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Cosimulating 
Integrated Energy 
Systems With 
Heterogeneous 
Digital Twins

By Peter Palensky , Pierluigi Mancarella , 
Trevor Hardy , and Milos Cvetkovic  

E
ENERGY SYSTEM INTEGRATION PROMISES IN-CREASED RESILIENCY AND THE UNLOCKING 
of synergies, while also contributing to our goal of decarbonization. It is enabled by both old and new 
technologies, glued together with data and digital services. Hydrolyzers, heat pumps, distributed renew-
able generation, smart buildings, and the digital grid edge are all currently the subject of integration 
with the power system and the energy sector at large. To plan and operate such a multidisciplinary and 
multisectoral system properly, insight, tools, and expertise are all needed. This is exactly where the state 
of the art fails to deliver: tools for integrated energy systems (IESs) are still in their infancy, and many 
times, even academia treats these sectors separately, producing experts in each of them but not across.

Heterogeneous digital twins (DTs), based on cosimulation, are currently a pragmatic and useful 
approach to working with such complex and interdisciplinary systems. They can host models and data, 
coming from entirely different schools of thinking, and bring together what is already connected in 
the real world.
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Matching a Connected World

Introduction
Energy systems can be integrated in several directions (Table 1). One dimension is within one sector in 
a vertical or horizontal way; transmission system and distribution system integration in electricity sys-
tems is one example of that. Most of the time, however, we think of cross-sectoral integration where, for 
instance, heat and electricity are somehow “integrated.” This integration can, and in parts should, happen 
in several phases. Integrated planning ensures that infrastructure supports each other, while integrated 
operations can unlock synergies when it comes to flexibility. There is integration in terms of automation, 
by using shared communication channels or information technology, operational technology infrastruc-
ture. Even markets can be integrated so that bids may be placed for combined products, such as heat and 
electricity for combined heat and power (CHP) plants. The effort of producing this increased integration 
is intended to improve resiliency, flexibility, and/or efficiency.

The operation of the system, however, does not become simpler with higher levels of integration. 
Previously separated processes (whether in planning or operations, physical assets, or digital work-
flows) need to be unified or at least made interoperable. Decisions in one domain will have an impact 
in another that will only surface if the impacted domain is fully analyzed with its own specialized 
tools and domain experts; performing multidomain analysis one domain at a time and in a serial 
fashion is likely to be time consuming and inefficient. Interdependent properties (think of sizing 

infrastructure for a thermoelectric system with 
multiple crossover points such as heat pumps, 
CHP plants, etc.) lead to chicken and egg situ-
ations that are expensive to solve. Cases with 
complex, cross-domain dynamics or market 
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interactions are even more extreme and yet common. Grid 
operators that run heat and electricity grids, municipalities 
that want to plan the next decades of energy investments, 
or utilities that run CHP and sell both products are facing 
the need for more integrated processes.

The complexity of the problem and the fact that experts 
from different domains must cooperate on the same 
integrated problem calls for an integrated model: a DT. 
Numerical help, DTs, are frequently used when analytical 
methods face their limits, when systems become too com-
plex to be understood, or when borders of disciplines are 
crossed. IESs lead to exactly this case. The lack of multi-
domain tools and methods in the energy sector, combined 
with the need to integrate domains such as heat, electricity, 
urban planning, markets, automation, communication net-
works, and even cybersecurity, is why multidomain DTs 
are on the rise. They are expected to be one central plat-
form, one central “source of truth,” where diverse teams 
can work on multidomain, multiobjective, and multi-time-
scale solutions.

DTs for IESs need to be able to
✔✔ represent multiphysics systems (thermal, electric, gas, 
building physics, etc.)

✔✔ execute different models with heterogeneous data 
structures and solvers (ordinary differential equations, 
3D such as finite elements or computational fluid dy-
namics, discrete models, and multiagent models), in 
order to

✔✔ represent multidomain systems (markets, energy, auto-
mation, communication, policy, and spatial planning)

✔✔ handle different magnitudes of time (microseconds 
for power electronics and minutes for heat flow)

✔✔ work with multidomain scenarios in one unified 
way (e.g., one language to describe all parts of the 
system).

Further, the model and computation engine need to pro-
vide the “usual” features of a DT, such as numerical per-
formance and stability, good scalability, and standardized 
interfaces. The numerical model of the multidomain DT can 
either be based on a monolithic solver using a flexible mul-
tidomain specification language or combine several models 
and solvers to a cosimulation.

The DT in this multienergy setting is a platform that hosts 
models and parameters of all processes involved, takes time 
series and other environmental/exogenous input data, and 

then delivers the dynamic behavior of these coupled models 
within a certain scenario. The workflow is important, as well 
as how experts interact with the twin: Which interfaces are 
available? How can the DT system be optimized? How can 
parameters be estimated or updated? How can uncertainty 
be represented and traced? 

In the case of black box models, one scenario gives one 
snapshot, and many snapshots are required to see the big-
ger picture (Figure 1). Without derivatives or other ana-
lytical insight into the shape of the problem, though, the 
location of an optimum (e.g., stability or costs) can only be 
found via searching.

Sensitivity toward certain parameters or robustness 
toward others cannot be calculated and, instead, needs to 
be estimated over a broad range of input parameters. Smart 
parameter choices and smart sampling with Monte Carlo or 
Latin Hypercube methods might reduce a potentially astro-
nomical number of interesting cases to a manageable subset, 
but the fundamental problem stays: the models do not expose 
details such as derivatives that would allow for smart optimi-
zation, and therefore, the solution must be searched for.

If these processes and details were defined in one model 
(Figure 2), through the use of one language, and executed 
with one solver, optimization beyond heuristic searching 
methods would be possible.

Existing languages and tools, however, are not sufficient 
(in either model coverage or computational power), and leg-
acy models/tools must be integrated, as well. Currently, the 
standard twin setup for IESs is, therefore, cosimulation-based, 
whose submodels appear as black box to the simulation mas-
ter, even if they are white box internally.

Both options are computationally expensive. The cosimu-
lation method requires assets to be shared among simula-
tors (i.e., a power station is part of the thermal model and 
the electric model), so variables and states need to be shared 
and exchanged. The monolithic method, however, generates 
exceptionally large equation systems that must be solved. 
This does not scale well, either. Still, combined, cross-sectoral 
models are needed, and both methods are subject to improve-
ment and innovation, as we speak.

Purpose and Modeling  
Requirements of DTs
When considering the development, design, or adoption of 
a DT of any system, and particularly of complex IESs, it is 

table 1. A nonexhaustive list of examples of dimensions of energy system integration.

Network Type Carrier Sector Policy Active Assets

Electricity Industry Infrastructure Storage

Transmission network Heat Housing Markets Demand Response

Distribution network Gas Transport Resiliency (Distributed) 

Microgrid Steam Water People Generation
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essential to identify its main purpose and from that the DT’s 
key essential features and requirements. For IESs, there are 
different domains of interest that could be considered, which 
closely link to the specific application purposes and use 
cases of a DT (see also the section “Applications”). Some 
examples are provided below.

Geographical Scale and Resolution
The geographical scale of an IES DT could vary from the 
national to the regional level, city or town level, industrial 
hubs such as industry parks, the neighborhood level, and 
finally, even down to the building level. Accordingly, the 
relevant use cases could range from the operation and plan-
ning of national-level energy infrastructure (electrical and 
gas networks) to modeling the operation of an individual 
building. For studies of large-scale network infrastructure, 
the geographical resolution that is sought is normally at the 
level of grid supply points and transmission or distribu-
tion interface substations. However, hierarchical schemes 
could also be developed that cosimulate both transmission 
and distribution networks, again with appropriate levels of 
details, especially in the context of emerging transmission 
and distribution technical and market interfaces. This is 
particularly relevant for the electricity network, especially 

with more and more distributed energy resources, while 
less resolution is usually required for gas network studies. 
At the building level, typical and important IES applica-
tions are quantifying and extracting the potential flexibility 
that could be provided, such as for demand response pur-
poses by smart appliances and virtual storage in the build-
ing fabric, while optimally controlling air conditioning 
plants, etc. Noteworthy DT use cases that are emerging at 
intermediate levels of the geographical scale and resolution 
are associated with building DTs of low-voltage networks 
for fast connection assessment and capacity allocation to 
distributed energy resources.

Temporal Scale and Resolution
In terms of temporal scale and resolution, DT use cases 
may vary from studies concerning power/energy system 
and market operation, to long-term, multiyear planning and 
investment studies (typically between ten and thirty years 
ahead). For example, typical steady-state problems, such as 
power flow, contingency analysis, and (for market operation 
purposes) security-constrained economic dispatch and unit 
commitment, may typically be run with time resolutions of 
between five minutes and one hour, with temporal windows 
of a few time intervals ahead, to day-ahead and week-ahead 
(e.g., for renewables forecast and pumped hydro scheduling). 
A much shorter time resolution, down to microseconds, 
may be needed for power system electromagnetic tran-
sient (EMT) studies, which may be simulated over a time Cosimulation

Power System Model

Buildings Model Thermal Model

Search

Optimum

G

G

figure 1. The cosimulation (see also the section “Cosimu-
lation as a Tool for DT Implementation”) of an IES: a black 
box needs to be searched. 

Monolithic Model

Optimization

Optimum

figure 2. A monolithic model that allows for smart optimization.
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window of up to a few minutes. On the other hand, hourly or 
multihourly resolutions are often assumed for DTs that have 
been built for electricity infrastructure planning studies. In 
the context of other energy infrastructures, for example, the 
gas network, the temporal resolution may be associated with 
both the objective of the study and the geographical scale, 
given the much higher time constants involved. For example, 
for planning purposes, a relatively small gas distribution net-
work may be simulated with daily resolution. On the other 
hand, a large gas transmission network should be simulated 
with a resolution of down to minutes, if the purpose of the 
study was to optimize the linepack storage operation in man-
aging gas network flexibility in its interaction with the elec-
tricity system.

Sector and Infrastructure Scope
“Sector-coupling” studies are emerging as a key area for 
IESs, including the use of simulations of sectors such as 
electricity, heat, gas, hydrogen, water, and transport, as 
well as the relevant infrastructure. For instance, in the 
context of decarbonizing future fuels for heating, trans-
port, and other applications, modeling and simulations 
of integrated electricity–gas–hydrogen systems and net-
works are being considered to inform strategic industry 

and policy plans around the world. For example, Figure 3 
shows the DT of the integrated electricity and gas trans-
mission network for the east coast of Australia. This has 
been developed to assess the real-time operational impact 
of the injection of green hydrogen that is produced from 
renewables into an increasingly decarbonized gas net-
work. This analysis supports the relevant development of 
integrated electricity–gas–hydrogen markets, infrastruc-
ture planning, and policy development. Different types 
of IES DT modeling might also be required to study 
the decarbonization of the transport sector including, 
for example, models for simulation of the road transport 
behavior of different types of vehicles or the interaction 
of these with relevant recharging (electricity) or refueling 
(hydrogen) stations, along with the upstream infrastruc-
tures of said stations. It is clear that such a multisector 
DT presents a great degree of complexity in terms of 
the interactions of the different models and modules; 
the adoption of appropriate geographical, temporal, and 
modeling resolution; and the availability and efficiency of 
data exchange across modules, as is discussed in the other 
sections of this article.

Functional Layers
Different functional layers may be considered in the devel-
opment of a DT, depending on its purpose. For example, 
when focusing on the electricity network, a DT of only 
the physical infrastructure may be appropriate to study 
problems such as network capacity availability, security, 
and operational safety margins for different systems and 
components. A layer of the control infrastructure and 
architecture could then be added to better identify the 
potential response of the system to contingencies, such 
as introducing dynamic system simulations and includ-
ing the impact of different control systems and layers, on 
top of steady-state analysis. This is also relevant to a more 
general incorporation of the information and communica-
tion infrastructure and virtual layer on top of the physical 
energy infrastructure layer, as well as relevant studies per-
taining to cybersecurity and the study of cascaded impacts 
of disturbances across the cyberphysical system. Similarly, 
an energy market layer could be included to identify the 
starting point of steady-state and dynamic/control simula-
tions. Again, as in the case of multisectorial integration of 
different DT modules, the inclusion of different functional 
layers requires a thorough and careful design of the model-
ing of each layer and their interactions.

An important question that needs to be addressed across all  
scopes and domains of a DT is that of the functionalities and 
resolution of the modeling itself.

figure 3. The integrated electricity–gas–hydrogen DT of 
the Australian east coast energy system, under development 
by the University of Melbourne.
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General Modeling Functionalities  
and Resolution
An important question that needs to be addressed across all 
scopes and domains of a DT is that of the functionalities 
and resolution of the modeling itself. For example, a DT of 
a power system might be developed with different levels of 
detail for simulation studies that include steady-state power 
flows or rms or EMT-type dynamic studies that are suit-
able to study new renewable generation connections. In this 
regard, the need for performing high-resolution dynamic 
studies with underlying EMT modeling has recently come to 
the forefront in several discussions across system operators 
around the globe, with the aim of quantifying the stability 
impact of deep penetration of variable renewables interfaced 
through inverter-based resources, particularly in low-inertia 
and weak grids.

Most notably, the Australian Energy Market Operator 
has developed an EMT simulator of the Australian east 
coast transmission interconnection. Given the comput-
ing complexity associated with it, the question, therefore, 
arises as to when such detailed simulations are actually 
needed and whether an “adaptable” DT of the system 
should be developed that allows (ideally automatically) 
for switching among models as needed, shifting from a 
steady-state to an rms dynamic, and then EMT dynamic 
details, as required. While such modeling resolution is 
fundamentally driven by the presence of faster or slower 
dynamics and the relevant time constants involved in the 
different technologies and infrastructures, in reality, the 
choice is also driven by what type of stability and gen-
eral power system phenomena need to be specifically 
addressed and under which conditions. In other words, 
given the tradeoff with compu-
tational burden, it may not be 
desirable to have the highest pos-
sible resolution modeling run-
ning for any kind of study.

Linked to this is also the issue 
of data inputs: the more com-
plex the DT of a system is, the 
more data it will require. It 
may be that the uncertainty or 
proprietary nature of many of 
these data (control schemes of 
renewable technologies) would 
produce inaccurate and/or mis-
leading results, thus possibly 
defeating the purpose of the 
high-resolution model in the 
first place. Similar consider-
ations, about both the time con-
stants involved and the purpose 
of the study, also apply to other 
infrastructures such as heat and 
gas systems. For example, EMT 

modeling might always be required for connection stud-
ies of inverter-based resources in weak networks, while a 
DT should be able to identify the requirements to switch 
across the level of complexity and possibly down to rms 
dynamic simulations when making connections to strong 
networks. For IES, then, five-minute to hourly simula-
tions might be suitable for steady-state power flow or op-
timal power flow studies, followed by hourly simulations 
for heat network studies, daily simulations for gas/hydro-
gen steady-state network studies, and so forth.

As DTs may also be particularly useful in assessing 
the robustness of IES operation and planning against 
various degrees of uncertainties, it is important that the 
appropriate level of modeling complexity is adopted for 
such studies. In particular, modeling resolutions may be 
relaxed when, for example, studying sensitivities to dif-
ferent stochastic parameters in steady-state and dynamic 
system operations. This may include Monte Carlo-based 
time-ahead scheduling and stochastic simulations, con-
sidering different uncertain parameter inputs, or for long-
term planning with scenario studies, in order to assess the 
robustness of investment solutions. In these cases, rela-
tively faster modeling approaches for case screening and 
sensitivity assessment should be used, and it is desirable 
that a DT has such flexibility.

Cosimulation as a Tool for  
DT Implementation
DTs often, but not always, model systems that cross tradi-
tional analysis and simulation and domain boundaries. Some 
DTs can be assembled using a single simulation tool or a set 
of simulation tools that operate in series with the output of 

Rooftop Solar
Simulator

EV Charge
Management Simulator

Overlapping Simulator
Boundary Conditions

(Voltage)

Distribution System Simulator

Residential
Load Simulator

EV Charge
Management Simulator

Overlapping Simulator
Boundary Conditions

(Voltage)

Distribution System Simulator

Residential
Load Simulator

figure 4. The linear DT simulation architecture when no voltage dependency  
is assumed.
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one affecting the input of the next, forming a linear simula-
tion chain. Although this linear data exchange is possible 
for some DTs, there are others where it is too simplistic or 
not possible. In such cases, it is common for two or more 
simulation tools to share system boundaries, with the out-
puts of one forming the inputs of the other and vice versa. 
To model these multiple domains, a cosimulation platform 
is often used to tie the simulators together, providing them 
the ability to exchange data during runtime and thus influ-
ence each other’s operation. By providing data dynamically 
and enabling interaction among the simulation tools, larger 
and more complex DTs can more quickly be modeled and 
simulated using existing, best-in-class domain-specific tools 
without developing and validating a custom, integrated sim-
ulation tool.

For example, a DT could be designed to evaluate the 
impacts of distributed solar generation and an electric 
vehicle (EV) charge management scheme on total power 
system demand, as shown in Figure 4. Such a DT could, to 
decrease model computation and update time, make simpli-
fying assumptions such as constant power residential loads 
and simple, voltage-independent inverter controls for the EV 
charger and distributed solar generation. In such a case, the 
distribution system simulator’s power flow solution can be 
found very quickly because of this voltage independence.

A more realistic DT, though, includes voltage dependency, 
which creates overlapping boundary conditions between the 
distribution system simulator and the behind-the-meter 
assets (Figure 5). The solution of the power flow affects 
the voltage at the meter, affecting the operating state of 

the customer assets, which, in turn, affects the solution of 
the power flow. For these circular dependencies in a DT, a 
cosimulation platform is helpful in maintaining a consistent 
state across simulator tools.

Cosimulation platforms generally have two primary, 
interrelated functions: synchronizing the individual 
simulation tools in simulated time and facilitating data 
exchanges at appropriate points of time. Time synchroni-
zation is necessary to ensure that the data being exchanged 
among simulation tools have the correct temporal con-
text. Without regulation of the simulated time, individ-
ual tools could send data from the simulated future or 
past, and the receiving tool would not necessarily handle  
it appropriately.

Although it is simply stated, managing these two func-
tions can be challenging. Individual simulation tools may 
have different concepts of time (continuous versus discrete, 
for example), may be written in different languages and thus 
have different fundamental data types, and may not save 
previous model states to allow resolving and iterating at a 
particular time step. Furthermore, for a given DT, there may 
be a need to sequence the data exchange among particular 
software tools in a particular way, run in a wide variety of 
computing environments from laptops to high-performance 
computing clusters or even run in a disparate networking 
environment that includes multiple institutions and/or cloud 
computing resources. A robust cosimulation platform would 
be able to facilitate the creation of a DT despite these infra-
structure challenges.

There are a number of candidate cosimulation platforms 
that could be used to create a DT. 
One of the earliest such platforms 
is the hierarchical language ar-
chitecture pioneered by the U.S. 
Department of Defense and later 
codified as IEEE Standard 1516 
in 2000. Over the past decade 
or two, the functional mock-up 
interface has been developed, 
originally to allow a system in-
tegrator to evaluate components 
from a variety of vendors without 
exposing propriety details of the 
modeled components. It has since 
grown to facilitate more general 
cosimulation needs. More recent-
ly, other generic cosimulation 
platforms have been developed 
such as HELICS and Mosaik, 
both of which were designed with 
the energy sector in mind but can 
support a wide variety of simula-
tion tools.

Creat ing integrat ion of an 
existing simulation tool and a  
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figure 5. The circular DT simulation architecture with voltage-dependent compo-
nents, where data flow is bidirectional.
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cosimulation platform typically happens in one of two 
ways. For open source tools, cosimulation platforms today 
typically produce a library with the platform’s applica-
tion program interfaces (APIs) in a variety of popular 
programming languages (i.e., Python, C++, Java, and  
MATLAB), and the source code of the simulation tool 
can be edited to include these API calls at the appropriate 
point in the tool’s execution (Figure 6). For commercial 
tools where the code base is not publicly available or when 
a tool is not written in a language with support from the 
cosimulation platform, integration relies on the tool devel-
opers producing an appropriately featured API. If such an 
API exists, a wrapper program written in a language sup-
ported by both the tool’s API and the cosimulation plat-
form’s API can be written. This wrapper coordinates the 
execution of the tool and the cosimulation platform, utiliz-
ing the API calls of both.

Applications
DTs have been in use in various 
domains of science and technol-
ogy. The concept first appeared 
in academia, as a proposal for 
the information and modeling 
technology to aid the product life 
cycle management. The first DT, 
not yet named as such, contained 
the full description of a physical 
product in virtual space, track-
ing it through its entire life cycle 
from creation, through operation, 
to the disposal. The twin was 
linked by the information flow 
from and to the physical product, 
keeping it updated and allowing 
its decisions to be implemented. 
The concept of linking a physical 
system to its exact digital rep-

lica was simple yet powerful. NASA was the first to use 
it in their aircraft design and space exploration missions. 
The DTs later evolved and deployed in various industries, 
while their specialization and differentiation became more 
prominent. Today we have the DT as a service concept or 
specialized DTs for experimentation, among others.

Across different industries, DTs have found their place 
in supporting and even taking over many tasks (Figure 7). 
Planned and predictive maintenance of energy infrastruc-
tures and industrial processes have gained traction since DTs 
provide necessary life cycle tracking and advice to engineers 
and maintenance crews. The DTs are used within these pro-
cesses for prognostic health management and, more widely, 
for the design and operations of industry 4.0 in which the 
focus of DTs is on improving the performance of industrial 
processes. Within the automotive industry, DTs have been 

Maintenance

Planning

Training

Collaboration

Interoperability

figure 7. The applications of IES DTs.
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figure 6. The (a) native cosimulation integration and (b) wrapper cosimulation integration.
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used in the vehicle design phase and for driving analytics and 
decision support. In the design phase, they are particularly 
suitable for cross-checking the suitability, interoperability, 
and performance of subsystems within vehicles, speeding up 
the design and validating design choices. Similar is the situ-
ation in the aerospace industry. Within the healthcare sector, 
DTs have found their application in surgical interventions, as 
well as predicting population behavior. DTs have also been 
used by governments to aid policy design and to train new 
world leaders in making relevant policies.

In the field of power and energy systems, DTs can be used 
for both the design and operation of these systems (see the 
“For Further Reading” section). In addition to the improve-
ment of the performance and validation of different design 
options, at the design phase, they could help reduce the 
search space of the feasible and optimal infrastructure design 
options. In addition to what has been said about their use for 
predictive maintenance, they also help visualize the flows 
of energy and the potential of collective actions by all con-
nected stakeholders. Alternatively, they are valuable for plan-
ning and operating the energy consumption sector, helping to 
devise demand response policies and energy bill management 
practices necessary for energy cost reduction in households, 
neighborhoods, office buildings, and business parks.

In the energy infrastructure sector, the DTs have been 
proposed to augment decision making in the control room, 
providing necessary support to the grid operators by per-
forming the online grid analysis and suggesting actions for 
grid reconfiguration (see the “For Further Reading” section). 
The applications range from real-time power flow monitor-
ing to real-time load shedding support. The advantage of DTs 
in the control room also includes the possibility to embed 
trusted third-party and encrypted submodels into decision 
support systems, leading to higher accuracy of the system, 
while preserving trade secrets of vendors. Such an approach 
increases opportunities for verification of control and man-
agement algorithms while improving the interoperability of 
the technologies and leading further to mass deployment. 
The twins can be used for training and education of the grid 
and industrial system operators.

Conclusion and Outlook
IESs show all features that usually point toward using DTs: 
complex behavior, transdisciplinary nature, and being too 
expensive for experimental mock-ups. The current implemen-
tations are usually based on cosimulation, which can suffer 
from mediocre numerical performance and complex handling 
of scenarios. There are promising developments with univer-
sal modeling languages such as Modelica, but scalability and 
simulation performance can still be an issue. In addition to the 
technical limitations, it is mainly the workflow of creating, 
validating, operating, and updating such twins that requires 
further attention. Right now, most of the real-world examples 
in the energy domain are either academic or require intensive 
support by the platform creator to work with it.

The potential of DTs in IESs is, however, great: syner-
gies and risks that are invisible to the plain eye and can, 
due to the complexity of the system, also not be identified 
in an analytical way can be tracked down with a DT. Be 
it in planning or in operations, such twins are a powerful 
tool for this complex business. They are a great platform to 
meet in projects: experts from different domains can join 
forces, basing their discussion on hard facts coming from 
a shared transdisciplinary platform, IES DTs. Their suc-
cess will depend on standardized interfaces, standardized 
procedures for testing and validation, and (highly likely 
machine-learning-based) support for model and parameter 
identification and updating.
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