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Abstract

Seismic data reconstruction addresses the challenge of accurately restoring incomplete or dam-
aged seismic datasets, which is crucial for subsurface imaging and exploration. The missing
data is often due to equipment failure, signal loss, environmental noise, or poor geological
conditions. It may also result from limitations in data acquisition, such as sparse sampling
and noise interference. This thesis proposes a Clean Convergent alternating Projections onto
Convex Sets (CCP) method for data reconstruction. By incorporating an initial value tweak-
ing step into the alternating projections process in the Convergent alternating Projections
onto Convex Sets (CP) method, this method aims to reduce ringing noise in the reconstruc-
tion results by the CP method. Initially, the traditional CP method and its application in
seismic data reconstruction are introduced, highlighting its shortcomings in addressing ring-
ing noise. To overcome this issue, a CCP method based on a non-local means algorithm for
initial value tweaking is proposed and applied within the outer loop of the CP method. The
theoretical foundation and implementation steps of the CCP method are discussed in detail,
and its effectiveness is validated through a series of experiments. The experimental results
demonstrate that, compared to the traditional CP method, the CCP method significantly
reduces ringing noise and improves the quality of the reconstructed data. Various datasets,
including images, 2D seismic section data from the SEAM II Arid model, and 3D seismic
model cubes, are used to showcase the reconstruction capabilities of the CCP method in
different scenarios. Finally, the thesis provides an in-depth discussion of the CCP method,
including intermediate results in the outer loop, the necessity of data preconditioning, and
parameter testing, offering a practical set of control parameter settings. The study shows that
the CCP method has broad application prospects in data reconstruction, providing valuable
references for future research.
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Chapter 1

Introduction

Effective reconstruction techniques aim to recover the missing data, thereby enabling more
accurate interpretation of seismic information. In this chapter, we introduce the a seismic
data reconstruction method under study, the Convergent Alternating Projections onto Convex
Sets (CP) method, and its background. We will first explain the mathematical foundation of
the Alternating Projections onto Convex Sets (POCS) method and present its reported appli-
cations in various fields. Then, we introduce the CP method, which enhances the AK-POCS
method (a variant of the POCS method applied in the field of geophysics) by incorporating
the Cauchy convergence criterion, making it more mathematically rigorous [22]. Finally, we
identify an area where the CP method still requires improvement, which is the problem that
this paper aims to address. The chapter concludes with an outline of the entire thesis.

1-1 POCS Method

Our introduction to the POCS method follows Sun and Quentin (2024)[22]. The POCS
method is an iterative algorithm used primarily for solving under-determined problems where
multiple constraints are present. Its primary objective is to find a point that lies within
the intersection of several convex sets, which represent the constraints of the problem. In the
POCS method, convex sets, projections and convergence condition are three key mathematical
concepts[13]. Convex sets define the feasible region for solutions, acting as boundaries that
the potential solutions must fall within. Projections are the mechanism through which an
initial guess is refined step by step, towards the set that represents the problem constraints.
The convergence condition is the criterion that ensures these iterative steps are productive,
guiding the projections to ultimately converge to a point belonging to a common intersection
of all convex sets, thus yielding a solution that fits all the prescribed constraints.

1-1-1 Convex sets

In mathematical terms, a set Ω is convex if for any two vectors v⃗1 ∈ Ω and v⃗2 ∈ Ω, the
relationship v⃗1 + (1 − θ)v⃗2 ∈ Ω holds for all θ ∈ [0, 1][13]. A more accessible interpretation
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2 Introduction

A v⃗1

v⃗2

B v⃗1

v⃗2

Figure 1-1: The set A is convex and the set B is non-convex.

A
Au⃗ v⃗

Figure 1-2: Projecting a vector u⃗ to the convex set A.

is that a set Ω is convex if the line segment connecting any two points in the set is fully
contained in the set, as shown in Figure 1-1.

1-1-2 Projections

Geometrically, the meaning of projecting a vector onto a set is to find a vector within the
set such that the distance between the two vectors is minimized[13], as shown in Figure 1-2.
Mathematically, this projection operation is described as follows:

P (A) = argmin || u⃗− v⃗ ||, v⃗ ∈ A, (1-1)

where u⃗ is a vector outside set A and v⃗ is a vector on the boundary of set A. The projection
of u⃗ onto A is defined as finding the vector within A that is closest to u⃗. This projected vector
is typically located on the boundary of A. However, in the special case where u⃗ already lies
within A, the projection of u⃗ is u⃗ itself.

1-1-3 Projections onto convex sets

Based on the aforementioned definitions of convex sets and projection, we are able to
elucidate the POCS algorithm. For the sake of clarity, we explain the algorithm using
a simple scenario involving 2 or 3 convex sets, as shown in Figure 1-3 and 1-4. In the
considered space, each point represents a specific data point. The collection of all points that
fulfill a given constraint forms a convex set. In this context, projection is the computational
method of mapping a point outside the convex set back onto it, thereby ensuring that the
corresponding data point adheres to the constraint embodied by the convex set. Typically,
the initial solution, which we aim to bring into compliance with the constraint, is outside
these convex sets. Through iterative projections of this point onto multiple convex sets,
it will eventually converge at the intersection of these sets, assuming they intersect. This
convergence point is one viable solution, as illustrated in Figure 1-3.
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1-1 POCS Method 3

Initial value A

B

Figure 1-3: Graphical illustration of the POCS algorithm. The bright red line is the intersection
between set A and set B. The black arrows represents the projection process.

A

B

Initial value

A

B

C

Figure 1-4: Two special cases for POCS: The intersection is only one point (left) and no inter-
section among convex sets (right).
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4 Introduction

1-2 Applications of POCS Method

POCS method was initially introduced by Bregman[3] and Gubin et al.[8] and was later
popularized by Youla and Webb [26] and Sezan and Stark[19]. The POCS method was
initially used for signal processing, particularly in reconstruction and restoration, which
remains its most widely applied field. It has also seen successful applications in various
other domains[13]. This section will introduce the diverse applications of the POCS method.
In solving different problems, the concepts in the POCS method, such as convex sets,
projections, and initial values, vary according to the specific application. In the final part,
the application of the POCS method in geophysics for seismic data reconstruction will be
discussed.

1-2-1 The Papoulis-Gerchberg algorithm in signal processing

The Papoulis-Gerchberg algorithm is a method to restore band-limited signals when only a
portion of the signal is known[7][18]. This algorithm is one of the most classic applications of
the POCS method. The two convex sets used in the Papoulis-Gerchberg algorithm are shown
below:

A = {u(x) | u(x) = i(x), | x |≤ X}, (1-2)

B = {u(x) | U(ω) = 0, for | ω |> Ω}, (1-3)

where u(x) is a band-limit signal that only components in the band | x |≤ X are known. U(ω)
is the signal in the Fourier domain and Ω is the thresholding frequency in Fourier domain.
The set A represents a known portion i(x) of the signal when | x |≤ X. The set B is a
low-pass band-pass filter in the Fourier domain. The procedure of the Papoulis—Gerchberg
algorithm commences with an initial iteration from a known segment of the signal. Upon
executing a Fourier transform on the signal, a projection onto set B is low-pass filtering the
frequency components. The resultant signal is then projected onto set A to ensure consistency
with the known signal. This iterative process is repeated until the outcome converges until
the following condition is met,

|| oN+1(x)− oN (x) ||< ϵ, (1-4)

where oN (x) is the result after N iterations, and ϵ is a pre-defined residual level.

Clearly, signal restoration is an under-determined problem. Traditional methods, such as us-
ing polynomial extrapolation, only utilize a limited number of values. The Papoulis-Gerchberg
method, on the other hand, ingeniously employs frequency domain low-pass constraints and
known band-pass signal constraints to maximize the use of available information[13].

1-2-2 POCS method in source localization

Based on the previous application, the POCS method has become a method for solving
under-determined problems and has been extended to various fields, such as signal deconvo-
lution [16] and artificial neural networks[20]. However, the POCS method is not limited to
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1-2 Applications of POCS Method 5

projections between just two sets; it can also involve projections among multiple sets, as long
as these sets have a common intersection. The following application of the POCS method in
the localization problem utilizes this idea.

Pinpointing an acoustic source using a sensor network, in a distributed manner and
without the need to transmit the entire data set to a central processing unit, is the goal of
localization[10]. Traditionally, this localization problem is tackled by nonlinear least-squares
or maximum likelihood methods. However, these approaches often lead to complex global
optimization challenges. The objective function in such cases may exhibit multiple local
optima and saddle points, which can cause local search methods to converge to sub-optimal
solutions. Although these methods can be asymptotically optimal under certain conditions,
the presence of numerous local optima and saddle points can significantly hinder the efficiency
and accuracy of the solution. The attenuation of acoustic waves can be modeled by:

yl =
A

|| rl − u ||β
, (1-5)

where A represents the source signal, rl denotes the location of receiver l, u is the source
location, β is the isotropic attenuation coefficient and yl signifies the signal strength at
receiver l. This equation assumes an idealized form of acoustic wave attenuation emanating
from the source location u to receiver l. Based on Equation (1-5), we can build convex sets
that constrain the source location u by disregarding the noise component and focusing on
averaging the temporal variations:

Dl = {u ∈ R2 :|| u− rl ||≤ [
A

yl
]
1
β }, (1-6)

û ∈ D =
L⋂

L=1

DL ⊂ R2, (1-7)

where û is location obtained by the POCS method, Dl is the location constraint modified by
l, D is the intersection among Dl. This approach allows for the formulation of a simplified
yet effective model to estimate the source location, leveraging the principles of convex
optimization as embodied in the POCS algorithm. The projections of the POCS method are
between a series of sets Dl.

Because there must exist a source, the series of sets DL must intersect, which means that D
exists. Projections onto the D sets can be carried out via the relaxation projection iterations:

uk+1 = uk + λk[PDl(uk)− uk], (1-8)

where λk is the relaxation parameter, which can accelerate the convergence speed. If

|| u − rl ||≤ [A
yl
]
1
β , then u ∈ Dl, thus PDl = 0. In R2 space, the projection is defined by

Equation (1-9),

PDl
(uk) = rl + [αcos(ϕ), αsin(ϕ)]T , (1-9)

where α =
√

A/yl, ϕ = atan(uk(1)− rl(1), uk(2)− rl(2)). For a vector x ∈ R2, x(1) and x(2)
denote its first and second coordinates[10]. These iterations are repeated until reaching the
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6 Introduction

convergence criterion

|| û− u ||< ϵ, (1-10)

where ϵ is a pre-defined residual level.

1-2-3 POCS in CT reconstruction

Computer Tomography (CT) scanning is essential in modern medical science, offering critical
insights into internal structures. Enhancing image clarity and the signal-to-noise ratio during
a CT scan is crucial. The POCS algorithm can significantly improve image resolution and
clarity by iteratively refining the reconstruction process. This enhancement leads to more
accurate diagnoses and treatment planning, highlighting the algorithm’s versatility and
effectiveness in complex medical imaging.

For divergent-beam CT, the source emits X-rays from a single point for each projection, with
data captured by a 1D or 2D detector array. The following equation describes this physical
process:

gi =

M∑
j=1

Aij uj , (1-11)

where Aij is the system matrix element and is calculated by the intersection length of the
ith ray through the jth pixel[12]. uj is the image value of the jth pixel. The measurement
g corresponds to the path integral of the X-ray attenuation coefficient across the source and
detector bins. This integral is expressed as a weighted sum over the pixels transversed by
the source-bin ray, given by equations (1-11).

A POCS-based scheme is adeptly designed to address problems involving constraints related
to data fidelity and non-negativity, and is given by:

un+1 = un +Ai
gi −Aiu

n

AiAT
i

, (1-12)

A :|| Au− g ||< ϵ, (1-13)

which define the data fidelity constraint mathematically. A POCS-like algorithm, also
known as the Kaczmarz algorithm or the Algebraic Reconstruction Technique (ART),
is embedded in the process of solving this linear system of equations. It represents the
continuous projection onto the hyperplane formed by the ith row of the matrix A. This itera-
tive process continues until Equation (1-13) is satisfied, where ϵ is a predefined residual target.

The non-negative constraint is defined as:

B : {u(x) | u(x) = 0, for u(x) < 0}. (1-14)

With the convex sets A and B defined by Equation (1-13) through (1-14), a POCS method
in CT reconstruction is constructed as:
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1-3 Convergent POCS Method 7

1. Input the initial data unj = unj .

2. Iterative projections un+1
j = unj +Ai(gi −Aiu

n
j )/AiA

T
j until || Au− g ||< ϵ (Set A).

3. uj = max{un+1
j , 0} (Set B).

In the POCS method, n is the iteration time and n = 0 represents the initial state.

1-3 Convergent POCS Method

1-3-1 AK-POCS in seismic data reconstruction

Many geophysicists have noted the flexibility and convenience of the POCS method. Seismic
date reconstruction is a well-known under-determined problem in the geophysics society.
Seismic data reconstruction is to recover missing or corrupted seismic data, which is crucial
for accurate subsurface imaging and interpretation in geophysics and oil and gas exploration.
The process involves using mathematical and computational techniques to fill in gaps in
the seismic recordings, often caused by limitations in data acquisition. Methods such as
prediction filter method, the sparse transform method, the rank reduction method and the
nonlinear beamforming (NLBF) method[24] are used to estimate missing data based on
known seismic signals and physical constraints[11].

In 2006, Amba and Kabir[1] proposed a seismic data reconstruction method based on the
POCS method, and we refer to this method by AK-POCS. The concept of this method
is similar to the Papoulis-Gerchberg algorithm, constructing two convex sets based on
constraints in the Fourier domain and known information. Projections between these two
convex sets yield the possible missing seismic data. Other geophysicists have used constraints
in the curvelet domain[9] or radon domain[14], but AK-POCS is still widely used in the
seismic industry due to its robustness and low computational cost.

To facilitate our discussion, we limit our mathematics in the 2D space although the gener-
alization to a higher-dimensional space is straightforward. The AK-POCS method uses two
convex sets shown below:

A = {u(x, t) | u(x, t) = v(x, t), for known (x, t) locations, u, v ∈ R2}, (1-15)

Bi ∈ B = {u(kx, f) | u(kx, f) = 0, for known (kx, f) locations, u ∈ C2}, (1-16)

where u(x, t) is the whole data set in the time domain, v(x, t) is the known data set, u(kx, f)
is the data set in f − kx domain.

Set A is defined to ensure that the data conform with the ground truth. The set B comprises
a series of filters within the f−kx domain. The operations PA and PB describe the projection
processes onto sets A and B respectively, and T representing a thresholding matrix.

PA(u(x, t)) =

{
v(x, t), known location,
u(x, t), otherwise,

(1-17)

PB(u(x, t)) = F−1
t F−1

x TFxFtu, (1-18)
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8 Introduction

T (kx, f) =

{
1, if | {FxFtu}(kx, f) |≥ pk, pk ∈ p,
0, otherwise,

(1-19)

where Fx and Ft are the Fourier transform operators in time and spatial domain, F−1
x and

F−1
t are the inverse Fourier transform operators in time and spatial domain. The pk is a

thresholding value in the set of threshold values p.

1-3-2 CP method

Comparing with the AK-POCS method, the CP method employs a rigorous convergence
criterion before updating the convex set Bi,

|| uN+1(x, t)− uN (x, t) ||< ϵ· || uN (x, t) ||, (1-20)

where ϵ represents the convergence ratio, uN (x, t) is the data set in time domain. In this
method, during iterative mutual projections between sets A and Bi, Bi is updated only when
the convergence between A and Bi has been reached. This approach renders the CP method
a rigorous POCS method that can reach the algorithmic convergence eventually.

In the AK-POCS method, this convergence is hopefully achieved through a large number of
iterations. Sun and Quentin[22] pointed out that AK-POCS is theoretical convergent under
two conditions. First, the initial values of all the data set are zeros. Secondly, the thresholding
value pk is no larger than the maximum amplitude of result in f −kx domain after projecting
onto set A. However, many of the projections might be unnecessary in AK-POCS. The CP
method introduces an explicit convergence criterion, eliminating redundant computations and
guaranteeing its mathematical convergence.

1-3-3 Examples of CP method

In this subsection, we demonstrate the CP method’s ability to reconstruct missing data
using three different application scenarios. Overall, the quality of the reconstruction results
is acceptable, but we will point out one shortcoming of the CP method in the next subsection.

We present three types of data sets: synthetic linear seismic data, a 2D seismic section slice
from the SEAM II Arid model, and a drill cuttings image. We set the same control parameters
used in the CP reconstruction for all kinds of data. The maximum iteration number N is
10. The convergence ratio ϵ is 0.01. The reconstruction is implemented in the whole window.
The thresholding function is defined as follow[6]:

pk = pmaxe
b(m−1), (1-21)

m = 1, 2, ..., N, (1-22)

b =
−1

N − 1
ln

pmax

pmin
, (1-23)

where pmax and pmin are the maximum and minimum value of the sparse input in the f − kx
domain, N is the maximum iteration number, which is 10 in our examples.
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1-3 Convergent POCS Method 9

(a) (b)

(c) (d)

Figure 1-5: (a) Ground truth of the synthetic seismic data. (b) Sparse synthetic seismic data
with 0.5 sparsity. (c) Reconstructed result by the CP method. (d) Difference
between reconstructed seismic data and ground truth with plot gain.

Figure 1-5 shows the reconstructed result of a synthetic seismic data set with linear events.
Figure 1-5a is the ground truth of the synthetic seismic data. Figure 1-5b is the sparse input
data with 50% traces decimated randomly. Figure 1-5c is the reconstructed seismic data by
the CP method. Figure 1-5d is difference between ground truth and CP reconstruction. To
highlight the ringing noise, a plot gain of 10 times was used. The CP method performs well
for the linear synthetic seismic data. The red boxes in Figure 1-5b and 1-5c highlight the
reconstructed linear seismic events.

Figure 1-6 shows the reconstructed result for a 2D seismic section of a shot gather generated
by the SEAM Arid Model. Figure 1-6a is the ground truth of this 2D section shot gather.
Figure 1-6b is the sparse input with 30% decimated traces. Figure 1-6c is the reconstructed
result by the CP method. Comparing with the ground truth, the reconstruction for this
seismic 2D section in Figure 1-6 shows ringing noise. Ringing noise in Figure 1-6c such as
highlighted in the red box reduces the quality of the CP reconstruction.
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(a)

(b)

(c)

Figure 1-6: (a) Ground truth of a 2D seismic section. (b) Sparse 2D seismic section with 30%
traces randomly decimated. (c) CP reconstruction section.
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1-3 Convergent POCS Method 11

(a) (b)

(c) (d)

Figure 1-7: (a) Ground truth image. (b) Sparse image with 75% pixels missing. (c) econ-
structed image by the CP method. (d) Difference between reconstructed image and
groundtruth image with plot gain.

Figure 1-7 shows the reconstructed result of a drill cuttings image[25]. Figure 1-7a is the
ground truth of the drill cuttings image. Figure 1-7b is the sparse input with 75% pixels
decimated. Figure 1-7c is the reconstructed image by the CP method. Figure 1-7d is the
difference between Figure 1-7a and Figure 1-7c with 2x plot gain. The CP method also
performs well in image reconstruction as it shown in Figure 1-7. This method can be extended
to various types of data reconstruction problems. In addition to seismic data and image data,
it can also be applied to the reconstruction of three-dimensional seismic model cubes[22].

1-3-4 Ringing noise

From the above three examples, we can observe that some reconstruction artifacts. For
instance, in the reconstruction of the 2D seismic section of the SEAM Arid Model, the
highlighted result in Figure 1-6c shows a significant amount of ringing noise, and Figure 1-5d
and 1-7d illustrate the ringing noise with low amplitude.
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12 Introduction

The thresholding matrix is defined in equation (1-19). Its significance lies in the fact that after
specifying the thresholding values pk , all components in the f − kx domain that are above
this magnitude are retained, while those below this magnitude are truncated. Regardless of
the type of thresholding function we use to obtain our thresholding values, this truncation
always exists. Such a hard thresholding scheme, in the frequency domain leads to the Gibbs
phenomenon[21]. These Gibbs phenomena contaminate the final CP-reconstruction results,
causing ringing noise and some local artifacts.
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1-4 Thesis outline 13

1-4 Thesis outline

In the following thesis, we present a new seismic data reconstruction method based on the CP
method. Our method aims at suppressing ringing noise in CP-reconstructed results, and we
refer to our method by the Clean Convergent POCS (CCP) method. The rest of the thesis is
organized in the following manner:

• Chapter 2: Theory of the Clean Convergent POCS (CCP) Method
In this chapter, we introduce the CCP method, including the idea of evolving from the
CP method to the CCP method, and how this idea is implemented. The key component
in the CCP method is an initial value tweaking operation based on the non-local means
algorithm. Furthermore, data preconditioning schemes are introduced to deal with the
different types of data.

• Chapter 3: Examples
In this chapter, we present the results of the CCP method in different scenarios, includ-
ing the reconstruction of 2D seismic data, image data, and 3D seismic model cubes. We
will also provide a quality-evaluation metric to demonstrate the improvements of the
CCP method over the CP method.

• Chapter 4: Discussion
In this chapter, we delve into the details of the CCP method. This includes presenting
the results of each outer loop iteration of the CCP method, comparing the direct im-
plementation of the CCP non-local means algorithm on CP reconstructed results with
those obtained from the CCP method, and examining the impact of preconditioning on
the CCP method. Finally, we present comprehensive results of the parameter testing,
and share our empirical guideline on setting control parameters in the CCP method.

• Chapter 5: Conclusions
We wrap up our thesis with this chapter.
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Chapter 2

Theory of Clean Convergent POCS
(CCP) Method

In this chapter, we introduce the Clean Convergent POCS (CCP) method, which can yield
high-quality data reconstruction results. Compared to the CP method, the CCP method
incorporates an initial value tweaking step on top of alternating projections to supress ringing
noise in data reconstruction. We introduce the initial value tweaking method, which uses a
modified non-local means algorithm. It is important to note that the initial value tweaking
method introduced in this thesis is not the only option for the CCP method, and we believe
that more methods deserve further exploration.

2-1 Non-Unique Solutions in CP

Data reconstruction is a mathematically under-determined problem, meaning there exist
non-unique solutions. When we use the CP method to solve this under-determined data
reconstruction problem, we constrain the solution to the intersection of convex sets. Because
the intersection in the solution space usually contains many points, the problem has many
potential solutions.

2-2 Tweak initial values during the CCP process

From equation (1-1), it is evident that for a certain choice of the initial values, the result of
alternating projections between defined convex sets is determined. The result obtained in the
above CP method example is a point in the intersection of the convex sets as shown in Figure
2-1. In the CP method, the result containing ringing noise also belongs to the intersection
of the convex sets. Our goal is to find a point (for example, the yellow point in Figure 2-1)
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16 Theory of Clean Convergent POCS (CCP) Method

Initial value A

B

?

Figure 2-1: Graphical illustration of the POCS algorithm. The bright red line is the intersection
between set A and set B. The black arrows represent the projections process. The
blue dot represents the CP reconstruction result. The yellow dot represents a new
reconstruction result with no or minimal ringing noise.

in this intersection that represents a data reconstruction result with no or minimal ringing
noise.

CP: CCP:

Figure 2-2: The differences between the CP and CCP concepts.

To achieve this, we need to add an additional step during the iterative projection process,
tweaking the initial values. The initial values are the sparse input in the CP method. The
mathematical concept is illustrated in Figure 2-2. Analogously, the CP method is like a
mathematical free falling between two convex sets, whereas the CCP method with the initial
value tweaking process is akin to a falling process under the influence of a guiding force. The
geometrical illustration of the CCP method is shown in Figure 2-3

Using different initial value tweaking methods will result in the CCP method producing
reconstructed results at different positions within the intersection. This is akin to applying
forces in different directions in the solution space to alter the falling position. Since our goal
is to suppress the ringing noise from the CP method’s reconstruction results, we employ a
technique similar to the non-local means filter to tweak the initial values in this thesis.
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2-2 Tweak initial values during the CCP process 17

Initial value A

B

Figure 2-3: Geometric illustration of the CP and CCP method. Planes A and B represent two
convex sets of constraints. The red line represents the intersection of the convex
sets A and B, which is the solution set of this under-determined problem. The
arrows represent the projection operations, and the dashed lines represent the initial
value tweaking operations. The green dot indicates the initial value. The blue dot
represents the solution obtained through the CP method. The yellow dot represents
the solution obtained through the CCP method.

2-2-1 Non-local means method

In this subsection, we introduce the non-local means method[4], a denoising filtering method.
Unlike other local smoothing filters, the non-local means filter does not limit its calculations
to the neighborhood of a pixel but instead considers the entire local patch. This makes it
more robust compared to the method of neighborhood filters[4].

Given the ith pixel v(i) in the noisy image, the filtered pixelMNL[v](i) is defined as a weighted
summation of all pixels in the search window I,

MNL[v](i) =
∑
j∈I

w(i, j)v(j), (2-1)

where w(i, j) is the weight matrix for the pixel j in the search window I. The pixel i is in
the center of search window I in Figure 2-4. The weight matrix w(i, j) is defined as,

w(i, j) =
1

Z(i)
e−

||v(Pi)−v(Pj)||
2
2,α

h2 . (2-2)

where h is a control parameter named filter sigma.|| v(Pi)− v(Pj) ||22,α is defined as:

|| v(Pi)− v(Pj) ||22,α= Gα ∗ E || v(Pi)− v(Pj) ||22, (2-3)

where Gα is a Gaussian kernel with α > 0 that refer to the spatial distance weight between
i and j. E || || is the Euclidean distance that represents the similarity between reference
patch Pi and current patch Pj . As shown in Figure 2-4, the patch reference Pi is the blue box
around pixel i and the current patch Pj is the gray box for every pixel j ∈ I. The normalizing
constant Z(i) is defined as:

Z(i) =
∑
j∈I

e−
||v(Pi)−v(Pj)||

2
2,α

h2 . (2-4)

August 2, 2024



18 Theory of Clean Convergent POCS (CCP) Method

The non-local means filter not only require similarity between pixel i and pixel j but also
demands that the points in the reference patch Pi around pixel i and the corresponding points
in the current patch Pj around pixel j are similar. In Figure 2-4, the blue dots in the blue
patch and the black dots in the gray patch represent points in the same relative positions.
This requirement enhances the robustness of the method. Non-local means filtering has
been successfully applied in various data reconstruction fields, such as emission tomography
reconstruction[15] and CT reconstruction[5].

pixel i

pixel j

pixel j

pixel j

Figure 2-4: The diagram illustrates the non-local means filter. The entire grid represents the
search window. The colored squares represent a pixel’s non-local patch. The blue
square represents the reference patch of the pixel i that needs to be processed. The
gray squares represent the patches of other pixels j inside the search window. The
black dots within the gray squares indicate the pixels that correspond to the same
relative positions as the blue dots within the blue square.

2-2-2 CCP non-local means

In this subsection, we develop a CCP non-local means algorithm for the CCP method, which
can be applied to various types of data, for instance, image data, 2D seismic data sections,
and 3D seismic model cubes.

We apply our CCP non-local means algorithm during the data reconstruction process of
the CCP method. In the initial iterations of alternating projections, there is a signifi-
cant difference between the reconstructed result and the input data. If the unfinished
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reconstruction results are used for non-local means filtering at this stage, the filter quality
would be poor. Therefore, we only use the input sparse data, which includes ground
truth information, to calculate the CCP non-local means, rather than using all the recon-
structed data. Kindly note that this is the key feature of our CCP non-local means algorithm.

This modification introduces a distinction between this algorithm and the non-local means
algorithm. For different j data point, the number of data points involved in calculating the
weight may vary when the reference patch matches different current patches as illustrated in
Figure 2-5. Therefore, we need to add a normalization factor in our CCP non-local means
algorithm, which is mathematically described as:

w(i, j) =
1

Z(i)
e
−

||δ(Pi,Pj)·[v(Pi)−v(Pj)]||
2
2,α

n(δ)·h2 , (2-5)

Z(i) =
∑
j∈I

e
−

||δ(Pi,Pj)·[v(Pi)−v(Pj)]||
2
2,α

n(δ)·h2 , (2-6)

where n(δ) is the number of data points matched between the reference patch Pi and the
current patch Pj , and δ(Pi, Pj) is 1 if a point exists both in Pi and Pj and 0 otherwise. This
step ensures that the weight w(i, j) calculated for different matching patches does not change
significantly due to the number of matched data points.

Figure 2-5 is an illustration of the CCP non-local means algorithm in image reconstruction.
The entire grid represents the search window. The white dots are the missing data points
in the sparse input data. As represented by δ(Pi, Pj), the data points used to calculate the
CCP non-local means weights are not every one in the patch but only those that meet the
following two conditions: 1) The data points in the reference patch Pi exist in the sparse
input, and the reconstructed data point i is considered as ground truth in reference patch Pi.
2) The data points in the current patch Pj which have the same relative positions as these
points casidered in Pi. In the Figure 2-5, the red highlighted pixels in current patches (gray
boxes) meet the above requirements.
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20 Theory of Clean Convergent POCS (CCP) Method

pixel i

pixel j

pixel j

pixel j

Figure 2-5: The diagram illustrates the CCP non-local means algorithm for image data. The
entire grid represents the search window. The colored squares represent a pixel’s
non-local patch. The blue square represents the reference patch of the pixel i that
needs to be processed. The gray squares represent the patches of other pixels j inside
the search window. The black dots within the gray squares indicate the pixels that
correspond to the same relative positions as the blue dot within the blue square. The
white dots are the missing pixels in the sparse input data. The highlighted (red) dots
are the pixels matched in our algorithm, representing those data points in δ(Pi, Pj)
that bear the value of 1. The number of matched pixels for each current patch is
n(δ).

Next, we extend this CCP non-local means algorithm to 2D seismic data as shown in Figure
2-6. Compared to image data, 2D seismic data differs in that each column represents a trace.
Using patches that contain only one column allows for a better comparison of similarity
between traces, adhering to the physical principles of 2D seismic data where the columns
refer to traces. The number of matched data points n(δ) is the same for each patch and is
related to the size of each patch. The dark gray patches represent the existent data in the
sparse input. The shallow gray patches represent the missing data in the sparse input, which
is then ignored in the CCP non-local means algorithm.
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data point i

data point j

data point j

data point j

Figure 2-6: The diagram illustrates the CCP non-local means for 2D seismic data. The entire
grid represents the search window. The small columns represent a data point’s non-
local patch. The blue column is the reference patch of the data point i that needs
to be processed. The gray columns represent the patches of other data points j
inside the search window. The black dots within the dark gray patch indicate this
column is an existing trace. The white dots within the shallow gray patch indicate
this column is a missing trace.

For 3D seismic model cubes, the CCP non-local means algorithm is demonstrated in Figure
2-7. The number of matched data points n(δ) follows the same rule as the case in 2D seismic
section reconstruction if the seismic model misses data points in the z or time direction
completely. By comparing the Euclidean distance between different traces, we calculate the
similarity between different data points, aiming to achieve a more robust reconstruction result.
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data point j

data point j

data point i

data point j

Figure 2-7: The diagram illustrates the CCP non-local means algorithm for a 3D seismic model
cube. The entire cube represents the search window. The blue column is the
reference patch of the data point i that needs to be processed. The gray columns
represent the patches of other data points j inside the search window. The dark
gray patch is located in an existing column in the sparse input. The shallow gray
patch is located in a missing column in the sparse input.

2-2-3 Preconditioning

When we use the CCP method to reconstruct different types of data, the numerical range of
the data vary. In cases where the dynamic range of the numerical value of data is extremely
large, weights w(i, j) may become so small that they are effectively ignored (approaching
zero), rendering the CCP non-local means algorithm ineffective. Table 2-1 shows the ranges
for different types of data.

The non-local means algorithm is often used for processing images with a dynamic range
of 0 to 255. However, for 2D seismic data with a very large dynamic range and 3D seismic
model cubes with a very small dynamic range, we need to precondition the data for our
CCP non-local means algorithm. We present two ways to precondition input data, a linear
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Table 2-1: Dynamic ranges for different types of data used in this thesis.

Data Type Max Min

2D SEAM Arid II Data 1.1570× 104 −1.2507× 104

Image Data 255 0

3D Seismic Model 9.6000× 10−5 −9.6000× 10−5

preconditioning way and a logarithmic one.

The linear preconditioning is descibed as:

f(u) =
u(x)−min[u(x)]

max[u(x)]−min[u(x)]
, (2-7)

u(x) = f−1(u) = min[u(x)] + f(u) · (max[u(x)]−min[u(x)]), (2-8)

where u(x) is the data value, min[u(x)] and max[u(x)] are the minimum and maximum of
the data value, and f(u) is the result after linear preconditioning. Equation (2-8) represents
the inverse process of this linear preconditioning.

The logarithmic preconditioning is described as follows:

f(u) =

{
−ln(1− u(x)), u(x) < 0
1n(1 + u(x)), u(x) ≥ 0

(2-9)

u(x) = f−1(u) =

{
1− ef(u), u(x) < 0

ef(u) − 1, u(x) ≥ 0
(2-10)

where u(x) is the data value, and f(u) is the result after logarithmic preconditioning. The
linear preconditioning is utilized in the 3D seismic model cube and the logarithmic precon-
ditioning is utilized in 2D SEAM Arid II data. Note that we can choose whether or not
to precondition the input data based on the input data type. The preconditioned results of
Table 2-1 is shown in Table 2-2.

Table 2-2: Dynamic range after preconditioning.

Alter preconditioning Max Min

2D SEAM Arid II Data 9.3563 −9.4341

Image Data 255 0

3D Seismic Model 1 0

2-3 CCP method

Based on the content introduced earlier in this chapter, the complete flowchart of the CCP
method is presented in Figure 2-8b. Compared to the flowchart of the CP method in Figure
2-8a, the CCP method includes an additional initial value tweaking step in the data domain
within the outer loop. The initial value tweaking step has the following key operations
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• Optional data preconditioning: For data with different dynamic ranges, an appro-
priate preconditioning can be applied to achieve a reasonable dynamic range for CCP
non-local means method to work properly.

• CCP non-local means algorithm: The CCP non-local means algorithm calculates
the weight matrix w(i) by comparing the similarity between the existing data (partial
ground truth) in the input data and the reconstructed data in non-local patches, and
use these weights to tweak the initial values.

(a) (b)

(c)

Figure 2-8: (a) Flowchart of the CP method. (b) Flowchart of the CCP method. An initial
value tweaking step is added. (c) Flowchart of the initial value tweaking step.
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Chapter 3

Examples

In the following chapter, we present the reconstruction results of the CCP method in various
data sets, including images, 2D seismic section and 3D seismic model cubes. By comparing
the reconstruction results with those of the CP method, the CCP method’s capability on
suppressing ringing noise and improving the result quality is well demonstrated.

3-1 Metric of reconstruction quality

Generally speaking, it is common choice to use the signal-to-noise ratio (SNR) of the re-
construction results based on the ground truth as the metric function. However, a single
numerical value may not adequately reflect the quality of high-dimentional reconstruction
results, for instance, 1D traces, 2D images and 3D data. Therefore, we design a statistical
metric function to reflect the quality of high-dimensional reconstruction results. The metric
function is defined as:

Error(i) =
| Drecon(i)−Dgt(i) |

| Dgt(i) |
, (3-1)

where Drecon(i) is the value of reconstructed element i, Dgt(i) is the value of ground truth
element i. Error(i) is the error of the reconstructed element i. The results quality can be
measured by analyzing the histogram of Error(i) and evaluating the mean of Error(i), which
is defined as 1

n

∑
Error(i).

3-2 Control parameters

The common control parameters for the CP and CCP methods include maximum iteration
number N being 10, convergence ratio ϵ being 0.01, and the thresholding function defined as
equations (1-21) through (1-23). The additional control parameters in the CCP method vary
depending on the data type listed in the table 3-1. Comprehensive parameter testing results
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will be shown in Chapter 4.

(a) (b)

(c) (d)

mean =

(e)

mean =

(f)

Figure 3-1: (a) Ground truth of the Mars desert image. (b) Sparse data with 75% pixels missing.
(c) Reconstructed image by the CP method. (d) Reconstructed image by the CCP
method. (e) Quality metric for (c). (f) Quality metric for (d).
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Table 3-1: Control parameters of the CCP method for the examples in this chapter.

Data Patch Size Window Size α h Windowing Size Moving step

Image Data 9*9 15*15 4 10 128*128 64

2D Seismic 15*1 19*19 0.25 0.10 128*128 32

3D Model 5*1*1 9*9*9 0.20 0.10 64*41*40 16

3-3 Images

We first use the CCP method for reconstructing images. Both the CP and the CCP method
use a reconstruction window of 128 pixels by 128 pixels, and the window moving step is
64 in both directions. Figures 3-1a and 3-3a show the ground truth images, with Figure
3-1a depicting a Mars desert scene and Figure 3-3a showing drill cuttings [25]. Figures 3-1b
and 3-3b show the sparse input of each original image with 75% randomly decimated pixels.
Figures 3-1c, 3-1d, 3-3c, 3-3d show the reconstructed images by the CP method and the CCP
method. Figures 3-1e, 3-1f, 3-3e, 3-3f are the histograms of the quality metric function for
each method with the mean of every relative errors of each element. Figures 3-2 and 3-4
present the reconstructed result in the highlighted window on Figures 3-1 and 3-3, indicating
that the CCP method suppresses the ringing noise.

(a) (b)

Figure 3-2: (a) Detail of reconstructed Mars desert image by the CP method highlighted in
Figure 3-1c. (b) Detail of reconstructed Mars image by the CCP method highlighted
in Figure 3-1d.

August 2, 2024



28 Examples

(a) (b)

(c) (d)

mean =

(e)

mean =

(f)

Figure 3-3: (a) Ground truth of the drill cuttings image. (b) Sparse data with 75% pixels
missing. (c) Reconstructed image by the CP method. (d) Reconstructed image by
the CCP method. (e) Quality metric for (c). (f) Quality metric for (d).
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(a) (b)

Figure 3-4: (a) Detail of reconstructed drill cuttings image by the CP method highlighted in
Figure 3-3c. (b) Detail of reconstructed drill cuttings image by the CCP method
highlighted in Figure 3-3d.

3-4 2D seismic section reconstruction

3-4-1 SEAM Arid model

The SEAM (SEG Advance Modeling) Arid model is a sub-project within the SEAM project
by SEG, utilizing the finite difference method to simulate seismic data for arid regions. The
2D section of the SEAM Arid Vp model[17] is shown in Figure 3-5. We use several 2D sections
of a SEAM Arid shot gather to test the reconstruction capability of the CCP method: a 2D
seismic section from the middle of this shot gather and another section at one end.

Figure 3-5: A 2D section of the 3D SEAM Arid Vp model.

3-4-2 Results

The reconstruction results of the 2D seismic section using the CP and CCP methods
are shown in Figures 3-6 to 3-11. Figures 3-6a and 3-9a are the ground truth of 2D
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seismic section NO. 270 and NO. 200. Section NO. 270 is near the middle of this shot
gather and section NO. 200 is close to the end. The sparse input with 30% randomly
decimated traces are shown in Figure 3-6b and 3-9b. The CP reconstruction results and
CCP reconstruction results are shown in Figure 3-7a 3-7b, 3-10a and 3-10b. The red
highlighted area in each figure reflect the suppression of ringing noise. Figure 3-8 and
3-11 show the reconstruction quality measured by the metric function we mentioned above.
Note that. Both the CP and CCP reconstruction use a reconstruction window with 128 by
128 data points and a moving step of 32 data points in both vertical and horizontal directions.

(a)

(b)

Figure 3-6: (a) Ground truth of the 2D section NO. 270 (b) Sparse input with 30% randomly
decimated traces.
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(a)

(b)

Figure 3-7: The reconstructed 2D seismic section NO. 270 using (a) the CP method and (b)
the CCP method.
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mean =

(a)

mean =

(b)

Figure 3-8: Histogram of the metric function for (a) Figure 3-7a and (b) 3-7b.

It is important to note that some reconstructed elements are more than twice the original
ground truth values, resulting in relative errors larger than 1. In the metric function, to
ensure that different histograms have the same x-axis, all relative errors greater than 1 are
displayed as 1 on the histogram. However, when calculating the mean, values greater than 1
are still used.
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(a)

(b)

Figure 3-9: (a) Ground truth of the 2D section NO. 200 (b) Sparse input with 30% randomly
decimated traces.
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(a)

(b)

Figure 3-10: The reconstructed 2D seismic section NO. 200 using (a) the CP method and (b)
the CCP method.
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mean =

(a)

mean =

(b)

Figure 3-11: Histogram of the metric function for (a) Figure 3-10a and (b) 3-10b.

3-5 3D seismic model cube reconstruction

3-5-1 Local traveltime operators in NLBF

Nonlinear Beamforming (NLBF) is a recently proposed technology aimed at enhancing the
quality of raw seismic data obtained through modern data acquisition schemes.[2]. NLBF
works in two stages: initially, it estimates local kinematic wavefronts within the input data,
then, perform a weighted summation for each trace in the input data with its neighboring
traces along the identified local kinematic wavefronts.

NLBF employs local traveltime operators as mathematical tools to describe local kinematic
wavefronts.[2] In NLBF, local traveltime operators are described by a second-order equation:

∆t(x, y;x0, y0) = A(x−x0)+B(y− y0)+C(x−x0)(y− y0)+D(x−x0)
2+E(y− y0)

2, (3-2)

where (x0, y0) is the NLBF parameter trace location, (x, y) is the trace location in the in-
put seismic data, and A,B,C,D,E are the five parameters that need to be obtained by
maximizing the semblance-based cost function[24]:

S(x0, y0) =

∑N
j=1{

∑M
i=1 u[xi, yi; tj(x0, y0) + ∆t(x, y;x0, y0)]}2

M
∑N

j=1

∑M
i=1{u[xi, yi; tj(x0, y0) + ∆t(x, y;x0, y0)]}2

, (3-3)

where u(xi, yi; t) is a time sample of the traced located at (xi, yi). M is the number of traces
in the spatial aperture and N is the number of time samples in the temporal aperture of a
local traveltime operators. The NLBF parameter cubes calculated by the 2+2+1 method on
a SEAM Arid dataset[17][23] are our reference results. 30% of the NLBF parameter traces
are randomly decimated to form the sparse input for the CCP method to reconstruct.
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3-5-2 Results

The reconstruction results of the 3D seismic model cube using the CP and CCP methods
are shown in Figures 3-12 to 3-16. The 3D seismic model cubes are with the dimension of
690*41*40 data points. Both the CP and the CCP method use a 3D reconstruction window
of 64*41*40 data points, and the window moving step is 16 points in the first direction.
Specifically, Figures 3-12a, 3-13a, 3-14a, 3-15a and 3-15a present the reference result of
parameters A,B,C,D, and E, respectively. Figures 3-12b, 3-13b, 3-14b, 3-15b, and 3-16b
are the sparse input with 30% randomly decimated parameter traces. It is important to note
that the data sets shown in Figure 3-12a to Figure 3-16a serve merely as references rather
than the ground truth due to how NLBF parameters are estimated. Consequently, we do
not use our metric function to evaluate the reconstruction quality in this example. However,
by directly observing the results of CP and CCP reconstruction, we can see that the ringing
noise has been suppressed in the highlighted areas in Figure 3-12c, 3-12d, 3-13c, 3-13d, 3-14c,
3-14d, 3-15c, 3-15d, 3-16c, 3-16d.

(a) (b)

(c) (d)

Figure 3-12: (a) NLBF reference of parameter A. (b) Sparse input A cube with 30% randomly
decimated NLBF parameter traces (c) Reconstructed A by CCP. (d) Reconstructed
A by CP. The red box highlights that part shows the ringing noise is suppressed.
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(a) (b)

(c) (d)

Figure 3-13: (a) NLBF reference of reference B. (b) Sparse input B cube with 30% randomly
decimated NLBF parameter traces (c) Reconstructed B by CCP. (d) Reconstructed
B by CP. The red box highlights that the ringing noise is suppressed.
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(a) (b)

(c) (d)

Figure 3-14: (a) NLBF reference of parameter C. (b) Sparse input C cube with 30% randomly
decimated NLBF parameter traces (c) Reconstructed C by CCP. (d) Reconstructed
C by CP. The red box highlights that the ringing noise is suppressed.
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(a) (b)

(c) (d)

Figure 3-15: (a) NLBF reference of parameter D. (b) Sparse input D cube with 30% randomly
decimated NLBF parameter traces (c) Reconstructed D by CCP. (d) Reconstructed
D by CP. The red box highlights that the ringing noise is suppressed.
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(a) (b)

(c) (d)

Figure 3-16: (a) NLBF reference of parameter E. (b) Sparse input E cube with 30% randomly
decimated NLBF parameter traces (c) Reconstructed E by CCP. (d) Reconstructed
E by CP. The red box highlights that the ringing noise is suppressed.

The reconstruction results from the three examples above all indicate that, compared to the
CP method, the CCP method can suppress the ringing noise and greatly improve the recon-
struction quality. For the reconstructed results in images the CCP method’s reconstruction
results are sharper and clearer. For the reconstruction results of 2D seismic sections and
3D seismic model cubes, the ringing noise in areas where seismic waves have not reached is
reduced.
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Discussion

In this chapter, we reveal some in-depth insights when using the CCP method for data
reconstruction. We delve into the CCP reconstruction loop, using a 2D seismic data slice as
an example, to observe the result evolution during the whole CCP process. Additionally, we
compare the results of applying the CCP non-local means algorithm to the CP reconstructed
results with the results of the CCP method, justifying the value of the CCP method. We
also demonstrate the value of the data preconditioning in our current CCP method. Finally,
we conduct parameter testing and propose a set of empirical control parameters for the CCP
method.

4-1 Intermediate results in the outer loop of the CCP method

In chapter 3, the maximum iteration number N used in the CCP method is 10. We hereby
use one reconstruction window in Figure 4-1 to illustrate all the intermediate results in the
outer loop of the CCP method, demonstrating the result evolution process. All the control
parameters are the same as in chapter 3. Figure 4-1 shows the CCP reconstructed results
after different times outer loop iteration numbers. Figure 4-1a is the ground truth of a 2D
section shot gather. Figure 4-1 is the sparse input with 30% randomly decimated traces.
Figures 4-1c to 4-1m demonstrate how the CCP non-local means algorithm tweaks the initial
value after every outer loop iteration.

Figure 4-2a illustrates the reconstructed result using the CP method within the selected
window. Figure 4-2b presents the reconstructed result obtained by the CCP method after all
the outer loops. The red boxes highlight the presence of ringing noise in the reconstructed
results. Notably, the ringing noise in the CCP method’s reconstructed result was significantly
suppressed, demonstrating the effectiveness of our idea in adjusting the initial values during
the outer loop.
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(a) (b) (c)

(d) (f) (g)

(h) (i) (j)

(k) (l) (m)

Figure 4-1: (a) Ground truth of a 2D section shot gather. (b) Sparse data with 30% randomly
decimated traces. (c)-(m) Intermediate results in the 1st to 10th outer loop of the
CCP method.
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(a) (b)

Figure 4-2: (a) Reconstructed result of Figure4-1b by the CP method. (b) Reconstructed final
result of Figure4-1b by the CCP method.

4-2 CCP non-local means algorithm on the CP method

We compare the results of applying the CCP non-local means algorithm after CP reconstruc-
tion with the results of the CCP method only in Figure 4-3. Figure 4-3a is the ground truth
of a 2D section shot gather. Figure 4-3 is the sparse input with 30% decimated traces. Figure
4-3c is the reconstruction result by the CP method with one time CCP non-local means algo-
rithm. Figure 4-3d is the reconstructed result by the CCP method. Figure 4-3e and 4-3f are
the corresponding metric function’s histogram with mean value of Figure 4-3c and 4-3d. The
Figure 4-3c indicates that the CCP non-local means algorithm can suppress ringing noise to
a CP reconstructed result. Moreover, incorporating the CCP non-local means algorithm as
a step for tweaking the initial values in the CCP method can further reduce ringing noise in
the reconstructed result as it shown in Figure 4-3d.
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(a) (b)

(c) (d)

mean =

(e)

mean =

(f)

Figure 4-3: (a) Ground truth of a 2D section shot gather. (b) Sparse data with 30% randomly
decimated traces. (c) Reconstructed result by implemented CCP non-local means
into the CP reconstructed result. (d) Reconstructed result of the CCP method. (e)
Metric function of Figure 4-3c. (f) Metric function of Figure 4-3d.
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4-3 Data preconditioning

The optional preconditioning step is used to address the issue of excessively large or small dy-
namic ranges in the input data being processed as we mentioned in chapter2. Here we present
an example to demonstrate the improvement of the final result through the preconditioning
step.

(a)

(b)

Figure 4-4: (a) Ground truth of the 2D section NO. 270 (b) Sparse input with 30% randomly
decimated traces.

Figures 4-4 through 4-5 illustrate the comparison of results for data with a large dynamic
range, with and without the use of preconditioning. Figure 4-5a is the reconstructed result
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by the CCP method without preconditioning. Figure 4-5b is the reconstructed result by the
CCP method with preconditioning. Without preconditioning, an excessively large dynamic
range may cause the CCP non-local means algorithm to calculate weights between different
patches too small, resulting in some weights being ignored. The red highlighted areas show
how this large dynamic range influence the reconstruction results.

(a)

(b)

Figure 4-5: (a) CCP reconstructed result of the 2D section NO. 270 (b) CCP reconstructed
result of the 2D section NO. 270 without preconditioning.
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4-4 Parameter testing

Four control parameters exist in our CCP non-local means algorithm, including the reference
patch size, the search window size, the filter sigma h, and the Gaussian kernel ratio α in
equations (2-1) through (2-3). We carry out parameter testing using several input data to
gain an empirical understanding on how to set their values in realistic applications.

We test all the control parameters in the CCP method based on the common control param-
eters: maximum iteration number N is 10, convergence ratio ϵ is 0.01, and the thresholding
function is defined in equations (1-21) to (1-23). Due to the large computational workload, we
are unable to conduct global parameter testing across four dimensions. Instead, we adopted
the following strategy for local parameter testing:

1. Set four initial control parameters for the CCP reconstruction.

2. Test control parameter 1 based on the three initial control parameters to find the best
parameter 1.

3. Update to the best control parameter 1.

4. Test control parameter 2 based on the two initial control parameters and the best control
parameter 1.

5. Based on the previous steps, update the best control parameters 2, 3, and 4.

First, we use the above method to test the CCP parameters for 2D seismic data reconstruction,
section NO.270 and NO.200. Here a reconstruction window of 128 pixels by 128 pixels, and
the window moving step is 16 in both directions. The parameters 1, 2, 3, and 4 correspond to
patch size, the search window size, the Gaussian kernel ratio α, and filter sigma h, respectively.
We set the initial window size to 21, alpha to 0.3, and filter sigma h to 0.1. The patch size is
set within the range [3, 5, 7, 9, 11, 13, 15]. We select the patch size value (patch size is 15)
corresponding to the minimum mean statistical error in the results as the best testing result.
The results are shown in Figure 4-6a and Figure 4-7a. The search window size is set within
the range [7, 11, 15, 19, 23, 27, 31]. It is important to note that the first two values in this
range are smaller than the best patch size updated. Since the search window size should not
be lower than the patch size, the first two calculations for parameter testing of the search
window size are skipped. The results are shown in Figure 4-6b and Figure 4-7b. We continue
with parameter testing for Gaussian kernel ratio α and filter sigma h within range [0.05, 0.10,
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50] in the same manner. The results are shown in
Figures 4-6c 4-6d 4-7c and 4-7d. Ultimately, we obtained a set of empirical parameters of the
CCP method for 2D seismic data reconstruction: the patch size is 15 the search window size
is 19, the Gaussian kernel ratio α is 0.30 and the filter sigma h is 0.10.

August 2, 2024



48 Discussion

(a) (b)

(c) (d)

Figure 4-6: Parameter testing result of seismic section NO. 270 reconstrution (a) Error curve of
PatchSize. (b) Error curve of WindowSize. (c) Error curve of α. (d) Error curve of
h.
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(a) (b)

(c) (d)

Figure 4-7: Parameter testing result of seismic section NO. 200 reconstruction (a) Error curve
of PatchSize. (b) Error curve of WindowSize. (c) Error curve of α. (d) Error curve
of h.

Then, we use the above method to test the CCP parameters for image reconstruction (the
Mars desert image and the drill cuttings image used in chapter3). Here a reconstruction
window of 128 pixels by 128 pixels, and the window moving step is 64 in both directions.
The parameters 1, 2, 3, and 4 correspond to patch size, the search window size, the Gaussian
kernel ratio α, and filter sigma h, respectively. We set the initial window size to 21, alpha to
4, and filter sigma h to 10. The patch size is set within the range [3, 5, 7, 9, 11, 13, 15]. We
select the patch size value (patch size is 5) corresponding to the minimum mean statistical
error in the results as the best testing result. The results are shown in Figure 4-8a and Figure
4-9a. The search window size is set within the range [7, 11, 15, 19, 23, 27, 31]. The results
are shown in Figure 4-8b and Figure 4-9b. We continue with parameter testing for Gaussian
kernel ratio α within the range 1-10 and filter sigma h within the range 0-90 in the same
manner. The results are shown in Figures 4-8c 4-8d 4-9c and 4-9d. Ultimately, we obtained
a set of empirical parameters of the CCP method for image reconstruction: the patch size is
5 the search window size is 7-15, the Gaussian kernel ratio α is 3 and the filter sigma h is 10.
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(a) (b)

(c) (d)

Figure 4-8: Parameter testing result of Mars desert image reconstruction (a) Error curve of
PatchSize. (b) Error curve of WindowSize. (c) Error curve of α. (d) Error curve of
h.
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(a) (b)

(c) (d)

Figure 4-9: Parameter testing result of drill cuttings image reconstruction (a) Error curve of
PatchSize. (b) Error curve of WindowSize. (c) Error curve of α. (d) Error curve of
h.

We present a set of empirical parameters in table 4-1 for different data types in the CCP
method. Due to computational limitations, we have temporarily postponed parameter testing
for the reconstruction of the 3D seismic model. However, we still provide the empirically
determined parameters that yielded good results for this project.

Table 4-1: Default control parameters of the CCP method for different data.

Data Patch Size Window Size α h

Image Data 5 11 3 10

2D Seismic 15 19 0.30 0.10

3D Model 5 9 0.20 0.10
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Chapter 5

Conclusions

In this thesis, we have discussed the theory and methodology of the CCP method. Our goal
is to improve the existing CP method framework into the CCP method, so that the ringing
noise in the reconstructed results is suppressed. We utilized different types of data for the
CCP method reconstruction, including images, 2D seismic data, and 3D seismic model cubes
and comparing the CCP reconstructed results with the CP reconstructed result. Our aim
is to address the research question: can the CCP method suppress the ringing noise in the
reconstructed results comparing with the CP reconstructed results? Our conclusions are as
follows:

• The concept of the CCP method is to tweak the values after projection during the
alternating projections of the CP method, guiding them towards a desired direction.
This new projection result provides a more preferable solution to the under-determined
reconstruction problem. To achieve this, we designed the CCP non-local means algo-
rithm, based on the non-local means algorithm, to suppress the ringing noise caused by
the hard thresholding function in the CP method.

• Similar to the CP method, the CCP method can reconstruct various types of data,
including photographic images, 2D seismic data sections, and 3D seismic model cubes.
In Chapter 3 we present the reconstruction results using the CCP method. We use the
relative error between each reconstructed element and the corresponding element in the
ground truth as our quality metric function. The results of reconstructing different types
of data using the CCP method show less ringing noise and higher quality compared to
the CP method, both when evaluated by the quality metric function and through direct
observation.

• We gain in-depth insights into the use of the CCP method for data reconstruction. By
examining the CCP reconstruction loop with a 2D seismic data slice, we observe the
evolution of the results throughout the entire CCP process. We compare the outcomes
of applying the CCP non-local means algorithm to the CP reconstructed results with
those obtained directly from the CCP method, demonstrating that the results from
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the CCP method are better. Furthermore, we demonstrated the importance of data
preconditioning in the current CCP method. Lastly, we conducted parameter testing
and proposed a set of empirical control parameters for optimizing the CCP method.

• Overall, the application of the CCP method for data reconstruction represents a novel
approach. The scope of our research was limited by the timeframe of the IDEA League
Applied Geophysics Master’s thesis. There are two additional research directions to
further explore: 1) employing tweaking methods other than the CCP non-local means
algorithm for initial values tweaking, and 2) while this study primarily focused on
the outer loop of the CCP method, specifically tweaking the initial values in the data
domain, initial values tweaking could also be applied in the f − kx domain.
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