
 
 

Delft University of Technology

Logging Practices with Mobile Analytics
An Empirical Study on Firebase
Harty, Julian; Zhang, Haonan; Wei, Lili; Pascarella, Luca; Aniche, Maurício; Shang, Weiyi

DOI
10.1109/MobileSoft52590.2021.00013
Publication date
2021
Document Version
Accepted author manuscript
Published in
2021 IEEE/ACM 8th International Conference on Mobile Software Engineering and Systems (MobileSoft)

Citation (APA)
Harty, J., Zhang, H., Wei, L., Pascarella, L., Aniche, M., & Shang, W. (2021). Logging Practices with Mobile
Analytics: An Empirical Study on Firebase. In L. O'Conner (Ed.), 2021 IEEE/ACM 8th International
Conference on Mobile Software Engineering and Systems (MobileSoft) (pp. 56-60). Article 9460930 IEEE.
https://doi.org/10.1109/MobileSoft52590.2021.00013
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/MobileSoft52590.2021.00013
https://doi.org/10.1109/MobileSoft52590.2021.00013


Logging Practices with Mobile Analytics: An
Empirical Study on Firebase

Julian Harty∗1, Haonan Zhang∗2, Lili Wei3, Luca Pascarella4, Maurı́cio Aniche5, Weiyi Shang2

1The Open University, Commercetest Ltd, 2Concordia University, 3The Hong Kong University of Science and Technology
4Università della Svizzera Italiana, 5Delft University of Technology

Abstract—Software logs are of great value in both industrial
and open-source projects. Mobile analytics logging enables de-
velopers to collect logs remotely from their apps running on end
user devices at the cost of recording and transmitting logs across
the Internet to a centralised infrastructure.

This paper makes a first step in characterising logging prac-
tices with a widely adopted mobile analytics logging library,
namely Firebase Analytics. We provide an empirical evaluation
of the use of Firebase Analytics in 57 open-source Android ap-
plications by studying the evolution of code-bases to understand:
a) the needs-in-common that push practitioners to adopt logging
practices on mobile devices, and b) the differences in the ways
developers use local and remote logging.

Our results indicate mobile analytics logs are less pervasive
and less maintained than traditional logging code. Based on our
analysis, we believe logging using mobile analytics is more user
centered compared to traditional logging, where the latter is
mainly used to record information for debugging purposes.

Index Terms—mobile analytics, mobile software development,
logging engineering, software monitoring, empirical software
engineering.

I. INTRODUCTION

Logs are valuable and sometimes the only available source
of runtime information of software systems [1]. Produced by
logging statements, logs play important roles in the daily
tasks of developers and other software practitioners [2], [3].
The rich information in logs has been widely leveraged in
both practice and research to accomplish challenging tasks in
both software development and operation, including system
comprehension [4], [5], [6], anomaly detection [7], [8], [9],
[10], [11], testing [12], [13], and failure diagnosis [14], [15].

One of the challenges of leveraging the information in logs
is to collect logs from end users of the software [3]. In
particular, developers of applications that run on end users’
devices (e.g. mobile apps) cannot directly retrieve the default
logs. To address this challenge, mobile analytics services
enable developers to automatically record and transmit logging
information using a centralised infrastructure. For example,
Firebase provides APIs [16] that developers can use to send
runtime information of an application to a cloud-based infras-
tructure for later analysis.

The unique nature of mobile analytics logging may lead
to different logging practices compared to traditional logging
that is stored locally. For example, mobile analytics logging
may bring extra non-negligible resource overhead to generate

∗
The first two authors contributed equally to this work.

and transmit the logs. In addition, the remote storage of
information may also bring privacy concerns [17]. Therefore,
research into the characteristics of practices of mobile analyt-
ics logging is germane to help practitioners and researchers
further understand and address the challenges.

We conducted an empirical study on the use of the most
widely adopted mobile analytics logging library, Firebase
Analytics, in 57 open-source Android projects. We aim to
answer two research questions:
RQ1 What are the characteristics of logging practices with
mobile analytics?
RQ2 What do developers log with mobile analytics?

In our empirical study, we disclosed several interesting find-
ings. We found logging statements of mobile analytics are less
pervasive and less maintained than traditional local logging
statements. We also identified four types of information are
usually logged: domain/business events, user interface events,
failures and/or unexpected situations, and other information.
Notably, the majority of log statements record domain/business
events. This paper presents our first investigation on the
characteristics of mobile analytics logging practices and makes
the following contributions:
• Our paper is the first to study the logging practices with

mobile analytics.
• The data from our study, such as the custom logging

classes we identified, provides a head-start to support further
research on logging with mobile analytics.

• We provide a comprehensive reproduction package1.

II. BACKGROUND: MOBILE ANALYTICS

Mobile analytics combines software code that runs on mo-
bile devices, data collection from the mobile device to servers,
and processing and subsequent analysis. The data may include
device data, app usage data, contextual information, etc. [18].
The analysis is performed by one or more stakeholders, such
as the app’s development team, the provider of the analytics,
and/or the provider of the platform, e.g. Android and iOS.

Mobile analytics was derived from web analytics and in-
tended to focus on business-oriented metrics and reporting.
Over time mobile analytics was also used for other purposes
and their APIs evolved to support the collection of additional
forms of information, including those mentioned earlier. One

1https://github.com/mobileanalyticslogs/mobileanalyticslogging

1

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, 
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works

https://github.com/mobileanalyticslogs/mobileanalyticslogging


product in particular, known as Firebase Analytics, evolved
and was acquired by several companies in turn as more and
more developers chose to incorporate it into their mobile apps.
Google now owns it, and Firebase Analytics are incorporated
into over 62% of the Android apps in the Google Play
store [19]. One of the key features from a developer-oriented
point of view was the flexible and powerful APIs that enable
developers to design and implement custom events and data
collection, including log messages [16].

Mobile analytics has similarities to logging where develop-
ers write code statements that use a software library to record
information while the software runs. However much of the
logging developers use is intended for local consumption, for
instance on a mobile device connected to their development
machine, i.e. local logging. Remote logging copies what was
written to a local log and sends it to a remote server for
further use. There are various libraries available for mobile
apps e.g. Timber, however none is very popular [20]. Key
differences between using logging and analytics include the
integral analytical aspects of processing the data.

III. CASE STUDY

In this section, we present our case study and the results
through answering our two research questions.
Subjects. Our study is based on analyzing 25,611 Java projects
used in prior research of logging utilities practices [21].
In particular, all the Java projects are obtained from the
GHTorrent [22] MySQL dump (last updated on 2019-06-
01). Duplicate (e.g. forks and clones) projects were removed
as were inactive projects. In order to identify the projects
that use Firebase Analytics, we further filtered the projects
by searching keyword “FirebaseAnalytics” in each project’s
source code and collected 107 projects. For each of the 107
projects we manually examined whether customised APIs are
used by developers for mobile analytics logging. We found 50
of them only collect the default automated metrics generated
by Firebase without proactively logging any information.
Therefore, our study focuses on the remaining 57 projects
where developers intentionally leverage the logging features
in Firebase to collect information for their software.
Identifying logging statements. Initially we followed the
same practice as prior research where logging statements
are identified based on the Abstract Syntax Tree (AST) and
the particular pattern of method invocation of each logging
library [23], [24]. However, after manually examining the log-
ging statements, we found developers often wrap the Firebase
APIs in a custom logging class. In particular, logging using
the Firebase API is rather complex where multiple method
invocations are often needed to log once. Therefore, developers
rarely directly call the Firebase APIs to log. Instead, they
create wrapper class that provides utility methods that log
using the Firebase API. We manually identified these wrapper
classes and their utility methods. These methods were used
as keywords to automatically identify the logging statements
in their respective project. Specifically, we leveraged srcML
to convert source code files to XML files. (Kotlin source

(a) Code density of logging. (b) Logging code churn rate (%).

Fig. 1: The characteristics of mobile analytics logging.

files were first renamed from *.kt to *.java which was
enough to process them). We then extracted all the invocation
calls by using XPath. Then, for each project we used regular
expressions to check whether the caller names matched with
the corresponding class names we found.

RQ1: What are the characteristics of logging practices with
mobile analytics?

Motivation: Prior research studied characteristics of logging
code in open-source server and desktop software [25], [24],
and mobile applications [23]. However, these studies only
focused on local logging code. We conjecture the unique
characteristics of mobile analytics logging practices may in-
troduce new challenges and opportunities for researchers and
practitioners who design infrastructures for mobile analytics
logging. In this RQ, we explore the characteristics of mobile
analytics logging as well as how it evolves over time.

Approach: For each of the 57 projects, we followed prior
studies on logging practices [25], [24], [23], [26], [27] that
study the logging practices based on the following metrics:
SLOC per logging statement(Code density of logging).
The code density of logging, defined by Yuan et al [25], is
calculated by SLOC/NOL. SLOC refers to the number of
source code lines and NOL refers to the number of logging
lines. This metric measures the density of the mobile analytics
logging statement in the projects. We used cloc to count the
number of source lines of code.
Churn rate of logging code. This metric is calculated by
averaging the LogChurn/NOL of all the commits. LogChurn
is calculated by the sum of added, deleted and modified
logging statements. It measures the maintenance effort of the
mobile analytics logging statements. For each of the projects,
we analyzed its entire commit history and identified the added,
deleted, and updated files in every commit by querying the
GitHub API. For the added and deleted files we applied the
same approach in previous step to detect the logging lines in
those files. For the updated files we leveraged git diff to
identify the added logging lines, deleted logging lines, and
updated logging lines and categorised them accordingly.

Results: Mobile analytics logging is less pervasive and
less maintained than traditional mobile logging. The median
SLOC per mobile analytics logging statement is 1,148, while
a prior study on FDroid apps showed the median value of
SLOC was 145 per traditional mobile logging statement [23].

2



We have two hypotheses for the lower density of log
statements using mobile analytics: 1) Developers may need to
conservatively choose where and what to log in order to avoid
impacting the end users’ experiences from the mobile analytics
logging (they incur both performance and bandwidth overhead
because the logs have to be transmitted over a functional
network connection). 2) The latency of deploying apps to end
users and the impact on end users of debugging in the field
reduces the temptation to use mobile analytics for debugging
purposes.

In addition, among all the code commits, only 1.35% (1,331
out of 98,565) contain changes (adding deleting or modifying)
to mobile analytics logging statements, while a prior study
shows around 10% of the commits containing changes to tra-
ditional mobile logging statements [23]. By further examining
the data, we find 56% of the changes add, 23.6% delete,
and 20.3% modify mobile analytics logging statements. In
contrast, the prior study found a much larger amount of the
changes to traditional mobile logging statements were to delete
existing logging statements that were used for temporary
debugging [23]. The different purposes of logging statements
using mobile analytics may contribute to the differences of
maintenance activities of mobile analytics logging statements
(c.f. RQ2).

Figure 1 presents histograms of mobile analytics logging
statement density and churn rate of this code among the
57 apps. Although the majority of the apps in the study
have both low log density and log churn rate, the long tail
of both figures demonstrates some projects extensively use
and maintain their mobile analytics logging statements. For
example, OpenDocument has only around 4.2K SLOC yet
it has 64 mobile analytics logging statements. By manually
checking those projects we found developers sometimes log
every UI interaction of the app in order to know how the
app is being used. The high density may not lead to high
churn rate of mobile analytics logging. By calculating the
Pearson correlation between the two metrics, we found the
two metrics are only weakly correlated (ρ = −0.15), which
means the volume of mobile analytics logging statements may
be independent with how often those logging statements are
revised during ongoing development. For example, muzei has
69 mobile analytics logging statements. Only 20 of the 2,664
commits in the project’s 7 year history mention the addition
or revision of analytics.

RQ2: What do developers log in mobile analytics?

Motivation: Here, we study what types of information
developers log using mobile analytics. Understanding precisely
what is logged may help the mobile community design and
build more useful mobile analytics frameworks (for instance
relevant APIs) and infrastructures (for instance that optimises
timely data delivery and analysis).

Approach: We manually analysed a set of 300 randomly
selected logging statements (CI=5, CL=95%) [28]. These are
our data points here. Our method was as follows:

Step 1: Agreement on an initial code book: We randomly
selected 30 logging statements (i.e. 10% of the entire set)
from the sample. All the researchers individually analysed
the logging statements. The researchers then used the logging
statements (and the source code of the project when needed) to
assign a single label to each data point. These labels indicate
what that statement logs. Once we individually labeled these
30 logging statements we compared our labels one-by-one
with the goal of devising an initial shared code book.

Step 2: Analysis of the entire dataset: We then randomly
divided the 300 logging statements in five batches of 60
logging statements each. Each researcher was assigned to two
batches. In other words, every logging statement is reviewed
by two researchers. Using the initial code book and shared
knowledge, the researchers individually labelled all the data
points in the dataset.

Step 3: Resolving the disagreements: After the first round,
we observed agreements ranging between 66% and 77%
among the researchers. Each pair of researchers would then
discuss their disagreements, item by item, and reach an
agreement. If the two researchers still did not agree a third
researcher joined the discussion (which happened solely for
two logging statements). During this resolution phase the
researchers decided not to label five data points due to lack of
clarity on the logging statement.

Results: Four distinct types of information are being logged:
Domain/business events (51.3%): The majority of the mobile
analytics logging statements are about specific domain or
business events that just happened in the app. For example,
the edX mobile app logs whether a user downloaded a video
in their platform, and the MyWallet app tracks whether the
user purchased something again.
User interface events (38.7%): Developers log the interac-
tions users have with their app’s interface, e.g. when someone
clicks at a button, selects an item in a menu, or opens a new
activity. As examples, the AndroidBible app logs when
users click the search button, and the Stepik Android app
logs when users visit the launch screen or select a course in
the list of courses.
Failures and/or unexpected situations (6.3%): Interestingly,
only a small portion of the mobile analytics logging statements
focus on failures and unexpected situations, such as network
errors, or a failure in a process. For example, OpenDocument
logs whenever it fails to open a file, and AndroidBible logs
when a network error occurs.
Others (2%): Finally, we observed a few mobile analytics
logging statements that focused on the app version or aspects
of the users. For example, the OneBusAway app logs the
region of the user.

Our results show developers choose to log different infor-
mation with mobile analytics than with traditional logging
libraries. A prior study on logging practices in Android apps
found half of local logging statements were used for debugging
purposes [23]. Similar findings are also reported by recent
studies on server application logs [3], [24]. However, the
information logged using mobile analytics rarely assists in de-

3

https://github.com/opendocument-app/OpenDocument.droid
https://github.com/romannurik/muzei
https://github.com/edx/edx-app-android
https://github.com/blockchain/My-Wallet-V3-Android
https://github.com/blockchain/My-Wallet-V3-Android
https://github.com/StepicOrg/stepik-android
https://github.com/opendocument-app/OpenDocument.droid
https://github.com/blockchain/My-Wallet-V3-Android
https://github.com/OneBusAway/onebusaway-android


bugging, as most of the information is collected to understand
the behaviour of end users. For example, the information about
domain and business events may help developers understand
the usage of the features of their application; and information
about the user interface events helps understand the habits
of users’ interactions with the applications. On the other
hand, intuitively, the information that helps in debugging often
contains lower-level details. Due to the potential performance
and data bandwidth overhead of logging with mobile analytics,
developers may choose not to record lower-level information
even though it might be useful for debugging. Our results
highlight the need for further infrastructure support for field
debugging activities through logging in mobile analytics.

IV. THREATS TO VALIDITY

Internal and construct validity. We used static analysis to
detect the logging lines (i.e. calls to the mobile analytics
framework). For each project, we manually identified the
keywords that were used to detect mobile analytics calls,
however, we may have missed log statements that have since
been renamed or removed. Moreover, given the static nature of
our tool we may have missed some method calls. Nonetheless,
the manual analysis we conducted after the data collection did
not reveal any omissions. Therefore, we believe our choice of
data collection tool did not adversely influence the results.

The different types of information observed in the mobile
logs were manually extracted from 300 randomly selected
logging statements. To reduce possible biases, each logging
line was coded and agreed by two researchers, and the final
code book was agreed by all the authors of this paper. We also
make our raw data, analysis, and code book available online.

External validity. We studied 57 open-source mobile ap-
plications. Larger studies, including both iOS and proprietary
mobile software, are needed before we can claim our results
are generalizable to the entire population of mobile apps.
Nevertheless, we argue our results provide solid initial results
on how developers use mobile analytics in their Android apps.

V. FUTURE WORK

Our study can be extended in at least two directions.
Characterizing contextual information recorded in the logs.

We categorised the logs based on the types of the logged
events. Developers can also log contextual information of the
events. For example, when the OpenDocument app logs fail-
ures to open a file it also records the file type. Such contextual
information is presumably of interest to the developers. We
propose a qualitative study would help characterise the logged
contextual information and also examine the relationships
between different types of events and their corresponding
contextual information.

Understanding developers’ perceptions on using mobile
analytics. We analyzed the source code of Android apps
to characterise the use of mobile analytics. However, it is
difficult to know the developers’ actual intentions to use
mobile analytics versus local logging merely by analyzing the
code. Interviews with Android developers may provide a better

understanding of when and why developers would choose to
log using mobile analytics.

VI. RELATED WORK

Empirical studies have been conducted on the general
practices of logging. Yuan et al. [25] conducted the first
quantitative empirical study on logging practices, which fo-
cused on C and C++ projects. To complement this pioneering
study, Chen et al. [24] and Zeng et al. [23] studied the
logging practices in Java projects and Android app projects,
respectively. To further understand the decisions of logging in
practice, a recent qualitative study by Li et al. [3] investigated
the benefits and costs of logging by interviewing developers
and studying logging-related issue reports. Besides those char-
acteristic studies, research often studied particular aspects in
logging, including their evolution and stability [27], [29], data
leakage [30], the logging libraries [31], their utilities [21], and
logging configurations [32]. Finally, the relationship between
software quality, performance, error-handling, and logging
practices are also important aspects that are studied in prior
research [26], [33], [23], [34]. Prior studies, e.g., study by
Zeng et al. [23], do not consider logging practices where
the information is recorded and transmitted to a centralised,
remote, system using mobile analytics.

Mobile analytics tools are widely deployed to monitor
software at runtime in the field. They have also been used
to identify ways to improve app quality [35] and software
testing [36]. Some of the mobile analytics tools focus on
monitoring performance of the software [37], [38]. A recent
study found mobile analytics are often used poorly and with
user-privacy concerns [17].

VII. CONCLUSION

In this paper, we conducted an empirical study on the use
of the most popular mobile analytics framework, i.e. Firebase,
to perform logging in 57 open-source Android projects. We
observed distinct practices of logging practices with mobile
analytics. In particular, logs in mobile analytics are less
pervasive and less maintained than traditional, local, logging
practices. The most common information being logged using
mobile analytics are domain/business events; while almost
none of the mobile analytics logs focus on debugging, unlike
traditional, local, logs.

Given the popularity of using mobile analytics in both open-
source and closed-source apps there is much to gain and learn
from investigating how mobile analytics are used in those apps.
We plan to further extend the study by a) further studying
the contextual information logged for the different types
of events, b) understanding developers’ intentions to decide
when to use mobile analytics, and c) combining additional
qualitative studies together with developer interviews to better
characterise the logging practices with mobile analytics.

ACKNOWLEDGMENTS

NII Shonan provided a stimulating environment for collab-
oration [39]. Lili Wei was supported by the Postdoctoral Fel-
lowship Scheme of the Hong Kong Research Grant Council.

4



REFERENCES

[1] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pasupathy,
“Sherlog: Error diagnosis by connecting clues from run-time logs,”
in Proceedings of the 15th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2010, pp. 143–154.

[2] T. Barik, R. DeLine, S. Drucker, and D. Fisher, “The bones of the
system: A case study of logging and telemetry at microsoft,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion, ser. ICSE Companion ’16, 2016, pp. 92–101.

[3] H. Li, W. Shang, B. Adams, M. Sayagh, and A. E. Hassan, “A qualitative
study of the benefits and costs of logging from developers’ perspectives,”
IEEE Transactions on Software Engineering, pp. 1–1, 2020.

[4] Q. Fu, J.-G. Lou, Q. Lin, R. Ding, D. Zhang, and T. Xie, “Con-
textual analysis of program logs for understanding system behaviors,”
in Proceedings of the 10th Working Conference on Mining Software
Repositories, ser. MSR ’13, 2013, pp. 397–400.

[5] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan, and
P. Martin, “Assisting developers of big data analytics applications when
deploying on hadoop clouds,” in Proceedings of the 2013 International
Conference on Software Engineering, ser. ICSE ’13, 2013, pp. 402–411.

[6] R. Wieman, M. F. Aniche, W. Lobbezoo, S. Verwer, and A. van Deursen,
“An experience report on applying passive learning in a large-scale
payment company,” in 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2017, pp. 564–573.

[7] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the ACM SIGOPS 22Nd Symposium on Operating Systems Principles,
ser. SOSP ’09. New York, NY, USA: ACM, 2009, pp. 117–132.
[Online]. Available: http://doi.acm.org/10.1145/1629575.1629587

[8] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan, “Online system
problem detection by mining patterns of console logs,” in Proceedings
of the 2009 Ninth IEEE International Conference on Data Mining, ser.
ICDM ’09, 2009, pp. 588–597.

[9] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proceedings
of the 9th IEEE International Conference on Data Mining, ser. ICDM
’09, 2009, pp. 149–158.

[10] L. Mariani and F. Pastore, “Automated identification of failure causes
in system logs,” in Proceedings of the 19th International Symposium on
Software Reliability Engineering, ser. ISSRE ’08, 2008, pp. 117–126.

[11] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic
identification of load testing problems,” in Proceedings of the 2008
IEEE International Conference on Software Maintenance, ser. ICSM
’08, 2008, pp. 307–316.

[12] J. H. Andrews, “Testing using log file analysis: tools, methods, and is-
sues,” in Proceedings 13th IEEE International Conference on Automated
Software Engineering (Cat. No.98EX239), Oct 1998, pp. 157–166.

[13] A. Elyasov, “Log-based testing,” in 2012 34th International Conference
on Software Engineering (ICSE), June 2012, pp. 1591–1594.

[14] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser,
and P. Flora, “Leveraging performance counters and execution logs
to diagnose memory-related performance issues,” in Proceedings of
the 29th IEEE International Conference on Software Maintenance, ser.
ICSM ’13, 2013, pp. 110–119.

[15] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12, 2012, pp. 26–26.

[16] Google Developers. (2020) Log events — firebase. Google Inc.
[Online]. Available: https://firebase.google.com/docs/analytics/events

[17] Y. Tang, X. Zhan, H. Zhou, X. Luo, Z. Xu, Y. Zhou, and
Q. Yan, “Demystifying application performance management libraries
for android,” in Proceedings of the 34th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’19. IEEE
Press, 2019, p. 682–685. [Online]. Available: https://doi.org/10.1109/
ASE.2019.00069

[18] A. W. Spivey, B. E. Rockafellow, F. A. Smoak, and K. Collins,
“Embedded mobile analytics in a mobile device,” Feb. 18 2010, uS
Patent App. 12/393,576.

[19] AppBrain. (2020) Firebase. [Online]. Available: https://www.appbrain.
com/stats/libraries/details/firebase/firebase

[20] ——. (2020) Logging libraries. [Online]. Available: https://www.
appbrain.com/stats/libraries/tag/logging/logging-libraries

[21] B. Chen and Z. M. J. Jiang, “Studying the use of java logging utilities
in the wild,” in Proceedings of the 42th International Conference on
Software Engineering, ser. ICSE ’20, 2020.

[22] G. Gousios and D. Spinellis, “Ghtorrent: Github’s data from a firehose,”
in Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories, ser. MSR ’12. IEEE Press, 2012, p. 12–21.

[23] Y. Zeng, J. Chen, W. Shang, and T. P. Chen, “Studying the
characteristics of logging practices in mobile apps: a case study on
f-droid,” Empir. Softw. Eng., vol. 24, no. 6, pp. 3394–3434, 2019.
[Online]. Available: https://doi.org/10.1007/s10664-019-09687-9

[24] B. Chen and Z. M. J. Jiang, “Characterizing logging practices in
java-based open source software projects–a replication study in apache
software foundation,” Empirical Software Engineering, vol. 22, no. 1,
pp. 330–374, 2017.

[25] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices
in open-source software,” in Proceedings of the 34th International
Conference on Software Engineering, ser. ICSE ’12, IEEE. IEEE
Press, 2012, pp. 102–112. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2337223.2337236

[26] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the relationship
between logging characteristics and the code quality of platform
software,” Empirical Software Engineering, vol. 20, no. 1, pp. 1–27, Feb
2015. [Online]. Available: https://doi.org/10.1007/s10664-013-9274-8

[27] S. Kabinna, C.-P. Bezemer, W. Shang, M. D. Syer, and A. E. Hassan,
“Examining the stability of logging statements,” Empirical Software
Engineering, vol. 23, no. 1, pp. 290–333, Feb 2018.

[28] Creative Research Systems. (2012) Sample size calculator. [Online].
Available: https://surveysystem.com/sscalc.htm

[29] W. Shang, Z. M. Jiang, B. Adams, A. E. Hassan, M. W. Godfrey,
M. Nasser, and P. Flora, “An exploratory study of the evolution of com-
municated information about the execution of large software systems,”
Journal of Software: Evolution and Process, vol. 26, no. 1, pp. 3–26,
2013.

[30] R. Zhou, M. Hamdaqa, H. Cai, and A. Hamou-Lhadj, “Mobilogleak: A
preliminary study on data leakage caused by poor logging practices,”
in 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), Feb 2020, pp. 577–581.

[31] S. Kabinna, C. Bezemer, W. Shang, and A. E. Hassan, “Logging library
migrations: a case study for the apache software foundation projects,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR 2016, Austin, TX, USA, May 14-22, 2016, M. Kim,
R. Robbes, and C. Bird, Eds. ACM, 2016, pp. 154–164. [Online].
Available: https://doi.org/10.1145/2901739.2901769

[32] C. Zhi, J. Yin, S. Deng, M. Ye, M. Fu, and T. Xie, “An exploratory
study of logging configuration practice in java,” 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 459–
469, 2019.

[33] S. Chowdhury, S. D. Nardo, A. Hindle, and Z. M. Jiang, “An exploratory
study on assessing the energy impact of logging on android applica-
tions,” Empirical Software Engineering, vol. 23, pp. 1422–1456, 2017.

[34] J. Oliveira, D. Borges, T. Silva, N. Cacho, and F. Castor, “Do android
developers neglect error handling? a maintenance-centric study on the
relationship between android abstractions and uncaught exceptions,”
Journal of Systems and Software, vol. 136, p. 1–18, 2018.

[35] J. Harty, “Improving app quality despite flawed mobile analytics,” in
Proceedings of the IEEE/ACM 7th International Conference on Mobile
Software Engineering and Systems. IEEE, 2020, pp. 21–22.

[36] J. Harty and A. Aymer, The Mobile Analytics Playbook: A Practical
Guide to Better Testing. Hewlett Packard Enterprise, 2015.

[37] W. Hasselbring and A. van Hoorn, “Kieker: A monitoring framework
for software engineering research,” Software Impacts, vol. 5, p. 100019,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S2665963820300063

[38] T. M. Ahmed, C.-P. Bezemer, T.-H. Chen, A. E. Hassan, and W. Shang,
“Studying the effectiveness of application performance management
(apm) tools for detecting performance regressions for web applications:
An experience report,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 1–12.
[Online]. Available: https://doi.org/10.1145/2901739.2901774

[39] (2019) Release engineering for mobile applications. [Online]. Available:
https://shonan.nii.ac.jp/seminars/152/

5

http://doi.acm.org/10.1145/1629575.1629587
https://firebase.google.com/docs/analytics/events
https://doi.org/10.1109/ASE.2019.00069
https://doi.org/10.1109/ASE.2019.00069
https://www.appbrain.com/stats/libraries/details/firebase/firebase
https://www.appbrain.com/stats/libraries/details/firebase/firebase
https://www.appbrain.com/stats/libraries/tag/logging/logging-libraries
https://www.appbrain.com/stats/libraries/tag/logging/logging-libraries
https://doi.org/10.1007/s10664-019-09687-9
http://dl.acm.org/citation.cfm?id=2337223.2337236
http://dl.acm.org/citation.cfm?id=2337223.2337236
https://doi.org/10.1007/s10664-013-9274-8
https://surveysystem.com/sscalc.htm
https://doi.org/10.1145/2901739.2901769
http://www.sciencedirect.com/science/article/pii/S2665963820300063
http://www.sciencedirect.com/science/article/pii/S2665963820300063
https://doi.org/10.1145/2901739.2901774
https://shonan.nii.ac.jp/seminars/152/

	Introduction
	Background: mobile analytics
	Case study
	Threats to Validity
	Future Work
	Related Work
	Conclusion
	References



