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Micro-Doppler Period Estimation based on
Concentration Statistics of Ambiguity Function

Wenpeng Zhang, Yaowen Fu, and Jiapeng Yin

Abstract—Radar micro-Doppler (m-D) signature, which reflects
the micro-motion dynamic and structural characteristics of radar
target with micro-motion, has been received increasing attention.
Most of the existing m-D signature-extraction methods operate in
the time domain or the time-frequency domain. Different from
these methods, in this work, an m-D period estimation approach
which operates in the ambiguity domain is proposed. Though the
ambiguity function (AF) has been widely used in the field of radar
signal processing, its application for m-D signal is introduced for
the first time. It is proved that the AF of m-D signal exhibits
periodicity along the lag axis and has the best concentration when
the lag equals to multiples of the m-D period. Based on this, three
AF concentration statistics are employed to capture the periodicity
and to provide the m-D estimate. The most important property of
the AF concentration statistics is that they are (or approximately)
invariant to polynomial translations with terms not larger than
second order even if the signal is Doppler ambiguous. Numeric
simulation and real radar experiments are used to validate the
effectiveness of the proposed technique.

Index Terms—Micro-Doppler, period estimation, ambiguity
function, concentration statistics

I. INTRODUCTION

RADAR target undergoing micro-motion dynamics im-
poses a periodic time-varying frequency modulation on

radar signals. This is known as the micro-Doppler (m-D) effect
[1]. The m-D features, which reflect the unique dynamic and
structural characteristics of the target, serve as additional target
features for target recognition and classification [1]–[3].

Numerous m-D signature-extraction methods have been pro-
posed in the past decades. Time-frequency (TF) signal analysis,
which provides a joint time-frequency representation (TFR) of
a signal, is effective in describing the time-varying frequency
modulation property of the m-D signals [1]. Thus, it is widely
employed to analyze the m-D signatures.

For non-rigid radar targets, their main body signatures and
m-D signatures are superimposed. The m-D signal should be
separated or extracted from the target’s radar echo before fur-
ther being processed. Generally, signal decomposition methods
which decompose radar signals into components associated
with different parts of radar target, e.g., chirplet decomposition
[4], wavelet decomposition [5], empirical mode decomposition
(EMD) [6], can be carried out to extract the m-D signatures.
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The statistics of TFR is also effective in extracting the m-
D signatures. In [7], an L-statistics-based method for the m-
D effect removal was proposed and produced better focused
images of the rigid body than other TF-based approaches.

After the extraction of the pure m-D signal, parameter esti-
mation approaches can be applied to estimate the m-D period.
Autocorrelation, which is a typical time-domain approach for
period estimation, is useful for m-D period estimation. This
method was validated by the analysis of a helicopter target
[5]. Based on the fact that the m-D signal presents periodicity
on the TF plane, TF-domain approaches can be developed
to estimate the m-D period [8]–[11]. Two approaches based
on the one-dimensional Fourier transform [8] and the two-
dimensional Fourier transform [9] of the TFR were proposed
to extract the m-D period (frequency), respectively. In [10],
a similarity measure of the TFR, which is a two-dimensional
correlation, was employed to estimate the micro-motion period.
Taking advantage of the spectrum property of the m-D signal,
the cyclic spectrum density (CSD) was proposed for the m-
D period estimation as well [11]. The aforementioned m-
D period estimation approaches were developed without the
consideration of translation and may be invalid in the presence
of translation.

In real scenarios, the micro-motion is often coupled with
the translation (macro-motion) due to the relative bulk motion
between the target and the radar platform [5], [9], [12], [13].
For aerial targets such as helicopter and ballistic warhead
measured by the ground-based radar, the translation is identical
to the target’s motion which may be a constant (e.g., hovering
helicopter) [5], a linear translation (the target is moving with
constant velocity) [12] and a quadratic translation (the target
is moving with constant acceleration) [9]. For ground targets
such as rotating antenna measured by the airborne radar, the
translation is often approximated by a quadratic translation
[13].

In the presence of translation, the periodicity of the m-D sig-
nal is destroyed and the aforementioned m-D period estimation
methods in [5], [8]–[11] should be integrated with a translation
compensation step. This means that the performances of these
approaches largely depend on the translation compensation
algorithms [14] and the computational complexity increases
significantly because the translation compensation step usually
involves a search for the unknown motion parameters. In
a previous publication [15], the authors proved that in the
presence of translation, the TFR of the m-D signal is circular
shifted along the Doppler dimension, thus the periodicity of
the TFR is transformed into the circular periodicity. Based
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on the circular periodicity property, the circular correlation
coefficients of the TFR which can inherently remove the
circular-Doppler-shift effect caused by the translation was pro-
posed. In addition to the circular correlation coefficients, two
different translation-compensation-free m-D period estimation
methods, the time-frequency squared difference sequences of
the scatterers’ instantaneous frequencies [16] and the high-
order difference sequence of the scatterer’s instantaneous range
[17], were proposed respectively.

Though these three methods have successfully achieved m-
D period estimation in the presence of translation, they still
have limitations in processing m-D signals with low signal-to-
noise ratio (SNR). In addition, the computational efficiencies
are low. This motivates the authors to explore a new m-D
period estimation method.

This work focuses on m-D period estimation of radar tar-
gets with uniform and single-period micro-motion. Targets of
interests include ballistic warhead, helicopter, wind turbines,
rotating antenna, human, etc. Inspired by the high-order am-
biguity function (HAF) [18] (which is good at processing
polynomial-phase signals (PPSs)), this work proposes an m-D
period estimation method based on the concentration statistics
of the ambiguity function (AF). With theoretical derivation and
careful analysis, the authors found that the AF has similar
effect with the TF in terms of the translation. The AF is
circular-Doppler-shifted in the presence of translation as well.
Moreover, the concentration of the AF is periodic. Then,
three concentration statistics including AF entropy, AF l4-l2
norm, and AF l1 norm which are invariant to the circular-
shift effect are proposed. Benefiting from the special property
of the AF, the proposed method can provide the m-D period
estimation without combining a translation compensation step.
The contributions of this work include:
• The AF of m-D signal is discussed. Properties including

the circular-Doppler-shift property of the AF in the pres-
ence of translation and the periodic concentration effect of
the AF are uncoverd. An m-D period estimation method
based on the concentration statistics of the AF is proposed,
which enlarges the class of the m-D period estimation
methods that are free of translation compensation.

• It has been widely believed that, in order to have a better
performance for processing the multicomponent nonsta-
tionary m-D signal, TFRs without cross-term interference1

should be employed [1]. Our work presents a different
way for the m-D period estimation and proves that the
AF can do this as well although the signal suffers from
cross-term interference.

• Comprehensive comparisons for existing m-D period es-
timation methods including estimation performance and
computational complexity are provided. To the best of our
knowledge, it is the first time in the field of m-D period
estimation.

The rest of the paper is organized as follows. In Section
II, the radar signal model and basic concepts of the m-D are

1The cross-terms of a signal are the coupling terms of its components, which
are induced by the nonlinear functions/operators. The cross-terms may interfere
some important features of a signal and are thought to be detrimental.

presented. Section III provides an overview of related work.
The details of the proposed method are demonstrated in Section
IV. Data verification consisting of a simulated coning target,
a walking human, and a SAR experiment is given in Section
V. Finally, Section VI draws some conclusions. A summary of
the main notations is given in Table I.

II. RADAR SIGNAL MODEL

Assuming that there are L scatterers on the target, the radial
distance of the lth scatterer from radar can be expressed as

rl (t) = rT (t) + rM,l (t) (1)

where rT (t) is the range corresponding to the translation of the
target, and rM,l (t) is the range corresponding to the individual
micro-motion of the lth scatterer, which meets

rM,l (t) = rM,l (t+ TM ) (2)

where TM is the micro-motion/micro-Doppler period of the
target, and fM = 1/TM is the micro-motion/micro-Doppler
frequency.

A second-order-polynomial function is often enough to
model the translation of a target [1]. The translation can be
expressed as

rT (t) = R0 +

Q∑
i=1

ait
i (3)

where R0 is the initial range. Q may be 0, 1, and 2 corre-
sponding to three scenarios respectively: micro-motion (MM
for short), micro-motion plus linear translation (MMLT for
short) and micro-motion plus quadratic translation (MMQT for
short).

In general, the baseband signal of the returned radar signal
can be expressed as

s (t) =

L∑
l=1

σl (t) exp

(
−j4πrl (t)

λ

)
= sT (t) sM (t) (4)

where
sT (t) = exp

(
−j4πrT (t)

λ

)
(5)

sM (t) =

L∑
l=1

σl (t) exp

(
−j4πrM,l (t)

λ

)
. (6)

sT (t) is the translation modulation component, sM (t) is
the micro-motion modulation component, σl (t) denotes the
radar cross section (RCS) of the lth scatterer, and λ is the
wavelength of the carrier wave. Specially, when Q = 0,
sT (t) = exp

(
− j4πR0

λ

)
is a constant and can be absorbed

into σl (t).
The RCS of a complex target is a function of aspect angle

and frequency, and the aspect angle varies with the motion
of the target. In most micro-motion research, periodic RCS is
adopted, which simplifies the analysis of m-D signal [1],

σl (t) = σl (t+ TM ) . (7)

This assumption is violated when the aspect angle of the
target fluctuates severely. Since the proposed method mainly
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TABLE I
NOTATIONS USED IN THIS WORK.

t (n) time variable (discrete time variable) τ (m) lag variable (discrete lag variable)
f (k) frequency variable (discrete frequency variable) rT (t) Radial distance corresponding to the translation of the target
s(t) the m-D signal to be analyzed s(n) discrete version of the m-D signal to be analyzed
T the observation time N signal length
TM micro-motion/micro-Doppler period fM micro-motion/micro-Doppler frequency
Fx [·] the Fourier transform of a signal on x variable ∗f convolution in the frequency domain
Nf points of the Fourier transform

makes use of the periodic instantaneous phase, the influence
of aperiodic RCS is negligible and this assumption is adopted
in the derivation of the proposed method.

The micro-motion modulation component can be rewritten
as

sM (t) = a (t) exp (jφ (t)) (8)

where a (t) and φ (t) are the instantaneous amplitude and
instantaneous phase of sM (t), respectively.

Using (2), (6) and (7), it is not difficult to prove that

a (t) = a (t+ TM ) (9)

φ (t) = φ (t+ TM ) (10)

sM (t) = sM (t+ TM ) . (11)

Substituting (3) into (5), the translation modulation compo-
nent can be rewritten as

sT (t) = exp

{
−j4π

λ

[
R0 +

Q∑
i=1

ait
i

]}
. (12)

It is evident that sM (t) is a periodic phase modulated signal
(PPMS), sT (t) is a PPS, and s (t) is the combination of a
PPMS and a PPS.

The instantaneous Doppler of the lth scatterer is defined as

fl (t) = − 2

λ

drl (t)

dt
= fT (t) + fM,l (t) (13)

where
fT (t) = − 2

λ

drT (t)

dt
(14)

fM,l (t) = − 2

λ

drM,l (t)

dt
. (15)

fT (t) is the translation-Doppler/macro-Doppler of the target,
and fM,l (t) is the micro-Doppler of the lth scatterer. The m-
D reflects the micro-motion dynamics of radar target, which
is the basis of the m-D signature extraction and parame-
ter estimation. Generally, TFR which provides the time and
frequency information simultaneously is employed for m-D
signature analysis [1]. Note that the m-D is circular-shifted
by the translation and it causes Doppler-ambiguity when the
macro-Doppler exceeds the pulse repetition frequency (PRF)
[15]. This makes it difficult to process the m-D signals.

III. RELATED WORK

In this section, we overview some existing m-D period
estimation methods. These methods have been proved to be
effective for m-D period estimation and they are widely used
in this field.

A. Cyclic spectrum density

In [11], cyclostationary theory is applied to analyze m-D
signal and it is proved that cyclic spectrum density (CSD)
can be utilized to estimate the m-D period. The CSD of
the radar echo is defined as the Fourier transform of cyclo-
autocorrelation function Rs (α, τ),

ζ (α, f) =

∫ ∞
−∞

Rs (α, τ) exp (−j2πfτ) dτ (16)

where Rs (α, τ) is the Fourier coefficient of the instantaneous
autocorrelation function (IAF), α is the cycle frequency, and τ
is the lag,

Rs (α, τ) =

∫ T/2

−T/2
cs (t, τ) exp (−j2παt) dt (17)

cs (t, τ) = s
(
t+

τ

2

)
s∗
(
t− τ

2

)
. (18)

It is shown that CSD can be represented as a series of peaks
in the (α, f) plane and the amplitudes of these peaks are
modulated by the Bessel function. Approximately, the peaks
of CSD have the following locations{

α = (p− q) fM
f = 1

2 (p+ q) fM
p, q ∈ Z. (19)

The α-slice of CSD ζ (α, f = 0) exhibits peaks at α =
2ifM , i ∈ Z and this property is utilized for m-D period
estimation.

In this work, since τ
2 is difficult to be computed, in the

calculation of Rs (α, τ), we refer to another definition of IAF
given by

cs (t, τ) = s (t+ τ) s∗ (t) . (20)

Then Rs (α, τ) can be rewritten as

Rs (α, τ) = exp (−jπατ)

∫ T
2

−T
2

cs (t, τ) exp (−j2παt) dt.

(21)
The calculation of Rs (α, τ) (two-sided AF and phase

multiplication) requires 1/2 · (2N − 1)Nf log2Nf +
N2 + 2NNf multiplications2. ζ (α, f) can be
obtained by performing a (2N − f)-points Fast
Fourier transform (FFT) on Rs (α, τ) along the lag
dimension, it requires 1/2 · (2N − 1)Nf log2 (2N − 1)
multiplications. The total operations CSD required are

2Computational complexities of the related signal processing methods are
presented in Appendix A.
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1/2 · (2N − 1)Nf (log2 (2N − 1) + log2Nf ) +N2 + 2NNf
multiplications. Taking Nf = 2N − 1, the computational
complexity is O

(
N2 log2N

)
approximately.

B. 2D FFT of TF

The 2D FFT can be used to extract the periodic structure of
the spectrogram of m-D signal [9],

χ(fx,fy)=

∞∫
−∞

∞∫
−∞

|ρs(t,f)|2exp(−j2πtfx−j2πffy)dtdf

(22)
where |ρs (t, f)|2 is the spectrogram. Collapsed χ (fx, fy) in
1D function of frequency by integrating (summing for discrete
version) along fy dimension,

ξ (fx) =

∫ ∞
−∞

χ (fx, fy) dfy. (23)

According to [9], ξ (fx) shows peaks at ifM , i ∈ Z.
The main computation of this method concentrates on

the computation of the spectrogram and the 2D FFT. As
Nf ≤ N , the computational complexity is O (NNf log2Nf )+
NNf (log2N + log2Nf ) ≈ O (NNf log2N).

C. TF similarity

The TF similarity proposed in [10] can be expressed as,

Ms (m) =

P−1∑
l=0

Nf−1∑
k=0

ρs (l, k) ρs (m+ l, k) (24)

where ρs (l, k) , 0 ≤ l ≤ P −1, 0 ≤ k ≤ Nf−1 is a part of the
whole TF matrix. From (24), it can be concluded that Ms (m)
is indeed the 2D correlation coefficient. When the discrete lag
m satisfies m∆T ≈ iTM , i ∈ Z, the correlation coefficients
are large, and Ms (m) shows peaks at these locations.

The calculation of (24) involves (N − P + 1)PNf mul-
tiplications. The computational complexity of this method
is O (NNf log2N) + (N − P + 1)PNf . As NNf ≤
(N − P + 1)PNf ≤ 1/4 · N (N + 2)Nf , the computational
complexity lies in [O (NNf log2N) , O

(
N2Nf

)
].

D. Circular correlation coefficients

The circular correlation coefficients is proposed to extract
the circular periodicity of the TF in the presence of translation
[15]. The circular cross-correlation of two slices of the TF is

Cr (k;n, l) =

Nf−1∑
p=0

∣∣ρs (n, k)
∣∣∣∣ρs(n, (k + p)Nf

)∣∣. (25)

The circular correlation coefficients matrix of ρs (n, k) is
defined as

Mc=


Cm(0, 0) Cm(0, 1) · · · Cm(0, N−1)
Cm(1, 0) Cm(1, 1) · · · Cm(1, N−1)

...
...

. . .
...

Cm(N−1, 0)Cm(N−1, 1) · · · Cm(N−1, N−1)


(26)

where Cm (n, l) is the normalized maximal value of
Cr (k;n, l),

Cm(n, l)=
max
k
{Cr (k;n, l)}√

Nf−1∑
k=0

|ρs(n, k)|2
√
Nf−1∑
k=0

|ρs(l, k)|2
. (27)

Define average circular correlation coefficients as the average
of the kth diagonal of the matrix

Cr (k) = mean {diag (Mc, k)} (28)

where

diag (Mc, k) = {Mc (n, l) , l = n+ k, 1 ≤ n, l ≤ N} . (29)

According to [15], Cr (k) has the same period with the m-D
signal and shows peaks at k = iNTM

, i ∈ Z.
The major computation of the circular correlation coef-

ficients concentrates on the computation of Cr (k;n, l) and

P (n, l) =

√∑Nf−1
k=0 |ρs(n, k)|2

√∑Nf−1
k=0 |ρs(l, k)|2. The cal-

culation of Cr (k;n, l) can be implemented by a fast algo-
rithm, i.e., an FFT, a conjugated production in the frequency
domain, and an inverse FFT, which requires Nf log2Nf +
Nf multiplications. As there are N (N − 1) /2 combina-
tions for these slices, the total operations required are
N (N − 1) (Nf log2Nf +Nf ) /2 multiplications. In the com-

putation of P (n, l), the terms
√∑Nf−1

k=0 |ρs(n, k)|2, l =
0, 1, · · · , N − 1 can be computed and stored at the beginning
and the total operations required are NNf + N (N − 1) /2.
Approximately, the computational complexity of the circular
correlation coefficients is O

(
N2Nf log2Nf

)
.

E. Autocorrelation

The autocorrelation [5] is the most widely used method for
period estimation, which is defined as

rs (m) =

N−m−1∑
n=0

s (n) s∗ (n+m) . (30)

It is easy to derive that the computational complexity of the
autocorrelation function is O

(
N2
)
.

As mentioned in the introduction, in the presence of trans-
lation, all m-D period estimation methods except the circular
correlation coefficients should be integrated with a translation
compensation step. In this work, the autocorrelation with
translation compensation is taken as an example. The trans-
lation compensation algorithm adopted here is the minimum-
spectrum-entropy translation compensation (MSETC) algo-
rithm proposed in [14]. The principle of this algorithm is
multiplying the m-D signal by a quadratic phase function that
minimize the spectrum entropy. The compensated m-D signal
can be expressed as

sc (t) = s (t) exp (j4πrT,c (t) /λ) (31)

where rT,c (t) is the quadratic translation used for compensa-
tion

rT,c (t) = R0,c + a1,ct+ a2,ct
2. (32)
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TABLE II
COMPUTATIONAL COMPLEXITIES OF DIFFERENT M-D PERIOD ESTIMATION METHODS

AF concentration statistics CSD autocorr. autocorr. + comp. 2D FFT of TF TF similarity circular corr. coeff.

O
(
N2log2N

)
O
(
N2 log2N

)
O
(
N2

)
O
(
N3 log2N

)
O
(
NNf log2N

)
[O

(
NNf log2N

)
, O

(
N2Nf

)
] O

(
N2Nf log2Nf

)

The objective of compensation is to search the parameters θ =
(R0,c, a1,c, a2,c) that minimize the spectrum entropy of sc (t).
The compensation result is mainly determined by the search
range and resolution of a2,c. The computation of the MSETC
algorithm concentrates on the product of two signal and the
spectrum entropy. Assuming Na samples of a2,c are taken, the
computational complexity approximates to O (NaN log2N).

The searching interval of a2,c is computed according to
the parameters of the signal so that the overall range of the
residual translation frequency would not exceed the value of a
frequency bin 1/T ,

δa = λ/
(
2T 2

)
. (33)

Assuming the searching range of a2,c is in the interval
[a2 − 2, a2 + 2], which is a quite small range. Thus,

Na = 8T 2/λ = 8N2∆T 2/λ. (34)

Thus, the computational complexity of the MSETC algorithm
is O

(
N3 log2N

)
, which is very high in signal processing.

And the computational complexity of the autocorrelation with
translation compensation approximates to O

(
N3 log2N

)
(The

computational complexity of the autocorrelation O
(
N2
)

is
negligible compared with this term.). The autocorrelation has
the lowest computational complexity compared with other m-D
period estimation methods. However, when the autocorrelation
is combined with the translation compensation algorithm, the
computational complexity increases significantly and has the
largest value as shown in Table II.

By summarizing all the aforementioned methods, the esti-
mation statistics in the time/frequency domain (the lag domain
is similar to the time domain) has the following properties.

Prop. 1: The statistics in the time domain must present
periodic pattern with the same period of the m-D signal, and
the statistics in the frequency domain must be derived from a
periodic statistics with the same period of the m-D signal.

Prop. 2: To extract the period, the statistics must ex-
hibit peaks at locations that are multiples of the m-D pe-
riod/frequency.

IV. AF-BASED M-D PERIOD ESTIMATION

In radar measurements, the phase (or Doppler) of the radar
signal is more stable compared with the RCS. All motion-
related information is embedded in the phase (or Doppler)
[1]. Thus, it is preferred to develop the m-D period estima-
tion methods based on the periodic instantaneous phase (or
Doppler). It is reported in [18] that the HAF with proper order
can transform a PPS into a sinusoidal signal (i.e., a first-order
PPS) and the parameters of the signal can be estimated in
sequence. Inspired by the HAF, the AF (i.e., first-order HAF)
is utilized to extract the m-D period in this work. There are

both similarity and difference between the HAF in [18] and
the AF adopted here. The similarity is that both the HAF and
the AF utilize the spectrum of the phase difference signal
to estimate the parameters, while the difference is that the
considered signal in this work has a complicated modulation
form, i.e., the combination of a PPS and a PPMS.

Since our approach attempts to measure the phase periodicity
in the time domain, it must be consistent with Prop. 1 and
Prop. 2. In this section, the details of the AF concentration
statistics for the micro-motion modulation component (the MM
case) is presented firstly, and then the influence of translation
(the MMLT case and the MMQT case) is given.

A. AF Concentration Statistics of the Micro-Motion Modula-
tion Component

The ambiguity function of sM (t) is defined as,

CsM (f, τ) =

∫ T−τ

0

csM (t, τ) exp (−j2πft) dt (35)

where csM (t, τ) is the IAF of sM (t),

csM (t, τ) = sM (t) s∗M (t+ τ) . (36)

τ is the lag, 0 ≤ τ ≤ T , 0 ≤ t ≤ T − τ ; T is the observation
time. For simplicity, in the following derivation, an infinite
observation time (i.e., T → ∞) is considered firstly, and the
effect of the finite observation time is discussed next.

i). Infinite observation time.
Denote c∞sM (t, τ) as the IAF with infinite observation time,

csM (t, τ) can be reformulated as

csM (t, τ) = c∞sM (t, τ) rect

(
t− (T − τ)

T − τ

)
. (37)

Substituting (8) into (36)

c∞sM (t, τ) = a (t) a∗ (t+ τ) exp (jφ (t)− jφ (t+ τ)) . (38)

To analyze the periodicity, letting τ = τ + TM , the following
formula is obtained as
c∞sM (t, τ + TM )

= a (t) a∗ (t+ τ + TM ) exp (jφ (t)− jφ (t+ τ + TM ))

= a (t) a∗ (t+ τ) exp (jφ (t)− jφ (t+ τ))

= c∞sM (t, τ) .
(39)

Similarly, letting t = t+ TM , we have

c∞sM (t+ TM , τ) = c∞sM (t, τ) . (40)

Therefore, the IAF is a periodic function with respect to both
the time and lag. By taking a Fourier transform along the time
dimension, we get a lag-periodic ambiguity function,

C∞sM (f, τ + TM ) = C∞sM (f, τ) (41)
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∣∣C∞sM (f, τ + TM )
∣∣ =

∣∣C∞sM (f, τ)
∣∣ . (42)

We now discuss the relation between the AF and the instan-
taneous phase and more insight into why the AF concentration
statistics is used can be obtained from this discussion. (38) can
be rewritten as

c∞sM (t, τ) = A (t, τ) exp (jψ (t, τ)) (43)

where A (t, τ) and exp (jψ (t, τ)) are the amplitude correlation
component and the phase difference component, respectively.

A (t, τ) = a (t) a∗ (t+ τ) (44)

exp (jψ (t, τ)) = exp (jφ (t)− jφ (t+ τ)) . (45)

According to the property of Fourier transform, C∞sM (f, τ) can
be expressed as

C∞sM (f, τ) = Ft [A (t, τ)] ∗f Ft [exp (jψ (t, τ))] . (46)

The amplitude a (t) varies more slowly compared with the
instantaneous phase φ (t) (because the phase is more sensitive
to the range variation induced by micro-motion dynamics). It
is expected that the shape of the spectrum C∞sM (f, τ) is mainly
determined by the phase difference component. C∞sM (f, τ) will
concentrate at near zero frequency when the phase difference
is small. Conversely, C∞sM (f, τ) will spread over a wide
frequency range when the phase difference is large. There-
fore, a concentration measure of C∞sM (f, τ) can characterize
the periodic change of the phase difference. Moreover, the
concentration measure would present peaks when the phase
difference is zero.

Herein, the entropy [19] is employed as a concentration
measure to demonstrate the aforementioned properties. The
entropy of C∞sM (f, τ) along the frequency dimension, referred
to as AF entropy, is given by

ε∞sM (τ) =

∫ ∞
−∞

C∞sM (f, τ)

EC∞sM
(τ)

ln
C∞sM (f, τ)

EC∞sM
(τ)

df (47)

where
EC∞sM

(τ) =

∫ ∞
−∞

∣∣C∞sM (f, τ)
∣∣ df (48)

is the energy of C∞sM (f, τ) at slice τ . Substituting (42) into
(47) and (48), it is easy to derive that

ε∞sM (τ + TM ) = ε∞sM (τ) . (49)

Thus, the AF entropy has the same periodicity with the micro-
motion dynamics and Prop. 1 is satisfied.

Now Prop. 2 is considered. When τ = iTM , the phase
difference component exp (jψ (t, τ)) is equivalent to 1 as

exp (jψ (t, iTm)) = exp (jφ (t)− jφ (t+ iTM )) = 1. (50)

We have
F [exp (jψ (t, iTm))] = δ (f) . (51)

where δ (f) is the Dirac delta function. It is clear that
ε∞sM (iTM ) shows peaks at τ = iTM . While for other lags
τ 6= iTM , the values of ε∞sM (iTM ) are small. This property
can be expressed as

ε∞sM (τ) ≤ ε∞sM (iTM ) , iTM ≤ τ ≤ (i+ 1)TM . (52)

From the above analysis, it is proved that the AF entropy
satisfies Prop. 1 and Prop. 2, thus it can be used as an m-D
period estimator.

ii). Finite observation time.
In this subsection, we will discuss the situation where the

observation time is finite. In this situation, the time-support
of the IAF is a function with respect to the lag. The effect
of the varying time-support of the IAF is modelled and new
definitions of AF entropy is presented.

Substituting τ = τ0 and τ = τ + iTM into (37), we have

csM (t, τ0) = c∞sM (t, τ0) rect

(
t− (T − τ0) /2

T − τ0

)
(53)

csM (t, τ0+iTM )=c∞sM (t, τ0) rect

(
t−(T−τ0+iTM )/2

T − τ0 + iTM

)
(54)

where 0 ≤ τ0 < TM , 0 ≤ τ0 + iTM < T . Then,

CsM (f, τ0) = C∞sM (f, τ0) ∗f
[
(T − τ0)

· exp (−jπf (T − τ0)) sinc ((T − τ0) f)
] (55)

CsM (f, τ0 + iTM ) = C∞sM (f, τ0) ∗f
[
(T − τ0 + iTM )

· exp (−jπf (T − τ0 + iTM )) sinc ((T − τ0 + iTM ) f)
]
.

(56)

Since the convolution with the sinc function acts as an interpo-
lation operator in signal processing, |CsM (f, τ0 + iTM )| can
be viewed as the resampling of |CsM (f, τ0)| with an amplitude
scale. Thus, we have the following approximation∣∣CsM (T isf, τ0 + iTM

)∣∣ ≈ T is |CsM (f, τ0)| (57)

where
T is =

T − (τ0 + iTM )

T − τ0
(58)

is the time-support scale.
A redefined AF entropy considering the varying time support

is given as follows and more details are given in Appendix B.

εsM (τ) =

∫ ∞
−∞

CsM (f, τ)

ECsM
(τ)

ln
CsM (f, τ)

ECsM
(τ)

df − ln (T − τ) .

(59)
It is easy to prove that εsM (τ) satisfies the two aforementioned
properties approximately.

B. The Influence of Translation on AF Concentration Statistics

For targets with translation, the translation modulation com-
ponent sT (t) is a PPS. As mentioned in [18], the phase
differentiation (PD) operation in the AF can reduce the order
of polynomial-phase signals. Thus, the AF has the potential
to process m-D signals in the presence of translation. For
simplicity, in this subsection, we neglect the varying time-
support of the IAF. As the effect of varying time-support is
considered in the modified AF concentration statistics, this
simplification would not affect the conclusion.

According to (4), the IAF of the radar echo can be expressed
as

cs (t, τ) = sT (t) s∗T (t+ τ) sM (t) s∗M (t+ τ)

= csT (t, τ) csM (t, τ)
(60)
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where

csT (t, τ) = exp

{
−j4π

λ

[
Q∑
i=1

ait
i −

Q∑
i=1

ai (t+ τ)
i

]}
(61)

is the IAF of the translation modulation component.
Now the effect of the translation on the AF and the AF

concentration statistics is considered.
i). The MMLT case.
Substituting Q = 1 into (61), we have

csT (t, τ) = exp

{
j4π

λ
a1τ

}
(62)

cs (t, τ) = exp

{
j4π

λ
a1τ

}
csM (t, τ) . (63)

For a fixed lag τ , csT (t, τ) is a constant phase with respect
to t. Using the linear property of Fourier transform, it is clear
that

Cs (f, τ) = exp

{
j4π

λ
a1τ

}
CsM (f, τ) . (64)

The constant term exp
{
j4π
λ a1τ

}
in (64) has no influence on

the pattern and the concentration behavior of Cs (f, τ), thus
the entropy of Cs (f, τ) would be the same as CsM (f, τ).

εs (τ) = εsM (τ) . (65)

This property can be easily proved by substituting |Cs (f, τ)| =
|CsM (f, τ)| into (47).

ii). The MMQT case.
Substituting Q = 2 into (61), we have

csT (t, τ) = exp

{
j4π

λ

(
a1τ + a2τ

2 + 2a2τt
)}

(66)

and

CsT (f, τ) = exp

{
j4π

λ

(
a1τ + a2τ

2
)}

δ

(
f − 4a2τ

λ

)
.

(67)
Note that, in the calculation of CsT (t, τ), an infinite obser-
vation time is considered. Otherwise the δ (·) function in (67)
would be replaced by sinc (·) function.
Therefore,

Cs(f, τ) = CsT (f, τ) ∗f CsM (f, τ)

=exp

{
j4π

λ

(
a1τ+a2τ

2
)}

CsM

(
f− 4a2τ

λ
, τ

)
.

(68)

It is clear that from (68), Cs (f, τ) is the frequency-shifted
version of CsM (f, τ) with a constant phase (For the dis-
crete signal, the frequency-shift is replaced by the circular-
frequency-shift). This frequency shift makes Cs (f, τ) more
complicated. Fortunately, the entropy of a signal is merely
determined by its energy distribution, thus the entropy of
Cs (f, τ) is also the same as CsM (f, τ) in this case.

Using |Cs (f, τ)|2 =
∣∣CsM (f − 4a2τ

λ , τ
)∣∣2, ECs (τ) =

ECsM
(τ), followed by an substituting of f ′ = f − 4a2τ

λ , it
can be proved that

εs(τ)=

∫ ∞
−∞

|CsM (f ′, τ)|2

ECsM
(τ)

ln
|CsM (f ′, τ)|2

ECsM
(τ)

df ′=εsM (τ) .

(69)

From the above derivation in Subsection A and B, the
following conclusions can be made: (i). The AF of the micro-
motion modulation component presents the same periodicity
with the micro-motion; (ii). The periodicity is replaced by the
circular periodicity in the presence of translation; (iii). The AF
entropy of the radar echo is (or approximately) invariant to
translation with polynomial terms not larger than second order;
(iv). The AF concentration statistics show peaks at lags which
are multiples of the m-D period and can be used to estimate
the m-D period.

C. The Discrete Version and its Implementation

The discrete versions of AF concentration statistics are
essential for implementation. Considering a discrete signal
s (n), the discrete IAF of the signal is defined as follows,

cs (n,m) = s (n) s∗ (n+m) (70)

where m is the discrete lag, 0 ≤ m ≤ N − 1, 0 ≤ n ≤
N −m+ 1, and N is the signal length.

The discrete AF of the signal can be obtained by performing
a Nf -points discrete Fourier transform on cs (n,m), which is
given by

Cs (k,m) =

N−m−1∑
n=0

cs (n,m) exp (−j2πnk/Nf ) (71)

where k = 0, 1, · · · , Nf − 1. Neglecting an amplitude scale,
Cs (k,m) can be viewed as the sampling of Cs (f, τ) with a
frequency interval ∆f = fs/Nf .

The integral of a function g (f) over an interval [a, b] can
be approximated by∫ b

a

g (f) ≈
K−1∑
k=0

g (fk) ∆f (72)

where fk = a + k∆f and ∆f = (b− a) /K are the
sampling point and the sampling interval, respectively. Using
this property, (59) can be approximated as

εs (τ) ≈ εs (m) =

Nf−1∑
k=0

|Cs (k,m)|2

ECs
(m)

ln
|Cs (k,m)|2

ECs
(m)

− ln

(
fs
Nf

)
− ln

(
N −m
fs

) (73)

where

ECs (m) =

Nf−1∑
k=0

|Cs (k,m)|2 . (74)

In practice, we find that if the lag is close to the signal length,
the length of the discrete IAF is too short and the concentration
statistics tends to be exaggerated. It is essential to include
a length-dependent penalize term. By removing the last two
terms in (73), the discrete version of AF entropy is redefined
as

εs (m) =

Nf−1∑
k=0

|Cs (k,m)|2

ECs
(m)

ln
|Cs (k,m)|2

ECs
(m)

. (75)

Fig. 1 shows the flowchart of the AF entropy-based estima-
tion approach. In the proposed approach, the entropy can be
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Fig. 1. Flowchart of AF entropy-based m-D period estimation.

replaced by other concentration statistics. One is the ratio of
l4 norm to the square of l2 norm of AF, denoted as AF l4-l2
norm (see Appendix A for the continuous version),

ηs (m) =

Nf−1∑
k=0

|Cs (k,m)|4 /

Nf−1∑
k=0

|Cs (k,m)|2
2

. (76)

The other one is the normalized l1 norm of AF, denoted as AF
l1 norm

κs (m) =

Nf−1∑
k=0

|Cs (k,m)| / max
k
|Cs (k,m)| . (77)

The computation of the AF concentration statistics involves
the computation of the AF and the computation of the concen-
tration statistics. The computational complexities of these three
AF concentration statistics are O

(
N2 log2N

)
+N ·O (N) =

O
(
N2 log2N

)
(More details can be found in Appendix A).

The computational complexities of all the methods are
summarized in Table II. Note that autocorr., autocorr. + comp.,
and circular corr. coeff. are short notations for autocorrelation,
autocorrelation with translation compensation, and circular
correlation coefficients, respectively. From Table II, it can be
known that the three AF concentration statistics have medium
computational cost. While autocorrelation with compensation
and circular correlation coefficients are the two most com-
putational expensive algorithms. The autocorrelation has the
least computational cost. Moreover, among all the translation-
compensation-free m-D period estimation methods, the three
AF concentration statistics have the least computational cost.

V. DATA VERIFICATION

A. A Coning Target

The ballistic missile (BM) is one of the well-studied radar
targets with micro-motion. In order to maintain the attitude
(orientation), besides the bulk motion, the BM usually un-
dergoes coning motion. The cone target with coning motion
can be used to model the BM [9]. The target model is
shown in Fig. 2. There are three scatterers on the target with
positions P1 = (0, 0, 1.6) m, P2 = (0,−0.2,−0.4) m and
P3 = (0,−0.15, 0.1) m in the local coordinate system O−xyz,
while their RCS are σ1 = 1, σ2 = 0.5 and σ3 = 0.3. The target
is coning with period TM = 2 s, and coning angle θ = 15◦. The
azimuth and elevation angle of the target center with respect
to the radar in the reference coordinate system are α = −50◦

and ν = 270◦, respectively. The radar operates at 10 GHz
with a PRF of 200 Hz. The observation time is T = 4 s. The
range of the linear translation and the quadratic translation are

rT (t) = −t and rT (t) = −t+0.4t2, respectively. Fig. 3 shows
the flowchart of the coning motion simulation. Following the
similar derivation in [1], the range of scatterers corresponding
to the micro-motion can be calculated as

r (t) = sinα (y sin θ + z cos θ)

+ cos 2πfM t cosα (x cos ν + y sin ν cos θ − z sin ν sin θ)

+ sin 2πfM t cosα (x sin ν − y cos ν cos θ + z cos ν sin θ)
(78)

where (x, y, z) are the coordinates of the scatterers. The micro-
motion modulation component and the translation component
are generated by using (6) and (5), respectively.

LOS

Fig. 2. The cone target model.

In the coning target simulation, the SNR is fixed at 2 dB
except the Monte Carlo simulation. The SNR is defined as
SNR = 10 log 10

∑N−1
n=0 |s(n)|

2

Nσ2
v

, where s (n) , n = 0, 1, · · · , N−
1 is the discrete radar echo, σ2

v is the variance of the noise.
In Fig. 4, the STFT with a 65-length hamming window

is performed on the radar echo to demonstrate the Doppler
variation of the target. For the MM case, the coning target
exhibits sinusoidal curves in the TF domain which means that
the radar echo is sinusoidal-frequency modulated. It is also
clear that the STFT of the radar echo is periodic along the
time dimension. For the MMLT case and MMQT case, the
STFT is the circular-frequency (Doppler)-shifted version of the
MM case [15]. Specifically, the Doppler shift value is constant
for the MMLT case. While for the MMQT case, the signal is
Doppler ambiguous and the Doppler shift value is a wrapped
linear function with respect to time.

Fig. 5 plots the AFs of the radar echoes. The AF is normal-
ized along the Doppler dimension by its maximum absolute
value at each lag. It is clear that the AFs of radar echoes are
the same for the MM case and the MMLT case as mentioned in
Section III. While the AF of the radar echo for the MMQT case
is the phase-multiplied and circular-Doppler-shifted version of
the MM case. A comparison can be made between the AF
and the STFT. First, the circular-Doppler-shift effect of the TF
appears when there are translation with polynomial terms not
less than first order, while this effect of the AF appears only for
translation with polynomial terms not less than second order
(because the AF can reduce the order of a PPS by one). Second,
the line trends of the TF and the AF have contrary directions
for the MMQT case. The slices of AF of the radar echo for



9

Scatterer 

Motion
Noise

Noisy Radar 

Echo
Scatterer RCS

 Micro-motion 

Modulation Component
Radar Echo 

Translation Modulation 

Component

Fig. 3. Flowchart of the coning motion simulation.

0 1 2 3

time (s)

-100

-50

0

50

D
o

p
p

le
r 

(H
z
)

(a)

0 1 2 3

time (s)

-100

-50

0

50

D
o

p
p

le
r 

(H
z
)

(b)

0 1 2 3

time (s)

-100

-50

0

50

D
o

p
p

le
r 

(H
z
)

(c)

Fig. 4. STFT of the radar echo.(a) the MM case; (b) the MMLT case; (c) the MMQT case.

the MM case is also displayed in Fig. 5(d)-(f) to examine the
concentration effect of the AF. All the AFs of radar echoes
concentrate at zero frequency and exhibit good concentration
at lags (e.g., τ = 0, 2 s ) which are multiples of the m-D period,
while poor concentration appears at other lags. This effect is
consistent with the analysis in Section III. A and B.

Next, Fig. 6 demonstrates the estimation statistics of the m-D
estimation approaches. The m-D period estimates (based on the
distance of the peaks) are summarized in Table III. Estimates
close to 2.0 s are successful estimates while “na” means that
the approach fails to provide an m-D period estimate. As most
of the estimation statistics (except for the CSD slice) of the
MMLT case are the same with that of the MM case, the results
of the MM case are not shown.

Fig. 6(a) – (c) show the results of the AF entropy, the AF
l4-l2 norm and the AF l1 norm. As the AF concentration
statistics can inherently remove the translation effect, these
three AF concentration statistics are approximately the same
for the MMLT case and the MMQT case, which can provide
good estimates in the presence of the translation.

Fig. 6(d) plots the TF entropy for a comparison. Though the
overall concentration of the TF is much better compared with
AF, the TF entropy does not have any physical meaning and
it is not periodic. Thus, it is not suitable for the m-D period
estimation.

Fig. 6(e) presents the result of another AF-relevant approach,
the cyclic spectrum density (CSD). It is observed that the slice
of CSD of the radar echo without translation exhibits peaks at
α = ifM , which agrees with the conclusion in [11]. The peaks
come from the periodic texture of the AF. Since the AF is
spike-like, the quality of the slice of CSD is not good enough
and exists harmonic frequencies with disordered amplitudes

(it is quite different from that of the radar echo of a single
scatterer presented in [11].) This property makes it difficult to
estimate the m-D period. What’s worse, the slices of CSD for
the MMLT case and MMQT case act as a random function and
do not have any periodicity. Thus, the application of the CSD
in the presence of translation is limited.

Fig. 6(f) shows the result of autocorrelation. The autocorre-
lations of the m-D signal for the MMLT case exhibits peak
at τ = 2 s. While for the MMQT case, there is no peak
at τ = 2 s, which means that the autocorrelation fails to
provide an estimate. To further evaluate the performance of the
autocorrelation in the presence of translation by integrating a
translation compensation step, the minimum-spectrum-entropy
translation compensation algorithm [14] with different search-
ing acceleration resolutions (i.e, δa, 2δa, and 8δa) is utilized. It
is observed that the effectiveness of the new combined method
depends on the accuracy of the translation compensation. When
the translation compensation is not accurate enough (in this
case, with a searching acceleration resolution no less than 8δa),
the estimation is unsuccessful. The estimates for cases with δa
and 2δa are 2.0 s and 2.005 s, respectively.

Fig. 6(g) shows the sum of the 2D FFT of the TF along the
frequency dimension. The 2D FFT of TF of the MMLT case
presents peaks at ifM , while that of MMQT case does not have
the property. It is clear that the 2D FFT of TF can only work
for the MM case and the MMLT case. The rationale behind
this is that the 2D FFT can only extract texture periodicity or
constant-wrapped texture periodicity for TF images. However,
the quadratic translation introduces time-varying wrapping
(time-varying circular Doppler/frequency shift) effect in the
TF domain, making the 2D FFT invalid for the m-D period
estimation for the MMQT case.
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Fig. 5. AF of the radar echo. (a) the MM case; (b) the MMLT case; (c) the MMQT case; (d) slice of the MM case at τ = 0 s; (e) slice of the MM case at
τ = 1 s; (f) slice of the MM case at τ = 2 s.

TABLE III
M-D PERIOD ESTIMATES (S) OF THE CONING TARGET

cone example AF entropy AF l4-l2 norm AF l1 norm autocorr. autocorr. + comp. 2D FFT of TF TF similarity circular corr. coeff

MMLT 2.0 2.0 2.0 2.0 - 2.286 2.005 1.995

MMQT 2.0 2.0 2.0 na 2.0/2.005/naa na na 2.0

aThese three values represent three estimates with different searching acceleration resolutions δa , 2δa and 8δa, respectively.

TABLE IV
MINIMUM SNR (dB) REQUIRED FOR EFFECTIVE ESTIMATES.

cone example AF entropy AF l4 − l2 norm AF l1 norm autocorr. autocorr. + comp. 2D FFT of TF TF similarity circular corr. coeff

MMLT -2 -3 -4 -2 – 10 3 0

MMQT -3 -4 -4 na -2 na na -1

The TF similarity, which exploits the TF periodicity, can
be utilized as well. It can be viewed as 2D correlation of TF.
Fig. 6(h) shows the results. Similar with the 2D FFT of TF, the
TF similarity only works for the MM case and MMLT case.

The results of the circular correlation coefficients, which
explicitly exploits the circular periodicity of the TFR for the
first time, is presented in Fig. 6(i) for a comparison. It is clear
that the circular correlation coefficients for the MMQT case
are almost the same with that of the MMLT case (if the small
ripples are neglected). Despite of the finite observation time
effect, the circular correlation coefficient is invariant to the
translation [15]. The shortcoming of the circular correlation
coefficients is its less computational efficiency.

Additionally, Monte Carlo simulations (500 realizations) are

carried out to evaluate the performance of the aforementioned
approaches (the CSD is excluded as it is difficult to get the
estimation in this example) in the conditions of different SNRs.
The SNR of the signal varies from -5 dB to 15 dB with an
interval of 1 dB. Simulation results are plotted in Fig. 7. The
Bias and the RMSE (root mean square error) are used as the
performance metrics. The Bias and the RMSE are defined as

Bias = 1/I

i=I∑
i=1

(
T̂i − TM

)
(79)

and

RMSE =

√√√√i=I∑
i=1

(
T̂i − TM

)2
/I (80)
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Fig. 6. Estimation Statistics. (a) AF entropy; (b) AF l4-l2 norm; (c) AF l1 norm; (d) TF entropy; (e) slices of CSD; (f) autocorrelation (the dash-dot lines
with circle, square and asterisk markers denote the results by integrating translation compensation with different search intervals); (g) 2D FFT of TF; (h) TF
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Fig. 7. Bias and RMSE versus SNR. (a) Bias for the MMLT case; (b) Bias for the MMQT case; (c) RMSE for the MMLT case; (d) RMSE for the MMQT
case.
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where TM is the true m-D period, Ti is the m-D period estimate
in the ith realization, and I is the realization times for each
SNR. Both the Bias and the RMSE of the employed approaches
decrease as the increase of the SNR. In addition, they are
approaching to zero at high SNR.

The performances of these methods for the MMLT case are
examined firstly. Among the three AF concentration statistics,
the AF l4-l2 norm and AF l1 norm have comparable per-
formance at low SNR (i.e., from −5 dB to −1 dB), while
the AF entropy performs worse. The performance of the
autocorrelation is comparable to the AF l4-l2 norm and AF
l1 norm. These four approaches are followed by the circular
correlation coefficients. The TF similarity and 2D FFT of TF
have the worst performance. Specifically, the 2D FFT performs
better at low SNR (from −5 to −3 dB for the Bias; from −5
to 0 dB for the RMSE) while this relation is reversed at high
SNR. Remarkably, the Bias and RMSE of the estimate of 2D
FFT of TF is larger and approaching to zero more slowly than
other approaches. The reason why TF similarity performs poor
may be that a small patch of TF (i.e., the partial observations)
are used for calculating the similarity. As for 2D FFT of TF,
it may be that the overall time support (4 s) is short and the
frequency resolution is limited (0.25 Hz in this case), which is
detrimental for the frequency estimator.

Similar with the MMLT case, for the MMQT case, the
proposed approach outperforms the circular correlation coef-
ficients as well. It is observed that the performance of the
proposed approach for the MMQT case is a little worse than
that for MMLT case. Since the difference is so small, it is
reasonable to conclude that the proposed approach has a com-
parable performance for the case with a quadratic translation.

Using both the Bias and the RMSE less than 0.1 s (i.e.,
a relative error less than 5%) as the criteria to judge if
the estimate is successful. The minimum SNRs required for
effective estimates are summarized in Table IV, from which
we can see that the AF concentration statistics are more robust
to noise than other approaches in this example.

The running time of these estimators are presented in Fig.
8. The running environment is an Intel i7-4712MQ CPU cored
personal computer with Matlab R2016a. 5 simulations are run
for each approach and the averaged running time is calculated.
The running time of these approaches for this example can be
divided into four groups: i). the autocorrelation has the smallest
running time; ii). the 2D FFT of TF and the TF similarity have
comparable running times, ranking as the second computational
efficient group for signal length larger than 600 points; iii). the
third group contains the AF entropy, the AF l4-l2 norm and the
AF l1 norm; iv). the fourth group consisting of the CSD, the
circular correlation coefficients, and the autocorrelation with
compensation, stands for the most computational expensive
approaches.

B. A Walking Human

The human walk can be modelled as a periodic motion. In
a walking cycle, the arms and legs swing periodically and the
body’s center of gravity moving up and down periodically [12].
These two movements have the same period. This property
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Fig. 8. Running time of the estimation methods.

makes the human walk a special nonrigid micro-motion: most
of the m-D period estimation methods can be directly applied
to the radar echo of a walking human without a signal
decomposition step.

In this part, a m-D signal of a walking human is used to
demonstrate the effectiveness of the proposed method. Details
about the signal model and its implementation can be found
in [12]. The period of gait is TM = 0.5048 s corresponding to
a walking velocity of 0.8101 m/s. The sampling frequency is
2029 Hz. The signal contains 4 periods. The SNR of the signal
is 10 dB. Since the bulk motion of the human can be viewed
as constant-velocity motion, the human walk belongs to the
MMLT case.

Fig. 9 shows the results of the walking human. The m-D
period estimates of these methods are shown in Table V. It
can be observed that except the autocorrelation exhibits a weak
peak around the m-D period, which is not able to provide an
m-D estimate, all the methods show peaks around the m-D
period and provide high-accurate m-D period estimates3.

C. SAR Experiment with a Rotating Target

Detection and parameter estimation of ground targets based
on airborne SAR are of great interest. In this subsection, a
rotating target placed on an airport measured by the airborne
SAR is used to validate the effectiveness of the aforementioned
approaches. The radar works in the sliding spotlight imaging
mode. Table VI shows the specifications of the radar system.
10000 pulses are selected for processing and the coherent
processing interval (CPI) is 4.9979 s.

Fig. 10 shows the rotating target and SAR image of the
interesting area. The rotating target is composed of a rotating
bracket, a rotating rod, and two groups of corner reflectors.
Each group of corner reflectors contains 4 corner reflectors,

3In real scenarios, the human m-D signal may be mixed with background
inteferences, such as walls and other nearby objects. As a result, the periodicity
may be weaken. If the SNR of the signal is too low, the proposed method may
fail to extract the period.
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Fig. 9. Period estimation results of the walking human. (a) TF of the m-D signal; (b) AF entropy; (c) AF l4-l2 norm; (d) AF l1 norm; (e) autocorrelation; (f)
2D FFT of TF; (g) TF similarity; (h) circular correlation coefficients. The black dashed vertical line in the figure has the same meaning with that of Fig. 6.

TABLE V
M-D PERIOD ESTIMATES (s) OF THE WALKING HUMAN

Human example AF entropy AF l4-l2 norm AF l1 norm autocorr. 2D FFT of TF TF similarity circular corr. coeff

Estimates 0.5057 0.5057 0.5052 na 0.5048 0.5205 0.5062

TABLE VI
SPECIFICATIONS OF THE RADAR SYSTEM

Radar waveform LFM pulse
Center frequency 9.6GHz

Bandwidth 1.4GHz

Downlook angle 66◦

Pulse repetition frequency 2000.64Hz

Azimuth length of the antenna 0.546m

which can reduce the varying of backscatter coefficients in-
duced by different radar incidence angles to some extent. The
length of rotating rod is 1 m which means the rotating radius
of the corner reflectors is 0.5 m. The rotating speed is about
25 rpm.

Compared with the coning target simulation (which is free
of ground clutter), there are two differences in this SAR experi-
ment. Firstly, the m-D signal of the target is mixed with ground
clutter which reduces the signal-to-clutter ratio (SCR) of the
m-D signal. Secondly, the instantaneous Doppler has a linear
frequency component due to the motion of the SAR platform
which deteriorates the performance of some m-D processing
approaches. To alleviate these two effects, we propose a m-D
signal extraction method for SAR data which is composed of
multistage signal extraction and compensation. The flowchart
is shown in Fig. 11 and its details are listed as follows. Step i)–
iii) are designed to obtain the range-compressed signal of the
rotating target. Note that these three steps are not essential and

can be replaced by a range compression step. Since the aim
of the experiment is mainly to validate the m-D estimation
methods, we prefer an easy processing scheme: the target
region is selected manually and the bandpass filter in Step vi)
is designed to remove the ground clutter. In the future research,
an automatic target selection process can be considered.

i). SAR imaging. The imaging algorithm4 adopted in this
experiment is the chirp scaling algorithm (CSA) [20]. Since the
parameters used by SAR imaging is unmatched for rotating
targets, the target is defocused and spreads over the entire
azimuth bins as shown in Fig. 10(b).

ii). Image cutting. As we are only interested in the analysis
of the rotating target, the region from 16902 to 17491 m in the
SAR image is extracted.

iii). Inverse azimuth compression. Transforming back the
image of the extracted region to time domain by applying in-
verse azimuth compression, a range-compressed and azimuth-
uncompressed signal is obtained. The result is displayed in Fig.
12(a). Range migration5 corresponding to the micro-motion of
the corner reflectors can be observed. Since the micro-motion
of the corner reflectors and the motion of the SAR platform are
mixed and there is a range migration correction (RMC) step
which is unmatched with the motion of the corner reflectors

4Range compression and azimuth compression are performed on the re-
ceived SAR data so that a two-dimensional image of the illuminated scene
can be obtained.

5The range migration appears if the range variation of the target is larger
than the range resolution. For micro-motion target, this effect is referred to as
micro-Range effect.
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(a) (b)

Fig. 10. The rotating corner reflectors located in the airport. (a) the rotating corner reflectors; (b) SAR image of the interesting area.

SAR imaging Image cutting
Inverse azimuth 

compression

Summing along the 

range dimension

Preliminary translation 

compensation
Frequency filtering

Fine translation 

compensation

Radar data

M-D signal

Fig. 11. Flowchart of m-D signal extraction for SAR data.

in the CSA, the range migration of these two corner reflectors
is not anymore a standard sinusoidal curve. The signals of the
rotating bracket and the rotating rod are weak and cannot be
observed in this image.

iv). Summing along the range dimension. As the target
spread over multiple range bins, we extract the azimuth signal
by simply summing along the range dimension. This step is
performed at the price of involving more ground clutter and
the range resolution information is not remained. The STFT of
the azimuth signal is plotted in Fig. 12(b).

v). Preliminary translation compensation. To compensate
the motion of the SAR platform, a preliminary translation
compensation is performed on the obtained azimuth signal.

sc (t) = s (t) exp
(
−jπKat

2
)

(81)

where Ka = −2V 2
a /λcR; Va is the velocity of the SAR

platform; R is the median range of the extracted region. As
there is a difference between R and the range of the rotating
center, there is still a residual translation after this step.

vi). Frequency filtering. A bandpass filter is applied on
sc (t) to further remove the ground clutter. Fig. 12(c) shows
the STFT of the preliminary compensated and filtered azimuth
signal, which still has a slight linear frequency component.

vii). Fine translation compensation. Finally, the minimum-
spectrum-entropy translation compensation is carried out for
fine translation compensation, yielding a much better result in
Fig. 12(d). The slight liner translation component disappears
and the m-D of the target centers at zero. By now, the m-
D signal of the target is extracted successfully. We also plot
the RCS of the target in Fig. 12(e). It is clear that since the

LOS of SAR has a large scope and the influence of the strong
clutter, the RCS do not show any periodicity. This is quite
different from that of most inverse SAR scenarios and violates
the assumption of (9). However, in the case of the non-periodic
RCS and the strong ground clutter, this complicated scenario
provides a good opportunity to test the m-D feature extracting
approaches.

M-D period estimation is then performed and the results are
reported in Fig. 13. Comparing with the previous example, it is
clear that the non-periodic RCS and strong ground clutter lead
to the performance degradation for all the approaches. The au-
tocorrelation and TF similarity fail to capture the periodicity of
the m-D signal and cannot provide estimates. Other approaches
shows peaks around 1.15 s, which is about half of the true rotat-
ing period. The reason why the half-period ambiguity appears
is that the rotating target has a perfect symmetric structure and
this symmetry is reflected in the TF image and the AF image.
Without combining other techniques, it is impossible to resolve
this ambiguity for approaches merely exploiting the TF and AF
periodicity. Even though the AF and AF concentration statistics
show much weaker periodicity, these three AF concentration
statistics are still effective to provide the period estimates. The
2D FFT of TF also experiences a performance loss. The peak at
the location of m-D frequency is quite small and it looks like
the sidelobe of the zero frequency component. The circular
correlation coefficients has a better quality in this situation.
The correlation coefficients at lags near the true m-D period is
larger than 0.85.

At last, the inverse Radon transform (IRT) [21] is performed
on the TF image to resolve the period ambiguity. Denote the
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Fig. 12. (a) range-compressed and azimuth-uncompressed signal; (b) STFT of the azimuth signal; (c) STFT of the preliminary compensated and filtered azimuth
signal; (d) STFT of the m-D signal; (e) the uncalibrated RCS of the target.
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Fig. 13. (a) AF of the m-D signal; (b) AF entropy; (c) AF l4-l2 norm; (d) AF l1 norm; (e) autocorrelation; (f) 2D FFT of TF; (g) TF similarity; (h) circular
correlation coefficients. The black dashed vertical line in the figure has the same meaning with that of Fig. 6.

initial m-D period estimate of an estimation method as T̂ 0
M ,

the possible m-D period values are iT̂ 0
M , i = 1, 2, · · · . The IRT

with these possible period values are performed respectively.

Since the IRT with true period can detect the sinusoidal curve,
it is supposed that the inverse Radon image with true period
will have the best focusing effect (which can be measured by
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TABLE VII
M-D PERIOD ESTIMATES (s) OF THE ROTATING TARGET

SAR experiment AF entropy AF l4-l2 norm AF l1 norm autocorr. 2D FFT of TF TF similarity circular corr. coeff

Estimates 2.3023 2.3013 2.3033 na 2.2215 na 2.3033
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Fig. 14. The entropy of the inverse Radon image. The true ambiguity number
is indicated by the black dash vertical line.

the entropy). The true ambiguity number can be estimated by

îT = argmax
i

ε
[
fIR

(
|ρs (t, f)| , iT̂ 0

M

)]
, i = 1, 2, · · · (82)

where fIR
(
|ρs (t, f)| , iT̂ 0

M

)
denotes the inverse Radon image

on |ρs (t, f)| with period iT̂ 0
M , and ε [·] is the entropy function.

Taking the initial period estimates of the AF entropy
1.15115 s as an example, the entropy of the inverse Radon
image with respect to the ambiguity number is plotted in Fig.
14. The estimated ambiguity number is 2 and the estimated
m-D period is 2.3023 s. Fig. 15 shows the inverse Radon
image with ambiguity number of 2 and 1. On one hand, it
can be observed from Fig. 15(a) that: when the inverse Radon
image is performed with the true m-D period, it has the best
focusing. i.e., three scatterers, two represent the two groups
of corner reflectors and one represents the rotating bracket,
are focused in the inverse Radon image. On the other hand,
the image only obtains a focused scatterer in the center and
the rest two scatterers are defocused when inverse Radon
image is performed with the half period. With the true m-
D period, the estimated radii of these scatterers are 0.4643 m,
0.4671 m and 0 m, respectively. These estimates are close to
the true values. All the estimates after resolving the ambiguity
number are shown in Table VII. In this context, the IRT has
two functions, namely resolving the ambiguity of estimated
period and acting as a narrow-band-imaging approach (the
two dimensional image is obtained and the sacrificed range
resolution is restored).

The major computational cost of this additional processing
includes the cost of the TF and the IRT. The IRT is imple-
mented by the filtered backprojection with a computational
complexity of O (NNf log2Nf ) + O

(
NN2

f

)
[22]. Com-

bined with the computational complexity of the TF which is
O (NNf log2Nf ) and use the approximation log2Nf � Nf ,
the total computational complexity of this additional processing
approximates to O

(
NN2

f

)
. The running time of this additional
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Fig. 15. Inverse Radon image with different ambiguity number. (a) The
ambiguity number is 2; (b) The ambiguity number is 1.

processing (a TF and 4 IRT) in the same computer is 10.72 s
for N = 2500, Nf = 1001. The computational cost of the IRT
is high. To make it more suitable for real-time processing, it
is suggested that the parallel computation or dedicated signal
processing hardwares (such as DSP) should be employed.

D. Discussion

Three examples, a coning target with two translation cases,
a walking human and a rotating target in a SAR experiment,
are used to quantify the performance of the AF concentration
statistics and make a comparison with other approaches.

Note that in the SAR experiment, all m-D period estimation
methods suffer from a loss due to the non-periodic RCS
and strong ground clutter. Among these methods, the AF
concentration statistics and the circular correlation coefficients
are the most robust methods. Moreover, compared with the
circular correlation coefficients, the peaks of the AF con-
centration statistics is less significant in this scenario. Some
improvement should be introduced to enhance the periodicity
of AF concentration statistics in the future.

From the results, the following conclusions are made. (i).
The AF concentration statistics and circular correlation co-
efficients are (or approximately) invariant to translation with
polynomial terms not larger than second order. (ii). By integrat-
ing translation compensation, approaches that subjected to the
influence of translations (e.g., autocorrelation), can also process
the m-D signals with translations. (iii). It is clear that, in
addition to time domain and TF domain, m-D period estimation
approaches can be applicable in the AF domain. (iv). Concen-
tration statistics in the TF domain is not suitable for capturing
the periodicity of m-D signal. (v). The period ambiguity for
rotating targets with symmetric structure can be resolved by
integrating the IRT. (vi). The proposed method can be directly
applied to the radar signal of a walking human to estimate
the m-D period. (vii). Among all translation-compensation-free
m-D period methods, the AF concentration statistics have the
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best performance, namely the least computational cost and the
minimum effective SNR.

VI. CONCLUSION

This work focuses on m-D period estimation of radar tar-
gets with uniform and single-period micro-motion. Targets of
interests include ballistic warhead, helicopter, wind turbines,
rotating antenna, human, etc.

Though ambiguity function (AF) has been used as a classic
tool in the field of radar signal processing (e.g., waveform
design and parameter estimation of polynomial-phase signals),
it is proposed for the m-D signal study for the first time. It has
been widely believed that, in order to have a better performance
for processing the multicomponent nonstationary m-D signal,
TFRs without cross-term interference should be employed. Our
work presents a different way for the m-D period estimation
and proves that the AF is capable of doing this as well although
it suffers from the cross-term interference.

This work also enlarges the class of the m-D period estima-
tion methods that are free of translation compensation. The AF
of m-D signal is analysed elaborately. Three properties of the
AF are uncoverd: (i). In the presence of translation, the AF of
the m-D signal is circular-shifted and the periodicity is replaced
by the circular periodicity. (ii). The concentration of the AF
is periodic. (iii). The proposed AF concentration statistics
is invariant to translation with polynomial terms not larger
than second order. Thus, the proposed method is effective for
the m-D period estimation without combining a translation
compensation step.

Three examples, a coning target with two translation cases,
a walking human and a rotating target in a SAR experiment,
are used to quantify the performance of the the proposed
approach. Experimental results shows that AF concentration
statistics has the best performance among all the translation-
compensation-free m-D period estimation methods, namely the
least computational cost and the minimum required SNR. In the
case of a walking human, the proposed method can be directly
applied to estimate the m-D period. As for the case of rotating
targets with symmetric structure, by integrating the inverse
Radon transform (IRT), the period ambiguity can be resolved
without the prior structural information (e.g., the number and
the length of blades).

As shown in this work, the AF is an effective tool to describe
the m-D signal. Moreover, AFs of different targets (e.g., cone
shaped target, and rotating corner reflectors) are quite different,
which means that the feature of the AF has the potential to
serve as another m-D feature. Research on how to use the AF
feature to assist target classification would be carried out in
the future.

APPENDIX A
COMPUTATIONAL COMPLEXITY ANALYSIS

In the analysis of the computational complexity, the division
and the logarithm operation are regarded as multiples of mul-
tiplications. Other operations which are made up of additions
(including the addition) operation are neglected as the addition
is implemented much faster than the multiplication.

The IAF of a signal : The IAF of a fixed lag m requires
N−m multiplications and the total operations the single-sided
IAF (0 ≤ m ≤ N − 1, N lags) required is

∑N−1
m=0N −m =

N (N + 1) /2 multiplications. Similarly, the operations that the
two-sided IAF (− (N − 1) ≤ m ≤ N−1, 2N−1 lags) required
is N2. The computational complexity of the IAF is O

(
N2
)
.

The FFT of a signal : Assuming the points of FFT is Nf ,
it requires (Nf log2Nf ) /2 multiplications. The computational
complexity of the FFT is O (Nf log2Nf ).

The 1D FFT of a matix : Assuming that the size of the matrix
is M ×N and we perform 1D FFT along the column with Nf
points, the operations required is (NNf log2Nf ) /2 multipli-
cations. The computational complexity is O (NNf log2Nf ).

The 2D FFT of a matrix : 2D FFT is achieved by two
separated 1D FFT on both the column and the row. Assuming
that the matrix is zero-padded to size of Nf,1 × Nf,2, the
computation required is Nf,1Nf,2 (log2Nf,1 + log2Nf,2) /2
multiplications and its computational complexity is
O (Nf,1Nf,2 (log2Nf,1 + log2Nf,2)).

The AF of a signal : The computation of the AF consists of
the computation of the IAF and an 1D FFT of the IAF along
the time dimension. Thus, the operations that the single-sided
AF required are N (N + 1 +Nf log2Nf ) /2 multiplications,
and the operations that the two-sided AF required are 1/2 ·
(2N − 1)Nf log2Nf +N2 multiplications. Assuming that Nf
is with the same order of N , the computational complexity of
the AF is O

(
N2 log2N

)
.

The STFT of a signal : The computation of the STFT consists
of two stages, i.e., multiplied the signal by the window func-
tion and an Fourier transform. The total operations required
are N (lw + 1/2Nf log2Nf ) multiplications, where lw is the
window length. The spectrogram which is the square of the
STFT requires an additional NNf additions. Since lw ≤ Nf ,
the computational complexity of STFT and the spectrogram
are O (NNf log2Nf ).

The entropy of a signal : The entropy of a signal with
length Nf involves 2Nf multiplications, 2Nf − 2 additions,
Nf divisions and Nf logarithm operations. The computational
complexity is O (Nf ).

The l4-l2 norm of a signal : The l4 to l2 norm of a signal
with length involves 2Nf multiplications, 2Nf − 2 additions
and Nf divisions. The computational complexity is O (Nf ).

The normalized l1 norm of a signal : The normalized l1
norm of a signal involves Nf divisions and Nf − 1 additions.
The computational complexity is O (Nf ).

APPENDIX B
SPECTRUM CONCENTRATION STATISTICS FOR SIGNALS

WITH DIFFERENT TIME SUPPORT

Assuming that there are two signals y (t) and y′ (t) , and
their spectra Y (f) and Y ′ (f) satisfy the following relationship

|Y ′ (f)| = Ts |Y (Tsf)| (B.1)

where Ts is the time-support scale. The lp norm of Y (f) is

|Y (f)|p =

∫ ∞
−∞
|Y (f)|p df (B.2)
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Thus,

|Y ′(f)|p=

∞∫
−∞

|Y ′(f)|pdf=

∞∫
−∞

T ps |Y (Tsf)|pdf=T p−1s |Y (f)|p

(B.3)
The primitive entropy of Y (f) is

εY ′ =

∫ ∞
−∞

|Y ′ (f)|2

EY ′
ln
|Y ′ (f)|2

EY ′
df

=

∫ ∞
−∞

Ts |Y (Tsf)|2

EY
ln
Ts |Y (Tsf)|2

EY
df

= εY + lnTs

(B.4)

where EY ′ = |Y ′ (f)|2 = Ts |Y (f)|2 = TsEY
In order to compensate the effect of varying time support, the
redefined entropy is expressed as

εY =

∫ ∞
−∞

|Y (f)|2

EY
ln
|Y (f)|2

EY
df − lnTy (B.5)

where Ty is the time support of y (t) (Ty can be also viewed
as the scale to a unit time-support signal).
The ratio of l4 norm to the square of l2 norm [19] is another
widely adopted concentration statistics, defined as

|Y (f)|4,2 =
1

Ty
|Y (f)|4 / (|Y (f)|)2 (B.6)

Particularly, the normalized l1 norm [23] which measures the
sparsity can also be used as a concentration statistics,

|Y (f)|1,∞ = −Ty
∫ ∞
−∞
|Y (f)| /max |Y (f)| df (B.7)
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