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SUMMARY

Constant reduction in the size of transistors has made it possible to implement many
cores on a single die. However, smaller transistors are more susceptible to both tempo-
rary and permanent faults. To make such systems more reliable, online fault tolerance
techniques can be applied. A common approach for providing fault tolerance is to per-
form redundant execution of the software. This is done by using the program replication
approach. In this approach, the replicated copies of a program (known as replicas) fol-
low the same execution sequence and produce the same output if given the same input.
This requirement necessitates that the replicas handle non-deterministic events such as
asynchronous signals and non-deterministic functions deterministically. This is usually
done by having one replica log the non-deterministic events and have the other replicas
replay them at the same point in program execution. In a shared memory multithreaded
program, this also means that the replicas perform non-deterministic shared memory
accesses deterministically, so that they do not diverge in the absence of faults.

In this thesis, we employed two techniques for doing so, which are record/replay and
deterministic multithreading. Both of our schemes are implemented using a user-level
library and do not require a modified kernel. Moreover, they are very portable since
they do not depend upon any special hardware for deterministic execution. In addi-
tion, we compare the advantages and disadvantages of both schemes in terms of per-
formance, memory consumption and reliability. We also showed how our techniques
improve upon existing techniques in terms of performance, scalability and portability.
Lastly, we implemented specialized hardware extensions to further improve the perfor-
mance and scalability of deterministic multithreading.

Deterministic multithreading is useful not only for fault tolerance, but also for de-
bugging and testing of multithreaded applications running on a multicore system. It
can be useful in reducing the time needed to calculate the worst-case-execution-time
(WCET) of tasks running on multicore systems, as deterministic multithreading reduces
the possible number of states a multithreaded program can reach. Finding a good WCET
estimate (less pessimistic) of a real time task is much simpler if it runs on a single core
processor than if it runs on a multicore processor concurrently with other tasks. This is
because those tasks can share resources, such as a shared cache or a shared bus, and/or
may need to concurrently read and/or write shared data. In this thesis, we show that
using deterministic shared memory accesses helps in reducing the possible number of
states used by the estimation algorithm and therefore reduce the WCET calculation time.
Moreover, we implemented optimizations to further reduce WCET calculation time as
well as to get a tighter WCET estimate, besides utilizing our specialized hardware exten-
sions for that purpose.
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SAMENVATTING

Door de voortdurende verkleining van transistoren is het nu mogelijk geworden om
meerdere processoren op een chip te plaatsen. Echter kleinere transistoren zijn gevoe-
liger voor zowel tijdelijke en permanente fouten. Om dergelijke systemen betrouwbaar-
der te maken kunnen online fouttolerantie technieken worden toegepast. Een mogelijke
manier om fouttolerantie te implementeren is door het repliceren van een programma.
In deze benadering worden de gerepliceerde kopieén van een programma (zogenaamde
replica’s) op dezelfde manier uitgevoerd waarmee ze dezelfde output kunnen produce-
ren. Om dit mogelijk te maken zouden wij asynchrone signalen en niet-deterministische
functies deterministisch moeten maken. Dit wordt meestal gedaan door het opnemen
de niet-deterministische gebeurtenissen bij de ene replica en daarna het afspelen van
deze opgenomen gebeurtenissen bij de andere replica’s.

In dit proefschrift hebben we gebruik gemaakt van twee technieken om determinis-
tisch gedrag te garanderen: de record/replay en de deterministische multithreading. Al-
lebei technieken zijn zeer draagbaar aangezien dat zij geen besturingssysteem kernel
veranderingen of speciale hardware nodig hebben. Bovendien hebben wij in dit proef-
schrift de voor en nadelen van beide technieken vergeleken in termen van snelheid, ge-
heugengebruik en betrouwbaarheid. We toonden ook aan hoe onze technieken verbete-
ren op bestaande technieken in termen van snelheid, schaalbaarheid en draagbaarheid.
Ten slotte, hebben we een gespecialiseerde hardware-uitbreidingen voor deterministi-
sche multithreading geimplementeerd om de snelheid en schaalbaarheid te verbeteren.

Deterministische multithreading is niet alleen nuttig voor fouttolerantie, maar ook
voor het testen van multithreaded applicaties die op een multicore systeem draaien. Dit
kan nuttig zijn bij het verminderen van de tijd die nodig is om de worst-case-execution-
time (WCET) te berekenen van programma’s die op multicore systemen draaien. Het
berekenen van een goede WCET benadering is veel eenvoudiger als het programma op
een enkele processor draait ten opzichte van meerdere processoren tegelijk. In dit proef-
schrift tonen wij dat het gebruik van een deterministisch geheugen model de complexi-
teit van het berekenen van WCET aanzienlijk kan verminderen. Bovendien hebben wij
meerdere optimalisaties geimplementeerd om de complexiteit nog verder te reduceren.
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INTRODUCTION

While modern nano-scale technology has made it possible to implement multiple cores
on a single die, it has also aggravated the reliability problem, as smaller transistors are
more prone to permanent and transient faults. However, online fault tolerance tech-
niques can mitigate errors in such systems. For that purpose, this thesis employed two
techniques, record/replay and deterministic multithreading. Besides fault tolerance, de-
terministic multithreading can also help in reducing the calculation time for the worst-
case-execution-time (WCET) of real time systems running on shared memory multicore
systems. Therefore, in this thesis, we also tested the improvement in calculation time
deterministic multithreading brings.

In this chapter, Section 1.1 discusses the basic concepts of fault tolerance and WCET.
This is followed by Section 1.2 on background and related work. Next, we define our
contributions in Section 1.3. Finally, we describe the thesis organization in Section 1.4.

1.1. BASIC CONCEPTS

In this section, we present the basic concepts related to the field of fault tolerance and
WCET. Our discussion is based on the way a system behaves and interacts with other
systems in its environment [2].

In this thesis, a system can be hardware based, for example a processor, or software
based, such as a running application. A system consists of components which can be
systems themselves. The service delivered by a system is its behavior as perceived by
other systems using it. The total state of a system is the set of its internal and external
states. The external state of a system is represented by its output. A system is said to fail
when its external state deviates from the correct state. The cause of this failure is fault(s)
within the system or external to it. Fault propagation is illustrated in Figure 1.1. When a
fault becomes active, it would impact the total state of one or more components of the
system. The deviation of the total state of a component from the correct state is known
as an error. When an error propagates to affect the external state of the system, the error
is said to be activated. When the error is activated, failure of the system is said to have
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Figure 1.1: Fault propagation and fault tolerance

occurred. The time between fault activation and failure is known as error latency. In
other words, a fault might lead to an error which in turn might lead to the failure of the
system.

FAaULTS

Faults can be classified into four different classes depending on their persistence, effect,
source and boundary.

With respect to persistence, a fault can be permanent, intermittent or transient.
Permanent faults are continuous in time, while a transient fault occurs for only a short
period of time. An intermittent fault is a repetitive malfunction of a device or system that
occurs at intervals.

With respect to effect, a fault can be either activated or dormant. An activated fault
is one which has produced an error, while a dormant fault is one that has yet to produce
an error. An activated fault can be further classified into latent and detected, where a
latent fault is one which has produced an error that has still not been detected by the
system.

The source of a fault can be either software or hardware. Software faults can be for
example design faults or malicious attacks like trojan horses.

Lastly, a fault can be either due to a component internal to the system or external to
it.
A fault can produce a number of errors in a computing system, such as, control-flow

errors, data corruption errors, logical errors, buffer overflows, memory leaks, data races,
deadlocks/livelocks, infinite loops and wild memory writes, etc.
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FAILURES
Failures can be classified into three different classes based on their domain, action and
consistency.

In terms of domain, failures can be either timing related or content related. Timing
failures mean that the failing system either responds too early or too late. On the other
hand, content failures mean that the content of the information delivered by the system
is in corrupt state.

In terms of action taken by a failing system, failures can be divided into halt and er-
ratic failures. By halt failure, we mean that the system stops responding on failure, while
erratic failure means that the failing system keeps responding but in an abnormal man-
ner. Halting on failure is a good property, as errors are not propagated to other systems
in the environment. Systems which halt on failure, are known as fail-stop systems.

In terms of consistency, there can be byzantine and consistent failures. When a
byzantine failure happens, some or all users of the system will perceive different service.
On the other hand, for consistent failures, all users will perceive identical service.

Service failure of a system causes a permanent or transient external fault for other
system(s) that receive service from that system.

FAULT TOLERANCE
Fault tolerance means to avoid failures in the presence of faults. A system is said to be
fault tolerant if faults do not affect the external state of that system. It can however allow
its components to fail, as long as they do not corrupt its external state. A fault tolerant
system must be able to detect errors and recover from them. The time between fault
activation and error detection is known as error detection latency.

Figure 1.2 shows the steps which are taken to make a system fault tolerant. These
steps are proactive fault management, error detection, fault diagnosis and recovery.
More details about these steps are discussed in Chapter 2.

WORST CASE EXECUTION TIME (WCET)

Adapting multicore systems to real time embedded systems is a challenging task, as a
real time process, besides being error free, must also meet timing deadlines. The real
time scheduler needs to know the maximum time in which a task would complete. This
time is known as the WCET. Finding a good WCET estimate (less pessimistic) of a task is
much simpler if it runs on a single core processor than if it runs on a multicore proces-
sor concurrently with other tasks. This is because those tasks can share resources, such
as shared caches or a shared bus, and/or may need to concurrently read and/or write
shared data.

1.2. BACKGROUND AND RELATED WORK

1.2.1. FAULT TOLERANCE

A fault tolerant system which uses redundant execution needs to make sure that the re-
dundant processes do not diverge in the absence of faults, that is, they should have the
same states for the same input. In a single threaded program, in the absence of any fault,
the only possible causes of divergence among the replicas can be non-deterministic
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Figure 1.2: Classification of steps used for fault tolerance

functions (such as gettimeofday) or asynchronous signals/interrupts.

However, in multithreaded programs running on multicore processors, there is one
more source of non-determinism, which is shared memory accesses. These accesses
are much more frequent than interrupts or signals. Therefore, efficient deterministic
execution of replicas in such systems is much more difficult to achieve.

One method to ensure redundant processes access shared memory in the same order
is record/replay. In this method, all interleavings of shared memory accesses by differ-
ent cores or processors are recorded in a log, which can be replayed to have a replica
which follows the original execution. Examples of schemes using this method are Re-
run [3] and Karma [4]. These schemes intercept cache coherence protocols to record
inter-processor data dependencies, so that they can be replayed later on, in the same
order. While Rerun only optimizes recording, Karma optimizes both recording and re-
playing, thus making it suitable for online fault tolerance. It shows good scalability as
well. One disadvantage of record/replay approaches is that they require a large memory
for recording. Moreover, when used for fault tolerance, the redundant processes need to
communicate with each other, as one replica records the log while the other reads from
it. Respec [5] is a record/replay software approach that only logs synchronization objects
rather than every shared memory access. If divergence is found between the replicas, it
rolls-back and re-executes from a previous checkpoint. However, if divergence is found
again on re-execution, a race condition is assumed. At that point, a stricter deterministic
execution is performed, which can induce a large overhead.

The disadvantage of employing record/replay for deterministic shared memory ac-
cesses is that it requires communication between the replicas for shared memory ac-
cesses, making the fault tolerant method less reliable as the shared buffer used for com-
munication can itself become corrupted by one of the replicas. Moreover, it requires
extra memory.

To eliminate this communication and memory requirement, we can employ deter-
ministic multithreading, where a multithreaded process has always the same memory
interleaving for the same input. The ideal situation would be to make a multithreaded
program deterministic even in the presence of race conditions, that is, provide strong
determinism. This is not possible to do efficiently with software alone though. One
can use a relaxed memory model where every thread writes to its own private memory,
while data to shared memory is committed only at intervals. However, stopping threads
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regularly for committing to shared memory degrades performance as demonstrated by
CoreDet [6]. We can reduce the amount of committing to the shared memory by only
committing at synchronization points such as locks, barriers or thread creation. This
approach is taken by DTHREADS [7]. Here one can still imagine the slowdown in case of
applications with high lock frequencies. Moreover, since in this case committing to the
shared memory is done less frequently, more data has to be committed, thus also mak-
ing it slow for applications with high memory usage. This is why hardware approaches
have been proposed to increase efficiency of deterministic execution. An example of
such approach is Calvin [8], which uses the same concept as CoreDet for deterministic
execution but makes use of a special hardware for that purpose.

Since performing deterministic execution in software alone is inefficient, one can
relax the requirements to improve efficiency. For example, Kendo [9] does this by only
supporting deterministic execution for well written programs that protect every shared
memory access through locks. In other words, it supports deterministic execution only
for programs without race conditions. The authors of Kendo call it weak determinism.
Considering the fact that most well written programs are race free and there exist tools
to detect race conditions, such as Valgrind [1], weak determinism is sufficient for most
well written multithreaded programs.

The basic idea of Kendo is that it uses logical clocks for each thread to determine
when a thread will acquire a lock. The thread with the least value of logical clock gets the
lock. Though being quite efficient, Kendo still suffers from portability problems. First of
all, it requires deterministic hardware performance counters for counting logical clocks.
Many popular platforms (including many x86 platforms) do not have any hardware per-
formance counters that are deterministic [10]. Secondly, Kendo needs modification of
the kernel to allow reading from the hardware performance counters.

More detailed survey on the fault tolerance techniques for shared memory multicore
systems is given in Chapter 2.

1.2.2. WCET CALCULATION

Modern processors have features such as cache hierarchies and out of order execution,
which are meant to improve the average case time of programs running on them. How-
ever, these features make it much more difficult to determine a tight WCET. In addition,
more complex architectures mean more states for a model checker to keep track of, mak-
ing it more prone to state explosion problems. Despite these problems, there exist pro-
duction level tools, such as chronos [11], that can guess a good WCET for programs run-
ning on single core processors. Multicore systems on the other hand have an additional
complexity, due to shared resources, such as shared memories. With shared memory,
tasks running on different cores also need to synchronize to accesses the shared data,
for example by using locks. This makes it difficult to deduce tight WCET bounds for such
systems. Synchronization of shared memory accesses also means many different pos-
sible interleaving of the threads, which further aggravate the problem of calculating the
WCET. They can have timing anomalies due to shared resources and shared memory ac-
cesses. For example, assume that a path ABD is the worst-case path if seen separately,
where A, B and D are basic blocks. In the presence of shared L2 cache however, an-
other path, say ACD might become the worst-case path if a thread running on another
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core evicts more instructions from C than from B in the L2 cache. Therefore, whenever
analyzing WCET for a multicore, we always need to consider all the tasks running on dif-
ferent cores together, which can significantly increase the complexity of timing analysis.

Recently, there has been several papers published which deal with calculating WCET
on multicore processors. A survey of those techniques is given in [12]. Some of those
assume that there are no shared memory accesses by the tasks running on the different
cores. In other words, they assume that tasks are running embarrassingly parallel to
each other. They only cater for the problem of shared L2 cache accesses [13][14] and the
shared bus [15]. Papers like [16] and [17] do consider shared memory synchronization,
but they assume simpler processor architectures which do not have any cache, but only
scratchpad memories. Such kind of processors are not mainstream and require special
programming techniques, since the scratchpad memories have to be manually managed
by the programmer.

[18] considers both cache coherence as well as synchronization operations such as
spin locks for shared memory accesses. The authors use UPPAAL [19] based model
checking for that purpose. They do take into account shared memory accesses, but their
solution suffers from state explosion problem even for very simple programs. [22] also
uses model checking but does not support synchronization operations. [20] recently
proposed a mathematical model to determine WCET of multicore systems with caches
and cache coherence using abstract interpretation. However, they still do not consider
cache coherence that is generated due to accessing the shared synchronizing objects.
Moreover, they do not perform any evaluation.

More detailed survey on the WCET calculation techniques for shared memory mul-
ticore systems is given in Chapter 6.

1.3. OUR CONTRIBUTION

1.3.1. FAULT TOLERANCE FOR MULTICORE SYSTEMS
A common approach for providing fault tolerance is to perform redundant execution of
the software. This is done by using the state machine replication approach [21]. In this
approach the replicated copies of a process (known as replicas) follow the same execu-
tion sequence and produce the same output if given the same input. This requirement
necessitates that the replicas handle non-deterministic events such as asynchronous sig-
nals and non-deterministic functions (such as gettimeofday) deterministically. This is
usually done by having one replica log the non-deterministic events and have the other
replicas replay them at the same point in program execution. In a shared memory mul-
tithreaded program, this also means that the replicas perform non-deterministic shared
memory accesses deterministically, so that they do not diverge in the absence of faults.
One way of making sure that the redundant processes access the shared memory
in the same order is to perform record/replay where the leader process records the or-
der of locks (to access shared memory) in a queue which is shared between the leader
and follower. The follower in turn reads from that queue to have the same lock acquisi-
tions order. This approach is used by Respec [5]. This is the first approach that we have
used in this thesis. The second approach that we use is deterministic multithreading,
where given the same input, a multithreaded process always has the same lock inter-
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leaving. This makes sure that the redundant processes acquire the locks in the same
order without communicating with each other. We adapt the method used by Kendo [9]
to do this, but unlike Kendo, our scheme neither requires deterministic hardware per-
formance counters (which are not available on many platforms [10], including many x86
systems), nor kernel modification for deterministic execution. The logical clocks used
for deterministic execution are inserted by the compiler instead.

Moreover, we also implemented hardware extensions to aid in deterministic multi-
threading. Having hardware decreases portability, but gives significant improvement in
performance and scalability.

We can sum up our contributions to fault tolerance in this thesis as follows.

1. We discuss the implementation of our two schemes for deterministic execution on
multicore platforms for fault tolerance.

2. Both of our schemes are implemented using a user-level library and do not require
amodified kernel.

3. Both of our schemes are very portable since they do not depend upon any special
hardware for deterministic execution.

4. Both of our schemes show better performance than existing approaches on se-
lected benchmarks.

5. We compare the advantages and disadvantages of both schemes in terms of per-
formance, memory consumption and reliability.

6. We also implement specialized hardware extensions for deterministic multithread-
ing to improve the performance and scalability.

1.3.2. WCET CALCULATION

Real time tasks, besides being error free, must also meet timing deadlines. For that pur-
pose, it is necessary to calculate the WCET of a real time task. Finding a good WCET
estimate (less pessimistic) of a real time task is much simpler if it runs on a single core
processor than if it runs on a multicore processor concurrently with other tasks. This
is because those tasks can share resources, such as shared cache or shared bus, and/or
may need to concurrently read and/or write shared data.

Recently, there has been an increase in interest to solve the problem of finding WCET
for tasks running on multicore processors, from on-chip hardware support to software
solutions for commodity off the shelf (COTS) processors. But most of those do not take
into account the shared memory accesses. In [18], the authors do take into account
shared memory accesses, but the state explosion problem of the model checking based
approach they use limits the effectiveness of that approach.

In this thesis, we show that using deterministic shared memory accesses [9][25] helps
reducing the possible number of states used by the model checker and therefore reduce
the WCET calculation time. We can sum up the contribution of this thesis to WCET cal-
culation as follows.
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1. Limiting the state space explosion problem by utilizing deterministic execution
when calculating the WCET of a multithreaded program running on multicores
using model checking.

2. Implementing optimizations to further reduce WCET calculation time as well as
to get a tighter WCET estimation.

3. We also utilized our specialized hardware to further reduce the WCET calculation
time.

1.4. THESIS ORGANIZATION
The thesis is organized as follows.

In Chapter 2, we give a survey of fault tolerance techniques for shared memory mul-
ticore systems

In Chapter 3, we discuss our own implementation of fault tolerance for shared mem-
ory multicore systems using record/replay. We also compare the performance with the
state of the art.

In Chapter 4, we discuss our own implementation of deterministic multithreading, which
like record/replay, can be used for deterministic execution of redundant processes run-

ning on multicore systems for fault tolerance. We also compare our method with the

state of the art.

In Chapter 5, we give a comparison of fault tolerance using record/replay and determin-
istic multithreading. It also discusses the performance improvement after using hard-
ware based deterministic multithreading.

In Chapter 6, we show reduction in WCET calculation time that we get by using deter-
ministic multithreading.

In Chapter 7, we present the conclusions and discuss future research areas.
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FAULT TOLERANCE TECHNIQUES
FOR MULTICORE SYSTEMS

SUMMARY

With the advent of modern nano-scale technology, it has become possible to imple-
ment multiple processing cores on a single die. The shrinking transistor sizes however
have made reliability a concern for such systems as smaller transistors are more prone
to permanent as well as transient faults. To reduce the probability of failures of such
systems, online fault tolerance techniques can be applied. These techniques need to
be efficient as they execute concurrently with applications running on such systems.
This chapter discusses the challenges involved in online fault tolerance and existing
work which tackles these challenges. We classify fault tolerance into four different steps
which are proactive fault management, error detection, fault diagnosis and recovery and
discuss related work for each step, with focus on techniques for shared memory multi-
core/multiprocessor systems. We also highlight the additional difficulties in tolerating
faults for parallel execution on shared memory multicore/multiprocessor systems.

This chapter is based on the following paper.
Mushtaq, H.; Al-Ars, Z.; Bertels, K., Survey of fault tolerance techniques for shared mem-

ory multicore/multiprocessor systems, Design and Test Workshop (IDT), 2011 IEEE 6th
International, pp. 12-17, 11-14 Dec. 2011
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Abstract— With the advent of modern nano-scale technology,
it has become possible to implement multiple processing cores on
a single die. The shrinking transistor sizes however have made
reliability a concern for such systems as smaller transistors are
more prone to permanent as well as transient faults. To reduce
the probability of failures of such systems, online fault tolerance
techniques can be applied. These techniques need to be efficient
as they execute concurrently with applications running on such
systems. This paper discusses the challenges involved in online
fault tolerance and existing work which tackles these challenges.
We classify fault tolerance into four different steps which are
proactive fault management, error detection, fault diagnosis and
recovery and discuss related work for each step, with focus on
techniques for shared memory multicore/multiprocessor systems.
We also highlight the additional difficulties in tolerating faults for
parallel execution on shared memory multicore/multiprocessor
systems.

I. INTRODUCTION

It has become possible to integrate billions of transistors
on a single die with modern nano-scale technology and
therefore allow many processing cores to be implemented
on the same chip. While this advancement allows software
with a large level of parallelism to execute very efficiently on
such processors, it has also introduced reliability issues as the
small transistors are more susceptible to both transient [2] and
permanent [18] faults. This necessitates the implementation of
efficient and scalable online fault tolerance (FT) techniques to
reduce the probability of failures of such systems.

Fault tolerance of programs running sequentially on unipro-
cessors is well understood and many efficient solutions exist
for that purpose. On the other hand, programs running in
parallel on shared memory multicore processors present a
greater challenge due to shared memory accesses, which are a
frequent source of non-determinism. This paper gives a survey
of work done on fault tolerance with primary focus on work
for shared memory multicore systems.

Section II, discusses the basic concepts of a system, faults,
failures and fault tolerance. Then we classify fault tolerance
into four different steps: proactive fault management (dis-
cussed in Section III), error detection (discussed in Sec-
tion IV), fault diagnosis (discussed in Section V) and recovery
(discussed in Section VI). Redundant execution for fault
tolerance is discussed in Section VII. We finally conclude this
paper with Section VIIIL.

978-1-4673-0469-6/11/$25.00 ©2011 IEEE
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II. BASIC CONCEPTS

In this section, we present the basic concepts related to
the field of fault tolerance. Our discussion is based on the
way a system behaves and interacts with other systems in its
environment [38].

A system is an entity that interacts with other systems.
A system can be hardware based, for example a processor,
or software based, such as a running application. A system
consists of components which can be systems themselves. The
service delivered by a system is its behavior as perceived by
other systems using it. The total state of a system is the set
of its internal and external states. A system is said to fail
when its external state deviates from the correct state. The
cause of this failure is fault(s) within the system or external
to it. Fault propagation is illustrated in Figure 1. When a fault
becomes active, it would impact the total state of one or more
components of the system. The deviation of the total state
of a component from the correct state is known as an error.
When an error propagates to affect the external state of the
system, the error is said to be activated. When the error is
activated, failure of the system is said to have occurred. The
time between fault activation and failure is known as error
latency. In other words, a fault might lead to an error which
in turn might lead to the failure of the system.

A. Faults

Faults can be classified into four different classes depending
on their pesistence, effect, source and boundary.

With respect to persistence, a fault can be permanent,
intermittent or transient. Permanent faults are continuous in
time, while a transient fault is random and occurs for only
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a short period of time. An intermittent fault is a repetitive
malfunction of a device or system that occurs at intervals.

With respect to effect, a fault can be either activated or
dormant. An activated fault is one which has produced an
error, while a dormant fault is one that has yet to produce an
error. An activated fault can be further classified into latent
and detected, where a latent fault is one which has produced
an error that has still not been detected by the system.

The source of a fault can be either software or hardware.
Software faults can be for example design faults or malicious
attacks like trojan horses.

Lastly, a fault can be either due to a component internal to
the system or external to it.

A fault can produce a number of errors in a computing
system, such as, control-flow errors, data corruption errors,
logical errors, buffer overflows, memory leaks, data races,
deadlocks/livelocks, infinite loops and wild memory writes etc.

B. Failures

Failures can be classified into three different classes based
on their domain, action and consistency.

In terms of domain, failures can be either timing related or
content related. Timing failures mean that the failing system
either responds too early or too late. On the other hand, content
failures mean that the content of the information delivered by
the system is in corrupt state.

In terms of action taken by a failing system, failures can
be divided into halt and erratic failures. By halt failure, we
mean that the system stops responding on failure, while erratic
failure means that the failing system keeps responding but in
an abnormal manner. Halting on failure is a good property, as
errors are not propagated to other systems in the environment.
Systems which halt on failure, are known as fail-stop systems.

In terms of consistency, there can be byzantine and con-
sistent failures. When a byzantine failure happens, some or all
users of the system will perceive different service. On the other
hand, for consistent failures, all users will perceive identical
service.

Service failure of a system causes a permanent or transient
external fault for other system(s) that receive service from that
system.

C. Fault tolerance

Fault tolerance means to avoid failures in the presence of
faults. A system is said to be fault tolerant if faults do not
affect the external state of that system. It can however allow its
components to fail, as long as they do not corrupt its external
state. A fault tolerant system must be able to detect errors
and recover from them. The time between fault activation and
error detection is known as error detection latency.

Figure 2 shows the steps which are taken to make a system
fault tolerant. These steps are proactive fault management,
error detection, fault diagnosis and recovery. In coming
sections, we discuss these steps and the related work done
with special focus on shared memory multicore/multiprocessor
systems.

III. PROACTIVE FAULT MANAGEMENT

Proactive fault management means predicting failures of
components before they happen and taking precautionary steps
to prevent them, as illustrated in Figure 1.

Software rejuvenation [11] is a proactive fault management
technique that tries to avoid faults due to software aging.
Software aging is the degradation of an application or system
with time. Degradation can happen due to resource leakage,
such as memory leaks or accumulation of numerical errors for
example. In multithreaded applications, deadlocks may also
appear due to software aging. Software rejuvenation tends to
avoid these aforementioned problems by periodically restarting
applications in a clean state.

Another way of performing Proactive fault management is
to proactively check for errors in the system, that is check for
errors when system is idle for example or by doing system
monitoring. One such technique is memory scrubbing [21]
in which memories are periodically checked for errors and
corrected, even while they are not in use. Another example of
a system which uses proactive error checking is [23] which
predicts faults through system monitoring. In case of abnormal
behavior detection, such as aberrant temperature or disk errors
in a node, the tasks executing on it are migrated to a healthy
node.

IV. ERROR DETECTION

Error detection is the process of detecting errors in the
system. Timing errors are normally detected by using watch-
dog timers, while for content errors, redundant execution is
normally applied.

A. Watchdog timers and processors

A watchdog timer is a timer that is used to check if a system
or a subsystem in it, is stuck, for example due to an infinite
loop, in which case it triggers a corrective measure by the
system.

A watchdog processor is a coprocessor that is used to detect
system level errors by monitoring the behavior of the system.
A survey of different kinds of watchdog processors is given
in [16]. Watchdog processors can be used to check control
flow errors. This is done by associating signatures at each node
of a program and providing same signatures to the watchdog
processor. [15] shows that 90 percent of control flow errors
can be detected through watchdog processors with very low
hardware and memory overhead.

B. Redundancy

Redundancy is a technique in which multiple processing
elements are used to process the same data. One such tech-
nique is dual modular redundancy (DMR) in which two
elements are used. An error is detected when the contents
of the two processing elements diverge. Another technique is
triple modular redundancy (TMR) or N-modular redundancy,
which in addition to detecting errors can also locate the faulty
element through majority voting. Moreover, the system can
continue to execute by masking the faulty element. In such
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Fig. 2. Classification of steps used for Fault tolerance

systems, the voter also needs to be reliable as it can become
a single point of failure.

While N-modular redundancy is used to tolerate hardware
faults, N-diversity is used to tolerate software faults, such as,
logical bugs left during development. The main idea is that
if there is a fault in one version, it can be masked out by
using majority voting. Authors in [24] discuss various software
fault tolerance techniques using design and data diversity. [7]
and [6] are examples of systems which use this technique for
tolerating software faults.

For error detection of software running on a single core,
fault tolerant systems commonly employ redundant execution
at different levels of abstractions, at instruction level [20],
process level [22] or virtual machine level [4]. Schemes which
work at instruction level have low error detection latencies,
while schemes which work at process and virtual machine
level allow error to propagate before detecting it. In the
absence of faults, these schemes need to make sure that each
replica start with the same initial state, executes input data
in the same order and perform the same computations. This
method is not straightforward to implement, especially for
parallel programs running on shared memory multicore/multi-
processor systems. SectionVII discusses the related work done
to tackle this problem.

V. FAULT DIAGNOSIS

Fault diagnosis is the process of identifying location and
type of a fault. Location of a fault can be determined either
preemptively, that is, before its activation, or after error has
been detected due to its activation, as shown in Figure 1.

Failure identification of a fail-stop component is relatively
easy as it stops responding when it fails. Time-out is a common
mechanism to detect failures of fail-stop components. For
example, in a message passing environment, a permanent
failure of a processor would be assumed if it stops sending
messages.

In TMR systems, faulty component can be located by a
majority voter. Another method to locate faulty components is
online self-tests. Through this mechanism, a system can find
permanent and sometimes intermittent faults in it by testing
itself.

Online self tests can be applied concurrently with applica-
tion execution and therefore can proactively detect dormant
faults by locating failed hardware components. Online self

tests can be performed using pure hardware built-in self-
test (BIST) [39] approaches or using software based self test
(SBST) [26]. The benefit of software based approaches is
that they do not require any change to the system hardware.
Software based techniques are becoming more relevant with
increasing number of cores as a core can be dedicated to
perform the self tests on the system.

An example of an online self test scheme is [8] which de-
scribes and evaluate three different scheduling policies to find
permanent and intermittent faults. In this scheme, the online
self test can be performed through either special hardware
(BIST) or software (SBST). When a test is performed on a
processor, it is logically isolated from the rest of the system,
while the task which was being executed by that processor is
migrated to another processor for continued operation. In the
proposed system, only one task can execute at a time on a
processor. Self tests are done periodically and the scheduling
policies try to select the idle processors or those which are
running low priority tasks for testing. Since the test is per-
formed concurrently with application execution, intermittent
faults, such as those that occur during burst of a computing
in processor, can also be detected.

Type of a fault can be found by using retry/replay methods.
For example, in [25], the same BIST test is applied twice in a
row. Knowing that transient faults occur infrequently, it can be
assumed that transient fault would not occur twice in a row.
Hence, if the test fails both times, the failure is considered
permanent. mSWAT [40] can also differentiate between a
hardware fault and software bugs for a multithreaded program
running on a multicore system. After an error is detected,
execution is restarted from the last checkpoint. If no error
is detected this time, fault is assumed to be transient or a
non-deterministic software bug, otherwise a permanent fault or
deterministic software bug is assumed. In that case, execution
is replayed on different cores. If the same error occurs again,
deterministic software bug is assumed, otherwise permanent
fault is assumed. In that case, mSWAT does another replay
for further analysis to find the faulty core.

VI. RECOVERY

When a fault is detected, it is important to recover from
it. As shown in Figure 1, in a fault tolerant system, recovery
must be done before failure of the system occurs. It can be
done by either performing error handling, fault handling or
both. Error handling means to eliminate errors from the system
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without removing the source of the fault. On the other hand,
fault handling is the process of removing the source of fault,
to prevent reoccurrence of the fault. Error handling is enough
for recovering from transient faults, as it is not necessary to
locate the source of the fault for transient faults.

A. Error handling

Two different schemes can be used for error handling,
namely checkpoint and repair and masking. In checkpoint
and repair, the state of the system is periodically saved
(checkpointed) and when an error is detected, it is rollbacked
to a previously valid state by using the checkpoint. The
benefit of this scheme is that it can be used to tolerate long
error detection latencies [12]. On the other hand, in masking,
the erroneous components are masked out by using majority
voting on the states of redundant components. The state of an
erroneous component may be restored by using the state of one
of the non-erroneous redundant components [22]. It is a more
efficient technique than checkpoint and repair, as no rollback
is required. However, it is unable to tolerate long error detec-
tion latencies. Therefore, introduction of latent faults in such
systems needs to be avoided as they may eventually corrupt
most of the redundant states to make recovery impossible [36].

Checkpointing can be mainly categorized into coordinated
checkpointing and uncoordinated checkpointing. In coordi-
nated checkpointing [30], each process in the system co-
ordinate with each other to take the checkpoint, while in
uncoordinated checkpointing, each process separately takes its
own checkpoint. The recovery is achieved through a special
recovery phase which reforms the global state of the system
to perform recovery. Uncoordinated checkpointing is usually
avoided however due its proneness to domino effects [37].

Commodity shared memory multicore processors are
equipped with memory management unit (MMU) which al-
lows accelerating the checkpointing process by using copy-on-
write techniques. It allows incremental checkpointing, that is
only saving pages dirtied since the last checkpoint. Authors in
[27] and [28] were the first one to implement checkpointing for
parallel programs running on shared memory multiprocessor
systems by using this technique. Their scheme allows original
application to continue execution while checkpointing is per-
formed. This is made possible by giving read only access to
the memory pages of the program when starting checkpointing,
so whenever something is written to a page for the first time,
page fault is trapped by the OS and content of that page saved
in the checkpoint besides giving write access back to that
page. Authors in [29], improve upon [28] by using translation
lookaside buffer (TLB) misses to record data. This avoids the
overhead of setting write accesses of pages.

Normally checkpoints are stored in a non-volatile memory
due to its reliability. However, schemes like Respec [14] keep
the checkpoint as a forked process in linux. This improves
efficiency of both storing and restarting from a checkpoint,
especially in systems with large amount of RAM. This method
is less reliable though. However, its reliability can be increased
by using memory scrubbing.

B. Fault handling

Fault handling involves isolation of the faulty component
and recovering the system from the fault. Moreover, tasks
which were being computed on a faulty core need to be
reassigned to a working core or a spare core. This is known as
reassignment. Repair of a faulty component can be done in
a reconfigurable system through reconfiguration [34]. When
hardware resources are exhausted, a reconfigurable system
might also emulate a hardware component in software [35],
so that system continues to perform albeit with degraded
performance.

Isolation of a faulty component is done to make the fault
originating from it dormant, so that error is not propagated
to the other components in the system. In typical shared
memory multicore processors, different processes are run on
separate address spaces by using the virtual memory system
supported by the MMU. This makes sure that a wild write
in one process, due to an uninitialized pointer for example,
do not affect the execution of other processes in the system.
Therefore the virtual memory provides an efficient scheme
for isolation and error confinement. However virtual memory
alone would not be not enough to confine errors in case when
different processes are communicating through shared memory
or at kernel level, since the kernel is itself managing the
virtual memory. An error in kernel could bring down the whole
operating system.

Hive [31] addresses this issue by using independent kernels
known as cells. In this way, a fault damages only one cell
rather than the whole system. To prevent wild writes from one
cell to the memory of another one, each cell uses a firewall
hardware. On failure of a cell, pages writable from that cell
are discarded, which prevents any cell from reading data from
those pages. This requires prompt detection of failure of a cell,
which Hive does by applying an aggressive fault detection
scheme, which includes heuristic checks and a distributed
agreement protocol.

Hypervisor based fault tolerance [4] takes a step further
by running different guest operating systems in isolated envi-
ronments. This isolation make sure that failure of one guest
OS does not affect the other guest OSs. Moreover, authors
in [32] and [33] have exploited the isolation provided by a
hypervisor to execute device drivers inside virtual machines for
fault tolerance and portability. Due to the isolation provided
by the hypervisor, a faulty driver does not impact the rest of
the system.

VII. REDUNDANT EXECUTION FOR FAULT TOLERANCE

Process level and virtual machine level fault tolerant systems
apply redundant techniques for fault tolerance. This requires
deterministic execution of the redundant components with
respect to each other. For this purpose, these systems need to
cater for non-deterministic events, such as interrupts, signals,
DMAs and non-deterministic functions, such as time of the
day. As an example, [13] uses hardware performance counters
to count instructions so as to identify the point at which
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TABLE 1
COMPARISON OF DIFFERENT METHODS FOR DETERMINISTIC REDUNDANT EXECUTION OF SHARED MEMORY MULTITHREADED PROGRAMS

Property / Technique Language based (e.g., SHIM)

Record / Replay (e.g., Karma)

Deterministic execution of programs (e.g., Calvin)

Scalability Reasonable Reasonable

Poor

Progr bility Difficult for arbitrary programs | Easy

Easy

Deadlock prevention | Can be difficult to prevent

Does not prevent

Mutex-based deadlocks can be eliminated

an interrupt occurred in the primary replica and execute the
interrupt at the same point of execution in the other replicas.

In multithreaded programs running on multicore processors,
there is one more source of non-determinism, which is shared
memory accesses and these accesses are much more frequent
than interrupts or signals. Therefore, efficient deterministic
execution of replicas in such systems is much more difficult
to achieve and therefore an active area of research.

Comparison of the different methods that can be used for de-
terministic redundant execution is shown in Table I. One way
for executing replicas in a deterministic fashion is to use de-
terministic parallel languages. Examples of such languages are
Streamlt [44], SHIM [5] and Deterministic Parallel Java [1].
However, porting programs written in traditional languages to
deterministic languages is difficult as learning curve is high for
programmers used to programming in traditional languages.
Moreover, in languages which are based on the Kahn Process
Network Model, such as SHIM, it is difficult to write programs
without introducing deadlocks [41].

Deterministic redundant execution at runtime can be done
either through hardware, software or a combination of both.
Some hardware schemes use record and replay method for
achieving deterministic execution. In this method, all inter-
leavings of shared memory accesses by different processors
are recorded in a log, which can be replayed to have a replica
which follows the original execution. Examples of schemes
using this method are Rerun [10] and Karma [42]. These
schemes intercept cache coherence protocols to record inter-
processor data dependencies, so that they can be replayed later
on, in the same order. While Rerun only optimizes recording,
Karma optimizes both recording and replaying, thus making
it suitable for online fault tolerance. It shows good scalability
as well.

Unlike the record/replay method, Calvin [9] executes pro-
grams deterministically, that is, given the same input, a pro-
gram always has the same output. It does so by executing
instructions in the form of chunks and later committing them
at barrier points. It uses a relaxed memory model, where
instructions are committed in such a way that only the total
store order (TSO) of the program has to be maintained. An
advantage of this method is that mutex-based deadlocks can
be eliminated [43]. Moreover, no inter-replica communication
is required, thus making this method more dependable than
record/replay. The disadvantage of this method though is
scalability, as it depends upon barriers to commit chunks.

The disadvantage of existing hardware methods for deter-
ministic execution is that they are applied at system level.
They cannot for example, perform deterministic execution of
different applications running on a system. Capo [17] is the
first scheme to address this issue. It implements a virtualization

layer that allows different applications to use the hardware
resources for deterministic replay. Non-deterministic events,
such as interrupts and signals are handled by the software
while for shared memory access interleavings, the underlying
hardware for deterministic replay can be used.

Besides hardware methods, software only methods for deter-
ministic execution also exist. One such method is CoreDet [3]
that uses bulk synchronous quantas along with store buffers
and relaxed memory model to achieve determinism. Therefore,
it is similar to Calvin, but implemented in software. Since it is
implemented in software, it has a very high overhead, 1-11x
for 8 cores, as compared to 0.5x-2x for Calvin.

Kendo [19] is a software approach that works only on
programs without data races, that is, those that access shared
memory only through synchronization objects. It executes
threads deterministically and performs load balancing by only
allowing a thread to complete a synchronization operation
when its clock becomes less than those of the other threads.
Clock is calculated from retired stores, is paused when waiting
for a lock and resumed after lock is acquired. Since this
method requires global communication among threads for
reading clock values, it also has limited scalability.

Respec [14] is a record/replay software approach that only
logs synchronization objects rather than every shared memory
access. If divergence is found between the replicas, it roll-
backs and re-execute from a previous checkpoint. However,
if divergence is found again on re-execution, a race condition
is assumed. At that point, a stricter deterministic execution is
performed, which can induce a large overhead.

VIII. CONCLUSION

In this paper we discussed related work done on online
fault tolerance techniques with focus on techniques for shared
memory multicore/multiprocessor systems. We have discussed
steps which are taken to achieve fault tolerance, which are
proactive fault management, error detection, fault diagnosis
and recovery. Proactive fault management is a precautionary
step to prevent failures of components in the system, whereas
error detection is performed to detect errors before they lead
to failure of the system. We also discussed fault diagnosis
techniques which are used to locate failed components and to
check the type of a fault. Moreover, we discussed recovery
techniques such as checkpoint and repair, reconfiguration and
reassignment. Finally we discussed related work to perform
deterministic redundant execution of parallel programs running
on shared memory multicore/multiprocessor systems, which is
still an active area of research.
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FAULT TOLERANCE USING
RECORD/REPLAY

SUMMARY

The abundant computational resources available in multicore systems have made it fea-
sible to implement otherwise prohibitively intensive tasks on consumer grade systems.
However, these systems integrate billions of transistors to implement multiple cores on
a single die, thus raising reliability concerns, as smaller transistors are more susceptible
to transient as well as permanent faults.

A common approach for providing fault tolerance is to perform redundant execution
of the software. This is done by using the state machine replication approach. In this ap-
proach the replicated copies of a process (known as replicas) follow the same execution
sequence and produce the same output if given the same input. This requirement ne-
cessitates that the replicas handle non-deterministic events such as asynchronous sig-
nals and non-deterministic functions (such as gettimeofday) deterministically. This is
usually done by having one replica log the non-deterministic events and have the other
replicas replay them at the same point in program execution. In a shared memory multi-
threaded program, this also means that the original and replica processes perform non-
deterministic shared memory accesses deterministically, so that they do not diverge in
the absence of faults.

In this chapter, we describe a software based efficient fault tolerance scheme that
is implemented using a user-level library and does not require a modified kernel. The
record and replay of synchronization operations is made efficient and scalable by elim-
inating atomic operations and true and false sharing of cache lines. Moreover, the error
detection mechanism is optimized to perform memory comparisons of the replicas effi-
ciently in user-space. With our initial algorithm for record/replay, the overhead is up to
46% for 4 threads, which is reduced to maximum 18% with an improved algorithm. This
is lower than comparable systems published in literature.
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Abstract—The ever decreasing transistor size has made it pos-
sible to integrate multiple cores on a single die. On the downside,
this has introduced reliability concerns as smaller transistors are
more prone to both tr t and per t faults. However, the
abundant extra processing resources of a multicore system can be
exploited to provide fault tolerance by using redundant execution.
We have designed a library for multicore processing, that can
make a multithreaded user-level application fault tolerant by
simple modifications to the code. It uses the abundant cores found
in the system to perform redundant execution for error detection.
Besides that, it also allows recovery through checkpoint/rollback.
Our library is portable since it does not depend on any special
hardware. Furthermore, the overhead (up to 46% for 4 threads),
our library adds to the original application, is less than other
existing approaches, such as Respec.

I. INTRODUCTION

Although the shrinking transistor size has made it possible
to implement multiple cores on a single die, it has also made
reliability a concern, as smaller transistors are more prone to
both transient [1] as well as permanent [2] faults. However,
the abundant processing resources of a multicore system can
be exploited to provide fault tolerance through redundant
execution.

One way to use the abundant processing resources to
provide fault tolerance is by using the state machine replication
approach [3]. For multithreaded programs running on shared
memory multicore systems, it is required that threads of the
replicas access shared memory in the same order. In other
words, shared memory accesses should be deterministic. Our
library ensures this. Overall it provides the following features.

« Efficient deterministic execution in presence of lock-

based shared memory accesses.

o Optimized memory comparison of the replicas for error

detection.

« Checkpoint/rollback to perform recovery from transient

errors.

In Section II we discuss the background and related work.
In Section III, we discuss the overview of our library, while in
Section IV, we discuss its implementation. In Section V, we
present and discuss our results. We finally conclude the paper
with Section VL.

II. BACKGROUND AND RELATED WORK

Fault tolerance is achieved by three major steps, error de-
tection, isolation and recovery [4]. With redundant execution,

978-1-4673-1188-5/12/$31.00 ©2012 IEEE

an error is detected if the replicas diverge. Since any kind
of divergence is used to detect an error, it is important to
remove any source of divergence which is not due to an error.
The only sources of non-determinism in a single threaded
program are non-deterministic functions, such as gettimeofday
and asynchronous signals, while for a multithreaded program,
there is also non-determinism due to shared memory accesses.
Moreover, shared memory accesses are usually much more
frequent as compared to non-deterministic functions and asyn-
chronous signals, which makes implementing efficient state
machine based replication more difficult for a multithreaded
program, running on a shared memory multicore system, than
for a single threaded application.

Two main approaches, record/replay and deterministic mul-
tithreading, exist for this purpose. In record/replay, the order
of shared memory accesses on the original processes are
recorded so that they can be replayed by the other replicas.
On the other hand, with deterministic multithreading, given
the same input, a process always performs the same ordering
of shared memory accesses. It has to be noted though that
for non-deterministic functions, such as gettimeofday and
asynchronous signals, record/replay is the only viable method.
Our library uses the record/replay approach.

For record/replay, both hardware and software-based meth-
ods exist. Karma [5] and DeLorean [6] are examples of
hardware-based approaches. While Karma intercepts the cache
coherence protocols to record inter-processor data dependen-
cies and later use these recorded data dependencies to replay,
DeLorean uses a relaxed memory model, where each processor
executes instructions in chunks concurrently and an arbiter is
used to commit the chunks. Replaying is done by replaying
the chunks in the order in which they were committed.
Respec [7] is a software-based method. It logs the ordering
of acquisition and release of synchronization objects, such as
mutexes, to make replicas acquire the synchronization objects
in the same order. It also performs checkpoint/rollback to
perform recovery.

For deterministic multithreading, also, both hardware and
software-based methods exist. An example of hardware-based
approach is Calvin [8]. It executes a program deterministically
by executing instructions in the form of chunks and com-
mitting them at barriers points deterministically. Kendo [9]
is a software based approach that only deals with programs



22

3. FAULT TOLERANCE USING RECORD/REPLAY

Starts on timeout
Checkpoint process -—rr

Kills on timeout
error.

Watchdog process

Creates/Starts on error/
Kills when taking next
checkpoint

Creates/Signals Kills on timeout error

Leader process

Kills on error
Writes

Follower process

wmesl

Creates/Kills on
error

Reads

Shared Memory

Fig. 1. Data flow diagram of our fault tolerance scheme

without data races. For efficient deterministic execution, it
performs load balancing by only allowing a thread to acquire
a synchronization object if that thread has executed less
instructions than the other threads. The number of instructions
are calculated by counting the retired stores.

III. OVERVIEW OF THE LIBRARY

Our library is intended to reduce probability of failures in
the presence of transient faults. The data flow diagram of our
fault tolerance scheme is shown in Figure 1. Initially, the leader
process creates its replica (follower process) and the watchdog.
The execution is divided into time slices (epochs). At the
end of each epoch, the memories of the leader and follower
processes are compared by the leader. If no divergence is
found, a checkpoint is taken and output to files or screen
is committed. The previous checkpoint is also deleted. The
checkpoint is basically a suspended process which is identical
to the leader process at the time the checkpoint is taken. If a
divergence is found at the end of an epoch, the leader process
signals the checkpoint process to start and kills itself and its
follower. When the checkpoint process starts, it becomes the
leader and creates its own follower. It might also happen that
the leader or follower process are unable to reach the end of an
epoch, due to some error which hangs them. In that case, the
watchdog process detects those hangs by using timeouts and
signals the checkpoint process to start. The watchdog process
itself is less vulnerable to transient faults as it remains idle
most of the time.

IV. IMPLEMENTATION

This section discusses the implementation of our library. In
Section IV-A, we discuss how the follower process is created.
In Section IV-B, we discuss our memory allocation technique,
which is followed by Section IV-C, where we explain how
we are able to deterministically access the shared memory
through mutexes. Section IV-D discusses our error detection
mechanism, while Section IV-E discusses recovery. Lastly, in
Section IV-F, we discuss how our library handles I/0O and
non-deterministic functions such as gettimeofday. Note that
currently our library does not support deterministic replaying
of asynchronous signals, which is left as future work.

A. Follower creation

Our library assumes that threads in the application are
created once at the start of the application. Therefore, we

create the follower process at point in the code where
the threads are created. For this purpose, we replace the
pthread_create function with r_pthread_create, which inter-
nally calls pthread_create function and indirectly calls the
Linux’s fork function.

To make sure that the follower threads have the same
stack contents as the leader, our library itself allocates the
memory used for thread stacks. These allocated stacks are then
passed as attributes to the pthread_create function (called from
r_pthread_create). When the leader calls the fork function,
although all threads, beside the one calling it, die in the forked
process, the stack contents are still present in the memory.
Therefore, to recreate a thread with the same stack in the
follower, we call pthread_create with the same stack attribute.
For thread identification, we use a thread local variable, so that
we can relate a thread in the follower process with that in the
leader process.

For making sure that a follower thread also has the same
register values as the corresponding leader thread, the thread’s
start routine passed as an argument to the pthread_create
function (called from r_pthread_create), is not the start routine
itself but wrapper thread_start that then calls the start routine,
which is provided as a parameter to it. For the leader process,
this function calls our barrier function r_pthread_barrier_wait
in the beginning. When r_pthread_barrier_wait is called for
the first time, each thread of the leader saves its registers,
including the instruction pointer, by using the C setjmp func-
tion. The follower is itself created by the main thread by
calling fork function, from within the r_pthread_barrier_wait
function. The newly forked process then recreates the threads
and each thread jumps to the same location as the thread in
the leader process by using the C longjmp function. This is
done by having the forked process also pass the thread_start
function as start routine to pthread_create function. But unlike
the leader process, the follower threads call longjmp at the
beginning of the thread_start function.

Note that since the main thread is replicated by the
fork process, we do not need to recreate it. However,
r_pthread_barrier_wait needs to be inserted just after the code
where the threads are created, so that all the threads are at a
barrier point when the follower is forked.

B. Memory allocation

In an operating system with Address Sapce Layout Ran-
domization (ASLR), malloc can be non-deterministic. This is
because malloc internally uses mmap for allocating memory
blocks of large sizes and mmap can be non-deterministic.
Therefore, whenever the memory allocator uses mmap, we
make sure the follower has the same address returned for
mmap by calling mmap with MAP_FIXED flag and the
address returned by the leader process.

The variables used by our library (not related to original
program execution) to perform deterministic execution, may
have different values for the leader and follower processes, for
example, the flag used to distinguish the leader process from
the follower process. For these variables, we use a separate
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function R_PTHREAD_MUTEX_LOCK (ref pthread_mutex_log_t m)
if isLeader then
lock(m.mutex)
m.leaderClock = m.leaderClock + 1
while m.threadClock(tid] > 0
end while
m.threadClock[tid] = m.leaderClock
else
while not (m.threadClock[tid] == (m. followerClock + 1))
end while
m.threadClock[tid] = 0
lock(m.mutex)
end if
end function

function R_PTHREAD_MUTEX_UNLOCK (ref pthread_mutex_log_t m)
ifnot is Leader then
m. followerClock = m.followerClock + 1
end if
unlock(m.mutex)
end function

Fig. 2. Pseudocode for deterministic lock and unlock
memory, which is allocated with mmap. This memory is not
compared for error detection.

C. Deterministic shared memory accesses

For redundant deterministic execution, it is necessary that
the leader and follower processes perform shared memory
accesses in the same order. Since we assume that a program
has no data races and all synchronization operations are done
using mutexes, we provide functions r_pthread_mutex_lock
and r_pthread_mutex_unlock for deterministically locking and
unlocking a mutex. A mutex is enclosed in a special data
structure, known as pthread_mutex_log_t, which also contains
a pointer to clocks for that mutex to aid in deterministic
execution. The memory region to hold the mutex clocks is
shared between the leader and follower processes.

Our deterministic locking and unlocking algorithms for
mutexes are shown as Figure 2. The benefit of this scheme
is that it uses less memory as compared to schemes that use
producer/consumer queues, such as Respec [7]. Secondly, by
wrapping the pointer to the mutex clocks in the same data
structure as the mutex, we avoid the overhead of using a hash
table, which is used by Respec. Lastly, our algorithm is written
such that it exploits the strict memory consistency model of
multicore x86 (memory ordering respects transitive visibility
and stores to the same location have a total order) and thus
avoid using atomic variables (which incur significant overhead
due to use of memory fences) on such systems.

D. Error detection

At regular intervals (epochs) of one second, the leader
and follower processes calculate checksums by performing
modular sums of the contents of the dirtied (modified) memory
pages, which are then compared by the leader. If a discrepancy
is found, a fault is detected. Follower keeps its checksum
in the shared memory so that the leader can read it from
there for comparison. We perform memory comparison at
barriers which are already found in the program. If insufficient
number of barriers are found in the program, the programmer
can insert our library function r_potential_barrier_wait in

Memory segment
with N pages with N pages

4096 x N 4096 x N

Fig. 3. Memory pages can be grouped into segments to reduce the overhead
of memory comparison for error detection

Memory segment

Memory space

the code. This function will create a barrier (by calling
r_pthread_barrier_wait) only if the program has reached the
end of an epoch.

To note down dirtied pages, at start of each epoch, we give
only read access to memory pages, so that a page faults can
be trapped to note down dirtied pages. To reduce the number
of such page faults however, we exploit the concept of spatial
locality of data and segmented memory into multiple pages,
as shown in Figure 3. A write on any part of a read protected
segment of N pages is handled by giving write access to all
the N pages in that segment. This improves the execution
considerably, as discussed in Section V, where we discuss the
performance evaluation.

The watchdog process is used to detect hangs and recover
from them. At the end of each epoch, the leader process sends
a signal to the watchdog process to signal that it is not hung.

E. Recovery

For fault recovery, we use checkpoint/rollback. Checkpoint-
ing is done by forking a process and suspending it. If the
leader process detects an error or the Watchdog detects a
hang, a signal is sent to the checkpoint process to start
execution. The leader and follower processes are also killed.
The checkpoint process now becomes the new leader and forks
its own follower. The checkpoint process also resets the mutex
clocks (which exist in shared memory), since they could have
been corrupted by an error.

Creation of the checkpoint process is very similar to creation
of the follower (see Section IV-A), with the difference being
that the checkpoint process is suspended in the beginning.
Only when it is signalled to start, it recreates the threads and
starts execution.

F. 1/0 and non-deterministic functions

For 1/0, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is only
performed after making sure that no error occurred during an
epoch. For that purpose, no output is committed during an
epoch. Instead it is buffered. Therefore, our library defines a
structure r_FILE, which not only contains the FILE pointer,
but also the buffer. The r_fopen function returns a pointer to
this structure. The buffers are then committed at the end of an
epoch after comparing the buffer contents of the leader and
follower by using checksums. For sequential file reading, we
provide functions r_fread and r_fscanf. The r_FILE structure
also contains the file offset value at the last epoch, so that the
file pointer can be rewinded to the previous value in case of
rollback.

For non-deterministic functions such as gettimeofday, our li-
brary allows the programmer to create a deterministic wrapper
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TABLE 1
PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED
BENCHMARKS
Benchmarks | Threads | Epochs | Locks Pages Original | Deterministic | Overall

compared time exec time | time (ms) &

(ms) (ms) & | Ovheread

Overhead

2 3 4313983 | 33890 1988 2298 (16%) 2379 (20%)

7 2 7466285 | 25380 1205 1696 (41%) 1712 (42%)

Ocean 2 1 5046 104504 2432 2459 (1%) 3091 27%)
7 3 0092 80618 1890 1895 (0%) 2119 (12%)

Waternsq 2 3 125047 | 12624 1837 1859 (1%) 1861 (1%)

7 2 188142 | 24912 1090 1112 (2%) 1170 (7%)

Radiosity 2 2 6124778 | 6920 920 1140 (24%) 1153 (25%)

7 T GI70016 | 12616 589 854 (44%) 865 ([46%)

Raytrace 2 1 121958 | 2344 1116 1216 (9%) 1260 (13%)

* 7 T 21960 | 2548 663 700 (6%) 738 (11%)

Fluidanimate
Ocean
£— Radiosity
20 —©— Raytrace
—+— Water-nsq

o

2

Overhead (%)

1 2 3 4 5 6 7 8
Number of pages in a memory segment

Fig. 4. Reduction in overhead by grouping memory into segments

by using functions r_log_data and r_read_data. r_log_data is
called by the leader process to log the outputs of that function,
while the follower process reads the outputs by calling the
r_read_data function.

V. PERFORMANCE EVALUATION

We selected 5 benchmarks, one from the PARSEC [10] and
four from the SPLASH-2 [11] benchmark sets. We ran all our
benchmarks on an 8 core (dual socket with 2 quad cores),
2.67 GHz Intel Xeon processor with 32GB of RAM, running
CentOS Linux version 5, with kernel 2.6.18. We used gcc
4.4.4 and optimization level -O3 to compile our results. The
results are shown in Table I. For each benchmark, we show
the results for 2 and 4 threads (For redundant execution, 4
threads means 8 threads in total). We compare the original
execution time with deterministic execution time (excluding
overhead of error detection, checkpointing and watchdog) and
the overall time which includes all the overheads. We used
memory segments of size 4 (See Section IV-D for discussion
on memory grouping). For fluidanimate, which has high lock
frequency our library only adds an overhead of 42%, while
Respec adds an overhead of 67%. Also for ocean, which has
high memory consumption, Respec adds an overhead of 43%,
while our library adds an overhead of just 12% due to the
optimized memory comparison scheme.

Figure 4 shows the impact of grouping memory pages on
performance. We show the results for memory segment sizes of
1, 2, 4 and 8. Note that the overhead shown is after subtracting
the overhead of deterministic execution. We can see that for an
applications like Ocean which has high memory usage, we get
significant performance gains using page grouping. However,
grouping too many pages can also cause the application to

compare more pages which have not been actually modified
by that application, thus creating unnecessary overhead. This
is evident for Raytrace which has lower memory usage than
other benchmarks. However, for 4 pages, all five benchmark
show performance gain.

VI. CONCLUSION

In this paper, we described the design and implementation
of a user-level library for fault tolerance of multithreaded
user-level applications running on shared memory multicore
systems. Our library requires programmer to make little mod-
ifications to the program for providing fault tolerance. It allows
creation of a multithreaded redundant process for detecting
errors and provides facility of checkpointing and rollback for
recovery. We also applied several optimizations to speedup the
execution, like reducing memory for logging, which is required
for record/replay, and optimizing memory comparison for
error detection. Empirical measurements on tested benchmarks
show that the overhead does not exceeds 46% for four threads.
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Abstract—This paper describes a low overhead software-
based fault tolerance approach for shared memory multicore
systems. The scheme is implemented at user-space level and
requires almost no changes to the original application. Redundant
multithreaded processes are used to detect soft errors and recover
from them. Our scheme makes sure that the execution of the
redundant processes is identical even in the presence of non-
determinism due to shared memory accesses. It provides a very
low overhead mechanism to achieve this. Moreover it implements
a fast error detection and recovery mechanism. The overhead
incurred by our approach ranges from 0% to 18% for selected
benchmarks. This is lower than comparable systems published
in literature.

I. INTRODUCTION

The abundant computational resources available in mul-
ticore systems have made it feasible to implement otherwise
prohibitively intensive tasks on consumer grade systems. How-
ever, these systems integrate billions of transistors to imple-
ment multiple cores on a single die, thus raising reliability
concerns, as smaller transistors are more susceptible to both
transient [12] as well as permanent [13] faults.

A common approach for providing fault tolerance is to
perform redundant execution of the software. This is done
by using the state machine replication approach [14]. In
this approach the replicated copies of a process (known as
replicas) follow the same execution sequence and produce
the same output if given the same input. This requirement
necessitates that the replicas handle non-deterministic events
such as asynchronous signals and non-deterministic functions
(such as gettimeofday) deterministically. This is usually done
by having one replica log the non-deterministic events and have
the other replicas replay them at the same point in program
execution. In a shared memory multithreaded program, this
also means that the original and replica processes perform non-
deterministic shared memory accesses deterministically, so that
they do not diverge in the absence of faults.

Different software-based solutions have been proposed,
for deterministic execution of shared memory multithreaded
programs on multicore processors, such as DTHREADS [9]
and CoreDet [1], which are too slow to be used for practical
purposes. On the other hand, Kendo [7], while an efficient
solution, suffers from portability problem as it requires the use
of deterministic hardware performance counters, which are not
available on many platforms [10]. Respec [5] is a record/replay
approach for fault tolerance, that requires kernel modification
and also does not have highly efficient method of memory
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comparison for error detection. Moreover, it does not perform
deterministic execution very efficiently for benchmarks with
high lock frequencies.

In this paper, we describe a software based efficient fault
tolerance scheme that performs the following.

1)  The scheme is implemented using a user-level library
and does not require a modified kernel.

2)  Record and Replay of synchronization operations is
made efficient and scalable by eliminating atomic
operations and true and false sharing of cache lines.

3)  The error detection mechanism is optimized to per-
form memory comparisons of the replicas efficiently
in user-space.

In Section II we discuss the background and related work,
while in Section III, we discuss the implementation. In Sec-
tion IV, we evaluate the performance of our scheme. We finally
conclude the paper with Section V.

II. BACKGROUND AND RELATED WORK

For error detection of software running on a single core,
fault tolerant systems commonly employ redundant execution
at different levels of abstraction, at instruction, process or
virtual machine level [15]. Schemes which work at instruction
level have low error detection latencies, especially those which
operate at hardware level. On the other hand, schemes which
work at process and virtual machine level allow error to prop-
agate before detecting it. Another important issue in process
level and virtual machine level systems is that they need to
cater for non-deterministic events, such as interrupts and non-
deterministic functions, such as time of the day. They need to
make sure that execution of the replicas is deterministic with
respect to each other. Such schemes usually use the concept of
primary and backup replicas, where the primary is responsible
for logging information about the non-deterministic events to
be used by the backups. For this purpose, non-deterministic
events such asynchronous signals have to be executed at
the same point in the code by the replicas. As an example,
[16] defers asynchronous signal handling to known points in
the code, such as function calls, system calls or backward
branches.

In multithreaded programs running on multicore proces-
sors, there is one more source of non-determinism, which
is shared memory accesses. These accesses are much more
frequent than interrupts or signals. Therefore, efficient deter-
ministic execution of replicas in such systems is much more
difficult to achieve.
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Fig. 1. Data flow diagram of our fault tolerance scheme

Lately, effort has been done to create deterministic lan-
guages, that ensure deterministic execution of a program. Ex-
amples of programming languages designed for deterministic
parallel execution are Streamlt [8] and SHIM [3]. However
porting programs written in traditional languages to determin-
istic languages is difficult as the learning curve is high for
programmers used to programming in traditional languages.
Therefore, deterministic execution at runtime is still the only
viable solution to most users.

One such method for runtime deterministic execution is
CoreDet [1] that uses bulk synchronous quantas along with
store buffers and relaxed memory model to achieve determin-
ism. Since this method requires bulk syncrhonous quantas,
it has a very high overhead (1-11x for 8 cores) and limited
scalability.

Kendo [7] is a software approach that works only on
programs without data races, that is, those that access shared
memory only through synchronization objects. It executes
threads deterministically and performs load balancing by only
allowing a thread to complete a synchronization operation
when its logical clock, which is used to perform deterministic
execution, becomes less than those of the other threads. Since
this method requires global communication among threads for
reading clock values, it also has limited scalability.

Respec [5] is a record/replay software approach that only
logs synchronization objects rather than every shared memory
access. If divergence is found between the replicas, it roll-
backs and re-execute from a previous checkpoint. However,
if divergence is found again on re-execution, a race condition
is assumed. At that point, a stricter deterministic execution
is performed. It uses producer-consumer queues. A queue is
shared between a thread in the leader and its corresponding
thread in the follower and is used to record logical clocks
for mutexes. Each recorded operation atomically increments a
clock. Since having a producer-consumer queue for each mutex
will require a large memory, Respec only uses fixed number
of clocks, that is, 512. The hash of the address of a mutex
is used to point to its logical clock. A thread in the follower
process only acquires a mutex when its logical clock matches
that recorded by the corresponding thread of the leader.

III. FAULT TOLERANCE SCHEME

Our fault tolerant scheme is intended to reduce probability
of failures in the presence of transient faults. The data flow
diagram of our fault tolerance scheme is shown in Figure 1.
Initially, the leader process (which is the original process
highlighted in the figure) creates the watchdog and follower
processes. The follower process is identical to the leader

process and follows the same execution path. The execution
is divided into time slices known as epochs. An epoch starts
and ends at a program barrier. At the end of each epoch, the
memories of the leader and follower processes are compared
by the follower. If no divergence is found, a checkpoint is
taken and output to files or screen is committed. The previous
checkpoint is also deleted. The checkpoint is basically a
suspended process which is identical to the leader process at
the time the checkpoint is taken. If a divergence is found at
the end of an epoch, the follower process signals an error
to the leader process which in turn signals the checkpoint
process to start and kills itself and its follower. This can also
happen inside an epoch, if the follower sees that the parameters
(of synchronization functions or system calls) logged by the
leader do not match those read by the follower. When the
checkpoint process starts, it becomes the leader and creates its
own follower. It might also happen that the leader or follower
processes are unable to reach the end of an epoch, due to
some error which hangs them. In that case, the watchdog
process detects those hangs by using timeouts and signals the
checkpoint process to start. The watchdog process itself is less
vulnerable to transient faults as it remains idle most of the time.

At this moment, our fault tolerant scheme does not work
with programs that use inter process communication (such as
through pipes and shared memory). The only form of I/O
allowed is disk I/O and screen output. Moreover, our scheme
assumes that there are no data races in the program. Lastly, we
have not added functionality to handle asynchronous signals.
However, this functionality can be added for user space by
handling asynchronous signals at synchronous points, such as
system calls, as done by Scribe [17].

In Section III-A, we discuss how we allow deterministic
execution of the replicas. This is followed by Section III-B
which discusses error detection. Finally in Section III-C, we
discuss our recovery mechanism.

A. Deterministic execution

For deterministic execution, we need to ensure that replicas
use the same memory addresses. We also need to ensure
determinism in the presence of non-deterministic functions and
shared memory accesses. Moreover, we need to make sure
that the leader and follower processes use the same memory
addresses. For this we need to have a deterministic memory
allocation scheme. Finally we also need to make sure that we
have deterministic I/0. Below we discuss how we handle these
issues.

1) Replica creation: Our library creates a follower from
the leader process by using fork system call, at the beginning
and also when a rollback is done. This is because at a rollback,
the checkpoint process becomes the leader and creates its own
follower, which uses the same memory addresses as the leader
process. We use our own version of pthread_create function to
make sure that the leader and follower processes use the same
stack addresses for the threads. For this purpose, the leader
process logs these addresses to be consumed by the follower.
For thread identification, we use a thread local variable, so that
we can relate a thread in the follower process with that in the
leader process.
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Fig. 2. Communication between the leader and follower processes for
deterministic execution

2) Memory allocation: We implement our own memory
allocation functions to allocate memory deterministically. In an
operating system with Address Space Layout Randomization
(ASLR), malloc can be non-deterministic. This is because
malloc internally uses mmap for allocating memory blocks
of large sizes and mmap can be non-deterministic. Therefore,
whenever the memory allocator uses mmap, we make sure the
follower has the same address returned for mmap by calling
mmap with MAP_FIXED flag and the address returned by the
leader process.We also make sure that threads of the leader and
follower processes call the malloc function in the same order
by internally using a mutex, which is locked and unlocked
deterministically.

The variables used by our library (not related to original
program execution) to perform deterministic execution, may
have different values for the leader and follower processes, for
example, the flag used to distinguish the leader process from
the follower process. For these variables, we use a separate
memory, which is allocated with mmap. This memory is not
compared for error detection.

3) Deterministic shared memory accesses: For redundant
deterministic execution, it is necessary that the leader and
follower processes perform shared memory accesses in the
same order. For this purpose, a mutex is enclosed in a special
data structure, which also contains a pointer to clocks for that
mutex to aid in deterministic execution. Whenever a thread in
the leader process acquires a mutex, it increments the mutex’s
clock. A thread in the follower only acquires the same mutex in
its execution, when its clock matches that for the corresponding
thread in the leader.

We create our own deterministic versions of pthread’s
synchronization functions, such as pthread_mutex_lock,
pthread_mutex_unlock, pthread_trylock, pthread_cond_wait,
pthread_broadcast, pthread_barrier_wait etc. Since
pthread_mutex_lock is the mostly used and is also used
in our implementation of other pthread synchronization
functions, we discuss our pthread_mutex_lock algorithm here,
which is shown in Algorithm 1. We also have our own versions
of data structures for representing the synchronization objects,
for example, pthread_mutex_log_t instead of pthread_mutex_t.
Here m represents an object of pthread_mutex_log_t structure
which holds a mutex and its clocks. There is one such object
for each mutex in the program. Therefore, deterministic
access to a mutex is independent of other mutexes in the
program, hence improving scalability.

When a leader thread acquires a mutex, it increments the
leader’s clock for that mutex and also records that value in
a circular queue, so that the follower can acquire the thread
when its clock reaches one less than the same value. The

Algorithm 1 Pseudocode for deterministic lock

function R_PTHREAD_MUTEX_LOCK(ref pthread_mutex_log_t m)
q = GetQueue(tid) > There is a separate queue for each thread
if isLeader then
r = lock(m.mutex)

= () then > Only if lock call is successful, increment the clock
m.clock = m.clock + 1 & m.clock does not need to be atomic
end if
while !pushq(q, MUTEXLOCK, m.mutex, m.clock, r)
end while
return r
else > Follower
while not !popq(q, ref type, ref mutex, ref clock, ref r)
end while

if type != MUTEXLOCK and mutex != m.mutex then > Logged parameters do not match
SignalErrorAndExit()

end if

if r =0 then
return r

end if

while (m.clock+1) != clock

end while

lock(m.mutex)

m.clock = m.clock + 1

return 0

end if
end function

function PUSHQ(q, type, addr, clock, r)
lindex = GetLeaderQIndex(tid)
if checkQElementsForZero(lindex) then
q[lindex].type = type
qllindex].addr = addr
q[lindex].clock = clock
qllindex].r=r+ 1
SetLeaderQIndex((lindex + 1) %QCAPACITY)
return TRUE
else
return FALSE
end if
end function

> Called by Leader

function POPQ(q, ref type, ref addr, ref clock, ref r) > Called by Follower
findex = GetFollowerQIndex(tid)
if checkQElementsForNonZero(gindex) then
type = glfindex].type
addr = q[findex].addr
clock = q[findex].clock
r= qffindex].r- 1
setQElementsToZero(findex)
SetFollowerQIndex((findex + 1) %QCAPACITY)
return TRUE
else
return FALSE
end if
end function

communication between the leader and follower processes is
shown in Figure 2. After acquiring the mutex, the follower
also increments its clock for that mutex. Unlike Respec which
uses a hash table of 512 entries to keep clocks for all the
syncrhonization objects, we use a separate clock for each
mutex. The benefit of this is that we can avoid using atomic
variables for accessing the clocks, as clock can be incremented
after acquiring the lock.

We also optimize the queue access by avoid using atomic
variables and avoiding true and false sharing of cache lines. For
that purpose, we use a lockless queue as shown by pushg and
popq functions in Algorithm 1. This is unlike Respec which
uses atomic operations if necessary to access the queue. The
typical method of using a lockless queue (which we call naive
in this paper) is to use shared tail and head indexes. Since
in this method, producer and consumer read the head or tail
indexes at the same time when the other is writing to it, this
causes cache trashing. Hence it is a true sharing problem. We
avoid this by having local indexes for producer (leader) and
consumer (follower). The check for emptiness and fullness is
done by checking the data value instead. Producer only writes
to the queue when all the fields of the queue element it is
about to write to, are zero, while the consumer only reads
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when all the fields of the queue element are non-zero. Here,
since the value of r, which represents the result returned by
a synchronization function can be zero, We add one to its
value while pushing and subtract one from it when popping.
We make sure that the indexes for leader and follower do not
share the same cache line by having sufficient padding between
them. This makes sure that we do not have the problem of false
sharing.

4) System Calls, Non-deterministic functions and 1/0: We
use LD_PRELOAD to preload the system call wrappers found
in glibc with our own version which perform logging. This
is possible, because most of the system calls can be and are
usually called through their user-space wrapper functions. This
method will not work however, if for example, a system call is
made without using the wrapper function, for example, by us-
ing inline assembly. So, with our library, the programmer needs
to make sure to not make a system call directly. Since the glibc
library sometimes also make system calls directly, for example,
by making the clone system call in pthread_create function,
we provide our version of pthread_create. We also provide
our own version of non-deterministic functions such as get-
timeofday and rand and preload them using LD_PRELOAD.
The leader performs logging of the parameters and output
of these non-deterministic functions and system calls. The
logged parameters are used by the follower to check for errors
(by checking for discrepancies), whereas the logged output is
just read by the follower. Furthermore, each non-deterministic
function and system call is protected by a deterministic lock
so that the leader and follower processes perform these calls
in the same order.

For 1/0O, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is only
performed after making sure that no error occurred during an
epoch. For that purpose, no output is committed during an
epoch. Instead it is buffered. Our library overrides the write and
read system call wrappers to allow buffering of the data. The
buffers are committed at the end of an epoch after comparing
the buffer contents of the leader and follower by using hash-
sums. For this purpose, each file opened for writing is allocated
a special buffer. It is important that addresses of these buffers
are the same for the leader and follower process. For this
purpose, we use a deterministic memory allocation scheme
like the one described in Section III-A2. For sequential file
reading, the file offset value is saved at the end of each epoch,
so that the file can be rewinded to the previous value in case
of rollback.

B. Error detection

At regular intervals of 1 second, known as epochs, dirtied
memories of the leader and follower processes are compared.
However, the epoch time is reduced to 100 ms if a file or
screen output occurs during the epoch. Instead of comparing
each memory one by one, the leader and follower processes
calculate hash-sums of the dirtied (modified) memory pages,
which are then compared. If a discrepancy is found, a fault is
detected. The hash-sums are calculated much faster by using
the CRC32 instruction of the SSE4.2 instruction set found on
modern x86 processors.

The comparison is made even faster by assigning each
thread to calculate hash-sum of different portions of the

Page 1| Page 2 | Page 3 | Page 4

v
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Fig. 3. Memory pages can be grouped into segments to reduce the overhead
of memory comparison for error detection

memory. Follower keeps its hash-sums in shared memory so
that the leader can read it from there for comparison. We
perform memory comparison at barriers which are already
found in the program rather than stopping and creating a
barrier. This improves the performance, as threads already wait
for each other at barriers. If insufficient barriers are found
in the program, the programmer can insert calls to function
potential_barrier_wait, which is provided by our library. This
function creates a barrier only when required, that is at the
end of an epoch.

Since our scheme runs at the user-space level, we cannot
note down dirtied pages while handling page faults (from the
kernel), the way Respec does, which is the most efficient
method possible. We take special steps to improve its per-
formance at user-space level.

At start of each epoch, we give only read access to allocated
memory pages. Whenever a page is accessed for writing, the
OS sends a signal to the accessing thread. In the signal handler,
the address of the memory page is noted down and both read
and write accesses are given to that memory page. In this
way, we only need to compare the dirtied memory pages at
the end of an epoch. Sending signals on each memory page
access violation can slow down execution. Therefore, to reduce
the number of such signals, we exploit the concept of spatial
locality of data and segmented memory into multiple pages,
as shown in Figure 3. A write on any part of a read protected
segment of N pages is handled by giving write access to all
the N pages in that segment. This improves the execution
considerably, as discussed in Section IV, where we discuss
the performance evaluation.

Some functions, like that for comparing memories, change
the stacks differently for the leader and follower threads. For
those purposes, we switch to a temporary stack, so that the
original stack remains unaltered from such functions.

The watchdog process is used to detect hangs and recover
from them. At the end of each epoch, the leader process sends
a signal to the watchdog process to signal that it is not hung.
In that signal, the process ID of the checkpoint is also sent,
so that the watchdog is able to start the checkpoint process in
case it detects hang of leader or follower process. Hangs are
detected by using timeout. Besides sending the process ID of
the checkpoint, the leader also sends process ID of itself and
the follower process when it forks the follower, so that the
watchdog process can kill the leader and follower processes
before starting the checkpoint process.

C. Recovery

As discussed previously, for fault recovery, we use check-
point/rollback. whenever the leader takes a checkpoint, it kills
the previous checkpoint. If the leader process detects an error,
or the Watchdog process detects a hang, a signal is sent to
the last checkpoint process, so that the checkpoint process
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can start execution. The leader and its follower are killed at
that point. The checkpoint process then assumes the role of
the leader and forks its own follower. It also creates a new
checkpoint. Moreover, it resets the mutex clocks (which exist
in shared memory), since they could have been corrupted by
an error. Checkpoints are taken only at barrier points. For
creating a multithreaded follower, we have implemented a
special multithreaded fork function that replicates the leader
process to create the follower.

IV. PERFORMANCE EVALUATION

We selected 8 benchmarks, two from the PARSEC [2] and
six from the SPLASH-2 [11] benchmark sets. We ran all our
benchmarks on an 8 core (dual socket with 2 quad cores), 2.67
GHz Intel Xeon processor with 32GB of RAM. All programs
were compiled using gcc 4.4.4 with optimization level -O3.
The results are shown in Table 1.

For each benchmark, we show the results when the bench-
mark runs for 2 and 4 threads. Number of epochs executed are
shown in the third column, while number of synchronization
operations performed by each process is shown in the fourth
one. This is followed by the number of barriers and total
number of memory pages compared for error detection. Then
the table shows the redundant execution time, which is the
time to execute two instances of the same application. For
redundant execution, each instance is executed on one of the
two different quad core processors of the dual socket system.
Next we show the time for deterministic execution scheme,
which is execution without performing error detection and
checkpointing but only deterministic locking and unlocking of
the mutexes. This is followed by the overall execution (with
error detection, checkpointing and Watchdog process). Next we
show the overheads of the deterministic and overall execution
with respect to the redundant time. For overall execution, the
results are shown with memory grouping size of 4.

A. Results

Figure 4 shows the improvement that we get by avoiding
atomic variables and having an optimized queue. The left bars
are obtained by running the benchmarks with 2 threads while
right bars are obtained with 4 threads. The lower portion of
the bar shows the overhead with our lockless queue and our
method for keeping the clocks for mutexes, while the middle
portion shows the additional overhead that we get when we use
Respec’s method of using a Hash Table for mutex clocks. The
upper most portion shows the additional overhead by using
naive lockless queue.

We can see that for fluidanimate, which has a high lock
frequency, we have a significant improvement in performance
of deterministic execution. Furthermore, our method of using
separate clocks for each mutex is more scalable than Respec’s
method of using limited clocks and accessing them through
a Hash table, that requires atomic operations. The scalability
here can be assessed by the fact that for two threads, our
scheme and Respec’s scheme perform similarly, while for
four threads, our scheme performs far better. From this result,
we can predict that our scheme will have even better results
compared to Respec for larger number of cores. Furthermore,
our lockless queue also shows much better scalability than a
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naive lockless queue due to avoiding true and false sharing of
cache lines. Note that we do not get as much improvement
for radiosity, which also has a high lock frequency, because it
uses much fewer mutexes than fluidanimate, and hence fewer
clocks, causing more contention in communication between
the leader and follower threads.

Figure 5 shows the improvement that we get from using the
CRC32 instruction (as opposed to Respec which does not use
that instruction) for calculating hash sums for error detection.
The results are especially impressive for benchmarks which
modify higher number of pages, such as fluidanimate, ocean
and radix.

In Figure 6, we show the overall results in the form of
bar graphs, with each factor shown separately. Due to the
optimizations we discussed and reduction in epoch overhead,
which will be discussed in the next section, the overhead never
exceeds 18% for four threads and is negligible for benchmarks
with small memory usage and low lock frequencies.
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30 3. FAULT TOLERANCE USING RECORD/REPLAY
TABLE 1. PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED BENCHMARKS
Benchmarks | Threads Epochs Synch Ops | Barriers Pages modi- | Redundant | Deterministic | Overall Det exec over- | Overall overhead
fied exec time exec time (ms) time (ms) head w.r.t Redt w.r.t  Redt exec
(ms) exec time(%) time (%)
fuidanimate | 2 3 8689200 161 25238 2073 2149 2168 % 5%
4 2 16909680 161 25136 1294 1370 1392 6% 8%
ocean 2 3 10092 10763 103398 2819 2929 3008 % 7%
4 2 20184 10763 74518 1840 1960 2029 7% 10%
diosit 2 2 8981938 g 10378 1199 1330 1347 % 2%
radiosity 4 2 8900495 19 10344 887 1019 1043 15% 18%
g 2 2 18 2 57706 1072 1074 1138 0% 6%
radix 4 1 54 12 35170 624 628 666 1% 7%
. 2 2 243914 2 200 1214 1277 1325 5% 9%
raytrace 4 1 243918 2 148 690 706 702 2% 2%
" 2 T 77020 1 6 510 510 510 0% 0%
swaptions 4 1 77020 1 8 239 242 242 1% 1%
Jrend 2 3 459760 241 160 2490 2496 2503 0% 1%
volren 4 2 463922 241 154 1443 1444 1462 0% 1%
vater 2 2 125047 664 74 1889 1941 1948 3% 3%
4 2 188142 664 550 1125 1139 1148 1% 2%
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DETERMINISTIC MULTITHREADING

SUMMARY

In this chapter, we present DetLock, a runtime system to ensure deterministic execution
of multithreaded programs running on multicore systems. DetLock does not rely on
any hardware support or kernel modification to ensure determinism. For tracking the
progress of the threads, logical clocks are used. Unlike previous approaches, which rely
on non-portable hardware to update the logical clocks, Detlock employs a compiler pass
to insert code for updating these clocks, thus increasing portability. Moreover, unlike the
state of the art approaches, that update the logical clocks only after execution, DetLock
can update the logical clocks ahead of time, thus improving the performance of deter-
ministic multithreading further. For 4 cores, the average overhead of these clocks on
tested benchmarks is brought down from 16% to 2% by applying several optimizations.
Moreover, the average overall overhead, including deterministic execution, is 14%. We
also employed DetLock for fault tolerance.

This chapter is based on the following papers.

1. Mushtagq, H.; Al-Ars, Z.; Bertels, K., DetLock: Portable and Efficient Deterministic
Execution for Shared Memory Multicore Systems, High Performance Computing,
Networking, Storage and Analysis (SCC), 2012 SC Companion, pp. 721-730, 10-16
Nov. 2012

2. Mushtaq, H.; Al-Ars, Z.; Bertels, K., Efficient and highly portable deterministic mul-
tithreading (DetLock), Computing, vol. 96, pp. 1131-1147, 2014

3. Mushtagq, H.; Al-Ars, Z.; Bertels, K., Fault tolerance on multicore processors using
deterministic multithreading, Design and Test Symposium (IDT), 2013 8th Inter-
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Abstract—Multicore systems are not only hard to program
but also hard to test, debug and maintain. This is because the
traditional way of accessing shared memory in multithreaded
applications is to use lock-based synchronization, which is
inherently non-deterministic and can cause a multithreaded
application to have many different possible execution paths
for the same input. This problem can be avoided however
by forcing a multithreaded application to have the same lock
acquisition order for the same input.

In this paper, we present DetLock, which is able to run
multithreaded programs deterministically without relying on
any hardware support or kernel modification. The logical
clocks used for performing deterministic execution are inserted
by the compiler. For 4 cores, the average overhead of these
clocks on tested benchmarks is brought down from 20% to
8% by applying several optimizations. Moreover, the overall
overhead, including deterministic execution, is comparable to
state of the art systems such as Kendo, even surpassing it for
some applications, while providing more portability.

I. INTRODUCTION

Single threaded programs are much easier to test, debug
and maintain than their multithreaded counterparts. This is
because the only source of non-determinism in them are
interrupts or signals, which are rare. On the other hand,
multithreaded programs have a frequent source of non-
determinism in the form of shared memory accesses. Due
to this, multithreaded programs suffer from repeatability
problems, which means that running the same program with
the same input can result different outputs. This repeatability
problem makes multithreaded programs hard to test and
debug. Furthermore, it is also difficult to build fault tolerant
versions of these programs. This is because fault tolerance
systems usually depend upon replicas (identical copies of
redundant processes) to detect errors.

If access to shared data is not protected by synchroniza-
tion objects in a multithreaded program, we can have race
conditions, which may produce unexpected results. Running
a program with race conditions deterministically does not
avoid the problem of having unexpected results with those
race conditions, but just makes sure that we get the same
output with the same input.

The ideal situation would be to make a multithreaded
program deterministic even in the presence of race condi-

978-0-7695-4956-9/13 $26.00 © 2013 IEEE
DOI 10.1109/SC.Companion.2012.98

721

tions. This is not possible to do efficiently with software
alone though. One can use a relaxed memory model where
every thread writes to its own private memory, while data
to shared memory is committed only at intervals. However,
stopping threads regularly for committing to shared memory
degrades performance as demonstrated by CoreDet [2],
which has a maximum overhead of 11x for 8 cores. We
can reduce the amount of committing to the shared mem-
ory by only committing at synchronization points such as
locks, barriers or thread creation. This approach is taken by
DTHREADS [11]. Here one can still imagine the slowdown
in case of applications with high lock frequencies. Moreover,
since in this case committing to the shared memory is done
less frequently, more data has to be committed, thus also
making it slow for applications with high memory usage.
This is why hardware approaches have been proposed to
increase efficiency of deterministic execution. Two such
approaches are Calvin [4] and DMP [14]. They use the same
concept as CoreDet for deterministic execution but make use
of a special hardware for that purpose.

Since performing deterministic execution in software
alone is inefficient, we can relax the requirements to im-
prove efficiency. For example, Kendo [9] does this by only
supporting deterministic execution for well written programs
that protect every shared memory access through locks. In
other words, it supports deterministic execution only for
programs without race conditions. The authors of Kendo call
it Weak Determinism. Considering the fact that most well
written programs are race free and there exist tools to detect
race conditions, such as Valgrind [8], Weak Determinism
is sufficient for most well written multithreaded programs.
Therefore, DetLock also only supports Weak Determinism.

The basic idea of Kendo is that it uses logical clocks for
each thread to determine when a thread will acquire a lock.
The thread with the least value of logical clock gets the
lock. Though being quite efficient, Kendo still suffers from
portability problems. First of all, it requires deterministic
hardware performance counters for counting logical clocks.
Many popular platforms (including many x86 platforms)
do not have any hardware performance counter that is
deterministic [12]. Secondly, Kendo needs modification of
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the kernel to allow reading from the hardware performance
counters for deterministic execution.

To overcome portability issues faced by Kendo, our tool
DetLock has a completely software-based approach of up-
dating the logical clocks. The code for updating the clocks is
inserted through an LLVM [5] compiler pass. Since, LLVM
is a popular open source compiler framework available on
many platforms, our approach is portable across a wide
range of platforms. Moreover, it requires no modification
of the kernel. We can sum up the contribution of this paper
as follows.

o A portable mechanism to update logical clocks for
Weak Deterministic execution that depends upon the
compiler rather than using hardware performance coun-
ters, since many platforms have no such deterministic
counters available.

A User-space approach to update the logical clocks that
does not require modifying the kernel.

A number of optimization steps to reduce the overhead
of the code used to update the logical clock and improve
the performance of deterministic execution.

This paper is organized as follows. In Section II, we dis-
cuss the background and related work, while in Section III,
we give an overview of DetLock’s architecture. This is
followed by Section IV where we present the optimization
methods used to improve the performance of DetLock. In
Section V, we evaluate the performance of our scheme. We
finally conclude the paper with Section VI.

II. BACKGROUND AND RELATED WORK

Single threaded programs are mostly deterministic in
behavior. We say mostly because interrupts and signals
can introduce non-determinism even in single threaded pro-
grams. However, these non-deterministic events are rare.
On the other hand, in multithreaded programs running on
multicore processors, shared memory accesses are a frequent
source of non-determinism.

One way to ensure determinism of multithreaded pro-
grams is to write code for them in a deterministic parallel
language. Examples of such languages are Streamlt [10],
SHIM [3] and Deterministic Parallel Java [1]. The disad-
vantage of this approach is that porting programs written in
traditional languages to deterministic languages is difficult
as the learning curve is high for programmers used to pro-
gramming in traditional languages. Moreover, in languages
which are based on the Kahn Process Network Model, such
as SHIM, it is difficult to write programs without introducing
deadlocks [7].

Deterministic execution at runtime can be done either
through hardware or software. Calvin [4] is a hardware
approach that executes instructions in the form of chunks
and later commits them at barrier points. It uses a relaxed
memory model, where instructions are committed in such a
way that only the total store order (TSO) of the program has
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Figure 1: DetLock modifies the LLVM IR code by inserting
code for updating logical clocks

to be maintained. DMP [14] uses a similar relaxed memory
approach. The disadvantage of hardware approaches is that
they are restricted to the platforms they were developed for.

Besides hardware methods, software only methods for
deterministic execution also exist. One such method is
CoreDet [2] that uses bulk synchronous quantas along with
store buffers and relaxed memory model to achieve deter-
minism. Therefore, it is similar to Calvin, but implemented
in software. Logical clocks are used for deterministic exe-
cution. Since CoreDet is implemented in software, it has
a very high overhead, possibly upto 11x for 8 cores, as
compared to the maximum 2x for Calvin. Another similar
approach is DTHREADS [11]. It runs threads as separate
processes, so that memories which are modified can be
tracked down through the memory management unit. Only
at synchronization points such as locks, barriers and thread
creation for example, it updates the shared memory from
the local memories of the threads. Therefore, it avoids the
overhead of using bulk synchronous quantas like CoreDet
and also does not have the need to maintain logical clocks
like CoreDet. However, the overhead for programs with high
lock frequency or large memory usage is still very high.

Since performing deterministic execution in software
alone is inefficient, Kendo [9] relaxes the requirements by
only working for programs without race conditions (Weak
Determinism). It does not use any hardware besides deter-
ministic hardware performance counters found in some pro-
cessors. It executes threads deterministically and performs
load balancing by only allowing a thread to complete a
synchronization operation when its clock becomes less than
those of the other threads, with ties broken with thread
IDs. Clock is calculated from retired stores, is paused when
waiting for a lock and resumed after the lock is acquired.
Kendo still suffers from portability problems as it requires
hardware performance counters which are deterministic.
Many platforms, including many x86 platforms, do not
have any deterministic hardware performance counter [12].
Moreover, Kendo requires modification of the kernel to read
from such hardware performance counters.

One technique related to deterministic multithreading is
record/replay. In this method, all interleaving of shared
memory accesses by different cores/processors are recorded
in a log, which can be replayed to have a replica which
follows the original execution. Examples of schemes using
this method are Rerun [16] and Karma [15]. These schemes
intercept cache coherence protocols to record inter-processor
data dependencies, so that they can be replayed later on,
in the same order. While Rerun only optimizes recording,
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Karma optimizes both recording and replaying, thus making
it suitable for online fault tolerance. It shows good scalability
as well. The disadvantage of record/replay approaches as
compared to deterministic multithreading is that they require
a large memory for recording. Moreover, when used for fault
tolerance, the redundant processes need to communicate
with each other, as one replica records the log while the
other reads from it.

Respec [6] is a record/replay software approach that
only logs synchronization objects rather than every shared
memory access. If divergence is found between the replicas,
it rolls-back and re-executes from a previous checkpoint.
However, if divergence is found again on re-execution, a race
condition is assumed. At that point, a stricter deterministic
execution is performed, which can induce a large overhead.

III. OVERVIEW OF THE ARCHITECTURE

In this section, we discuss the architecture of DetLock and
the application programming interface (API) that it provides
to the programmer.

A. Architecture

We use Kendo’s algorithm to perform deterministic exe-
cution. However, unlike Kendo which requires deterministic
hardware performance counters, which are not available on
many platforms, we insert code to update logical clocks at
compile time. This also means we do not need to modify the
kernel which is required by Kendo to read from performance
counters. Figure 1 shows the point of compilation where the
DetLock pass executes, which is between the point where the
LLVM IR (Intermediate Representation) code is translated
to the final binary code by the LLVM backend.

The unit of our logical clock is one instruction. For in-
structions which take more than one clock cycles, the logical
clock is updated according to the approximate number of
clock cycles they take. However, to keep our discussion
simple, in this paper, for DetLock one instruction equals one
logical clock count.

The Kendo’s method of acquiring locks deterministically
is illustrated in Figure 2. In this figure, an example is given
for a process with two threads. If Thread 1 is trying to
acquire a lock when its logical clock is 1029, it will not
be able to do so if Thread 2’s clock is at 329, because of
being less than 1029. But, as soon as Thread 2’s clock get
past 1029, Thread 1 will acquire the lock.

So basically our purpose is not only to reduce the code
that updates the clocks but also to update the clocks as
soon as possible. In fact, at compile time it is possible to
increment the clock even before instructions are executed.
For example, if we know that a leaf function (a function
with no function calls) executes fixed amount of instructions,
we can increment the logical clock before executing any
instruction of that function. So for example, if Thread 2 in
Figure 2 has logical clock of 329 and is about to execute
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Figure 2: Kendo’s method of acquiring locks for determin-
istic execution

a leaf function with 701 instructions, we can add 701 right
away to its logical clock, making it 1030 from 329. In this
way, Thread 1, whose clock is at 1029, can acquire the lock
without waiting for Thread 2 to actually have executed that
amount of instructions.

Therefore in all optimizations we apply, besides trying to
reduce the clock update overhead, we also try to increment
the clock as soon as possible. Without any optimization, we
update the clock at start of each of the basic block of LLVM
IR. If there is a function call inside that block, we split that
block, such that each block either contains no function call
or starts and end with a function call. Then we update the
clock at the top of each block if that block contains no
function calls, otherwise we update the clocks in between
the function calls. By splitting blocks in such a way, we can
more easily apply optimizations.

To illustrate the effect of our optimizations, we are going
to show how the optimizations change the example function
shown in Figure 3. This function is taken from the Radiosity
benchmark of SPLASH 2 [13]. The clocks associated with
each block are shown at the right of the assignment opera-
tors. A block in parallelogram shape implies that it contains
one or more function calls.

B. Application Programming Interface

We provide our own functions for locks, barriers and
thread creation for deterministic execution. They internally
use the pthread library. However, it is not necessary for
the programmer to modify the code to use them. A header
file is provided by us that replaces the definition of these
functions with ours. The header file can be specified in the
makefile, thus making it unnecessary to modify source code
files. Moreover, the code to initialize the clock for the main
thread is inserted by the compiler.

It has to be noted that since our method depends upon
the compiler to insert clocks for deterministic execution, it
is not possible to increment the clocks in functions which are
implemented in a library (Since they have not been compiled
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Figure 3: Example function for discussing the optimizations

with our pass). This problem also exists for functions which
are built in the compiler, as LLVM generates no code
for them at IR level. For many built-in functions such as
memset and math functions, we just keep an estimate of the
instructions they take and increment the clock accordingly.
For memset and other functions which depend upon the
size parameter, we increment the clock considering the size
parameter. Since most built-in functions are simple, we can
use an estimate for them. We provide a text file (instructions
estimate file) for such purpose, where these functions can
be defined with the approximate number of instructions
they take along with their dependency on input parameters.
However, this is not always possible for functions in shared
libraries. One way is to ignore them and the other way
is to add them in the instructions estimate file if possible
(If the instructions count for them can be approximated
satisfactorily).

Another concern are functions which internally use locks,
such as malloc. For such functions, we provide our own
implementation which replaces the locks with our own
deterministic locks.

IV. PERFORMANCE OPTIMIZATIONS

We apply several optimizations to reduce the clock updat-
ing overhead. Moreover, we try to increment clocks as soon
as possible so that waiting time for threads who are waiting
for other thread’s clocks to go past them is reduced. Clock
updating code is removed from the blocks whose clocks are
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1: function ISCLOCKABLE(out Int avg, ref Function f)
2: if hasLoops(f) or hasUnclockedFunctions(f) then
3 return false

4: end if

5: clocks = getClocksOfAllPaths(f)

6: avg = mean(clocks)

7 s = std(clocks)

8: r = range(clocks)

9: if r > (m/25)ors > (m/5) then

10: return false

11: end if

12: return true

13: end function
14: function UPDATECLOCKABLEFUNCLIST
15: modified = true

16: while modfied do

17: modified = false

18: for all f in Program do

19: if (not clockableList.find(f)) and isClockable(avg, f) then
20: removeClockFromFunction(f)
21: clockableList.insert(f, avg)
22: modified = true
23: end if
24: end for
25: end while
26: end function

Figure 4: Pseudocode for Optimization 1 (Function Clock-
ing)

made zero by our optimizations. In this paper, we highlight
such blocks with gray color. The optimizations are discussed
below.

A. Optimization 1 (Function Clocking)

As discussed in Section III-A, the sooner the clocks
are updated, the better, and leaf functions with only one
basic block are perfect candidates for such an optimization.
Clocks can be removed from such functions and instead be
added to the basic blocks calling such functions. Besides
functions with only one blocks, our method also considers
leaf functions with multiple blocks, given that there are no
loops in such functions. If our pass sees that all possible
paths taken by such a function do not differ by much, we
calculate the mean value for all possible paths and use that
mean value to update the clock. The criteria we have set
is that the minimum and maximum clock difference of all
possible paths should not be more than the mean value
divided by 2.5. Moreover the standard deviation between
all the different paths should not be greater than one fifth of
the mean value. This is checked by calling the isClockable
function shown in Figure 4.

We call such leaf functions as clocked functions. By
intuition, we can judge that it is also possible to clock
functions which call only clocked functions. In this way,
we can even clock functions which are not necessarily leaf
functions. The UpdateClockableFunctList function shown in
Figure 4 shows how we do this. Our algorithm greedily
searches for all such functions. This is done by first checking
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lor.lhs.false23=90

if.then28=1

Figure 5: Part of example function after applying Optimiza-
tion 1 (Function Clocking)

for all the functions in the program to see if they can be
clocked and making them clocked functions if possible. If
at the end, we see that one or more functions were added to
the clocked functions list, which is signaled by the modified
flag, we iterate over all the functions once again to search for
more clockable functions. We keep on repeating this process
until no more function is added to clockable functions’ list
in an iteration.

Part of example function after applying this optimization
is shown in Figure 5. Originally, the block lor.lhs.false23
had a function call at the start, therefore it was split in such
a way that lor.lhs.false23 contained the function call and
split.lor.lhs.false23 the remaining instructions in that block.
However, this optimization notices that the function called
in lor.lhs.false23 is clockable, thus no splitting of the block
is done and the mean number of instructions from all paths
of that function are added to the clock of lor.lhs.false23.
Moreover, clocks from all the blocks of the called function
are removed.

B. Optimization 2 (For Conditional Blocks)

This optimization deals with if-else and switch statements
and consists of two parts, a and b. The part a is a precise
optimization, meaning that no estimation of clocks is used.
They are just rearranged, so as to remove clocks from blocks
if possible and incrementing the clock as soon as possible.
On the other hand, part b is not necessarily precise, but we
make sure that the clock does not diverge significantly after
that pass.

1) Part a: This optimization is based on the princi-
ple that if a block has two or more successors, we can
make the successor with the least clock zero and sub-
tract its original value from all its siblings, while also
adding its original clock to the parent block. Another
principle of this optimization is that if all predecessors
of a merge block have that merge block as their only
successor, the clocks could be shifted from the merge
node to them. The pseudocode of this optimization is
shown in Figure 6. The meetsOpt2aCondNodeRequirements
call on line 7 checks if a node meets the first principle,
while meetsOpt2aMergeNodeRequirements call on line 15
checks for the second principle. Note that for the first
principle, meetsOpt2aCondNodeRequirements also makes
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1: function UPDATEOPT2ACLOCKS(ref bool modified, ref BasicBlock bb)
> When this function is called Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: modified = false
7 if meetsOpt2aCondNodeRequirements(bb) then
8: if allSuccessorsHaveNonZeroClock(bb) then
9: modified = true
10: end if
11: min = minimumOfSucessors(bb)
12: setClock(bb, GetClock(bb) + min)
13: subtractFromAllSuccessors(bb, min)
14: else
15: if meetsOpt2aMergeNodeRequirements(bb) then
16: pushClockUp(bb)
17: end if
18: end if
19: succList = getAllSuccessors(bb)
20: for all succ in succList do
21: updateOpt2aClocks(modified, succ)
22: end for
23: end function
24: function PUSHCLOCKUP(ref BasicBlock mergeBlock)
25: clock = getClock(mergeBlock)
26: removeClock(mergeBlock)
27: predList = getAllPredecessors(mergeBlock)
28: for all pred in predList do
29: setClock(pred, GetClock(pred) + clock)
30: if meetsOpt2aMergeNodeReq(pred) then
31: pushClockUp(pred)
32: end if
33: end for
34: end function
35: function APPLYOPT2A
36: for all f in Program do
37: modified = true
38: while modfied do
39: visitedList.clear()
40: updateOpt2aClocks(modified, f.entry())
41: end while
42: end for

43: end function

Figure 6: Pseudocode for Optimization 2a

sure that no unclocked function call exists in the par-
ent block and its successors. Moreover, it makes sure
that the parent block is dominating the successors, that
is, the successors are not merge blocks. Similarly meet-
sOpt2aMergeNodeRequirements also makes sure that none
of the blocks in consideration have unclocked function calls.
It also makes sure that the merge block is not a loop header.

It should be noted that after having parsed all the blocks
of a function and applying this optimization, if it is still
possible to apply this optimization once more to reduce
clock updating code, it is applied. This is done by checking
the modified flag.

The example function after applying one pass of this
optimization is shown in Figure 7. The sequence of events
that will happen are given below (Refer to Figure 3 for
original clock values).

o if.then.i is made O by if.end, which itself becomes 29
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_Z17intersection_typeP6_patchP6VertexP3RayPfff.exit=0

Figure 7: Part of example function after applying first
iteration of Optimization 2a

if.end27.i=8

if.else39.i=0

_Z17intersection_typeP6_patchP6VertexP3RayPfff.cxit=0

Figure 8: Part of example function after second and final
iteration of Optimization 2a

and makes if.end27 equal to 2.
o if.then.i reaches the merge node
_Z17intersection_typeP6_patchP6... through if.else.i.
o Merge node _Z17intersection_typeP6_patchP6... be-
comes 0 while propagating its clock to all of its 4 pre-
decessors, which are if.else39, if.then35.i, if.then29.i
and if.else.i, whose values now become 5, 5, 6 and 7
respectively.
if.end27 subtracts 2 from if.else33 and if.then29.i to
make them O and 4 respectively while itself becoming
4.
if.else33.i takes value of 5 from if.else39.i and
if.then35.i after making them 0.

Note that after applying this one pass, further optimiza-
tion is still possible, but after the second pass (shown by
Figure 8), no further optimization is possible.

2) Part b: The part b of this optimization deals with
if conditions, such as those made by the blocks if.end21,
lor.lhs.false23 and if.then28 in Figure 10. The pseudocode
for this optimization is shown in Figure 9. The variable
swSucc in Figure 9 represents the block in the middle, which
is lor.Ihs.false23 in this example, while endSucc represents
the merge node, which is if.then28 for this example. The
meetsOpt2bRequirements function call at line 6 checks if a

1: function UPDATEOPT2BCLOCKS(ref BasicBlock bb) > When this
Sfunction is called, Entry block of a function is passed as bb

2 if visitedList.find(bb) then

3 return

4: end if

5: visited.insert(bb)

6: swSucc, endSucc, meetsReq = meetsOpt2bRequirements(bb)

7 if meetsReq then

8: modifyClocks(bb, swSucc, endSucc)

9: updateOpt2bClocks(endSucc)

10: swSuccList = getAllSuccessors(swSucc)
11: for all succ in swSuccList do

12: if succ != endSucc then

13: updateOpt2bClocks(endSucc)
14: end if

15: end for

16: else

17: succList = getAllSuccessors(bb)

18: for all succ in succList do

19: updateOpt2bClocks(succ)

20: end for

21: end if

22: end function

23: function APPLYOPT2B
24: for all f in Program do

25: visitedList.clear()
26: updateOpt2bClocks(f.entry())
27: end for

28: end function

Figure 9: Pseudocode for Optimization 2b

pattern like the one shown in Figure 10 is formed.

If the block lor.lhs.false23 was not jumping to for.inc, that
is, it had no successor other than if.then28, we could have
straight away removed clock updating code from if.end21
and added its clock value to if.then28 to make it 2. That
optimization, like part a would have been precise. However,
since lor.lhs.false23 has one more successor, our algorithm
checks to see how much clock divergence we will get by
removing clock from if.end21. The criteria we keep is that
if the divergence is less than one tenth, we proceed with the
optimization. In this case, by removing clock from if.end21,
if we jumped to for.inc from lor.lhs.false23, the divergence
would be 1/93, which is well below one tenth. Therefore, we
proceed with it. The example function now becomes what
is shown in Figure 10.

Note that this pass also determines if clock has to be
removed from the upper block (if.end21 in this case) or the
lower block (if.then28 in this case). We prefer to remove it
from the lower block (and add it to upper block) so that
clock is incremented ahead of time. However, in certain
cases, we remove it from the upper block (and add it to
lower block). One such case is when the upper block is at
a higher loop depth than the lower block. Removing clock
from upper clock is beneficial here since it is in a more
critical path and therefore we save clock updating overhead.
Another case where we remove clock from the upper block
(and add to the lower block) is when the lower block has
a higher clock than the upper block and middle block has
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Figure 10: Part of example function after applying Optimiza-
tion 2b

1: function UPDATEOPT3CLOCKS(ref BasicBlock bb)
Sfunction is called, Entry block of a function is passed as bb

2: if visitedList.find(bb) then
3: return
4: end if
5: visited.insert(bb)
6: if meetsOpt3Requirements(bb) then
7 clocks, touchedBlocksList = getClocksOfAllOpt3Paths(bb)
8: if isClockable(avg, clocks) then
9: setClock(bb, avg)
10: for all tb in touchedBlocksList do
11: removeClock(tb)
12: end for
13: tbSuccList = getAllSuccessorsOfTB(touchedBlocksList)
14: for all succ in tbSuccList do
15: updateOpt3Clocks(succ)
16: end for
17: return
18: end if
19: end if
20: succList = getAllSucessors(bb)
21: for all succ in succList do
22: updateOpt3Clocks(succ)
23: end for
24: end function
25: function APPLYOPT3
26: for all f in Program do
27: visitedList.clear()
28: updateOpt3Clocks(f.entry())
29: end for

30: end function

Figure 11: Pseudocode for Optimization 3

more than one successors. This is because shifting clock to
the upper block in this case will cause a larger divergence
in clock. In this example, since if.end21 is at higher loop
depth than if.then28, we remove the clock from if.end21
and add it to if.then28.

C. Optimization 3 (Averaging of Clocks)

This optimization is based on the fact that paths emanating
from a block in a function could be matching close together
in total clock values. One can imagine it as a specialized case
of the Optimization 1 (Function Clocking). For Function
Clocking, we just considered the paths emanating from the
entry block, but here we also check for paths besides the
entry block. When forming paths for a block, we only con-
sider blocks dominated by it (execution must pass through
the dominating block to reach its dominated blocks).

> When this
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if.clse39.i=0

_Z17intersection_typeP6_patchP6VertexP3RayPfff.exit=0

Figure 12: Part of example function after applying Optimiza-
tion 3

The pseudocode for this optimization is shown in Fig-
ure 11. When finding paths for a block, we stop when
we see backedges or when we see blocks with unclocked
function calls. Moreover, we stop at a merge node if any
of its successor is not dominated by the block in question.
Like Optimizations 2a and 2b, we start to search for this
optimization from the entry block of a function. If we find a
block whose paths can be averaged, then after removing the
clocks from the blocks in its path, we start to look for other
blocks in the function. For this we consider the successors of
the blocks in the path (from which the clocks were removed),
given that those successors are not within that path. This is
done by using the code from line 13 to 16 in Figure 11.

The example function after applying this optimization is
shown in Figure 12. In this figure, accumulated clocks for
all different four paths emanating from if.end were 37, 38,
38 and 29, with a mean value of 35.5 and standard deviation
of 4.36. Since the range here is 8 (37-29) and is less than
mean/2.5 as well as the standard deviation is 4.36, which
is less than mean/5, we assign a clock of 35 to if.end,
while removing clocks from all the blocks in the path.
Note that we did not consider nodes below the merge node
_Z17intersection_typeP6_patchP6... because it has for.inc
as its successor, which is not dominated by if.end.

D. Optimization 4 (Loops)

This optimization considers the fact that loops are often
executed multiple times. So for example, if you have a for
loop, the increment operation will take place just before the
next iteration. Therefore we check for back edges and if we
see that the clock of the block from which the backedge is
originating is less that a certain threshold value and is also
less than the clock of the block it is jumping to, we merge its
clock value to that block’s clock and remove clock updating
code from it. In this example, the clock of for.inc is merged
with for.cond.

Figure 13 shows the example function after applying this
final optimization.
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Table I: Performance results of our scheme for the selected benchmarks

for.inc=0

Figure 13: Example function after applying all optimizations

V. PERFORMANCE EVALUATION

We selected only those benchmarks from SPLASH-2 [13]
which only have locks and barriers as synchronization opera-
tions, as we have not yet implemented other synchronization
operations, such as condition variables for example. All
benchmarks were run on a 2.66 GHz quad core machine
and compiled with maximum optimization enabled (level -
O4 for clang/llvm). We first discuss the results. Afterwards,
we show how clocking instructions ahead of time improves
the deterministic execution. Lastly, we compare our results
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Benchmark Ocean Raytrace ‘Water-nsq Radiosity Volrend Average
Original Exec Time 2903 670 1451 496 1340 -
Locks/sec 343 227835 126034 2211621 443070 -
Clockable Functions 1 33 1 39 35 -
After Inserting Clocks
With No Optimization 2918 (1%) | 718 (7%) 2082 (43%) | 698 (41%) | 1446 8%) | 20%
With Function Clocking Only (O1) 2901 (0%) | 706 (5%) 2072 (43%) | 644 (30%) | 1445 B8%) | 17%
With Conditional Blocks Optimization Only (02) | 2889 (0%) 715 (7%) 1779 (23%) 643 (30%) 1392 (4%) 13%
With Averaging of Clocks Only (O3) 2898 (0%) | 702 (5%) 2072 (43%) | 675 (36%) | 1445 8%) | 18%
With Loops Optimization Only (04) 2903 (0%) | 707 (6%) 1752 21%) | 677 (36%) 1442 (8%) 14%
With All Optimizations 2895 (0%) | 695 (4%) 1748 (20%) | 562 (13%) | 1386 (3%) | 8%
After Inserting Clocks and Performing Deterministic Execution
With No Optimization 2918 (1%) | 768 (15%) | 2096 (44%) | 855 (72%) | 1451 8%) | 28%
With Function Clocking Only (O1) 2924 (1%) | 758 (13%) | 2085 (44%) | 711 (43%) | 1448 8%) | 22%
With Conditional Blocks Optimization Only (02) | 2918 (1%) | 766 (14%) | 1785 (23%) | 788 (57%) | 1398 (4%) | 20%
With Averaging of Clocks Only (O3) 2916 (0%) | 742 (11%) | 2090 (44%) | 807 (63%) 1450 8%) | 25%
With Loops Optimization Only (04) 2904 (0%) | 760 (13%) | 1761 (21%) | 837 (69%) 1448 8%) | 22%
With All Optimizations 2915 (0%) | 742 (11%) | 1758 (21%) | 683 (38%) | 1395 (4%) | 15%
80 — — — — —
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for.cond=5
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g 40
g 30
20
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0
Ocean Raytrace Water-nsq Radiosity Volrend
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Overhead of Clock Updating Code E===1
Additional Overhead of Determinisitic Execution s

Figure 14: Overhead of inserting clocks and deterministic
execution

with those from Kendo.

A. Results

Table I shows the performance overheads with different
optimizations and Figure 14 gives a pictorial view of that
overhead. The left bars in Figure 14 show the performance
overhead without applying optimizations while the bars on
the right show the overhead after applying all the optimiza-
tions. The lower portion of the bar is the overhead of the
inserted clocks updating code only, while the upper portion
shows the additional overhead for deterministic execution.

From Table I, we can see that different optimization affect
different benchmarks differently. For example, Optimization
4 (Loops Optimization) has a significant impact on the
performance of Water-nsq while not having that much effect
on other benchmarks. This is because Water-nsq frequently
executes a loop with a small body. The optimization that
had the most impact on performance overall is Optimiza-
tion 2 (Conditional Blocks Optimization). This is because
conditional paths are frequently found in programs and this
optimization efficiently reduces clock update for such paths.
The Optimization 3 had the least impact. This is because it
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Figure 15: Improvement of the Radiosity benchmark from
updating clocks ahead of time

is unlikely for a program to have all paths originating from
a node to have similar clock values.

As far as Optimization 1 (Function Clocking) goes, Ra-
diosity is one benchmark where this optimization signifi-
cantly improved the performance. This is because this bench-
mark has such functions which are compute intensive and
execute frequently. One interesting result of this optimization
is that it significantly reduces the overhead of deterministic
execution in addition to the reduction in clock updating
overhead. This is discussed in more detail in the next section.
Overall, we see that the average overhead of inserting clocks
is at 8%, whereas the average overhead for deterministic
execution is at 15%, with the overhead not exceeding 38%
even for Radiosity, which has a very high lock frequency.

B. Effect of Updating Clocks Ahead of Time

There is a great benefit in updating the clock as soon as
possible, so that threads waiting at a lock acquisition have to
wait less. This effect is more evident for a benchmark like
Radiosity which has high a lock frequency. From Table I,
we can see that for Radiosity, although Optimization 2
(Conditional Blocks Optimization) reduces the clock over-
head by the same amount as Optimization 1 (Function
Clocking), Optimization 1 adds far less additional overhead
for deterministic execution at 13% (43% - 30%) as compared
to 27% (57% - 30%) in the case of Optimization 2. This is
because Optimization 1 is able to increment the clock more
aggressively ahead of time as it works for whole functions.

Figure 15 illustrates the effect of updating clocks ahead
of time for Radiosity. Since Function Clocking optimization,
where possible, increments the clock ahead of time the most
(more than other optimizations), we only consider the result
of Optimization 1 (Function Clocking) here. The left most
bar is that without any optimization, the middle is with
Function Clocking optimization, but clocks updated at the
end of the basic blocks, whereas the right most bar is the
same optimization but with clocks updated at the beginning
of the basic blocks. From the figure, by looking at the upper
portion of the bars, which represents the additional overhead
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of deterministic execution, we can see that updating clocks
at the start of the block improves deterministic execution
significantly as compared to updating them at the end.

C. Comparison with Kendo

In Table II, we compare our results with that of Kendo.
Note that the purpose of our scheme is not to surpass Kendo
in performance but to make it more portable while retaining
sufficient efficiency. Since the data sets used by Kendo are
not publicly available, neither its source code, we list the
results directly from their paper. We tried to use the data
sets which match the locks/sec frequency of those used
by Kendo. For Radiosity and Volrend, we could not find
matching data sets however and instead used data sets with
higher lock frequencies than Kendo.

The only benchmark which performs worse than Kendo
is Water-nsq. This is because Water-nsq executes a small
for loop very frequently. The code inside that for loop
contains an if statement. Although Optimization 2 (Con-
ditional Blocks Optimization) and Optimization 4 (Loops
Optimization) work to reduce overhead of clocks update in
that loop, it still updates clocks frequently enough in that
loop to have a relatively high overhead.

For Radiosity, which has a very high lock frequency, our
scheme surpasses Kendo in performance. This is even when
we used a data set which has a higher lock frequency than
what Kendo used. This improvement in performance over
Kendo can be explained by the fact that at compile time, we
are able to update clocks before instructions are executed
and thus reduce waiting time for a benchmark like Radiosity
which has a high lock frequency. On the other hand, Kendo
only updates the logical clocks when it receives overflow
interrupts of the hardware performance counter that counts
retired stores. Therefore, it cannot perform clock updates
ahead of time. It also has to balance the chunk size of
instructions executed between each interrupt, so as to reduce
the impact of frequent interrupts while also maintaining
frequent interrupts to keep the clocks incrementing. For
Radiosity, the authors of Kendo had to manually adjust the
chunk size to get the best performance, which is the one
listed in Table II. Our scheme requires no such manual
adjustments.

We even show slight improvement over Kendo for bench-
marks which do not have very high lock frequencies, such as
Raytrace and Volrend. This improvement can be explained
from the fact that our scheme updates the clock more
frequently than Kendo. Although, in case of Kendo there
may be a less overhead of updating the clocks, threads who
are in the process of acquiring a lock and thus waiting
for other threads’ clocks to go past them, have to wait
longer due to the slow update of the clocks. Moreover,
our optimizations prefer to update the clock even before
instructions are executed. So even when we are updating the
clocks less frequently, it is not because we are delaying their
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Table II: Performance results of our scheme as compared to Kendo

Benchmark | Ocean | Raytrace | Water-nsq | Radiosity | Volrend
Results for Kendo
Tocks/sec [ 279 [ 216979 [ 143202 [ 939771 [ 79612
Overhead | 1% | 18% | 1% [ 53% [ 7%
Results for our scheme
Tocks/ec | 343 [ 227835 [ 126034 [ 2211621 [ 443070
Overhead | 0% | 11% | 21% [ 38% [ 4%

update, but because we (most of the time) already updated
them ahead of time.

VI. CONCLUSION

In this paper, we described our tool DetLock, which
consists of an LLVM compiler pass to insert code for
updating logical clocks for Weak Deterministic execution.
Since our scheme does not depend on any hardware or
modification of the kernel, it is very portable. Moreover,
we apply several optimizations to reduce the amount of
code inserted for clock updating. Furthermore, since the
algorithm for Weak Determinism that we use gives lock to
the thread with minimum logical clock, we try to increment
the clocks of threads as soon as possible so that threads
waiting for locks have to wait less. We increment the clocks
even before instructions are executed if possible. On average,
the overhead of inserting clock updating code is only 8%,
whereas the overall overhead including deterministic execu-
tion is 15% for selected benchmarks. This performance is
comparable to Kendo, while providing more portability. In
fact for some applications, DetLock can even surpass Kendo
in performance.
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Abstract In this paper, we present DetLock, a runtime system to ensure deterministic
execution of multithreaded programs running on multicore systems. DetLock does not
rely on any hardware support or kernel modification to ensure determinism. For track-
ing the progress of the threads, logical clocks are used. Unlike previous approaches,
which rely on non-portable hardware to update the logical clocks, DetLock employs
a compiler pass to insert code for updating these clocks, thus increasing portabil-
ity. For 4 cores, the average overhead of these clocks on tested benchmarks is brought
down from 16 to 2 % by applying several optimizations. Moreover, the average overall
overhead, including deterministic execution, is 14 %.
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1 Introduction

Single threaded programs are much easier to test, debug and maintain than their mul-
tithreaded counterparts. This is because the only source of non-determinism in them is

In this paper, we extended DetLock, whose paper was published in MuCoCos 2012 affiliated with SC12.
In this journal paper, we further improve the performance of DetLock by applying several more
optimizations. Furthermore, we evaluated the performance with several more benchmarks.
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interrupts or signals, which are rare. On the other hand, multithreaded programs have
a more frequent source of non-determinism in the form of shared memory accesses.
Due to this, multithreaded programs suffer from repeatability problems, which means
that running the same program with the same input can result different outputs. This
repeatability problem makes multithreaded programs hard to test and debug. Fur-
thermore, it is also difficult to build fault tolerant versions of these programs. This
is because fault tolerant systems usually depend upon replicas (identical copies of
redundant processes) to detect errors.

If access to shared data is not protected by synchronization objects in a mul-
tithreaded program, we can have race conditions, which may produce unexpected
results. Running a program with race conditions deterministically does not avoid the
problem of having unexpected results, but just makes sure that the same results can
be replicated.

The ideal situation would be to make a multithreaded program deterministic even in
the presence of race conditions. This is not possible to do efficiently with software alone
though. One can use a relaxed memory model where every thread writes to its own
private memory, while data to shared memory is committed only at intervals. However,
stopping threads regularly for committing to shared memory degrades performance as
demonstrated by CoreDet [2], which has a maximum overhead of 11x for 8 cores. We
can reduce the amount of committing to the shared memory by only committing at
synchronization points such as locks, barriers or thread creation. This approach is taken
by DTHREADS [15]. Here one can still imagine the slowdown in case of applications
with high lock frequencies. Moreover, since in this case committing to the shared
memory is done less frequently, more data has to be committed, thus also making it
slow for applications with high memory usage. This is why hardware approaches have
been proposed to increase efficiency of deterministic execution. Two such approaches
are Calvin [7] and DMP [4]. They use the same concept as CoreDet for deterministic
execution but make use of a special hardware for that purpose.

Since performing deterministic execution in software alone is inefficient, we can
relax the requirements to improve efficiency. For example, Kendo [13] does this by only
supporting deterministic execution for well written programs that protect every shared
memory access through locks. In other words, it supports deterministic execution only
for programs without race conditions. The authors of Kendo call it Weak Determinism.
Considering the fact that most well written programs are race free and there exist tools
to detect race conditions, such as Valgrind [12], Weak Determinism is sufficient for
most well written multithreaded programs. Therefore, DetLock also only supports
Weak Determinism.

The basic idea of Kendo is that it uses logical clocks for each thread to determine
when a thread will acquire a lock. The thread with the least value of logical clock
gets the lock. Though being quite efficient, Kendo still suffers from portability prob-
lems. First of all, it requires deterministic hardware performance counters for counting
logical clocks. Many popular platforms (including many x86 platforms) do not have
any hardware performance counter that is deterministic [16]. Secondly, Kendo needs
modification of the kernel to allow reading from the hardware performance counters
for deterministic execution.

@ Springer
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To overcome portability issues faced by Kendo, our tool DetLock has a completely
software-based approach of updating the logical clocks. The code for updating the
clocks is inserted through an LLVM [8] compiler pass. Since, LLVM is a popular
open source compiler framework available on many platforms, our approach is portable
across a wide range of platforms. Moreover, it requires no modification of the kernel.
We can sum up the contribution of this paper as follows.

— A portable mechanism to update logical clocks for Weak Deterministic execution
that depends upon the compiler rather than using hardware performance counters,
since many platforms have no such deterministic counters available.

— A user-space approach to update the logical clocks that does not require modifying
the kernel.

— A number of optimization techniques to reduce the overhead of the code used to
update the logical clock and improve the performance of deterministic execution.

This paper is an extension on our previous work on this topic [11]. In this paper, we
apply several more optimizations to improve the performance. This paper is organized
as follows. In Sect. 2, we discuss the background and related work, while in Sect. 3,
we give an overview of DetLock’s architecture. This is followed by Sect. 4 where we
present the optimization methods used to improve the performance of DetLock. In
Sect. 5, we evaluate the performance of our scheme, and we finally conclude the paper
with Sect. 6.

2 Background and related work

In this section, first we will discuss the state of the art for deterministic execution and
then discuss our contribution.

2.1 State of the art

Single threaded programs are mostly deterministic in behavior. We say mostly because
interrupts and signals can introduce non-determinism even in single threaded pro-
grams. However, these non-deterministic events are rare. On the other hand, in mul-
tithreaded programs running on multicore processors, shared memory accesses are a
frequent source of non-determinism.

One way to ensure determinism of multithreaded programs is to write code for them
in a deterministic parallel language. Examples of such languages are Streamlt [14]
and SHIM [5]. The disadvantage of this approach is that porting programs written
in traditional languages to deterministic languages is difficult as the learning curve
is high for programmers used to programming in traditional languages. Moreover, in
languages which are based on the Kahn Process Network Model, such as SHIM, it is
difficult to write programs without introducing deadlocks [10].

Deterministic execution at runtime can be done either through hardware or software.
Calvin [7] is a hardware approach that executes instructions in the form of chunks
and later commits them at barrier points. It uses a relaxed memory model, where
instructions are committed in such a way that only the total store order (TSO) of the
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program has to be maintained. DMP [4] uses a similar relaxed memory approach. The
disadvantage of hardware approaches is that they are restricted to the platforms they
were developed for.

Besides hardware methods, software only methods for deterministic execution also
exist. One such method is CoreDet [2] that uses bulk synchronous quantas along with
store buffers and relaxed memory model to achieve determinism. Therefore, it is sim-
ilar to Calvin, but implemented in software. Logical clocks are used for deterministic
execution. Since CoreDet is implemented in software, it has a very high overhead,
possibly upto 11x for 8 cores, as compared to the maximum 2x for Calvin. Another
similar approach is DTHREADS [15]. It runs threads as separate processes, so that
memories which are modified can be tracked down through the memory management
unit. Only at synchronization points such as locks, barriers and thread creation for
example, it updates the shared memory from the local memories of the threads. There-
fore, it avoids the overhead of using bulk synchronous quantas like CoreDet and also
does not have the need to maintain logical clocks like CoreDet. However, the overhead
for programs with high lock frequency or large memory usage is still very high.

Since performing deterministic execution in software alone is inefficient,
Kendo [13] relaxes the requirements by only working for programs without race condi-
tions (Weak Determinism). It does not use any hardware besides deterministic hardware
performance counters found in some processors. It executes threads deterministically
and performs load balancing by only allowing a thread to complete a synchronization
operation when its clock becomes less than those of the other threads, with ties bro-
ken with thread IDs. Clock is calculated from retired stores, is paused when waiting
for a lock and resumed after the lock is acquired. Kendo still suffers from portability
problems as it requires hardware performance counters which are deterministic. Many
platforms, including many x86 platforms, do not have any deterministic hardware per-
formance counter [16]. Moreover, Kendo requires modification of the kernel to read
from such hardware performance counters. A technique related to deterministic mul-
tithreading is record/replay. Examples of systems using this technique are Rerun [6],
Karma [1] and Respec [9].

2.2 Our contribution

As discussed in the previous section, we already have tools such as Kendo to exe-
cute multithreaded programs deterministically on multicore platforms. However, one
main bottleneck of using Kendo is that it requires deterministic hardware performance
counters, which are not available on many platforms. For evaluation of their tool, the
authors of Kendo had to specifically use the Core 2 processor, which had deterministic
retired stores counters available on it. As we can see from Fig. 1, which shows the
retired stores difference compared to the expected value, none of the listed proces-
sor besides Core 2, has a deterministic retired stores counter. Moreover, Kendo, also
requires modification of the kernel to access these performance counters.

Now imagine a scenario, where a company wants to reduce the cost of testing for
its software as well as ease maintainability of it by making it deterministic. If they
go for the Kendo technique, it would make their software non-portable as it would be
unable to run on processors which do not have any deterministic hardware performance
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Fig. 1 D?terminism of fetifefd [ Machine | Before Adjustment | Adjusted |
stores performance counter o
various processors [16] Core2 0+0 0+0
Atom — —
Nehalem 411,408+4 9+1
Nehalem-EX 411,914+6 9+1
Pentium D 163,402,6044+185 | 11,776+175
Phenom — —
Istanbul — —
LLVM DetLock Pass LLVM IR with LLVM Final
Source Code Frontend Translated to ; code for Backend Executable
of Program LLVM IR updating Binary File of
clocks the Program

Fig. 2 DetLock modifies the LLVM IR code by inserting code for updating logical clocks

counter. Moreover, you can expect users not wanting to modify the kernels of their
operating systems. This is where our technique is useful, as it would allow a program
to run on every machine, without requiring to modify the kernel.

This work is an extension of our previous work [11] on this topic. By applying new
optimizations, we were able to further reduce the overhead of clock updating code
inserted by our compiler pass, and improve performance of deterministic execution.

3 Overview of the architecture

In this section, we discuss the architecture of DetLock and the application programming
interface (API) that it provides to the programmer.

3.1 Architecture

We use Kendo’s algorithm to perform deterministic execution. However, unlike Kendo
which requires deterministic hardware performance counters, which are not available
on many platforms, we insert code to update logical clocks at compile time. This
also means that we do not need to modify the kernel which is required by Kendo to
read from performance counters. Figure 2 shows the point of compilation where the
DetLock pass executes, which is between the point where the LLVM IR (intermediate
representation) code is translated to the final binary code by the LLVM backend.

The unit of our logical clock is one instruction. For instructions which take more than
one clock cycles, the logical clock is updated according to the approximate number
of clock cycles they take. However, to keep our discussion simple, in this paper, for
DetLock one instruction equals one logical clock count.

The Kendo’s method of acquiring locks deterministically is illustrated in Fig. 3. In
this figure, an example is given for a process with two threads. If Thread 1 is trying
to acquire a lock when its logical clock is 1,029, it will not be able to do so if Thread
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Thread 1 Thread 2

1
1
1
1
1
1
1
1
1
| Thread 1 should wait (Clock = 329) Logical Ti
: for Thread 2's clock to : ogical fime
| get past 1029 |
l 1
1 1
1 1
1 1
1 1
1 l
1 l
1 1
1 1
1 1
[ 1
mutex_lock (Clock = 1029) (Clock . 1030) v
Thread 1 can acquire
lock now

Fig. 3 Kendo’s method of acquiring locks for deterministic execution

2’s clock is at 329, because of being less than 1,029. But, as soon as Thread 2’s clock
get past 1,029, Thread 1 will acquire the lock.

So basically our purpose is not only to reduce the code that updates the clocks but
also to update the clocks as soon as possible. In fact, at compile time it is possible
to increment the clock even before instructions are executed. For example, if we
know that a leaf function (a function with no function calls) executes fixed amount of
instructions, we can increment the logical clock before executing any instruction of
that function.

Therefore in all optimizations we apply, besides trying to reduce the clock update
overhead, we also try to increment the clock as soon as possible. Without any opti-
mization, we update the clock at start of each of the basic block of LLVM IR. If there
is a function call inside that block, we split that block, such that each block either
contains no function call or starts and ends with a function call. Then we update the
clock at the top of each block if that block contains no function calls, otherwise we
update the clocks in between the function calls. By splitting blocks in such a way, we
can more easily apply optimizations.

3.2 Application programming interface

We provide our own functions for locks, barriers and thread creation for deterministic
execution. They internally use the pthread library. However, it is not necessary for
the programmer to modify the code to use them. A header file is provided by us that
replaces the definition of these functions with ours. The header file can be specified in
the makefile, thus making it unnecessary to modify source code files. Moreover, the
code to initialize the clock for the main thread is inserted by the compiler.

It has to be noted that since our method depends upon the compiler to insert clocks
for deterministic execution, it is not possible to increment the clocks in functions which
are implemented in a library (since they have not been compiled with our pass). This
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problem also exists for functions which are built in the compiler, as LLVM generates
no code for them at IR level. For many built-in functions such as memset and math
functions, we just keep an estimate of the instructions they take and increment the clock
accordingly. For memset and other functions which depend upon the size parameter, we
increment the clock considering the size parameter. Since most built-in functions are
simple, we can use an estimate for them. We provide a text file (instructions estimate
file) for such purpose, where these functions can be defined with the approximate
number of instructions they take along with their dependency on input parameters.
However, this is not always possible for functions in shared libraries. One way is to
ignore them and the other way is to add them in the instructions estimate file if possible
(if the instructions count for them can be approximated satisfactorily).

Another concern are functions which internally use locks, such as malloc. For such
functions, we provide our own implementation which replaces the locks with our own
deterministic locks.

4 Performance optimizations

We apply several optimizations to reduce the clock updating overhead. Moreover, we
try to increment clocks as soon as possible so that waiting time for threads who are
waiting for other threads’ clocks to go past them is reduced. Clock updating code is
removed from the blocks whose clocks are made zero by our optimizations. In this
paper, we highlight such blocks with gray color. To illustrate the effect of our opti-
mizations, we are going to show how the optimizations change example functions. The
clocks associated with each block are shown at the right of the assignment operators.
Moreover, a block in parallelogram shape implies that it contains one or more function
calls. The optimizations are discussed below.

4.1 Optimization 1 (function clocking)

As discussed in Sect. 3.1, the sooner the clocks are updated, the better, and leaf func-
tions with only one basic block are perfect candidates for such an optimization. Clocks
can be removed from such functions and instead be added to the basic blocks calling
such functions. Besides functions with only one blocks, our method also considers
leaf functions with multiple blocks, given that there are no loops in such functions. If
our pass sees that all possible paths taken by such a function do not differ by much, we
calculate the mean value for all possible paths and use that mean value to update the
clock. The criteria we have set is that the minimum and maximum clock difference of
all possible paths should not be more than the mean value divided by 2.5. Moreover
the standard deviation between all the different paths should not be greater than one
fifth of the mean value.

We call such leaf functions as clocked functions. By intuition, we can judge that it
is also possible to clock functions which call only clocked functions. In this way, we
can even clock functions which are not necessarily leaf functions. More detail on this
optimization can be found in [11].

Previously, in [11], we did not consider the possibility of clocked functions being
called indirectly through functions pointers. In that case, since we remove the clocks
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split.entry=FC

split.entryl=0

split.entry1=9 %

if.then4=1

if.end6=1

if.end6cloned _=10 @
split.if.end6=FC

Fig. 4 Example function before and after applying optimization 2b

split.if.end6=FC

of clocked functions, the clock does not get updated. To correct this problem, we create
clones of clocked functions. The clock from cloned clock functions is removed but
clock updating code is inserted in the original clocked functions. Wherever our pass
finds a direct call of a clocked function, it replaces it with call to the cloned version
of that clocked function. However, since indirect calls still call the original clocked
function, the clock does get updated properly even with indirect calls.

4.2 Optimization 2 (conditional blocks)

This optimization deals with if-else and switch statements and consists of four parts,
which are described below.

4.2.1 Opt 2a: pushing clocks upwards

This optimization is based on the principle that if a block has two or more successors,
we can make the successor with the least clock zero and subtract its original value
from all its siblings, while also adding its original clock to the parent block. Another
principle of this optimization is that if all predecessors of a merge block have that
merge block as their only successor, the clocks could be shifted from the merge node
to them. More details about this optimization can be found in [11].

4.2.2 Opt 2b: cloning blocks
In this optimization, we clone blocks where possible to reduce the number of clock
updates. For example, for the example function shown in Fig. 4, block if.end6 is cloned,

so that for the paths formed by blocks split.entryl, if.then4 and if.end6, clock needs
to be updated only once, rather than twice or thrice.
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for.inc=0

Fig. 5 Example function before and after applying optimization 2c

split.entry=0

Fig. 6 Part of an example function before and after applying optimization 2d

4.2.3 Opt 2c: adding additional blocks

In this optimization, we add new blocks where necessary to reduce the clock updating
code. To illustrate this, an example function before and after applying this optimization
is shown in Fig. 5. Three new blocks are added to update the clocks removed from the
three blocks shown in gray in the optimized version. The accumulated clock of those
three blocks is also added to the clock of block if.end. With this optimization, for the
path from for.cond5 to if.end, clock is updated only twice, while in the unoptimized
version it is updated 5 times. Note that the block (. . .) here represents a bundle of basic
blocks, which we do not show due to space limitations.

4.2.4 Opt 2d: pushing clocks downwards

In this optimization, we update the clock from top to bottom. This optimization can
remove clocks more efficiently in some cases as compared to Opt 2a. However, Since
we try to update clocks as soon as possible, we apply this optimization only for paths
where the accumulated clock is less than a certain value. Part of an example function,
before and after applying this optimization is shown in Fig. 6. We can see that with
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this optimization, for the part of the example function, clock is only updated once,
rather than twice or thrice in the original version of that function.

4.3 Optimization 3 (averaging of clocks)

This optimization is based on the fact that paths emanating from a block in a func-
tion could be matching close together in total clock values. One can imagine it as
a specialized case of the optimization 1 (function clocking). For function clocking,
we just considered the paths emanating from the entry block, but here we also check
for paths besides the entry block. When forming paths for a block, we only consider
blocks dominated by it (execution must pass through the dominating block to reach
its dominated blocks). More details about this optimization can be found in [11].

4.4 Optimization 4 (loops)

This optimization deals with loops. The different types of optimization we applied on
loops are discussed next.

4.4.1 Opt 4a: forwarding clocks from blocks with backedges

This optimization considers the fact that loops are often executed multiple times. So
for example, if you have a for loop, the increment operation will take place just before
the next iteration. Therefore we check for back edges and if we see that the clock of
the block from which the backedge is originating is less than a certain threshold value
and is also less than the clock of the block it is jumping to, we merge its clock value
to that block’s clock and remove clock updating code from it.

4.4.2 Opt 4b: incrementing clocks before for loops

This optimization is based on the fact that for many for loops, the number of iterations
can be checked at compile time. So for example, if at compile time, we can see that a
Sfor loop is executed n number of times, we can update the clock ahead of time. First
our pass figures out the least number of instructions an iteration in a loop will execute.
This number multiplied with n is incremented before execution of the for loop. Inside
the for loop, we update the clock only where it is necessary.

An example function before and after applying this optimization is shown in Fig. 7.
Here, the minimum number of instructions executed by the for loop for an iteration is
21. Therefore it is multiplied by the number of iterations N of the for loop.

The pseudocode for optimization 4b is shown in Fig. 8. For each block in a func-
tion, it checks if its a loop header. This optimization is only applied for inner most
loops, as they are usually the most compute intensive types of loops. The meet-
sOpt4bRequirements checks if all blocks inside the loop are at the same level, as
well as checks other things, such as, no block has unclocked functions. If all the
requirements are met, the optimization is applied. preds here are the predecessor
blocks of the loop header. For example, in the example function shown in Fig. 7, block
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for.cond2.preheader.Ir.ph=1
for.cond2.preheader=6

for.cond2.preheader.Ir.ph=1+(21) (N)

for.cond2.preheader=0

for.end27=0

Fig. 7 Example function before and after applying optimization 4b

Jfor.cond2.preheader.lr.ph is the predecessor. If there is only one predecessor, which
have no other successor than the loop header, the clock is added to that predecessor
block, as shown by the code on line 14 to 19. Otherwise, a block is added in between
the loop header and its predecessors to update the clock. The be block returned by
meetsOpt4bRequirements is the block that contains the backedge, which is forinc.2
in this case. This is passed as a parameter to the updateClocksInLoop function, which
shifts the constant clock value of the loop, that is, the least number of instructions the
loop will always execute in an iteration, to the header block. The value in the header
block is then shifted to the predecessor block. In this case, the updateClocksInLoop
function added 15 to the original clock of for.cond2.preheader, which is later shifted
to the predecessor block for.cond2.preheader.lr.ph.

UpdateClocksInLoop works by first concentrating clock to all merge nodes which
are guaranteed to be executed in an iteration. Such blocks are for.inc, forincl and
forinc2 in the example function. The list of all blocks preceding such a merge node
is checked to see which one has minimum value, and that minimum value is added
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1: function UPDATEOPT4BCLOCKS(ref bool modified, ref BasicBlock bb) > When this
function is called Entry block of a function is passed as bb

2 if visitedList.find(bb) then

3 return

4 end if

5: visited.insert (bb)

6: modified = false

7 preds, be, looplterInfo, meetsReq = meetsOpt4bRequirements(bb)

8 if meetsReq then

9: pathsList, blocksInLoop = getLoopPaths(bb, be)

10: blocksPresentInAllPaths = getBlocksPresentInAllPaths(pathsLists, bb)

11: if blocksInLoop.size() > 1 then

12: updateClocksInLoop(blocksPresentInAllPaths, bb, be, blocksInLoop)
13: end if

14: looplterInfo.constLoopClock = getClock(bb)

15: setClock( bb, 0)

16: if preds.size() > 1 or numSuccessors(preds[0]) > 1 then
17: addedBlocks = addBlockInBetween(preds, bb)

18: setlooplterInfo(addedBlocks, loopIterInfo)

19: else

20: setlooplterInfo(preds|0], loopIterInfo)

21: end if

22: end if

23: succList = getSuccList(bb)

24: for all succ in succList do

25: updateOpt4bClocks(modified, succ)

26: end for

27: end function

28: function AprLYOPT4B
29: for all f in Program do

30: modified = true

31: while modfied do

32: visitedList.clear()

33: updateOpt4bClocks(modified, f.entry())
34: end while

35: end for

36: end function

Fig. 8 Pseudocode for optimization 4b

to such merge node. For example, if.then and if.else are blocks preceding the merge
node forinc. if.thenl7 is not included in the list since its being dominated by if.else,
which is already preceding the merge node in question. Since if else has the minimum
clock of the two, its clock (1) is added to for.inc, making clock of forinc 6, while
making clock of if.else 0, and also subtracting 1 from if.then. The same is done with
the other two merge nodes. After doing this step, for.inc and for.incl contain clock
values of 6 each while for.inc2 contain clock value of 3. So, overall these three merge
nodes contain clock value of 15. This clock value is removed from all these nodes and
shifted to for.cond2.preheader to make its clock 21 from 6, while making the clocks
of these merge nodes 0. Later on, clock is removed from for.cond2.preheader and
updated before executing the loop in for.cond2.preheader.lr.ph by multiplying it with
the number of times the loop will execute.

4.4.3 Opt 4c: cloning while loops

It is not possible to apply optimization 4b, where the number of iterations of a loop
could not be determined at compile time, which is usually the case with while loops. If
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Fig. 9 Part of an example function before and after applying optimization 4c

a while loop executes constant number of instructions in each iteration, we clone that
while loop, so that clock is updated at every other iteration rather than each iteration.
A part of an example function before and after applying this optimization is shown
in Fig. 9. Note that even if we applied optimization 4a here, the clock would have
been updated after 8 instructions. But by cloning these loops, it is executed after 16
instructions. Note that we also add blocks to update the clock if the while loop exits
on an odd iteration.

5 Performance evaluation

We tested performance of DetLock with 8 benchmarks, 6 from SPLASH-2 [17] and
2 from PARSEC [3]. All benchmarks were run on a 2.66 GHz quad core machine
and compiled with maximum optimization enabled (level -O4 for clang/llvm). We
first discuss the results. Afterwards, we show how clocking instructions ahead of time
improves the deterministic execution.

5.1 Results

Table 1 shows the performance overheads with different optimizations and Fig. 10
gives a pictorial view of that overhead. In Table 1, along with the results with different
optimizations, we also show the original execution times, locks per second and number
of clocked functions for each benchmark. Note that all the times are in milliseconds.
The leftbars in Fig. 10 show the performance overhead without applying optimizations,
while the bars in the middle show performance after applying optimizations of [11]
only. The bars on the right show the overhead after applying all the optimizations,
including those mentioned in this paper. The lower portion of the bar is the overhead
of the inserted clocks updating code only, while the upper portion shows the additional
overhead for deterministic execution.

From Fig. 10, we can see that new optimizations introduced in this paper improved
performance for several benchmarks as shown by the decrease in size of the right bars.
The improvement relative to [11] is most significant for barnes, water and swaptions.
For water for example, the overhead of deterministic execution is brought down from
20 to 0 %. Table 1 show performance with different optimizations. The optimization 4
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Fig. 10 Overheads

is shown combined with optimization 1 in the table, because some loops in the bench-
marks consist of clocked functions, and without adding optimization 1, the impact of
optimization 4 could not be seen in such cases. Overall, we see that all optimizations
work to reduce the clock updating overhead as well as the deterministic execution
overhead. However, from the average column, we can see that while optimization 2
reduced the clock update overhead more than optimization 4 and 1 combined, the later
reduced the overall time, including deterministic execution more than optimization 2.
The reason for this is discussed next.

5.2 Effect of updating clocks ahead of time

From Table 1, we can see that optimization 4 and 1 combined reduce the overall
deterministic execution time more than optimization 2. This is even when optimization
2 reduced the clock updating overhead more than optimization 4 and 1 combined. The
reason for this is because updating clocks ahead of time reduces waiting time of a thread
which is in the process of acquiring a lock, as the clocks of other threads progresses
more quickly in this way (even before execution of some instructions), thus allowing a
waiting thread’s clock to reach the minimum global more quickly. This effect is most
pronounced for swaptions and radiosity. For swaptions for example, clock updating
overhead with optimization 2 is 7 % while overall deterministic execution overhead
with Optimization 2 is 29 %. On the other hand, with optimization 4 and 1 combined,
the clock updating overhead is 3 % while overall deterministic overhead is only 13 %,
which means an increase of only 10% overhead over clock updating overhead as
compared to an increase of 22 % with optimization 2. Similarly, for radiosity, there is an
increase of 26 % (46—20 %) overhead over clock updating overhead with optimization
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4 and 1 combined as compared to an increase of 48 % (57-9 %) with optimization 2.
This is because optimizations 4 and 1 can more aggressively increment clock ahead
of time as compared to optimization 2, as optimization 4 and 1 work at function and
loop levels, whereas optimization 2 works only at basic blocks level.

6 Conclusion

In this paper, we described our tool DetLock, which consists of an LLVM compiler
pass to insert code for updating logical clocks for Weak Deterministic execution. Since
our scheme does not depend on any hardware or modification of the kernel, it is very
portable. Moreover, we apply several optimizations to reduce the amount of code
inserted for clock updating. Furthermore, since the algorithm for Weak Determinism
that we use gives lock to the thread with minimum logical clock, we try to increment
the clocks of threads as soon as possible so that threads waiting for locks have to wait
less. We increment the clocks even before instructions are executed if possible. On
average, the overhead of inserting clock updating code is only 2 %, whereas the overall
overhead including deterministic execution is 14 % for selected benchmarks. This is
an improvement over our previous work [11], with which on average, the overhead of
inserting clock updating code is 6 %, while overall overhead including deterministic
execution is 20 %.
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Abstract—This paper describes a software based fault toler-
ance approach for multithreaded programs running on multicore
processors. Redundant multithreaded processes are used to detect
soft errors and recover from them. Our scheme makes sure
that the execution of the redundant processes is identical even
in the presence of non-determinism due to shared memory
accesses. This is done by making sure that the redundant
processes acquire the locks for accessing the shared memory
in the same order. Instead of using record/replay technique to
do that, our scheme is based on deterministic multithreading,
meaning that for the same input, a multithreaded program always
have the same lock interleaving. Unlike record/replay systems,
this eliminates the requirement for communication between the
redundant processes. Moreover, our scheme is implemented
totally in software, requiring no special hardware, making it
very portable. Furthermore, our scheme is totally implemented
at user-level, requiring no modification of the kernel. For selected
benchmarks, our scheme adds an average overhead of 49% for
4 threads.

I. INTRODUCTION

The abundant computational resources available in multi-
core systems have made it feasible to implement otherwise
prohibitively intensive tasks on consumer grade systems. How-
ever, these systems integrate billions of transistors to imple-
ment multiple cores on a single die, thus raising reliability
concerns, as smaller transistors are more susceptible to both
transient [10] as well as permanent [11] faults.

A common approach for providing fault tolerance is to
perform redundant execution of the software. This is done
by using the state machine replication approach [12]. In this
approach the replicated copies of a process (known as replicas)
follow the same execution sequence and produce the same
output if given the same input. This requirement necessitates
that the replicas handle non-deterministic events such as
asynchronous signals and non-deterministic functions (such
as gettimeofday) deterministically. This is usually done by
having one replica log the non-deterministic events and have
the other replicas replay them at the same point in program
execution. In a shared memory multithreaded program, this
also means that the replicas perform non-deterministic shared
memory accesses deterministically, so that they do not diverge
in the absence of faults.

One way of making sure that the redundant processes
access the shared memory in the same order is to perform
record/replay where the leader process records the order of
locks (to access shared memory) in a queue which is shared

978-1-4799-3525-3/13/$31.00 ©2013 IEEE

between the leader and follower. The follower in turn reads
from that queue to have the same lock acquisitions order. This
approach is used by Respec [4] and our previous work [6].
However, this requires communication between the leader and
follower process, which decreases reliability, as the memory
used for communicating might itself become corrupted due a
soft error. Moreover, it requires extra memory.

In this scheme, instead of depending on record/replay, we
use deterministic multithreading, that is, given the same input,
a multithreaded process always have the same lock interleav-
ing. This makes sure that the redundant processes acquire the
locks in the same order without communicating with each
other. We adapt the method used by Kendo [5] to do this,
but unlike Kendo, our scheme neither requires deterministic
hardware performance counters, which are not available on
many platforms [8] (including many x86 systems), nor kernel
modification for deterministic execution. The logical clocks
used for deterministic execution are inserted by the compiler
instead.

We can sum up the contributions of this paper as follows.

1) The scheme is implemented using a user-level library
and does not require a modified kernel.

2) The scheme uses deterministic multithreading instead
of record/replay to ensure that the redundant processes
acquire locks for shared memory access in the same
order. This eliminates the requirement of communica-
tion between replicas for deterministic shared memory
accesses, making the system more reliable (by increasing
isolation) and consume less memory.

3) The scheme is very portable since it does not depend
upon any special hardware for determinisitic execution.

In Section II we discuss the background and related work,
while in Section III, we discuss our fault tolerance scheme.
This is followed by Section IV, where we discuss the imple-
mentation. In Section V, we evaluate the performance of our
scheme, and we finally conclude the paper with Section VI.

II. BACKGROUND AND RELATED WORK

A fault tolerant system which uses redundant execution
needs to make sure that the redundant processes do not diverge
in the absence of faults. In a single threaded program, in the
absence of any fault, the only possible causes of divergence
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among the replicas can be non-deterministic functions (such
as gettimeofday) or asynchronous signals/interrupts.

However, in multithreaded programs running on multicore
processors, there is one more source of non-determinism,
which is shared memory accesses. These accesses are much
more frequent than interrupts or signals. Therefore, efficient
deterministic execution of replicas in such systems is much
more difficult to achieve.

One method to ensure redundant processes access shared
memory in the same order is record/replay. Both software
and hardware methods exist for that purpose. An example of
hardware approach is Karma [14] which intercepts the cache
coherence protocols to record inter-processor data dependen-
cies and later use these recorded data dependencies to replay.
Respec [4] is a software-based method. It logs the ordering
of acquisition and release of synchronization objects, such as
mutexes, to make replicas acquire the synchronization objects
in the same order. It also performs checkpoint/rollback to
perform recovery.

The disadvantage of employing record/replay for determin-
istic shared memory accesses is that it requires communication
between the replicas, making the fault tolerant scheme less
reliable as the shared memory used for communication can
itself become corrupted by one of the replicas. Moreover it
requires extra memory.

To eliminate this communication and memory requirement,
we can employ deterministic multithreading, where a multi-
threaded process have always the same memory interleaving
for the same input. The ideal situation would be to make a
multithreaded program deterministic even in the presence of
race conditions, that is, provide strong determinism. This is
not possible to do efficiently with software alone though. One
can use a relaxed memory model where every thread writes to
its own private memory, while data to shared memory is com-
mitted only at intervals. However, stopping threads regularly
for committing to shared memory degrades performance as
demonstrated by CoreDet [1], which has a maximum overhead
of 11x for 8 cores. We can reduce the amount of committing
to the shared memory by only committing at synchronization
points such as locks, barriers or thread creation. This approach
is taken by DTHREADS [7]. Here one can still imagine the
slowdown in case of applications with high lock frequencies.
Moreover, since in this case committing to the shared memory
is done less frequently, more data has to be committed, thus
also making it slow for applications with high memory usage.
This is why hardware approaches have been proposed to
increase efficiency of deterministic execution. An example of
such approach is Calvin [3], which uses the same concept as
CoreDet for deterministic execution but make use of a special
hardware for that purpose.

Since performing deterministic execution in software alone
is inefficient, one can relax the requirements to improve effi-
ciency. For example, Kendo [5] does this by only supporting
deterministic execution for well written programs that protect
every shared memory access through locks. In other words,
it supports deterministic execution only for programs without
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Fig. 1. Block diagram of our fault tolerance scheme

race conditions. The authors of Kendo call it Weak Determin-
ism. Considering the fact that most well written programs are
race free and there exist tools to detect race conditions, such
as Valgrind [15], Weak Determinism is sufficient for most well
written multithreaded programs.

The basic idea of Kendo is that it uses logical clocks for
each thread to determine when a thread will acquire a lock.
The thread with the least value of logical clock gets the
lock. Though being quite efficient, Kendo still suffers from
portability problems. First of all, it requires deterministic hard-
ware performance counters for counting logical clocks. Many
popular platforms (including many x86 platforms) do not have
any hardware performance counters that are deterministic [8].
Secondly, Kendo needs modification of the kernel to allow
reading from the hardware performance counters.

III. FAULT TOLERANCE SCHEME

Our fault tolerant scheme is intended to reduce probability
of failures in the presence of transient faults. The block
diagram of our fault tolerance scheme is shown in Figure 1.

Initially, the leader process (which is the original process
highlighted in the figure) creates the watchdog and follower
processes. The follower process is identical to the leader
process and follows the same execution path. The execution
is divided into time slices known as epochs. An epoch starts
and ends at a program barrier. At the end of each epoch, the
memories of the leader and follower processes are compared.
If no divergence is found, a checkpoint is taken and output to
files or screen is committed. The previous checkpoint is also
deleted. The checkpoint is basically a suspended process which
is identical to the leader process at the time the checkpoint
is taken. If a divergence is found at the end of an epoch,
execution is restarted from the last checkpoint by resuming
the checkpoint process and killing the leader and follower
processes. This can also happen inside an epoch, if the
follower sees that the parameters of system calls logged by the
leader do not match those read by the follower, in which case
it signals the leader process to restart execution from the last
checkpoint. When the checkpoint process starts, it becomes
the leader and creates its own follower. The watchdog process
is used to detect timeout errors and recover from them. This
is done by having the watchdog process signal the checkpoint
process to start on a timeout error.

The approach used in this paper is different from Respec
and our previous work [6] in the way it makes sure that leader
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and follower processes are identical in the presence of non-
deterministic shared memory accesses. While Respec and our
previous work used the record/replay technique, where the
leader logs the synchronization operations (to access shared
memory) in a queue which is then read by the follower to
have the same order of synchronization operations, in this
paper, we use deterministic multithreading, which does not
require such type of communication, thus improving isolation
and fault tolerance. The difference in these two approaches
is illustrated in Figure 2. Note that in this approach, we still
use shared memory between leader and follower, but only to
log results from non-deterministic functions and type, input
parameters and results of system calls, besides using it for
memory comparison at the end of epochs for error checking.

At this moment, our fault tolerance scheme does not work
with programs that use inter process communication (through
pipes and shared memory for example). The only form of I/O
allowed is disk I/O and screen output. Moreover, our scheme
assumes that there are no data races in the program. Lastly, we
have not added functionality to handle asynchronous signals.
However, this functionality can be added for user space by
handling asynchronous signals at synchronous points, such as
system calls, as done by Scribe [13].

IV. IMPLEMENTATION

In this section, we discuss the implementation of our fault
tolerance scheme. We start by Section IV-A, where we discuss
how deterministic execution of the replicas is performed. This
is followed by Section IV-B which discusses error detection.
Finally in Section IV-C, we discuss our recovery mechanism.

A. Deterministic execution

For deterministic execution, we need to ensure that replicas
use the same memory addresses. We also need to ensure
determinism in the presence of non-deterministic functions
and shared memory accesses. Moreover, we need to make sure
that the leader and follower processes use the same memory
addresses. For this we need to have a deterministic memory
allocation scheme. Finally we also need to make sure that we
have deterministic I/O. Below we discuss how we handle these
issues.

1) Replica creation: Our library assumes that threads in
the application are created once at the start of the application.
Therefore, we create the follower process at point in the code
where the threads are created. For this purpose, we replace
the pthread_create function with our own to make sure the
threads of the replicas use the same memory addresses. More
detail on this can be found in [6].

2) Memory allocation: We implement our own memory
allocation functions to allocate memory deterministically. Our
implementation replaces the locks in the original memory
allocation functions with our own deterministic locks. The
variables used by our library (not related to original pro-
gram execution) to perform deterministic execution, may have
different values for the leader and follower processes, for
example, the flag used to distinguish the leader process from
the follower process. For these variables, we use a separate
memory, which is allocated with the mmap system call. This
memory is not compared for error detection.

3) Deterministic shared memory accesses: We use Kendo’s
algorithm to perform deterministic execution. However, unlike
Kendo which requires deterministic hardware performance
counters, which are not available on many platforms, we insert
code to update logical clocks at compile time. This also means
that we do not need to modify the kernel which is required
by Kendo to read from performance counters. Figure 3 shows
the point of compilation where our compiler pass executes,
which is between the point where the LLVM IR (Intermediate
Representation) code is translated to the final binary code by
the LLVM backend.

The unit of our logical clock is one instruction. For in-
structions which take more than one clock cycles, the logical
clock is updated according to the approximate number of clock
cycles they take.

The Kendo’s method of acquiring locks deterministically
works by giving lock to the thread with the minimum clock
first. For example, in a process with two threads, if Thread 1 is
trying to acquire a lock when its logical clock is 1029, it will
not be able to do so if Thread 2’s clock is at 329, because of
being less than 1029. But, as soon as Thread 2’s clock get past
1029, Thread 1 will acquire the lock. So basically our purpose
is not only to reduce the code that updates the clocks but also
to update the clocks as soon as possible, so that logical clock of
the thread waiting for a lock becomes minimum more quickly.
In fact, at compile time it is possible to increment the clock
even before some instructions are executed, since at compile
time we can count the number of instructions. Therefore in
all optimizations we apply, besides trying to reduce the clock
update overhead, we also try to increment the clock as soon
as possible. Without any optimization, we update the clock at
start of each of the basic block of LLVM IR. If there is a
function call inside that block, we split that block, such that
each block either contains no function call or starts and end
with a function call. Then we update the clock at the top of
each block if that block contains no function calls, otherwise
we update the clocks in between the function calls. By splitting
blocks in such a way, we can more easily apply optimizations.
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logical clocks, used for deterministic multithreading

We apply the following optimizations to reduce the logical
clock updating overhead as well as reduce waiting time for
threads waiting for a lock, by incrementing clocks ahead of
time.

Optimization 1 (Function Clocking) As discussed previ-
ously, the sooner the clocks are updated, the better, and leaf
functions (functions that do not call any function) with only
one basic block are perfect candidates for such an optimiza-
tion. Clocks can be removed from such functions and instead
be added to the basic blocks calling such functions. Besides
functions with only one blocks, our method also considers leaf
functions with multiple blocks, given that there are no loops in
such functions. If our pass sees that all possible paths taken
by such a function do not differ by much, we calculate the
mean value for all possible paths and use that mean value
to update the clock. We call such leaf functions as clocked
functions. By intuition, we can judge that it is also possible
to clock functions which call only clocked functions. In this
way, we can even clock functions which are not necessarily
leaf functions.

Optimization 2 (Conditional Blocks Optimization) This
optimization is based on the principle that if a block has two
or more successors, given that those successors are not merge
nodes, we can make the successor with the least clock zero
and subtract its original value from all its siblings, while also
adding its original clock to the parent block. Another principle
of this optimization is that if all predecessors of a merge block
have that merge block as their only successor, the clocks could
be shifted from the merge node to them. It should be noted that
after having parsed all the blocks of a function and applying
this optimization, if it is still possible to apply this optimization
once more, it is applied.

Optimization 3 (Averaging of Clock) This optimization
is based on the fact that paths emanating from a block in a
function could be matching close together in total clock values.
One can imagine it as a specialized case of Function Clocking.
For Function Clocking, we just considered the paths emanating
from the entry block, but here we also check for paths besides
the entry block. When forming paths for a block, we only
consider blocks dominated by it (execution must pass through
the dominating block to reach its dominated blocks). We also
make sure there are no loops or unclocked functions in such
paths. If we find such a block in a function, we remove clocks
from all the blocks in the averaged path and assign the mean
clock value to that block.

Optimization 4 (Loops Optimization) This optimization
considers the fact that loops are often executed multiple times.
So for example, if you have a for loop, the increment operation
will take place just before the next iteration. Therefore we
check for back edges and if we see that the clock of the block

from which the backedge is originating is less that a certain
threshold value and is also less than the clock of the block it
is jumping to, we merge its clock value to that block’s clock
and remove clock updating code from it.

4) System Calls, Non-deterministic functions and I/0: We
use LD_PRELOAD to preload the system call wrappers found
in glibc with our own version which perform logging of type,
input parameters and output of the system calls. Type and input
parameters are then read by the follower for error detection,
while the output logged by the leader is used directly by
the follower, instead of actually executing the system call.
Working only with user-space wrappers of system calls is
possible, because most of the system calls are usually called
through their user-space wrapper functions. This method will
not work however, if for example, a system call is made
without using the wrapper function, for example, by using
inline assembly. So, with our library, the programmer needs
to make sure to not make a system call directly. Since the glibc
library sometimes also make system calls directly, for example,
by making the clone system call in pthread_create function,
we provide our version of pthread_create. We also provide
our own version of non-deterministic functions such as rand
and preload them using LD_PRELOAD. Follower uses the
output logged by the leader for such functions. Each system
call is protected by a deterministic lock to make sure that
system calls occur in the same order in the replicas. For the
system call mmap, which modifies the address space of the
process, we take a special approach. The follower still uses
the returned addressed by the leader, but use it as a parameter
combined with MAP_FIXED flag to call the mmap function,
to ensure that the follower uses the same memory addresses
as the leader.

For 1/0, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is only
performed after making sure that no error occurred during
an epoch. For that purpose, no output is committed during
an epoch. Instead it is buffered. Our library overrides the
write and read system call wrappers to allow buffering of the
data. The buffers are committed at the end of an epoch after
comparing the buffer contents of the leader and follower by
using hash-sums. For this purpose, each file opened for writing
is allocated a special buffer. It is important that addresses of
these buffers are the same for the leader and follower process.
For this purpose, we use a deterministic memory allocation
scheme like the one described in Section IV-A2. For sequential
file reading, the file offset value is saved at the end of each
epoch, so that the file can be rewinded to the previous value
in case of rollback.

B. Error detection

At regular intervals of 1 second, known as epochs, dirtied
(modified) memory pages of the leader and follower processes
are compared. However, the epoch time is reduced to 100 ms
if a file or screen output occurs during the epoch. Instead of
comparing each memory one by one, the leader and follower
processes calculate hash-sums of the dirtied (modified) mem-
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ory pages, which are then compared. If a discrepancy is found,
a fault is detected.

The comparison is made even faster by assigning each
thread to calculate hash-sum of different portions of the
memory. The leader keeps its hash-sums in shared memory
so that the follower can read it from there for comparison.
We perform memory comparison at barriers which are already
found in the program rather than stopping and creating a
barrier. This improves the performance, as threads already
wait for each other at barriers. Otherwise we create barriers
at system call points if necessary (at the end of an epoch that
is).

Since our scheme runs at the user level, we cannot note
down dirtied pages while handling page faults (from the
kernel), the way Respec does, which is the most efficient
method possible. Therefore, we take special steps to improve
its performance. At start of each epoch, we give only read
access to allocated memory pages. Whenever a page is ac-
cessed for writing, the OS sends a signal to the accessing
thread. In the signal handler, the address of the memory page
is noted down and both read and write accesses are given
to that memory page. In this way, we only need to compare
the dirtied memory pages at the end of an epoch. Sending
signals on each memory page access violation can slow down
execution. Therefore, to reduce the number of such signals, we
exploit the concept of spatial locality of data and segmented
memory into multiple pages, as shown in Figure 4. A write
on any part of a read protected segment of N pages is handled
by giving write access to all the N pages in that segment.

Some functions, like that for comparing memories, change
the stacks differently for the leader and follower threads. For
those purposes, we switch to a temporary stack, so that the
original stack remains unaltered from such functions.

The watchdog process is used to detect and recover from
timeout errors. Details can be found in [6].

C. Recovery

As discussed previously, for fault recovery, we use check-
point/rollback. Whenever the leader takes a checkpoint, it kills
the previous checkpoint. If the leader process detects an error,
or the watchdog process detects a hang, a signal is sent to
the last checkpoint process, so that the checkpoint process
can start execution. The leader and its follower are killed
at that point. The checkpoint process then assumes the role
of the leader and forks its own follower. It also creates a
new checkpoint. Checkpoints are taken only at barrier points.
For creating a multithreaded follower, we have implemented
a special multithreaded fork function that replicates the leader
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Fig. 5. Overhead of our Fault Tolerance Scheme

process to create the follower. More detail on this can be found
in [6].

V. PERFORMANCE EVALUATION

We selected 5 benchmarks, 1 from the PARSEC [2] and
4 from the SPLASH-2 [9] benchmark sets. We ran all our
benchmarks on an 8 core (dual socket with 2 quad cores),
2.67 GHz Intel Xeon processor with 32GB of RAM. All
programs were compiled with maximum optimization enabled
(level -O4 for clang/llvm). All benchmarks were run with 4
threads, meaning we had 8 threads overall for the 2 redundant
processes.

A. Results

The results are shown in Table 1. In this table, by Redundant
Exec, we mean results obtained by allowing the leader and
follower processes execute freely, without any determinis-
tic execution and fault tolerance, while Deterministic Exec
overhead is the overhead with deterministic execution only,
whereas Overall Exec overhead includes all the components
of our fault tolerance scheme. For overall execution, the results
are shown with memory grouping size of 4. Figure 5 shows
the different overheads separately. The epoch overhead here
represents overhead of checkpointing, signals for noting dirtied
(modified) memory pages and watchdog process. For bench-
marks with high lock frequencies (Fluidanimate and Radiosity,
the overhead of deterministic execution is expectedly quite
large, whereas for Ocean which has high memory usage, epoch
overhead is the most. This is because for Ocean, large number
of signals are received when memory pages are modified
during an epoch.

B. Deterministic execution overhead

Figure 6 shows the deterministic execution performance
improvement that we get by applying optimizations on the
compiler pass that inserts code to update the logical clocks.
The lower portion of the bars (in white color) in Figure 6 show
the overhead of deterministic execution with the optimizations,
while the upper portion (in blue color) show the additional
overhead when optimizations are not applied.

We get improvement in performance due to two reasons.
Firstly, because of reducing the clock updating code and
secondly by updating clocks ahead of time (See Section IV-A3
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TABLE I
PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED BENCHMARKS

Benchmark Fluidanimat Ocean ‘Water-nsq Radiosity Raytrace
Original Exec Time (ms) 1142 1870 1416 962 677
Locks/sec 6266655 5397 132798 6072689 225635
Pages Compared 3628 40182 371 8730 109
Epochs 3 3 2 2 2
Redundant (Redt) Exec Time and Overhead 1204 (5%) 1872 (0%) 1441 2%) 980 (2%) 697 (3%)
Deterministic Exec Time and Overhead with No Optimization (w.r.t Redt Exec) | 3072 (155%) 2022 (8%) 2102 (46%) | 1892 (93%) | 813 (17%)
Deterministic Exec Time and Overhead with Optimizations (w.r.t Redt Exec) 2603 (116%) 2014 (8%) 1688 (17%) | 1534 (57%) | 767 (10%)
Overall Exec Time and Overhead (w.r.t Redt Exec) 2639 (119%) 2391 (28%) 1771 (23%) 1584 (62%) | 795 (14%)

170 T T

" Deterministic Execution Overhead —
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Fig. 6. Improvement in Deterministic Execution Performance by applying
optimizations

for discussion on the deterministic algorithm that we use
and why updating clocks ahead of time is beneficial). For
Radiosity, Optimization 1 (Function Clocking) is applicable
on a large number of functions, with some of them being
quite compute intensive. Therefore, by incrementing the clocks
for those clockable functions ahead of time, we significantly
reduce the waiting time for threads which are about to acquire
a lock. For Fluidanimate and Water-nsq, the improvement
was mostly due to the Optimization 4 (Loops Optimization)
because these benchmarks contain compute intensive small
loops. Optimization 3 (Averaging of Clock) worked well for
Raytrace because our compiler pass could find such paths
(for whom clocks could be averaged) in it. Furthermore,
Optimization 2 (Conditional Blocks Optimization) was useful
for reducing the clock overhead of most of the benchmarks,
because such conditional paths are commonly found in pro-
grams.

VI. CONCLUSION

In this paper, we described the design and implemen-
tation of a user-level leader/follower based fault tolerance
scheme for multithreaded applications running on multicore
processors. Instead of using record/replay technique to en-
sure deterministic shared memory accesses by the replicas,
we used deterministic multithreading, where the redundant
processes do not need to communicate with each other for
ensuring deterministic shared memory accesses. This improves
isolation between the redundant processes, increasing fault
tolerance and reliability, besides consuming less memory. To
increase portability, we avoid using any special hardware

for deterministic execution and modifying the kernel. We
instead implemented a compiler pass that inserts code to
update logical clocks for deterministic multithreading. We
also applied several optimizations to reduce the overhead of
logical clock updating code. In the absence of faults, our
fault tolerance scheme, adds an average overhead of 49% for
selected benchmarks, with 4 threads.
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COMPARISON OF FAULT TOLERANCE
METHODS

This chapter compares the two different schemes that we developed for fault tolerance
on shared memory multicore systems. The first scheme uses record/replay technique
where one replica logs the order of shared memory accesses and the others read from
that log, while the second scheme uses deterministic multithreading, meaning that for
the same input, a multithreaded program always has the same lock interleaving. Un-
like record/replay systems, this eliminates the requirement for communication between
the redundant processes for shared memory accesses. Both of our schemes are im-
plemented totally in software, requiring no special hardware, thus making them very
portable. Furthermore, our schemes are totally implemented at the user-level, requiring
no modification of the kernel. We also implemented a hardware extension to improve
the performance and scalability of deterministic multithreading. We compared our de-
terministic multithreading scheme (DetLock) with the state of the art Kendo. We showed
that for several benchmarks, especially those with high frequency of shared memory ac-
cess, our scheme outperforms Kendo, due to the ability of updating the clocks more fre-
quently and ahead of time.

For record/replay, the overhead is less than 25% for all benchmarks down to approx-
imately 0% for some benchmarks. For deterministic multithreading, it depends on the
usage of shared memory. With low shared memory usage, the overhead is less than 25%
while with high usage, it can reach up to 56%. We also compare our deterministic mul-
tithreading scheme (DetLock) to other approaches, for example Kendo, and show over-
head reduction up to 189% for 8 threads. Even when Kendo is assisted with hardware,
the hardware assisted DetLock version can improve performance up to 26% over Kendo.

This chapter is based on the following paper.

Mushtaq, H.; Al-Ars, Z.; Bertels, K., Fault Tolerance on Multicore Processors using De-
terministic Execution, Submitted to IEEE transactions on reliability.
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Deterministic Execution

Hamid Mushtaq, Koen Bertels, Zaid Al-Ars
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Abstract—This paper describes and compares two different
schemes for fault tolerance on shared memory multicore systems.
The first scheme uses record/replay technique where one replica
logs the order of shared memory accesses while other replicas
read from that log. The second scheme uses deterministic multi-
threading, meaning that for the same input, a multithreaded pro-
gram always has the same lock interleaving. Unlike record/replay
systems, this eliminates the requirement for communication be-
tween the redundant processes for shared memory accesses. Both
of our sch are impl ted totally in software, and require
no modification of the kernel. For record/replay, the overhead is
less than 25% for all benchmarks down to approximately 0% for
some benchmarks. For deterministic multithreading, it depends
on the usage of shared memory. With low shared memory usage,
the overhead is less than 25% while with high usage, it can
reach up to 56%. We also implemented a hardware extension to
aid in deterministic multithreading, to improve the performance
and scalability. We compared our deterministic multithreading
scheme (DetLock) to other approaches, for example Kendo, and
showed overhead reduction up to 189% for 8 threads. Even when
Kendo is assisted with hardware, the hardware assisted DetLock
version can improve performance up to 26% over Kendo.

Keywords-multicore, deterministic execution, shared memory,
fault tolerance, reliability.

I.

The abundant computational resources available in mul-
ticore systems have made it feasible to implement other-
wise prohibitively intensive tasks on consumer grade systems.
However, these systems integrate billions of transistors to
implement multiple cores on a single die, thus raising reli-
ability concerns, as smaller transistors are more susceptible to
transient [14] as well as permanent [15] faults.

A common approach for providing fault tolerance is to
perform redundant execution of the software. This is done
by using the state machine replication approach [16]. In
this approach, the replicated copies of a process (known as
replicas) follow the same execution sequence and produce the
same output if given the same input. This requirement neces-
sitates that the replicas handle non-deterministic events such
as asynchronous signals and non-deterministic functions (such
as gettimeofday) deterministically. This is usually done by
having one replica log the non-deterministic events and have
the other replicas replay them at the same point in program
execution. In a shared memory multithreaded program, this
also means that the replicas perform non-deterministic shared
memory accesses deterministically, so that they do not diverge
in the absence of faults.

INTRODUCTION

One way of making sure that the redundant processes access
the shared memory in the same order is to perform record/re-
play where the leader process records the order of locks (to
access shared memory) in a queue which is shared between the
leader and follower. The follower in turn reads from that queue
to have the same lock acquisitions order. This approach is used
by Respec [6] and our previous work [10]. This is the first
approach that we have used in this paper. The second approach
that we use is deterministic multithreading, where given the
same input, a multithreaded process always has the same lock
interleaving. This makes sure that the redundant processes
acquire the locks in the same order without communicating
with each other. We adapt the method used by Kendo [7] to do
this, but unlike Kendo, our scheme neither requires determin-
istic hardware performance counters, which are not available
on many platforms [12] (including many x86 systems), nor
kernel modification for deterministic execution. The logical
clocks used for deterministic execution are inserted by the
compiler instead. Moreover, we apply several optimization
to further improve the deterministic execution performance.
Furthermore, we also implemented hardware extensions to aid
in deterministic multithreading. Having hardware decreases
portability, but gives significant improvement in performance
and scalability.

We can sum up the contributions of this paper as follows.

1) We discuss the implementation of our two schemes
for deterministic execution on multicore platforms for
fault tolerance. Both of our schemes are implemented
using a user-level library and do not require a modified
kernel. Secondly, both of our schemes are very portable
since they do not depend upon any special hardware for
deterministic execution.

We compare the advantages and disadvantages of both
schemes in terms of performance, memory consumption
and reliability.

‘We compare with existing approaches and show that our
schemes have better performance on most of the selected
benchmarks.

We also implement hardware extensions for determin-
istic multithreading to improve in performance and
scalability.
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In Section II we discuss the background and related work.
In Section III, we give an overview of our fault tolerance
method. This is followed by Section IV, where we discuss
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the detailed fault tolerance implementation. In Section V,
we discuss record/replay, while in Section VI, we discuss
deterministic multithreading. In Section VII, we evaluate the
performance of our method. Finally, we conclude the paper
with Section VIII.

II. BACKGROUND AND RELATED WORK

A fault tolerant system which uses redundant execution
needs to make sure that the redundant processes do not diverge
in the absence of faults, that is, they should have the same
states for the same input. In a single threaded program, in the
absence of any fault, the only possible causes of divergence
among the replicas can be non-deterministic functions (such
as gettimeofday) or asynchronous signals/interrupts.

However, in multithreaded programs running on multicore
processors, there is one more source of non-determinism,
which is shared memory accesses. These accesses are much
more frequent than interrupts or signals. Therefore, efficient
deterministic execution of replicas in such systems is much
more difficult to achieve.

One method to ensure redundant processes access shared
memory in the same order is record/replay. In this method,
all interleaving of shared memory accesses by different cores
or processors are recorded in a log, which can be replayed to
have a replica which follows the original execution. Examples
of schemes using this method are Rerun [5] and Karma [1].
These schemes intercept cache coherence protocols to record
inter-processor data dependencies, so that they can be replayed
later on, in the same order. While Rerun only optimizes
recording, Karma optimizes both recording and replaying,
thus making it suitable for online fault tolerance. It shows
good scalability as well. The disadvantage of record/replay
approaches as compared to deterministic multithreading is
that they require a large memory for recording. Moreover,
when used for fault tolerance, the redundant processes need
to communicate with each other for shared memory accesses,
as one replica records the log while the other reads from
it. Respec [6] is a record/replay software approach that only
logs synchronization objects rather than every shared memory
access. If divergence is found between the replicas, it rolls-
back and re-executes from a previous checkpoint. However,
if divergence is found again on re-execution, a race condition
is assumed. At that point, a stricter deterministic execution is
performed, which has a larger overhead.

The disadvantage of employing record/replay for determin-
istic shared memory accesses is that it requires communication
between the replicas for shared memory accesses, making the
fault tolerant method less reliable as the shared buffer used
for communication can itself become corrupted by one of the
replicas. Moreover it requires extra memory.

To eliminate this communication and memory requirement
for shared memory accesses, we can employ deterministic
multithreading, where a multithreaded process has always
the same memory interleaving for the same input. The ideal
situation would be to make a multithreaded program deter-
ministic even in the presence of race conditions, that is,
provide Strong Determinism. This is not possible to do ef-
ficiently with software alone though. One can use a relaxed

memory model where every thread writes to its own private
memory, while data to shared memory is committed only at
intervals. However, stopping threads regularly for committing
to shared memory degrades performance as demonstrated by
CoreDet [2], which has a maximum overhead of 11x for 8
cores. We can reduce the amount of committing to the shared
memory by only committing at synchronization points such as
locks, barriers or thread creation. This approach is taken by
DTHREADS [11]. Here one can still imagine the slowdown
in case of applications with high lock frequencies. Moreover,
since in this case committing to the shared memory is done less
frequently, more data has to be committed, thus also making
it slow for applications with high memory usage. This is why
hardware approaches have been proposed to increase efficiency
of deterministic execution. An example of such approach is
Calvin [4], which uses the same concept as CoreDet for
deterministic execution but make use of a special hardware
for that purpose.

Since performing deterministic execution in software alone
is inefficient, one can relax the requirements to improve effi-
ciency. For example, Kendo [7] does this by only supporting
deterministic execution for well written programs that protect
every shared memory access through locks. In other words,
it supports deterministic execution only for programs without
race conditions. The authors of Kendo call it Weak Determin-
ism. Considering the fact that most well written programs are
race free and there exist tools to detect race conditions, such
as Valgrind [20], Weak Determinism is sufficient for most well
written multithreaded programs.

The basic idea of Kendo is that it uses logical clocks for
each thread to determine when a thread will acquire a lock.
The thread with the least value of logical clock gets the
lock. Though being quite efficient, Kendo still suffers from
portability problems. First of all, it requires deterministic hard-
ware performance counters for counting logical clocks. Many
popular platforms (including many x86 platforms) do not have
any hardware performance counters that are deterministic [12].
Secondly, Kendo needs modification of the kernel to allow
reading from the hardware performance counters.

III. FAULT TOLERANCE METHOD

Our fault tolerant method is intended to reduce probability
of failures in the presence of transient faults. The block
diagram of our fault tolerance method is shown in Figure 1.

Initially, the leader process (which is the original process
highlighted in the figure) creates the watchdog and follower
processes. The follower process is identical to the leader
process and follows the same execution path. The execution
is divided into time slices known as epochs. An epoch starts
and ends at a program barrier. At the end of each epoch, the
memories of the leader and follower processes are compared.
If no divergence is found, a checkpoint is taken and the output
to files or screen is committed. The previous checkpoint is also
deleted. The checkpoint is basically a suspended process which
is identical to the leader process at the time the checkpoint
is taken. If a divergence is found at the end of an epoch,
execution is restarted from the last checkpoint by resuming
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Fig. 2. Stages of our fault tolerance method

the checkpoint process and killing the leader and follower
processes. When the checkpoint process starts, it becomes the
leader and creates its own follower. It might also happen that
the leader or follower processes are unable to reach the end of
an epoch, due to some error which hangs them. In that case, the
watchdog process detects those hangs by using timeouts and
signals the checkpoint process to start. The watchdog process
itself is less vulnerable to transient faults as it remains idle
most of the time.

Figure 2 shows the stages of fault tolerance that our method
implement. The method starts by insuring deterministic ex-
ecution, followed by error detection and then recovery. For
deterministic execution, we implemented and evaluated two
different schemes, record/replay (See Section V) and deter-
ministic multithreading (See Section VI).

IV. IMPLEMENTATION

In this section, we discuss the implementation of our fault
tolerance method. We start by Section IV-A, where we discuss
how deterministic execution of the replicas is performed. This
is followed by Section IV-B which discusses error detection.
Finally in Section IV-C, we discuss our recovery mechanism.

A. Deterministic execution

For deterministic execution, we need to ensure that replicas
use the same memory addresses. We also need to ensure
determinism in the presence of non-deterministic functions
and shared memory accesses. Moreover, we need to make sure
that the leader and follower processes use the same memory
addresses. For this we need to have a deterministic memory

Reliable

allocation scheme. Finally we also need to make sure that we
have deterministic I/O. Below we discuss how we handle these
issues.

1) Replica creation: Our library assumes that threads in
the application are created once at the start of the application.
Therefore, we create the follower process at that point in
the code where the threads are created. For this purpose, we
replace the pthread_create function with our own to make sure
the threads of the replicas use the same memory addresses.
More detail on this can be found in [10].

2) Memory allocation: We implement our own memory
allocation functions to allocate memory deterministically. Our
implementation replaces the locks in the original memory
allocation functions with our own deterministic locks. The
variables used by our library (not related to original pro-
gram execution) to perform deterministic execution, may have
different values for the leader and follower processes, for
example, the flag used to distinguish the leader process from
the follower process. For these variables, we use a separate
memory, which is allocated with the mmap system call. This
memory is not compared for error detection.

3) Deterministic shared memory accesses: We have used
two different scheme for ensuring deterministic shared mem-
ory accesses, as shown in the Figure 2. The first one is
record/replay, discussed in Section V and the second one is
deterministic multithreading, discussed in Section VI

4) System calls, non-deterministic functions and I/0O: We
use LD_PRELOAD to preload the system call wrappers found
in glibc with our own version which performs logging of
type, input parameters and output of the system calls. Type
and input parameters are then read by the follower for error
detection, while the output logged by the leader is used directly
by the follower, instead of actually executing the system call.
Working only with user-space wrappers of system calls is
possible, because most of the system calls are usually called
through their user-space wrapper functions. This method will
not work however, if a system call is made without using the
wrapper function, for example, by using inline assembly. So,
with our library, the programmer needs to make sure not to
make a system call directly. Since the glibc library sometimes
also make system calls directly, for example, by making the
clone system call in pthread_create function, we provide our
version of pthread_create. We also provide our own version
of non-deterministic functions such as rand and preload them
using LD_PRELOAD. Follower uses the output logged by the
leader for such functions. Each system call is protected by a
deterministic lock to make sure that system calls occur in the
same order in the replicas. For the system call mmap, which
modifies the address space of the process, we take a special
approach. The follower still uses the returned addressed by the
leader, but use it as a parameter combined with MAP_FIXED
flag to call the mmap function, to ensure that the follower uses
the same memory addresses as the leader.

For 1/0O, our library allows deterministic I/O for sequential
file access and screen write. Write to a file or screen is only
performed after making sure that no error occurred during
an epoch. For that purpose, no output is committed during
an epoch. Instead it is buffered. Our library overrides the
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write and read system call wrappers to allow buffering of the
data. The buffers are committed at the end of an epoch after
comparing the buffer contents of the leader and follower by
using hash-sums. For this purpose, each file opened for writing
is allocated a special buffer. It is important that addresses of
these buffers are the same for the leader and follower process.
For this purpose, we use a deterministic memory allocation
scheme like the one described in Section IV-A2. For sequential
file reading, the file offset value is saved at the end of each
epoch, so that the file can be rewinded to the previous value
in case of rollback.

At this moment, our fault tolerance scheme does not work
with programs that use inter process communication (through
pipes and shared memory for example). The only form of I/O
allowed is disk I/O and screen output. Moreover, our scheme
assumes that there are no data races in the program. Lastly, we
have not added functionality to handle asynchronous signals.
However, this functionality can be added for user space by
handling asynchronous signals at synchronous points, such as
system calls, as done by Scribe [17].

B. Error detection

At regular intervals of 1 second, known as epochs, dirtied
(modified) memory pages of the leader and follower are com-
pared. However, the epoch time is reduced to 100 ms if a file
or screen output occurs during the epoch. Instead of comparing
each memory one by one, the leader and follower processes
calculate hash-sums of the dirtied (modified) memory pages,
which are then compared. If a discrepancy is found, a fault is
detected.

The comparison is made even faster by assigning each
thread to calculate hash-sum of different portions of the
memory. The leader keeps its hash-sums in shared memory
so that the follower can read it from there for comparison.
We perform memory comparison at barriers which are already
found in the program rather than stopping and creating a
barrier. This improves the performance, as threads already wait
for each other at barriers. If insufficient barriers are found
in the program, the programmer can insert calls to function
potential_barrier_wait, which is provided by our library. This
function creates a barrier only when required, that is at the
end of an epoch.

Since our scheme runs at the user level, we cannot note
down dirtied pages while handling page faults (from the
kernel), the way Respec does. Therefore, we take special steps

to improve its performance. At start of each epoch, we give
only read access to allocated memory pages. Whenever a page
is accessed for writing, the OS sends a signal to the accessing
thread. In the signal handler, the address of the memory page
is noted down and both read and write accesses are given
to that memory page. In this way, we only need to compare
the dirtied memory pages at the end of an epoch. Sending
signals on each memory page access violation can slow down
execution. Therefore, to reduce the number of such signals, we
exploit the concept of spatial locality of data by segmenting
memory into multiple pages, as shown in Figure 3. A write
on any part of a read protected segment of N pages is handled
by giving write access to all the N pages in that segment.

Some functions, like those for comparing memories, change
the stacks differently for the leader and follower threads. For
those purposes, we switch to a temporary stack, so that the
original stack remains unaltered by such functions.

The watchdog process is used to detect and recover from
timeout errors. Details can be found in [10].

C. Recovery

As discussed previously, for fault recovery, we use check-
point/rollback. Whenever the leader takes a checkpoint, it kills
the previous checkpoint. If the leader process detects an error,
or the watchdog process detects a hang, a signal is sent to
the last checkpoint process, so that the checkpoint process
can start execution. The leader and its follower are killed
at that point. The checkpoint process then assumes the role
of the leader and forks its own follower. It also creates a
new checkpoint. Checkpoints are taken only at barrier points.
For creating a multithreaded follower, we have implemented
a special multithreaded fork function that replicates the leader
process to create the follower. More detail on this can be found
in [10].

V. RECORD/REPLAY

For redundant deterministic execution, it is necessary that
the leader and follower processes perform shared memory
accesses in the same order. For this purpose, a mutex is
enclosed in a special data structure, which also contains
a pointer to clocks for that mutex to aid in deterministic
execution. Whenever a thread in the leader process acquires
a mutex, it increments the mutex’s clock. A thread in the
follower only acquires the same mutex in its execution, when
its clock matches that for the corresponding thread in the
leader.

We create our own deterministic versions of pthread’s
synchronization functions Since pthread_mutex_lock is the
most widely used and is also used in our implementation
of other pthread synchronization functions, we discuss our
pthread_mutex_lock algorithm here, which is shown in Al-
gorithm 1. We also have our own versions of data struc-
tures for representing the synchronization objects, for exam-
ple, pthread_mutex_log_t instead of pthread_mutex_t. Here m
represents an object of pthread_mutex_log_t structure which
holds a mutex and its clocks. There is one such object for
each mutex in the program. Therefore, deterministic access to
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deterministic execution

a mutex is independent of other mutexes in the program, hence
improving scalability.

When a leader thread acquires a mutex, it increments the
leader’s clock for that mutex and also records that value in
a circular queue, so that the follower can acquire the thread
when its clock reaches one less than the same value. The
communication between the leader and follower processes is
shown in Figure 5. After acquiring the mutex, the follower
also increments its clock for that mutex. An example sequence
using our deterministic lock and unlocking algorithm is shown
in Figure 4, where we can see that threads in the follower
process acquire a mutex in the same order as the leader
process. The queue elements which the threads are currently
writing to or reading from are shown in bold. We can see
that the thread 1 of the follower process is unable to acquire
the mutex when the queue is empty. Also thread O of the
follower process is unable to acquire the mutex until thread

Algorithm 1 Pseudocode for deterministic lock

function R_PTHREAD_MUTEX_LOCK (ref pthread_mutex_log_t m)
q = GetQueue(tid) > There is a separate queue for each thread
if isLeader then
r = lock(m.mutex)

if r == 0 then > Only if lock call is successful, increment the clock
m.clock = m.clock + 1 & m.clock does not need to be atomic

end if

while !pushq(q, MUTEXLOCK, m.mutex, m.clock, r)

end while

return r
else
while not !popq(q, ref type, ref mutex, ref clock, ref r)
end while
if type '= MUTEXLOCK and mutex != m.mutex then
SignalErrorAndExit()
end if
if r =0 then
return
end if
while (m.clock+1) != clock
end while
lock(m.mutex)
m.clock = m.clock + 1
return 0
end if
end function

> Follower

> Logged parameters do not match

function PUSHQ(q, type, addr, clock, r)
lindex = GetLeaderQIndex(tid)
if checkQElementsForZero(lindex) then
q[lindex].type = type
qllindex].addr = addr
q[lindex].clock = clock
q(lindex].r=r+ 1
SetLeaderQIndex((lindex + 1) %QCAPACITY)
return TRUE
else
return FALSE
end if
end function

> Called by Leader

function POPQ(q, ref type, ref addr, ref clock, ref r)
findex = GetFollowerQIndex(tid)
if checkQElementsForNonZero(gindex) then
type = q[findex].type
addr = q[findex].addr
clock = q[findex].clock
r= qffindex].r - 1
setQElementsToZero(findex)
SetFollowerQIndex((findex + 1) %QCAPACITY)
return TRUE
else
return FALSE
end if
end function

> Called by Follower

0 increments followerClock such that followerClock+1 equals
the value which is being read from the queue.

Unlike Respec which uses a hash table of 512 entries to
keep clocks for all the synchronization objects, we use a
separate clock for each mutex. The benefit of this is that we
can avoid using atomic variables for accessing the clocks, as
the clock can be incremented after acquiring the lock. We also
optimize the queue access by avoiding using atomic variables
and avoiding true and false sharing of cache lines. For that
purpose, we use a lockless queue as shown by pushq and
popq functions in Algorithm 1. This is unlike Respec which
uses atomic operations if necessary to access the queue. The
typical method of using a lockless queue (which we call naive
in this paper) is to use shared tail and head indexes. Since
in this method, producer and consumer read the head or tail
indexes at the same time when the other is writing to it, this
causes cache trashing. Hence it is a true sharing problem. We
avoid this by having local indexes for producer (leader) and
consumer (follower). The check for emptiness and fullness is
done by checking the data value instead. Producer only writes
to the queue when all the queue element it is about to write to,
is zero, while the consumer only reads when the queue element
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is non-zero. Here, since the value of r, which represents the
result returned by a synchronization function can be zero, we
add one to its value while pushing and subtract one from it
when popping. We make sure that the indexes for leader and
follower do not share the same cache line by having sufficient
padding between them. This makes sure that we do not have
the problem of false sharing.

VI. DETERMINISTIC MULTITHREADING

Our tool for deterministic multithreading which we call
DetLock, uses Kendo’s algorithm to perform deterministic ex-
ecution. However, unlike Kendo which requires deterministic
hardware performance counters, which are not available on
many platforms, such as most Intel and AMD processors.
DetLock inserts code to update logical clocks at compile
time. This also means that we do not need to modify the
kernel which is required by Kendo to read from performance
counters. Figure 6 shows the compilation step where our
compiler pass executes, which is after generating the LLVM
IR (Intermediate Representation) code and before generating
the final binary code.

The logical clock is incremented by 1 with each instruction
in the code. For instructions which take more than one
clock cycles, the logical clock is updated according to the
approximate number of clock cycles they take.

The Kendo’s method of acquiring locks deterministically
works by giving the lock to the thread with the minimum clock
first. So basically our purpose is not only to reduce the code
that updates the clocks but also to update the clocks as soon as
possible, so that the thread waiting for a lock will be able to
acquire it more quickly. In fact, at compile time it is possible to
combine clock increments together and to increment the clock
even before some instructions are executed, since at compile
time we can count the number of instructions. Therefore in
all optimizations we apply, besides trying to reduce the clock
update overhead, we also try to increment the clock as soon
as possible. Without any optimization, we update the clock at
start of each of the basic block of LLVM IR. If there is a
function call inside that block, we split that block, such that
each block either contains no function call or starts and ends
with a function call. Then we update the clock at the top of
each block if that block contains no function calls, otherwise
we update the clocks in between the function calls. By splitting
blocks in such a way, we can more easily apply optimizations.

We apply the following optimizations to reduce the logical
clock updating overhead as well as reduce waiting time for
threads waiting for a lock, by incrementing clocks ahead of
time. More details about these optimizations can be found in
[8] and [9].

A. Optimizations

We apply two type of optimizations. Firstly, the compile
time optimizations, which are done during the source code
compilation, and secondly, the application level optimizations,
that require modifying the source code. These optimizations
are discussed below.

1) Compile time optimizations: At compile time, we mod-
ify the LLVM intermediate code to improve deterministic
execution performance. These optimizations are discussed
below.

Optimization 1 (Function Clocking) - As discussed previ-
ously, the sooner the clocks are updated, the better, and leaf
functions (functions that do not call any function) with only
one basic block are perfect candidates for such an optimiza-
tion. Clocks can be removed from such functions and instead
be added to the basic blocks calling such functions. Beside
functions with only one blocks, our method also considers leaf
functions with multiple blocks, given that there are no loops in
such functions. If our pass sees that all possible paths taken
by such a function do not differ by much, we calculate the
mean value for all possible paths and use that mean value
to update the clock. We call such leaf functions as clocked
functions. By intuition, we can judge that it is also possible
to clock functions which call only clocked functions. In this
way, we can even clock functions which are not necessarily
leaf functions.

Optimization 2 - (Conditional Blocks Optimization) This
optimization is based on the principle that if a block has two
or more successors, given that those successors are not merge
nodes, we can make the successor with the least clock zero
and subtract its original value from all its siblings, while also
adding its original clock to the parent block. Another principle
of this optimization is that if all predecessors of a merge block
have that merge block as their only successor, the clocks could
be shifted from the merge node to them. It should be noted that
after having parsed all the blocks of a function and applying
this optimization, if it is still possible to apply this optimization
once more, it is applied.

There are several more optimizations applied, which are
reported in [9].

Optimization 3 - (Averaging of Clock) This optimization
is based on the fact that paths emanating from a block in a
function could be matching close together in total clock values.
One can imagine it as a specialized case of Function Clocking.
For Function Clocking, we just considered the paths emanating
from the entry block, but here we also check for paths besides
the entry block. When forming paths for a block, we only
consider blocks dominated by it (execution must pass through
the dominating block to reach its dominated blocks). We also
make sure there are no loops or unclocked functions in such
paths. If we find such a block in a function, we remove clocks
from all the blocks in the averaged path and assign the mean
clock value to that block.

Optimization 4 - (Loop Optimization) This optimization
considers the fact that loops are often executed multiple times.
So for example, if you have a for loop, the increment operation
will take place just before the next iteration. Therefore we
check for backedges and if we see that the clock of the block
from which the backedge is originating is less that a certain
threshold value and is also less than the clock of the block it
is jumping to, we merge its clock value to that block’s clock
and remove clock updating code from it.

Another part of this optimization is incrementing the clock
even before the loop is executed. This is possible if the number
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Fig. 6. Our tool modifies the LLVM IR code by inserting code for updating logical clocks, used for deterministic multithreading

1 for(i = 0; i < n; i++)

2 {

3

4 if (get_lock_cond(i))

5

6 lock (mutex) ;

7 perform_calc( param );
8 unlock (mutex) ;

9 }

10 else

11 perform_calc( param );
12 }

Fig. 7. Example loop for Optimization 5

of iterations are contained in a variable or represented by a
number and are therefore known at compile time, and there
is no function call inside the loop. If there are conditions
inside the loop, the minimum clock of all possible execution
paths multiplied by the number of iterations could be updated
before executing the loop, and the rest could be updated during
the loop execution, but if there are no conditions inside the
loop, the number of instructions inside the loop could just be
multiplied with the number of iterations of the loop. In this
case, there would be no need to update the clock inside the
loop. More details about this optimization can be found in [9]

Updating the clock before executing the loop has two ben-
efits. First it reduces the clock updating overhead. Secondly,
it also improves deterministic execution time, as now threads
can update their clocks faster, and therefore any thread which
is waiting for the other threads to go past it in clock values,
would have to wait less to acquire the lock.

2) Application level optimizations: Some optimizations are
too complex or impossible for the compiler to perform, as they
may require the application knowledge to work. Such kind of
optimizations require the programmer to slightly modify the
code. We discuss these optimizations below.

Optimization 5 - (Loop peeling )

By loop peeling, we can accentuate the effect of certain
optimizations that we apply for improving the performance
of deterministic execution. For example, with Optimization 4,
we can increment the clock even before the loop is executed.
However, if we have locks inside the loop, we cannot apply
this optimization. By rewriting the loop such that we can have
a loop without locks, we can improve the performance.

An example loop is given in Figure 7. Due to mutex lock
and unlock calls, we cannot update the clock before the loop
is executed. But if we rewrite this loop as shown in Figure 8,
the second loop, which starts on line 11, does not contain any

1 flag = 0;

2 cutoff = 0;

3 for(i = 0; i < n; ++j)

44

5 ..

6 insert_iter_param( param );

7 flag = flag | get_lock_cond(i);
8 cutoff = cutoff + !flag;

9}

10

11 for(i = 0; i < cutoff; i++)

12 {

13 ...

14 perform_calc (get_iter_param());
15 }

16

17 for (i = cutoff; i < n; i++)

18 {

9 ...

20 if (get_lock_cond(i))

21

22 lock (mutex) ;

23 perform_calc (get_iter_param());
24 unlock (mutex) ;

25

26 else

27 perform_calc (get_iter_param());
28

Fig. 8.  Modified example loop for Optimization 5

locks, and we could update the clock before executing it. Note
that it is possible that the condition for mutex lock and unlock
is never true during the original loop execution. In that case,
the third loop, which starts on line 17, would not be executed
at all. However, if the condition does hold true at least once
during loop execution, then we note down the first index at
which it was true (by using variables flag and cutoff), and only
use the third loop for those indexes.

Optimization 6 - (Mutually exclusive accesses of synchro-
nization objects)

This optimization consists of two parts, which are discussed
below.

Optimization 6.1 In some parallel applications, its possible
that not all the threads access the same shared memory. For
example, in Figure 9, we show a grid based application, where
the access to the elements on borders need to be synchronized.
These border areas are denoted by Ix (I1, 12 etc). It is obvious
that some threads do not share borders with each other. For
example, Thread 0 does not share any border with threads
4,5, 6 and 7. This means that they never access any shared
memory between them. Therefore, when comparing for clocks,
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Fig. 9. Mutually exclusivity of shared memory accesses
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execution

Communication between threads with software-only deterministic

for Thread 0, we do not need to compare its clocks with those
of threads 4, 5, 6, 7. In other words, Thread 0 never needs to
wait for threads 4, 5, 6 and 7 for acquiring a lock.

Optimization 6.2 Secondly, even for those threads that do
share borders, its not always necessary for one thread to wait
for another. For example, although threads 0 and 1 share
borders, we know for example that when Thread 0 is accessing
a shared memory in the region 12, it does not need to wait for
Thread 1. This is because Thread 1 would never access any
shared memory from the region 12.

B. Hardware extension

Figure 10 shows how the threads update and read clocks
for deterministic execution in DetLock. Note that in case of
Kendo, the clocks are updated by the kernel on receiving
hardware interrupts when a certain store count is reached. For
smaller number of cores, the overhead of reading clocks of all
threads may not be high. However, this would not scale well
with higher number of cores. Moreover, for DetLock, there is
also overhead induced by cache coherence, since while one
thread is updating its clock, other threads might be reading
from it, thus causing invalidations for cache coherence.

For reducing these overheads, we can build a hardware
which reads clocks from all the threads, and outputs 1 if
a thread satisfies the condition of acquiring a lock and 0
otherwise. In this way, threads do not need to read clocks
of the other threads, thus making this process faster, and not
causing cache invalidations for maintaining cache coherence.
Figure 11 shows the hardware-assisted process of writing the
clocks and reading the conditions for acquiring a lock.

We use the same hardware for both the hardware-assisted
DetLock and Kendo versions, which are discussed below.

/ Clock of Thread 1
(

| Thread 1 |
Acquire condition
for Thread 1
Clock of Thread 2
| Thread2 |
Acquire condition
fo Thread 2

Fig. 11.  Communication between threads with hardware-assisted determin-
istic execution

Core 1
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L 11 01 —
12 02 —
Comparator
hardware
13 03 —
14 (o7 S
Core 3
Core 4

Fig. 12.  Block diagram of the proposed hardware to perform deterministic
execution

1) DetlockHW: The block diagram of the hardware which
assists DetLock is shown in Figure 12. Each core writes to one
of the input registers of the comparator. The comparator writes
1 to the output register whose corresponding input register
contains the smallest clock value, while writing O to all the
other output registers. In this way, a thread can know, whether
to acquire a lock by just reading the value of its corresponding
output register. In case of two or more input registers having
the smallest value, the one with the least index has 1 written
to its corresponding output register. Through this hardware,
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Fig. 13.  Performance of record/replay with 2 and 4 threads (2T and 4T)

there is no need for threads to read other’s clocks and also no
overhead is incurred due to the cache invalidations that occur
for maintaining cache coherence which occurs in DetLock.

For Optimization 6, we can ignore comparing the clock for
some cores. Therefore, each core has a register to represent its
interaction with another cores, where the bits of that register
represent the cores. The clock of a core is compared if its
corresponding bit value is 1 and ignored otherwise.

2) KendoHW: The hardware assisted Kendo version uses
the same hardware as the hardware assisted DetLock version,
except that rather than the program writing clock values to
the hardware’s input, input is directly taken from hardware
performance counters for retired stores. This eliminates the
need for programming interrupts that update the clock value,
as in case of the original Kendo. This also means that the clock
value is updated after each retired store, instead of getting
updated after a certain number of stores, which depend upon
the chosen chunk size, as in case of the original Kendo version.

VII. PERFORMANCE EVALUATION

We selected 7 benchmarks, one from the PARSEC [3]
and six from the SPLASH-2 [13] benchmark sets. We ran
all our benchmarks on an 8 core (dual socket with 2 quad
cores), 2.67 GHz Intel Xeon processor with 32GB of RAM.
All programs were compiled using the clang compiler with
maximum optimization level set. The results are shown in
Table 1.

In this section, first we compare the performance of
record/replay with deterministic multithreading. This is fol-
lowed by a section which discusses the effect of queue size
on the performance of record/replay. Next we compare our
record/replay with Respec and our deterministic multithread-
ing scheme with Kendo.

A. Comparison of record/replay and deterministic multi-
threading performance

The comparison of the performance of record/replay and
deterministic multithreading is shown in Table I. For de-
terministic multithreading, we have shown results both with
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Fig. 15. Comparison of record/replay and deterministic multithreading for

4 threads. Left column is for record/replay (RR) and the right column for
deterministic multithreading (DM).

and without optimizations. The first column contains the
benchmark names, while the second column shows the number
of threads used. This is followed by the number of mutexes
used in the benchmark. Next, locks acquired during the exe-
cution are shown. This is followed by the number of memory
pages compared for error detection. This is followed by the
redundant execution time, which is the time to execute two
replicas of the benchmark programs freely, that is, without
fault tolerance or deterministic execution. Then we show the
deterministic execution time for record/replay, followed by the
fault tolerant execution time with record/replay. After that,
we show the deterministic execution time with deterministic
multithreading, for both unoptimized and optimized versions.
Lastly, we show the fault tolerant execution time with deter-
ministic multithreading using the optimized version.

The performance is also illustrated in Figures 13, 14 and 15.
Figure 13, shows the overhead for record/replay with two and
four threads, while Figure 14 shows the same for deterministic
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TABLE I
PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED BENCHMARKS

Benchmarks | Threads Mutexes Locks Pagescom- | Red exec | RR  det | RR FT | DM unopt | DM opt (ms) DM FT (ms)
pared time (ms) (ms) (ms) (ms)
Fluidanimate | 2 73802 3694640 3107 2079 2130 2%) 2130 2%) 2583 (24%) 2370 (14%) 2370 (14%)
idanimate ) 4 108242 7156250 2060 1250 1292 (3%) 1295 (4%) | 2218 (77%) 1662 (33%) 1667 (33%)
Wat 2 527 125047 351 2790 2841 (2%) 2926 (5%) 2462 (60%) 2870 (3%) 2879 (3%)
ater 4 527 188042 284 1407 1438 (2%) 1449 (3%) 2062 (47%) 1432 2%) 1465 (4%)
Ocean 2 3 498 299026 5290 5460 (3%) 5844 (10%) | 5330 (1%) 5320 (1%) 5572 (5%)
4 8 996 290633 2898 2917 (1%) 3593 (24%) | 2915 (1%) 2899 (0%) 3607 (24%)
Radiosit 2 3918 9001121 29318 1539 1632 (6%) 1680 (9%) 2437 (58%) 2032 (32%) 2066 (34%)
Sty 4 3922 8747666 29340 1005 1136 (13%) | 1180(17%) | 1907 (90%) 1544 (54%) 1569 (56%)
Radix 2 78 29 29318 965 966 (0%) 1018 (5%) 968 (0%) 968 (0%) 985 (2%)
@ 4 86 71 29340 606 609 (0%) 661 (9%) 615 (1%) 615 (1%) 692 (14%)
Raytrace 2 3918 121957 8772 1158 1162 (0%) 1173 (1%) 2606 (125%) 1207 (4%) 1242 (7%)
' 4 3922 121959 8950 690 694 (1%) 696 (1%) 816 (18%) 760 (10%) 765 (11%)
Barn 2 2053 1606025 7624 1652 1678 (2%) 1734 (5%) 1985 (20%) 1684 (2%) 1696 (3%)
arnes 4 2053 1606033 7097 1029 1108 (8%) 1149 (12%) | 1126 (9%) 1062 (3%) 1099 (7%)
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Fig. 16. Reduction in deterministic execution overhead of deterministic multithreading by applying optimizations

TABLE II
PERFORMANCE RESULTS OF OUR SCHEME FOR THE SELECTED BENCHMARKS

Benchmarks Original No Opt (ms) Opt 1 (ms) Opt 1+2 (ms) Opt 1+2+3 (ms) Opt 142+3+4 Opt 1+243+4+5+6
(ms) (ms)

Flui 1250 2218 (77%) 2163 (13%) 2125 (70%) 2075 (66%) 1950 (56%) 1662 (33%)

Water 1407 2062 (47%) 2068 (47%) 1829 (30%) 1736 (23%) 1432 (2%) -

Ocean 2898 2915 (1%) 2917 (1%) 2913 (1%) 2915 (1%) 2899 (0%)

Radiosity 1005 1907 (90%) 1742 (13%) 1620 (62%) 1577 (57%) 1544 (54%) B

Radix 606 615 (1%) 614 (1%) 616 (1%) 612 (1%) 615 (1%) -

Raytrace 690 316 (18%) 807 (17%) 765 (11%) 765 (11%) 760 (10%) B

Barnes 1029 1126 (9%) 1074 (4%) 1072 (4%) 1059 (3%) 1062 (3%)

multithreading. Lastly, Figure 15 shows the performance of
record/replay side by side with deterministic multithreading
for four threads. In all these figures, the lower portion of the
bar shows the overhead of deterministic execution, while the
whole bar shows the overhead of fault tolerant execution.
The improvement in performance of deterministic multi-
threading by applying different optimizations is shown in
Figure 16. For each benchmark, the leftmost bar shows the
overhead without any optimization. The next bar shows the
overhead by only applying Optimization 1, this is followed
by the bar which shows the overhead with Optimizations 1
and 2 combined. Similarly, the next bar shows the overhead
with Optimizations 1, 2 and 3 combined. The right most bar
shows the overhead after applying all the optimizations. Since

optimizations 5 and 6 was only applied to the Fluidanimate
benchmark, for all the other benchmarks, the optimizations are
shown only up till Optimization 4. These overheads are also
shown in the Table II.

From Figure 15, we can see that record/replay performs
better than deterministic multithreading for benchmarks with
large shared memory accesses, such as Fluidanimate and Ra-
diosity, but for other benchmarks, there is not much difference.
Therefore, in benchmarks with low to moderate shared mem-
ory accesses, deterministic multithreading would be a more
favorable approach due to its lower memory consumption and
less inter-process communication. The scalability of these two
approaches also follow a similar trend to their performance,
that is, benchmarks with high shared memory accesses scale
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Fig. 17. Effect of queue size on performance of the Fluidanimate benchmark

better with record/replay, while for other benchmarks there is
not much difference.

In Section VI, we discussed how modifying the code can
improve the performance for deterministic multithreading. We
discussed two optimizations for that purpose, Optimization 5
and 6. We show results for both 4 and 8 threads. The results for
the Fluidanimate benchmark are shown in Table III. Here, we
give the example of the Fluidanimate benchmark, which had
an overhead of 92% with 4 threads and 247% for 8 threads for
deterministic execution, even with all optimizations applied.
By applying Optimization 5, we reduced this overhead to 57%
for 4 threads and 190% for 8 threads, as shown in the fifth
column of Table III. Modifying the code also improved the
performance without deterministic execution, but even relative
to that version, the deterministic execution overhead is just
70% (shown after / in the table) as opposed to 92% for 4
threads and 228% as compared to 247% for 8 threads. We get
even further improvement by applying Optimization 6. With
that optimization, we were able to reduce the overhead to as
much as 35% for 4 threads and 99% for 8 threads.

The Radiosity and Raytrace benchmarks were not race free,
and we had to add some more locks to make them race free.
However, we noted that for Radiosity, the deterministic mul-
tithreading version even performed deterministically if some
races were left, indicating that deterministic multithreading
provides stronger determinism than record/replay.

B. Effect of queue size on record/replay performance

The effect of queue size on record/replay performance of the
Fluidanimate benchmark is shown in Figure 17. We can see
that the performance increases with the queue size. However,
the performance remains the same for queue sizes above
1024. Therefore, the queue size of 1024 is optimal in terms
of performance and memory efficiency. Note that for other
benchmarks, the queue size did not matter so much. Even
with a queue size of 16, they performed as well as with
higher queue sizes. The reason queue size matters more in
Fluidanimate is because it contains larger number of mutexes,
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Fig. 18. Comparison of our record/replay approach with that of Respec

and therefore there is less contention among the threads for
the same mutexes.

C. Comparison with Respec

Figure 18 shows the improvement that we get by avoiding
atomic variables and having an optimized queue. The left bars
are obtained by running the benchmarks with 2 threads while
right bars are obtained with 4 threads. The lower portion of
the bar shows the overhead with our record/replay scheme,
where we use a lockless queue and an optimized method for
storing the clocks for mutexes. The middle portion shows the
additional overhead that Respec needs using a hash table for
mutex clocks. The upper most portion shows the additional
overhead by using a naive lockless queue.

We can see that for Fluidanimate and Radiosity, which have
high lock frequencies, we have a significant improvement
in performance of deterministic execution. Furthermore, our
method of using separate clocks for each mutex is more
scalable than Respec’s method of using limited clocks and
accessing them through a hash table, that requires atomic
operations. The scalability here can be assessed by the fact
that for two threads, our scheme and Respec’s scheme perform
similarly, while for four threads, our scheme performs far
better. From this result, we can predict that our scheme will
have even better results compared to Respec for larger number
of cores. Furthermore, our lockless queue also shows much
better scalability than a naive lockless queue due to avoiding
true and false sharing of cache lines.

D. Comparison of DetLock with Kendo

In Table IV, we compare DetLock with Kendo. Note that
the purpose of our scheme is not to surpass Kendo in perfor-
mance but to make it more portable while retaining sufficient
efficiency. We also compare the hardware assisted versions of
DetLock and Kendo in this table. For performance evaluation,
we selected two benchmarks from PARSEC, which are Flu-
idanimate and Swaptions and three from SPLASH, Radiosity,
Raytrace and Water. Fluidanimate and Radiosity have very



77

TABLE IIT
PERFORMANCE RESULTS OF THE FLUIDANIMATE BENCHMARK BEFORE AND AFTER MODIFICATION OF CODE

Fluidanimat Orig | Modified | Det Det with Opt5 Det with Opt5&6.2 | Det with Opt5&6.1&6.2
Exec Time & Overheads (4T) | 1239 | 1148 2382 (92%) 1946 (57%170%) 1673 (35%/46%) NA
Exec Time & Overheads (8T) | 1327 | 1172 4612 (247%) | 3851 (190%/228%) | 3586 (170%/205%) | 2646 (99%/125%)

TABLE 1V
PERFORMANCE RESULTS OF OUR SCHEME AS COMPARED TO KENDO

Benchmark | Fluid | Swaptions [ Radiosity [ Raytrace | Water
Results for 4 threads

Locks/sec 6655543 216979 2666366 120984 377701

Lock frequency High Low High Low Low

Chunk size used 2000 1000 2500 800 7000

Original 26.88 27.03 NC 63.38 35.96

Non-det 27.22 (1%) 26.68 (0%) 41.5 63.53 (0%) 37.2 3%)

Unopt SW1 46.56 (73%) 29.90 (11%) 58.14 (41%) 68.80 (9%) 52.56 (46%)

DetLock SWI 39.79 (48%) 30.02 (11%) 51.07 (24%) 63.37 (0%) 44.76 (24%)

Unopt SW2 40.25 (50%) 36.29 (34%) 63.68 (55%) 69.88 (10%) | 49.39 (37%)

DetLock SW2 38.05 (42%) 28.92 (7%) 49.0 (18%) 66.72 (5%) 47.15 (31%)

DetLock SW2 with Opt6 34.59 (29%) - - - -

Kendo 41.1 (53%) 34.55 (28%) 81.1 (95%) 65.11 3%) | 43.1 (19%)

DetLock HWI 28.01 (4%) 27.96 (3%) 49.34 (20%) 64.78 (2%) 44.27 (23%)

DetLock HW2 34.73 (29%) 29.48 (9%) 48.1 (16%) 64.29 (1%) | 44.10 (23%)

DetLock HW2 with Opt6 | 32.22 (20%) - - - -

KendoHW 32.87 22%) 29.99 (11%) 49.6 (20%) 64.43 (2%) 43.8 (21%)
Results for 8 threads

Locks/sec 22746816 227835 5273035 120965 542817

Lock frequency High Low High Low Low

Chunk size used 2000 1000 2500 800 7000

Original 16.02 13.73 NC 63.39 NC

Non-det 16.18 (1%) 13.59 (0%) 22.9 63.68 (0%) 42.6

Unopt SW1 62.82 (292%) | 18.03 31%) 53.94 (136%) | 75.46 (19%) | 64.35 (51%)

DetLock SWI 49.36 (208%) | 16.22 (18%) | 36.57 (60%) | 73.65 (16%) | 59.45 (40%)

Unopt SW2 53.3 (233%) 23.92 (74%) 93.61 (308%) | 74.22 (17%) | 62.28 (46%)

DetLock SW2 39.29 (145%)

16.99 (24%)

47.2 (106%) 73.47 (16%) | 58.4 (37%)

DetLock SW2 with Opt6 29.35 (83%) -

65.08 3%) | 57.1 (34%)

Kendo 50.61 (272%) | 34.14 (149%) | 71.6 (213%)

DetLock HW1 38.88 (143%) | 15.84 (15%) | 29.75 (30%) | 63.74 (0%) 58.0 (36%)
DetLock HW2 29.52 (84%) 16.55 (21%) 39.4 (72%) 63.76 (0%) 58.0 (36%)
DetLock HW2 with Opt6 | 24.0 (50%) - - - -
KendoHW 28.13 (76%) 16.99 (24%) 37.2 (62%) 63.61 (0%) | 58.4 (37%)

high number of shared memory accesses, while Swaptions,
Water and Raytrace have low shared memory accesses. The
benchmarks were run using the Marssx86 [19] simulator,
which is a cycle accurate simulator for multicore x86 systems.
All benchmarks were run using 4 and 8 cores, where each
core is occupied by a different thread. The simulator has been
modified to include our hardware-assisted approach.

Kendo updates clocks by using performance counters. The
performance counter for retired stores for example, is pro-
grammed to give an interrupt after fixed number of stores. So,
for example, we can set the performance counter to update the
clock after every 2000 stores. The authors of Kendo call this
number, the chunk size. For benchmarks, which were used in
the Kendo paper, we use the same chunk size, but for other
benchmarks, which are Fluidanmiate and Swaptions, we use a
chunk size of 2000 and 1000 respectively. Our implementation
does not involve performance counters and interrupts, as
that would require further change for the simulator and also
modification of the kernel. However, we mimic Kendo as close
as possible by updating the retired store count after number

of stores, which are equal to the chunk size. So actually, the
results would be a little bit better than actual as their would be
no interrupts. It should be noted that those interrupts can have
a significant impact on performance, as the author of Kendo
showed that by reducing the chunk size from 2500 to 1000,
the interrupt overhead for Radiosity increased from about 10%
to 20%. Note that for the Kendo paper, the author only used a
chunk size of less than 2000 for only 2 benchmarks out of 10,
that is why, we think keeping the chunk size for Fluidanimate
and Swaptions, which were not used in the Kendo paper, to
2000 and 1000, is fair enough.

For each benchmarks, we show frequency of locks acquired,
followed by time taken by the original program. This is
followed by the time taken by the code which includes clock
update code for deterministic execution, but does not perform
deterministic execution. We call this the Non-det version. This
is followed by the performance of DetLock. Here, the SW1
version updates the clock as discussed in the previous sections,
that is, it counts every instruction for clock update. However,
the SW2 version only counts loads and stores. In most cases,
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the SW2 version gives better performance. This is because,
we work on the intermediate code, which is not really the
exact representation of the final compiled code. By counting
each instruction, we may increase the error, as instructions are
much more in number than only loads and stores. Next in the
table, we show the performance of Kendo. This is followed
by the hardware assisted versions of DetLock, with version
HW1 counting every instruction for clock update while HW2
counting only loads and stores. Finally, we show the results
of hardware assisted Kendo (KendoHW).

The original time for Radiosity and Water (with 8 threads)
was not calculated (indicated as NC in the table) due to a bug
causing it crash during simulation. In this case, the percentage
overheads in the table are calculated with respect to the non-
deterministic version with clock updating code (Non-det).

For benchmarks with high amount of shared memory ac-
cesses, DetLock outperforms Kendo. The reason that DetLock
performs better for such benchmarks is that the waiting time
is less, as DetLock updates the clock much more frequently
than Kendo, whereas Kendo only updates the clock after
given number of chunks. For example, for Fluidanimate, the
improvement is 189% for 8 threads (From 272% to 83%).
As far as benchmarks with low frequency of shared memory
accesses are concerned, DetLock performs better with Swap-
tions. This is because in Swaptions, such compute intensive
loops are found for whom clock count can be updated ahead
of time, that is, before executing those loops, thus increasing
the deterministic execution performance by reducing waiting
time for threads trying to acquire locks. On the other hand,
there is not much opportunity to significantly update the clock
ahead of time for Water and Raytrace. Therefore, for Water,
DetLock performs at par with Kendo, while for Raytrace,
Kendo performs slightly better than DetLock. We suspect
that the reason Kendo performs slightly better for Raytrace is
because the clock used by Kendo is more accurate, as Kendo
counts the actual stores happening during run time, while we
count loads and stores or instructions at compile time and that
too on the intermediate code.

As far as the hardware assisted versions of Kendo and
DetLock are concerned, the DetLock version is at par with the
Kendo for all benchmarks except Fluidanimate and Swaptions.
For Fluidanimate, DetLock improves performance by 26%
for 8 threads. Even for a Swaptions, which has low lock
frequcency, DetLock performs a little better as compared to
Kendo, due to its ability to update clocks ahead of time. Unlike
the original Kendo version, which updates clock after a certain
number of stores, which depends on the selected chunk size,
our hardware assisted Kendo version updates the clock after
each store. This is why it performs so much better than the
original Kendo version.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we described the design and implementation
of a user-level leader/follower based fault tolerance scheme
for multithreaded applications running on multicore proces-
sors. We use two different techniques to ensure deterministic
shared memory accesses by the replica. The first one is

record/replay technique where one replica logs the order of
shared memory accesses and the second one is deterministic
multithreading, where the redundant processes do not need to
communicate with each other for ensuring deterministic shared
memory accesses. From experimental evaluation, we see that
record/replay is faster and more scalable than deterministic
multithreading at the cost of more memory on benchmarks
with large shared memory accesses. On benchmarks with small
to moderate shared memory usage, the performance of these
two is comparable.

For 4 threads, record/replay has an overhead of less than
25% for all benchmarks, while with deterministic multithread-
ing, the overhead is also less than 25% for benchmarks with
little to moderate shared memory accesses, but can reach 56%
for those with high shared memory accesses. The overhead
of deterministic multithreading was significantly reduced by
applying various optimizations. For example, for Fluidanimate,
the overhead was brought down from 77% to just 33% for 4
threads using these optimizations.

To improve performance and scalability, we implemented a
hardware extension to aid in deterministic multithreading. As
compared to Kendo, our deterministic multithreading Scheme
(DetLock) showed overhead reduction up to 189% for 8
threads. Even when Kendo is assisted with hardware, the
hardware assisted DetLock version can improve performance
up to 26% over Kendo.
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WCET CALCULATION USING
DETERMINISTIC MULTITHREADING

SUMMARY

In this chapter, we use a model checking based approach to calculate the WCET, where
we apply optimizations to reduce the number of states stored by the model checker. Fur-
thermore, we use deterministic shared memory accesses to further reduce calculation
time, memory and number of states needed for calculating WCET. By optimizing the
model checking code, we are able to complete benchmarks which otherwise have state
explosion problems. Furthermore, by using deterministic execution, we significantly
reduce the calculation time, memory and states needed for calculating WCET with a
negligible increase in the calculated WCET for a multicore system. Lastly, unlike other
state-of-the-art approaches, that perform binary search to search the WCET by running
several iterations, our method calculates WCET in just one iteration.

By optimizing the model checking code, we are able to complete benchmarks which
otherwise have state explosion problems. Furthermore, by using deterministic execu-
tion, we significantly reduce the calculation time (up to 158x), memory (up to 89x) and
states needed (up to 188x) for calculating WCET, with a negligible increase (up to 4%) in
the calculated WCET for a multicore system with 4 cores. Lastly, unlike other state-of-
the-art approaches, that perform binary search to search the WCET by running several
iterations, our method calculates WCET in just one iteration. Taking all these optimiza-
tions into consideration, the gain in speed of WCET calculation is from 1775x to 2471x
for 4 threads.

This chapter is based on the following papers.
1. Mushtagq, H.; Al-Ars, Z.; Bertels, K., Accurate and efficient identification of worst-
case execution time for multicore processors: A survey, Design and Test Symposium

(IDT), 2013 8th International, 16-18 Dec. 2013
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2. Mushtagq, H.; Al-Ars, Z.; Bertels, K., Calculation of Worst-Case Execution Time for
Multicore Processors using Deterministic Execution, Submitted to PATMOS 2015.
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Accurate and Efficient Identification of Worst-Case
Execution Time for Multicore Processors: A Survey

Hamid Mushtaq, Zaid Al-Ars, Koen Bertels
Computer Engineering Laboratory
Delft University of Technology
Delft, the Netherlands
{H.Mushtaq, Z.Al-Ars, K.L.M.Bertels} @tudelft.nl

Abstract—Parallel systems were for a long time confined to
high-performance computing. However, with the increasing pop-
ularity of multicore processors, parallelization has also become
important for other computing domains, such as desktops and
embedded systems. Mission-critical embedded software, like that
used in avionics and automotive industry, also needs to guarantee
real time behavior. For that purpose, tools are needed to calculate
the worst-case execution time (WCET) of tasks running on a
processor, so that the real time system can make sure that real
time guarantees are met. However, due to the shared resources
present in a multicore system, this task is made much more
difficult as compared to finding WCET for a single core processor.
In this paper, we will discuss how recent research has tried to
solve this problem and what the open research problems are.

I. INTRODUCTION

For a long time, single core processors ruled the desktop
and embedded market. The popularity of the single core
processors could be attributed to the portability they provided.
A program written for one processor, could be ported to
the faster version of the same processor without changing a
single line of code. However, at one point, it was no more
possible to build faster single processors due to the huge
amount of power they would need. That is the point, where
multicore processors came into existence, as they are more
power efficient. Nowadays, multicore processors are common
in desktops, laptops and mobile phones. However, industries
which use mission critical embedded software, such as avionics
and the automotive industry have been reluctant to employ
multicore systems. The reason being that such software also
needs to meet timing deadlines for real time performance. For
guaranteeing real time performance, the real time scheduler
needs to know the worse-case execution time (WCET) of each
task. Finding a good estimate (less pessimistic) of WCET, of
a task is much simpler if it runs on a single core processor
than if it runs on a multicore processor concurrently with other
tasks. This is because those tasks can share resources, such as
shared cache or shared bus, and/or may need to concurrently
read and/or write shared data.

Recently, there has been an increasing interest to solve
the problem of finding WCET for tasks running on multicore
processors, from hardware solutions to software solutions for
Commodity Off The Shelf (COTS) processors. In this paper,
we discuss the research done in this context and also point
out the open issues. In Section II, we provide the necessary
background to help reader understand the problem of WCET.
This is followed by Section III which discusses the WCET
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calculation techniques employed for single core processors.
Next, we discuss the research that has been done for calcu-
lating WCET of multicore processors in Section IV. This is
followed by Section V on open issues. We finally conclude the
paper with Section VI.

II. BACKGROUND

Multicore processors can be useful in embedded systems,
such as automotive systems, as that would mean that software
could be made more centralized. This translates to less cable
usage in cars, and therefore less fuel consumption, as more ca-
ble length is directly proportional to fuel consumption in cars.
Moreover, with processors with more cores, more functionality
could be added, for example, we could have an improved
braking system, which uses more sensors [27].

Mission critical embedded systems perform hard real time
tasks, which need to complete within a certain time period.
To be able to guarantee that those tasks finish within that
time period, their WCET should be known. For single core
processors, techniques to find WCET are well known and there
are several tools available to perform that. Those techniques
and tools can be found in the literature [30].
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As seen from Figure 1, there are two main methods of find-
ing WCET, measurement based methods and static methods. In
measurement based methods, the execution time is measured
either through direct measurement or simulation of the code by
giving different inputs. The obvious drawback of this method
is that the WCET can be underestimated in this way, as not
all possible paths could be tested with the limited number of
inputs. This fact is shown in figure 2, where the curve for the
measurement-based experiments is shown with a solid line,
while the curve with all possible inputs possible is shown with
a dotted line. To overcome this, one could put a safety margin
over the measured WCET. However, the safety margin is still
just a guess and the picked WCET could end up less than the
real WCET. One way to have better estimations is to measure
the worst-case execution time of each basic block and then try
to find the path with the worst-case time by adding the time
taken by these blocks. However, this would only work for
very simple processors. In the presence of advanced features,
such as pipeline, branch predication, out-of-order execution
and caches, this would not work. In the presence of these
advanced features, the worst-case execution time of a block is
dependent on the path followed by the program. For example,
the cache misses in a basic block will be dependant upon from
which path the program reached that basic block.

Due to the fact that measurement based methods under-
estimate WCET, we limit ourselves to only static methods.
There are two major kinds of static methods used for calcu-
lating WCET, namely static analysis and model checking. The
combination of these two is also employed in some cases. The
details of these methods is discussed in detail in the next two
sections.

The major steps taken in calculating WCET are shown in
Figure 3 [1]. The input executable is read to construct a control
flow graph (CFG). Afterwards, control-flow analysis (CFA) is
performed which performs steps such as removing infeasible
paths, trying to find loop bounds and determine frequencies
of execution of paths, etc. At that point, the user could also
provide information such as loop bounds which could not be
found by CFA, or known values at certain locations in the
program, so that CFA can more precisely find infeasible paths.
The annotated CFG with the micro-architectural analysis is
then used to find the WCET of each basic block. Finally path

Path Analysis
1

Explicit path
enumeration
technique

[

‘ Tree based ‘

Figure 4. Path analysis methods used for WCET calculation

analysis is performed to find the WCET. Since the goal is to
calculate a WCET which is at least equal to the real WCET,
the calculated WCET is almost always greater than the real
WCET, as shown in Figure 2. Therefore, the quality of a tool
measuring WCET is assessed by how close WCET it calculates
with respect to the real WCET, in other words how much
tighter the WCET it calculates.

III.  WCET FOR SINGLE CORE PROCESSORS

While the main focus of this paper is on finding WCET
for multicore processors, it is first important to discuss the
techniques applied to single core processors. This is because,
even for single core processors, finding WCET is not straight
forward, as typical single core processors are designed to have
good average-case execution time, through features such as
pipelining, cache memories, out-of-order execution, specula-
tion and branch prediction. All these features, make accurate
timing analysis a difficult problem [4].

These performance-enhancing features, also introduce tim-
ing anomalies. For example, one may assume that it would
be safe to use a cache miss time for WCET calculation.
However [21] showed that for out-of-order execution, it is
possible that in some cases a cache hit would increase the
time as compared to a cache miss.

There exist two main techniques for finding WCET for
single core processors, namely static analysis and model
checking. Static analysis is more computationally efficient in
finding the WCET as compared to model checking, as model
checking can have state-space explosion problems. However,
model checking can find tighter WCET estimates. This is be-
cause, model checking can more accurately model a processor,
while static analysis can just approximate the processor model,
as it needs to find the WCET without actually running the
program. These two techniques can be combined though to
achieve the best results. In Section III-A, we will discuss
related work using static analysis, while in Section III-B, we
will discuss techniques which employ model checking for
finding WCET.

A. Static analysis

Static analysis techniques try to find the WCET without ac-
tually running the program. Since they do not run the program,
they need to approximate the processor model. Therefore,
static analysis techniques are divided into two steps. First step
is performing CFA on the CFG, and performing value analysis
to find loop bounds, values to eliminate infeasible paths and
addresses to help in finding cache hits and misses, followed
by processor modeling to obtain the WCET of each basic
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block in the program. There are three techniques to do this,
abstract interpretation (Al), integer linear programming (ILP)
and constraint logic programming (CLP). The second step is
to find the WCET using WCET of the basic blocks. Different
techniques employed for this purpose (Path analysis) are shown
in Figure 4.

1) Tree based: The tree based method for path analysis tra-
verses the CFG in bottom-up fashion, combining the WCETs
of the basic blocks along the way (see [30] for more detail).
This method is quite efficient but suffers from some limitations.
For example, it is not possible to represent goto statements.
Also, it is difficult to eliminate infeasible paths. An example
of a paper using this technique is [9], which employs this
technique for a processor with pipeline, branch prediction and
an instruction cache.

2) Explicit path enumeration technique: This technique
tries to find the longest path in terms of execution time by
looking for all the possible paths in the program. It first tries
to eliminate all infeasible paths in the program. This method
suffers from low performance, as the number of paths that need
to be examined increases exponentially with the program size.

3) ILP: Due to the problem associated with explicit-path-
enumeration technique, authors in [19] propose integer lin-
ear programming (ILP) to solve the WCET problem implic-
itly. That is why this techniques is known as implicit-path-
enumeration technique (IPET). Equation 1 is the basic equation
of calculating WCET with this technique. Here ¢ is the cost of
basic block i and x is the number of times that basic block is
executed. The WCET is given by finding the maximum value
of Equation 1.

i CiTi. (D)
=1

The authors of [19] extended their work to also account for
architectures with instruction caches in [20]. Both modeling
of the instruction cache (processor modeling) and calculating
of WCET (path analysis) is done using ILP. A basic block
is further divided into line blocks, where each line block
represents contiguous instructions which use the same cache
line. Also, information is kept for a line block whether it
incurs a cache miss or is a cache hit. This method might
work for simple models, but for more complex processor
architectures, which include pipelining, speculative execution,
branch prediction and out-of-order execution for example, it
becomes prohibitively difficult to use ILP due to its restrictive
nature. For those purposes, Abstract Interpretation (AI), which
is discussed next, is much more feasible.

4) AI+ILP: Abstract Interpretation (Al) is a dataflow tech-
nique to approximate model of a processor. Al can be used for
example to get a set of possible values for a variable. However,
since Al is an approximate method, it might also include values
in a set, which would not occur in the program. Therefore,
techniques using AI overestimate WCET at the cost of finding
WCET in less time as compared to model checking.

That is why authors in [29] separate processor modeling
and path analysis steps. For processor modeling, they use Al
Through Al, they model pipeline and caches. Through Al they

can classify an instruction as always hit, always miss, persistent
(miss for first time and then always hit) or unclassified. In
the case of unclassified, both scenarios are considered, that is
cache hit and cache miss, as previously discussed that due to
timing anomalies, it is not enough to consider cache miss as
the worst case scenario.

While [29] checks for always miss, always hit and un-
classified instructions in a global scope, [15] also consider
local scopes like loops and functions. They argue that the same
cache line block used in different scopes might not interfere
with each other and therefore would be mutually exclusive,
so in this way we could have blocks which are classified
as persistent only in that local scope. This method reduced
estimates of the WCET by upto 74%.

5) CLP: Another alternative of processor modeling and
path analysis using ILP is to use constraint logic programming
(CLP). The drawback of ILP is that we are limited to only us-
ing linear constraint with ILP, and for representing disjunction,
we have to duplicate a block. For example, if a block can
be reached from two different paths, it has to be duplicated
into two blocks, each having a different WCET, but with CLP,
we can actually define through constraint equations the value
of WCET values for that block for different paths. Authors
in [22] showed that using CLP significantly reduced WCET
calculation time as compared to ILP, as there are much less
blocks required due to the ability of representing disjunctions
through constraint equations.

B. Model checking

The problem with static analysis is that it is an approximate
method, due to the approximate nature of the processor mod-
eling steps. With model checking on the other hand, we can
build a more concrete model of a processor, and therefore have
tighter WCET estimates. For example, when cache accesses
cannot be classified with AI, we have to check execution
time with both cache miss and cache hit. On the other hand,
with model checking, some of those instructions which were
unclassified in Al, could be classified, thus tightening up the
WCET estimates. [14] is an example which supports model
checking for finding WCET for Java processors. The authors
use UPPAAL [3] model checker for that purpose. The authors
noticed that model checking was enough for typical tasks in
embedded systems. However, for larger applications, it was too
slow. The authors recommended that model checking could
be combined with static analysis in such a way, that the
more important code fragments could be analyzed with model
checking while the remainder of the application with static
analysis.

[23] also uses a model checker. Instead of using each
instruction in the model checker, the authors use basic blocks,
thus reducing the number of states for model checking.

[17] combine model checking with static analysis to find
WCET. The model checking is useful in deriving loop bounds,
which change dynamically. For example, for loop bounds that
depend upon two variables, the user just has to feed a range
of values of these variables and the model checker can extract
the loop bounds from them.
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Figure 5. Example of timing anomaly in a multicore processor [32]

IV.  WCET FOR MULTICORE PROCESSORS

We discussed previously that single core processors can
have timing anomalies in the presence of complex performance
enhancing features. Multicore processors have another source
of timing anomalies due to shared resources, such as shared
cache memory. An example is shown in Figure 5. Let us
assume the path ABD is the worst-case path if seen separately.
In the presence of shared L2 cache however, ACD might
become worst-case path if a thread running on another core
evicts more instructions from C than B in the L2 cache.
Therefore, whenever analyzing WCET for a multicore, we
always need to consider all the tasks running on different cores
together, which can significantly increase the complexity of
timing analysis.

In Section IV-A, we discuss the WCET calculation methods
used for mutlicore systems, which are static analysis and model
checking, whereas, in Section IV-B, we discuss techniques that
assist in WCET estimation.

A. WCET calculation methods

Like in case of single core processors, WCET calculation
techniques can also be divided into static analysis and model
checking. These two techniques for multicore systems and their
comparison is discussed next.

1) Static analysis: The first work done in this regard was by
[32], which extends [29] to a multicore processor with private
L1 caches but shared L2 cache. Through Al, this method tries
to find out which instructions are always cache hits or always
cache hits after the first time. It considers all other instructions
as cache misses. This method first checks for L1 cache misses
separately. An L1 cache miss implies either an L2 cache hit or
an L2 cache miss. The basic idea is to check if the same cache
block will be used by another thread running on another core.
If that is the case, the basic block is marked as to have an L2
cache miss if the other thread is using that block with a loop,
otherwise it is marked as always-except-one-hits. If the cache
block is not used by the other core, then it is marked as always-
hit. The WCET is found by solving the linear constraints
formed by Al. The authors of this paper extend this method to
also include data caches in [33]. The drawback of this method
though is that it considers the effect of caches in isolation,
that is not including performance enhancing features such as
branch prediction and speculative execution which can cause
timing anomalies. In case of timing anomalies, it is not enough
to assume cache miss as the worst case.

To solve this problem [7] include pipelining, branch pre-
diction and speculative execution in their analysis. Although
they only consider instruction L2 caches. With timing anomaly

in consideration, the timing analysis becomes more complex,
as we cannot just assume a cache miss, if we are not sure
about a cache access being a cache miss or a cache hit. This
is the reason, the authors classify cache accesses as always-hit,
always-miss and unclassified. For unclassified, both a cache hit
and a cache miss are tried to find out the WCET.

[13] uses a technique similar to [7] but improves WCET
calculation by employing bypassing of caches. Bypass of a
load instruction for example, for a cache level means that
if there is a miss, the memory block would not be brought
into the cache, while if there is a cache hit, age of no cache
block would be altered. In this way, instructions which are
rarely used in a program could be bypassed, thus reducing
inter-core conflicts and therefore improving timing analysis.
The instructions to be bypassed are chosen by the compiler
at compile time. [13] only considers bypassing for instruction
caches, while [18] does it for both instruction and data caches.
It has to be noted though that not every processor has a bypass
instruction and therefore this method is not portable.

2) Model checking: Besides, static analysis, model check-
ing is also a viable approach for calculating WCET for a
multicore processor. We can either use model checking alone
or combine it with static analysis. When model checking is
used alone, both the processor modeling and path analysis
is done using the model checker. The user can query the
model checker with a guess WCET, to see if the maximum
time calculated by the model checker is less than or equal
to the guessed WCET. The guess is refined until the WCET
is matched with the maximum time calculated by the model
checker.

[31] uses model checking to estimate WCET. The model
checking language used is PROMELA, which is the language
of SPIN [2] model checker. The approach works for shared L2
caches. The authors show that using model checking improves
the tightness of WCET as compared to static analysis only
approaches. This is because model checking can check every
possible interleaving of threads running on different cores, and
therefore some cache accesses which cannot be classified as
cache miss or cache hit, can be properly classified with a model
checker. One problem with using a model checker is the state-
space explosion problem. The authors of [31] tried to reduce
this by first finding L1 and L2 cache hits and misses for a
task by assuming it is running on a single core processor.
This information is then imported for model checking the real
scenario, that is tasks running on a multicore processor. In this
way, only the L2 hits need to be taken care of, as L2 misses
would still be misses on a multicore.

[8] combines static analysis with model checking to
calculate WCET. AI is used to model the shared cache, but
model checking is used to model the shared bus, which is the
bus that is used to read from and write to the main memory.
The main reason of using model checking for the shared bus
is because it is much simpler to model it with a model checker
as compared to modeling it with AI. Furthermore, since it is
more accurate, it also gives tighter WCET estimates.

[12] uses UPPAAL [3] to model a multicore system with
private L1 caches and a shared L2 cache. This method also
works for tasks communicating with each other through shared
memory using spin locks. Since, each instruction is modeled,
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Figure 6. Model checking vs static analysis comparison

the state space is large, and therefore this method only works
for small programs. Even for those programs, a WCET can
only be calculated with two cores. For more cores, state space
explosion is observed.

[6] uses model checking and static analysis. This method
supports shared memory communication among the tasks. A
program is divided into communication and execution slices.
At the start of an execution slice, data is loaded into the private
caches of the cores and at the end of the communication slice,
data is put back in the main memory. State-space explosion
occurs when there is too much communication involved. Also,
this method slows down execution, as data has to be read
from and written to the main memory at each execution and
communication slice.

3) Model checking vs static analysis: Figure 6 compares
static analysis with model checking for finding WCET for
multicore processors. We can see that static analysis is faster
but finds more pessimistic WCET as compared to model
checking based approaches. Moreover, it is also more difficult
to implement. The problem with model checking is that it
suffers from scalability problem, as with more cores, there
are more states possible, thus causing state-space explosion
for larger programs. The good thing though is that model
checking can be aided by static analysis to reduce those states,
as done by some papers discussed in Section IV-A2. However,
none of those papers used a processor with more than 2 cores,
suggesting that even by combining static analysis with model
checking, it is still difficult to find a scalable method.

B. Assisting WCET estimation

Hardware approaches can ease in estimating tighter WCET.
For example, [10] proposes hardware mechanism to al-
low execution of synchronization operations such as mu-
tex locks in bounded time. The logic for the hardware
synchronization primitives (such as test-and-set, fetch-and-
increment/decrement) is nested in the memory controller.

Cache locking and cache partitioning [28] can make the
task of WCET calculation much easier. Cache partitioning
means that the tasks running on different cores use a separate
portion of the shared cache, while cache locking allows a user
to load certain data in the cache and lock it, that is, prevent
it from being replaced. The benefit of cache partitioning is
that one could perform WCET calculation for tasks running
on separate cores separately. While cache partioning can ease
the calculation of WCET, it can also reduce performance, as
due to less cache space available to a task, more cache misses
could occur.

[16] proposes synchronized cache management to ease
finding a tighter WCET. This is done by using page coloring.
Physical pages of different colors do not cause cache conflict.
Moreover, there are limited number of pages of the same
color. Accesses within the same colored memory by different
cores cause conflict only when the number of cache ways are
exhausted. The authors view each color as a shared resource,
where a lock is required to access that shared resource. For
locking, the authors implemented a synchronization protocol.

[26] propose an interference-aware arbiter, through which
the maximum time to access a shared resource by a hard real-
time task (HRT), such as shared memory has an upper bound.
The system assumes that both HRT and non-real time (NRT)
tasks are running concurrently on the system and makes sure
that the access to a shared resource by an HRT is bounded in
time to ease WCET calculation.

V. OPEN ISSUES

For single core processors, there are several tools available
for estimating WCET of tasks as discussed in [30]. However,
there is no such tool available yet for multicore processors,
as we saw that timing analysis for multicore processors is
much more complex due to increased number of states possible
due to access of shared resources. Here, we discuss the still
open issues for solving the problem of estimating WCET for
multicore systems.

A. Scalability and precision

Although the scalability of static analysis is better as
compared to model checking, the static analysis methods are
still not very scalable, as the possible number of states with
a multicore processor is still much more than that of a single
core one. There are no papers yet that use more than two cores
for experiments. All of the static analysis approaches that we
discussed use ILP for path analysis. It would be interesting to
use CLP instead, because [22] showed that CLP is much faster
than ILP on single core.

A combination of model checking and static analysis
methods could represent the most appropriate solution. One
way to solve the scalability issue would be to only perform
model checking on the compute-intensive part of the code and
use static analysis for the rest.

B. Synchronization

Almost all the methods that we discussed for finding
WCET on multicore processors ignore the problem of data
sharing between the cores, and those that do consider it have
some limitations. [6] writes back data to the main memory after
every communication slice and reads it back from the main
memory at the start of each execution slice, thus incurring a
much larger overhead as compared to keeping the shared data
in cache. [10] describes a hardware approach to bound the
time of synchronization operations, but the obvious drawback
of this method is that it needs hardware modifications, thus
impacting portability.

One possible solution is to use determinsitic execution [25]
[24], where locks for shared memory access are acquired in
such a way that there is only one schedule possible. Although
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this method ensures determinism of shared memory accesses
for only a given input, [S] showed that even when an exhaustive
set of inputs is considered, deterministic execution can have
a smaller schedule space than non-deterministic approaches.
However, to employ this method, the problem of global clock
reading that [25] and [24] employ would need to be solved
first, as global clock reading can cause cache evictions and
therefore increase cache coherence activity.

VI. CONCLUSION

In this paper, we discussed the challenges of finding WCET
for multicore processors and discussed some recent approaches
in that direction. However, none of the existing approaches
have been tried and tested for more than two cores, thus raising
the concern of scalability of such approaches. Also, most of
these approaches ignore the fact that data could be shared
between the cores. Those that do, suffer from performance
or portability problems. We also gave suggestions on how this
scalability and synchronization problem could be solved.
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Abstract—Safety critical real time systems need to meet strict
timing deadlines. We use a model checking based approach to
calculate the WCET, where we apply optimizations to reduce
the number of states stored by the model checker. Furthermore,
we used deterministic shared memory accesses to further reduce
calculation time, memory and number of states needed for
calculating WCET. By optimizing the model checking code, we
were able to complete benchmarks which otherwise were having
state explosion problems. Furthermore, by using deterministic
execution, we significantly reduced the calculation time (up to
158x), memory (up to 89x) and states needed (up to 188x) for
calculating WCET with a negligible increase (up to 4%) in the
calculated WCET for a multicore system with 4 cores. Lastly,
unlike other state-of-the-art approaches, that perform binary
search to search the WCET by running several iterations, our
method calculates WCET in just one iteration. Taking all these
optimizations into consideration, the gain in speed was from
1775x to 2471x for 4 threads.

I. INTRODUCTION

Adapting multicore systems to real time embedded systems
is a challenging task, as a real time process, besides being error
free, must also meet timing deadlines. The real time scheduler
needs to know the worst-case execution time (WCET) of each
task. Finding a good WCET estimate (less pessimistic) of a
task is much simpler if it runs on a single core processor than
if it runs on a multicore processor concurrently with other
tasks. This is because those tasks can share resources, such as
shared cache or shared bus, and/or may need to concurrently
read and/or write shared data.

Recently, there has been an increase in interest to solve the
problem of finding WCET for tasks running on multicore pro-
cessors, from on-chip hardware support to software solutions
for commodity off the shelf (COTS) processors. But most of
those do not take into account the shared memory accesses. In
[6], the authors do take into account shared memory accesses,
but the state explosion problem of the model checking based
approach they use limits the effectiveness of that approach.

In this paper, we investigate, whether deterministic shared
memory accesses [7] [8] would reduce the possible number
of states used by the model checker and therefore reduce the
WCET calculation time. The contributions of this paper are as
follows.

e Limiting the state space explosion problem by uti-
lizing deterministic execution when calculating the
WCET of a multithreaded program running on multi-
cores using model checking.

e Implementing optimizations to further reduce the size

WCET
calculation
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based methods. Static methods
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Figure 1. Methods used for WCET calculation
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distribution

we

Execution
time.

Figure 2. Measurement based vs static methods

of the state space as well as to get a tighter WCET
estimation.

e  Using only one iteration to calculate the WCET rather
than performing binary search as used by the current
state-of-the-art approaches (which requires several it-
erations).

In Section II, we discuss the background, while in Sec-
tion III, we discuss the implementation. This is followed by
the Section IV, which discusses the performance evaluation.
We finally conclude the paper with Section V.

II. BACKGROUND

Safety critical real time embedded systems need not only
be functionally correct but also meet strict timing deadlines.
For this purpose, it is necessary to calculate the WCET of
these tasks. However, calculation of WCET is not straight
forward for modern processors due to features such as multi-
level caches and out of order execution.

There are two methods of calculating WCET, measurement
based and static methods as shown in Figure 1. In measurement
based methods, we test the runtime by giving different inputs.
However, it is often very difficult to test a program with
all different inputs. Not checking the program with every
possible input might give an underestimated WCET, as shown
in Figure 2. A more appropriate approach is to use static meth-
ods, which can be classified into static-analysis and model-
checking based. In static analysis, rather than running the
program with different inputs, all possible paths are statically
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checked for calculating WCET. In static analysis, often abstract
interpretation [13] is used to model the architectural features of
a processor using an approximated model. On the other hand,
with model checking, one can write code for a precise model
of the processor. The result is a tighter WCET, but using more
computational overhead.

In this section, we first describe the problem of WCET
calculation (Section II-A), and then the description of deter-
ministic execution that can be used to reduce the number of
states during model checking (Section II-B).

A. WCET calculation

Modern processors have features such as cache hierarchies
and out of order execution, which are meant to improve the
average-case execution time of programs running on them.
However, these features make it much more difficult to deter-
mine a tight WCET. In addition, more complex architectures
mean more states for a model checker to keep track of, making
it more prone to state explosion problems. Despite these
problems, there exist sophisticated tools, such as Chronos [14],
that can guess a good WCET for programs running on single
core processors. Multicore systems on the other hand have an
additional complexity, due to shared resources, such as shared
memories. With shared memory, tasks running on different
cores also need to synchronize to access the shared data, for
example by using locks. This makes it difficult to deduce
tight WCET bounds for such systems. Synchronization of
shared memory accesses also means many different possible
interleaving of the threads are possible, which further aggra-
vates the problem of calculating the WCET. They can have
timing anomalies due to shared resources and shared memory
accesses. For example, assume that a path ABD is the worst-
case path if seen separately, where A, B and D are basic blocks.
In the presence of shared L2 cache however, another path, say
ACD might become the worst-case path if a thread running on
another core evicts more instructions from C than B in the L2
cache. Therefore, whenever analyzing WCET for a multicore,
we always need to consider all the tasks running on different
cores together, which can significantly increase the complexity
of timing analysis.

Recently, there have been several papers published which
deal with calculating WCET on multicore processors. A survey
of those techniques is given in [12]. Some of those assume that
there are no shared memory accesses by the tasks running on
the different cores. In other words, they assume that tasks are
running embarrassingly parallel to each other. They only cater
for the problem of shared L2 cache accesses [10] [11] and the
shared bus [5]. Papers like [15] and [16] do consider shared
memory synchronization, but they assume simpler processor
architectures which do not have any cache, but only scratchpad
memories. Such kind of processors are not mainstream and
require special programming techniques, since the scratchpad
memories have to be manually managed by the programmer.

[6] considers both cache coherence as well as synchroniza-
tion operations such as spin locks for shared memory accesses.
The authors use UPAAL [3] based model checking for that
purpose. They do take into account shared memory accesses,
but their solution suffers from state explosion problem even for
very simple programs. [9] also uses model checking but do not

Table 1. COMPARISON OF DIFFERENT TOOLS
Tool Method Used L2 cache | Shared data | L1 CC
[10][11] Static analysis + - -
[51 Static analysis & | +

Model checking

[15][16] Static analysis B T
91 Model checking + B N
[6]. This | Model checking + + +

support synchronization operations. [17] recently proposed a
mathematical model to determine WCET of multicore systems
with caches and cache coherence using abstract interpretation.
However, they still do not consider cache coherence that is
generated due to accessing the shared synchronizing objects.
Moreover, they do not perform any evaluation.

All the tools described above are shown in Table I, along
with the methods they use and the platforms they are made
for. There is only one tool [6] which considers shared data
on systems with L1 cache coherence (L1 CC). However,
as explained before, it is too slow as it suffers from state
explosion problems even for very small programs. Our tool
improves upon that.

In this paper, we investigate whether model checking
overhead used for calculating WCET can be reduced using
deterministic shared memory accesses [7] [8]. We use the SPIN
model checker [1] with its associated language PROMELA
for model checking. Moreover, unlike [6], which uses a very
simple example, we use real benchmark programs written
in C. We use Chronos [14] to compile those programs into
assembly and also to construct the control flow graph (CFG).
The assembly code and CFG are then used to generate the
PROMELA code for model checking to calculate WCET.

B. Deterministic execution

Multithreaded programs have a frequent source of non-
determinism in the form of shared memory accesses. Due to
this, multithreaded programs can have many possible thread
interleavings, which makes it difficult to find WCET of such
programs. We can reduce this interleaving altogether if we
know the input of the program and perform deterministic
execution. Deterministic execution would make sure that the
threads perform shared memory synchronization always in the
same sequence. Even for multiple inputs, we can still reduce
the possibilities as explained by [4].

One such algorithm for deterministic execution is
Kendo [7], which uses logical clocks for each thread to
determine when a thread will acquire a lock. The thread with
the least logical clock value gets the lock. For example, Thread
1 will be unable to acquire a lock when its logical clock (1029)
is higher than that of Thread 2 (329). But, as soon as Thread
2’s clock get past 1029, Thread 1 may acquire the lock. With
DetLock [8], it was shown that updating clocks ahead of time
improves the performance as compared to Kendo. Therefore,
in this paper we also update the clocks ahead of time.

III. IMPLEMENTATION

In this section, we discuss the implementation of our
tool. Firstly, in Section III-A, we discuss the architecture of
the processor used. Next, in Section III-B, we discuss our
method of finding WCET using deterministic execution, while
in Section III-C, we discuss an optimization applied to reduce
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Figure 4. Steps for WCET calculation using static analysis

the calculated WCET with deterministic execution. Finally
in section III-D, we describe our method of model checking
which avoids performing binary search to calculate WCET, as
done by other state of the art approaches.

A. Processor architecture

Since, the focus of this paper is to see how much reduction
in analysis time we get by using deterministic execution,
we assume a simple processor model, which is that every
instruction takes one cycle and an L1 cache miss takes 10
cycles, while an L2 cache miss takes 80 cycles. Moreover, a
taken branch causes extra 3 cycles. The architecture of the
processor is shown in Figure 3. There are separate L1 caches
for instruction and data, while the L2 cache is shared. We
also assume that there are as many read ports for instruction
cache as the number of cores. For cache coherence, we use
the MESI cache coherence protocol. We also assume that
every shared memory access takes place within a spinlock.
For checking whether a certain memory access can cause a
cache miss, we check the memory addresses. We check for
shared L2 cache misses only for instructions, while assuming
all the data is already there in the L2 cache. This assumption
is not unreasonable since a typical L2 cache can be large
enough to accommodate data for one loop cycle of a real time
process. Similarly, for the non-shared data, we assume it has
already been brought to the L1 caches of the cores, since the
benchmarks we used are small enough to accommodate the
local data in the L1 caches of the cores.

B. WCET calculation

As shown in Figure 4, we used the Chronos tool to extract
the CFG and assembly code. This CFG and assembly code is
then used to generate part of the code for our PROMELA code
used to calculate the WCET.

ClockBus2Core
Clock and
Bus

Core2ClockBus, Cycles

Figure 5. Block diagram of communication between a core process and the
clock and bus process

DoEw e —

=

We have two kinds of processes in our model checker.
There is a core process for each of the cores while there is
a clock and bus process that represents the processor clock
and the shared bus which manages cache coherency. Figure 5
shows the communication channels between the core and bus
process and a core’s process. Through the ClockBus2Core, the
clock and bus process tells a core to either go ahead or wait.
A core’s process on the other hand sends the number of clock
cycles it needs to advance to the clock and bus process along
with other information on the Core2ClockBus channel, such
as the address of a shared memory access. Note that the only
shared memory access we allow in our model are the shared
mutexes and shared variables within locks.

atomic {
min_clock = get_minimum_clock () ;
for( pid = 0; pid < NUM_OF_PROC; i++ ) {
if( clock[pid] == min_clock )
advance ( pid );
i3

Listing 1. Pseudo-code to advance clock cycles

atomic {

line = get_cache_line_of_addr (addr);

if (!'in_12_cache[line]) {
in_12_cache = true;
st[line] = clock([pid] + 12_mt;
wait_for_cycles( pid, l1l2_mt + 1ll_mt );

}

else if ( clock[pid] <= st[line] ) {
to_wait = st[line] - clock[pid]
wait_for_cycles( pid, to_wait );

+ 11 _mt;

}
else

wait_for_cycles( pid, 1ll_mt );
¥

Listing 2. Pseudo-code to access L2 cache for instructions

Since a model in which we explicitly synchronize each
thread at each clock cycle is quite costly, we have devised
a method to significantly reduce the overhead without in-
troducing errors. The C-style pseudo-code for that purpose,
which is part of the Core and Bus process, is shown in
Listing 1. Only the cores with the minimum clocks are allowed
to progress, while those which have advanced ahead have
to wait. In this way, we make sure that the clocks of the
cores are synchronized and yet avoid the overhead of explicit
synchronization. In case of accessing instructions from the L2
cache, the C-style pseudo-code to make sure the cores progress
properly, is shown in Listing 2. This code is part of a core’s
process. For example, if a core A experiences L2 cache miss
for a cache line, the next core B reading the same cache line
would read it from the L2 cache, as the core A would have
already brought it into the L2 cache. However, since core B
would access that cache line in a later time, to make sure this
is properly modeled, we save that value in st (line 5), and the
clock of core B is advanced using that value if its clock was
less than that of core A (line 8). Here [/_mt is the L1 cache
miss penalty while /[2_mt is the L2 cache miss penalty. We
also use a simplified cache coherence model for shared data
which is read-modified only within locks, since only one core
would be reading-modifying that data.

We check the WCET, both with and without deterministic
execution. For deterministic execution, we used a hardware
based comparator, as totally software based deterministic ex-
ecution would cause substantial cache coherence activity due
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Figure 6.  Optimization to improve deterministic execution, WCET and
WCET calculation time

to reading the shared clocks for deterministic execution. Each
core writes to one of the input registers of the comparator. The
comparator writes 1 to the output register whose corresponding
input register contains the smallest clock value, while writing
0 to all the other output registers. In this way, a thread can
know, whether to acquire a lock by just reading the value
of its corresponding output register. In case of two or more
input registers having the smallest value, the one with the least
index writes 1 to its corresponding output register. Through this
hardware, there is no need for threads to read other clocks and
also no overhead is incurred due to cache invalidations that
occur for maintaining cache coherence.

Since for deterministic execution, we assume a hardware
based mechanism, to have a fairer comparison between the
deterministic and non-deterministic methods, we also compare
the deterministic execution with a method where we assume
a hardware based synchronization mechanism, that is, where
a lock could be acquired immediately, that is without the
overhead of cache coherency for compare and swap operation
on a shared variable.

C. Optimization of deterministic execution

We use the DetLock mechanism of updating clock for
deterministic execution. One limitation of that method is that a
thread cannot update its clock ahead of time if its waiting for a
lock. For a program with two threads, Thread O can acquire a
lock only when its clock is less than or equal to that of Thread
1 as shown by the condition below, where dt[0] and dt[1] are
logical clocks for Thread 0 and Thread 1 respectively.

dt[o] < dt[1]

To overcome the above mentioned limitation, besides the
logical clock, we introduce two more variables for each thread.
These two variables are ahead and nl, where ahead is used by
a thread waiting for a lock to tell other threads, that its not
going to acquire a subsequent lock, which is different from
the one it is waiting for, at least for the amount of instructions
assigned to ahead. On the other hand, n/ is the number of the
lock, or more precisely the address of the mutex in question.
The formula for lock acquisition for Thread 0, now changes
to the following.

dt]0] < (dt[1] + ahead[1] x (nl[1] # nl[0]))

This mechanism can be more easily understood by Fig-
ure 6. Here if Thread 0 has reached the place where it is trying
to acquire Lk2. With the DetLock only approach, it would
not be able to acquire that lock, until Thread 1 has unlocked
Lk1. However, with this new optimization, it would be able to

Table II. BENCHMARK CHARACTERISTICS
Benchmark Basic Cond Locks Max L2
blocks branches cache
misses
Fluidanimate (ComputeForcesMT) | 11 2 2 2
Network (thread_i ) 20 11 2 16
Radiosity (radiosity_averaging) 6 3 3 12
Table IV. IMPROVEMENT BY UPDATING CLOCK AHEAD OF A LOCK
ACQUISITION FOR RADIOSITY BENCHMARK
Parameters 2 threads 4 threads
Configuration W/o opt With opt W/o opt With opt
WCET (cycles) 1420 1378 (1.0d%) 1728 1516 (1.15%)
Calc time (secs) 0.17 0.1 (1.7%) 333 3.42 (0.97%)
Mem consumed (MB) 179.0 178.8 (1x) 192.28 | 2013 (0.96x)
States (millions) 0.021 0.019 (1.11x) 0.21 0.34 (0.62x)

acquire Lk2 even if Thread 1 has not acquired lock Lkl yet.
Basically, when Thread 1 would reach the point where it is
about to acquire Lk1, Thread 0 would know that Thread 1 is
not going to acquire Lk2 until it would have executed more
instructions than what Thread 0 has executed up till now. With
this optimization, we can reduce the calculated WCET, albeit
at the cost of slightly increased WCET calculation time.

D. Avoiding binary search

Approaches using model checking to calculate the WCET,
such as [9] and [6] use assertions to find the WCET. So,
they have to run the model checker several times in a binary
mode fashion to reach the right WCET value. Although [6]
talks about using the sup operator of UPPAAL to avoid binary
search, the current stable release of UPPAAL, which is version
4.0.13, does not support the sup operator. Only versions 4.1
and greater of UPPAAL support the sup operator. That is why,
the authors of [6] discuss the sup operator only in the future
work section of their paper. On the other hand, our technique
of avoiding binary search works perfectly on the stable release
version of SPIN.

We avoid performing binary search by logging the value of
the elapsed time instead. We make use of the VAR_RANGES
flag in SPIN to log the ranges of the variables. However,
VAR_RANGES only give ranges from 0-255. Since, SPIN
generates C files which are further compiled to make the
executable model checking file, it is possible to modify the
C code to log the full integer value of the elapsed time. We
have written a script that does exactly that by inserting code
in the logval function to log the value of the elapsed time,
the maximum value of which is taken as the WCET. Running
the model checker with VAR_RANGES flag increases the
calculation time, but is still a much faster method than running
several iterations to reach the WCET value through binary
search.

IV.  PERFORMANCE EVALUATION

In this section, we will discuss the results that we achieved
by applying optimizations and using deterministic execution.
Section IV-A discuss the results, while Section IV-B shows
further improvement achieved by avoiding binary search to
reach the WCET value.

A. Results

We selected three benchmarks. One is Fluidanimate from
the PARSEC [18] benchmarks suite, one is a Network protocol
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Table 1I1. PERFORMANCE RESULTS
Configuration Param/BM P SMT) | Network (thread_ippktcheck) | Radiosity (radiosity_averaging)
Number of cores 2 4 2 4
1. Deterministic with clock up- WCET (cycles) 1209 1209 1276 1378 1506
dates and hardware support Calculation time (secs) 0.11 251 1050 0.1 342
Memory consumed (MB) 798 7106 1414 788 2013
States (millions) 0.031 29 2187 0.019 034
WCET (cycles) 1200 (0.99%) 1200 (0.99%) 1257 (0.99%) 1346 (0.98%) 1442 (0.96x)
2. Non-deterministic with hardware support Calculation time (secs) 0.74 (6.7%) 3980 (158x) 7300 (7%) 0.36 (3.6x) 428 (125x)
Memory consumed (MB) | 1942 (1.08x) 365954 (89%) $1919.9 (7.2%) 1823 (102x) | 3445.1(17%)
States (millions) 0.21 (6.8%) 5424 (188%) 15766 (7.2%) 0.053 2.79x) | 46.96 (138%)
3. Non-deterministic without hardware sup- WCET (cycles) 1254 (1.04x) > > 1444 (1.05%) >
port Calculation time (secs) 7.78 (71x) ) > 7.6 (76x) >
Memory consumed (MB) | 289.5 (1.61%) 3 > 3378 (1.89%) >
States (millions) 2.03 (65%) £ 3 1.63 (86%) 3
4D imistic without clock up- WCET (cycles) 1224 (1.01%) 1364 (1.13x) 1207 (1.02x) 1509 (1.1x) 1889 (1.25%)
dates and with hardware support Calculation time (secs) 0.46 @.18%) 714 (16x) 9450 (9%) 032 (3.2%) 749 (1310
Memory consumed (MB) | 187.8 (1.04) 3653.3 (8.9%) 81919.9 (7.2%) T80.8 (1.0Ix) | 208.9 (1.0dx)
States (millions) 0.13 @.19%) 578 20%) 164537 (7.5%) 0.04T (2.16x) 0.47 (1.38%)
1000 2512
15.85
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execution (Panels 2 & 3 in Table IIT)

benchmark from EEMBC [2] and lastly we have Radiosity
from SPLASH [19]. We only used a portion of these applica-
tions. Those portions included shared memory accesses. The
characteristics of those parts of the code are shown in Table II.
The names of the functions from which the code is taken are
also shown. To run these benchmarks, we used a computer with
96GB RAM. We used the DCOLLAPSE flag of PROMELA
for compressing memory. The results are shown in Table III.

Using only the approach of [6] and without applying the
optimizations discussed in Section III-B, none of the bench-
marks could complete, due to the state explosion problem.
‘With our optimizations, most of the configurations could finish.
Those configurations that still could not finish are indicated
with a oo mark in Table IIL

The first panel in the Table III shows the results with deter-
ministic execution with clocks updated ahead of time. The sec-
ond panel shows the results with non-deterministic execution
with hardware based lock acquisition, which do not require
cache coherence for the shared mutexes. Adding hardware-
based lock acquisition is done to have a fair comparison
with the deterministic case, because we used hardware based
deterministic execution to avoid excessive cache coherency that
comes with software based deterministic execution. The third
panel shows non-deterministic execution with normal software

with deterministic execution that does not update the clock
ahead of time but after execution, like Kendo.

From the Table III, we can see that deterministic execution
with optimized clock updates (clocks updated ahead of time)
gives the best results in terms of calculation time, memory
consumed and number of states stored. Introducing determin-
istic execution does however increase the WCET slightly due
to the extra code included in the programs. The increase
in WCET however is not more than 4% for the selected
benchmarks. The improvement in calculation time, memory
consumed and number of states stored scales with the number
of threads used. For example, for the Fluidanimate benchmark,
the calculation time, memory consumed and number of states
were reduced by as much as 158x, 89x and 188x respectively
for 4 threads. From Panel 3 of Table III, we can see that the
lack of hardware support causes cache coherency for shared
mutexes to significantly increase calculation time, memory
and states. The comparison of non-deterministic execution
with respect to the deterministic version is also illustrated in
Figure 7, where the bars on the left (in white color) show
the overhead for non-deterministic execution with hardware
support while the colored bars on the right show the overhead
without hardware support. In cases where the later could not
complete, we leave that column empty, that is, no bar is drawn.
In that figure, CT represents calculation time, MEM represents
memory consumed and ST represents the number of states used
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Table V. IMPROVEMENT BY AVOIDING BINARY SEARCH (FOR 4
THREADS)
Benchmark W/io VR With VR DE BS Overall
(secs) (secs) speedup iterations speedup
i i 18.7 25.1 158x 21 2471x
Radiosity 2.70 342 125x 18 1775x

by the model checker.

Our method of updating clocks ahead of time also shows to
significantly improve both the WCET and calculation time, as
compared to updating clocks after execution. The improvement
in WCET happens due to the fact that by updating clocks ahead
of time, we reduce the waiting time of a thread waiting for a
lock. That waiting also increases the possible number of states,
thus increasing the calculation time and memory consumed.
The slowdown caused by updating clocks after execution is
illustrated in Figure 8.

In Table IV, we discuss the improvement in WCET that we
observed by applying the optimization that we discussed in
Section III-C, that is, by using the ahead and nl variables to
allow a thread to proceed with lock acquisition even when
another thread is waiting for a lock but has a lesser value
of logical clock. We show the numbers for the Radiosity
benchmark for both 2 and 4 threads. The other two benchmarks
do not have different mutexes, so we could not apply this
optimization to them. In the W/o opt column, we use the
basic DetLock mechanism of updating the clock ahead of time,
while in With opt, we also use ahead and nl variables. In
the With opt column, we also show improvement (>1x) or
degradation (<1x) for all the parameters as compared to the
W/o opt column. From the table, for 4 threads, we can see
improvement in WCET at the cost of increased number of
states, memory consumption and calculation time. However,
these numbers are still much better than the non-deterministic
case (see Table III).

B. Improvement by avoiding binary search

In Section III-D, we discussed how we can avoid binary
search by modifying the C code generated by SPIN to include
the code to log the elapsed time value. This method avoids
performing binary search as done by the state of the art
approaches that use model checking to calculate WCET, such
as [9] and [6]. Table V shows the overall speedup for 4 threads,
including that which comes from avoiding the binary search.
The column titled W/o VR shows the calculation time without
using VAR_RANGES (See Section III-D to see discussion
about the VAR_RANGES flag), while the With VR column
shows the calculation time by using it. Next we show the
speedup that we achieved with deterministic execution (DE)
with clocks updated ahead of time, followed by the number of
iterations used to reach WCET if binary search (BS) is used.
The overall speedup is then calculated by using the following
formula.

(Without_V R/With_V R) x DE_speedup x BS_iters
From the table, we can see that for the Fluidanimate
benchmark, the overall speedup is as high as 2471x.
V. CONCLUSIONS

In this paper, we used model checking for estimating the
WCET for portions of the applications where shared memory
accesses occurred. We showed that by using deterministic

execution, we can reduce calculation time and memory us-
age significantly at the cost of negligible increase of the
calculated WCET. We significantly reduced the time (up to
158x), memory (up to 89x) and states (up to 188x) for
calculating WCET with a negligible increase (up to 4%) in the
calculated WCET for a multicore system with 4 threads. We
also showed an improvement in all the parameters, if we update
the deterministic execution clock ahead of time, as in the case
of DetLock. Moreover, we avoid performing binary search to
calculate the WCET, which involves running several iterations
of the model checker, by modifying the C code generated by
SPIN to log the value of the elapsed time instead. The total
combined gain in speed was found to be as high as 2471x. The
state explosion problem still poses a challenge to this solution
for practical purposes though. Future work will focus on an
approach which combines static analysis with model-checking
might be used to overcome that problem.
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CONCLUSIONS AND FUTURE
RESEARCH

In this chapter, we first discuss the conclusions of this thesis in Section 7.1 and then give
recommendations for future work in Section 7.2.

7.1. CONCLUSIONS

In this thesis, we discussed two different techniques for improving reliability of multicore
systems, record/replay and deterministic multithreading. Besides that, we also showed
how the calculation time of WCET can be significantly brought down by using determin-
istic multithreading. Below, we discuss the conclusions that we drew from Chapters 2 to
6.

CHAPTER 2

In this chapter, we gave a survey of different fault tolerance techniques employed for
shared memory multicore systems. With the advent of nano-scale technology, the tran-
sistor sizes have shrunk a lot. However the smaller transistor sizes are more prone to
transient and permanent faults. Fault tolerant systems can employ redundancy to check
for errors. We highlighted the difficulties in tolerating faults for multicore systems. The
main conclusions are the following.

1. Synchronization operations for shared memory accesses can become a frequent
source of non-determinism. This creates problems in fault tolerant systems for
multithreaded programs running on multicore systems, as the redundant pro-
cesses must execute identically in the absence of any fault.

2. To make sure redundant processes execute identically, we can use deterministic
multithreading, which can be both language based and runtime based. The prob-
lem with the language based techniques though is that they have a steep learning

95
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curve, and it is easy to introduce deadlocks. Therefore, it is preferable to use run-
time based methods.

CHAPTER 3

In this chapter, we discussed our own implementation of fault tolerance for shared mem-
ory multicore systems using record/replay. We showed how our method is faster, more
portable and more scalable than the state of the art approaches. The following conclu-
sions can be drawn from that chapter.

1. Reducing atomic operations for accessing the queue for record/replay can make it
more scalable as it reduces the contention between the cores.

2. The queue can be further optimized by eliminating true and false sharing of the
cache lines.

3. The cost of error detection in user-space can be reduced by segmenting mem-
ory into multiple pages, so that there are less page faults for identifying modified
memory.

4. The hardware CRC instruction supported by modern processors can significantly
reduce the time for memory comparison using the checksum method.

The overhead incurred by our approach ranges from 0% to 18% for selected bench-
marks. This is lower than comparable systems published in literature.

CHAPTER 4

In this chapter, we discussed our own implementation of deterministic multithread-
ing, which like record/replay, can be used for deterministic execution of redundant pro-
cesses running on multicore systems for fault tolerance. The following conclusions can
be drawn from that chapter.

1. Besides being more portable, a compiler based deterministic multithreading ap-
proach can outperform an approach which relies on hardware performance coun-
ters for logical clocks due to the fact that the compiler based approach can update
those logical clocks ahead of time.

2. Ttis possible to make deterministic multithreading much more efficient if we as-
sume there are no race conditions in the program.

3. Runtime deterministic multithreading would always be limited in scalability due
to the requirement of global communication among the threads.

For 4 cores, the average overhead of these clocks on tested benchmarks is brought
down from 16% to 2% by applying several optimizations. Moreover, the average overall
overhead, including deterministic execution, is 14%. We also employed our determinis-
tic multithreading scheme for fault tolerance.
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CHAPTER 5

In this chapter, we compared the performance of record/replay with deterministic mul-
tithreading for fault tolerance. Moreover, we created a hardware based version of our de-
terministic multithreading method (DetLock). The following conclusions can be drawn
from that chapter.

1. Record/replay is generally faster. However, the benefit of deterministic multithread-
ing is that it does not require communication among the redundant processes
for synchronization operations and this therefore improves its isolability, which
is crucial for reliability and fault tolerance.

2. For some benchmarks, our compiler based deterministic multithreading approach
combined with our hardware, outperforms fully hardware based deterministic mul-
tithreading approaches.

For record/replay, the overhead is less than 25% for all benchmarks down to approx-
imately 0% for some benchmarks. For deterministic multithreading, it depends on the
usage of shared memory. With low shared memory usage, the overhead is less than 25%
while with high usage, it can reach up to 56%. We also compare our deterministic mul-
tithreading scheme (DetLock) to other approaches, for example Kendo, and show over-
head reduction up to 189% for 8 threads. Even when Kendo is assisted with hardware,
the hardware assisted DetLock version can improve performance up to 26% over Kendo.

CHAPTER 6
In this chapter, we used deterministic multithreading to calculate WCET of a multi-
threaded real time process. The following conclusions can be drawn from the chapter.

1. With deterministic multithreading, we can significantly reduce the WCET calcula-
tion time, as the possible number of states a program can reach is reduced.

2. However, for deterministic multithreading to reduce WCET calculation time, we
need a hardware based mechanism for comparing logical clocks. This is needed
because software based approaches would increase cache coherence activity and
therefore increase the WCET calculation time.

By optimizing the model checking code, we are able to complete benchmarks which
otherwise have state explosion problems. Furthermore, by using deterministic execu-
tion, we significantly reduce the calculation time (up to 158x), memory (up to 89x) and
states needed (up to 188x) for calculating WCET, with a negligible increase (up to 4%) in
the calculated WCET for a multicore system with 4 cores. Lastly, unlike other state-of-
the-art approaches, that perform binary search to search the WCET by running several
iterations, our method calculates WCET in just one iteration. Taking all these optimiza-
tions into consideration, the gain in speed of WCET calculation is from 1775x to 2471x
for 4 threads.
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7.2. FUTURE RESEARCH
The following topics can be considered for future research.

Combining runtime deterministic multithreading with language based deterministic
multithreading

In this thesis, we limited our evaluation to 8 cores. In the future, we would like to have
an efficient deterministic multithreading method that can work for many cores. As we
increase the cores, the overhead increases significantly. Therefore, for manycore sys-
tems, we may need to combine language based deterministic multithreading with run-
time based multithreading. As discussed in Chapter 2, the disadvantage of using only
language based multithreading is the increased programming difficulty. In addition,
there is a high probability of introducing deadlocks into the code. By combining run-
time method with language based method, it would be possible to have little changes in
popular languages, such as C, to ensure deterministic execution, thus making it easier to
write multithreaded programs that execute deterministically.

Evaluate our fault tolerant scheme with fault injection
In this thesis, we did not evaluate the fault coverage of our fault tolerant scheme. In the
future, we would like to conduct fault injection experiments to do so.

Deterministic multithreading for mission-critical systems

In this thesis, we ran the redundant processes on the same machine. However, for mis-
sion critical systems, it makes more sense to use separate machines. In the future, we
could evaluate the performance of deterministic execution with multiple machines. More-
over, we used the technique of checkpoint/rollback with double modular redundancy.
For mission critical systems, however it makes more sense to use triple modular redun-
dancy with a faster recovery method.

Combining model checking with static analysis for calculating WCET with determin-
istic multithreading

In this thesis, we used a model checking based approach to calculate WCET. However,
the model checking based approach does not scale well even with deterministic mul-
tithreading. An approach that combines static analysis with model checking could be
used to make it more scalable. With such an approach, it may become possible to calcu-
late WCET for real world programs running on existing multicore processors.
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