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Abstract

B-splines are basis functions for the spline function space and are extensively used in ap-
plications requiring function approximation. The generalization of B-splines to multiple di-
mensions is done through tensor products of their univariate basis functions. The number
of basis functions and weights that define a multivariate B-spline surface, therefore, increase
exponentially with the number of dimensions, i.e. B-splines suffer from the curse of dimen-
sionality. Tensor network theory provides a mathematical framework to alleviate the curse of
dimensionality of B-splines by representing the high-dimensional weight tensor as a low-rank
approximation. This thesis presents the Tensor Network B-spline (TNBS) model, along with
an optimization algorithm that allows the estimation of the exponentially large weight tensor
directly from data, without ever needing to explicitly construct it. P-spline regularization is
incorporated to induce additional smoothness and ensure the B-spline hypersurface general-
izes well across the high-volume domain. The developed TNBS framework opens doors for the
application of B-spline theory in high-dimensional function approximation. This thesis pro-
vides an overview of both B-spline and tensor network theory, then uses it to derive the TNBS
model. We validate the effectiveness of the model through an application in black-box nonlin-
ear system identification using a NARX approach. An open-source MATLAB implementation
of TNBS is made available on GitHub. The work is concluded with some recommendations
for further research on this topic.
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Chapter 1

Introduction

1-1 Thesis Motivation

Function approximation deals with the problem of reconstructing a complex or unknown
function, being only provided with a finite set of data points sampled from this function.
Figure 1-1 gives an example of a univariate function g(x), which approximates an unknown
function f(x) from a set of data points of the form {(x, f(x) + ε)}, where ε is the sampling
error. The best approximation minimises the difference between the original function and the
approximation according to some metric, e.g. ‖f(x)− g(x)‖. Function approximations arises
in many branches of science and is fundamental to applications such as pattern recognition,
prediction and classification.
In 1885, Karl Weierstrass published a proof of a theorem, nowadays known as the Stone-
Weierstrass theorem, which says that any continuous function on the closed interval [a, b]
may be arbitrarily closely approximated by polynomials [1]. Using polynomials to approx-
imate more complex functions is a basic building block of many numerical techniques [2].
Polynomials are favorable because of their simple form, well-known properties, and moderate
flexibility. They also easily generalize to multivariate functions by means of tensor products
of their basis vectors. Polynomial models, therefore, have been widely used in many domains
that involve function approximations, such as interpolation and curve fitting [3, 4]. In statis-
tics, polynomial regression is the simplest method to find nonlinear relationships between
variables [5]. In machine learning applications, polynomials are often used as a feature vector
to map data to a higher dimensional feature space [6], or as a kernel function for algorithms
such as support vector machines and Gaussian processes [7, 8]. In nonlinear system identifi-
cation, models such as Volterra series, NARX and NARMAX use polynomial expansions to
model the nonlinear interactions between the delayed input or output variables [9, 10]. There
are, however, several disadvantages to using polynomials for function approximation:

• They are poor interpolators. High-degree polynomials are known to oscillate between
data points in curve fitting and interpolation. In the special case of interpolating over
equidistant interpolation points, this is known as Runge’s phenomenon [11].

Master of Science Thesis R. Karagöz
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Figure 1-1: Function approximation example.

• They are poor extrapolators. Outside the range of data, the fit of the polynomial model
often rapidly deteriorates [12].

• The large exponents in high-degree polynomials may cause numerical issues [13].

• The number of monomial terms required to represent multivariate functions grows ex-
ponentially with the number of dimensions d, i.e. O(kd). Storing, fitting and analyzing
polynomial models in high-dimensional spaces becomes impractical due to the increase
in memory and computational requirements. This phenomenon is referred to as the
curse of dimensionality [14].

To address some of the drawbacks of polynomials, while retaining their approximative prop-
erties, splines are often regarded as a favorable alternative. Splines refer to a wide class of
functions that are defined piece-wise by polynomials. Like polynomials, they are used in
applications requiring the interpolation or smoothing of one- or multidimensional data [15]
and play an important role in applied mathematics, numerical analysis, geometric modeling,
and many other areas due to their useful properties. Many representations of splines exist,
including Bézier curves, Hermite splines and Box splines, but it is particularly attractive to
represent splines as a linear combination of basis functions [16]. This is the B-spline rep-
resentation, which has been recognized as an extremely powerful tool in both theory and
application.

B-splines have had an impact in countless applications of signal processing [17], control [18,
19], computer graphics [20], computer-aided design [21], partial differential equations [22],
finite element analysis [23], medical imaging [24] and atomic and molecular physics [25].
They are used for supervised learning [26], system identification [27–31] and control [32–35].
They have been applied in machine learning as features for clustering methods [36], as kernels
for support vector machines (SVMs) [37] or as activation functions for neural networks.

R. Karagöz Master of Science Thesis



1-2 Research Objective 3

B-splines also generalize to multiple dimensions through tensor products of their univariate
basis vectors, and therefore still suffer from the curse of dimensionality. This is a major
limitation for many applications of multivariate B-splines with high dimensional inputs [38].
Previous attempts to avoid this limitation involve input feature selection, dimensionality
reduction, clustering, generative additive models, Gabor-Kolmogorov polynomial expansions,
ANOVA decompositions, and networked or hierarchical structures [39–41]. These methods,
however, do not fully overcome the curse of dimensionality, but mostly try to limit the number
of input dimensions or basis functions, or sometimes discard many of the, possibly significant,
interaction terms between input variables. The most effective method, hierarchical B-splines,
relies on sparse grids [42], which reduces the storage complexity from O(kd) to O(k log(k)d−1)
elements [43], which is still exponential in the number of dimensions.

1-2 Research Objective

A recently emerging way to alleviate the curse of dimensionality is through a concept termed
tensor networks. Originally developed in the context of quantum physics, tensor networks
efficiently represent high-dimensional tensors as a set of sparsely interconnected low order
tensors. The tensor train format, for example, has a storage complexity that grows linearly
in the number of dimensions. Furthermore, efficient and numerically reliable algorithms have
been developed for the decomposition and reconstruction of tensors, and for operations on
them in tensor network formats [44]. Combined with tensor algebra, tensor networks can thus
greatly decrease the computational complexity of many applications. They have, for example,
been successfully applied in machine learning to compress various types of neural networks
[45–48], perform large scale dimensionality reduction [49], and to build high-dimensional
polynomial classifiers [50], tensor-based SVMs [51] and other forms of supervised learning
methods [52, 53]. Other applications of tensor networks include Kalman filters [54], system
identification [55, 56], tensor completion or interpolation [57–60], and Gaussian processes [61].

As B-spline surfaces are multilinear in their parameters, they naturally admit to a tensor
network representation. Algorithms for solving linear problems in the tensor network format
make it possible to fit multivariate B-spline surfaces onto high-dimensional data without ever
constructing the exponentially large weight tensor. Instead, the tensor network representation
of the weight tensor can be found directly, thereby overcoming the curse of dimensionality. A
similar approach for B-splines has been conducted for the two-dimensional case [62], using the
Singular Value Decomposition (SVD) and Adaptive Cross Approximation algorithm, but a
generalization to higher dimensions using tensor decompositions lacks in literature. A tensor
network representation of multivariate B-splines, which we call the Tensor Network B-splines
(TNBS) model, allows the application of B-splines in multivariate function approximation
without their computational burdens for higher dimensions. Our research objective is to
develop a TNBS framework and evaluate it through numerical experiments.

Master of Science Thesis R. Karagöz



4 Introduction

1-3 Thesis Contributions

This thesis gives a solid basis in both B-spline and tensor network theory, then introduces the
TNBS model and the optimization algorithm. This model can serve as a general framework for
the approximation of continuous high-dimensional functions with B-splines. An open-source
MATLAB implementation of TNBS is made available on GitHub.

1-4 Thesis Outline

This thesis is structured as follows: Chapter 2 introduces tensors and tensor network theory.
The choice for the tensor train decomposition is elaborated and a comparison is made between
various optimization methods in the tensor train format. Chapter 3 covers the relevant
B-spline theory and illustrates how B-splines can be regularized and applied to function
approximation. Chapter 4 introduces the TNBS model, generalizes regularization to the
tensor network format and presents an optimization algorithm for fitting the TNBS to data.
The proposed methods are validated through numerical experiments. Chapter 5 contains
a preprint of our paper which is submitted to the Automatica journal. In this paper, the
TNBS model is applied to nonlinear system identification and the results on a benchmark
nonlinear system are presented. Chapter 6 concludes this thesis with a summary and lists
some recommendations and future work.
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Chapter 2

Introduction to Tensors

This chapters provides the basic terminology and definitions for understanding tensors and
tensor network theory. It treats the notations and operations that will be essential throughout
the rest of the thesis. We introduce the tensor train decomposition which will be used as the
main structure of our tensor network model. Most of the introduced definitions are based on
the papers [44, 63–65].

2-1 Basics

A tensor can be represented as a multidimensional array of numerical values, i.e.:

A ∈ Rk1×k2×···×kd (2-1)

The order d of the tensor is the number of dimensions or indices. Tensors can thus be seen as
generalizations of vectors and matrices. A vector is a first order tensor, whereas a matrix is a
tensor of order two. A single element of a tensor will be denoted by indices in the subscripts,
e.g.:

a = Ai1,i2,...,id . (2-2)

The letters kp,where p ∈ {1, 2, . . . , d}, indicate the size of each dimension, such that ip ∈
{1, 2, . . . , kp}. A convenient way of expressing tensors and their operations is through the
graphical notation introduced by Roger Penrose in 1972 [63]. Figure 2-1 shows the repre-
sentation of a scalar, vector, matrix and third order tensor using this notation. Every node
represents a tensor. The edges represent the indices of the tensor and the number of edges
therefore corresponds to its order. A node with no edges is a zero order tensor, i.e. a scalar.
The direction of the edges are irrelevant.

Master of Science Thesis R. Karagöz



6 Introduction to Tensors

Figure 2-1: Graphical notation of a (a) scalar, (b) vector, (c) matrix and (d) third order tensor.

In this work, scalars will be denoted by lowercase letters (a), vectors will be denoted by
bold lowercase letters (a), matrices will be denoted by bold uppercase letters (A) and higher
order tensors will be denoted by bold calligraphic letters (A). The fibers of a tensor are the
generalization of rows and columns of matrices. A mode-p fiber is a vector defined by fixing
all indices but the pth. For example, the elements of the first mode-3 fiber of the tensor
A ∈ Rk1×k2×k3 are given by:

ai3 = A1,1,i3 . (2-3)

A tensor T ∈ Rk1×k2×···×kd is of rank one if it can be decomposed into the outer product of
d vectors b(p) ∈ Rkp , e.g:

T = b(1) ◦ b(2) ◦ · · · ◦ b(d),

where ◦ denotes the outer product operation. The canonical rank r of a tensor A is defined
as the minimal number of rank one tensors needed to produce A as their sum.

The vectorization of a tensor A ∈ Rk1×k2×···×kd is the reordering of its elements into a column
vector, denoted by vec(A) = a ∈ Rk1k2···kd . The elements of a are given by:

ai1+(i2−1)k1+...+(id−1)k1k2...kd−1 = Ai1,i2,...,id . (2-4)

This can be seen as stacking the mode-1 fibers on top of each other. Vectorization of a
third-order tensor is illustrated graphically in 2-2.

Figure 2-2: Vectorization of a third order tensor.

Matricization or unfolding is the reordering the elements of a tensor into a matrix. The mode-p
matricification of A ∈ Rk1×k2×···×kd is given by rearranging all mode-p fibers as column vectors
to form a matrix A ∈ Rkp×k1k2···kp−1kp+1···kd .

More general reshaping operations on tensors can be denoted by adopting the reshape op-
erator from MATLAB. For example, grouping the first two and last two indices of a tensor

R. Karagöz Master of Science Thesis



2-2 Tensor Operations 7

A ∈ Rk1×k2×k3×k4 results in a tensor reshape(A, [k1k2, k3k4]) = B ∈ Rk1k2×k3k4 . This is
illustrated graphically in 2-3.

Figure 2-3: Reshaping of a fourth order tensor.

2-2 Tensor Operations

Two essential operations in tensor algebra are the tensor contraction and the tensor product.
The contraction operation is the summing of elements over equal-sized indices and generalizes
both of the trace and product operations on matrices. Given the tensors A ∈ Rk1×k2×k3 and
B ∈ Rk3×k4×k5 , contracting the index i3 results in a tensor A ×1

3 B = C ∈ Rk1×k2×k4×k5 whose
elements are given by:

Ci1,i2,i4,i5 =
∑
i3

Ai1,i2,i3 Bi3,i4,i5 . (2-5)

Contraction thereby reduces the total order of the tensors by the number of contracted indices.
Contraction is indicated by the left-associative

(q
p

)
-mode product operator [66], where p and

q indicate the position of the indices of the first and second tensor respectively. In the
graphical notation, contraction is indicated by connecting edges of corresponding indices.
This is illustrated for Eq. (2-5) in Figure 2-4.

Figure 2-4: Tensor contraction in the graphical notation.

The matrix product operation can be regarded as a special case of tensor contraction, per-
formed on a pair of second order tensors. Given two matrices A ∈ Rk1×k2 and B ∈ Rk2×k3 ,
the matrix product AB is simply the contraction of the second index of A with the first
index of B, which results in a matrix A ×1

2 B = C ∈ Rk1×k3 whose elements are given by:

Ci1,i3 =
∑
i2

Ai1,i2 Bi2,i3 . (2-6)

Master of Science Thesis R. Karagöz



8 Introduction to Tensors

The tensor product operation is a generalization of the outer product for vectors. Given
two tensors A ∈ Rk1×k2×k3 and B ∈ Rk4×k5 , their tensor product A ◦ B results in a tensor
C ∈ Rk1×k2×k3×k4×k5 whose elements are given by:

Ck1,k2,k3,k4,k5 = Ak1,k2,k3 Bk4,k5 . (2-7)

The tensor product operation can also be regarded as a special case of contraction, where the
contracted indices have singleton dimensions. The tensor product operation is depicted by a
dashed line connecting two nodes, as seen in Figure 2-5 for Eq. (2-7).

Figure 2-5: Tensor product in the graphical notation.

The inner product between two equally dimensioned tensors is the sum of their entry-wise
product, resulting in a scalar. This is equivalent to contracting the tensor pair over all indices.
Given two tensors A ∈ Rk1×k2×k3 and B ∈ Rk1×k2×k3 , their inner product is given by:

〈A,B〉 =
∑

k1,k2,k3

Ak1,k2,k3Bk1,k2,k3 = A ×1,2,3
1,2,3 B = vec(A)Tvec(B). (2-8)

This is illustrated in graphical notation in Figure 2-6.

Figure 2-6: The inner product of two third-order tensors.

The Frobenius norm of a tensor is defined as the square root of the sum of squares of its
entries and can be written as:

‖A‖2 =
√
〈A,A〉. (2-9)

Merve

R. Karagöz Master of Science Thesis



2-2 Tensor Operations 9

An important equation [55] that relates contraction of a d-dimensional tensorA ∈ Rk1×k2×···×kd

with d matrices C(p) ∈ Rkp×k(p+d) to a linear operation is the following:

vec
(
A×2

1 C
(1) ×2

2 · · · ×2
d C

(d)
)

=
(
C(d) ⊗ · · · ⊗C(1)

)
vec(A) = Ca. (2-10)

where ⊗ denotes the Kronecker product. This is illustrated for a third-order tensor in Figure
2-7.

Figure 2-7: Conversion from multiple contractions to a linear operation.

Master of Science Thesis R. Karagöz



10 Introduction to Tensors

2-3 Tensor Train Decomposition

Tensor algebra and tensor decompositions are gaining interest in areas of computational math-
ematics and numerical analysis with high-dimensional problems [67]. Tensors are a natural
choice for representing data in many domains, but they suffer from the curse of dimensionality,
i.e, the number of elements of a tensor (and therefore the amount of memory to store it and the
computational complexity of tensor operations) grows exponentially with the number of di-
mensions, O(kd). Tensor decompositions or tensor networks avoid the curse of dimensionality
by accurately reproducing high-order tensors through a series of tensor contractions over low-
order tensors [44]. Three of the most popular tensor decomposition methods are the canonical
polyadic (CP) decomposition, Tucker decomposition, and Tensor Train (TT) decomposition.
The storage complexity of the CP decomposition of a tensor A ∈ Rk×k×···×k is O(kdr), which
for high d vastly reduces the storage complexity of the original tensor. There are, however,
no straightforward algorithms to determine the canonical rank r of a tensor and finding a
low-rank approximation can be an be ill-posed problem, e.g algorithms might fail or converge
to a local minimum [68]. The Tucker decomposition is numerically stable, but has an expo-
nential number of parameters in the dimensions d, O(kdr + rd). It is therefore not suitable
for high-dimensional data. The TT decomposition offers the low-parametric representation
of the CP decomposition with the numerical stability of the Tucker decomposition [44].

Tensor trains have recently been applied in, among others, big data processing and machine
learning [64]. A tensor train, also known as matrix product state (MPS) in quantum physics,
expresses a tensor W ∈ Rk1×k2×···×kd in terms of d third order tensors G(p)

W ∈ Rrn−1×kn×rn .
Figure 2-8 shows the TT-decomposition of a four-dimensional tensor in graphical notation.
The dimensions of the contracted indices, rp, are called TT-ranks. The first and last TT-
ranks, r0 and rd, are by definition equal to one, and therefore not depicted in the figure.
Keeping in mind that the

(q
p

)
-mode product operator is left-associative, the tensor train in

Figure 2-8 can be expressed as:

W = G(1)
W ×

1
2 G

(2)
W ×

1
3 G

(3)
W ×

1
4 G

(4)
W . (2-11)

For a prescribed set of TT-ranks or a prescribed accuracy, the TT-decomposition of a tensor
can be computed with the TT-SVD [65] or the TT-Cross [69] algorithm. There exists a set
of TT-ranks rp = Rp for which the decomposition is exact. When rp < Rp, the tensor train
represents an approximation of the original tensor. The lower the TT-ranks, the less accurate
the decomposition, but the better the compression. When all rp and dimensions kp are equal,
the storage complexity of the tensor train representation is O(kdr2). A TT-decomposition

Figure 2-8: Graphical notation of the tensor train decomposition for a fourth order tensor.

R. Karagöz Master of Science Thesis



2-3 Tensor Train Decomposition 11

with low TT-ranks can thus significantly reduce the memory footprint of high-dimensional
data. An upper bound for the TT-ranks Rp of an exact decomposition is given by:

Rp = min

 p∏
j=1

kj ,
d∏

j=p+1
kj

 . (2-12)

This is best illustrated through the example visualized in Figure 2-9. Consider again a fourth
order tensor train. To express an upper bound for r2, we first contract the whole tensor train,
except over r2. Grouping the free indices of the resulting cores results in a matrix of size
Rk1k2×k3k4 . The rank of this matrix is now equal to the TT-rank r2. The rank of a matrix is
at most equal to its smallest dimension, thus the exact TT-rank R2 is at most:

R2 = min (k1k2 , k3k4) . (2-13)

Similarly, it can be shown that an upper bound for any TT-rank Rp is given by Eq. (2-12).
This means that, in general, the TT-ranks of an efficient TT-decomposition increase towards
the middle of the network. The effectiveness of the tensor train representation thus heavily
relies on the low TT-rank assumption on the original tensor. If this assumption does not
hold, high TT-ranks may be required, potentially resulting in a tensor train which has an
even higher storage requirement than the original tensor.

Figure 2-9: Illustrating the upper bound on TT-rank r2.

An important notion for TT-cores is orthogonality. A TT-core G(p)
W is left-orthogonal if it can

be reshaped into a matrix G(p) ∈ Rrp−1kp×rp for which:

G(p)TG(p) = I.

Master of Science Thesis R. Karagöz



12 Introduction to Tensors

Likewise, G(p)
W is right-orthogonal if it can be reshaped into a matrix G(p) ∈ Rrp−1×kprp for

which:
G(p)G(p)T = I.

A tensor train is in site-k-mixed-canonical form [70] when for for its TT-cores the following
applies:

G(p)
W =

{
left-orthogonal, 1 ≤ p ≤ k − 1
right-orthogonal, k + 1 ≤ p ≤ d. (2-14)

For a site-k-mixed-canonical tensor train holds that its norm is contained in the k-th TT-core,
i.e.:

‖W‖2 = ‖G(k)
W ‖2.

There exist efficient algorithms for operations in the tensor train format, such as the addition,
multiplication, and rounding of tensor trains, presented in [65]. The multiplication of a tensor
by a number in the TT representation is done by simply scaling one of the cores by that
number. Addition of two equal-sized tensors, A and B, in the tensor train format constitutes
to merging their cores. TT-rounding is the procedure of recompressing a given tensor train
with suboptimal TT-ranks, through a series of QR decompositions and SVD’s on the cores.
Suboptimal TT-ranks occur due to the rank growth caused by operations in the TT-format
e.g, addition or matrix-vector product. For example, adding a tensor train to itself doubles
the TT-ranks of the resulting tensor train, while logically the optimal ranks should have
stayed the same. TT-rounding is mostly applied after these operations to reduce the ranks
while maintaining accuracy. The complexity of this procedure is O(kdr3).

Several algorithms have been developed for optimization in the TT-format. The best known
method is the alternating linear scheme (ALS) [71]. The TT-ALS algorithm is inspired by
the DMRG algorithm of quantum physics and generalizes the alternating least squares (ALS)
algorithm to tensor trains. It finds the optimal TT-cores by iteratively optimizing one tensor
core at a time while holding the others fixed. At each iteration, a small linear subsystem is
solved. The algorithm sweeps back and forth, iterating from the first to the last core and
back, until convergence. To ensure numerical stability, each core optimization is followed
by an orthogonalization step. Typically all available data is used in each optimization step,
thus ALS is not suited for applications requiring online optimization. A modified version of
ALS method, MALS [71], updates two cores simultaneously. MALS is computationally more
expensive, but is able to adaptively determine the optimal TT-ranks for a specified accuracy,
while for ALS the TT-ranks need to be chosen beforehand. Another popular approach to
optimization in the TT-format relies on the fact that the set of all d-dimensional tensors
with fixed TT-ranks form a Riemannian manifold [72]. This allows the use of Riemannian
optimization methods such as stochastic Riemannian gradient descent [73], which are also
effective in an online fashion. An example of an application for Riemannian optimization
is given in [52]. The downside to the Riemannian approach is again that the TT-ranks
need to be specified beforehand. An effective method that allows both online optimization
and adaptively determines ranks is the tensor network Kalman filter [54]. It enables the
adaptive estimation of exponentially large state vectors, without ever needing to explicitly
construct them. It can, for example, be used in estimating large scale time varying systems.
The equations are tensorized versions of the standard Kalman equations, implemented using
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tensor networks. After each update a TT-rounding step is performed to counter the growth
of the TT-ranks. This automatically finds the best TT-ranks for a given accuracy. The
TT-rounding step can however be computationally intensive for larger TT-ranks. Ultimately,
the best suited method for optimizing TT-cores is application dependant. Further on in this
thesis, we use ALS as the basis for our optimization method, as it is easy to implement and
is guaranteed to converge monotonously.
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Chapter 3

Introduction to B-splines

This chapter gives an introduction to B-spline theory. First, the basic properties of univariate
B-splines are covered. We illustrate how B-splines can be used to approximate functions and
treat regularization techniques. Then these methods are generalized to multivariate B-splines.
We additionally propose an efficient strategy to evaluate uniform B-splines. A comprehensive
treatment of B-splines and their properties is given in the book by de Boor [74].

3-1 Splines

A simple univariate spline S maps values from an interval [a, b] to the set of real numbers:

S : [a, b] ∈ R→ R. (3-1)

One can partition [a, b] into subintervals [ti, ti+1] in such a way that S is a polynomial on
each subinterval. The points ti where S changes from one polynomial to another are called
knots. A knot sequence t is defined as a non-decreasing and finite sequence of real numbers
that define this partition:

t = {t0, t1, . . . , tm−1, tm},
a = t0 ≤ t1 ≤ · · · ≤ tm−1 ≤ tm = b. (3-2)

The total number of knots equals m + 1. If the knots are equidistantly distributed over the
domain of the spline, the spline is called uniform. The degree ρ ≥ 0 of a spline is equal to
the largest degree of its polynomials. When there are no repeating knots, i.e. all knots have
distinct values, the spline has Cρ−1 continuity, i.e. the first ρ− 1 derivatives of the spline are
continuous across the domain.
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16 Introduction to B-splines

3-2 B-splines

3-2-1 Basics

The term B-splines first appeared in Schoenberg’s paper from 1946 on the approximation of
equidistant data by analytic functions [75]. The ’B’ stands for basis, referring to their role as
basis functions for the spline function space. Any spline of degree ρ on a given knot sequence
can be expressed as a unique linear combination of B-splines of the same degree [16]. This
expression is given by:

S(x) =
k−1∑
i=0

Bi,ρ(x)wi =
[
B0,ρ(x) B1,ρ(x) · · · Bk−1,ρ(x)

]

w0
w1
...

wk−1

 = bTw. (3-3)

The spline S(x) is also known as a B-spline curve. The B-spline basis functions Bi,ρ(x) are
contained in the basis vector b. The weights wi are called control points in literature, because
they control the shape of the B-spline curve. They are grouped together in the vector w. In
this thesis the control points are considered to be scalar. The number of control points for a
B-spline curve is equal to the number of B-spline basis functions k and relates to the degree
of the curve ρ and number of knots m+ 1 by:

k = m− ρ. (3-4)

Knot sequence: The B-spline basis functions Bi,ρ(x) are defined by the knot sequence t
and their degree ρ. If the knot sequence is uniform and also a subset of Z, i.e. a sequence of
integers, the spline is referred to as a cardinal spline [76]. This review will put extra focus
on cardinal and uniform B-splines, because their form has many advantages such as efficient
evaluation and regularization.

B-spline construction: For a given a knot sequence t, B-spline basis functions of arbitrary
degree ρ can be recursively constructed by means of the Cox-de Boor formula [74]:

Bi,0(x) =
{

1 if ti ≤ x < ti+1
0 otherwise , (3-5)

Bi,ρ+1(x) = x− ti
ti+ρ − ti

Bi,ρ(x) + ti+ρ+1 − x
ti+ρ+1 − ti+1

Bi+1,ρ(x). (3-6)

Note that the convention of B-splines being left continuous is used. In the case of repeating
knots, the denominators can have a value of zero. In these circumstances, 0/0 is presumed to
be zero. Sometimes in literature, a B-spline basis function is also characterized by its order,
which is equal to its degree raised by one, such that a first order B-spline equals a zero degree
B-spline. In this thesis, the B-splines will only be characterized by their degree ρ. The naming
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3-2 B-splines 17

of B-splines by degree follows the naming convention of polynomials, e.g, B-splines of degree
one are linear B-splines, degree two are quadratic B-splines, degree three are cubic B-splines,
and so on. Figure 3-1 shows the shape of the cardinal B-spline basis functions for degrees
0 to 3. As ρ tends to infinity, the centralized cardinal B-spline converges to the probability
density function of the standard normal distribution [77].

Figure 3-1: Cardinal B-splines of degrees 0 to 3 [78].

Local support: It is apparent from Figure 3-1 that the degree of a B-spline controls both
its smoothness and the size of its support. In general, B-splines have local support, meaning
they only map to nonzero values on a small compact subset of the domain of the curve.
Furthermore, they are positive within their support.

Bi,ρ(x) > 0 ti ≤ x < ti+ρ+1
Bi,ρ(x) = 0 otherwise. (3-7)

Natural domain: Figure 3-2 illustrates an example of a B-spline curve S on a cardinal knot
sequence as a linear combination of five B-spline basis functions of degree 2. The control
points are here arbitrarily chosen as w =

[
1 2 −1 3 −2

]T
. The dashed lines represent

basis functions scaled by their respective weights. Their sum results in the B-spline curve
drawn in a thick cyan line. Note that the curve tends to zero at both ends, no matter what
values are chosen for the control points. The B-spline curve here is only fully controllable
between knots 2 and 5, also known as the natural domain Dn. In general, the natural domain
of a B-spline curve of degree ρ is given by:

Dn = [tρ, tm−ρ]. (3-8)

The sum of B-splines on any point within this domain equals one. This is the so-called
partition of unity property of B-splines:

k−1∑
i=0

Bi,ρ(x) = 1, tρ ≤ x ≤ tm−ρ. (3-9)

A direct consequence of Eq. (3-8) and Eq. (3-9) is that only ρ + 1 B-splines Bi,ρ(x) map to
nonzero values for any x ∈ Dn.
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Figure 3-2: Cardinal quadratic B-spline curve.

3-2-2 Cardinal B-splines

Construction: The following will provide an example of the construction of cardinal B-spline
basis functions for the integer knot sequence t = {0, 1, 2, 3, 4, 5}. The degree ρ = 2 andm = 5,
so from Eq. (3-4) it follows that 5−2 = 3 B-splines need to be constructed. Using the recursion
formula, Eq. (3-5), the first one can be determined by substitution:

B0,2(x) = x− 0
2− 0B0,1(x) + 3− x

3− 1B1,1(x)

= x− 0
2− 0

[
x− 0
1− 0B0,0(x) + 2− x

2− 1B1,0(x)
]

+ 3− x
3− 1

[
x− 1
2− 1B1,0(x) + 3− x

3− 2B2,0(x)
]

= 1
2
[
x2B0,0(x) + x(2− x)B1,0(x) + (3− x)(x− 1)B1,0(x) + (3− x)2B2,0(x)

]
.

Using Eq. (3-5), this can be decomposed as follows:

B0,2(x) =


1
2x

2 0 ≤ x < 1
1
2
(
x(2− x) + (x− 1)(3− x)

)
1 ≤ x < 2

1
2(3− x)2 2 ≤ x < 3
0 otherwise.

(3-10)
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It can similarly be shown for the other two B-splines that:

B1,2(x) =


1
2(x− 1)2 1 ≤ x < 2
1
2
(
(x− 1)(3− x) + (x− 2)(4− x)

)
2 ≤ x < 3

1
2(4− x)2 3 ≤ x < 4
0 otherwise.

(3-11)

B2,2(x) =


1
2(x− 2)2 2 ≤ x < 3
1
2
(
(x− 2)(4− x) + (x− 3)(5− x)

)
3 ≤ x < 4

1
2(5− x)2 4 ≤ x < 5
0 otherwise.

(3-12)
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Figure 3-3: Cardinal quadratic B-splines and their sum.

Figure 3-3 shows all three B-splines over the knot sequence. The dashed purple line represents
their sum. It is easy to verify that the natural domain for this B-spline curve is Dn = [2, 3].
Both the plot and the equations illustrate that the basis functions of a B-spline curve on a
uniform knot sequence are shifted copies of each other. The relation is given by:

Bi,ρ(x) = Bi+1,ρ(x+ ∆t), where ∆t = ti+1 − ti. (3-13)
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20 Introduction to B-splines

Matrix form: Using all three equations, Eq. (3-10), Eq. (3-11) and Eq. (3-12), the curve
segment [2, 3] can be described by:

S(x) =
2∑
i=0

Bi,2(x)wi =
[
B0,2(x) B1,2(x) B2,2(x)

] w0
w1
w2


= 1

2
[
(3− x)2 (x− 1)(3− x) + (x− 2)(4− x) (x− 2)2

] w0
w1
w2

 (3-14)

=
[
(x− 2)2 (x− 2) 1

] 1
2

 1 −2 1
−2 2 0
1 1 0


w0
w1
w2

 , 2 ≤ x < 3.

The last step of this derivation is not trivial and involves some algebra. More details of the
matrix representation can be found in [79]. In general, a quadratic cardinal B-spline can be
expressed as:

Bi,2(x) =


1
2(x− ti)2 ti ≤ x < ti+1
1
2
(
(x− ti)(ti+2 − x) + (x− ti+1)(ti+3 − x)

)
ti+1 ≤ x < ti+2

1
2(ti+3 − x)2 ti+2 ≤ x < ti+3
0 otherwise.

(3-15)

From Eq. (3-15) it can be shown that for any given interval [tj+2, tj+3), 0 ≤ j ≤ m − 5
within the natural domain Dn, a cardinal quadratic B-spline curve Sj(x) can be expressed in
a convenient matrix form:

S(x) =
k−1∑
i=0

Bi,2(x)wi =
j+ρ∑
i=j

Bi,2(x)wi

=
[
Bj,2(x) Bj+1,2(x) Bj+2,2(x)

]  wj
wj+1
wj+2


=
[
(x− tj+2)2 (x− tj+2) 1

] 1
2

 1 −2 1
−2 2 0
1 1 0


 wj
wj+1
wj+2

 = φTM2wj ,

tj+2 ≤ x < tj+3. (3-16)

It is apparent that the function value at any point within the natural domain of the curve is
influenced by only ρ+ 1 control points, because this is the number of basis functions that are
nonzero within this interval. The matrix M2 is referred to as a basis matrix of degree 2. A
general method to find a basis matrix Mρ ∈ R(ρ+1)×(ρ+1) for cardinal B-splines of arbitrary
degree ρ is given in [80].
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Similarly, it can be shown that the jth curve segment [tj+ρ, tj+ρ+1), 0 ≤ j ≤ m − 2ρ − 1
within the natural domain of a cardinal B-spline curve of degree ρ can be written as:

S(x) =
[
(x− tj+ρ)ρ (x− tj+ρ)ρ−1 · · · (x− tj+ρ) 1

]
Mρ


wj
wj+1
...

wj+ρ−1
wj+ρ

 ,

tj+ρ ≤ x < tj+ρ+1. (3-17)

Because the B-splines are left continuous, this expression in general only holds for tj+ρ ≤
x < tj+ρ+1. For degrees ρ ≥ 1, however, it also holds for x = tm−ρ.

3-2-3 Uniform B-splines

Cardinal to uniform: The usefulness of the matrix form for cardinal knot sequences is man-
ifest when realizing that any uniform B-spline can be formed from a cardinal B-spline of
the same degree, by shifting and scaling the knots linearly. This means that Eq. (3-17) can
be used to evaluate any uniform B-spline curve, by first mapping the input variable to a
cardinal domain. Given are a uniform B-spline curve SU (x) defined on the knot sequence
tU = {tU0 , tU1 , . . . , tUm} and a cardinal B-spline curve SC(z) on the integer knot sequence
tC = {tC0 , tC1 , . . . , tCm}. If both the uniform and cardinal B-spline share the same weight
vector w, the following equality holds:

SU (x) = SC
(
x− tU0
∆tU + tC0

)
, where ∆tU = tUi+1 − tUi . (3-18)

Matrix form: In many applications, one is only interested in the natural domain of a B-
spline curve. In curve fitting, for example, it is desirable for the B-spline curve to be fully
controllable over the whole range of the input samples. We therefore derive the following
expression to represent the natural domain x ∈ Dn of any uniform B-spline curve in an
computationally efficient manner:

SU (x) =
[
uρ uρ−1 · · · u 1

]
Mρ


wj
wj+1
...

wj+ρ−1
wj+ρ

 = uTMρwj , (3-19)

u =x− tU0
∆tU − j − ρ, (3-20)

j =


⌊
x−tU0
∆tU

⌋
− ρ, if tUρ ≤ x < tUm−ρ

m− 2ρ− 1, if x = tUm−ρ

. (3-21)
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Proof. Combining Eq. (3-17) and Eq. (3-18) yields the following relation:

SUj (x) =
[(
z − tCj+ρ

)ρ (
z − tCj+ρ

)ρ−1
· · ·

(
z − tCj+ρ

)
1
]
Mρwj ,

z = x− tU0
∆tU + tC0 , tUj+ρ ≤ x < tUj+ρ+1. (3-22)

For integer knots, the following relation holds:

tC0 − tCj+n = −(j + n). (3-23)

We define the auxiliary variable u as:

u = z − tCj+ρ = x− tU0
∆tU + tC0 − tCj+ρ = x− tU0

∆tU − j − ρ. (3-24)

Then, using that tCj+ρ = bzc when tCj+ρ ≤ z < tCj+ρ+1, an expression for the index j can be
derived as follows:

tC0 − tCj+ρ = tC0 −
⌊
x− tU0
∆tU + tC0

⌋
= tC0 −

⌊
x− tU0
∆tU

⌋
− tC0

= −
⌊
x− tU0
∆tU

⌋
= −(j + ρ).

∴ j + ρ =
⌊
x− tU0
∆tU

⌋
(3-25)

∴ j =
⌊
x− tU0
∆tU

⌋
− ρ. (3-26)

Lastly, when x = tUm−ρ the index j is defined as:

j =
⌊
tUm−ρ − tU0

∆tU

⌋
− ρ− 1 = m− 2ρ− 1. (3-27)

In the remainder of this thesis, we will assume that knot sequences are chosen such that Dn
coincides with the unit interval [0, 1]. Any set of input data {(x)}Ni can always be normalized
to this interval, such that Eq. (3-19) describes the spline S(x) for every point.
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Constructing the basis vector: For the task of curve fitting and interpolation, one must
construct the B-spline basis vector b for every data point. As noted before, only ρ+ 1 of the
B-splines are nonzero for an input x. An efficient approach for uniform knot sequences is to
first calculate the nonzero B-splines using Eq. (3-19) as follows:

[
Bj,ρ(x) Bj+1,ρ(x) · · · Bj+ρ−1,ρ(x) Bj+ρ,ρ(x)

]
=
[
uρ uρ−1 · · · u 1

]
Mρ. (3-28)

Subsequently, these B-splines can be inserted into b, such that its ith element is given by:

bi =
{
Bi,ρ(x) j ≤ i ≤ j + ρ
0 otherwise. (3-29)

The computational efficiency of constructing b using Eq. (3-28) and Eq. (3-29), compared
to using the recursive formula in Eq. (3-5) or even the triangular scheme in [81], is one of
the reasons to prefer uniform knot sequences for B-splines in tasks involving many functions
evaluations.

3-2-4 Function Approximation

Function approximation with B-splines, also referred to as curve fitting, constitutes to finding
the weights w for which the B-spline curve best describes the relationship between a set of
input-output data {(xi, yi)}Ni=1, xi ≤ xi+1. Curve fitting is often performed as a means
of data analysis or to make predictions about new data. Typical use-cases occur in pattern
recognition, signal processing and computer aided design. The degree of the B-splines and the
number of knots are chosen based on the desired smoothness and complexity of the resulting
curve.

Cost function: The weights that provide the best fit to the data are determined by minimiz-
ing the distance between the data points and the curve. The most commonly used distance
metric is the least squared error between the data points and the function values. This results
in the following cost function:

y =


y1
y2
...
yN

 ,

s =


S(x1)
S(x2)

...
S(xN )

 =


b(1)T

b(2)T

...
b(N)T

w =


B0,ρ(x1) B1,ρ(x1) . . . Bk−1,ρ(x1)
B0,ρ(x2) B1,ρ(x2) . . . Bk−1,ρ(x2)

...
... . . . ...

B0,ρ(xN ) B1,ρ(xN ) . . . Bk−1,ρ(xN )

w = Bw,
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E(w) = 1
2

N∑
i=1

(yi − S(xi))2 = 1
2‖y − s‖

2
2 = 1

2‖y −Bw‖
2
2. (3-30)

The factor of a half is included to simplify the derivative.

Optimization: Minimizing the cost function from Eq. (3-30) with respect to the weights can
be done with ordinary least squares (OLS). The matrix containing the B-splines, B ∈ RN×k,
is called the collocation matrix [74]. When the degrees of freedom of the curve are equal
to, or larger than, the number of data points, i.e. k ≥ N , it is possible to find weights for
which the function passes exactly through every given data point. This process is known as
interpolation. In case the degrees of freedom of the curve are lower than the number of data
points, i.e. k < N , the curve fitting process is known as smoothing. The convexity of the cost
function, Eq. (3-30), can be shown by computing the Hessian, i.e. the second-order partial
derivative w.r.t. the weights:

E = 1
2‖y −Bw‖

2
2 = 1

2(y −Bw)T (y −Bw)

= 1
2
(
yTy − 2wTBTy +wTBTBw

)
(3-31)

∇E = 1
2
(
−2BTy + 2BTBw

)
= BT (Bw − y) (3-32)

∇2E = BTB. (3-33)

The Hessian is positive definite ifB has full column rank, and positive semi-definite otherwise.
Hence, the cost function is convex and any extremum is a global minimum. The optimal
control points w can be found by setting the gradient of the error, Eq. (3-32), equal to zero.
This yields the following normal equation:

(BTB)w = BTy. (3-34)

To solve Eq. (3-34) for w, the matrix BTB needs to be invertible. Thus the knot sequence
needs to be chosen such that the collocation matrix B is full rank. Assuming this is the case,
solving the normal equation for w with an LU factorization has a complexity of O(N(k)2).

w = (BTB)−1BTy. (3-35)

For very large datasets, or for applications that require online optimization, iterative methods
such as recursive least squares (RLS) and least mean squares (LMS) can provide an alternative
to adaptively find the optimal control points.
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Figure 3-4: Data points (blue) sampled from the true function (purple).

Curve fitting experiment: To illustrate function approximation with uniform B-splines, we
consider the function f(x) which is constructed as a sum of sinusoids:

f(x) = sin(πx) + 1
2 sin(2πx) + 1

4 sin(4πx) + 1
8 sin(8πx). (3-36)

This function is shown in Figure 3-4 for the domain x ∈ [0, 1]. From this function, we are
provided with 100 equidistantly sampled data points {(xi, yi)}100

i=1 with additive zero mean
Gaussian white noise:

yi = f(xi) + εi. (3-37)

These data samples are shown in the figure as blue dots. The signal to noise ratio (SNR)
of the samples is 10 dB. These samples will be used to approximate the original function
f(x) using uniform B-splines. As a performance metric, we use the root mean squared error
(RMSE) between the outputs of the original function f(x) and the outputs predicted by the
approximation S(x) for 1000 inputs {(xtest

i )}1000
i=1 equidistantly distributed over [0, 1]:

eRMSE =

√√√√ 1
N

N∑
i=1

(f(xtest
i )− S(xtest

i ))2
. (3-38)

Figure 3-5 illustrates uniform B-spline curves fitted on the dataset with OLS for several
different choices of the degree ρ and number of knots m. The RMSE scores are given in the
titles. We observe that higher degrees increase the smoothness, while the number of knots
influences how close the curve fits the data. The best performance here is obtained for ρ = 2
and m = 9. In practice, these parameters are tuned using methods such as cross-validation
or AIC [82].
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Figure 3-5: Uniform B-spline curves fitted on the dataset for different choices of ρ and m.

3-2-5 Regularization

Most data from real life measurements are scattered across the function domain and contain
noise. The challenge in function approximation is to capture relevant input/output relations
of the data while avoiding modeling random noise. This is known as the bias-variance tradeoff
in statistics. B-spline curves inherently possess the ability to tune the smoothness by varying
the number of knots and their degree. In general, too many knots lead to overfitting on the
data, too few knots lead to underfitting. One necessary and obvious condition on the knot
sequence given by de Boor [74] for B to be full rank is that every B-spline needs data within
its support to be fit on:

tj ≤ xi < tj+ρ+1 ∀j. (3-39)

As we restrict ourselves to uniform B-splines, this cannot be guaranteed for a scattered dataset
unless we severely limit the number of knots m or use very high degrees ρ. This would in
both cases lead to underfitting. Even for non-uniform B-splines, the choice of knot placement
has been a subject of much research, but an attractive all-purpose scheme lacks. To tackle
both the bias-variance tradeoff and the problem of scattered data, much interest is shown in
literature to non-parametric smoothing [83].
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Non-parametric smoothing: The general approach to non-parametric smoothing with B-
splines is to use a large number of uniform knots, but regularize the control points to ensure
the desired smoothness. The first to propose this strategy was O’Sullivan (1986). He penalized
the roughness of a spline by adding a penalty term R(w) to the cost function. The penalty
is based on the integrated squared second derivative of the curve in the cost function:

J(w) = E(w) + λR(w) =
N∑
i=1

(yi − S(xi))2 + λ

∫ b

a
(S′′(xi))2. (3-40)

Using the second derivative in the penalty is common [84], but lower or higher derivatives are
possible. The regularization parameter λ > 0 controls the tradeoff between smoothness and
fitting to the data. As λ → 0, no penalty is imposed and the resulting curve will follow the
noisy data very closely. As λ→∞, the second derivative of the resulting curve converges to
zero, thus the resulting spline is a straight line. For B-splines, Eq. (3-40) can be written in
quadratic form [84]:

J(w) = ‖y −Bw‖22 + λwTΩw. (3-41)

The penalty matrix Ω ∈ Rk×k is banded, and its elements are given by:

Ωi1,i2 =
∫ b

a
(B′′i1,ρ(x)B′′i2,ρ(x)), i1, i2 ∈ [0, 1, . . . , k − 1]. (3-42)

The gradient of the penalized least squares cost function is:

∇J = 2
(
BTB + λΩ

)
w − 2BTy. (3-43)

Hence, the normal equation becomes:

(
BTB + λΩ

)
w = BTy. (3-44)

The cost function is strongly convex and can be solved using the mentioned direct or iterative
methods. The construction of Ω can, however, be tedious and computationally expensive.

P-splines: P-splines [82] circumvent the construction of Ω by penalizing the finite differences
of the weights of adjacent B-splines. P-splines, which stand for penalized splines, are defined
on uniform knot sequences. The P-spline penalty is given by:

R(w) = ‖Dαw‖22, (3-45)

where Dα ∈ R(k−α)×(k) is the α-th order difference matrix such that Dαw = ∆αw results in
a vector of α-th order differences of w. The cost function can be conveniently written as:
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Figure 3-6: The P-spline penalty in graphical notation.

J(w) = E(w) + λR(w)
= ‖y −Bw‖22 + λwTDT

αDαw. (3-46)

The penalty matrix DT
αDα is a discrete approximation to Ω. The matrix Dα can be con-

structed by using the difference operator α times consecutively on the identity matrix. For
example, given are a weight vector and the first order difference matrix:

w =

w0
w1
w2

 , D1 =
[
1 −1 0
0 1 −1

]
.

The vector of differences is given by:

D1w =
[
1 −1 0
0 1 −1

]w0
w1
w2

 =
[
(w0 − w1)
(w1 − w2)

]
.

The penalty term then equals:

R(w) = ‖D1w‖22 = (D1w)T (D1w) (3-47)

=
[
(w0 − w1) (w1 − w2)

] [(w0 − w1)
(w1 − w2)

]
= (w0 − w1)2 + (w1 − w2)2. (3-48)

This penalty is shown in the graphical tensor notation in Figure 3-6. The cost function with
P-spline regularization is again quadratic and the resulting normal equation is similar to
Eq. (3-44):

(
BTB + λDT

αDα

)
w = BTy. (3-49)

Other popular regularization methods, often used in statistics, are L1 and L2 regularization
[85]. The key assumption of both methods is that smaller weights generate simpler func-
tions. Although this somewhat holds for B-spline curves, the weights also directly and locally
influence the height of the curve. Large values of λ will bias the curve towards zero. L2
regularization, also known as Tikhonov regularization, is in fact equal to the discrete P-spline
penalty with zeroed order differences, i.e. the penalty matrix D0 is simply the identity ma-
trix. For a P-spline penalty with α = 1, we get what is known in signal processing as Total
Variation regularization [86].
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Figure 3-7: Data points (blue) sampled from the function (purple).

Regularization experiment: We consider again the function in Eq. (3-36). This time, we
assume to have no samples from the interval [0.4, 0.6] in our dataset, as shown in Figure 3-7.
To illustrate the effect of regularization, we try to approximate this function using a penalized
uniform B-spline curve of degree ρ = 3 with m = 26 knots. Eq. (3-49) is solved for different
values of α and regularization parameter λ.

We again use the RMSE between the predicted outputs S(xtest
i ) and real outputs of the

original function f(xtest
i ) to compare the performance of the approximations. The results

are shown in figure 3-8. Without regularization, finding the weights would be an ill-posed
problem because no unique solution exists. For α = 0, i.e. Tiknonov regularization, the curve
does not generalize well between the known data samples and introduces bias because the
curve is induced to approach zero. For α = 1 and α = 2 the curve is adequately regularized
and approximates the original function well. Higher values of λ result in smoother curves.
The best performance is achieved here when α = 1 and λ = 0.1.

3-3 Multivariate B-splines

All of the previous definitions treated only univariate B-spline curves, i.e. B-spline curves
with knots that lie in a single dimension. Generalizing B-splines to multiple input dimensions
is done through tensor products of the univariate basis. This section will first illustrate the
bivariate case, also known as a B-spline surface or tensor product surface, then generalize to
an arbitrary number of dimensions d.

3-3-1 B-spline Surfaces

B-spline surfaces are piecewise polynomials on rectangular domains. Given are two univariate
B-spline basis vectors b(1) and b(2), defined on knot sequences t(1) and t(2) respectively:
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Figure 3-8: P-spline curves fitted on noisy samples for different choices of α and λ.

b(1) =
[
B0,ρ(x1) B1,ρ(x1) · · · Bk1−1,ρ(x1)

]T
,

b(2) =
[
B0,ρ(x2) B1,ρ(x2) · · · Bk2−1,ρ(x2)

]T
.

Also given is a matrix of control points W . One can construct the tensor product surface
that lies on the rectangle spanned by t(1) and t(2) with:

S(x1, x2) =
k1−1∑
i1=0

k2−1∑
i2=0

Bi1,ρ(x1)Bi2,ρ(x2)W i1,i2 . (3-50)
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The B-spline basis matrix B is defined as the tensor product of b(1) and b(2):

B = b(1) ◦ b(2).

=


B0,ρ(x1)B0,ρ(x2) B0,ρ(x1)B1,ρ(x2) . . . B0,ρ(x1)Bk2−1,ρ(x2)
B1,ρ(x1)B0,ρ(x2) B1,ρ(x1)B1,ρ(x2) . . . B1,ρ(x1)Bk2−1,ρ(x2)

...
... . . . ...

Bk1−1,ρ(x1)B0,ρ(x2) Bk1−1,ρ(x1)B1,ρ(x2) . . . Bk1−1,ρ(x1)Bk2−1,ρ(x2)

 . (3-51)

The spline surface can then be written as an inner product:

S(x1, x2) = 〈B,W 〉 . (3-52)

Figure 3-9 illustrates a quadratic tensor product B-spline in two dimensions.

Figure 3-9: Two-dimensional quadratic tensor product B-spline [78].

3-3-2 B-spline Hypersurfaces

More generally, one can construct a d-dimensional hypersurface from B-splines using:

S(x1, x2, . . . , xd) =
k1−1∑
i1=0

k2−1∑
i2=0
· · ·

kd−1∑
id=0

Bi1,ρ(x1)Bi2,ρ(x2) · · ·Bid,ρ(xd)Wi1i2···id . (3-53)

The B-spline basis tensor B is defined as:

B = b(1) ◦ b(2) ◦ · · · ◦ b(d).

The spline hypersurface can be written as an inner product:

S(x1, x2, . . . , xd) = 〈B,W〉 . (3-54)
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3-3-3 Multivariate Function Approximation

Techniques for curve fitting easily generalize to multivariate B-splines by writing Eq. (3-54)
in vectorized form:

S(x1, x2, . . . , xd) = 〈B,W〉 = vec(B)Tvec(W). (3-55)

For example, given a data d-dimensional dataset {(xi1, xi2, . . . , xid, yi)}Ni=1, fitting a hypersur-
face to the data is done by finding the weight tensor that minimizes the following least squares
error function:

y =


y1

y2

...
yN

 ,

s =


S(x1

1, x
2
2, . . . , x

1
d)

S(x2
1, x

2
2, . . . , x

2
d)

...
S(xN1 , xN2 , . . . , xNd )

 =


vec(B1)T
vec(B2)T

...
vec(BN )T

vec(W) = B vec(W), (3-56)

E(W) = 1
2

N∑
i=1

(
yi − S(xi1, xi2, . . . , xid)

)2
= 1

2‖y − s‖
2
2. (3-57)

The weights that minimize this error can be found using the discussed optimization algo-
rithms. Using for example the pseudoinverse one can find:

vec(W) = (BTB)−1BTy. (3-58)

Figure 3-10: Cubic B-spline surface (right) fitted on data samples (left).

Reshaping vec(W) back into an order d tensor gives the desired W. Figure 3-10 illustrates
an example of a cubic B-spline surface used to smooth out a noisy two-dimensional dataset.
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3-3-4 Multivariate Regularization

The same reasoning for regularization in the univariate case applies to multivariate B-splines.
For a high-dimensional B-spline surface, the volume of the domain of the function increases
exponentially. This makes available data very sparse and scattered, which can lead to
an ill-posed optimization problem. For multivariate functions, the P-spline penalty allows
anisotropy, e.g. different penalties on the roughness for each dimension. To illustrate, we first
consider the two-dimensional case. Given is the following B-spline surface:

S(x1, x2) = 〈B,W 〉 . (3-59)

Assuming we have three B-spines per dimension, the weights are stored in a matrix:

W =

w00 w01 w02
w10 w11 w12
w20 w21 w22

 .
The differences in weights have to be penalized along each dimension individually. The
differences of the first dimension are given by:

D1W =
[
1 −1 0
0 1 −1

]w00 w01 w02
w10 w11 w12
w20 w21 w22

 =
[
(w01 − w10) (w01 − w11) (w02 − w12)
(w10 − w20) (w11 − w21) (w12 − w22)

]
.

The penalty term is then given by:

R1(W ) = ‖D1W ‖22 = trace
(
W TDT

1D1W
)
.

This penalty is shown in the graphical tensor notation in Figure 3-11a. Similarly, the penalty
along the second dimension of the weights is given by:

R2(W ) = ‖D1W
T ‖22 = trace

(
WDT

1D1W
T
)
.

This penalty is shown in Figure 3-11b. Incorporating these penalties in the cost function
results in:

J(W ) = ‖y − 〈B,W 〉 ‖22 + λ1‖D1W ‖22 + λ2‖D1W
T ‖22. (3-60)

We can generalize this to arbitrary number of inputs. This is done by contracting the second
index of the difference matrix Dα with the dimension of the weight tensor W along which
the penalty is applied, then taking the norm of the result. For a B-spline curve with d inputs,
the penalty on the α-th order differences along the j-th dimension is given by:

Rj(W) = ‖W ×2
j Dα‖22 =

〈
(W ×2

j Dα) , (W ×2
j Dα)

〉
.
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34 Introduction to B-splines

Figure 3-11: P-spline penalty for the (a) first and (b) second dimension of a two-dimensional
B-spline surface.

The smoothing parameter λp ≥ 0 controls the penalization of the roughness along dimension
j. After adding the penalties, the cost function for fitting a multivariate B-spline surface
becomes:

J(W) = ‖y − 〈B,W〉‖22 +
d∑
j=1

λj ‖W ×2
j Dα‖22. (3-61)
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Chapter 4

Tensor Network B-splines

For multivariate B-splines, the B-spline tensor B is defined by a tensor product of univariate
B-spline vectors b. Therefore, the number of basis functions and control points increase
exponentially with the number of dimensions, O((k)d), i.e., multivariate B-spline surfaces
suffer from the curse of dimensionality. For high dimensional data, it can quickly become
computationally infeasible to store or operate on the tensors B and W. Using tensor network
theory, the multivariate B-spline surface can be represented in a low-parametric format. We
first derive the TNBS model, then discuss how it can be used to approximate high-dimensional
functions. Finally, we validate the proposed method though numerical experiments.

4-1 Model Structure

Without loss of generality, we derive the Tensor Network B-spline model structure using a
three-dimensional B-spline surface as an example. Figure 4-1 will be used as a visual reference
to walk through the derivation steps. Given are a weight tensor W ∈ Rk1×k2×k3 and B-spline
tensor B ∈ Rk1×k2×k3 . The three-dimensional B-spline hypersurface S(x1, x2, x3) can be
represented as an inner product:

S(x1, x2, x3) = 〈B,W〉 . (4-1)

The inner product is equal to the contraction over all pairs of indices. This is shown graphi-
cally in Figure 4-1a. As B is a rank one tensor, it can be decomposed into the tensor product
of three B-spline vectors b(p) as done in Figure 4-1b. Tensor products that close a loop in a
tensor network are redundant and hence omitted in Figure 4-1c. Now S(x1, x2, x3) is simply
the contraction of W with the B-spline basis vectors:

S(x1, x2, x3) =W ×1
1 b

(1) ×1
2 b

(2) ×1
3 b

(3). (4-2)
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Figure 4-1: Derivation of the Tensor Network B-splines model of order 3.

Finally,W is decomposed into a tensor train, which gives us the tensor network representation
of our hypersurface:

S(x1, x2, x3) = (G(1)
W ×

1
2 b

(1))(G(1)
W ×

1
2 b

(2))(G(1)
W ×

1
2 b

(3)). (4-3)

This is shown graphically Figure 4-1d. For a given input (x1, x2, x3), Eq. (4-3) is evaluated
by constructing the B-spline vectors b(p), contracting them with the corresponding tensor
train cores and finally multiplying the sequence of resulting matrices. Due to the constraints,
r0 = rd = 1, this results in a scalar output. Extending the TNBS model to l outputs can be
realized by removing one of these constraints, e.g. r0 = l. In general, a d-dimensional TNBS
surface is represented by:

S(x1, x2, . . . , xd) =
d∏
p=1

(G(p)
W ×

1
2 b

(p)). (4-4)

4-2 Function Approximation

We can use the TNBS model to approximate high-dimensional functions in a computational
efficient manner, by directly optimizing the TT-cores G(p)

W . We first consider the unregularized
case and incorporate P-spline regularization in the next section.
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4-2-1 Fitting with ALS

We illustrate, without loss of generality, how to approximate functions with TNBS by means
of the following example. Suppose we have the following three dimensional function:

yi = f(xi1, xi2, xi3) + εi, (4-5)

where εi is Gaussian white noise. We are given a set ofN datasamples {(xi1, xi2, xi3, yi)}Ni=1. We
approximate the function f with the three-dimensional TNBS from Eq. (4-3), by minimizing
the least-squared cost function:

min
W
‖y − s‖22 (4-6)

s.t. TT-rank(W) = (r1, r2),

where

y =


y1

y2

...
yN

 , s =


S(x1

1, x
1
2, x

1
3)

S(x2
1, x

2
2, x

2
3)

...
S(xN1 , xN2 , xN3 )

 .

We solve Eq. (4-6) directly for the TT-cores using ALS. The TT-ranks are chosen beforehand
and the TT-cores are initialized randomly. Our strategy of choosing TT-ranks is by deter-
mining the upper bounds on Rp with Eq. (2-12), then truncating them uniformly to a value
r such that:

rp = min(Rp, r). (4-7)

This limits the number of hyperparameters that we need to tune. After initializing the TT-
cores, ALS iteratively optimizes one tensor core at a time while holding the others fixed.
Optimizing one core is equal to solving a small linear subsystem. Suppose that we wish to
update the second core from Figure 4-1d. The idea is to contract everything in the network
up until the nodes adjacent to G(2)

W (Figure 4-2a), whereupon Eq. (2-10) is used to rewrite the
network as an inner product of two vectors (Figure 4-2b):

y = G(2)
W ×

1
1 v

(2)
< ×1

2 b
(2) ×2

3 v
(2)
>

= G(2)
W ×

2
1 v

(2)T
< ×2

2 b
(2)T ×2

3 v
(2)
> (4-8)

=
(
v

(2)T
> ⊗ b(2)T ⊗ v(2)

<

)
vec

(
G(2)
W

)
= a(2)Tg(2).
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Figure 4-2: The tensor network written as a vector inner product.

More generally, rewriting Eq. (4-4) for the i-th data sample as a linear function of the elements
of the p-th core gives:

yi =
(
v

(p)T
>,i ⊗ b

(p)T
i ⊗ v(p)

<,i

)
vec

(
G(p)
W

)
, (4-9)

where

v
(p)
<,i =

p−1∏
j=1

(G(j)
W ×

1
2 b

(j)
i ) ∈ R1×rp−1 ,

v
(p)
>,i =

d∏
j=p+1

(G(j)
W ×

1
2 b

(j)
i ) ∈ Rrp .

for 2 ≤ p ≤ d− 1, and v(1)
<,i = v

(d)
>,i = 1.

Computing Eq. (4-9) for all N data samples results in a system of linear equations. The
subproblem for updating the p-th core thus becomes:

min
g(p)

∥∥∥y −A(p)g(p)
∥∥∥2

2
, (4-10)

where

A(p) =


v

(p)T
>,1 ⊗ b

(p)T
1 ⊗ v(p)

<,1
v

(p)T
>,2 ⊗ b

(p)T
2 ⊗ v(p)

<,2
...

v
(p)T
>,N ⊗ b

(p)T
N ⊗ v(p)

<,N

 , g(p) = vec
(
G(p)
W

)
. (4-11)

The optimum is found by solving the normal equation:

(
A(p)TA(p)

)
g(p) = A(p)Ty. (4-12)

Reshaping g(p) back into a third-order tensor results in the updated core G(p)
W . The ALS

algorithm sweeps back and forth, iterating from the first to the last core and back, until
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convergence. At each iteration, Eq. (4-12) is solved for g(p). Numerical stability is ensured
by keeping the tensor train in site-p-mixed-canonical form through an additional orthogo-
nalization step. To illustrate, consider again the TNBS in Figure 4-1d. Assume that we are
iterating from left to right and the tensor train is in site-2-mixed-canonical form. After solving
g(2) it is reshaped into a matrix G(2) ∈ Rrp−1kp×rp , which is then decomposed through a QR
decomposition. Finally, Q is reshaped back into a third-order left-orthogonal tensor G(2)

W and
R is contracted with the next core. The tensor train is now in site-3-mixed-canonical form,
and the next iteration starts. More details about the orthogonalization step is given in [71].
The optimization with ALS converges monotonously, so a possible stopping criterion is:

∥∥∥J (1)
h − J

(1)
h+1

∥∥∥
2
≤ ε, (4-13)

where J (1)
h is the cost of the objective function in Eq. (4-10) during the first core update of

the h-th sweep.

4-2-2 Regularization

The low-rank approximation of the weight tensor does not only decrease the computational
burden, but additionally serves as a regularization mechanism. The regularization from low-
rank constraints is however not sufficient for high-dimensional B-splines. Like noted before,
the available estimation data for high-dimensional functions becomes extremely sparse and
scattered. We therefore wish to extend the P-spline regularization in Eq. (4-17) to the TNBS
format. Some work on penalties in the tensor train format is done in [50] and [57].

Without loss of generality, Figure 4-3 visualizes in graphical notation the necessary steps
for including P-spline regularization when fitting a three-dimensional TNBS surface. Recall
that in the multivariate case, penalizing the differences in adjacent weights along the j-th
dimension is done by contracting the second index of the difference matrix Dα with the j-th
index of the weight tensor W, then taking the norm of the result:

Rj(W) = ‖W ×2
j Dα‖22

=
〈

(W ×2
j Dα) , (W ×2

j Dα)
〉
. (4-14)

This is illustrated in 4-3a, where the penalty is applied along the first dimension, e.g. j = 1.
Decomposing W into a tensor train results in the network depicted in Figure 4-3b. To write
this penalty again as a linear function of the p-th core, we contract everything in the network
except these cores (Figure 4-3c). In this example, C(2)

>,1 and C(2)
−,1 are simply identity matrices.
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Figure 4-3: Derivation of the Tensor Network P-spline penalty.

Then, using Eq. (2-10), the penalty function can be rewritten in the form of Figure 4-3d:

Rj
(
G(p)
W

)
= g(p)TC

(p)
j g

(p), (4-15)

where
C

(p)
j =

(
C

(p)
>,j ⊗C

(p)
−,j ⊗C

(p)
<,j

)
. (4-16)

The matrix C(p)
j in Eq. (4-16) is constructed for every dimension j. Due to the site-p-

mixed-canonical form of the tensor train, the contraction of two out of the three matrices
C

(p)
>,j , C

(p)
−,j and C

(p)
<,j result in identity matrices. This knowledge can be utilized for efficient

implementation. Adding the penalties to the TNBS cost function results in the following
regularized optimization problem:

min
W
‖y − s‖22 +

d∑
j=1

λj ‖W ×2
j Dα‖22 (4-17)

s.t. TT-rank(W) = (r1, r2, . . . , rd−1).

This problem can again be solved iteratively using the ALS method. The subproblem for
updating the p-th core becomes:

min
g(p)

‖y −A(p)g(p)‖22 +
d∑
j=1

λj g
(p)TC

(p)
j g

(p). (4-18)

The normal equation is then:A(p)TA(p) +
d∑
j=1

λj C
(p)
j

 g(p) = A(p)Ty. (4-19)
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4-3 Complexity

Table 4-1 summarizes relevant computational complexities concerning function approximation
using TNBS and ALS. While the complexities scale only linearly in the dimensions, it is
important to realize that high TT-ranks easily degrade the performance of the optimization
of the cores. Some functions might require high TT-ranks to be represented accurately. For
example, functions that have highly complex surfaces will require large number of B-splines
per dimension k. In turn, due to Eq. (2-12) it is likely that high k results in high TT-rank
requirements. Another observation from our experiments is that high TT-ranks increase the
number of sweeps ALS requires until convergence. There is, therefore, a tradeoff between
accuracy and speed when choosing the number of B-splines k. The construction of the B-
spline vector b(p) is very efficient and only has to be done once for every data sample. The
number of data samples N appears linearly in the complexities but may become a bottleneck
for large datasets. A modification for this scenario is to only use a small random batch of
the data when updating g(p). This can speed up estimation time without significant loss of
accuracy.

Table 4-1: Computational complexities of significant operations

Operation Complexity
Construct

{
b(p)
n

}
N
i=1 O

(
Nn2)

Construct
{
C

(p)
j

}
d
j=1 O

(
(d+ (m− ρ)4)r4)

Construct A(p) O
(
N(m− ρ)r2)

Solve g(p) O
(
N(m− ρ)2r4 + (m− ρ)3r6)

Evaluate f O
(
(ρ2 + (m− ρ)r2)d

)

4-4 Experiments

In this section, we validate our work though several numerical experiments on synthetic
datasets. The proposed regularized optimization procedure is implemented in MATLAB and
executed on a personal computer with a 4.2 GHz Intel Core i5-7600K processor and 16 GB
of random access memory (RAM). An open-source MATLAB implementation can be found
at https://github.com/Ridvanz/Tensor-Network-B-splines.

4-4-1 Two-dimensional Function Approximation

First, we approximate a highly nonlinear two-dimensional function from relatively sparse data.
This experiment allows us to visually verify the correctness of our algorithm. The function
we will approximate is a scaled and shifted version of the Rastrigin function:

f(x1, x2) = 1
5 +

2∑
i=1

(
(10xi − 0.5)2 − 1

10 cos(2π(10xi − 0.5))
)

(4-20)
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42 Tensor Network B-splines

This function will be approximated over the domain x1, x2 ∈ [0, 1], which is shown in Figure 4-
4. We randomly sample 800 points from this surface, of which 400 are used to reconstruct the

Figure 4-4: A scaled and shifted version of the Rastrigin function.

original function using the regularized TNBS model and the other 400 for testing. The degree
of the B-splines is chosen as ρ = 3 uniformly and the number of knots per dimension m = 103.
This gives us k = 100 B-splines along each dimension and 104 multivariate B-splines in total.
We place a penalty only on the second difference, i.e. α = 2. The TT-ranks are chosen
uniformly as r = 3 and the TT-cores are initialized randomly with uniformly distributed
values from the interval [0, 1]. Subsequently, each core is normalized to unit norm. We first
tune the regularization parameters manually to get a good approximation of the original
function. The TT-cores are optimized for 50 sweeps in 0.2 seconds on a standard desktop
computer. The total cost converges monotonously as seen in Figure 4-5. The experiment is
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Figure 4-5: Costs during the optimization with ALS.
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then repeated for different combinations of [λ1, λ2]. We increase the regularization parameters
to large values to make sure the P-spline regularization induces smoothness. The results are
shown in Figure 4-6. The TNBS approximates the surface closely for λ1 = λ2 = 0.01. As
expected, increasing λj for one dimension smooths the surface along that dimension. We can
conclude that the algorithm is implemented correctly.

Figure 4-6: Results of the experiment for different values of λ1 and λ2.
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4-4-2 High-dimensional Function Approximation

The next test measures how the performance of our algorithm scales to higher-dimensional
functions. The function we will use is a sum of phase shifted sinusoids:

f(x1, x2, . . . , xd) =
√

2
d

d∑
p=1

sin(2πxp − p). (4-21)

This function is designed to have zero mean and unit variance over the domain x1, x2, . . . , xd ∈
[0, 1] for any number of inputs d. This allows easier comparison of performance using the
RMSE metric. We will approximate Eq. (4-21) for an increasing number of dimensions. The
regularization parameter λ will be chosen equal for each dimension, e.g. λj = λ ∀j, and
the penalty is placed on the second differences, e.g. α = 2. The value for λ is determined
heuristically. We first tune for the univariate case, which results in λ = 10−4. We find that
we achieve reasonable performance when scaling λ as follows:

λ = 10−4
(k − α)d . (4-22)

The reasoning behind this heuristic is that the number of elements of the penalty term in
Eq. (4-14) increases exponentially with the number of dimensions, while the least square cost
stays approximately constant. The factor (k−α)−d balances the tradeoff between smoothness
and least square fit in higher dimensions. The number of B-splines k indirectly influences the
required TT-ranks and the number of sweeps for convergence, so we choose a low value, k = 5.
The degrees of the B-splines are chosen ρ = 3. First, we want to determine a good value for
the uniform TT-ranks r. We sample an estimation and test dataset from the function, both
of size N = 1000. For different values of r and number of inputs d we fit a TNBS to the
data samples. We use Eq. (4-13) as a stopping criterion and additionally specify a maximum
number of sweeps of 200. The results are plotted in Figure 4-7.
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Figure 4-7: Results of the experiment for different values of r and d.
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To put these scores into perspective, note that for an unbiased estimator, the RMSE is equal
to the square of the variance of the function. The variance of our uniformly sampled data
points is 1 and their mean is 0. Therefore, an RMSE of 1 can be achieved with a function that
always outputs zero. A score smaller than 1 means the approximation was able to find relevant
patterns in the data. For RMSE values smaller than 0.1, the approximation is practically
identical to the original function. A TNBS with TT-ranks of 1 appears to perform poorly
for any d. Further inspection reveals that a TT-ranks of 1 constrains the B-spline weights to
positive values. The TNBS model only approximates the positive half of the function as seen
in Figure 4-8.
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Figure 4-8: Test samples and the predicted values sorted ascending.

For r = 2, we achieve good approximations for the first ten values of d. Higher TT-ranks result
in similar or worse performance, but do significantly increase optimization time. We therefore
settle with r = 2 and further test the performance on higher dimensions with different number
of samples N . Each optimization is executed 5 times. The averaged results are plotted in
Figure 4-9. The left figure shows the RMSE scores while the right figure gives the time in
seconds to train the models. From both graphs it is quite clear that the TNBS model scales
well with the number of dimensions. Even for up to 20 inputs, the model is able to accurately
approximate the function from relatively sparse data. Eventually, the performance degrades
with the number of dimensions, but this simply indicates that more data is required. Even
though the optimization time increases with the dimensions and the size of the data, it is still
in the order of seconds. This is sufficiently fast for many function approximation applications.
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Figure 4-9: Results of the experiment for different values of N and d. The RMSE scores are
shown on the left and the optimization time in seconds is shown on the right.
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Chapter 5

Paper

This chapter contains a preprint of a paper submitted to Automatica on March 17, 2020. Au-
tomatica is a leading archival publication in the field of systems and control. One particularly
well-suited application of Tensor Network B-splines is black-box nonlinear system identifica-
tion. The Nonlinear Autoregressive eXogenous (NARX) model [87] is able to represent a
wide range of nonlinear systems and is useful when knowledge about the model structure of
the system is limited. When the system under study has a large number of inputs and lags,
the NARX approach requires the approximation of a high-dimensional function. The paper
introduces the Tensor Network B-splines model and applies it to nonlinear system identifica-
tion on a benchmark dataset using a NARX approach. A small remark: In this thesis, the
univariate B-splines were indexed from 0 to k − 1. In the paper, we have chosen to index
them from 1 to k.
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Nonlinear system identification with regularized

Tensor Network B-splines

Ridvan Karagoz a, Kim Batselier a,

aDCSC, Delft University of Technology

Abstract

This article introduces the Tensor Network B-spline model for the regularized identification of nonlinear systems using a
nonlinear autoregressive exogenous (NARX) approach. Tensor network theory is used to alleviate the curse of dimensionality
of multivariate B-splines by representing the high-dimensional weight tensor as a low-rank approximation. An iterative
algorithm based on the alternating linear scheme is developed to directly estimate the low-rank tensor network approximation,
removing the need to ever explicitly construct the exponentially large weight tensor. This reduces the computational and
storage complexity significantly, allowing the identification of NARX systems with a large number of inputs and lags. The
proposed algorithm is numerically stable, robust to noise, guaranteed to monotonically converge, and allows the straightforward
incorporation of regularization. The TNBS-NARX model is validated through the identification of the cascaded watertank
benchmark nonlinear system, on which it achieves state-of-the-art performance while identifying a 16-dimensional B-spline
surface in 4 seconds on a standard desktop computer. An open-source MATLAB implementation is available on GitHub.

Key words: nonlinear system identification; NARX; B-splines; tensor network; curse of dimensionality.

1 Introduction

B-splines are basis functions for the spline function space
[1], making them an attractive choice for approximat-
ing smooth continuous functions. For this reason, B-
splines have had numerous applications in system identi-
fication [2,3,4,5,6,7,8] and control [9,10,11,12]. The gen-
eralization of B-splines to multiple dimensions is done
through tensor products of their univariate basis func-
tions. The number of basis functions and weights that
define a multivariate B-spline surface, therefore, increase
exponentially with the number of dimensions, i.e. B-
splines suffer from the curse of dimensionality. Previ-
ous attempts to avoid this limitation include strategies
such as dimensionality reduction, ANOVA decomposi-
tions and hierarchical structures [13]. The most effective
method, i.e. hierarchical B-splines, relies on sparse grids
[14] and reduces the storage complexity from O(kd) to
O(k log(k)d−1) [15]. This is still exponential in the num-
ber of dimensions d. A recently emerging way to allevi-
ate the curse of dimensionality is through the concept
of tensor networks. Originally developed in the context
of quantum physics, tensor networks efficiently repre-
sent high-dimensional tensors as a set of sparsely inter-

Email addresses: r.karagoz@hotmail.com (Ridvan
Karagoz), K.Batselier@tudelft.nl (Kim Batselier).

connected low-order tensors [16]. Combined with ten-
sor algebra, tensor network structures can greatly de-
crease the computational complexity of many applica-
tions [17,18,19]. Due to their multilinear nature, multi-
variate B-splines easily admit a tensor network repre-
sentation, which we call the Tensor Network B-splines
(TNBS) model. Algorithms for optimization in the ten-
sor network format make it possible to fit multivariate
B-spline surfaces onto high-dimensional data by directly
finding a low-rank tensor network approximation of the
weight tensor, thereby overcoming the curse of dimen-
sionality. This broadens the applicability of multivari-
ate B-splines to high-dimensional problems that often
occur in system identification and control. One particu-
larly well-suited application of Tensor Network B-splines
is black-box nonlinear system identification. The Non-
linear Autoregressive eXogenous (NARX) model [20] is
able to represent a wide range of nonlinear systems and
is useful when knowledge about the model structure of
the system is limited. For the single-input–single-output
(SISO) case, the discrete-time NARX model is expressed
by the following nonlinear difference equation:

yn = f(yn−1, yn−2, . . . , un, un−1, un−2, . . .) + εn. (1)

The function f is an unknown nonlinear mapping and
un and yn are the input and output samples at time
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step n. The error εt is assumed to be Gaussian white
noise. The most common models used in approximating
f are polynomials or neural networks [21]. The appli-
cability of polynomial NARX is, however, often limited
to weakly nonlinear systems due to computational com-
plexity. Neural networks, on the other hand, require a
lot of data to generalize well and can be time consuming
to train. Under the reasonable assumption that f is suf-
ficiently smooth, the Tensor Network B-splines model is
a suitable candidate to approximate the function from
observed input and output data. The contributions of
this paper are:

• Introduce the Tensor Network B-splines model.
• Present a regularized TNBS-NARX system identifi-

cation algorithm.

The paper is structured as follows. Section 2 introduces
relevant tensor and B-spline theory. Section 3 presents
the TNBS model, the regularization technique and the
NARX identification algorithm. Section 4 validates the
TNBS-NARX approach through numerical experiments
on a synthetic and a benchmark dataset. Section 5 con-
cludes this paper and lists some recommendations.

2 Preliminaries

This section provides the basic terminology and defi-
nitions for tensors and tensor decompositions, followed
by an introduction to B-splines. Most of the introduced
tensor network definitions are based on [22,23,24,25].
A comprehensive treatment of B-splines is given in the
book by de Boor [26].

2.1 Tensor basics

A tensor is a multidimensional array of real numerical
values, e.g. A ∈ Rk1×k2×···×kd . Tensors can thus be con-
sidered generalizations of vectors and matrices. The or-
der d of the tensor is the number of dimensions of the
array. Unless stated otherwise, subscript indices indicate
a single element of a tensor, e.g. a = Ai1,i2,...,id . The size
of each dimension is indicated by kp, p ∈ {1, 2, . . . , d},
such that ip ∈ {1, 2, . . . , kp}. In this paper, scalars are
denoted by lowercase letters (a), vectors are denoted
by bold lowercase letters (a), matrices are denoted by
bold uppercase letters (A) and higher-order tensors are
denoted by calligraphic letters (A). A convenient way

Fig. 1. Graphical notation of a (a) scalar, (b) vector, (c)
matrix and (d) third-order tensor.

of expressing tensors and their operations is using the
graphical notation introduced by Roger Penrose in 1972
[23]. Figure 1 shows the representation of a scalar, vector,
matrix and third-order tensor using this notation. Every
node represents a tensor, the edges represent the indices
and the number of edges, therefore, corresponds to its
order. The vectorization of a tensor A ∈ Rk1×k2×···×kd
is the reordering of its elements into a column vector,
denoted by vec(A) = a ∈ Rk1k2···kd . The elements of a
are denoted as:

ai1+(i2−1)k1+...+(id−1)k1k2...kd−1
= Ai1,i2,...,id .

A tensor T ∈ Rk1×k2×···×kd is of rank one if it can be de-
composed into the outer product of d vectors b(p) ∈ Rkp ,
e.g:

T = b(1) ◦ b(2) ◦ · · · ◦ b(d),
where ◦ denotes the outer product operation. The
most essential operation in tensor algebra is contrac-
tion, which is the summing of elements over equal-
sized indices. Given the tensors A ∈ Rk1×k2×k3 and
B ∈ Rk3×k4×k5 , contracting the index i3 results in a
tensor A ×1

3 B = C ∈ Rk1×k2×k4×k5 whose elements are
given by:

Ci1,i2,i4,i5 =
∑

i3

Ai1,i2,i3 Bi3,i4,i5 . (2)

Contraction is indicated by the left-associative
(
m
n

)
-mode

product operator [16], where n and m indicate the
position of the indices of the first and second tensor
respectively. In the graphical notation, contraction is
indicated by connecting corresponding edges, as illus-
trated for (2) in Figure 2. An important equation [18]
that relates contraction of a d-dimensional tensor with
d matrices to a linear operation is the following:

vec
(
A×2

1 C
(1) ×2

2 · · · ×2
d C

(d)
)

=
(
C(d) ⊗ · · · ⊗C(1)

)
vec(A), (3)

where⊗ denotes the Kronecker product. The outer prod-
uct operation is a special case of contraction where the
contracted indices have singleton dimensions. The outer
product is depicted in the graphical notation by a dashed
line connecting two nodes. The inner product between
two equal-sized tensors is the sum of their entry-wise
products, equivalent to contraction of the tensors over

Fig. 2. Tensor contraction in graphical notation.
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Fig. 3. Graphical notation of the tensor train decomposition
for a fourth-order tensor.

all pairs of indices. Given two tensors A ∈ Rk1×k2×k3
and B ∈ Rk1×k2×k3 , their inner product is given by:

〈A,B〉 =
∑
i1,i2,i3

Ai1,i2,i3Bi1,i2,i3 = vec(A)Tvec(B).

The Frobenius norm of a tensor is defined as the square
root of the sum of squares of its entries:

‖A‖2=
√
〈A,A〉.

2.2 Tensor trains

The tensor train (TT) decomposition is a widely used
tensor network format, popular for its low parametric
format and the numerical stability of related optimiza-
tion algorithms [25]. A tensor train expresses a ten-
sor W ∈ Rk1×k2×···×kd of order d in terms of third-
order tensors G(p)W ∈ Rrp−1×kp×rp , also known as the TT-
cores. Figure 3 shows the TT-decomposition of a four-
dimensional tensor in graphical notation. The dimen-
sions of the contracted indices, rp, are called TT-ranks.
The first and last TT-ranks, r0 and rd, are by defini-
tion equal to one. Keeping in mind that the

(
m
n

)
-mode

product operator is left-associative, the tensor train in
Figure 3 can be expressed as:

W = G(1)W ×1
2 G(2)W ×1

3 G(3)W ×1
4 G(4)W . (4)

There exists a set of TT-ranks rp = Rp for which the
decomposition is exact. When rp < Rp, the tensor train
represents an approximation of the original tensor. The
lower the TT-ranks, the less accurate the decomposition,
but the better the compression. When all rp and dimen-
sions kp are equal, the storage complexity of the tensor
train representation is O(kdr2). A TT-decomposition
with low TT-ranks can thus significantly reduce the
memory footprint of high-dimensional data. For a pre-
scribed set of TT-ranks or a prescribed accuracy, the
TT-decomposition of a tensor can be computed with
the TT-SVD [25] or the TT-Cross [27] algorithm. An
important notion for TT-cores is orthogonality. A TT-

core G(p)W is left-orthogonal if it can be reshaped into a

matrix G(p) ∈ Rrp−1kp×rp for which:

G(p)TG(p) = I.
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Fig. 4. Cardinal B-splines of degrees 1 to 3. The dashed
purple lines represent the sum of the B-splines.

Likewise, G(p)W is is right-orthogonal if it can be reshaped

into a matrix G(p) ∈ Rrp−1×kprp for which:

G(p)G(p)T = I.

A tensor train is in site-k-mixed-canonical form [28]
when for for its TT-cores the following applies:

G(p)W =

{
left-orthogonal, 1 ≤ p ≤ k − 1

right-orthogonal, k + 1 ≤ p ≤ d.
(5)

For a site-k-mixed-canonical tensor train holds that its
norm is contained in the k-th TT-core, i.e.:

‖W‖2= ‖G(k)W ‖2.

2.3 B-splines

A univariate spline S is a piecewise polynomial function
that maps values from an interval [a, b] to the set of real
numbers, e.g. S : [a, b] ∈ R → R. Any spline of degree
ρ can be expressed as a unique linear combination of B-
splines of the same degree:

S(x) =
k∑

i=1

Bi(x)wi = bTw (6)

=
[
B1,ρ(x) B2,ρ(x) · · · Bk,ρ(x)

]




w1

w2

...

wk



. (7)

The B-spline basis functions Bi,ρ(x) are defined
by the knot sequence and degree ρ, and they are

3



contained in the basis vector b. A knot sequence
t = {t0, t1, . . . , tm−1, tm} is defined as a non-decreasing
and finite sequence of real numbers that define the par-
titioning of the domain [a,b], i.e. a = t0 ≤ t1 ≤ · · · ≤
tm−1 ≤ tm = b, such that S(x) is a polynomial on any
interval [ti, ti+1]. The number of B-spline basis functions
k relates to the degree ρ and number of knots m+ 1 by
k = m−ρ. B-spline basis functions of arbitrary degree ρ
can be recursively constructed by means of the Cox-de
Boor formula [26]:

Bi,0(x) =

{
1 if ti−1 ≤ x < ti

0 otherwise
,

Bi,ρ+1(x) =
x− ti−1

ti+ρ−1 − ti−1
Bi,ρ(x) +

ti+ρ − x
ti+ρ − ti

Bi+1,ρ(x).

(8)

If the knots are equidistantly distributed over the do-
main of the spline, the spline is called uniform. If the
uniform knot sequence is also a subset of Z, i.e. a se-
quence of integers, the spline is referred to as a cardinal
spline [29]. In this article, all knot sequences will be con-
sidered uniform, as they allow for efficient evaluation of
b using a matrix expression [30] instead of (8). Figure 4
illustrates B-splines of degree 1 to 3 on the cardinal knot
sequence t = {0, 1, 2, 3, 4, 5}. The dashed purple lines
represent the sum of the basis functions. The shape of
a B-spline curve S(x) is only fully adjustable within its
natural domain Dn = [tρ, tm−ρ], because the sum of the
B-spline basis functions at any point within this domain
equals one. It is desirable to have full control over the
shape of the B-spline curve over the whole range of data
samples. The knot sequences in this article will be cho-
sen such that Dn coincides with the unit interval [0, 1].

2.4 Multivariate B-splines

B-splines generalize to multiple input dimensions
through tensor products of univariate basis functions.
One can construct a d-dimensional spline S as a linear
combination of multivariate B-splines:

S(x1, x2, . . . , xd)

=

k1∑

i1=1

k2∑

i2=1

· · ·
kd∑

id=1

Bi1(x1)Bi2(x2) · · ·Bid(xd)Wi1i2···id

= 〈B,W〉 . (9)

For notational convenience, we omitted the degrees ρ.
The B-spline tensor B contains the multivariate basis
functions and is defined as:

B = b(1) ◦ b(2) ◦ · · · ◦ b(d),

Fig. 5. Derivation of the Tensor Network B-splines model of
order 3.

where b(p) is the univariate basis vector of the p-th input
variable, i.e.

(10)b(p) =
[
B1,ρ(xp) B2,ρ(xp) · · · Bkp,ρ(xp)

]
T .

We will assume equal knots and degree for each dimen-
sion, hence kp = k, ∀p. The representation of B-spline
surfaces in (9) is severely limited by the exponential in-
crease in the number of basis functions and weights,
O((k)d).

3 Tensor Network B-splines

For our purposes, the input variables xp are the lagged
inputs and outputs of (1). For a large number of lags or
inputs, it can therefore quickly become computationally
infeasible to store or operate on the tensors B and W.
Using tensor network theory, the multivariate B-spline
surface can be represented in a low-parametric format.
In this section, we derive the TNBS model and use it to
approximate the function f in (1) from observed input
and output data.

3.1 Model structure

We illustrate the model structure using a three-
dimensional Tensor Network B-spline surface as an
example, which is derived as follows:

4



S(x1, x2, x3)

= 〈B,W〉 (11)

=W ×1
1 b

(1) ×1
2 b

(2) ×1
3 b

(3) (12)

= (G(1)W ×1
2 b

(1))(G(1)W ×1
2 b

(2))(G(1)W ×1
2 b

(3)). (13)

Figure 5 will be used as a visual reference to walk through
these equations. Given the weight tensorW ∈ Rk1×k2×k3
and B-spline tensor B ∈ Rk1×k2×k3 in (11), their inner
product is equal to the contraction over all pairs of in-
dexes, as seen in Figure 5a. As B is a rank one tensor,
it can be decomposed into the outer product of three B-

spline vectors b(p) (Figure 5b). The outer product opera-
tion is a special case of contraction where the contracted
indexes have singleton dimensions. Singleton contrac-
tions that close a loop in a tensor network are redun-
dant, and hence omitted in Figure 5c. Now S(x1, x2, x3)
in (12) is simply the contraction ofW with the B-spline
basis vectors. Finally, W is decomposed into a tensor
train in Figure 5d. A point (x1, x2, x3) on the TNBS
surface in (13) is evaluated by constructing the B-spline

vectors b(p), contracting them with the corresponding
tensor train cores and finally multiplying the sequence of
resulting matrices. Due to the constraints, r0 = rd = 1,
this results in a scalar output. Extending the TNBS
model to l outputs can be realized by removing one of
these constraints, e.g. r0 = l. In general, a d-dimensional
TNBS surface is represented by:

S(x1, x2, . . . , xd) =

d∏

p=1

(G(p)W ×1
2 b

(p)). (14)

3.2 Identification algorithm

We illustrate, without loss of generality, the proposed
identification algorithm by means of the following exam-
ple. Suppose we have the following NARX system model:

yn = f(un, yn−1, un−1) + εn. (15)

We want to identify this model from a set of observed
input and output data {(yn, un)}Nn=1. We approximate
the function f with the three-dimensional TNBS from
Figure 5d, by minimizing the least-squared cost function:

min
W
‖y − s‖22 (16)

s.t. TT-rank(W) = (r1, r2),

where

y =




y2

y3
...

yN



, s =




f(u2, y1, u1)

f(u3, y2, u2)
...

f(uN , yN−1, uN−1)



.

Fig. 6. The tensor network written as a vector inner product.

To solve (16) directly for the TT-cores, we use the al-
ternating linear scheme (ALS) [31]. The TT-ranks are
chosen beforehand and the TT-cores are initialized ran-
domly. ALS then iteratively optimizes one tensor core
at a time while holding the others fixed. Optimizing one
core is equal to solving a small linear subsystem. Sup-
pose we wish to update the second core from Figure 5d.
The idea is to contract everything in the network up un-

til the nodes adjacent to G(2)W (Figure 6a), whereupon
(3) is used to rewrite the network as an inner product of
two vectors (Figure 6b):

(17)
yn = G(2)W ×1

1 v
(2)
< ×1

2 b
(2) ×2

3 v
(2)
>

= G(2)W ×2
1 v

(2)T
< ×2

2 b
(2)T ×2

3 v
(2)
>

=
(
v
(2)T
> ⊗ b(2)T ⊗ v

(2)
<

)
vec

(
G(2)W

)

= a(2)Tg(2).

More generally, rewriting (14) for the n-th data sample
as a linear function of the elements of the p-th core gives:

(18)yn =
(
v
(p)T
>,n ⊗ b(p)Tn ⊗ v

(p)
<,n

)
vec

(
G(p)W

)
,

where

v
(p)
<,n =

p−1∏

j=1

(G(j)W ×1
2 b

(j)
n ) ∈ R1×rp−1

v
(p)
>,n =

d∏

j=p+1

(G(j)W ×1
2 b

(j)
n ) ∈ Rrp

for 2 ≤ p ≤ d − 1, and v
(1)
<,n = v

(d)
>,n = 1. Computing

(18) for all N data samples results in a system of linear
equations. The subproblem for updating the p-th core
thus becomes:

min
g(p)

∥∥∥y −A(p)g(p)
∥∥∥
2

2
, (19)
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Fig. 7. QR decomposition of the second core during a left to
right sweep.

where

A(p) =




v
(p)T
>,1 ⊗ b

(p)T
1 ⊗ v

(p)
<,1

v
(p)T
>,2 ⊗ b

(p)T
2 ⊗ v

(p)
<,2

...

v
(p)T
>,N ⊗ b

(p)T
N ⊗ v

(p)
<,N



, g(p) = vec

(
G(p)W

)
.

(20)
The optimum is found by solving the normal equation:

(
A(p)TA(p)

)
g(p) = A(p)Ty. (21)

Reshaping g(p) back into a third-order tensor results in

the updated core G(p)W . The ALS algorithm sweeps back
and forth, iterating from the first to the last core and
back, until convergence. At each iteration, (21) is solved
for g(p). Numerical stability is ensured by keeping the
tensor train in site-p-mixed-canonical form through an
additional orthogonalization step. To illustrate, consider
again the TNBS in Figure 5d. Assume that we are iter-
ating from left to right and the tensor train is in site-2-
mixed-canonical form. After solving g(p) it is reshaped

into a matrix G(p) ∈ Rrp−1kp×rp , which is then decom-
posed through a QR decomposition. The tensor network
is now in the form of Figure 7. Finally, Q is reshaped

back into a third-order left-orthogonal tensor G(2) and
R is contracted with the next core. The tensor train is
now in site-3-mixed-canonical form, and the next iter-
ation starts. More details about the orthogonalization
step are given in [31]. The optimization with ALS con-
verges monotonously, so a possible stopping criterion is:

∥∥∥J (1)
h − J (1)

h+1

∥∥∥
2
≤ ε, (22)

where J
(1)
h is the cost of the objective function in (19)

during the first core update of the h-th sweep. A mod-
ified version of ALS method, MALS [31], updates two
cores simultaneously and is computationally more ex-
pensive, but is able to adaptively determine the opti-
mal TT-ranks for a specified accuracy. Another adaptive
method is the tensor network Kalman filter [17], which
can be used for online optimization of the cores.

3.3 Regularization

In addition to decreasing computational burden, the
TT-rank constraints serve as a regularization mecha-

nism. This regularization is however insufficient for high-
dimensional B-splines, as the volume of the domain of
the TNBS increases exponentially. The available estima-
tion data becomes sparse and scattered, which can lead
to an ill-posed optimization problem. B-spline curves in-
herently possess the ability to regularize by adjustment
of their degree or knot placement. The choice of knots
has been a subject of much research [32], but due to lack
of an attractive all-purpose scheme, we opt for a non-
parametric approach known as P-splines [33]. P-splines
induce smoothness by combining uniform B-splines with
a discrete penalty placed on the α-th difference between
adjacent weights. For univariate splines, the following
penalty function is added to the cost function:

R(w) = ‖Dαw‖22. (23)

The matrix Dα ∈ R(k+1−α)×(k+1) is the α-th order
difference matrix such that Dαw = ∆αw results in a
vector of α-th order differences of w. This matrix can
be constructed by using the difference operator α times
consecutively on the identity matrix. For α = 0 this is
equal to Tikhonov regularization and for α = 1 we get
Total Variation regularization. For example, given are a
weight vector and the first-order difference matrix:

w =




w1

w2

w3


 , D1 =

[
1 −1 0

0 1 −1

]
.

The penalty term then equals:

‖D1w‖22= (D1w)T (D1w)

=
[
(w1 − w2) (w2 − w3)

] [(w1 − w2)

(w2 − w3)

]

= (w1 − w2)2 + (w2 − w3)2.

We wish to extend the penalty in (23) to the TNBS
format. Without loss of generality, Figure 8 visualizes
the necessary steps in graphical notation for a three-
dimensional B-spline surface. In the multivariate case,
the differences in adjacent weights in the weight tensor
W have to be penalized along each dimension individu-
ally. This is done by contracting the second index of the
difference matrix Dα with the dimension of the weight
tensor W along which the penalty is applied, then tak-
ing the norm of the result. For a B-spline curve with d
inputs, the penalty on the α-th order differences along
the j-th dimension is given by:

R(W) = ‖W ×2
j Dα‖22

=
〈
(W ×2

j Dα) , (W ×2
j Dα)

〉
. (24)

This is illustrated in 8a, where the penalty is applied
along the first dimension, e.g. j = 1. Decomposing W
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Fig. 8. Derivation of the Tensor Network P-spline penalty.

into a tensor train results in the network depicted in 8b.
To write this penalty again as a linear function of the p-th
core, we contract everything in the network except these

cores (Figure 8c). In this example, C
(2)
>,1 and C

(2)
−,1 are

simply identity matrices. Then, using (3), the penalty
function can be rewritten in the form of Figure 8d:

R
(
G(p)W

)
= g(p)TΩ

(p)
j g(p), (25)

where

Ω
(p)
j =

(
C

(p)
>,j ⊗C

(p)
−,j ⊗C

(p)
<,j

)
. (26)

The matrix Ω
(p)
j in (26) is constructed for every dimen-

sion j. Due to the site-p-mixed-canonical form of the
tensor train, the contraction of two out of the three ma-

trices C
(p)
>,j , C

(p)
−,j and C

(p)
<,j result in identity matrices.

This knowledge can be utilized for efficient implementa-
tion. Adding the penalties to the cost function results in
the following regularized optimization problem:

min
W
‖y − s‖22+

d∑

j=1

λj ‖W ×2
j Dα‖22 (27)

s.t. TT-rank(W) = (r1, r2, . . . , rd−1).

The smoothing parameter λj ≥ 0 controls the penaliza-
tion of the roughness along dimension j. The subprob-
lem for updating the p-th core becomes:

min
g(p)

‖y −A(p)g(p)‖22+
d∑

j=1

λj g
(p)TΩ

(p)
j g(p). (28)

The normal equation is then:


A(p)TA(p) +

d∑

j=1

λj Ω
(p)
j


 g(p) = A(p)Ty. (29)

The whole procedure of identifying a TNBS model from
measured data is summarized as pseudo-code in Algo-
rithm 1.

Algorithm 1 TNBS-NARX identification

Input: Data {(yn, un)}Nn=1, TT-ranks {rp}dp=1,
number of knots m, degree ρ, regularization
parameters {λj}dj=1

Output: TT-cores
{
G(p)W

}
d
p=1

1: Initialize random TT-cores

2: Construct
{{

b(p)n

}
N
n=1

}
d
p=1 from data

3: while stopping criteria not satisfied do
4: for p = 1, 2, . . . , d− 1 do

5: Construct A(p) (20) and
{

Ω
(p)
j

}
d
j=1 (26)

6: g(p) ← Solve (29)

7: G(p)W ← Orthogonalize and reshape g(p)

8: end for
9: for p = d, d− 1, . . . , 2 do

10: Repeat the above
11: end for
12: end while

Table 1 summarizes relevant computational complexities
concerning the TNBS-NARX method. While the com-
plexities scale only linearly in the dimensions, it is im-
portant to realize that high TT-ranks easily degrade the
performance of optimization of the cores. There is, there-
fore, a tradeoff between accuracy and speed. The number
of data samples N also appears linearly in the complex-
ities but may become a bottleneck for large datasets. A
modification for this scenario is to use a small random
batch of the data when updating g(p). This can speed
up estimation time without significant loss of accuracy.

4 Experiments

In this section, we demonstrate the proposed system
identification method. The algorithm is implemented in
MATLAB and executed on a personal computer with a
4.2 GHz Intel Core i5-7600K processor and 16 GB of ran-
dom access memory (RAM). An open-source MATLAB

7



Table 1
Computational complexities of significant operations

Operation Complexity

Construct
{
b
(p)
n

}
N
n=1 O

(
Nn2

)

Construct
{

Ω
(p)
j

}
d
j=1 O

(
(d+ (m− ρ)4)r4

)

Construct A(p) O
(
N(m− ρ)r2

)

Solve g(p) O
(
N(m− ρ)2r4 + (m− ρ)3r6

)

Evaluate f O
(
(ρ2 + (m− ρ)r2)d

)

implementation can be found at https://github.com/
Ridvanz/Tensor-Network-B-splines.

4.1 Synthetic dataset

First, we validate the proposed methods through the
identification of an artificial nonlinear dynamical system
that is exactly representable in the TNBS-NARX for-
mat. The lagged inputs and outputs are chosen as un−µ
and yn−µ respectively, where µ ∈ (1, 2, 3, 4), such that
the system equation is of the following form:

yn = f(yn−1, yn−2, yn−3, yn−4, un−1, un−2, un−3, un−4)
(30)

The nonlinear mapping f is modeled as an 8-dimensional
TNBS. We choose the degree of the B-splines ρ = 2 and
the number of knots per dimension m = 6. A random
weight tensor W of size (m− ρ)d = 48 is generated of
which the elements equal either wmin = −4 or wmax = 5
with equal probability. The generated tensor is decom-
posed using the TT-SVD algorithm, truncating the TT-
ranks to a value of 5 uniformly. The resulting tensor
train represents the true weights of our nonlinear system.
For the input signal u we generate a random sequence
of length 3000, with values uniformly distributed in the
range [0, 1]. This sequence is smoothed with a Gaussian
window of size 5 to dampen higher frequencies. We ini-
tialize the output signal y with 4 zeros and recursively
evaluate the next output with (30), until we have a sig-
nal of length 3000. The first 200 samples of the input
(blue) and output (red) signals are plotted in in Figure
4.1. The signals are split in an identification set of 2000
samples and a test set of 1000 samples.

We test the performance of our TNBS-NARX identifi-
cation algorithm with different levels of Gaussian white
noise on the estimation data. Noise is only added to the
output signal. The variances for the white noise signals
are chosen based on the desired signal to noise ratios
SNR. The signal powers are determined after subtract-
ing their means. For simplicity, we penalize the second
difference (α = 2) of the weights equally for each dimen-
sion, e.g. λp = λ, ∀p. The experiment is run using three
different values for lambda. All other model parameters
are set to the true values of the synthetic model. The
TT-cores are estimated using Algorithm 1. For consis-
tency, we simply choose a max number (16) of sweeps as
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Fig. 9. Input and output signals of the synthetic dataset.
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Fig. 10. Prediction and simulation performance on synthetic
test set.

stopping criteria. The root mean squared error (RMSE)
is used as the performance metric to evaluate the accu-
racy on the test set for both prediction and simulation.

eRMSE =

√√√√ 1

N

N∑

i=1

(yi − ŷi)2

Figure 10 plots the RMSE of the different experiments
as a function of the SNR in dB. The prediction errors are
consistently lower than the simulation errors. The effect
of the regularization is in line with expectations, i.e. for
increasing SNR values, more regularization is needed to
avoid overfitting to noise, so larger penalties give better
performance. Overall, the TNBS is able to identify the
system accurately, even for relatively noisy estimation
data.
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Table 2
Comparison of methods on Cascaded tanks benchmark

Method Prediction Simulation

LTI [35] 0.056 0.588

Volterra FB [35] 0.049 0.397

Flexible SS [36] - 0.45

NOMAD [37] - 0.376

PWARX [38] - 0.350

Sparse Bay. DNN [39] 0.0472 0.344

TNBS-NARX 0.0461 0.3018

4.2 Cascaded tanks dataset

The cascaded tanks system is a benchmark dataset for
nonlinear system identification. A detailed description
of the system and the data is given in [34]. The system
consists of two tanks, a water reservoir and a pump.
The water in the reservoir is pumped in the upper tank,
from which it flows to the lower tank through a small
opening and then back into the reservoir. The system
input un is the pump voltage and the system output yn
is the water level of the lower tank. If too much water
is pumped into the upper tank it overflows, causing a
hard saturation nonlinearity in the system dynamics.
The input signals are low-frequency multisine signals.
Both the estimation and test set have a length of N =
1024 samples. The major challenges of this benchmark
are the hard saturation nonlinearity and the relatively
small size of the estimation set. The performance metric
used is again RMSE.

The original data is first normalized to the interval [0,1].
Both input and output lags are chosen as un−µ and
yn−µ respectively, where µ ∈ {1, 2, 3, 4, 8, 12, 16, 32}.
The large lags are included to capture the relevant slow
system dynamics. We choose the degree of the B-splines
ρ = 3 and the number of knots m = 7. We penalize
the first-order difference only, i.e. α = 1, and set the
TT-ranks to 8 uniformly. We choose λ through 3-fold
cross-validation on the estimation set. A total of 12
sweeps are performed in the optimization with Algo-
rithm 1. After tuning lambda, the full identification set
is used to identify the final model, which takes about
4 seconds. Using TNBS, the number of weights to rep-
resent the 16-dimensional B-spline surface is reduced
from approximately 4.3× 109 to 3648. The performance
on prediction and simulation are listed and compared
in table 2. To the best of our knowledge, the algorithm
slightly outperforms the current state-of-the-art results
on both prediction and simulation. Figure 11 shows the
true and simulated output on the test set. It is apparent
that the TNBS-NARX model was able to accurately
capture the nonlinear system dynamics with relatively
sparse estimation data.
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Fig. 11. Simulation on cascaded tanks dataset.

5 Conclusions

This article presents a new algorithm for nonlinear sys-
tem identification using a NARX model of which the
nonlinear mapping is approximated using the introduced
Tensor Network B-splines. Tensor Network theory en-
ables to work with B-spline surfaces directly in a high-
dimensional feature space, allowing the identification of
NARX systems with a large number of lags and inputs.
The identification algorithm is guaranteed to monotoni-
cally converge and numerical stability is ensured through
orthogonality of the TT-cores. The efficiency and accu-
racy of the algorithm is demonstrated through numeri-
cal experiments on SISO nonlinear systems. Extension
of TNBS-NARX to multiple inputs is straightforward
through the addition of input variables. Multiple out-
puts can be realized efficiently by adding an index to one
of the TT-cores, as done in [18]. Future work includes
the implementation of an online optimization scheme, as
an alternative to ALS, and the development of control
strategies for identified TNBS-NARX systems.
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Chapter 6

Conclusion

6-1 Summary

B-spline curves are an attractive choice for applications involving the approximation of smooth
continuous functions. Their basis functions have local support and can be constructed effi-
ciently, especially when defined on uniform knot sequences. They can effectively fit to data
using convex optimization techniques and can accommodate several regularization methods to
help avoid overfitting. Multivariate B-splines inherit these properties, but the number of ele-
ments in both the weight tensorW and B-spline tensor B scale exponentially with the number
of input dimensions d. Tensor Network theory has enabled us to work with B-spline surfaces
directly in a high-dimensional feature space, allowing the approximation of high-dimensional
functions with low computational effort. The introduced Tensor Network B-splines (TNBS)
model has a low storage complexity, its optimization is guaranteed to monotonically converge
and numerical stability is ensured through orthogonality of the TT-cores. The addition of
P-spline regularization ensures smoothness and good generalization properties while fitting
high-dimensional B-splines to sparse and scattered data. The efficiency and accuracy of the
introduced approximation algorithm is demonstrated through numerical experiments. The
research for this thesis resulted in a paper and an open-source implementation of the TNBS
framework in MATLAB.
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6-2 Limitations and Future Work

The presented Tensor Network B-splines framework has some limitations and potential room
for improvement. This section lists some current limitations and possible ideas for future
development in this area.

• A limitation to splines in general is that they are only defined on an interval [a, b]. This
means that the range of the input data has to be known beforehand. For most appli-
cations, the range of the inputs are obvious, either by considering physical constraints
or by looking at the distribution of the data. For highly non-uniform datasets, e.g.
exponentially distributed data, one can apply invertable data transformations such as
the logarithm and square root transformations.

• Large numbers of B-splines per dimension require higher TT-ranks for an accurate ap-
proximation of the weight tensor, which in turn requires more sweeps during optimiza-
tion. This means there is a computational trade-off between the number of dimensions
and the complexity of the TNBS surface. In other words, choosing large values for both
k and d still leads to a computationally infeasible optimization problem with the current
model.

• While we mention that B-splines are highly interpretable, interpreting the cores of TNBS
is less straightforward. A possible solution is to convert the optimized TT-train to a
CP-decomposition, as done in [88]. From the CP-representation of the B-spline weight
tensor, it is possible to extract more information about the underlying B-spline surface.

• The current TNBS format assumes a single output. One method to approximate func-
tions with multiple outputs is to fit a TNBS model for each individual output in parallel.
However, larger overall compression can be achieved when extending the tensor train
to multiple outputs and optimizing for all outputs directly. This can simply be done by
adding an index to one of the cores. Examples of vector output extensions for tensor
trains are given in [54] and [53].

• Our implementation of ALS includes batch sampling to cope with larger datasets. An-
other possibility for speeding up ALS is by only approximating the solution of g(p)

when updating a core. Our trials show that an exact solution to the linear subsystem in
Eq. (4-3) is not necessary for ALS to converge, as long as the solution is sufficiently close
to the optimum. Solving for g(p) with iterative methods like preconditioned conjugate
gradients (PCG) could win an order in overall optimization speed. The main challenge
here is determining the accuracy or number of iterations of the PCG method.

• Some applications require the approximation of a function in real-time. Examples are
the identification of time-varying systems, or the mapping of states/actions to values in
reinforcement learning. Online optimization with TNBS can be achieved by replacing
the ALS method by a TN Kalman filter [54]. This allows updating the tensor train
efficiently using only the most recent data sample. However, the addition of P-spline
regularization to this optimization scheme is not straightforward and needs further
research.

R. Karagöz Master of Science Thesis



6-2 Limitations and Future Work 61

• Approximating functions is an essential cornerstone in the field of machine learning.
The TNBS model could be very suitable for supervised learning tasks such as regres-
sion and classification. Classification can be performed with TNBS by choosing an
appropriate error function, such as the cross entropy or sigmoid function. The resulting
subsystem when updating a core would still be convex, but no longer linear. Hence a
convex optimization problem would need to be solved at each update of the core. The
convergence properties of such an ’Alternating Convex Scheme’ are to be investigated.
Building a TNBS classifier, along with an appropriate tensor train optimization method,
is an interesting future development.
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