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Summary 

Introduction Gliomas are the most common primary malignant brain tumours with a very poor 

survival. Resistance to chemotherapy and radiotherapy often occurs in these tumours due to 

hypoxia, which can be caused by different oxygenation parameters. Multiple magnetic resonance 

imaging (MRI) techniques are able to assess these oxygenation parameters. Since multiple artificial 

intelligence (AI) approaches exist to fuse these oxygenation images together, the goal of this 

research is to find and implement an AI approach to generate a combined representation of multiple 

oxygenation parameters acquired by MRI so hypoxia within brain tumours can be detected and 

located. 

Literature study Multiple MR imaging techniques that are able to measure different oxygenation 

parameters have been reviewed in the literature study. In addition, an overview was given of 

different AI approaches for combining the acquired information of the discussed MR imaging 

techniques. Based on the literature findings, hierarchical clustering was the most promising AI 

approach for this research purpose. 

Methods A specific MR imaging protocol was designed to assess information regarding tumour 

oxygenation within patients with brain tumours. After registration of the acquired images to the 

same space, the voxels of healthy brain tissues in these images were used for performing hierarchical 

clustering multiple times to identify the optimal parameter settings of the algorithm. Then the 

clustering was performed multiple times with different data types in order to achieve a decrease of 

required computational power. After segmentation of the tumour area in the MR images, the 

clustering was applied to the tumour voxels to generate a spatial map of the tumour showing the 

location of the clusters representing different states of oxygenation. Evaluation of the clusters was 

performed by visualizing the distribution of the oxygenation parameter values within the different 

clusters. 

Results Three patients were included and underwent MR imaging. Results showed that ward linkage 

and Euclidean distance resulted in the highest clustering performance when performing hierarchical 

clustering on data of healthy brain tissue. Changing the data type of input data did not lead to a 

decrease in required computational power. Applying the hierarchical clustering with the optimal 

parameter settings on tumour voxels resulted in spatial maps of the different clusters within the 

tumour. Evaluation of the distribution of the oxygenation parameter values showed differences 

among different clusters within the patients. However, within two patients the number of clusters 

present within the tumour, changed when including different MR images in the clustering analysis.  

Conclusion This research showed that hierarchical clustering is an AI approach which is able to 

identify clusters with a different distribution of oxygenation parameter values acquired by MR 

imaging. Visualizing these different clusters in a spatial map results in a combined representation of 

these oxygenation parameters. Despite the promising results, future work is needed to investigate 

other clustering methods regarding this research purpose, the importance of each individual MR 

technique, and a validation method of what type of oxygenation the clusters represent 
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Chapter 1 Introduction 

1.1 Gliomas  

Prevalence 

Representing 75% of all malignant primary brain tumours, gliomas are the most common primary 

malignant brain tumours in adults.[1] These type of brain tumours that arise from glial or precursor 

cells, can occur anywhere in the central nervous system (CNS).[2] However, gliomas are mainly 

present in the frontal, temporal, parietal, and occipital lobe with a percentage of 23.6%, 17.4%, 

10.6% and 2.8% respectively.[1, 3] Depending on the location of the tumour severe symptoms can 

occur, including a change in personality.[2, 4]  

 

WHO classification 

Besides glioblastomas there are many other subtypes of gliomas. In 2016 the World Health 

Organization (WHO) published their fourth version the WHO Classification of CNS tumours.[5] 

According to these guidelines, differentiating between the different subtypes of gliomas requires 

histologic and molecular information of the tumour which can be obtained by using brain imaging to 

perform brain biopsies. These outcomes are essential to determine the appropriate treatment.[6] 

 

Survival 

Besides these impactful symptoms, the survival among primary CNS tumours is very poor. Even 

though these tumours represent only 2% of all primary tumours, they account for 7% of all cancer-

related deaths for patients under 70 years.[7] Prognostic factors which result in better outcomes are 

a younger age and better performance status of the patient with glioma.[3, 8, 9] However, survival 

among patients with gliomas still varies widely depending on the classification and grading of the 

tumour. Despite this variation, the overall survival rate is still very poor. This is evident in the case of 

patients with grade IV gliomas, also known as glioblastomas, with a 5-year survival rate of less than 

5%.[8-11] In addition, solely glioblastomas represent already 45% of all malignant primary CNS 

tumours.[9] 

 

Hypoxia 

In gliomas, hypoxia is often present. This lack of oxygen leads, directly or indirectly, to resistance to 

chemotherapy and radiotherapy.[12, 13] A classic example of a direct effect on treatment is the 

absence of the physiochemical principle known as the oxygen enhancing effect. In this process, 

irradiating the tumour causes severe irreparable damage to the DNA strands due the presence of 

oxygen.[14] An indirect effect of hypoxia is changing the behaviour of tumour cells by activating 

transcription factors such as hypoxia induced factor 1 (HIF-1) resulting in a decreased chemo- and 

radiosensitivity of the tumour.[15] Determining whether and where a brain tumour contains hypoxia 

may allow for improved treatment planning. The absence of the oxygen enhancing effect, for 

example, could be compensated in radiotherapy by increasing the dose using the oxygen enhancing 

ratio.[16] Furthermore, assessing brain and tumour oxygenation can predict outcomes of patients 

with brain tumours undergoing therapy.[17] Spence et al. for instance showed that the volume and 

intensity of hypoxia in glioblastoma is predictive for a poor survival and time to progression after 

radiotherapy.[18] Therefore, brain and tumour oxygenation are important biomarkers in treatment 

planning and predicting outcomes of patients with gliomas undergoing treatment. This demonstrates 

that improvement of hypoxia imaging will result in a more personalized treatment of patients with 

gliomas. 
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1.2 Magnetic Resonance Imaging (MRI) 

Basic principles of magnetic resonance imaging 

To assess cerebral oxygenation and visualize the anatomy of the brain and tumour, multiple 

magnetic resonance imaging (MRI) techniques are available. MRI is an imaging technique that 

generates three-dimensional images by using the magnetic properties of protons, which are 

abundant in the human body. Each proton, or hydrogen nucleus, spins along an axis with a magnetic 

north-pole and south-pole, like the planet earth. The axes around which the protons spin are 

oriented in random directions. MRI uses a strong magnetic field to align the spin of these protons 

with the applied magnetic field. When a radiofrequency pulse is introduced, the protons are 

deflected out of alignment with the magnetic field. If the radiofrequency pulse is turned off, the 

protons return to their resting state and align again with the magnetic field. This causes the protons 

to emit energy in the form of a radio wave which is detected by receiver coils of the MR scanner. 

These signals are used to construct MR images of the body. A brief overview of this imaging process 

is shown in Figure 1 . 

 

 

 

 

 

 

 

 
Figure 1: a simplistic overview of how protons are used for measuring a MRI signal.  

 

 

MR imaging of brain anatomy and cerebral oxygenation 

MRI can be divided into conventional imaging and advanced imaging. Conventional MRI refers to MR 

imaging in which mainly structural information rather than physiological information is acquired, 

while advanced MRI can be used to assess physiological and functional parameters of tissues. Both 

conventional and advanced MR imaging can be performed by T1-weighted and T2-weighted MR 

imaging. Within these techniques, the time taken for protons to return to their resting state is 

measured by two different methods. T1 relaxation time is defined as the time taken by the protons 

to return to their original longitudinal magnetization, while T2 relaxation time is defined as the time 

taken by protons to return the axial spin to their original state. The relaxation time of protons 

depends on the type of tissue where they are in and therefore resulting in different signal intensities 

shown in the generated MR image. Since the magnetic field is not homogeneous, T2* can also be 

measured with gradient-echo (GRE) sequences. T2* refers to the true T2 relaxation in combination 

with relaxation due to the magnetic field inhomogeneities and can be used to assess physiological 

information.[19] T2’ is another parameters that can be measured and used for assessing further 

physiological information.[20] In addition, an exogenous contrast agent can be injected in the human 

body to add extra contrast into the image and may show enhancing areas of brain tumours.  
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To visualize different parameters of brain oxygenation, multiple MRI techniques have been 

developed, including: (i) arterial spin labelling (ASL) MRI to obtain cerebral blood flow (CBF)[21], (ii) 

streamlined quantitative blood oxygen level-dependent (sqBOLD) MRI to obtain oxygen extraction 

fraction (OEF)[22], and (iii) Dynamic Susceptibility Contrast (DSC) MRI to obtain vessel size 

measurements[23]. A comprehensive explanation of these techniques can be found in Chapter 2 

Literature Study. 

 

1.3 Artificial Intelligence 

Machine learning 

To understand how artificial intelligence (AI) can improve medical image processing, basic knowledge 

of AI and its subgroups is essential. AI refers to computer systems that can carry out tasks 

autonomously. For example, an AI algorithm can be trained to play chess. An important subfield of AI 

is machine learning, which refers to algorithms with the ability to make a prediction based on data 

given as input to the algorithm. Two large subfields of machine learning are supervised and 

unsupervised learning. An overview of AI and its subfields are shown in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: an overview of the different subfield of artificial intelligence. 

 

Supervised learning 

Supervised learning refers to AI models that make predictions based on labelled input data and make 

corrections based on a calculated loss between the predicted outcome and the label. To train an AI 

model through supervised learning to achieve a certain output, the model needs to know if its output 

is correct. For example, if an AI model is trained through supervised learning to recognize brain 

tumours in MR images, it needs to know if its prediction is correct. This is done by calculating the loss 

between the prediction of the model based on the input data and the labelled data. When the 

predicted output of the model is not correct, it needs to adjust its model parameters resulting in an 
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improved performance. The model adjusting its model parameters based on a certain output metric 

is called optimization. This process is visualized in Figure 3. 

 

 

 

 

 

 

 

 

 

 

Unsupervised learning 

In contrast to supervised learning, unsupervised learning refers to AI models that discover patterns 

and information that was previously unknown without the need of human intervention. Some well-

known methods of unsupervised learning are clustering and anomaly detection, in which data is 

clustered into groups with similar features and rare anomalies in data can be found respectively. The 

difference between supervised and unsupervised learning is shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

Artificial neural networks 

Artificial neural networks (ANNs) are one of the most recent approaches in the analysis of medical 

imaging.[24, 25] This AI method is a form of deep learning, which is a subfield of machine learning. 

ANN’s work according to the same principle as the human brain, hence the name neural network. 

These networks use different neurons in its layers to process the data. The architecture consists of an 

input layer, one or more hidden layers and an output layer. After data is given as input to the input 

layer, feature extraction and transformations are performed in the hidden layers resulting in a 

certain output in the output layer. This network is trained by adjusting its model parameters during 

the training process. A specific ANN that can be applied for image processing is a convolutional 

Figure 3: Outline of the supervised learning process. Input data is presented to the AI model. In this example 

the model is trained to recognize brain tumours in MR images. Based on the input data the AI model makes  

a prediction. When the prediction is incorrect, the loss between the label and the prediction will cause the 

model to change its model parameters to achieve the best performance. 

Figure 4: The difference between supervised and unsupervised learning. In this example, supervised learning 

uses labelled data to train an AI model so it can predict if new data points belong to the blue crosses or to 

the green triangles. In the example on the right, unsupervised learning is used to identify clusters (dashed 

lines) based on similar features of the data (grey dots) within the clusters. 
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neural network (CNN). This type of ANN uses convolutional layers as hidden layers to process the 

input data. 

 

1.4 Goals and objectives 

Detecting and locating hypoxia and different oxygenation states within gliomas and brain tumours 

could improve treatment planning and potentially their poor treatment outcomes. However, hypoxia 

imaging can be difficult because multiple parameters play a role in the oxygenation status of brain 

tissue, which may alter in various manners to cause hypoxia. For example, hypoxia can occur due to a 

reduced CBF, but also due to a reduced diffusion of the oxygen out of the capillaries to the brain 

tissue. Multiple MRI techniques are capable of measuring these different parameters of brain 

oxygenation. However, a combined representation of these oxygenation parameters have not been 

extensively researched yet. Despite not widely explored yet, Stadlbauer’s research[26] used multiple 

images acquired by different MRI techniques to assess and locate different metabolic states within 

brain tumours. The research presented in this study has a similar goal and focusses on finding and 

implementing an AI approach to create a combined representation of multiple oxygenation 

parameters acquired by MRI so hypoxia within brain tumours can be detected and located. 
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Chapter 2 Literature study 

2.1 Introduction  

Despite the ability to visualize different oxygenation parameters, there is no non-invasive method 

available to visualize oxygenation directly. In addition, a combined representation of the different 

oxygenation parameters has not been widely explored. However, Stadlbauer et al. performed 

tumour environment mapping resulting in a combined representation of different oxygenation status 

within gliomas. This new map was based on predefined threshold values of different oxygenation 

parameters acquired by multi-parametric MRI.[26] The application of artificial intelligence (AI) has 

the potential to make a useful contribution in this regard.[27] This is demonstrated by several studies 

which used AI to successfully apply multimodal MR image synthesis[28, 29], grade gliomas[30], and 

predict their IDH1 mutation status[31]. Therefore, AI is a promising method to combine different 

oxygen parameters and retrieve new features and information of existing MR imaging methods. This 

chapter contains a literature review that aims to give an overview of different MRI methods to assess 

brain oxygenation and different AI approaches to fuse these MR images into a complete brain 

oxygenation map. 

 

2.3 Brain oxygenation: image acquisition 

Arterial Spin Labelling 

ASL is a recent and non-invasive MRI technique for quantifying CBF, which is slowly finding its way to 

widespread clinical adoption. This technique uses the ability of MRI to magnetically label arterial 

blood. First, a control image is required to acquire. Second, arterial blood in the feeding arteries of 

the brain is magnetically labelled by an inversion pulse. While this labelled blood flows to the brain 

capillaries as an endogenous tracer, the magnetization can be followed as it is transferred to brain 

tissue by capillary exchange. The exchange rate of these magnetically labelled protons to brain tissue 

is dependent on the perfusion of the tissue. Therefore, ASL is able to quantify perfusion. Third, 

subtracting the control image results in a perfusion weighted image. At last, a quantitative image 

representing CBF can be derived from the perfusion-weighted image by using a reference image, 

together with a kinetic model.[32-34] 

 

In contrast to the current clinical standard assessment of perfusion with dynamic susceptibility 

contrast (DSC) imaging, an advantage of ASL is that there is no need for injecting an exogenous 

contrast agent. Research has shown a positive linear correlation between regional CBF assessment by 

ASL and DSC, for which a gadolinium-based contrast agent is required as tracer.[32] However, 

according to Warnert et al. IDH mutation within non-enhancing gliomas potentially affects this 

correlation, indicating care should be taken when assessing CBF with ASL in non-enhancing 

gliomas.[35] 

 

However, ASL has multiple limitations which need to be taken into account when using its CBF maps 

for further processing. For example, ASL has an a poor signal-to-noise ratio (SNR). This is caused by a 

relatively low signal of the labelled blood (0.5% - 1.5%) compared to the full tissue signal. Besides, 

ASL has a low temporal resolution due to the period between the control image and labelled image 

as enough time needs to be allowed for the contrast to move from the labelling plane to the imaging 

plane.[36] 
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Transit time of the labelled blood, from the location where the label is generated to the region of 

interest for CBF measurement, is an important factor which can generate errors in quantifying CBF 

with ASL. Arterial transit time (ATT) refers to the period in which magnetically labelled blood reaches 

the imaging plane after it has been generated.[37] Intensity of ASL signals can vary due to variations 

in ATT caused by varying vessel sizes, lengths and tortuosity, even when the blood flow is the same in 

these vessels.[38] Therefore, multi post-labelling delay (PLD) ASL has been introduced that allows for 

fitting a full kinetic model to simultaneously assess ATT and CBF, reducing erroneous estimations of 

CBF due to transit time artefacts.[37] One example of multi-PLD, known as enhanced ASL (eASL), is 

using seven different post-labelling delay times with modified Hadamard encoding to assess CBF 

maps.[21, 39, 40] With these multi-delay images, a transit time map and a transit time corrected CBF 

map can be computed.[41] Research has proven that transit time corrected CBF maps can overcome 

errors in perfusion maps caused by delayed ATT’s.[37] 

 

CBF is an important biomarker when investigating local hypoxia in the brain. Since arterial blood 

carries oxygen to tissue, ischemic hypoxia is caused by a reduced CBF. However, a normal CBF does 

not guarantee normoxia as non-ischemic hypoxia occurs despite a sufficient blood flow. Therefore, 

CBF is an important biomarker of brain oxygenation which should be complemented with other 

oxygenation parameters.  

 

Vessel Size Imaging 

Physiological MRI can also provide other hemodynamic parameters through vessel size imaging (VSI). 

This type of DSC imaging requires a gradient echo (GRE) combined with spin echo (SE) image 

acquisitions to simultaneously measure changes in the relaxation rates ∆R2 and ∆R2* caused by a 

gadolinium-based contrast agent passing through the cerebral vasculature and increasing 

susceptibility contrast between blood and parenchyma. This is also known as hybrid echo planar 

imaging (HEPI). Within this technique, the gradient echo signal can be converted to ∆R2* and the 

spin echo signal can be converted to ∆R2 by: 

 

∆R2∗ =
1

𝑇𝐸𝐺𝑅𝐸
∗ log (

𝑆(𝑡)𝐺𝑅𝐸

𝑆(0)
)     (1) 

 

∆R2 =
1

𝑇𝐸𝑆𝐸
∗ log (

𝑆(𝑡)𝑆𝐸

𝑆(0)
)     (2) 

 

where TE = echo time, S = measured MR signal.[42] The ratio between them can be used to provide 

information regarding vessel size as sensitivity of SE DSC peaks for capillary-sized vessels, whereas 

GRE DSC is sensitive to a broader range of vessel sizes with greater sensitivity to larger vessels.[43-

45] 

 

Data from previous research has shown that VSI correlates with vessel sizes obtained from 

histopathology in human gliomas. However, the same data suggests an underestimation of enlarged 

vessels and an overestimation of capillary sizes using VSI.[23] This finding regarding capillary sizes is 

consistent with several studies performing a comparison of VSI and vessel sizes obtained from 

histopathology on tumour models within rats.[46-48] So validation of VSI has occurred, indicating 

care should be taken when using quantified VSI. 
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When computing VSI maps out of ∆R2 and ∆R2*, additional information is required to complete this 

computation. According to Kellner et al.[23] and Chakhoyan et al.[49] VSI can be computed according 

to equation (3), proposed by Kiselev et al.[42]: 

 

𝑀𝑒𝑎𝑛 𝑣𝑒𝑠𝑠𝑒𝑙 𝑠𝑖𝑧𝑒 = 0.867 ∗ √𝑟𝐶𝐵𝑉 ∗ 𝐴𝐷𝐶 ∗
∆R2∗

∆R2
2
3

      (3) 

 

with rCBV = relative cerebral blood volume, ADC = apparent diffusion coefficient. A rCBV map can be 

derived from the ∆R2* data and is an important biomarker which is widely applied for glioma 

grading, post-treatment assessment and treatment response.[50-53] CBV measurements can vary for 

the same type of tissue, within the same patient, scanned with the same MR scanner and protocol. 

This can be fixed by normalizing CBV measurements to a healthy reference region of interest (ROI). 

However, this is a time-consuming process and delineation of the ROIs introduce inter-observer 

variability. Therefore, a standardization of rCBV maps for inter- and intrapatient comparisons was 

introduced.[54]  

 

To compute VSI maps, another important parameter needs to be computed from the acquired data: 

the apparent diffusion coefficient (ADC). ADC maps can be acquired by diffusion-weighted imaging 

(DWI) after applying different b-values, which refer to the influence of gradients on the diffusion-

weighted images, in equation (4): 

 

𝑆 = 𝑆0 ∗ 𝑒−𝑏∗𝐴𝐷𝐶       (4) 

 

with S = signal intensity, S0 = signal intensity when no diffusion gradients are used.[55] The value of 

the ADC represents the diffusion capacity of a specific biological tissue.[56, 57] It follows that ADC 

maps are a useful tool for in-vivo tumour characterization. Research has established that by using 

ADC maps, necrotic parts of the tumours can be detected as this tissue has less diffusion 

obstructions, such as membranes, tight-junctions and cell organelles.[58, 59] Several other studies 

have found a correlation between ADC and brain tumour grades[60, 61], and an indication that 

recurrent tumours have lower ADC values than pseudoprogression[62-64], which refers to a 

progressive lesion with spontaneous improvement within 12 weeks after radiotherapy without any 

change in treatment. Considering all of this evidence, ADC maps, rCBV maps and VSI maps are 

important biomarkers regarding hemodynamics of the brain and tumour. 

 

Quantitative Blood Oxygen Level Dependent (qBOLD) Imaging  

Another MR imaging technique which provides information regarding haemodynamic and metabolic 

properties of brain tissue is quantitative blood oxygen level dependent (qBOLD) imaging.[65, 66] This 

non-invasive MRI method is based on different magnetic properties between oxyhemoglobin and 

deoxyhemoglobin resulting in the qBOLD model, which describes the transverse MR signal decay in 

the presence of vasculature. By using the asymmetric spin echo (ASE) sequence at different spin echo 

times with qBOLD modelling, R2’ can directly be measured, while the model also can be used to 

generate deoxygenated blood volume (DBV) maps.[67] R2’ and DBV measurements can be combined 

to generate a spatial map representing oxygen extraction fraction (OEF), which is an important 
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biomarker in brain oxygenation. 

 

qBOLD suffers from several limitations or confounds. First, the asymmetric spin echo sequence also 

measures signal of cerebrospinal fluid (CSF). This contribution to the signal can be removed by using 

a fluid attenuated inversion recovery (FLAIR) pulse that uses a specific inversion time to null fluids, 

including CSF.[68] Adding FLAIR to the ASE sequence results in the sequence known as FASE. Second, 

correction for magnetic field gradients (MFG) is required as R2’ can become elevated due to the 

presence of MFGs resulting in confounded estimates of OEF. This can be done through post-

processing the data after acquisition, but also prospectively by combining the ASE technique with 

gradient echo slice excitation profile imaging (GESEPI). Research has shown that MFG correction and 

CSF suppression, which resulted in significant decreases in DBV and R2’ showing that it removes the 

CSF contribution to the MR signal, successfully can be applied.[22, 69] 

 

Chemical Exchange Saturation Transfer (CEST) Imaging 

Chemical Exchange Saturation Transfer (CEST) is a non-invasive MRI technique which focusses on 

imaging chemical substances at concentrations that are too low to be detected by MR spectroscopy 

or imaged by conventional MR imaging. Within this technique, specific tissues can be saturated by a 

RF pulse, resulting in a reduced or absent MR signal. In CEST, magnetization will be spontaneously 

transferred from those specific molecules to surrounding water molecules by exchanging 1H protons. 

By saturating all 1H protons of the surrounding water molecules, the signal difference will be 

detectable. Specific forms of CEST, such as amine proton transfer (APT), nuclear Overhauser 

enhancement (NOE) and magnetization transfer (MT) can be measured generating multiple 

maps.[70-72] 

 

As previously described, gliomas suffer frequently from hypoxia. It is hypothesized that the increased 

APT signal is usually seen in these regions due to increased tumour protein content in slightly base-

like intracellular pH levels.[73] However, this is still debatable as extracellular pH decreases in 

tumour regions, but due to low extracellular tumour protein content this is not measured by APT 

CEST. 

 

In summary, different MRI techniques are able to image different parameters of brain and tumour 

oxygenation. These MRI techniques have already shown to be useful in diagnosis, predicting 

treatment response and prognosis of patients with gliomas. The next section describes how AI is able 

to retrieve new features and information of these MR images of different oxygenation parameters 

and how different AI approaches could combine this information to generate a combined 

representation of brain and tumour oxygenation. 

 

2.3 Artificial Intelligence approaches 

AI applications in gliomas 

In terms of applying AI in glioma data, a lot of research has been performed. Several studies focussed 

on applying radiomics to differentiate between glioblastoma and brain metastases based on MR 

images.[74, 75] Qian et al. even created a classifier superior to neuroradiologists in terms of 

accuracy, sensitivity and specificity of differentiating between glioblastomas and solitary brain 

metastases.[74] Besides differentiating, a plethora of studies has been performed to predict IDH and 

1p/19q mutation status in gliomas based on their MR images using AI approaches. These results 

showed a good discrimination between gliomas with and without IDH and 1p/19q mutations.[76-83] 
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Standard and advanced MR images have also been used in machine learning models to successfully 

extract predictive features of gliomas in terms of progression-free survival and overall survival.[84, 

85] 

 

Another important post-treatment parameter is pseudoprogression of gliomas. This refers to a 

progressive lesion with spontaneous improvement within 12 weeks after radiotherapy without any 

change in treatment.[86] A small and growing body of literature has investigated the potential of 

machine learning in differentiating between progression and pseudoprogression of gliomas. These 

studies showed promising diagnostic accuracies (>75%) for the diagnosis of pseudoprogression with 

their AI models.[87-92] An interesting result of Jang et al. is an inferior accuracy when the models are 

based on solely imaging or clinical features compared to models based on both features. This 

emphasizes the importance of combining multiple features and it demonstrates the potential of 

integrating clinical features as well.[89] Despite this body of literature, applying AI to combine 

different MR brain oxygenation parameter images into a combined representation has not been 

explored yet. The next sections describe different AI approaches that could potentially be used to 

fuse previously described MR brain oxygenation parameter images into a single oxygenation map. 

 

Generative Adversarial Network (GAN) 

Combining multiple MR images into a single map is basically translating one image into another 

image, a process also known as image-to-image translation. Recently, Generative Adversarial 

Networks (GANs) were proposed as an AI approach to achieve image-to-image translation.[93] The 

architecture of this network, shown in Figure 5, consists of a generator and discriminator that 

translates images into new images and simultaneously tries to distinguish the real image from the 

generated image, respectively.  

 

 

 

 

 

 

 

 

Figure 5: Outline of the GAN with a generator (G) and a discriminator (D). An example of training the model to 

generate T2 MR images from T1 MR images. 

 

Both parts of the GAN are CNNs. Thus, the discriminator is trained by updating its model parameters 

when it misclassifies the real data as generated data or the generated data as real data. However, 

the generator is trained by generating data from the input data and when the discriminator classifies 

the generated data as generated data, the generator needs to adjust its model parameters to 

improve its performance. The generator tries to fool the discriminator whereas the discriminator 

tries to distinguish the generated data from the real data. 

 

In the field of medical image synthesis, multiple applications of GANs have been performed to 
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translate a modality image into an image of another modality, including MRI to CT synthesis[94-97], 

CT to MRI synthesis[98], CT to PET synthesis[99, 100] and multi-contrast MRI synthesis[28, 29]. Thus, 

a GAN could potentially fuse different brain oxygenation MR images into a new image. However, 

conventional GANs use real data to establish the loss between the real data and the generated data. 

Unfortunately, when generating a combined representation image, a ground truth image is absent. 

Recently, CycleGANs have been proposed as a method to deal with unpaired data. This type of GAN 

uses two generators to generate data from one domain to another and vice versa. Although several 

studies showed successful applications of CycleGANs using unpaired data to train the model, 

examples of a ground truth were still required in these studies.[94, 95, 101] 

 

Auto-encoders 

Another AI model in the field of deep learning is the autoencoder. This is the most common AI model 

in deep learning that uses unsupervised learning.[102] Within image analysis, autoencoders are CNNs 

with a symmetric structure, where the middle layer is a higher-order representation of the data. The 

first part of the network before the middle layer, also known as the encoder, encodes the input data 

into a higher-order representation. The part after the middle layer, also known as the decoder, 

decodes the higher-order representation into an output which is as closely as possible to the input 

data. The typical structure of an autoencoder with images as input is shown in Figure 6. 

 

 

 

 

 

 

 
Figure 6: Architecture of an autoencoder network. 

 

Autoencoders have the potential for extracting most relevant features that represents the specific 

input data. This is done by encoding the input data into a simple representation of the input data. 

This encoding in the middle layer of the network consists of features of the input data. The decoder 

checks if these features are representative for the input data as it decodes the encoding into an 

specific output. When this output data is nearly the same as the input data, the encoding consists of 

features that are representative for the input data.  

 

Within medical image analysis, autoencoders have also been used to extract features from 

images.[28] Zhou et al. even used, besides the middle layer, data representations from multiple 

layers in the autoencoder network to extract features. They applied multiple autoencoders for 

different MRI techniques to fuse their higher-order data representations to create a new image using 

a GAN. To combine information of multiple MR images, multiple autoencoders are not required as 

multiple MR images can be given as input to one autoencoder, trying to regenerate the multiple 

input data based on their higher-order representations. Several other studies have also used 

autoencoders for image synthesis.[103-105] Costa et al.[105] and Huang et al.[104] used 

autoencoders in combination with GANs for image synthesis, while Sevetlidis et al.[103] used an 

autoencoder to code an MR image into a higher-order representation and use the decoder to 
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generate an image of another MRI technique. Regarding the fusion of multiple MR images into a 

single map, the combination of autoencoder(s) with a GAN or using autoencoders to generate a new 

image based on the higher-order representation of the input MR images are promising methods. 

However, an example of the new image is required to train these AI models to generate the specific 

output image. 

 

Clustering 

Clustering is an unsupervised leaning method which tries to group data points in a dataset based on 

their similarities. This process is shown in Figure 7. Within the groups, data points should have similar 

features, while data points in different groups have highly dissimilar features. There are many 

methods to perform clustering of data with K-means clustering being the most well-known 

algorithm. This technique tries to find a predefined number k of clusters. This is done by allocating 

every data point to the nearest centre of a cluster. When all new data points have been assigned to a 

cluster, the cluster centres are updated. This process will be repeated until the clusters remain 

unchanged or the maximum number of iterations has been reached.[106] 

 

 

 

 

 

Figure 7: Clustering of data points based on similarities. 

 

Every method of clustering has its own limitations depending on the data distribution as clustering 

performance strongly depends on the data distribution. Therefore, it is very useful to inspect the 

data distribution in advance of choosing and performing a clustering approach. However, clustering 

can also be done with more than three parameters per data point resulting in higher-dimension 

scatter plots in which the data distribution cannot be visualized in a 3D space.[107] Besides, the 

performance of several clustering methods, including k-means clustering, heavily depends on the 

initial starting conditions.[108] 

 

Multiple studies have already used clustering in genetic data of glioma patients.[109, 110] Those 

studies proved that clustering is a valuable contribution in diagnosis and prognosis of gliomas. 

Interestingly, the clustered glioma data showed that genetic data is more reflective of subtypes than 

histological class.[110] Other studies applied clustering to genetic data and prognostic data showing 

genetic data strongly predicts survival.[111, 112] This demonstrated importance of molecular 

information of gliomas was also taken into account in the latest version of the WHO Classification of 

CNS tumours.[5] 

 

Despite clustering in glioma data having mainly been performed on genetic data, it could potentially 

be applied at imaging data of gliomas as well. When clustering earlier discussed MRI oxygenation 

parameters, different types of brain oxygenation could be identified including healthy oxygenation 

and different types of hypoxia. These different types of oxygenation could be visualized in a single 

map. However, clustering data with multiple parameters results in a data distribution that cannot be 

visualized. Therefore, clustering could be an effective method to combine multiple MRI oxygenation 
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parameters into a single map, but it remains unknown if the clustering could be performed better.  

 

In the next sections of this literature study, three well-known clustering methods were reviewed: 

centroid-based clustering, density-based clustering, and hierarchical clustering. All three clustering 

methods try to group the data points into clusters in a way that the data points within a cluster are 

similar, but are dissimilar in contrast to data points in other clusters.  

 

In the case of centroid-based clustering, the number of clusters (k) is required to be set in advance of 

the clustering. This algorithm starts by assigning k random data points as the centers of clusters. 

Then the distance from each center of the cluster to a new data point is measured and the new data 

point is added to the nearest cluster, resulting in an updated center of the cluster. This process is 

repeated until all data points are assigned to a cluster.  

 

Centroid-based clustering is relatively simple and fast method. However, the results are strongly 

dependent on the initial data points which are assigned as the start of each cluster. This could be 

optimized by performing the clustering process multiple times with varying initial data points as start 

of the clusters. The main disadvantage of centroid-based clustering in regards of the purpose of this 

study is that the number of clusters needs to be manually set in advance of the clustering. This is 

information that is not known in advance, and moreover, varies between patients. An overview of 

the advantages and disadvantages are shown in Table 1 .[113-115] 

 

Table 1: Advantages and disadvantages of centroid-based clustering. 

Advantages Disadvantages 

• Easy to implement; 

• Relatively fast method; 

• Can handle large amount of data; 

• Number of clusters needs to be set 
manually in advance of clustering; 

• Centroids can be dragged by outliers; 

• Results are dependent on initial values 
→ this can be optimized to guarantee 
the best results; 

• Struggles with data clusters with 
varying densities; 

• Struggles with non-spherical or non-
elliptical cluster shapes. 

 

 

In contrast to centroid-based clustering, density-based clustering aims to separate clusters with high 

density from clusters with low density. The most well-known density-based clustering algorithm is 

Density-Based Clustering of Applications with Noise (DBSCAN). Within this algorithm, two parameters 

need to be set in advance of the clustering: the neighbourhood distance ε, and the minimum number 

of points (minPoints) which should be present in the neighbourhood of a data point to start a cluster. 

 

This method starts with a randomly selected data point. By using ε and minPoints, the algorithm 

checks if sufficient data points are present in the neighbourhood of the starting data point. When 

this is not the case, that data point will be labelled as noise. Otherwise, this data point will be 

labelled as part of cluster and all data points within its neighbourhood will be assigned to that cluster 

as well. For each of these neighbour data points, ε and minPoints are used again to investigate if their 

surrounding data points can be assigned to that cluster as well. This process will be repeated until all 
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data points in the neighbourhood have been analysed and assigned as part of the cluster or labelled 

as noise. When this process is completed, a new unlabelled data point will be investigated the same 

way to determine if it should be labelled as a new start of a cluster or as noise. The algorithm will 

repeat this until all data points have been labelled as part of a cluster or as noise. 

 

Due to this clustering technique, the algorithm is able to find arbitrary-shaped clusters and handle 

noisy data. However, clusters are not always defined by their density and this method struggles with 

high-dimensional data. An overview of the advantages and disadvantages of this technique is given in 

Table 2.[114, 116] 

 

Table 2: Advantages and disadvantages of density-based clustering. 

Advantages Disadvantages 

• Number of clusters do not need to be 
set in advance of clustering; 

• Is able to find arbitrary-shaped clusters; 

• Robust to outliers. 
 

• Not able to separate different clusters 
with similar densities; 

• Not able to group data points into a 
cluster when the group has varying 
densities; 

• Struggles with high-dimensional data; 
 

 

Regarding hierarchical clustering, this algorithm can be performed by two different methods: 

• Agglomerative: The algorithm starts with defining every data point as a separate cluster. By 

measuring the distance between all clusters, the algorithm determines the smallest distance 

and merges these two clusters together into a new cluster. This process will be repeated 

until all data points are merged into one cluster; 

• Divisive: The algorithm starts with one cluster containing all data points. By measuring the 

distance between all clusters, the algorithm determines the greatest distance and splits the  

cluster into two clusters; 

Both methods result in a dendrogram: a tree-based representation of merging and splitting of 

clusters. Within this graph, the optimal number of clusters can be determined since the largest 

vertical distance without merging or splitting of clusters represents the most dissimilar clusters. At 

this level in the dendrogram a horizontal line can be drawn and the number of intersections with 

vertical lines represents the number of clusters. 

 

To determine which clusters need to be merged or split, different distance metrics and linkages can 

be used in hierarchical clustering, which respectively measures the distance between data points and 

measures the distance between clusters. The most well-known linkage options are: single linkage, 

average linkage, complete linkage, and ward linkage. Within single linkage the algorithm uses the 

smallest distance between two points, in which each point belongs to two different clusters. With 

average linkage the algorithm uses the average distance between all combinations of data points of 

the two different clusters. With complete linkage the algorithm uses the greatest distance between 

two points, in which each point belong to two different clusters. In contrast to other linkages, ward 

linkage analyzes the variance of the clusters. With ward linkage the algorithm tries to achieve the 

least increase in total variance by using the Ward variance minimization algorithm:  
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𝑑(𝑢, 𝑣) =  √
|𝑣| + |𝑠|

𝑇
𝑑(𝑣, 𝑠)2 +

|𝑣| + |𝑡|

𝑇
𝑑(𝑣, 𝑡)2 −

|𝑣|

𝑇
𝑑(𝑠, 𝑡)2      (5) 

 

where 𝑣 is an unused cluster and 𝑢 is the newly joined cluster consisting of clusters s and t.  

 

A simplified overview of the different linkages is shown in Figure 8. To measure the distance between 

two data points, different distance metrics result in different clustering outcomes. Two classic 

distance metrics are Euclidean and Manhattan, where the distance is measured by calculating the 

square root of the sum of the square differences and by summing the vertical and horizontal distance 

between the two points, respectively. An overview of the advantages and disadvantages regarding 

hierarchical clustering is shown in Table 3 .[114, 115, 117] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Overview of how different linkages measure the distance between two clusters. 
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Table 3: Advantages and disadvantages of hierarchical clustering. 

Advantages Disadvantages 

• Easy to implement; 

• A dendrogram is created to determine 
the optimal number of clusters, which is 
very informative; 

• No a priori knowledge about the 
number of clusters is required. 

• Can’t undo what is done; 

• Time-complexity → this can be fixed by 
using extra computational power of 
BIGR; 

• Sensitive to noise. This depends on 
which distance metric is used → this 
can be optimized by comparing results 
of different metrics and linkages; 

• Can be difficult to identify correct 
number of clusters based on the 
dendrogram.  

 

 

Hyperparameter optimization 

The previous sections have shown different AI methods that could be used to combine different MRI 

brain oxygenation parameters into a single map. However, these models have many settings which 

need to be set in advance of the (training) process, including learning rate of the training process. 

These settings, called hyperparameters, are not adjusted during the training process in contrast to 

the model parameters.  

 

Many approaches have been proposed to optimize these hyperparameters to achieve the highest 

performance of the AI model. These approaches can be divided into two groups: exhaustive search of 

hyperparameter space and Sequential Model-Based Optimization (SMBO). The two most well-known 

exhaustive search approaches are grid search and random search. Grid search uses a predefined set 

of values for each hyperparameter individually and tries every possible combination of these 

predefined hyperparameter values. In contrast to grid search, random search tries combinations of 

randomly generated hyperparameter values. As shown in Figure 9, the main advantage of random 

search compared to grid search is that random search results in more knowledge regarding the 

impact of a single hyperparameter on the model performance. For example, when both optimization 

strategies are performed with nine combinations each, grid search tries three different values for 

every hyperparameter, whereas random search tries nine different values for every hyperparameter. 

However, both methods are still computationally expensive as they do not take previous knowledge 

on hyperparameter value combinations into account when trying a new combination.[118] 

 

 

 

 

 

 

 

Figure 9: Layout of different hyperparameter values during grid search and random search. In this example, 

random search results in more knowledge regarding the importance of different hyperparameters. 



27 
 

In contrast to an exhaustive search of hyperparameter space, SMBO chooses its new set of 

hyperparameter values based on a surrogate model. This is a probability representation of the true 

model performance for different hyperparameter values. After every new combination of 

hyperparameter values, the probability model is updated and approaches the true performance 

function more and more closely resulting in the location of the global optimum of all hyperparameter 

value combinations. This process is shown in Figure 10. This method can be performed by different 

processes with Gaussian Process and Tree-structured Parzen Estimator being the most well-

known.[119-121] The main disadvantages that still remain within these processes is that these 

algorithms still have their own hyperparameters that needs to be set manually and previous 

knowledge is still required to predefine the range of hyperparameter values.  

 

 

 

 

 

 

 

Figure 10: Process of hyperparameter optimization of a SMBO method. A new hyperparameter value and its 

model performance results in a better approach of the true performance function. 

 

2.4 Conclusion 

The aim of the current study was to give an overview of different MRI methods to assess brain 

oxygenation and different AI approaches to fuse these MR images into a complete brain oxygenation 

map. All of the described MRI techniques contain important information regarding brain oxygenation 

and therefore should be included when combining multiple MR images to generate a single brain 

oxygenation map. Due to the absence of a ground truth image, a GAN would not be preferable for 

this research purpose. While auto-encoders have the potential to be a useful tool for feature 

extraction if needed, clustering based on those MRI techniques is an AI method which could identify 

different states of oxygenation that could be visualized in a single image. Hierarchical clustering is the 

most promising clustering algorithm since a priori knowledge is not required and the number of 

clusters present in the tumour is also not known in advance. In addition, a dendrogram could be 

insightful to determine the number of clusters and the clustering performance can be optimized by 

testing different metrics.  

 

This review has also shown that when such an AI project will be performed, it is important to use a 

SMBO method to optimize the hyperparameters of the model and take the limitations of each MRI 

technique into account. In addition, it is necessary to check the impact of each MRI method on the 

resulting image to guarantee no useless data and computational power will be used when generating 

these images in the clinical practice. 
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Chapter 3 Methods 

3.1 Patient selection 

The data in this research was retrieved from patients with brain tumours treated in the Erasmus 

Medical Centre in Rotterdam. Patients were included when they met the following criteria: 

• age ≥ 18 years; 

• eligible for resection of primary brain tumour or brain metastasis; 

• informed consent was given according to ICH-GCP. 

Patients were excluded when they met the following exclusion criteria: 

• contra-indication for MRI; 

• received chemotherapy before or during MRI; 

• not possible to give informed consent. 

All included patients underwent MR imaging according to the MR imaging protocol. Subsequently, 

these patients underwent resection of the tumour in which biopsies were taken at multiple locations 

within the tumour.  

 

3.2 Image acquisition 

The brain MR imaging protocol, named ITEM (Imaging of Tumour Environment Mapping), consists of 

multiple sequences and has been designed to assess structural and physiological information 

regarding the brain tumour and surrounding brain tissue. MRI scanning of the included patients was 

performed on a 3T scanner (Discovery750, General Electric, Chicago, USA) with a 32-channel head 

coil according the ITEM scan protocol. The first part of this protocol included: T1-weigthed imaging 

(TE/TR = 2.1/6.1 ms, FOV = 256 mm, 352 slices), T2/FLAIR-weighted imaging (TE/TR = 111.4/6002 ms, 

voxel size = 1.1x1.1x1.6 mm3, matrix size = 224x224x264), DWI with three b-values of 0, 10, and 1000 

s/mm2 (TE/TR = 63/5000 ms , voxel size = 1x1x3 mm3), eASL (TE = 10.8 ms, slice thickness = 3.5 mm), 

APT-CEST (TE/TR = 3.2/7 ms, FOV = 220x180x42 mm3, voxel size = 1.7x1.7x3 mm3, matrix size = 

128x104x14 and FASE (TE/TR = 74/8000 ms, slice thickness = 2.0). After injecting 7.5 ml Gadovist with 

12 ml NaCl into the patient, the second part of the protocol was performed, which included: T2-

weighted imaging (TE/TR = 8.4/0.14 ms, voxel size = 0.46x0.46x5.00 mm3), T1-weigthed imaging (TR = 

6.1 ms, voxel size= 1x1x1 mm), and HEPI (TE/TR (GRE) =18.6/1500 ms, TE/TR (SE) = 69/1500 ms, voxel 

size = 1.88x1.88x4.00 mm3, number of repetition = 122 times and brain coverage of 15 slices (24)). 5 

minutes prior to the HEPI sequence a second bolus of Gadovist was injected into the patient. The 

complete ITEM MR imaging scanning protocol has a duration of approximately 60 minutes and its 

outline is shown in Figure 11. Further details of the image acquisition are described in Appendix A. 

 

Figure 11: Outline of the ITEM MR imaging protocol. 
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3.3 Data processing 

The T1-weighted images and T2/FLAIR images are derived from the T1-weighted and T2/FLAIR image 

acquisition, respectively. These images contain mainly structural information regarding brain tissues. 

Apparent Diffusion Coefficients (ADC) maps are derived from the data acquired by the DWI sequence 

following the equation:  

𝑆 = 𝑆0 ∗ 𝑒(−𝑏∗𝐴𝐷𝐶)   (4) 

 

with S = signal intensity, S0 = signal intensity when no diffusion gradients are used.[55] Furthermore, 

the transit-time corrected CBF maps are computed based on the eASL image acquisition. From the 

CEST imaging sequence APT maps are derived and from the FASE sequence, R2’ maps and 

deoxygenated blood volume maps could be derived. By using both R2’ and DBV measurements, a 

spatial map of the oxygen extraction fraction can be calculated by equation (6): 

𝑂𝐸𝐹 =  
𝑅2

′

𝐷𝐵𝑉 ∗ 𝛾 ∗ (
4
3) ∗ 𝜋 ∗ ∆𝜒0 ∗ 𝐻𝑐𝑡 ∗ 𝑘

      (6) 

 

with 𝛾 = nuclear gyromagnetic ratio, Hct = blood hematocrit level, ∆𝜒0 = susceptibility between 

completely deoxygenated and completely oxygenated red blood cells.[122] 

 

The T2-weighted images and post-contrast T1-weigthed images are generated based on the T2-

weigthed and T1-weighted image acquisition performed after contrast injection. The added value of 

T2-weighted imaging compared to T1-weighted imaging, is that T2-weighted imaging can be used to 

identify peritumoral edema and non-enhancing tumours as those are regions are hyperintense on 

T2-weigthed images. In addition, post-contrast T1-weigthed images are able to show enhancing 

regions in the tumour area, indicating a disrupted blood-brain barrier.[123] 

 

The final sequence in the ITEM MR imaging protocol is HEPI. ∆R2 and ∆R2* values were derived from 

the measured MR signals by the following equations:  

 

∆𝑅2∗ = (
1

𝑇𝐸𝐺𝑅𝐸
) ∗ log (

𝑆(𝑡)𝐺𝑅𝐸

𝑆0
)     (1) 

 

∆𝑅2 = (
1

𝑇𝐸𝑆𝐸
) ∗ log (

𝑆(𝑡)𝑆𝐸

𝑆0
)     (2) 

 

with TE = echo time, S = measured MR signal.[42] Based on the ∆R2* maps, relative cerebral blood 

volume maps can be generated by the following equation: 

 

𝑟𝐶𝐵𝑉 =  ∫ ∆𝑅2
∗(𝑡)

𝑡1

𝑡0

𝑑𝑡      (7) 
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The ∆R2, ∆R2*, rCBV values in combination with the previously acquired ADC values were used to 

compute vessel size maps according to equation (3) : 

𝑀𝑒𝑎𝑛 𝑣𝑒𝑠𝑠𝑒𝑙 𝑠𝑖𝑧𝑒 = 0.867 ∗ √𝑟𝐶𝐵𝑉 ∗ 𝐴𝐷𝐶 ∗ (
∆𝑅2∗

∆𝑅2
3
2

)     (3) 

 

with rCBV = relative cerebral blood volume, ADC = apparent diffusion coefficient.  

 

3.4 Image registration 

To align all images into one coordination system, image registration can be performed. In this 

research, image registration was necessary due to the different acquisition sequences generating 

images with different resolutions in different coordinate systems. In order to prevent loss of data, all 

maps acquired by the ITEM MR imaging protocol were registered to the T1 post-contrast image as 

this map has the highest resolution. By performing image registration, all included images were 

transferred to the same space and were sampled so they have the same number of voxels as the T1 

post-contrast image. It is necessary that all maps align such that the voxels in the different images all 

occupy the same physical spot as each voxel is analyzed during the clustering as a single data point 

containing multiple values, each value representing the same voxel in a different map. 

 

However, by registration of all images to the image with the highest resolution, the images with 

lower resolutions are upsampled and therefore generate fake data by interpolating between true 

data points. To investigate this effect on the clustering results, the T1 post-contrast map was 

registered to the vessel size map generated by the HEPI sequence as this map has the lowest 

resolution. Then all other maps were registered to this downsampled T1 post-contrast map, resulting 

in all maps being downsampled so the number of voxels is the same for each map and all maps are 

aligned with each other.  

 

3.5 Image segmentation 

In a first experiment, clustering was performed to distinguish between white matter, gray matter, 

and cerebrospinal fluid to verify clustering as an appropriate approach for further image analysis. To 

check if the clustering approach was able to identify healthy white matter, gray matter, and 

cerebrospinal fluid as separate brain tissues, the voxels needed to be labelled. Therefore, 

segmentation of white matter, gray matter, and cerebrospinal fluid of the healthy hemisphere was 

performed to create masks and assign each voxel as white matter, gray matter, or cerebrospinal 

fluid. Segmentation was performed on the T1-weighted image with the FAST tool (v4.0) of FSL 

resulting in probability maps for each type of healthy brain tissue. Since these masks were used a 

label to validate the clustering results, only voxels with a probability of 1.0 were included in the 

tissue masks used for this analysis.  

 

When clustering was verified as a suitable approach, the main experiment was performed by 

clustering of brain tumour voxels to identify and locate different oxygenation states within the 

tumour. Segmentation of the brain tumour was performed manually based on the T1, T2/Flair, T2 

and T1 post-contrast images in ITK-SNAP.[124] Enhanced areas of the tumour were included in the 
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segmentation. These segmentations were checked by an experienced neuroradiologist. 

 

3.6 Algorithm parameters 

In this research, clustering was used as AI method to create a combined representation of multiple 

oxygenation parameters acquired by MRI. Based on literature findings, agglomerative hierarchical 

was chosen as clustering method since no a priori knowledge was required and the number of 

clusters can be derived from the dendrogram in contrast to centroid-based and density-based 

clustering. In addition, the clustering performance of hierarchical clustering can easily be optimized 

by testing different parameter settings. 

 

Regardless which clustering method was chosen, all algorithms have many parameters that need to 

be set in advance of the clustering. These setting strongly affect the outcome of the clustering. 

Therefore, the first step in this research was to perform the hierarchical clustering multiple times 

combining different linkages and distance metrics to compare the clustering results and determine 

which linkage and distance metric result in the highest clustering performance. In this step clustering 

performed 7 times with the settings shown in Table 4. Note that Ward linkage exclusively can be 

performed with Euclidean distance. 

 

Table 4: Combinations of linkages and distance metrics that were used when performing 
clustering multiple times. 

 Linkage Distance metric 

1 Single Euclidean 

2 Complete Euclidean 

3 Average Euclidean 

4 Ward Euclidean 

5 Single Manhattan 

6 Complete Manhattan 

7 Average Manhattan 

 

To know which settings provide the best clustering results, it is necessary to know if the clustering 

algorithm clustered the data in the correct groups. For this analysis the masks of the white matter, 

gray matter, and cerebrospinal fluid of the healthy hemisphere were used. The white matter, gray 

matter, and cerebrospinal fluid voxels of the T1 and FLAIR images of patient 001 were included for 

this analysis. For this analysis, only 80.000 voxels of each tissue were included due to the large 

required computational power when including all voxels. Since the aim was to separate the data into 

a cluster with white matter voxels, a cluster with gray matter voxels, and a cluster cerebrospinal fluid 

voxels, the clustering algorithm was set to group the data into three clusters. The clustering 

algorithm was programmed by using Python version 3.6.8 (Python Software Foundation. Python 

Language Reference. Available at http://www.python.org). An example of a Python script used in this 

research to cluster image data with ward linkage and Euclidean distance is shown in Appendix B. 

After clustering, the data points were shown in a scatter plot with their corresponding T1 and 

T2/FLAIR values on the x- and y-axis, and their assigned colour will show which cluster they have 

been assigned to. In addition, the clustered groups were checked for how well they matched the 

groups of white matter voxels, gray matter voxels, and cerebrospinal fluid voxels. 

 

http://www.python.org/
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3.7 Reducing computational power 

An important disadvantage of clustering algorithms, especially hierarchical clustering, is the large 

computational complexity when datasets are extremely large. Therefore, the second step in this 

research was to reduce the required computational power since the size of the original T1 post-

contrast image is 256x256x320, resulting in nearly 21 million voxels that will be included for every 

patient when performing clustering of white matter, gray matter, and cerebrospinal fluid voxels. To 

reduce this number of voxels and the computational power needed, solely voxels of the healthy 

hemisphere were included by using the previously discussed masks of white matter, gray matter, and 

cerebrospinal fluid voxels. In addition, the data type of the intensity values of the T1 and T2/FLAIR 

were compressed by transforming the float64 values to float16 values. The clustering results of these 

different data types in Python were compared in terms of running time, maximum memory required 

and how it affects the result of clustering white matter, gray matter, and cerebrospinal fluid. 

 

3.8 Tumour clustering 

The next step in this research was to apply the hierarchical clustering algorithm and its optimal 

parameter settings (linkage and distance metric) on patient data. For this analysis, the segmentation 

of the tumours are used to select the voxels that are clustered. At first, a dendrogram is generated to 

determine the number of clusters present in the image data. A Python script used in this research to 

generate a dendrogram is shown in Appendix C. In this study, the clustering is performed several 

times in Python with varying MRI maps included to determine the impact and relevance of these 

maps on the clustering results. The following clustering methods of the tumour voxels are 

performed: 
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Figure 12: Overview of which maps were included in which clustering analysis. 

 

3.8 Analysis and data visualization 

Clustering results per tumour and per analysis were overlaid on T1-weighted images with different 

colours per cluster for visual inspection of clustering with different inputs.  

 

To analyze what the different clusters represent regarding brain oxygenation and hypoxia, box plots 

were used to visualize the values of the oxygenation parameters per cluster. The values of each 

oxygenation parameter were normalized by the following equation: 

𝑋𝑛 =
𝑋0 − 𝜇

𝜎
      (8) 

with Xn=normalized value in MR image X, X0=original value in MR image X, µ=mean value of MR 

image X, and σ=standard deviation of values in MR image X. 
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Chapter 4 Results 

4.1 Patient characteristics 

In this study 3 patients with brain tumours that met the inclusion criteria were included. The patient 

characteristics including the type of brain tumour based on histological analysis are shown in Table 5. 

Table 5: Patient characteristics 

Patient number Gender Age [years] Histology of brain tumour 

001 male 71 Anaplastic oligodendroglioma,  
WHO grade II 

002 female 40 Oligodendroglioma 
003 female 52 Metastasis lung carcinoma 

 

 

4.2 Algorithm parameters 

The results for clustering of healthy white matter, gray matter, and cerebrospinal fluid using different 

linkages and distance metrics are shown in Figure 13 and Table 6.  

 

From the scatter plots, it can be seen that using the single linkage results in clustering nearly all data 

points into one cluster. Average linkage also results in a poor clustering as there are two large 

clusters made and one very small cluster. Closer inspection of Table 6 shows that single linkage 

clustered nearly all data points into one cluster, which was also seen in Figure 13. Table 6 also shows 

that using the average linkage, with both Euclidean and Manhattan as distance metric, results in a 

reasonable separation of white matter and gray matter voxels from cerebrospinal fluid voxels. 

However, this linkage metric is not able to separate white matter from gray matter into two different 

clusters. The combination of ward linkage and Euclidean distance shows the best clustering results 

based on Figure 13 and Table 6 in terms of distinguishing white matter voxels, gray matter voxels, 

and cerebrospinal fluid voxels from each other. 

 

The results of the clustering with the downsampled T1 and FLAIR maps are shown in Figure 14 and 

Table 7. As seen in this table and scatter plot, the clustering algorithm was still able to group white 

matter voxels, gray matter voxels, and cerebrospinal fluid voxels into three separate clusters based 

on the downsampled maps. Table 7 shows that the algorithm clustered nearly all cerebrospinal 

voxels into a single cluster, excluding all white matter and gray matter voxels. However, still a 

reasonable part of the gray matter voxels end up in the cluster which contains nearly all white matter 

voxels. In Figure 14 can be seen that the border between the gray matter voxels and white matter 

voxels is indeed not very distinctive. 
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Figure 13: Scatter plots of the clustering done with different combinations of linkages and distance metrics. 

Each data point was assigned to a cluster by using colours that represent a specific cluster. 
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Table 6 : Overview of which brain tissue voxels were clustered in which cluster by using different 
combinations of linkages and distance metrics. 

Distance 
metric 

Linkage Cluster No. of gray 
matter 
voxels 

No. of white 
matter 
voxels 

No. of 
cerebrospinal 

fluid voxels 

No. total 
voxels in 
cluster 

Euclidean 
 

Single 1 3 0 0 3 

2 0 0 2 2 

3 79.997 80.000 79998 239995 

Euclidean 
 

Complete 1 478 2163 66445 69086 

2 2477 63499 10956 93982 

3 77045 14338 2599 93982 

Euclidean 
 

Average 1 13 0 9 22 

2 186 512 69532 70230 

3 79801 79488 10459 169748 

Euclidean 
 

Ward 1 6968 79261 764 86993 

2 72911 543 693 74147 

3 121 196 78543 78860 

Manhattan Single 1 0 0 2 2 

2 0 0 9 9 

3 80000 80000 79989 239989 

Manhattan Complete 1 71445 528 328 72301 

2 7970 79466 29293 116729 

3 585 6 50379 50970 

Manhattan Average 1 192 317 77889 78398 

2 0 0 2 2 

3 79808 79683 2109 161600 

 

 

 

 

 

 

 

 

 

 

Figure 14: Scatter plot of the clustering performed on the downsampled/registered T1 weighted and T2/FLAIR 

weighted images with ward linkage and Euclidean distance. 
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Table 7: Overview of which brain tissue voxels were clustered in which cluster when applying ward 
linkage and Euclidean distance on the downsampled/registered registered T1 weighted and 
T2/FLAIR weighted images 

Cluster No. of gray 
matter voxels 

No. of white 
matter voxels 

No. of 
cerebrospinal 

fluid voxels 

No. total voxels 
in cluster 

1 0 0 3180 3180 
2 1145 9 0 1154 
3 521 5457 3 5981 

 

 

4.4 Reducing computational power 

MRI maps derived from the image acquisition were included as nifti files in which the data points 

were represented as float64 values. To reduce computational power, the data points were 

transformed to float32 values and float16 values. The results of this analysis were shown in Figure 

15, Table 8 , and Table 9. As can be seen from Table 8 , changing the data type does not reduce the 

maximum required memory or running time. The most striking result to emerge from Figure 15 and 

Table 9 is that float32 and float64 values result in exactly the same clustering result, but with float16 

values the clustering results differs. Specifically the original T1 and FLAIR images with float16 values 

result in a worse clustering result compared to that with float32 and float64 values since the 

algorithm had a reduced performance in distinguishing white matter voxels and gray matter voxels, 

as can be seen in Table 9. 
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Figure 15: Scatter plots of the clustering done with different data types for the original high resolution T1 

weighted and T2/FLAIR weighted images, and the downsampled T1 weighted and T2/FLAIR weighted images. 

 

 

Table 8: Running time and maximum memory for clustering with different data types on the 
original high resolution and downsampled T1 weighted and T2/FLAIR weighted images. 

Data type Maps resolution Maximum memory [GB] Duration [min] 

Float16 Original 432.3 96 

Downsampled 1.6 <1 

Float32 Original 432.3 81 

Downsampled 1.6 <1 

Float64 Original 432.3 85 

Downsampled 1.6 <1 
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Table 9: Overview of which voxels were clustered in which cluster when performing clustering with 
different data types on the original high resolution and downsampled T1 weighted and T2/FLAIR 
weighted images. 

Data type Maps 
resolution 

Cluster No. of gray 
matter 
voxels 

No. of 
white 
matter 
voxels 

No. of 
cerebrospinal 
fluid voxels 

No. total 
voxels in 
cluster 

Float16 Original 1 12135 79773 671 92579 
2 67669 90 666 68425 
3 196 137 78663 78996 

Downsampled 1 0 0 3180 3180 
2 1186 18 0 1204 
3 480 5448 3 5931 

Float32 Original 1 4628 78233 535 83396 
2 75233 1536 2117 78886 
3 139 231 77348 77718 

Downsampled 1 0 0 3180 3180 
2 1145 9 0 1154 
3 521 5457 3 5981 

Float64 Original 1 4628 78233 535 83396 
2 75233 1536 2117 78886 
3 139 231 77348 77718 

Downsampled 1 0 0 3180 3180 
2 1145 9 0 1154 
3 521 5457 3 5981 

 

 

 

4.5 Tumour clustering 

The different clusters and their locations within a tumour are visualized by using different colours for 

each cluster on the T1 image, shown in Figure 16, 17, and 18 for patient 001, 002, and 003, 

respectively. The boxplots of each oxygenation parameter are shown for the corresponding clusters 

in Figure 19, 20, and 21 for patient 001, 002, and 003, respectively. 
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Figure 16: Dendrogram and the location of the clusters in slice 7, 10, and 15 within patient 001 for each 

clustering method (letters correspond to letters explained in Chapter 3 Methods) 
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Figure 17: Dendrogram and the location of the clusters in slice 9, 13, and 16 within patient 002 for each 

clustering method (letters correspond to letters explained in Chapter 3 Methods) 
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Figure 18: Dendrogram and the location of the clusters in slice 4, 8, and 11 within patient 003 for each 

clustering method (letters correspond to letters explained in Chapter 3 Methods) 
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Figure 19 : Box plots of the normalized values of each oxygenation parameter in every cluster for all clustering 

methods within patient 001. 
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Figure 20: Box plots of the normalized values of each oxygenation parameter in every cluster for all clustering 

methods within patient 002. 
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Figure 21: Box plots of the normalized values of each oxygenation parameter in every cluster for all clustering 

methods within patient 003. 
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Chapter 5 Discussion 

5.1 Interpretation and implications 

The present study was designed to create a combined representation of different oxygenation 

parameters acquired by multiple MRI techniques through using an AI approach. Based on the 

literature study, hierarchical clustering was chosen as the most suitable approach for this study. The 

reason for this decision was mainly due to the absence of requiring a priori knowledge and the 

addition of a dendrogram providing more insight in the clustering process. An additional benefit 

included the possibility of reducing the algorithms inherent noise sensitivity by tuning input 

parameters, including distance metrics and linkages. 

 

The optimization of linkage and distance parameters gave expected results, as can be seen in Table 6, 

which shows if the algorithm was able to separate the white matter voxels, gray matter voxels, and 

cerebrospinal fluid voxels based on the MR images. It can be seen that single linkage results in nearly 

all data points grouped together, which is not surprising since this linkage method is not very 

sophisticated as explained in the previous sections. In addition, Average linkage shows its value in 

distinguishing white matter voxels and gray matter voxels from cerebrospinal fluid voxels, but it is 

not able to separate the gray matter voxels from the white matter voxels. Based on Figure 13, 

complete linkage and ward linkage shows its capability on clustering three large groups. However, 

the results in the table show ward linkage and Euclidean distance as the combination with the most 

accurate clustering results, which is not surprising since these are the most sophisticated distance 

measures. In Figure 14 and Table 7 can be seen that resampling the T1 and FLAIR images to a lower 

resolution still results in a similar clustering result. Therefore all the clustering in the next parts were 

done with Ward linkage and Euclidean distance as parameters for the hierarchical clustering. 

 

Since the T1 and FLAIR images with their original resolution resulted in a large number of data points, 

the running time of the pipeline was long and the required computational power exceeded the 

available computational power. Therefore we aimed to reduce the computational power needed by 

compressing the data type used for the data points. However, in Table 8 can be seen that the 

duration did not differ extremely and the required memory was exactly the same for different data 

types. A possible explanation for this might be that T1 and FLAIR maps are generated with intensities 

as integers. However, for this study solely nifti files of the acquired maps were analysed instead of 

the original maps. By converting the acquired maps to nifti files, all integers were also converted to 

floats. So the floats in the T1 and FLAIR maps were actually integers and by compressing these floats 

into smaller data types, the original integers always stay the same. Thus, the absence of a difference 

in running time is due this phenomena. However, the duration of the clustering process differs a few 

minutes. This is probably caused by external factors. Another notable result from Table 9 is that the 

clustering result for the data differs if the data points are float16 values. This is an interesting result 

as it should be exactly the same integers as input data as with float32 and float64 values. 

 

Regarding the tumour clustering, it is interesting to note that in all three patients a more hypoxic 

core cluster could be detected in the brain tumours, as visualized in Figure 15, 16, and 17. This 

finding was also reported in a similar study of Stadlbauer et al.[26] Another interesting finding is that 

within patient 001 and patient 003 the number of present clusters differed among the different 

clustering methods. This can be seen in patient 001 as two clusters are found by using method B and 

C, while three clusters were found by using method A, D, E, and F. This indicates that a purely data-

driven approach might need some prior knowledge on the number of and which different 
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oxygenation states could be present within a brain tumour. By adding this knowledge in advance, a 

more targeted search for clusters could be achieved. In the current study, comparing clustering 

method A with clustering method B in Figure 19, 20, and 21 shows that mainly the same regions are 

coloured. However, method B including solely physiological information shows a core cluster with a 

slightly different border between the clusters than seen with method A including solely T1, T2, FLAIR, 

and T1 post-contrast maps. This suggests that advanced MRI shows a process which cannot be 

detected with conventional MRI. 

 

In Figure 19 can be seen from the box plots within method B that the two clusters are probably 

mainly determined by their R2’ and OEF value since the boxplots for these parameters have the least 

overlap when visually comparing cluster 1 with cluster 2. Within method B of patient 002 in Figure 20 

can be seen that the boxplots of CBF and rCBV are the most distinctive parameters for the two 

cluster found within this patient. This also holds for patient 003 as CBF and rCBV seem to be the most 

distinctive parameters in combination with the ADC values of these two clusters. These findings, 

while preliminary, suggest that the clustering pipeline used in this research is able to detect regions 

with a reduced oxygenation, caused by a reduced OEF or a reduced blood flow and blood volume. In 

this research, comparing method E with method F shows that adding APT to the other physiological 

maps does not result in notable different clusters or a different distribution of MR parameters values 

within the clusters. The result of adding APT to the clustering analysis could be poor due to the 

already large number of other physiological maps that were included in method E and F. Another 

possible explanation could be that one or more of the other physiological maps has a similar added 

value to the clustering result.  

 

5.2 Limitations 

Despite the interesting results, this research has some limitations. At first, the number of included 

patients was very low. This made it harder to draw conclusions on the performance of the clustering 

pipeline in terms of assessing brain oxygenation. Considering that each patient contains a lot of 

voxels/data points, there was a lot of data available. However, the voxels originate from only three 

patients and the result are therefore hard to generalize to patients with other types of brain tumours 

since the oxygenation in these types could be completely different than the types evaluated in this 

research.  

 

Another limitation is that not all types of clustering were explored in the literature review. In this 

research was chosen to only review three well-known clustering methods, while other methods also 

exist. In addition, each clustering method also has multiple algorithms which use different techniques 

to cluster the data. For example, Density-based spatial clustering of applications with noise (DBSCAN) 

is a sophisticated algorithm of density-based clustering. Thus it is hard to compare a clustering 

method to another clustering method since each method has very simple and very sophisticated 

algorithms.  

 

Regarding the inclusion of different MR imaging techniques, it is hard to draw conclusions on the 

importance of the different imaging techniques on the clustering result since some were included in 

only a few clustering analyses and other techniques were included in other clustering analyses. This 

makes it hard to compare the different clustering analyses performed in this research and draw a 

conclusion on the impact of each individual MR imaging technique on the clustering result. 
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Besides, the clusters were evaluated based on the box plots, showing the distribution of the intensity 

values within the clusters. However, these values do not have to represent what is happening in the 

complete physiology of the tumour. Thus a validation of what each cluster truly represents is missing 

in this research since the clusters are evaluated based on the distribution of data points and not on 

their correlation with results found in biopsies for example. 

 

5.3 Future research 

Further research should be undertaken to investigate the role of clustering in detecting and locating 

different oxygenation states within brain tumours. To develop a full picture of this process, additional 

studies will be needed that include a much larger number of patients. When a large number of 

patients is included, the voxels of all patients can be clustered all at once to find all possible 

oxygenation scenarios that could potentially be present in brain tumours. Based on these results, a 

classifier pipeline could be built that clinicians can apply to new patients to detect and locate 

different oxygenation states. This could play an important role in making treatment decisions. 

 

Besides, other clustering algorithm need to be explored and tested as well. A plethora of clustering 

algorithms are available and this research only focused on a part of them. A further study comparing 

different clustering algorithms for clustering image data to identify and locate different oxygenation 

states within brain tumours is therefore suggested. 

 

In addition, these studies should also have more focus on the impact and value on the clustering 

result of each individual MRI technique discussed in this research. A future study investigating this by 

performing the clustering multiple times, but excluding each time one MR image is therefore 

advised. In addition, the correlation between the results of each MR imaging technique should be 

investigated since multiple MR imaging techniques could contribute the same information to the 

clustering analysis. This would generate interesting results on which MR imaging techniques are less 

important for assessing tumour oxygenation. 

 

Based on the findings in this research, the studies should also implement more knowledge of 

experienced neuroradiologists regarding brain oxygenation in advance of the clustering instead of 

the more data-driven approach proposed in this research. The knowledge of experienced 

neuroradiologists could be used to identify how many different oxygenation states could be expected 

within specific patients. Using this knowledge as extra input, the clustering result could be improved. 

However, it should also be investigated if the proposed imaging protocol is feasible to implement in 

the daily clinical practice. 

 

Instead of focusing on brain oxygenation, further research should be undertaken to investigate the 

value of clustering in diagnosing brain tumours. By creating these coloured maps, patterns could be 

unraveled that represent different diagnosis. Stadlbauer et al. already showed that tumour 

microenvironment mapping showed different phenotypes of brain tumours.[26] By creating a 

database of these maps combined with the patients diagnosis, treatment plan, and outcomes, new 

patients could be matched to previous patients in this database. This could also play an important 

role for the clinicians to decide on the diagnosis and treatment and could therefore potentially 

improve the survival of these patients, which was eventually the main goal of this research. 
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Another important issue for future research is to validate the clusters. It could be interesting to 

investigate if the location of the different clusters also show different results when researching 

biopsies taken within the same brain tumour. After a patient is scanned and the clustering analysis is 

performed, biopsies could be taken during resection of the brain tumour. When applying HIF-1 alfa 

and CD31 staining to the extracted tissue, OEF, CBV, and vessel size values can be evaluated and 

correlated to the values within the cluster according to the results of the clustering analysis. So 

instead of finding patterns, validation of the clusters could show what is happening with the 

physiology in the brain tumour. 

5.4 Conclusion 

The main goal of the current study was to determine and implement an AI approach to generate a 

combined representation of multiple oxygenation parameters acquired by different MR imaging 

techniques. This study has shown that hierarchical clustering is a method which is able to identify 

and locate different oxygenation states and show the results within a single map. The proposed 

clustering pipeline in this study could potentially lead to improved diagnosis and survival of patients 

with brain tumours by locating hypoxic areas within the tumour. Despite the limitations of this study, 

the proposed pipeline can contribute in unravelling the oxygenation of brain tumours. However, 

several questions still remain to be unanswered. Further research should focus on comparing 

different clustering methods, investigating the role of clustering in diagnosis of brain tumours, 

investigating the value of each individual MR imaging technique on the clustering result, and 

validating the clusters. 
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Appendix A 

ITEM (Imaging for Tumor Environment Mapping) protocol 

Aim: Validation of CEST and Oxygenation MRI maps in human glioma with pathology measurements. 

This project has been approved by the local ethical review board (MEC-2020-0002).  For more details 

about this project contact: 

Esther Warnert, Assistant professor, PI: e.warnert@erasmusmc.nl 

Yulun Wu, PhD candidate from Radiology:  y.wu@erasmusmc.nl 

Fatemehsadat Arzanforoosh, PhD candidate from Radiology: f.arzanforoosh@erasmusmc.nl 

Marion Smits, MD, PhD, Professor, Promotor: marion.smits@erasmusmc.nl 

Use 32 channel head coil . 

It must be in Research Mode 

Scan sequence To obtain Duration 

Loc Knowing where the brain is 00:17 

Asset Allows for acceleration of other scans 00:05 

T1 pre-contrast Structure, needed to check 
enhancing regions after injection 

03:02 

T2w FLAIR Structure, identification of 
hyperintense regions 

04:21 

DWI Multi B-value Allows for intravoxel inchorent motion 
analysis (IVIM). Gives apparent diffusion 
coefficient and allows for perfusion 
fraction estimates. 

04:25 

DWI two b-value Needed to optimize IVIM analysis 00:40 

DTI Tractography for SAFE trial 03:50 

eASL Non-invasive perfusion 
measurements and transit time 
assessments 

05:22 

CEST_spec1 Chemical exchange saturation 
transfer imaging to asses amide proton 
transfer weighted imaging (APT) 

04:40 

CEST_spec2  04:40 

B1 map Needed to optimize CEST analysis 00:28 

FASE imaging block Asymmetric spin echo sequence, 
allows for assessment of local 
oxygenation 

07:20 

Contrabolus 7.5 cc met 7.5cc/s + 15 cc NaCI 5 cc/s 

T2 propeller Structure, required for navigation?  01:50 

T1 post contrast Structure, sssessing enhancement 03:02 

HEPI multiphase Will give rCBV/rCBF/Vessel 
architecture measurements.  

Run while injecting second bolus:  
Contrabolus 7.5 cc met 7.5cc/s + 15 

cc NaCI 5 cc/s 
 

03:03 

Hepi scans  Needed for optimization of hepi 
analysis 

00:26 

 

mailto:e.warnert@erasmusmc.nl
mailto:y.wu@erasmusmc.nl
mailto:f.arzanforoosh@erasmusmc.nl
mailto:marion.smits@erasmusmc.nl


67 
 

Appendix B 

Python script for clustering image data with ward linkage and Euclidean distance: 

import numpy as numpy 

import nibabel as nib 

import os 

import pandas as pd 

import numpy as np 

 

import scipy.cluster.hierarchy as shc 

import matplotlib.pyplot as plt 

import matplotlib 

 

from sklearn.cluster import AgglomerativeClustering 

 

# loading data 

path_ADC = "/scratch/mrosbergen/maps/ADC_t1gd.nii.gz" 

path_CBF = "/scratch/mrosbergen/maps/CBF_t1gd.nii.gz" 

path_DBV = "/scratch/mrosbergen/maps/DBV_t1gd.nii.gz" 

path_eASL = "/scratch/mrosbergen/maps/eASL_0_t1gd.nii.gz" 

path_HEPI = "/scratch/mrosbergen/maps/HEPI_0_t1gd.nii.gz" 

path_R2 = "/scratch/mrosbergen/maps/R2p_t1gd.nii.gz" 

path_rCBV = "/scratch/mrosbergen/maps/rCBV_t1gd.nii.gz" 

path_VSI = "/scratch/mrosbergen/maps/VSI_t1gd.nii.gz" 

 

path_flair = "/scratch/mrosbergen/maps/flair.nii.gz" 

path_t2 = "/scratch/mrosbergen/maps/t2.nii.gz" 

path_t1 = "/scratch/mrosbergen/maps/t1.nii.gz" 

path_t1gd = "/scratch/mrosbergen/maps/t1gd.nii.gz" 

 

path_tmask = "/scratch/mrosbergen/maps/Tumor.nii.gz" 

path_gm = "/scratch/mrosbergen/maps/t1_gm_mask.nii.gz" 

path_wm = "/scratch/mrosbergen/maps/t1_wm_mask.nii.gz" 

path_csf = "/scratch/mrosbergen/maps/t1_csf_mask.nii.gz" 

 

img_flair = nib.load(path_flair) 

 

img_t2 = nib.load(path_t2) 

 

img_t1 = nib.load(path_t1) 

 

img_t1gd = nib.load(path_t1gd) 

 

 

# loading mask and setting all values above 0 to 1 

img_tmask = nib.load(path_tmask) 
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tmask = img_tmask.get_fdata() 

tmask[tmask>0] = 1 # two difference mask values greater than 0 set both to 1 

 

img_gm = nib.load(path_gm) 

mask_gm = img_gm.get_fdata() 

 

img_wm = nib.load(path_wm) 

mask_wm = img_wm.get_fdata() 

 

img_csf = nib.load(path_csf) 

mask_csf = img_csf.get_fdata() 

 

 

 

# change image data into numpy data 

t11 = img_t1.get_fdata() 

flair1 = img_flair.get_fdata() 

t21 = img_t2.get_fdata() 

 

 

 

# multiply tumour mask with all volumes maps 

t1_t = tmask*t11 

flair_t = tmask*flair1 

t2_t = tmask*t21 

 

# multiply grey matter mask with all volumes maps 

t1_gm = mask_gm*t11 

flair_gm = mask_gm*flair1 

t2_gm = mask_gm*t21 

 

# multiply white matter mask with all volumes maps 

t1_wm = mask_wm*t11 

flair_wm = mask_wm*flair1 

t2_wm = mask_wm*t21 

 

# multiply csf mask with all volumes maps 

t1_csf = mask_csf*t11 

flair_csf = mask_csf*flair1 

t2_csf = mask_csf*t21 

 

 

 

 

gm_v = [] 
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gm_coordinates = [] 

 

for vy in range(t11.shape[0]): 

    for vx in range(t11.shape[1]): 

        for vz in range(t11.shape[2]): 

 

            if t1_gm[vy, vx, vz] != 0: 

                combi = [t1_gm[vy, vx, vz], flair_gm[vy, vx, vz]] 

                gm_v.append(combi) 

                gm_coordinates.append([[vy], [vx], [vz]]) 

            if len(gm_v) == 80000: 

                break 

 

gm_v = np.array(gm_v) 

gm_coordinates = np.array(gm_coordinates) 

 

gm_v = (gm_v - np.min(gm_v)) / ( np.max(gm_v) - np.min(gm_v)) 

 

wm_v = [] 

wm_coordinates =[] 

 

for vy in range(t11.shape[0]): 

    for vx in range(t11.shape[1]): 

        for vz in range(t11.shape[2]): 

 

            if t1_wm[vy, vx, vz] != 0: 

                combi = [t1_wm[vy, vx, vz], flair_wm[vy, vx, vz]] 

                wm_v.append(combi) 

                wm_coordinates.append([[vy], [vx], [vz]]) 

            if len(wm_v) == 80000: 

                break 

 

wm_v = np.array(wm_v) 

wm_coordinates = np.array(wm_coordinates) 

 

wm_v = (wm_v - np.min(wm_v)) / ( np.max(wm_v) - np.min(wm_v)) 

 

csf_v = [] 

csf_coordinates = [] 

 

for vy in range(t11.shape[0]): 

    for vx in range(t11.shape[1]): 

        for vz in range(t11.shape[2]): 

 

            if t1_csf[vy, vx, vz] != 0: 

                combi = [t1_csf[vy, vx, vz], flair_csf[vy, vx, vz]] 

                csf_v.append(combi) 

                csf_coordinates.append([[vy], [vx], [vz]]) 

            if len(csf_v) == 80000: 
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                break 

 

csf_v = np.array(csf_v) 

csf_coordinates = np.array(csf_coordinates) 

 

csf_v = (csf_v - np.min(csf_v)) / ( np.max(csf_v) - np.min(csf_v)) 

 

voxels2 = np.concatenate((wm_v,csf_v)) 

voxels = np.concatenate((gm_v,voxels2)) 

 

coordinates2 = np.concatenate((wm_coordinates, csf_coordinates)) 

coordinates = np.concatenate((gm_coordinates, coordinates2)) 

 

matplotlib.use('Agg') 

 

 

 

#perform clustering based on dendrogram 

cluster = AgglomerativeClustering(n_clusters=3, affinity='euclidean', linkage=

'ward') 

labels = cluster.fit_predict(voxels) 

 

 

 

#transform labels 1D array into 2D matrix 

q=[] 

for i in range(len(labels)): 

    q.append(labels[i]) 

 

q = np.array(q) 

q[q == 0] = 3 

 

co=[] 

for i in range(len(labels)): 

    co.append(coordinates[i,:]) 

co = np.array(co) 

 

 

 

#create array same size as MR images, including labels, all other voxels set t

o 0 

img_t1_copy = img_t1.get_fdata() 

label_overlay = np.zeros((img_t1_copy.shape[0], img_t1_copy.shape[1], img_t1_c

opy.shape[2])) 



71 
 

 

for c in range(co.shape[0]): 

    label_overlay[co[c,0], co[c,1], co[c,2]] = q[c] 

 

img = nib.Nifti1Image(label_overlay, np.eye(4))  # Save axis for data (just id

entity) 

img.header.get_xyzt_units() 

img.to_filename(os.path.join('labels__exp_wmgmcsf_eu_ward_norm.nii.gz'))  # Sa

ve as NiBabel file 

 

img = nib.Nifti1Image(img_t1_copy, np.eye(4))  # Save axis for data (just iden

tity) 

img.header.get_xyzt_units() 

img.to_filename(os.path.join('t1__exp_wmgmcsf_eu_ward_norm.nii.gz'))  # Save a

s NiBabel file 

 

 

#results analysis 

c1 = len(q[q == 1]) 

# print('Size cluster 1: ' + str(c1)) 

c2 = len(q[q == 2]) 

# print('Size cluster 2: ' + str(c2)) 

c3 = len(q[q == 3]) 

# print('Size cluster 3: ' + str(c3)) 

f = open("results__exp_wmgmcsf_eu_ward_norm.txt", "w") 

f.write("Size cluster 1: " + str(c1)) 

f.write("\nSize cluster 2: " + str(c2)) 

f.write("\nSize cluster 3: " + str(c3)) 

 

c1_gm = [] 

c1_wm = [] 

c1_csf = [] 

c2_gm = [] 

c2_wm = [] 

c2_csf = [] 

c3_gm = [] 

c3_wm = [] 

c3_csf = [] 

 

co = np.squeeze(co) 

 

for c in range(len(q)): 

    if q[c] == 1: 

        if mask_gm[co[c,0],co[c,1],co[c,2]] != 0: 

            c1_gm.append(q[c]) 

        if mask_wm[co[c,0],co[c,1],co[c,2]] != 0: 

            c1_wm.append(q[c]) 
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        if mask_csf[co[c,0],co[c,1],co[c,2]] != 0: 

            c1_csf.append(q[c]) 

    if q[c] == 2: 

        if mask_gm[co[c,0],co[c,1],co[c,2]] != 0: 

            c2_gm.append(q[c]) 

        if mask_wm[co[c,0],co[c,1],co[c,2]] != 0: 

            c2_wm.append(q[c]) 

        if mask_csf[co[c,0],co[c,1],co[c,2]] != 0: 

            c2_csf.append(q[c]) 

    if q[c] == 3: 

        if mask_gm[co[c,0],co[c,1],co[c,2]] != 0: 

            c3_gm.append(q[c]) 

        if mask_wm[co[c,0],co[c,1],co[c,2]] != 0: 

            c3_wm.append(q[c]) 

        if mask_csf[co[c,0],co[c,1],co[c,2]] != 0: 

            c3_csf.append(q[c]) 

 

f.write("\nNumber gray matter voxels in cluster 1: " + str(len(c1_gm))) 

f.write("\nNumber white matter voxels in cluster 1: " + str(len(c1_wm))) 

f.write("\nNumber csf voxels in cluster 1: " + str(len(c1_csf))) 

f.write("\nNumber gray matter voxels in cluster 2: " + str(len(c2_gm))) 

f.write("\nNumber white matter voxels in cluster 2: " + str(len(c2_wm))) 

f.write("\nNumber csf voxels in cluster 2: " + str(len(c2_csf))) 

f.write("\nNumber gray matter voxels in cluster 3: " + str(len(c3_gm))) 

f.write("\nNumber white matter voxels in cluster 3: " + str(len(c3_wm))) 

f.write("\nNumber csf voxels in cluster 3: " + str(len(c3_csf))) 

f.close() 

 

 

 

#3D scatter plot 

plt.figure(figsize=(10, 7)) 

plt.scatter(voxels[:,0], voxels[:,1], c=cluster.labels_, cmap='rainbow') 

plt.savefig('scatter__exp_wmgmcsf_eu_ward_norm') 
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Appendix C 

Python script to  create a dendrogram based on clustering image data with ward linkage and 

Euclidean distance: 

import numpy as numpy 

import nibabel as nib 

import os 

import pandas as pd 

import numpy as np 

 

import scipy.cluster.hierarchy as shc 

import matplotlib.pyplot as plt 

import matplotlib 

 

from sklearn.cluster import AgglomerativeClustering 

 

# loading data 

path_ADC = "maps_resample_P01/ADC_t1gd_elastix.nii.gz" 

path_CBF = "maps_resample_P01/CBF_brain_t1gd_elastix.nii.gz" 

path_OEF = "maps_resample_P01/OEF_t1gd_elastix.nii.gz" 

path_R2p = "maps_resample_P01/R2p_t1gd_elastix.nii.gz" 

path_rCBV = "maps_resample_P01/rCBV_BSW_t1gd_elastix.nii.gz" 

path_VSI = "maps_resample_P01/VSI_BSW_t1gd_elastix.nii.gz" 

path_APT = "maps_resample_P01/APT P01.nii.gz" 

 

path_flair = "maps_resample_P01/flair_brain_resample.nii.gz" 

path_t2 = "maps_resample_P01/t2_brain_resample.nii.gz" 

path_t1 = "maps_resample_P01/t1_brain_resample.nii.gz" 

path_t1gd = "maps_resample_P01/t1gd_brain_resample.nii.gz" 

 

path_tmask = "maps_resample_P01/Tumour_mask_resampled_p1.nii.gz" 

 

img_ADC = nib.load(path_ADC) 

print("shape ADC:") 

print(img_ADC.shape) 

 

img_CBF = nib.load(path_CBF) 

print("shape CBF:") 

print(img_CBF.shape) 

 

img_OEF = nib.load(path_OEF) 

print("shape OEF:") 

print(img_OEF.shape) 

 

img_R2p = nib.load(path_R2p) 

print("shape R2p:") 

print(img_R2p.shape) 
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img_rCBV = nib.load(path_rCBV) 

print("shape rCBV:") 

print(img_rCBV.shape) 

 

img_VSI = nib.load(path_VSI) 

print("shape VSI:") 

print(img_VSI.shape) 

 

img_APT = nib.load(path_APT) 

print("shape APT:") 

print(img_APT.shape) 

 

img_flair = nib.load(path_flair) 

print("shape flair:") 

print(img_flair.shape) 

 

img_t2 = nib.load(path_t2) 

print("shape t2:") 

print(img_t2.shape) 

 

img_t1 = nib.load(path_t1) 

print("shape t1:") 

print(img_t1.shape) 

 

img_t1gd = nib.load(path_t1gd) 

print("shape t1gd:") 

print(img_t1gd.shape) 

 

 

# loading mask and setting all values above 0 to 1 

img_tmask = nib.load(path_tmask) 

print("shape tumour mask:") 

print(img_tmask.shape) 

tmask = img_tmask.get_fdata() 

 

 

# change image data into numpy data 

t11 = img_t1.get_fdata() 

flair1 = img_flair.get_fdata() 

t21 = img_t2.get_fdata() 

t1gd1 = img_t1gd.get_fdata() 

 

print(t11.dtype) 

print(flair1.dtype) 

print(t21.dtype) 
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print(t1gd1.dtype) 

 

adc1 = img_ADC.get_fdata() 

cbf1 = img_CBF.get_fdata() 

oef1 = img_OEF.get_fdata() 

r2p1 = img_R2p.get_fdata() 

rcbv1 = img_rCBV.get_fdata() 

vsi1 = img_VSI.get_fdata() 

 

print(adc1.dtype) 

print(cbf1.dtype) 

print(oef1.dtype) 

print(r2p1.dtype) 

print(rcbv1.dtype) 

print(vsi1.dtype) 

 

 

 

# multiply tumour mask with all volumes maps 

t1_t = tmask*t11 

flair_t = tmask*flair1 

t2_t = tmask*t21 

t1gd_t = tmask*t1gd1 

 

adc_t = tmask*adc1 

cbf_t = tmask*cbf1 

oef_t = tmask*oef1 

r2p_t = tmask*r2p1 

rcbv_t = tmask*rcbv1 

vsi_t = tmask*vsi1 

 

 

 

t=[] 

t_coordinates=[] 

 

for vy in range(t11.shape[0]): 

    for vx in range(t11.shape[1]): 

        for vz in range(t11.shape[2]): 

 

            if tmask[vy, vx, vz] != 0: 

                combi = [t1_t[vy, vx, vz], t2_t[vy, vx, vz], flair_t[vy, vx, v

z], t1gd_t[vy, vx, vz]] 

                t.append(combi) 

                t_coordinates.append([[vy], [vx], [vz]]) 

 

t = np.array(t) 
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t_coordinates = np.array(t_coordinates) 

 

 

 

# normalizing values per mri technique 

t_t1_norm = t[:,0] 

t_t2_norm = t[:,1] 

t_flair_norm = t[:,2] 

t_t1gd_norm = t[:,3] 

 

t_t1_norm = (t_t1_norm - np.min(t_t1_norm))/(np.max(t_t1_norm) - min(t_t1_norm

)) 

t_t2_norm = (t_t2_norm - np.min(t_t2_norm))/(np.max(t_t2_norm) - min(t_t2_norm

)) 

t_flair_norm = (t_flair_norm - np.min(t_flair_norm))/(np.max(t_flair_norm) - m

in(t_flair_norm)) 

t_t1gd_norm = (t_t1gd_norm - np.min(t_t1gd_norm))/(np.max(t_t1gd_norm) - min(t

_t1gd_norm)) 

 

t_norm = [t_t1_norm, t_t2_norm, t_flair_norm, t_t1gd_norm] 

 

t_norm = np.array(t_norm) 

t_norm = np.transpose(t_norm) 

print(t_norm.shape) 

 

 

#plot dendogram 

matplotlib.use('Agg') 

plt.figure() 

plt.title("Voxels Dendrogram") 

dend = shc.dendrogram(shc.linkage(t_norm, method='ward')) 

plt.savefig('dendrogram_exp_tumour_p1_norm_str.png') 
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