is integrated into the Elizabeth Line network. One 

Fig. 3. Scatterplot with observed changes in GJT and demand.  

Table 4 
Elasticities per case study and time since intervention.  

Case Description 0–3 
months 

3–6 
months 

6–9 
months 

9–12 
months 

0_HSB Hammersmith Bridge 
Closure 

-0.67 -0.78   

1_GOB Freight train 
derailment Gospel Oak 
– Barking 

-0.30    

2_NLE Northern Line 
Extension (Battersea) 

-0.43 -0.47 -0.48 -0.56 

3_NLC Northern Line Closure 
(Bank) 

-0.79    

4_EZL Opening Elizabeth 
Line (central section)  

-0.64 -0.73  

4e_EZL Opening Elizabeth 
Line (eastern section) 

-0.90    

4w_EZL Opening Elizabeth 
Line (western section) 

-0.92    

7_MHE Northern Line 
timetable change (Mill 
Hill East) 

-0.54 -0.57   

8_BRE LO rail extension 
Barking Riverside 

-0.63 -0.78    
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hypothesis is that this difference relates to the bigger leap made in terms 
of connectivity for Case 4_EZL, which means that the existing market 
will be relatively smaller because travel was previously difficult. The 
demand build-up is likely to take longer because a larger shift in 
embedded travel patterns is needed as more people need to move home 
or job to take advantage of the newly served area. In Fig. 4 the spatial 
distribution of GJT impacts is illustrated for Case 4e_EZL (left) for all 
journeys starting at one specific postcode district (Ilford: IG1) and for 
Case 4w_EZL(right) for all journeys starting in postcode district UB2 
(Southall). 

4.2.3. Segmented results 
The different case studies are grouped into segments to estimate 

several segmented pooled models. Table 5 shows that when grouping 
only data points from the last monitoring period available for each case 
study – reflecting a more steady state situation – the average elasticity 
increases to − 0.68. Similarly, we find that the overall elasticity 6+
months after the intervention (− 0.63) is ~10% higher than the elasticity 
resulting from cases monitored within the first six months (− 0.58). 
When comparing the 12-month elasticity found for case 2_NLE to the 
elasticity within first month (Table 4), the elasticity increased by 30%. 
Both outputs confirm the existence of a build-up rate from the initial 
short-run elasticity to a somewhat stronger longer-run elasticity. 

Furthermore, we find a stronger demand response in the event of a 
service reduction (− 0.68) compared to a service improvement (− 0.59). 
This implies that it requires more time for demand to increase in 
response to a service quality improvement, compared to demand to 
decrease during a service quality reduction. The latter is consistent with 
the finding from Litman (2019) on fare elasticities, where a stronger 
demand response is found for fare increases compared to a similar fare 
reduction. The difference can be explained by the fact that a service 
reduction directly impacts the current PT passengers affected by this, 
prompting a demand response. Conversely, for service improvements it 
takes time for the existing resident and employment population to adjust 
their travel pattern to take advantage of the intervention and optimise 
the GJT of their journeys, and for new population to be attracted to an 
area due to its improved connectivity. These findings show that at least 
in the short- and medium-run, demand is more elastic to service deg-
radations than service enhancements. The post-intervention measure-
ment points in our case studies do no span over more than 12 months 
since the service change. Therefore, this study does not provide suffi-
cient evidence to conclude whether this asymmetric demand response 
continues to proliferate even in the long-run (i.e. 1–3 years after inter-
vention) or whether the service improvement elasticity eventually will 
catch up with the service degradation elasticity over time. 

When segmenting the case studies into large scale interventions 

(2_NLE, 3_NLC, 4_EZL, 4e_EZL, 4w_EZL) and smaller scale interventions 
(0_HSB, 1_GOB, 7_MHE, 8_BRE), we find a more elastic demand response 
(− 0.62) for large scale interventions compared to smaller scale in-
terventions (− 0.50). It suggests that the marginal demand response to 
GJT changes increases when the absolute GJT change is larger. This 
finding aligns with the more elastic demand response found for the 
Elizabeth Line case studies – each of them resulting in relatively large 
and wide-spread journey time reductions – and illustrates that there is 
some degree of non-linearity in the relation between GJT and demand as 
shown in Fig. 3. 

4.2.4. Implied fare elasticity 
For further validation we can use the overall service elasticity of 

− 0.61 as found in our study to calculate the implied fare elasticity based 
on the relation between ηGJT, ηfare, GJT, the average Value-of-Time 
(VOT) and yield per journey (fare) as shown in Eq. (6). 

ηGJT = ηfare • VOT •

(
GJT
fare

)

(6) 

Table 6 shows the values specifically for the London transport 
network as derived for June 2022 as indicative values, from which the 
implied fare elasticity ηfare= − 0.18 is calculated. This value is very 
similar to the value found for the short-run metro fare elasticity in 
London by Jain (2011) (− 0.19) which is also used for business case 

Fig. 4. Spatial distribution of GJT reduction for Case 4e_EZL (left) and 4w_EZL (right). All selected journeys with GJT reduction starting from Ilford (IG1: left) and 
Southall (UB2: right) are shown. 

Table 5 
Elasticities for segmented pooled models.  

Pooled Model Segment GJT elasticity 

All cases and time periods -0.61 
Last monitoring point per case -0.68 
Time since intervention < 6 months -0.58 
Time since intervention 6+ months -0.63 
Service improvement -0.59 
Service reduction -0.68 
Large scale intervention -0.62 
Smaller scale intervention -0.50  

Table 6 
Calculation of implied fare elasticity.  

Variable Value 

ηGJT (GJT elasticity) -0.61 
VOT (Value-of-Time: all modes) (£/minute) £0.17 
GJT (network average GJT: all modes) (minute) 30.24 
Fare (average fare per paid journey: all modes) (£) £1.55 
ηfare (implied fare elasticity) 0.18  
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planning in London (Transport for London, 2017). This indicates that 
the service elasticity value found in our study is consistent with previous 
research. 

5. Conclusions and recommendations 

In this paper, we propose a smartcard based method to estimate the 
public transport service elasticity within an urban / metropolitan 
context. Based on more than 25 million empirical journeys subject to 9 
different service interventions within the Greater London area, we find 
the average GJT elasticity to be − 0.61. The value means that for every 
1% increase in journey time, on average PT demand is expected to be 
reduced by 0.61%, and vice versa. We also find that the PT demand 
response to service changes is most elastic during the midday period 
between the peak hours, and most inelastic during the AM peak and 
early morning, possibly caused by a higher share of mandatory journeys. 
Our study results indicate that the elasticity figure increases with 
increasing time since the service change intervention, showing the ex-
istence of a build-up rate from the initial short-run elasticity to a 
somewhat stronger longer-run elasticity. Besides, we find that at least 
within the short- and medium-run demand is more elastic to service 
degradations compared to service improvements. An implication of this 
is that reversing previously implemented service reductions might not 
result in a full, symmetric PT demand recovery, and/or it will take 
longer before demand is fully recovered. 

With our research we contribute to the development of a repeatable, 
direct methodology to estimate GJT elasticities for public transport 
planning based on empirical evidence resulting from individual pas-
senger data and journey time data in a mode-agnostic manner. As dis-
cussed in Section 1.1, the resulting GJT elasticities are easier to use and 
simpler to understand than the existing appraisal methods relying on 
value of time and fare elasticity calculations. Our method can be used to 
quickly evaluate the relevant merit of different scheme options before 
investing resources into more complex simulation models or iterative 
business case refinements. This makes it potentially more receptive by 
business stakeholders in planning and appraisal processes. A key 
advantage of this research approach is the use of large volumes of dis-
aggregated AFC data, in contrast to using indirect or aggregated rail 
ticket sales data as adopted in most journey time elasticity studies so far. 
Our method relies on generic AFC and AVL datasets as input that many 
transport operators have access to and frequently report on. This con-
tributes to the transferability of our method, as different PT operators 
can easily adapt or apply the same approach to many case studies that 
naturally happen on their networks. The use of these automated datasets 
also means that value refresh can happen regularly, thereby maintaining 
recency and relevance. 

The adoption of a mode-agnostic approach where the demand 
response is determined based on the full PT passenger journey made in 
the urban / metropolitan area of consideration has several implications. 
First, this approach better reflects the choice behaviour of passengers, 
who typically consider the impedance of the entire PT journey during 
mode choice or trip frequency choices. Second, it better aligns with the 
overarching PT perspective that PT authorities adopt, as our elasticities 
directly reflect the change in overall PT demand resulting from a service 
change. This provides a more direct insight in the change in PT mode 
share, which is often an important indicator for the extent of sustainable 
travel in an urban or a metropolitan area. Third, this perspective is 
consistent with the multimodal PT view adopted in most PT assignment 
models, where passenger route choice between origin and destination 
zones is generally not limited to a single PT mode. This implies that our 
found elasticity can be connected directly to modelled GJT changes 
resulting from PT assignments models. As the bus alighting stop of 
passengers is inferred, we should note that there is some degree of un-
certainty regarding the final destination of a PT journey when the last 
leg is made by bus, despite the destination inference algorithm being 
validated extensively. Despite some uncertainty on the exact bus 

alighting stop, it is expected that in most cases the inferred alighting stop 
is located within the correct postcode district. As we aggregate demand 
and GJT to postcode districts in our study, the impact of this uncertainty 
on our study results is therefore expected to be small. 

We formulate several recommendations for follow-up research. First, 
an area for further research is estimating GJT elasticities for weekends 
by extending the current input dataset. More generally, the estimation of 
GJT elasticities for different travel purposes or travel card types is rec-
ommended, as this is expected to drive the difference in elasticities 
found between different times of the day, and between different days of 
the week. Either by using passenger survey data or by inferring the most 
plausible journey purpose from AFC data, the estimation of purpose- 
specific elasticities could be explored. Second, it is recommended to 
study how a more detailed correction for background demand changes 
between pre-intervention baseline and post-intervention monitoring 
period can be included. This is relevant to better reflect the local 
background demand changes in an area affected by a service change by 
developing a more disaggregated procedure to correct for confounding 
effects. Third, so far service reliability has not been included in the GJT 
values used in this study. It is possible that the reliability by mode or 
route can sway passengers from trading a slower scheduled journey time 
for a more reliable journey. Incorporation of a reliability term in the 
GJT, such as the travel time variability or reliability buffer time, is 
recommended to capture this aspect explicitly within the GJT elasticity. 
At last, we recommend monitoring the demand response to service 
changes over a longer period of time. This can shine more light on the 
development of the elasticity figure after 1–3 years since the interven-
tion. This can further contribute to understanding to what extent the 
asymmetric demand response found between service improvements and 
service degradations continues to exist in the long-run. 
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