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1
Introduction

Machine learning(ML) is one of the most encountered topics and is a fast-growing technical field these
days. It influences the field of computer science, but also healthcare, agriculture, education, media, and
many others. Due to its growing popularity, much of the effort in the ML community is focused on ad-
vancing the field through application development and research, leaving ML pedagogy and educational
research less explored.

Unlike more traditional subjects such as mathematics, physics, and statistics, which have well-
established teaching methods and extensive research supporting their educational practices [6, 19,
53, 17, 21, 30], ML education lacks standardized instructional strategies. This gap highlights the need
for dedicated research into effective ML teaching methods.

ML topics are inherently complex and rely heavily on abstract mathematical concepts, making them
challenging for students to understand [26]. For this reason, traditional teaching methods might not be
sufficient, highlighting the need for research in this direction. One promising approach to address this
challenge is the use of interactive visualizations. These tools allow students to manipulate and explore
graphical representations of data and concepts, leading to a deeper understanding [10]. Interactive
visualizations have been successfully used in subjects such as calculus [57, 27, 48], geometry [41],
optimization problems [3], information retrieval [10], business analytics [55], and computer algorithms
[11]. Since all of these subjects are science-related subjects, having elements in common with machine
learning, the effectiveness of interactive visualizations in increasing understanding might transfer to ML
as well.

More than that, engaging students in the learning process is crucial for effective education [28], and
it can be achieved using interactive visualizations. These tools can increase student engagement by
fostering active learning, leading to a better understanding of complex topics [44, 43, 41]. Also, they
encourage students’ exploration and experimentation, resulting in deeper cognitive processing and
improved learning outcomes, as supported by the ICAP framework [12].

Now that the potential of using interactive visualizations in teaching ML has been established, it is
relevant to detail our research direction more clearly. The main focus of this research is to answer the
following research questions:

1. How does the use of interactive visualizations in machine learning education affect students’
knowledge gain on machine learning topics?

2. How does the use of interactive visualizations in machine learning education affect students’ mo-
tivation regarding machine learning topics?

The initial hypothesis is that the interactive visualizations will aid the students in understanding the
machine learning concepts, based on similar previous research. More specifically, interactive visualiza-
tions are believed to lead to a higher knowledge gain and motivation, than the ones achieved through
using static visualizations.

The novelty of this research lies in developing and empirically evaluating interactive visualizations
focused on teaching ML. To illustrate their impact, two non-trivial ML topics were chosen: gradient de-
scent and principal component analysis(PCA). On one hand, Gradient descent is a non-trivial concept
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with existing visualizations that lack formal evaluation [31, 62]. On the other hand, PCA is a non-trivial
topic, previously recognized as difficult to teach[65].

The thesis includes a scientific article, presented in chapter 2, and supplementary materials, pre-
sented in chapter 3. The scientific article is limited to the structure of such an article and its limitations.
Therefore, chapter 3 aims to help the reader better understand the process of the research, by providing
a more thorough literature review of the research direction, detailing the topics chosen for visualization,
the development process for the visualizations, and the expert evaluation of the visualizations. Lastly,
the appendices cover additional materials developed during the project.



2
Scientific Article

3



Are interactive visualizations in machine learning education
helping students?

Ilinca Rențea
Delft University of Technology

Delft, The Netherlands

Gosia Migut

Delft University of Technology 
Delft, The Netherlands

ABSTRACT
With the fast integration of Machine Learning(ML) into several in-
dustries, the motivation to develop effective pedagogical strategies
for teaching this complex and evolving field has become critical.
Machine Learning, once mainly a topic in Computer Science Bach-
elor programs, is now widely integrated into various majors and
introduced at earlier educational stages, including high school and
secondary school. However, the reduced research focus onML ped-
agogy results in a lack of standard teaching methods compared to
other science-related subjects, which have established norms for
topic introduction, teaching tools, and assessment methods. With
inspiration from other fields, this research aims to look into us-
ing interactive visualizations in teaching ML topics, more specifi-
cally in teaching Gradient Descent and Principal Component Anal-
ysis (PCA). The research includes the development and evaluation
of Jupyter Notebooks for introducing these visualizations to stu-
dents. The targeted student population is composed of Computer
Science and Engineering Bachelor students who have not yet fol-
lowed any Machine Learning courses but have the necessary back-
ground knowledge, namely calculus, linear algebra, and statistics
knowledge. The evaluation of this teaching method measures the
knowledge gained and the motivation of the students, compared to
a static version of the materials. The results of the evaluation have
shown a significant effect of interactive visualizations on knowl-
edge gained related to PCA. The evaluation has not identified any
difference in knowledge gain for gradient descent and learning
motivation for both topics. With these results, we contribute to
the body of evidence-based teaching methods in Machine Learn-
ing and identify further research needed to generalize the effect
of interactive visualizations as a teaching method for teaching ML
basic concepts.

CCS CONCEPTS
• Applied computing → Computer-assisted instruction.

KEYWORDS
machine learning, education, interactive visualizations, knowledge
gain, motivation, controlled experiment

1 INTRODUCTION
Machine learning (ML) is one of the most rapidly growing techni-
cal and research topics at the moment [20], having applications in
various fields, such as healthcare [40], agriculture [23], education
[21], and many more. Due to its popularity, much of the effort in
the ML community is focused on advancing the field through ap-
plication development and research, reducing the emphasis on ML
pedagogy and educational research.

Given the evident need for this research, displaying what teach-
ing machine learning typically involves is crucial. Learning ob-
jectives associated with this subject are understanding machine
learning algorithms, implementing and applying them in spe-
cific use cases, evaluating the performance of such algorithms,
and analyzing their performance and limitation, as suggested by
[44]. However, these learning objectives can differ depending on
the intended audience, since the knowledge can be applied in dif-
ferent manners and contexts [41]. More than that, machine learn-
ing topics are considered to be difficult because they rely on math-
ematics and abstract concepts[15].

On one hand, teaching non-trivial mathematical concepts has
been accompanied by using interactive visualizations. These are
graphical representations that allow users to manipulate and ex-
plore the visualized information.The interactivity of visualizations
enables the exploration of the underlying knowledge, resulting in
a deeper understanding[8]. These tools were used in mathemati-
cal subjects such as calculus[16, 31, 38], geometry[24] and opti-
mization problems [4]. Besides being effective in teaching mathe-
matics, interactive visualizations have also been applied in teach-
ing information retrieval[8], business analytics[37], and computer
algorithms[9].

On the other hand, students’ engagement in the learning pro-
cess is crucial for effective education[17]. In this context, interac-
tive visualizations have been used to increase students’ engage-
ment, since they foster active learning, leading to a better under-
standing of complex topics [24, 26, 28]. Additionally, interactive
tools encourage exploration and experimentation, leading to deeper
cognitive processing and improved learning outcomes according
to the ICAP framework[10]. However, despite promoting motiva-
tion and learning, interactive visualizations could introduce an ad-
ditional cognitive load that is not related to the tasks that students
need to perform. [43]

Therefore, the research questions this paper aims to explore and
answer are the following:

How does the use of interactive visualizations in machine learn-
ing education affect students’ knowledge gain onmachine learning
topics?

How does the use of interactive visualizations in machine learn-
ing education affect students’ motivation about machine learning
topics?

The initial hypothesis is that the interactive visualizations will
aid the students in understanding the machine learning concepts,
based on similar previous research. This hypothesis relies on the
effectiveness of interactive visualizations in other similar subjects,
but also on their popularity in machine learning courses. Similarly,



the hypothesis for the second question is that the interactive visu-
alizations will positively influence the students’ motivation related
to machine learning topics.

The novelty of the current research does not lay in the use of
interactive visualizations in the context of teaching machine learn-
ing, but rather in developing these visualizations and testing their
effectiveness with students.

We use two ML non-trivial topics to illustrate the influence of
interactive visualizations on students’ knowledge gain and motiva-
tion. The first topic is gradient descent, which was chosen because
it was previously visualized [19, 46], but there is no evaluation of
the performance of these visualizations. Whereas, PCA was cho-
sen because it is considered to be a rather hard topic to teach to
students, as suggested by Westfall [49]. Even if the difficulty was
mentioned in the context of behavioral sciences students, it might
also apply in the context of computer science students, highlight-
ing the importance of tackling this topic.

Besides development, this research is also focused onmeasuring
the knowledge gained and the motivation of the students when ex-
posed to interactive visualizations, in comparison towhen exposed
to static visualizations.

The research paper will first touch upon the related work in sec-
tion 2, then describe the methodology of developing the visualiza-
tions and evaluating them in section 3, followed by the results of
the evaluation in section 4. Lastly, the discussion of the findings is
included in section 5, followed by the conclusion and future work
in section 6.

2 RELATEDWORK
Despite the importance ofmachine learning education, this research
topic is only now beginning to take shape. One of the first steps
taken in this direction is the agenda for future research developed
by Shapiro and Fiebrink [41]. This agenda offers plenty of possible
research questions and ideas peers in the field could use as inspira-
tion for their research. From the large number of research direc-
tions provided, the conceptualization and reasoning of students
about machine learning algorithms and the parameters for these
algorithms served as the starting point for our research. [41]. This
point of the agenda highly focuses on exploring how students un-
derstand different concepts, which can be partially answered by
exploring the usage of interactive visualizations.

Other researchers, like Skripchuk et al. [42], have focused on
identifying common errors in open-endedML projects.Their study
primarily discusses code-related issues such as inadequate hyper-
parameter tuning and improper use of test data during model eval-
uation. However, the research focuses on errors in applying ML
algorithms rather than students’ understanding of the algorithms
themselves.

The research field also features previous work focusing on the
use of visualizations for teaching ML[11, 27, 47, 50]. The first ex-
ample of relevant work done in this direction provides interactive
visualizations to high school students [11]. In this context, visual-
izations are used for describing data collection, visualization, and
processing, but also analysis, classification, and regression algo-
rithms. All mentioned concepts are adapted to a daily life scenario,
namely rain and weather prediction. However, this research does

not evaluate the proposed method, leaving it unclear how effective
or not this method would be when applied. Another relevant work
for the current research is a convolutional neural network(CNN)
visualizer[47]. The authors of this paper describe the process of
developing the interactive visualization, while also including an
observational study to evaluate the proposed solution. The evalu-
ation is mainly focusing on the users’ perception of the given vi-
sualization, rather than their true knowledge gain. The qualitative
study’s results included positive feedback from the participants,
who found the method helpful in their study process, attractive,
and easy to use. Another relevant example is the What-If Tool [50]
which aims at helping users probe, visualize, and analyze differ-
ent machine learning systems.This method is particularly relevant
for the current research as it represents an interactive system that
highly uses visualizations since it focuses on minimal coding. The
system’s target user is represented by people working in differ-
ent companies that interact with machine learning. However, the
idea behind the system could also be used in an academic scenario.
Interactive visualizations are also used in portraying fairness con-
cepts related to machine learning algorithms and models, as stud-
ied byMashhadi et al [27].Their research focuses on 6 open-source
fairness tools, by conducting a qualitative review and four focus
groups. Through their research, they show the importance of inte-
grating interactive visualizations for teaching fairness in machine
learning and artificial intelligence courses. One reported insight
is that the previously mentioned What-If Tool [50] shows greater
transparency due to its interactive design.

Interactive visualizations were also previously used in teach-
ing science topics[29]. This teaching tool has been successfully ap-
plied in mathematics[1, 4, 16, 24, 31, 33, 38], algorithms education
[2, 17, 36], statistics [22], information retrieval [8], and engineer-
ing education [39]. One key finding of previous research is that
interactive visualizations aid in a better understanding of mathe-
matical concepts [16, 24]. More than that, existing research shows
that animations might be helping students learn faster than with
static visualizations[9].

Lastly, existing research looked into the effect of different levels
of interactivity on understanding and applying knowledge related
to Signals and Systems in Electrical Engineering [35].The results of
the study showed that higher levels of interactivity did not have an
effect on the learning outcome in understanding conceptual knowl-
edge and applying procedural knowledge and had a negative effect
on understanding procedural knowledge.

3 METHODOLOGY
3.1 Gradient Descent and PCA
To assess whether interactive visualizations positively impact the
knowledge gained by students and their motivation, we first iden-
tify the key concepts of these two topics.

On one hand, Gradient Descent is an optimization algorithm
used in Machine Learning mainly for regression problems. This
algorithm is used for searching through a large continuously pa-
rameterized hypothesis space when the error can be differentiated
with regards to the hypotheses[30]. It starts with a random value,
updating the parameters of the hypotheses based on the gradient
of the error function and the set learning rate.
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(a) Gradient Descent with one-variable func-
tion.

(b) Gradient Descent with 6-variable func-
tion.

(c) GradientDescentwith 2-variable function.

Figure 1: Gradient Descent visualizations.

On the other hand, PCA is a dimensionality reduction algorithm
used in Machine Learning.This technique derives new dimensions
that are uncorrelated linear combinations of the original dimen-
sions of a given dataset, maximizing the retained variance of the
dataset. The generated dimensions are the eigenvectors of the co-
variancematrix of the dataset.These dimensions represent the prin-
cipal components, ordered by decreasing eigenvalues, which are
directly proportionate to the retained variance.

3.2 Interactive Visualizations Development
Starting from the concepts previously mentioned, 2 Jupyter Note-
books were created for the chosen topics1. The Gradient Descent
Notebook includes textual information, inspired by existing books
and courses in Machine Learning [30, 32], and 3 interactive visu-
alizations. The first visualization, shown in figure 1a, shows a one-
variable scenario to introduce the students to the idea of gradient
descent, and it allows them to set the starting point, learning rate,
chosen function, and whether the gradient of the last update is
shown graphically. The second visualization, shown in figure 1b,
allows the students to manipulate the values of 6 variables, aim-
ing to help them understand the mechanics of gradient descent by
trying to imitate the behavior of the algorithm.The third visualiza-
tion, from figure 1c, displays a scenario with 2 variables, where the
student can set the starting coordinates, learning rate, and epochs
computed. The second and third visualizations are set within the
scope of machine learning specifically since they display a regres-
sion scenario with a given dataset.

Similarly, theNotebook introducing Principal Components Anal-
ysis(PCA) includes textual information, inspired by books and courses
in Machine Learning [6, 48], and 3 interactive visualizations. The
first visualization, shown in figure 2a, displays a dataset, together
with a line onwhich points are projected, but also the associated re-
construction error and variance of the performed transformation.
The students in this case can choose the slope of the line used for
the transformation. The second visualization, displayed in figure

1https://github.com/ieirentea/Interactive-Visualizations-ML

2b, allows students to scale the 2 dimensions of the dataset, ob-
serving how the principal components are affected. The third vi-
sualization, shown in figure 2c, illustrates how data is transformed
by the covariance matrix. The student can choose howmany times
the data is transformed and should note that the new points are
along the principal component with the highest variance. This last
visualization aims to make the covariance matrix a less abstract
concept.

Lastly, cognitive load theory[45] was taken into account while
developing the interactive visualizations. Since this teaching tool
could sometimes introduce additional cognitive load [43], the visu-
alizations’ complexity was minimized while retaining the level of
knowledge they delivered.

3.3 Experiment Design
The initial hypothesis needed to be tested using an experiment fo-
cusing on the knowledge gain and motivation of students.This sec-
tion will focus on describing the methodology of the experiment.

Participants.The experiment recruited 40 first-year Computer
Science and Engineering Bachelor students who did not follow any
Machine Learning courses in their previous education and were
the least likely to know gradient descent and PCA already. How-
ever, at the beginning of the experiment, participants were asked if
they were already familiar with these two concepts to ensure that
no participant had the knowledge before the experiment.

Procedure.Theparticipantswere divided into two groups, namely
Group A (the control group, N=20), and Group B (the treatment
group, N=20). The group assignment was done randomly. Each
group received the same survey which included the pre-test and
post-test questions, together with the Reduced version of IMMS
(Instructional Materials Motivation Survey), for both topics. The
procedure of giving a pre-test and a post-test tomeasure the knowl-
edge gain is similar to the one applied by previous research [14,
34]. The pre-test and the post-test were built to match the instruc-
tional learning outcomes (ILOs) of the materials, according to the
constructive alignment framework[5]. These outcomes were de-
fined using Bloom’s taxonomy[7], gradient descent being associ-
atedwith understanding and applying the algorithm, and PCAwith
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(a) Projection of data points on a chosen line,
reconstruction error, and variance.

(b) Effect of scaling dimensions on principal
components.

(c) Transformation of data points by covari-
ance matrix.

Figure 2: Principal Component Analysis visualizations.

remembering and understanding it. More than that, the experi-
ment was conducted in a quiet, distraction-free space, to ensure
the optimum study environment for the participants.

Materials. For the experiment, Group B received written ma-
terials adapted from the bachelor-level Machine Learning course
from TU Delft, accompanied by the interactive visualizations de-
veloped for this research. Group A received the same written ma-
terials, this time accompanied by static visualizations adapted from
the developed interactive ones. The static visualizations were ob-
tained by saving multiple instances of possible interactions with
the visualizations. Due to the interactive nature of the second visu-
alization of gradient descent, it was omitted from the static version
of the materials.

Measurements. To measure the knowledge gained by the stu-
dents, they were asked to fill in a pre-test, follow the given ma-
terials, and fill in a post-test. This procedure had the goal of mea-
suring the knowledge gain of the students rather than the knowl-
edge level, similar to the methodology proposed by [13, 18]. Both
tests included the same questions, in increasing order of difficulty,
as suggested by existing research [3]. The knowledge gain is mea-
sured using the following formula [12]:

𝑔 =
𝑝𝑜𝑠𝑡 − 𝑝𝑟𝑒

1 − 𝑝𝑟𝑒
(1)

, where pre and post are the scores of the knowledge tests.
After the post-test, students were given a questionnaire to mea-

sure theirmotivation regarding the receivedmaterials.The selected
questionnaire is the Reduced Instructional Materials Motivation
Survey [25], comprised of 12 questions that measure attention, rel-
evance, confidence, and satisfaction associated with the materials.
This survey was chosen due to its structured and validated devel-
opment, together with its compatibility with the context of this
experiment, namely a self-directed instructional setting.

4 RESULTS
4.1 Knowledge gain
The first concept measured by this experiment is the knowledge
gained by reading and interacting with the educational materials.
The knowledge gain was calculated using equation 1, based on the
scores of the pre and post-tests.The score for the pre and post-tests

was calculated by assessing the correctness of the answers, where
each question received an equal weight for the final score.

In figure 3, you can see the aggregated knowledge gain for each
topic, comparing the two groups, where static is the control group
and interactive is the treatment group.

Figure 3: Knowledge gain results. The calculation of the
scores is based on equation 1

KnowledgeGain gradient descent.Before comparing the knowl-
edge gained by the two groups, the scores from the pre-test were
compared. Pre-test scores were non-normally distributed (Shapiro-
Wilk: interactive W = 0.5763, p < .001; static W = 0.6637, p < .001).
Therefore, a Mann-Whitney U-test was conducted and showed no
significant difference between the pre-test scores of the two groups
(U = 190.5, p = .7639), namely the static(M = 0.1028, SD = 0.1759)
and the interactive(M = 0.1333, SD = 0.2520) groups.

The normalized knowledge gain of the two groups was com-
pared using a t-test due to the normally distributed data(Shapiro-
Wilk: interactiveW = 0.9582, p = .5091; staticW = 0.9633, p = .6114)
and equal variances(Levene’s test: F = 1.3963, p = .2447). The inde-
pendent samples t-test showed no significant difference in knowl-
edge gain between the interactive(M = 0.5014, SD = 0.2917) and
static visualizations(M = 0.4915, SD = 0.2192) for the gradient de-
scent topic(t(df) = 0.1216, p = .9038).
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KnowledgeGain PCA. Similarly, the pre-test scores were com-
pared before comparing the knowledge gained by the students. Pre-
test scores were non-normally distributed (Shapiro-Wilk: interac-
tive W = 0.5929, p < .001; static W = 0.751, p < .001). Therefore, a
Mann-Whitney U-test was conducted and showed no significant
difference (U = 156, p = .1626) between the pre-test scores of the
interactive(M = 0.0532, SD = 0.1003) and static (M = 0.1050, SD =
0.1276) visualizations groups regarding PCA.

The normalized knowledge gain of the two groups was com-
pared using a t-test due to the normally distributed data(Shapiro-
Wilk: interactive W = 0.9246, p = .1215; static W = 0.9331, p =
.1769) and equal variances(Levene’s test: F = 0.7702, p = .3857).
The independent samples t-test revealed a very significant differ-
ence in knowledge gain between the interactive(M = 0.5274, SD =
0.2268) and static visualizations(M = 0.3162, SD = 0.1957) for the
PCA topic(t(df) = 3.1522, p = .0032).

Table 1: Statistical Test Results for Knowledge Gain and Mo-
tivation

Variable Group Mean SD t/U p-value

Knowledge Gain (GD) Interactive 0.50 0.29 0.1216 .9038Static 0.49 0.22

Knowledge Gain (PCA) Interactive 0.52 0.23 3.15 .0032**Static 0.32 0.20

Motivation (GD) Interactive 3.67 0.61 221.5 .569Static 3.52 0.69

Motivation (PCA) Interactive 3.48 0.90 -0.193 .8485Static 3.52 0.57

4.2 Motivation
The second construct measured is the students’ motivation regard-
ing the instructional materials. The Reduced Instructional Materi-
als Motivation Survey results were aggregated using the accompa-
nying recommendations, namely calculating one score for the over-
all motivation, but also one score for each of the four constructs.

The aggregated results for the gradient descent and PCA mate-
rials are displayed in figure 4, and 5 respectively. In both graphs,
the overall motivation score is labeled ’motivation’.

MotivationGradientDescent.Anon-parametricMann-Whitney
U-test was used to compare the motivation scores regarding gra-
dient descent materials due to the non-normal distribution of the
static group scores (Shapiro-Wilk: interactiveW= 0.9716, p = .7876;
static W = 0.8960, p = .0348). No significant difference was found
between interactive (M = 3.6750, SD = 0.6099) and static (M = 3.525,
SD = 0.6920) groups (U = 221.5, p = .5690).

Motivation PCA. A Welch’s t-test was performed to compare
the motivation regarding PCA materials due to unequal variances
of the two groups (Levene’s test: F = 7.8823, p = .0078) and normally
distributed data(Shapiro-Wilk: interactive W = 0.9271, p = .1355;
staticW= 0.9674, p = .7002). No significant difference inmotivation
regarding PCA was found between the interactive (M = 3.4792, SD
= 0.8987) and static (M = 3.525, SD = 0.5698) groups (t(df) = -0.1926,
p = .8485).

Figure 4: Motivation regarding gradient descent materials.
Motivation is the overall aggregated RIMMS score and the
rest are the 4 constructs measured by the survey, each aggre-
gated separately.

Figure 5: Motivation regarding PCA materials. Motivation
is the overall aggregated RIMMS score and the rest are the
4 constructs measured by the survey, each aggregated sepa-
rately.

5 DISCUSSION
5.1 Knowledge gain
The results of the conducted study reveal no significant difference
in knowledge gained by students between the interactive and static
visualizations regarding gradient descent. This outcome indicates
that the interactivity of the visualizations did not influence stu-
dents’ understanding of the presented materials.

On the other hand, the study revealed a very significant dif-
ference in knowledge gained by students regarding PCA. This re-
sult indicates that the added interactivity positively impacted the
understanding of the presented materials, helping students better
grasp the concepts related to PCA.

Therefore, the interactive visualizations had different effects on
the two chosen topics. The difference between the outcomes could
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be a result of the different natures of the two topics. Gradient de-
scent is a topic based on calculus concepts, closer related to pre-
vious knowledge of the students, while PCA is a topic based on
linear algebra concepts, harder to understand and conceptualize,
as mentioned by [49]. Based on the results, the interactive visu-
alizations might help students better understand non-trivial and
more abstract topics.

The results of the study contradict the results of the existing
research looking into the effect of different levels of interactivity
[35]. However, the topics of the mentioned research are within the
scope of Electrical Engineering, which are not directly linked to
Machine Learning topics.

5.2 Motivation
The results of the conducted research reveal no significant differ-
ence in motivation levels regarding the constructed materials for
gradient descent and PCA. Therefore, the introduction of interac-
tive visualizations does not have a clear effect. One possibility is
that the introduction of interactive visualizations does not have an
effect on the motivation of the students. Another possibility is that
the effect is too small to be observed using the current sample size,
namely 20 students per group. However, it is important to mention
that both versions of visualizations received relatively high moti-
vation scores, having an average of around 3.5, which lies between
moderately and mostly true.

The lack of a significant difference between interactive and static
visualizations could originate from the two versions having the
same effect on the motivation of students. However, motivation is
measured through the RIMMS survey, which relies on the subjec-
tive answers of the students. Consequently, the results reflect the
opinions and perceptions of the students on the instructional ma-
terials. A larger sample size is needed to generalize the results of
this survey and to ensure that potential biases are accounted for.

6 CONCLUSION & FUTUREWORK
FutureWork.The first limitation of the current research is the se-
lected sample of the study. The experiment included 40 Computer
Science and Engineering bachelor students. Expanding the num-
ber of participants could strengthen the validity and applicability
of the results in a more general context. Also, the research could
be expanded by studying the effect of interactive visualizations on
non-computer science students.

Another important limitation of the presented research study is
the short-term nature of the controlled experiment. Due to time
limitations, the controlled experiment fully focuses on short-term
knowledge gain. However, in the future, it would be important to
study the effects of interactive visualizations on long-term mem-
ory, since that is the main target of education.

More than that, for the current experiment, the setting was a
controlled one, where the interventionswereminimal and targeted
on certain topics. However, the results of the experiment could be
extended by conducting an in-the-wild experiment at one or mul-
tiple universities. This would imply inserting similar Notebooks,
maybe more than those presented in the current research, in Ma-
chine Learning courses, and observing their effect on students’

learning experience, mainly through knowledge level and motiva-
tion.

Additionally, the current research only measures the effect of
interactive visualizations for teaching gradient descent and PCA.
These two topics are only a subset of the possible topics of ma-
chine learning.Therefore, further research is needed to explore the
potential of these tools in the context of other topics.

Lastly, the focus of our experiment was on Computer Science
Bachelor students. However, the effect of interactive visualizations
should be also measured with students from other levels of educa-
tion, such as pre-university, but also Master’s students. More than
that, the effectiveness of these tools might differ for non-Computer
Science students, which motivates the need for this research direc-
tion as well.

Conclusion. This research looked into the effect of introduc-
ing interactive visualizations in teaching machine learning top-
ics, namely gradient descent and PCA. Two sets of materials ex-
plaining the two concepts were created, one including static visu-
alizations and one including interactive ones. The materials were
used in a randomized controlled experiment with 40 TUDelft Com-
puter Science and Engineering Bachelor students. The experiment
focused on measuring the knowledge gain and motivation related
to each topic. The results of the study showed a significant dif-
ference in knowledge gained by students regarding PCA, interac-
tive visualizations positively impacting the outcome. However, all
other statistical tests returned no significant difference between
the interactive and static visualizations.

Based on the results, interactive visualizations could be a useful
tool in teaching certain ML topics. Due to no negative effect ob-
served, such visualizations could be introduced in machine learn-
ing courses from computer science programs. However, the cur-
rent research is only the first step towards validating the effect
of using interactive visualizations in machine learning education,
additional research being needed to validate the effect of such visu-
alizations regarding other topics commonly presented in machine
learning.
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3
Supplemental Materials

As mentioned in the introduction, this section aims to help the reader better understand the process
of the conducted research. It provides more detail than the scientific article includes since the former
follows the structure of a scientific article. Therefore, section 3.1 will provide a more thorough analysis
of the existing research in the field of machine learning education, but also in adjacent fields. Next,
section 3.2 focuses on the theory behind the chosen topics, namely section 3.2.1 describes gradient
descent, and section 3.2.2 describes the principal component analysis. More than that, section 3.3
describes the developed visualizations for gradient descent, included in section 3.3.1, and for principal
component analysis, included in section 3.3.2. Afterwards, sections 3.4 and 3.5 focus on the expert
evaluations and on the development of the user study.

3.1. Related Work
On top of the related work already mentioned in Chapter 2, more literature was explored during the
first stage of the research. Firstly, existing research exploring the use of interactive visualizations
in other related fields, such as mathematics or computer science, was considered. More than that,
existing literature about the use of dynamic simulations in active learning or inquiry-based learning was
analyzed. Another topic relevant to the current research is student engagement through the use of
visualizations. Lastly, current methodologies of evaluation of Machine Learning teaching methods, but
also of teaching methods in general were considered.

3.1.1. Interactive Visualizations in Mathematics
Machine Learning concepts are closely related to mathematics since they use certain knowledge from
calculus, linear algebra, and statistics. Based on this link, it is relevant to look into the use of interactive
visualizations in teaching mathematics.

First of all, previous research has looked into the use of visualization tools in university-level educa-
tion[3, 48], but also in pre-university education[41, 27, 2]. Based on the mentioned research, such tools
are effective in both levels of education, when they are correctly designed to fit the intended audience.

More than that, mathematics is a field that includes several subfields with very different topics.
Therefore, researchers have tackled the application of visualization tools in calculus [57, 27, 48], but
also geometry[41], proofs[61] and optimization problems[3]. The mentioned applications of interactive
visualizations have promising outcomes, showing the potential of these tools in teaching mathematics.
The focus on calculus is relevant for the current research since gradient descent is a topic that heavily
relies on calculus, namely on derivation. More than that the focus on optimization problems[3] can
also motivate the use of interacted visualizations in teaching machine learning topics. Therefore, the
positive outcomes of such tools in teaching mathematics motivate the potential of the tools in teaching
machine learning topics.

3.1.2. Interactive Visualizations in Other Disciplines
Besides exploring the use of interactive visualizations in mathematics, researchers have also looked
into the usage of these tools in other disciplines related to machine learning. Examples of such disci-
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plines are algorithms education[5], hierarchical clustering[58], statistics [39] and engineering education
[59]. From this list, statistics are closely related to machine learning, since they sit at the base of some
models. Also, these visualizations are accompanied by visualizations for the optimal facility location
problem, an optimization problem[39]. More than that, the hierarchical clustering explorer[58] is related
to machine learning, having some concepts in common. Similar to the mathematics visualizations, the
positive outcomes of other subjects motivate the potential of this teaching tool.

3.1.3. Teaching Techniques
Active Learning. The first relevant teaching technique is active learning. This technique relies on intro-
ducing instructional methods that involve the student and motivate them to reflect upon their knowledge
and how they relate to other pieces of information [20, 52, 45]. This technique has been declared suc-
cessful in increasing exam scores and reducing failure rates[20], increasing student engagement and
learning outcomes[52], and helping students better understand and remember the materials[45]. More
than that, active learning has been combined with interactive visualizations in teaching computer sci-
ence concepts[56]. This approach has received positive feedback when applied in a classroom context.

Discovery Learning. Another teaching technique related to this research is discovery learning.
This technique is a constructivist educational approach in which students explore, experience, and
discover concepts independently, inquiring about the information rather than receiving it directly[23].
However, past research has shown that discovery learning has the best outcomes when an instructor
guides it[44]. This type of learning has been combined with simulations in past research [54, 13]. More
than that, previous research has shown that combining these two techniques achieves better learning
outcomes than only using discovery learning alone[13].

Inquiry-based Learning. A third type of teaching technique is inquiry-based learning. This type
of learning is an approach that highlights the role of the student in the learning process, encouraging
exploration of knowledge by investigation and answering questions. This approach is well-defined,
with clear phases including orientation, conceptualization, investigation, conclusion, and discussion
[51]. Along with other fields, inquiry-based learning has been used in teaching algorithms[40]. More
than that, simulations have been combined with this technique and it lead to positive learning outcomes
[47], simulations helping students understand the underlying knowledge of certain models.

3.1.4. Engagement through Visualizations
Most research focusing on interactive visualizations measures the learning outcomes of using these
tools[47, 13, 45]. However, there is also research that is interested in measuring the engagement and
motivation levels of the students[41, 52, 43, 32]. More than that, a review [25] highlights the existing
trend of measuring students’ engagement in technology-mediated learning. This review motivates the
need to measure engagement in learning activities, besides learning outcomes.

3.1.5. Evaluation of Machine Learning Teaching Methods
One of the topics relevant to expand in this section is the setup of experiments from this area of re-
search. Multiple research papers detail their methodology and can serve as inspiration for this paper’s
experiment.

Some existing research chose to evaluate the methods they propose through qualitative measures.
Ebert et al proposed a strategy for creating learning materials that should motivate students by provid-
ing an interesting learning experience. [16] The methods presented in the paper were evaluated by
conducting interviews with the participants. Hasselmann and Lurkin shaped a bachelor-level course
aimed at presenting searching algorithms applied to board games. [24] The course presented in the
paper was evaluated through observations drawn from informal interactions and the atmosphere ob-
served during the course. The level of knowledge of students was measured using the quality of the
final project and the results of the competition run at the end of the course. Shouman et al. discussed
two practical machine learning courses, one introductory and one advanced. [60] The courses were
evaluated using surveys to collect feedback from the students. Also, they included graded homework
and group projects to measure the knowledge of students who followed the courses. Dogan presents
course project materials that aim to stop students from overfitting the already existing machine learning
algorithms and to create their own solutions. [15] The course was run for two semesters and included
a small amount of homework and project materials to evaluate the students. Also, the course included
a reflection opportunity for both students and mentors using the Gibbs Reflective Cycle [22]. This
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reflection method was also used to extract some indirect feedback on the course and its materials.
More than that, some researchers measure the knowledge gained through different evaluation meth-

ods. Kazmi designs an introductory course on machine learning and optimization for energy engineer-
ing students. [33] The course is designed to evaluate the learning outcomes through Kaggle compe-
titions and a project. Similarly, Weerts and Pechenizkiy developed a course for responsible machine
learning for engineering students. [64] The presented course included evaluation methods individual
assignments, 3 quizzes, and a final group project. The quizzes would have been particularly relevant
to the current research, but they were not included in the research paper. Kinnaird presents a course
focusing on improving coding and algorithmic-related skills, assuming to statistical background knowl-
edge. [37] The course uses assignments and projects to assess the student’s knowledge level since it
is fully focused on understanding the coding of machine learning algorithms, rather than how and why
they work a certain way. Similarly, Brown details an introductory course on data science that focuses
on programming. [9] An interesting aspect of this research is how the learning outcomes are divided
into different levels of understanding and how these levels each influence the final grade of the student.
The researcher defined different skills the students should acquire by the end of the course, each with
3 levels of difficulty.

3.1.6. Evaluation of General Teaching Methods
Since there is no standard way of evaluating machine learning teaching methods in particular, it is also
relevant to look into general practices regarding evaluation.

For this reason, it is also important to analyze the existing methods of measuring the effect of
introducing new teaching methods. First of all, Delucchi measures the knowledge gained regarding
social statistics through the use of a pre-test and a post-test [14]. In a similar manner, Ibanez studied
the knowledge gain when gamification is introduced in computer science topics, namely programming,
through the same combination of tests [29]. More than that, an article describing the state of assess-
ment in engineering courses identifies randomized controlled trials [8] as an efficient way of comparing
two methods of teaching, namely the standard way and the newly introduced method [50]. This method
was applied by Ellis in their study about multimedia effectiveness in education together with the pre-test
and post-test combination, focusing on the knowledge gained by the participants [18].

Besides the knowledge gain focus, there is also research introducing and validating the use of
surveys to measure student motivation. Keller introduced the Instructional Materials Motivation Sur-
vey(IMMS) which focuses on attention, relevance, confidence, and satisfaction, comprising 36 ques-
tions each associated with one of the aforementioned categories [34]. Based on this survey, Loorbach
et al introduce the Reduced Instructional Materials Motivation Survey(RIMMS) that includes only 12
questions from the initial set [42]. The subset of questions were validated and they were proven to
be preferred over the initial set of questions, being effective in measuring the four constructs in a self-
directed instructional setting.

3.2. Description of Topics Chosen for Visualization
This section includes a description of the machine-learning topics chosen for building interactive visu-
alizations. The concepts were studied from several different sources to ensure the highest level of
completeness in describing the subjects.

3.2.1. Gradient Descent
Gradient descent is the first relevant topic for the current research. This concept is usually taught in
machine learning courses in the context of linear regression, classification, as well as deep learning.

Gradient descent is an algorithm “for searching through a large or infinite hypothesis space that can
be applied whenever the hypothesis space contains continuously parameterized hypotheses and the
error can be differentiated with respect to these hypothesis parameters”[46]. The search is performed
by starting with a random value that is updated based on the learning rate and the gradient of the
chosen cost function. The update is proportional to the gradient term, having a small update if the
gradient is small. The general form of the update [49] is represented in 3.1, where α is the learning
rate and θ is the parameter that needs to be optimized.
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θj := θj − α
∂

∂θj
J(θ) (3.1)

Depending on the chosen cost function, the gradient descent update can take several shapes. For
example, in linear regression, the most commonly used cost function is the least squares function,
represented in 3.2, giving the least squares regression model. This model is associated with the update
rule represented in 3.3.

J(θ) =
1

2

n∑
i=1

(hθ(x
(i))− y(i))2 (3.2)

θj := θj + α(y(i) − hθ(x
(i)))x

(i)
j (3.3)

Generally, there are two versions of gradient descent[49], namely batch gradient descent and
stochastic gradient descent. Both versions update the parameter until convergence, but the manner of
doing it differs. The batch gradient descent updates the parameters considering all points in the training
set. This implies that the algorithm has to compute the error for all data points before each update. On
the other hand, stochastic gradient descent updates the parameter considering only one point at a time.
Therefore, stochastic gradient descent is a better alternative when dealing with a large training set, and
manages to optimize the parameter faster. However, since the stochastic version only considers one
point at a time, it may never converge to the true minimum, oscillating around the minimum of the cost
function.

In practice, there is also another version of gradient descent that combines the batch and stochas-
tic. It is called mini-batch gradient descent[49], which considers a small batch of data points when
computing the update.

The main issues that can occur while using this algorithm are that the convergence might be slow,
and if the cost function includes several local minima, there is no guarantee that the algorithm will find
the global minimum[46].

3.2.2. Principal Component Analysis(PCA)
Principal Component Analysis(PCA) is a technique used for deriving new variables that are uncor-
related linear combinations of the original variables of a dataset. These variables are generated in
decreasing order of importance based on the amount of variance they account for. As mentioned by
Web and Copsey PCA is generally used for defining a smaller group of variables that can describe the
data reasonably well compared to the original variables[63].

The method of principal component analysis identifies first the principal component associated with
the highest principal value, which represents the variance. The first principal component is calculated
by finding the line through the data which keeps the highest variance and lowest distance to the points.
These two measures are inversely proportionate and any of them can be used in the analysis. The
second principal component is the line orthogonal to the first principal component that keeps the most
variance. This process is repeated until all principal components are found, the number depending on
the dimensions of the initial set of data points.

The principal components can be easily identified by computing the eigenvectors and their eigen-
values for the covariance matrix of the data set. The set of eigenvectors and eigenvalues are sorted in
descending order of the eigenvalues because these represent the variance.

After identifying the principal components the variance is studied. If the first few principal compo-
nents account for most of the variance, then the rest can be discarded, resulting in dimensionality reduc-
tion. The number of principal components used can be determined by using a set level of preserved
variance, such as between 70% and 90% [63], or by using the elbow method. The aforementioned
method analyses the point where the variance associated with the components falls abruptly before
settling at small values.

PCA also depends on some factors related to the data set. First of all, the algorithm requires the
covariance matrix, which is estimated using the sample data. More than that, the range of values for
each variable can affect the principal component analysis. Therefore, before computing the principal
components, the data needs to be standardized by transforming it to have zeromean and unit variance.
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3.3. Developed visualizations
After describing the theory behind the chosen topics in section 3.2, it is relevant to provide details about
the visualizations that were created. Each visualization is associated with a list of learning objectives
and a description. Learning objectives are crucial in this process because they should dictate the design
of the final visualization.

The learning objectives are defined according to Bloom’s taxonomy of educational objectives, more
specifically according to the taxonomy presented by Krathwohl [38]. From this revised version of the
original taxonomy, the focus is on the cognitive process dimension and the knowledge dimension. The
cognitive process dimension divides the learner’s outcomes into 6 categories: remember, understand,
apply, analyze, evaluate, and create. The knowledge dimension divides knowledge into 4 categories,
namely factual, conceptual, procedural, and metacognitive. The taxonomy also focuses on affective
and psycho-motor outcomes, but these are not relevant to the current research.

On top of defining clear learning objectives for each topic, the bachelor-level course in Machine
Learning from the Technical University Delft was analyzed. The materials from this course, together
with the learning objectives represent the starting point of the visualizations and developed Jupyter
Notebooks, by influencing the presented content.

3.3.1. Gradient Descent Visualizations
The first step in deriving a proper interactive visualization is to derive the learning objectives linked to
the given topic. Regarding gradient descent, the learning objectives are the following:

• LO1: Explain the gradient descent algorithm and its components. (Understand Conceptual Knowl-
edge)

• LO2: Infer potential problems of gradient descent and their causes. (Understand Conceptual
Knowledge)

• LO3: Execute gradient descent update steps. (Apply Procedural Knowledge)

To aid the students in understanding the gradient descent algorithm, three interactive visualizations
were developed. Before discovering and interacting with these visualizations, the students need to read
some textual information about the theory behind gradient descent, and the mathematical formulation
of this algorithm. After reading this information, the students interact with the following visualizations:

Gradient Descent for functions with one variable. The first step to understanding gradient de-
scent as a general algorithm is to understand it in its most simple form, namely with a one-variable
function. This is the reasoning behind having this visualization the first one shown to the student.

The visualization shows the behavior of gradient descent with a set function, learning rate, starting
point, and the number of iterations displayed, as it can be observed in Figure 3.1. The student can
interact with this visualization by changing the value of the variables mentioned above, with the mention
that the students can select functions from a pre-defined list. On top of setting values for variables and
observing their behavior, the students can opt to display or hide the gradient used in the last update
calculation.

Since mathematical calculations might be one of the non-intuitive parts of gradient descent, the
students see the last performed update in a mathematical form at all times.

Lastly, this visualization aims to help the student understand the gradient descent as a general
searching algorithm, rather than a machine learning algorithm. This is also the reason why the first
visualization is not linked to a specific data set or machine learning problem.

Gradient Descent for functions with more than 2 variables. The next visualization included
in the Jupyter Notebook displays some data points and the training curve of the algorithm, as it can
be seen in Figure 3.2. This visualization allows the user to imitate the gradient descent algorithm
by manipulating the value of the 6 presented variables. The visualization was taken from the course
TI3145TU Machine Learning and Introduction to AI taught by Tom Viering and Neil Yorke-Smith.

This visualization aims to help the student actively think about the behavior of the gradient descent
algorithm and try to imitate it. Ideally, the student would look at the displayed gradients for each of
the variables and decide to change the largest ones, until they find a configuration that resembles the
distribution of the data closely enough. In this visualization, the training curve is the student’s training
curve, showing the mean squared error at each update of the variables.
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(a) Visualization for gradient descent applied on least squares
function, with starting value = 7, learning rate = 0.13, 4 shown

iterations, including the gradient used in the last update calculation.

(b) Visualization for gradient descent applied on a custom function, with
starting value = -0.1, learning rate = 0.13, 4 shown iterations, without

displaying the gradient used in the last update calculation.

Figure 3.1: Gradient descent: visualization for one-variable function

(a) Initial instance of the visualization, with MSE = 195.9. (b) Instance of the visualization after around 25 updates, with MSE = 0.6.

Figure 3.2: Gradient descent: visualization for function with 6 variables

Gradient Descent for functions with 2 variables. The third visualization included in the Notebook
is a visualization showing 3 subplots, namely one plot showing a dataset together with a regression
line, one plot showing the evolution of the gradient descent for the given parameters through a 3d-plot
of the loss function, and one plot showing the training curve, mentioning the mean squared error after
training. The visualization can be seen in Figure 3.3 and it was taken from the previously mentioned
course TI3145TU Machine Learning and Introduction to AI taught by Tom Viering and Neil Yorke-Smith.

This visualization aims to help the student understand how the gradient descent can be applied
in more than 1-dimensional scenarios. Similar to the first visualization, the student can observe the
influence of the learning rate and starting point on the accuracy of the algorithm within a set number of
epochs.

3.3.2. PCA Visualizations
The learning objectives designed for PCA are the following:

• LO4: Recall Principal Component Analysis elements. (Remember Factual Knowledge)
• LO5: Explain Principal Component Analysis and its components. (Understand Conceptual Knowl-
edge)

• LO6: Infer equivalence between variance and error Principal Component Analysis versions. (Un-
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(a) Visualization for gradient descent for the given dataset with mean squared error, with starting
values a = -10, b= -5, learning rate = 0.01, and 5 epochs.

(b) Visualization for gradient descent for the given dataset with mean squared error, with starting
values a = -10, b= -5, learning rate = 0.0631, and 19 epochs.

(c) Visualization for gradient descent for the given dataset with mean squared error, with starting
values a = 0.9, b= 0.8, learning rate = 0.0631, and 19 epochs.

Figure 3.3: Gradient descent: visualization for function with 6 variables

derstand Conceptual Knowledge)

Similar to the process from the gradient descent part, three visualizations were developed to explain
the PCA algorithm and concepts to students. Before interacting with the visualizations, the students
need to read some textual information that briefly introduces the algorithm, and explains the mathe-
matical derivation that backs up this method. The textual information was derived using the Machine
Learning course previously mentioned, as well as the materials recommended by the course [63, 7].
Most of the text focuses on the mathematical derivation, since this element of understanding principal
components analysis is considered by the students to be quite difficult, as suggested by the lecturers
of Machine Learning.

More than that, the visualizations were developed following a discussion with a Machine Learning
professor. After reading the information, the students can interact with the following visualizations:
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Projection of dataset on a line, together with the error and variance. The first visualization
includes 3 graphs, as it can be seen in Figure 3.4. The first graph displays a dataset, together with a
line on which the points are projected. In this graph, the initial data points are the ones with a faded
color, and the projected points are the ones with a stronger color. The second and third ones display
the error and variance of the projected points. In these, the current projection’s error and variance are
displayed through a point.

The student can interact with the visualization by changing the slope of the line on which the points
are projected. The aim of this visualization is for the students to understand how points get projected,
and how the variance and error are influenced by the chosen lines. More than that, in the textual infor-
mation from the beginning of the Notebook, the variant of choosing to minimize the error was left out on
purpose. The reason behind this is that the students should be able to infer this information by looking
at the graphs of error and variance and observing that the 2 functions are inversely proportionate.

(a) Instance of the visualization with slope = 0.8

(b) Instance of the visualization with slope = -0.6

Figure 3.4: PCA: projection on a chosen line, including variance and error graphs

Principal components with scaled dimensions. The second visualization included in the Note-
book displays the same dataset as the one from the first visualization. Together with the data, it displays
the principal components obtained by applying the PCA algorithm, as shown in Figure 3.5. The aim of
this visualization is to highlight the importance of standardizing the data, as mentioned in Section 3.2.2.

In this case, the student can interact with the visualization by scaling each of the two variables of
the initial dataset. Besides this graph, the visualization also includes the initial version, where variables
are scaled by a factor of 1, at all times, similar to the one shown in Figure 3.5a. This way, the student
can scale the variables and compare the newly generated principal components with the initial ones.

Visualizing effect of transforming the dataset by the covariance matrix. The third visualization
initially includes a graph of the previously used dataset. This visualization shows the effects of trans-
forming the data by the covariance matrix and it aims to help the student better understand the theory
behind this algorithm.

The students can interact with the visualization by moving the slider and deciding how many times
the data is transformed. Ideally, after transforming it once, they will observe that the data resembles
the first principal component of the data.
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(a) PCA with non-scaled data (x scaled by 1 and y by 1).

(b) PCA with scaled data (x scaled by 2 and y by 1).

(c) PCA with scaled data (x scaled by 1 and y by 2).

Figure 3.5: PCA: scaling features and generating principal components

3.4. Expert Evaluation of Visualizations
After developing the 2 sets of visualizations, these were checked by selected Machine Learning course
staff members. This procedure was held out to ensure that the visualizations correctly match the learn-
ing objectives and to obtain potential feedback points before carrying out the evaluations.

First of all, the gradient descent visualizations were checked. Based on the obtained feedback, a
few modifications were made to the Gradient Descent Notebook. First of all, the textual information
from the Notebook and some of the knowledge assessing questions focused on the different types of
gradient descent algorithms, such as batch or stochastic. However, the visualizations did not include
these topics. Therefore, differentiating between different types of gradient descent algorithms was
removed both from the Notebook and from the assessment questions, which lead to more simple and
straightforward materials.

More than that, the Principal Components Analysis visualizations 2 and 3 were developed based
on ideas from staff members, therefore they were not checked a second time. However, the first visu-
alization was checked. The function line for the error and variance was added based on the received
feedback. Also, clear labels of axes were displayed.
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(a) Initial dataset.

(b) Dataset transformed by the covariance matrix once.

(c) Dataset transformed by the covariance matrix twice.

Figure 3.6: PCA: Covariance matrix transformation.

It is important to mention that these are only the most important points of feedback received while
the development process benefited from more improvement points.

Besides requesting feedback from current ML lecturers, the materials were also given to students
who had already followed ML courses during a trial version of the experiment. During this trial, the
students read the developed materials and interacted with the visualizations, while providing points of
improvement. After this trial, conclusions were added to the Notebooks, possible errors were corrected,
such as describing more clearly the third visualization for PCA. This trial was conducted to ensure the
best quality for the experiment that followed.

3.5. User Evaluation
This section provides additional information about the user evaluation that was performed to study the
effects of interactive visualizations in teaching certain ML concepts. Section 3.5.1 details the knowl-
edge assessment methods that were used during the experiment, while section 3.5.2 focuses on the
motivation assessment of students. Also, section 3.5.3 describes the human research ethics proce-
dure.
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3.5.1. Knowledge Assessment
As previously mentioned, the first aspect measured during the experiment is the knowledge gained by
students after exploring the provided materials. This aspect is measured by performing a combination
of a pre-test and a post-test, as described in section ??, from the scientific article. Both tests contain
the same knowledge assessment questions, namely the ones included in Appendix B. The next two
subsections will go into more detail for each of the chosen topics, namely gradient descent and principal
component analysis.

Topic
Learning
Objec-
tive

Question

Gradient
Descent

LO1 What is the primary objective of gradient descent in machine learning?
Which of the following best describes the gradient descent algorithm?

What is the role of the learning rate in gradient descent?
LO2 What is a possible consequence of choosing a too-large learning rate?

What is a possible consequence of choosing a too-small learning rate?
Write two disadvantages of using the gradient descent algorithm.

Describe a scenario where gradient descent may get stuck in a local
minimum.

Give 1 reason why gradient descent is suitable to optimize the mean
squared error.

LO3
You have the loss function f(x) = 4*x**3 + 10*x**2+5, learning rate 0.1,

and current point x = 2. What is the value of the parameter after
performing one update?

PCA

LO4 Which of the following statements about PCA is/are incorrect?

LO5 Which eigen pairs would you pick if you want the new data to have 3
dimensions? (given already computed eigen pairs)

Principal component analysis (PCA) is the process of computing the
principal components (PCs) and using them to perform a change of

basis on the data, sometimes using only the first few principal
components and ignoring the rest. Choose the correct statement: -

Performing the PCA means:
Which statement about PCA is false?

LO6 Which of the following statements is/are true? PCA is a dimensionality
reduction algorithm that minimizes/ maximizes error and variance.

Table 3.1: Learning objectives per topic and associated questions

Gradient Descent Questions
As mentioned in Section 3.3.1, the visualizations and knowledge assessment questions were built on
the basis of the following learning objectives:

• LO1: Explain the gradient descent algorithm and its components. (Understand Conceptual Knowl-
edge)

• LO2: Infer potential problems of gradient descent and their causes. (Understand Conceptual
Knowledge)

• LO3: Execute gradient descent update steps. (Apply Procedural Knowledge)

As it can be seen in 3.1, each learning objective can be associated with a few questions used in the
experiment. The questions and their possible answers (for multiple choice questions) are included in
Appendix A.1.

The first three questions aim to assess whether the students understand the gradient descent algo-
rithm and its processes. To answer these questions, students need to reflect on the textual materials
provided, but also on their interaction, especially with the first visualization. The next five questions
focus on whether students can infer potential problems of gradient descent and their causes. In the
given materials, there is no mention of these scenarios, disadvantages, or consequences, but they
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have to critically reason about the gradient descent algorithm and its components. Lastly, the students
need to execute one gradient descent update in question 9. This aims to test whether they understood
the mathematical formula that was given to them and whether they know how to apply it in a specific
example. Besides being included in the textual information, the formula is also displayed in the first
visualization in the mathematical updates for each iteration.

These questions were derived both using previous exams of CSE2510 Machine Learning and
TI3145TU Machine Learning and Introduction to AI, courses offered at TU Delft. However, some of
them, such as the first ones were derived specifically to test specific learning objectives, without being
inspired by the mentioned courses.

Principal Component Analysis Questions
Asmentioned in Section 3.3.2, there is a clear list of 3 learning objectives tackled during the experiment,
namely:

• LO4: Recall Principal Component Analysis elements. (Remember Factual Knowledge)
• LO5: Explain Principal Component Analysis and its components. (Understand Conceptual Knowl-
edge)

• LO6: Infer equivalence between variance and error Principal Component Analysis versions. (Un-
derstand Conceptual Knowledge)

In the same manner, questions for the pre and post-test were derived to assess these learning
objectives, and their connection is shown in Table 3.1. Also, the full questions for this topic, together
with their possible answers, can be seen in Appendix A.2.

The first question is related to the first learning objectives, assessing whether students recall how
Principal Component Analysis works and what is its application and outcome. Along that, questions 2,
4, and 5, are closely related to explaining the principal component analysis and its components. The
difference between these questions and the first question is that the answers were not specifically men-
tioned in the materials and they require the student to understand the mechanics behind the algorithm.
Lastly, question 3 measures whether the students can infer the equivalence between maximizing the
variance and minimizing the error. This learning objective is backed up by the first visualization from
the Notebook, since they can see both the variance and the error graphs and they should realize that
these two are inversely proportionate.

All previously mentioned questions were taken from the CSE2510 Machine Learning course. The
decision to inspect the questions and include them in the materials was taken due to the higher level of
experience of the mentioned course and its staff members. However, each question was examined to
match the contents of the Notebooks, and based on this analysis, one answer was removed from the
fourth question.

3.5.2. Motivation Assessment
Besides considering the knowledge gained by the students by reading and understanding the materials,
the motivation of students was also considered. The current approach of the research combines what
is being done by others, namely focusing on the level of understanding or students’ experience.

To measure the motivation of students, the Instructional Materials Motivation Survey(IMMS) was
analyzed, choosing to use the reduced version(RIMMS) proposed and validated by Loorbach et al [42].
This survey is based on the ARCS model [35] and it focuses on the motivation of students regarding
instructional materials. Initially, the survey was aimed at in-person instructional materials, but it has
since been used in the context of computer-based remote instructional materials [4, 36].

The survey focuses on the four constructs targeted by the ARCSmodel, namely attention, relevance,
confidence, and satisfaction, containing a total of 36 questions. The creators of the reduced version
claimed that the length of the initial versionmight lead to fatigue or boredom [42], motivating the creation
of the reduced version. This version only includes 12 questions, 3 questions per construct, and after
the validation, it proved to be more efficient in measuring the construct than the original version. Due
to this improvement, the reduced version of the survey was chosen for the current research. This
decision was especially important due to the already long process of going through the materials and
understanding them.

This survey instructs people to rate a list of specific statements on a scale from not true to very true,
as it can be seen in Appendix B.1. After collecting the answers, they are matched to numbers from 1 to
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5. These numbers are used to calculate the average score for each construct and the average score
overall for motivation.

3.5.3. Human Research Ethics
The conducted experiment involves humans as they are the main target and focus. Following the rules
and practices of TU Delft, “all research involving Human Research Subjects – including Master’s theses
– requires approval from the Human Research Ethics Committee (HREC) before it can go ahead.” [1].
For this reason, before starting the previously described experiment, an application was submitted to
HREC and approval was obtained from the committee to conduct the research.

The main reason for this procedure is to ensure that the participants are exposed to a risk as low
as possible. In the given setting, risks can include collecting sensitive data, mishandling the data, or
being pressured to participate in the experiment. As stated in the HREC application forms, the current
experiment does not collect any personally identifiable data, since it is not relevant to the research, it
stores all data in places approved by the current practice of TU Delft, and the participants are free to
choose if they want to take part in the experiment or whether they want to opt out of the experiment.
More than that, to ensure the minimal risk nature of the experiment, Microsoft Forms is used to gather
the responses from the survey, and to store them.
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A
Knowledge Assessment

A.1. Gradient Descent Questions
1. What is the primary objective of gradient descent in machine learning?

(a) Maximizing the accuracy of the model
(b) Minimizing the loss function
(c) Maximizing the number of features
(d) Minimizing the number of iterations
(e) I don’t know

2. Which of the following best describes the gradient descent algorithm?

(a) It finds the maximum of a function by moving opposite to the gradient direction.
(b) It randomly searches for the minimum of a function.
(c) It finds the minimum of a function by moving in a zig-zag pattern.
(d) It finds the minimum of a function by moving opposite to the gradient direction.
(e) I don’t know

3. What is the role of the learning rate in gradient descent?

(a) It decides the maximum value of the loss function.
(b) It determines the number of iterations needed for convergence.
(c) It determines the size of the steps taken during optimization.
(d) It controls the number of features in the model.
(e) I don’t know

4. What is a possible consequence of choosing a too-large learning rate?
5. What is a possible consequence of choosing a too-small learning rate?
6. Write two disadvantages of using the gradient descent algorithm.
7. Describe a scenario where gradient descent may get stuck in a local minimum.
8. Give 1 reason why gradient descent is suitable to optimize the mean squared error.
9. You have the loss function f(x) = 4 ∗ x3 + 10 ∗ x2 + 5, learning rate 0.1, and current point x = 2.

What is the value of the parameter after performing one update?

A.2. Principal Component Analysis Questions
1. Which of the following statements about PCA is/are incorrect?(multiple answers allowed)

(a) The component we find become the new dimensions of our data.
(b) The principal components are ordered from those that account for the largest variance to

the ones that account for the smallest variance in the data.
(c) The principal components are given by the eigenvectors of the data matrix.
(d) PCA returns a subset of the original dimensions.
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(e) I don’t know.

2. For a given dataset represented by feature vectors of length 6 (6 features per datapoint), the PCA
technique is performed and resulted in the following eigen pairs:

Which eigenpairs would you pick if you want the new data to have 3 dimensions?(exactly 3 an-
swers allowed)

(a) eigen pair 1
(b) eigen pair 2
(c) eigen pair 3
(d) eigen pair 4
(e) eigen pair 5
(f) eigen pair 6

3. Which of the following statements is/are true? PCA is a dimensionality reduction algorithmwhich:(multiple
answers allowed)

(a) maximizes variance
(b) minimizes variance
(c) maximizes reconstruction error
(d) minimizes reconstruction error
(e) I don’t know

4. Principal component analysis (PCA) is the process of computing the principal components (PCs)
and using them to perform a change of basis on the data, sometimes using only the first few
principal components and ignoring the rest. Choose the correct statement:
-Performing the PCA means:

(a) projecting the data in the direction of each PC, and scaling it by a factor of λ (eigenvalue) of
that direction (eigenvector).

(b) projecting the data in the direction of each PC, without scaling it by a factor of λ (eigenvalue)
of that direction (eigenvector).

(c) translating the data to be zero mean and normalize to have unit variance.
(d) I don’t know

5. Which statement about PCA is false?

(a) The larger the number of principal components for PCA, the smaller the reconstruction error.
(b) Principal components founded by PCA are always orthogonal.
(c) Reducing the dimensionality using PCA must not be done as preprocessing step before

applying a classification model.
(d) Two principal components are often used for visualizations purposes using PCA.
(e) I don’t know



B
Motivation Assessment

B.1. Reduced Instructional Materials Motivation Survey(RIMMS)
Following the procedure from [42], the students were asked to rate each statement on a scale from not
true to very true(not true, slightly true, moderately true, mostly true, very true)

1. The quality of the writing helped to hold my attention.
2. The way the information is arranged on the pages helped keep my attention.
3. The variety of reading passages, exercises, illustrations, etc, helped keep my attention on the

lesson.
4. It is clear to me how the content of this material is related to things I already know.
5. The content and style of writing in this lesson convey the impression that its content is worth

knowing.
6. The content of this lesson will be useful to me.
7. As I worked on this lesson, I was confident that I could learn the content.
8. After working on this lesson for a while, I was confident that I would be able to pass a test on it.
9. The good organization of the content helped me be confident that I would learn this material.
10. I enjoyed this lesson so much that I would like to know more about this topic.
11. I really enjoyed studying this lesson.
12. It was a pleasure to work on such a well-designed lesson.
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C
Interactive Visualizations

As previously mentioned, the research included the development of 2 Jupyter Notebooks each accom-
panied by 3 interactive visualizations and tackling one of the two topics. In this section, the exact
materials that were developed and used in the experiments are displayed.
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D
Static Visualizations

The conducted controlled experiment required a control group that received a version of the previous
Jupyter notebooks including static visualizations. In this section, the exact materials that were given to
the control group are shown.
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