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Abstract
Users of sociotechnical systems often have no way to independently verify whether 
the system output which they use to make decisions is correct; they are epistemically 
dependent on the system. We argue that this leads to problems when the system is 
wrong, namely to bad decisions and violations of the norm of practical reasoning. 
To prevent this from occurring we suggest the implementation of defeaters: informa-
tion that a system is unreliable in a specific case (undercutting defeat) or independ-
ent information that the output is wrong (rebutting defeat). Practically, we suggest to 
design defeaters based on the different ways in which a system might produce erro-
neous outputs, and analyse this suggestion with a case study of the risk classification 
algorithm used by the Dutch tax agency.

Keywords Sociotechnical systems · Oversight · Defeaters · Epistemic dependence

1 Introduction

We make more and more decisions in the context of sociotechnical systems, hav-
ing to reason with the information we receive from the system and act based on the 
options it presents us with. Desiere et al. (2019) offer a range of such examples in 
use by public employment services, and the use of COMPAS by the US judicial sys-
tem and HireVue’s AI system that automatically scores job applicants are two more 
examples where users end up relying on system output to make (high impact) deci-
sions. This sociotechnical context1 brings with it a conceptual challenge: how can 
we design the overarching systems such that their use leads to optimal decisions? 
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1 One where humans, institutions and technical (possibly but not necessarily AI) elements interact to 
produce goal-directed behaviour. Sociotechnical systems are the overarching systems which encapsulate 
these interactions.
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One aspect of this is getting users to rely on the system when its outputs are correct. 
That is a challenge of its own, as users frequently do not follow the advice of algo-
rithms as much as they should (e.g. Erlei et al., 2020; Logg et al., 2019). However, 
we want to look at the opposite challenge: how to design for the case where the 
algorithm is mistaken. What happens in these cases, and what are the different ways 
in which we might try to make users aware of system errors?

This is a pressing issue, as mistakes of this kind are bound to happen and there 
are a good number of historical examples to be found. The case of Stanislav Petrov, 
who averted nuclear war by choosing to report an incoming missile alert as a sys-
tem malfunction to Soviet command (Chan, 2017), is a particularly admirable one. 
On September 26, 1983, their early-warning system gave off a loud alarm that five 
intercontinental ballistic missiles had been launched by the US. The system went 
from reporting ‘Launch’ to ‘Missile strike’, indicating that this information was of 
the “highest” level of certainty. Soviet ground radar had detected nothing, but would 
not have during the first few minutes of a missile launch. Still, Petrov decided after 
five minutes (of the 25 that he had before a missile might strike) that it was prob-
ably a false alarm, partly based on the idea that no first strike would have only five 
missiles, partly based on his distrust in the system. It turned out afterwards that 
the early-warning system was triggered by the reflection of sunlight off the tops 
of clouds. Though the automated system malfunctioned, a good final decision was 
reached thanks to the user. The sociotechnical system as a whole managed to avert a 
catastrophic mistake.

This is the ideal situation, contrasted by cases where a sociotechnical system, due 
to interactions between users and the automated parts, leads to bad decision making. 
One such example is Iran Air Flight 655, which was mistaken for a military plane 
and shot down by USS Vincennes shortly after take-off (Rochlin, 1991). Though the 
onboard systems did not malfunction, a good amount went wrong. The system cor-
rectly identified the plane, which had a flight path crossing over the ship, as civilian 
on the first ping. The second identification was as a military aircraft, though, but 
only because the operator forgot to reset the range of the system and picked up a 
stationary airplane on a nearby Iranian base instead of Flight 655. Meanwhile, the 
commercial flight log containing the departure information of Flight 655 was briefly 
consulted, but sharp turns of the ship sent the documents flying through the com-
mand center. As a result, the flight was missed, partly due to confusion about the 
four different time zones in the area by the operator checking the schedule. Further 
conflicting information, such as the fact that the plane was climbing, and not (as 
would be the case in an attack run on the Vincennes) descending, was tracked but 
only on screens far from where the flight path was tracked. Consequently, the opera-
tors missed it, and made the dramatic mistake of shooting down the plane, resulting 
in 290 deaths.

More modern systems, incorporating machine learning (ML) algorithms, run 
similar risks. HireVue’s system presents recruiters with a score on how well a candi-
date did during the interview. And while recruiters are in principle capable of watch-
ing the recorded interview themselves, they are under too much time pressure to 
make that a realistic option. As a result they have to rely (in practice) on the infor-
mation the system presents, in the form of a suitability score. Whether that score 
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is always an accurate reflection of the qualities of the candidate is far from clear, 
and so hiring managers become dependent on a system that is opaque and whose 
mistakes will be hard to spot without taking the time to watch the recordings. Con-
sequently, companies may end up making mistakes in the hiring process, just as the 
Dutch tax authority made serious mistakes with its algorithm to detect fraudsters in 
the case study worked out in Sect. 5.

Why exactly do sociotechnical systems give rise to such cases and what might 
one do to avert bad outcomes? That is the question we aim to tackle in this paper. 
We start with analyzing the underlying reason for the issue in Sect. 2, namely the 
epistemic dependence of users on the automated system. This hampers apt practical 
decision making in cases where the system gives wrong, or misleading, information. 
Then, in Sect.  3, we present what we think is the most promising way to prevent 
mistakes in these cases: providing defeaters. Defeaters are pieces of information, 
like the commercial flight log, that undermine the (faulty) conclusion of the sys-
tem. We distinguish between two types of defeaters, undercutting and rebutting, and 
discuss how they fit into the theoretical picture from Sect. 2. Still, the ultimate goal 
is to enable sociotechnical design that allows users to make the best possible deci-
sion, relying on the information from the technical parts. So, in Sect. 4 we discuss 
how one might, in general, design for defeaters by looking at the different reasons 
for incorrect system output. We end by looking at a case study—regarding the fraud 
system used by the Dutch tax agency—to show how design for defeaters might work 
in practice, in Sect. 5.

2  Epistemic Dependence and practical decisions

2.1  Epistemic Dependence

The operators of the USS Vincennes and hiring managers using HireVue’s sys-
tem have to rely on the information of the system. The operators of the Vincennes 
only worked with the information of the system tracking flight routes and are to be 
blamed for their mistake primarily because conflicting information was readily avail-
able as part of the sociotechnical system. Hiring managers do have recordings avail-
able to check HireVue’s algorithmic scores, but are often assigned too little time 
per decision to make this a viable option. Both cases in this way exemplify a gen-
eral pattern. Users of sociotechnical systems are typically epistemically dependent 
on the system, as van den Hoven (1998) already discusses. This epistemic depend-
ence creates problems when the system is wrong, as it is precisely because of users’ 
dependence that they will have trouble differentiating correct system output from 
incorrect system output. First, however, we should be clearer on what epistemic 
dependence amounts to exactly. van den Hoven (1998) offers the following gloss: 
“A user B is epistemically dependent on system S if B cannot but cast her account of 
what she did and why she did it wholly in terms of the system. She may be unable 
to put forward ’system independent reasons’” (van den Hoven, 1998, p. 104) Simi-
larly, Rooksby (2009), in a critique of the wider account offered by van den Hoven 
(1998), compares the case to dependence on experts, where: “One is epistemically 
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dependent on an expert when one has good reason to believe true a claim held true 
by the expert, but cannot assess its truth oneself.” (Rooksby, 2009, p. 82). She fol-
lows the account of Hardwig (1985) with this definition, and gives the same idea of 
being unable to verify the veracity of a claim independently of the system one uses, 
though note the addition that one needs to have good reason to believe the claim (i.e. 
trust the expert).

While we do not think that it is necessary to trust a system to be epistemically 
dependent on it (e.g. one may simply be given no other choice but to use the system 
despite its flaws), it is common that the system in use is generally reliable. When 
users are given a choice to dissent from the system, possibly presented with the 
input information, they can after all decide to ignore the system outputs and make 
decisions on their own. In fact, this happens in practice and trust calibration is a dif-
ficult issue for those working on Human–Computer Interaction (Erlei et al., 2020; 
Logg et  al., 2019). As such, the most common scenario is likely one where users 
have the option to follow or not follow the system, and choose to do so based on a 
measure of trust in (or epistemic authority of) the system—though other factors such 
as time constraints for hiring managers can certainly contribute.

One reason why some underlying trust in the system is needed is that over time 
users might have the ability to estimate the overall reliability of the system, if they 
get some kind of feedback on their decisions. For the USS Vincennes there must 
have been a good measure of trust in the systems used for that reason: the system 
typically identified aircraft correctly and mistakes such as the one they made are 
fortunately extremely rare. Such feedback can be hard to come by, as e.g. in the case 
of hiring managers who do not see the good candidates that the system erroneously 
rejected, and might get only limited follow-up on the candidates they did let through 
to the next round. Moreover, this overall sense of reliability only reduces epistemic 
dependence in part, as it offers little help in deciding in individual cases whether the 
system is correct or not. Epistemic dependence will thus likely come hand in hand 
with trust in the system, possibly established over time, though we do not consider it 
absolutely necessary for such dependence to occur.

Finally, we should consider the even stronger definition of epistemic dependence 
put forward by Adam Carter (2017, 2021)—applicable here if one takes epistemic 
dependence to be the case where we do not have epistemic autonomy—and its rela-
tion to cognitive enhancement. His final formulation of the conditions for epistemic 
autonomy goes as follows:

S’s belief that p is epistemically autonomous (viz., autonomous [in a] way
that is necessary for propositional knowledge) at a time, t, if and only
if p has a compulsion-free history at t; and this is a history it has if
and only if it’s not the case that S came to acquire her belief that p in a way 
that: (i) bypasses or preempts S’s cognitive competences, and (ii) the bypass-
ing or preemption of such competences issues in S’s being unable to shed P. 
(Adam Carter, 2021, p. 34)

This notion, as well as his idea in Adam Carter (2017) that accessibility, automatic 
endorsement and cognitive ownership are important factors in determining epis-
temic autonomy, suggest a more stringent concept than that envisioned by van den 
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Hoven (1998) and Rooksby (2009). He primarily discusses cases such as Truetemp 
(Lehrer, 1990), where a person—Mr. Truetemp—gets a small machine implanted 
into his brain that produces correct beliefs about the current temperature, without 
his knowledge. Such beliefs are not, on Adam Carter’s definition, epistemically 
autonomous, as the machine bypasses Truetemp’s cognitive competences. Now, 
sociotechnical systems will typically not be as extreme as in the Truetemp case, 
but this definition might still give us similar results to that of van den Hoven and 
Rooksby. Their guiding idea is that it will be difficult to shed the belief formed on 
the basis of the automated system. For example: if the system tells you that a can-
didate is unsuitable and has a record of high accuracy, it will be difficult to disagree 
(and defend the disagreement later on) if little other information is available. If the 
USS Vincennes systems warn of an incoming attack, it is hard not to believe this is 
the case when those systems are trusted. Depending on the transparency of the sys-
tem, it might also be difficult to ascertain how this conclusion was reached, in effect 
bypassing our cognitive competences/reasoning. The extreme case is where an auto-
mated system simply tells you: P, but gives no supporting evidence for it and one 
has no alternative sources of information on whether P is true. In that case it seems 
that this definition of epistemic autonomy just as readily tells us that the user of such 
a system is epistemically dependent on it, though it is focussed on severe cases of 
epistemic dependence. Still, we do think that the broader definition, leaving out the 
clause on bypassing cognitive competences, is the better one.

For even if the system that the operators of the USS Vincennes worked with was 
more transparent, they would still have to rely entirely on the information the system 
provided. And while explainability methods (Guidotti et al., 2018 for a review) can 
help users spot when the algorithm is wrong in some instances, and as such con-
stitute a way of providing information about the system that is independent from 
the algorithm itself (in Sect.  4 we e.g. discuss saliency maps as potential defeat-
ers) they are not the only way to reduce epistemic dependence. Indeed, users receive 
more information about the system’s decision, and might be better able to weigh 
the strength of the evidence that the system outputs P, but at best this helps assess 
the accuracy of the system that is explained. Explainability methods do count as 
independent verification here, as they are not part of the original system/algorithm. 
However, they are limited in scope, as they cannot provide the kind of additional 
evidence that e.g. the flight log does in the USS Vincennes example, or as the rebut-
ting defeaters discussed in Sect.  5 do. Furthermore, explainability methods likely 
do not catch all the ways in which an algorithm might produce incorrect outputs 
(e.g. outlier detection is highly relevant but not a way to make the algorithm more 
transparent) and so transparency does not imply that one is no longer epistemically 
dependent on a system.

To further illustrate this difference, consider the definition of algorithmic opac-
ity by Humphreys: an algorithm is opaque relative to a cognitive agent X at time t 
“just in case X does not know at t all of the epistemically relevant elements of the 
process” (Humphreys, 2009, p. 618). It is possible to know all the epistemically rel-
evant elements of the process (i.e. fully understand how the system reaches its out-
put) while still being dependent on the system, because of a lack of outside informa-
tion. In an extreme case, if an algorithm flips a coin to decide between A and not-A, 
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then I can fully understand the system but would still be in a situation of epistemic 
dependence if I am not given additional information and am forced to make a choice 
given only the system information. If we compare this to opaque ML systems, then 
their opacity makes it harder to spot when the algorithm is unreliable, but solving 
that opacity is not guaranteed to give users the ability to always spot the mistakes of 
the algorithm. That may need outside information as a way to verify the outputs. It 
is this lack of outside information, in combination with possible difficulties to assess 
the reliability of the system in specific instances, that leads to epistemic dependence.

So, we say that a user is epistemically dependent on a sociotechnical system S iff 
it is difficult for the user to independently verify the outputs of S. Of course, epis-
temic dependence comes in degrees, as the difficulty of independent verification can 
vary, and our cases so far have been examples with very strong epistemic depend-
ence. We’ll consider weaker cases in Sect. 4, but for all cases our claim is that this 
epistemic dependence on sociotechnical systems leads to difficulties in practical 
decision making for their users. In particular, epistemic dependence is problematic 
when the system is wrong, as its definition implies that it will be hard for a user of 
a sociotechnical system to correct the mistaken output. The result is, so we analyse 
these situations, that users will take the output of the automated system as direct 
input for their practical reasoning, and base their decisions (primarily) on that. In 
other words, we consider cases where users typically trust the system (and thus con-
sider it an epistemic authority). Given the leeway that users are typically given in 
socio-technical systems and the fact that they certainly do not always rely on the 
system (as a matter of empirical fact), trust or the absence of alternatives are the two 
additional elements leading to the use of the system’s output in practical reasoning. 
The issue then is that even systems that users trust are imperfect and will make mis-
takes, though users will not be in a position to recognize when that happens.

Our goal is to offer solutions to this issue, by designing sociotechnical systems 
in such a way that users are also presented with information that speaks against the 
main algorithm in use. This reduces epistemic dependence on the main algorithm, 
and hopefully prevents cases where it would lead the user into errors. However, it 
usually does not reduce epistemic dependence on the sociotechnical system as a 
whole, in which this additional information will be integrated. Before looking at 
solutions, however, we analyse the problem somewhat further. For incorrect infor-
mation from the system can not only lead to wrong decisions, it can also conflict 
with the norms of practical reasoning. We turn to this point next.

2.2  Norms of Practical Reasoning

Users of sociotechnical systems will have to make decisions based on the infor-
mation they receive. Ideally, we want to design systems such that good decisions 
are fostered and bad decisions are avoided. It is with this goal in mind that we 
consider the norms for practical reasoning to be relevant. For those decisions that 
the user makes as operator of the sociotechnical system, some practical reason-
ing takes place (even if it is as little as doing whatever the system suggests). The 
outputs of the system will act as inputs to this reasoning process, and if there is 
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a case of epistemic dependence on the system then there will be relatively few 
additional inputs for the reasoning process. As a result, whether or not the actual 
reasoning meets the norms of practical reasoning will largely depend on the char-
acteristics of the system output. With that in mind we first briefly look at the 
(sizable) literature on norms of practical reasoning to determine what conditions 
system output should meet.

Opinions on what this norm is differ, and we aim for our analysis to be inde-
pendent of any particular choice here—it should work regardless of what exactly the 
norm of practical reasoning turns out to be. A fairly popular idea, however, is that 
there is a knowledge norm in place (Hawthorne & Stanley, 2008; Jackson, 2012; 
Mehta, 2016; Mueller, 2021; Williamson, 2005). Though there are variations across 
accounts, the basic idea is as follows: “Where one’s choice is p-dependent, it is 
appropriate to treat the proposition that p as a reason for acting iff you know that p” 
(Hawthorne & Stanley, 2008, p. 578). In other words, one should only use what one 
knows as a basis for one’s practical reasoning. That norm is violated when the user 
of a sociotechnical system relies on faulty system information (since knowledge is 
factive). So, in the case of a hiring manager receiving an incorrect suitability score 
he cannot know that the candidate is unsuitable, as the score is wrong. Similarly, for 
the USS Vincennes, the operator based his reasoning on the identification of an air-
craft as ‘military’, but since the system picked up a different aircraft the belief that 
‘the plane approaching us at speed is a military aircraft’ was not a piece of knowl-
edge. Ultimately that mistaken belief, formed on the basis of the automated system, 
was the case for their decision to shoot. It is tempting, then, to analyse these cases 
as ones where the underlying problem was the violation of the knowledge norm of 
practical reasoning. That can happen in a far wider range of cases, but the epistemic 
dependence on the system makes it much harder to spot such norm violations.

The fact that it can happen in far more cases also points to an issue for the knowl-
edge norm: there are plenty of violations of this norm where the person acting with-
out knowledge is not to blame. If I base my decision to walk to the fridge on a belief 
that there is a carton of milk in it (because I bought one yesterday), but it turns out 
that the milk was stolen, then I have violated the knowledge norm of practical rea-
soning, but I still acted rationally and am blameless. Similarly, while the Vincennes 
operators may be to blame for missing readily available information showing their 
error, a hiring manager is not so clearly to blame as it was unrealistic (given the time 
constraints and stakes) to check the system output more thoroughly. There have been 
different responses to this objection, which aims to show that one can still act ration-
ally even if the reasoning is not based on knowledge, but we aim to set as much of 
this debate aside as possible. Our point, rather, is that if there is something like a 
knowledge norm, then it is clear what is problematic about these cases: there was a 
violation of the norm, and that led to a faulty reasoning process.

Furthermore, a knowledge norm is not required for our analysis to work, though 
it works well if a knowledge norm holds. Weiner (2005) proposes a truth norm and 
(Henning, 2021) an epistemic modal norm closely related to it, and on both norms 
there is a violation in the cases where a user acts on erroneous information provided 
by the system. Brown (2008) rejects the knowledge norm but maintains a context-
sensitive norm that is sometimes weaker than the knowledge norm and sometimes 



 S. Buijsman, H. Veluwenkamp 

1 3

stronger, and can function in the same way in this analysis (at least for cases where 
the stakes are sufficiently high).

The main issue for our analysis is the few philosophers who suggest a norm based 
on justified belief (Littlejohn, 2009) or warrant (Gerken, 2011). We assume that in 
the situations where users take the outputs of the system into their practical reason-
ing they are justified to believe these outputs (e.g. have been correctly told by the 
developers that the system is overall reliable, and so would not violate these norms 
if the system output is wrong). Of course, under exactly which conditions users are 
justified to trust a (ML) system is an open research question (cf. Durán & Jongsma, 
2021; Ferrario, 2021; Ferrario & Loi, 2021; Jacovi et al., 2021) and so this assump-
tion may be wrong. Still, we mention the assumption because only in that case does 
our account face a difficulty, as on the justified belief norm it is unproblematic to 
follow the outputs of a trustworthy system even if they are wrong. It wouldn’t be a 
problem if the user isn’t justified to believe the output (i.e. if the system isn’t trust-
worthy), as then this norm of practical reasoning is also violated and users shouldn’t 
use the outputs in practical reasoning whether the output is correct or not. The ques-
tion then is how our analysis holds up in the situation where users are justified to 
believe the outputs, whatever the conditions may have to be met to reach this state.

We think that even then we can say that the ultimate goal of these sociotechni-
cal systems is to foster good decisions. So, if there is conflicting information, in 
the form of defeaters (our proposed solution to the issue of incorrect system out-
put), then that will remove or reduce the warrant or justification of the belief. A user 
would violate the norm if conflicting information is willfully ignored, but does not 
do so if the user was not aware of it at the time of the decision. This seems fair, and 
tracks with the intuition that hiring managers would have attracted less blame if they 
follow the AI advice when it is wrong, as time pressure makes checking conflict-
ing information difficult. It can also maintain the idea that the operators of the Vin-
cennes did something wrong: they had conflicting information, which would have 
removed their warrant/justification, readily at hand but failed to pick it up. There 
may not be a norm violation here, but there is a clear case where users should have 
done something more to ensure that they had the right basis for practical reason-
ing and decision making. No matter what the norm for practical decision making is, 
then, the case of incorrect system output is readily analysed by appealing to it. For 
better practical decision making, we should aim for the situation where a user has 
relevant conflicting information in cases where the system output is erroneous.

Yet, how does one design for that? We think this challenge can be approached 
by looking at defeaters, i.e. pieces of information that reduce one’s justification to 
believe a claim, and their two main types.

3  Defining Defeaters

In both of the examples in the introduction there is information that, had it been 
available at the time of the decision, would have changed the outcome. This infor-
mation is readily classified as consisting of defeaters: propositions such that they 
lower our credence in the claim of the system. For hiring managers this could be 
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a warning that the algorithm is less reliable for a minority to which the candidate 
belongs, or has been referred by an internal employee. In the case of the USS Vin-
cennes the commercial flight log is an obvious defeater, as is the information that 
the plane was climbing rather than descending. Just as relevant would have been a 
warning that the operator forgot to reset the range of the identification system, which 
would defeat the reliability of the returned ‘military aircraft’ tag. Still, designing for 
defeaters is no easy task, so we start by discussing the two main types of defeaters as 
a way to structure the more applied Sect. 4.

Our point of departure is the distinction made by Pollock and Cruz (1986) 
between rebutting and undercutting defeaters. Informally: we start in a situation 
where proposition P is supported by evidence E. A rebutting defeater R directly 
speaks against the truth of P. In contrast, an undercutting defeater U reduces E’s 
evidential support for P. That means that the commercial flight log was a rebutting 
defeater for the claim that the approaching aircraft was a military plane, whereas a 
message that the identification system was not reset would have been an undercut-
ting defeater (as it raises doubts about the reliability of the identification system). 
Similarly, a warning message about biases in the algorithm would be an undercut-
ting defeater for a hiring manager, whereas a referral or exceptionally good reference 
could act as rebutting defeaters.

To make this more precise the formal definitions of Kotzen (2019) might help 
(his ‘opposing’ is our more standard ‘rebutting’):

D is an opposing defeater for the evidence that E provides for H just in case 
[p(H| E & D) < p(H|E)] & [p(H|D) < p(H )]. (Kotzen, 2019, p. 221)
D is an undercutting defeater for the evidence that E provides for H (relative 
to background information K ) just in case dc(E, H, K) > dc(E, H, K & D) 
(Kotzen, 2019, p. 224)

where dc (E, H, K) is the degree to which evidence E confirms hypothesis H given 
background knowledge K (where the defeater acts as additional background knowl-
edge). Kotzen (2019, p. 225) offers several formal definitions of this degree of con-
firmation, but prefers the log likelihood ratio:

Alternatively, the work of Mayo (1996, 2018) can be used to define defeaters in 
a frequentist framework, using her notion of severe tests. As the basis for her frame-
work is the following:

Severity Requirement: for data to warrant a hypothesis H requires not just that
(S-1) H agrees with the data (H passes the test), but also
(S-2) with high probability, H would not have passed the test so well, were H 
false. (Mayo, 2018, p. 92)

The hypothesis in the current situation is again the output of the system. This has 
some support, as the system is (we will assume) reliable generally speaking. So, 
H has in our scenario already passed one test by being output by a reliable system. 

dc = log

(
p(E|H&K)

p(E|¬H&K)

)
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Defeaters can be viewed as applying either to S-1, by presenting additional data 
which does not agree with H (rebutting defeaters) or to S-2, by presenting evidence 
that H could have passed the general test—being the output of the system—even if 
H were false (undercutting defeaters). While undercutting defeaters are hard to con-
strue as new severe tests (as they do not confirm or disconfirm H), rebutting defeat-
ers can be seen as new severe tests. They bring in additional evidence, and the work 
of Mayo (2018) might help with the inevitable trade-offs in situations where differ-
ent severe tests present different outcomes.

We should note here that these are not the only two types of defeaters suggested 
in the literature. Kotzen (2019) already discusses hybrid variants, but Dutant and 
Littlejohn (2021) offer a list of eight suggestions, with rebutting and undercut-
ting defeaters as the first two items. Muñoz (2019) adds the notion of a disquali-
fier, which makes more indirect evidence obsolete (and relying on the more indirect 
evidence irrational). Furthermore, there is an ongoing philosophical discussion on 
whether defeaters have some normative status (e.g. Goldberg, 2017; Lackey, 2006) 
or are psychological states (Bergmann, 2006). While these discussions, and espe-
cially those on further types of defeaters, may be relevant for further work on design-
ing for defeaters, we leave them aside here. As we aim to show, the basic distinction 
between rebutting and undercutting captures a lot of design options already, and is 
helpful enough to capture the existing methods for detecting when an algorithm pro-
duces the wrong output. We therefore choose for the simplicity of the sparser clas-
sification of defeaters.

Given this basic classification we next turn to our more practical contribution. 
The leading question for the paper is: how do we help users avoid following the 
mistakes of an automated system? Our main suggestion is that we do so by actively 
designing the sociotechnical system such that it looks for defeaters and, if any are 
present, shows these to the user. One way to structure this idea is by conducting a 
Failure Mode and Effects Analysis (FMEA), a method already commonly used for 
anticipating mechanical failures.

4  Designing for Defeaters

Conducting an analysis of the ways in which a (sociotechnical) system can go 
wrong is already standard practice in engineering, under the name Failure Mode and 
Effects Analysis (FMEA, see e.g. Stamatis, 2003). It has made a wide variety of sys-
tems incredibly reliable, and so offers a promising basis for design aimed at reduc-
ing the consequences of errors in automated systems related to the information pro-
vided to users. It has, moreover, also been suggested as a basis for AI ethics audits 
(Raji et al., 2020). The basic idea is that one identifies the different ways in which 
a product, process, service or machine might fail, the likelihood and consequences 
of those failures and preventative actions to take. We think the same can readily be 
applied for the information provided in sociotechnical systems.

To see how this might work, consider the case of the USS Vincennes again. As 
part of the design process one would then consider: what if the tagging system 
incorrectly identifies an aircraft as ‘military’ (or vice versa)? Potential consequences 
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are very serious, so defeaters should be designed into the system. This was done, 
with the commercial flight log being available, but as the room was dark and the 
ship made sharp turns during the decision process it was difficult to get the right 
information from this log. Similarly, the information whether the plane was ascend-
ing or descending was available, but on a screen on the other side of the room. So 
this is a case where the initial design step (ensuring defeaters are available) is cer-
tainly met, though it turned out that they were in practice too difficult to obtain to 
prevent a mistaken decision. As we will see below, it is however far from standard 
that defeaters have been included in the design of sociotechnical systems. So what 
should one pay attention to in the case of automated systems? We think a high-level 
classification of the different ways in which a sociotechnical system may lead to 
erroneous output is a good starting point. Most of these are different cases of overfit-
ting, as that is the source of most mistakes made by ML systems. As such, defeaters 
are certainly not the only way to tackle this problem, as e.g. correctly identifying the 
underlying causal relations (in the spirit of Pearl (2000)) might in the long run pre-
vent systems from making these mistakes. While we encourage such efforts, we also 
consider it unlikely that all such mistakes can be prevented in the short run. Hence 
the cataloguing of ways in which systems can currently go wrong, and the choice to 
present different causes of overfitting separately, as they will also be spotted in dif-
ferent ways. Consequently, they give rise to different defeaters.

First, there is the scenario where a system returns an incorrect output simply 
because it is not completely accurate. A classification algorithm may, for example, 
only classify 90% of cases correctly on the validation set, so even if the input is 
relevantly similar there is a chance that the output is incorrect. What happens in 
that case, and what information might help? Both undercutting and rebutting defeat-
ers can be relevant. Consider the simple example of a convolutional neural network 
analysing video clips for the presence of cats or dogs, based on the visual informa-
tion. An undercutting defeater might be a saliency map (e.g. Fong & Vedaldi, 2017) 
showing that for the output ‘cat’ the algorithm weighed pixels showing grass most 
heavily. This undermines the confidence one should put in the correctness of the 
algorithm, even though it might still happen to be right in this instance. Similarly, 
ongoing work in uncertainty quantification (Abdar et  al., 2021 for a review) aims 
to offer information on how likely a certain algorithmic output is correct and can 
provide undercutting defeaters in the cases where this certainty is low. A rebutting 
defeater, on the other hand, might be a separate system that detects barking on the 
same video clip, indicating that a dog is present (and thus conflicting with the output 
of the visual classifier). Both approaches will give the user a reason to doubt the 
outcome of the algorithm, possibly presenting failures in case the output is wrong.

Second, there is the possibility of covariate shift and concept drift, where the data 
to which the algorithm is applied differs (sufficiently) from the training data and 
makes the model inaccurate as a result. This difference can either result from a fail-
ure to sample the dataset representatively, or it can result from the world changing, 
making the training data unrepresentative of the new situation (even though it was 
representative for the old situation). This is a worrying case as without instructions 
lay users seem to rely more on algorithms in these cases than otherwise (Chiang & 
Yin, 2021). We distinguish this case from the first, as different types of defeaters 
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apply, and systems can have a degree of inaccuracy on the training dataset too with-
out having problems with covariate shift. So, aside from the defeaters mentions for 
general inaccuracy, there is a second class here associated with this other reason for 
incorrect model output. These defeaters will aim to signal that covariate shift has 
occurred, and will generally be undercutting defeaters. For example, one might have 
a signal that the input data is an outlier compared to the training data (which helps 
users make better decisions in these cases; Poursabzi-Sangdeh et al., 2021). In the 
case of rebutting defeaters, these might apply because covariate shift can also mean 
that the weighing of different features is no longer correct for the data to which it is 
currently applied. For example, if a system gives employability estimates then the 
situation might shift due to the introduction of programs designed to help job seek-
ers with specific skill sets. If the model is not updated to reflect this, then the fact 
that a job seeker has the relevant skills becomes a rebutting defeater for the model 
output: their qualification for the program is a reason to think they will be more 
employable. In the case of covariate shift, then, we might have undercutting defeat-
ers indicating that the data distribution has changed or that a specific instance is 
an outlier, or rebutting defeaters based on the source of the changes that make the 
model less accurate.

Third, the output of a system may be wrong because it is missing relevant fea-
tures. Again, we distinguish this from general inaccuracy because there is a more 
specific reason for the error here rather than just the fact that algorithms are gener-
ally not 100% accurate. Feature selection is an important part of system design, but 
one cannot guarantee that all the important features have been found. Additionally, 
during deployment the situation may change resulting in new features becoming rel-
evant that were not important yet when the system was designed. For example, a 
system designed to estimate the employability of citizens asking for benefits might 
only ask for occupation, education, employment history and county (as some sys-
tems in the US did; Desiere et al., 2019). This can miss relevant features, such as 
additional skills acquired. For example, a job seeker who has spent time acquiring 
coding skills may well be more employable than the model estimates, if ‘education’ 
only contains school degrees. Conversely, if the job applicant also has a heavy bur-
den of care, reducing the number of hours he/she can work, the employability score 
may be too high, giving too rosy a picture of how easy it will be to find a suitable 
job. Though it will likely be difficult for public officials to spot such missing infor-
mation on their own, let alone for them to adjust the model outcome based on this, 
we do suggest that those affected by the decision should be offered a way to present 
such additional information (as rebutting defeaters), as part of the wider attempts to 
make decisions contestable.

Fourth, one might consider (the socio-political notion of) bias as a way in which 
an automated system may give incorrect outputs. Consider a case where an algo-
rithm suggests to reject a female applicant (which can be the case due to statistical 
biases, because e.g. fewer female applicants were included in the training data, or 
because gender correlated with the hiring decision in the data) even though it has 
suggested that a male applicant with the same qualifications be hired. This earlier 
recommendation can then act as a rebutting defeater for the case of the female appli-
cant. The absence of a clear reason for her rejection, other than her gender, is itself a 
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reason to doubt the accuracy of the decision. Now, this is a somewhat different case 
than the previous three. The underlying reason why bias is problematic is normative: 
we think that decisions should not be based on such factors. That does not automati-
cally mean that outputs that are biased are also more likely to be incorrect, which 
is the epistemic connection we need for information to count as a defeater. Still, we 
consider bias as an appropriate type of system failure as it is plausible that biased 
systems are generally less accurate. The very point is that these protected attributes 
are often irrelevant: the information systems aim to provide (e.g. employability, risk 
of fraud) typically does not causally depend on gender, sexual orientation or nation-
ality in the world even if the system output may depend on these features. Statistical 
correlations will appear in the data, especially since we are not free from biases, but 
they do not reflect causal relations. That mismatch, which links naturally to the pro-
ject of Pearl (2000) mentioned above, to work out causal models to such an extent 
that algorithms can use proper causal reasoning. As the cases of socio-political bias 
are instances of faulty causal reasoning they too signal that something is wrong with 
the outcome of the algorithm. Signals of such bias give therefore, to our mind, suf-
ficient reason to think that there is also something epistemically wrong with a deci-
sion that is based on a biased process.

We thus count bias as a source for defeaters, and not just as a different type of 
reason to question algorithmic output. Specifically, counterfactuals that show that 
the outcome had been different if e.g. race or gender was changed may help to pro-
duce rebutting defeaters. This can be implemented in different forms, such as flipsets 
(Spangher et al., 2018; a list of changes that can flip the prediction of a classifier) or 
with other tools from the algorithmic recourse literature (Lyons et al., 2021). Fur-
thermore, Dodge et al. (2019) have found that offering such counterfactuals on pro-
tected features can help expose bias to users of a system. They are thus a good can-
didate for offering rebutting defeaters, as there are not only tools available but these 
tools also seem to help users detect problematic cases.

Fifth, and by far the hardest to design for, systems may lead their users astray 
because the statistical correlations they are based on are spurious. This is closely 
related to the case of bias, but is a wider issue of the possibility to find statistical 
correlations in datasets that do not reflect causal dependencies in the world. We can 
expect such systems to lead users astray, as in the case of that developed by Wu and 
Zhang (2016), to predict criminality based on images of people’s faces. There is no 
scientific evidence that one can infer criminality on such a basis (phrenology has 
been debunked long ago), and the fact that any such link between facial features and 
criminality is missing is an undercutting defeater for systems attempting to do just 
that. The same issue occurs for systems that try to infer emotions based on people’s 
facial expressions (Barrett et al., 2019). However, this heavily depends on outside 
evidence that the system is based on a spurious correlation in the dataset, so we see 
no tools easily available to detect this, other than to consult the scientific literature 
before designing such a system.

In these ways, we suggest that designers of sociotechnical systems look at the dif-
ferent reasons why system output might be wrong (or more accurately, might lead 
to bad decisions by the user) and consider what information might be helpful to the 
user to avoid those bad decisions. To recap, these are:
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1. System inaccuracy
2. Covariate shift
3. Missing features
4. System bias
5. Spurious correlations

We may not have managed to be exhaustive in our list of suggestions here, but 
hope that the idea is clear enough to pick up in the design process. Finally, we want 
to add one further consideration with respect to defeaters. So far we have presented 
them as information to give in case the algorithm output is wrong. I.e. notify the 
user when a defeater is present. On the other hand, it might be equally helpful to 
notify a user that nothing is amiss, i.e. that no defeaters have been found. Klein 
(2014) introduces this idea as there being ‘confirmers’ (that the system is reliable 
in this case and that other sources of information lead to the same conclusion). As 
we focus here on the cases where it goes wrong, we will not discuss this idea much 
further, but it could be that the absence of defeat is likewise helpful information for 
users of sociotechnical systems. That being said, we lastly turn to a case study to 
further illustrate how our idea of designing for defeaters might work in practice, and 
in particular how it might apply to ML systems.

5  Case Study: The Dutch Childcare Benefits Scandal

In 2011 the Dutch tax agency decided to introduce a sociotechnical system to 
carry out better checks before benefits were paid out. The reason for introducing 
the system is to reduce the possibility of fraudulent applications, such as the later 
discovered ‘Bulgarian fraud’ which consisted of Bulgarian criminals unjustifiably 
collecting rent and healthcare benefits. The system was extended in 2013 with an 
algorithm that assigns benefits applications a risk score, and in particular labels 
some of them as potentially fraudulent. To do so, it uses the trove of data avail-
able to the tax authority. However, it gradually became clear that this algorithm (fre-
quently followed by the employees making the final decisions) was mistakenly clas-
sifying many people with dual nationality as (potential) fraudsters. This realization 
led to the tax agency, in June 2019, deciding to no longer include dual nationality in 
the database queries (van Huffelen, 2020). Moreover, in July 2020, the Dutch Data 
Protection Authority “Autoriteit Persoonsgegevens” concluded that the processing 
of dual nationality by the tax authorities in risk selection models was unlawful and 
discriminatory. This affair played an important role in the Dutch cabinet resigning in 
2021.2

Further investigation revealed that while designers had chosen to make an offi-
cial responsible for the final decision on whether or not to designate an applicant 
as suspicious, the official was heavily epistemically dependent on the system. The 

2 Another important factor in the resignation of the cabinet was the unnecessarily harsh approach to 
fraud by the "Combiteam Aanpak Facilitators", aimed at, for example, guest parent agencies.
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management team had purposely decided to give the official as little information as 
possible, with the system’s only output being that the application was suspicious or 
not. No supporting evidence for this claim was presented and operators had no alter-
native sources of information regarding the correctness of the system classification.3 
Moreover, it was discovered that even after the Dutch Data Protection Authority 
concluded that the use of dual nationalities was immoral and illegal, this data kept 
being requested from databases and used, probably perpetuating the bias against 
dual nationals (van Huffelen, 2020).

How could this have been improved upon? The official here is supposed to decide 
whether an applicant is to be investigated. In the current setting, clearly, the official 
is epistemically dependent on the system due to the lack of options for independ-
ent verification, and so will be steered wrong if the system output is incorrect (as it 
was for many dual nationals). We therefore suggest that at the design stage defeaters 
should have been considered, as these could have helped alleviate the problematic 
situation that resulted.

One general challenge in doing so will be the question of trade-offs in presenting 
defeaters. Users of the system will have to integrate different sources of evidence 
when receiving defeaters or may end up in a situation with no clear right answer 
(e.g. if there are only undercutting defeaters, showing the system to be unreliable 
without giving positive evidence for any decision). It could turn out that users of the 
system have a hard time doing so, and end up making worse decisions in a range of 
cases. Furthermore, having defeaters implies having to spend more time on a deci-
sion. So what is the threshold one puts up before presenting a defeater? This prob-
ably varies with the stakes, as we want to have a higher certainty before ordering 
missile strikes than before rejecting a job candidate. Still, some decision has to be 
made on when a defeater is relevant and strong enough. We’ll set aside this ques-
tion here to focus on what defeaters might be available, and merely note that the 
statistical frameworks from Sect. 3, such as that of Mayo (2018) might be helpful 
to make these trade-offs. That leaves us room to focus on the types of defeaters rel-
evant to the Dutch tax agency case. We’ll go through these based on the classifica-
tion provided in Sect. 4. To start with, there are mistakes based on general system 
inaccuracy.

5.1  Defeaters Based on System Inaccuracy

ML algorithms do not always base their decisions on features that are actually 
important, as with the example of the decision ‘this picture contains a cat’ being 

3 To be precise, the entire assessment consists of two stages. The first stage assesses whether an appli-
cant is a potential fraudster. During this stage, no information is given to the operator as to why the sys-
tem sees an applicant as a potential fraudster. However, once the operator has decided that the applicant 
should be investigated, she has the opportunity to check all the information herself in order to find out 
the details. However, this is a time-consuming process in which all the data is in principle relevant. In 
practice, applicants who are labelled "possible fraudster" in the first phase are often viewed very criti-
cally and small errors in the application can lead to penalties. In this paper we focus on the first stage of 
the assessment.
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based on pixels showing grass. Similarly, the tax agency algorithm could have 
been based (and in fact was, at least in the case of nationality) on features that 
are in fact irrelevant. Though we will discuss the dual nationality case under the 
heading of Bias, we do think that feature importance methods can be relevant 
generally speaking. Users could be presented with these on every application, but 
to prevent information overload and focus the attention of officials on preventing 
bad outcomes we suggest focusing on applications that are classified as poten-
tially fraudulent. In such cases the most important features for the algorithm’s 
decision may be listed, so that it is possible to check whether these make sense. A 
challenge, though, could be the non-linearity of ML algorithms that makes it hard 
to evaluate whether the importance of ‘age’ is problematic or not.

More information could be of help here. If, in addition, uncertainty quantifi-
cation methods are used (e.g. Pearce et al., 2018), then an official would justifi-
ably doubt the system more in cases where the uncertainty is high. If, moreover, 
this is coupled with unintuitive feature importance scores, then the official will 
have salient undercutting defeaters and be in a good position to doubt the system. 
Again, we suggest focussing on the applications labelled as suspicious to prevent 
officials from having to sift through too many indicators. Furthermore, it can be 
worthwhile to maintain a log of the important features that underlie (potentially) 
wrong decisions, so that an overview emerges of the situations in which the algo-
rithm performs poorly. This overview can then be used for further undercutting 
defeaters, by indicating that a combination of features is found in the application 
that has led the algorithm astray in earlier situations.

Moreover, it was possible to design for rebutting defeaters early on based on 
an analysis of the cases of fraudulent activities that were part of the training data. 
It was known that the Bulgarian criminals that were the reason for implement-
ing the system encouraged Bulgarians to register at a fake Dutch address and 
wrongfully apply for benefits. So, if data from external systems indicates that the 
applicant has been registered at the address that is mentioned in the application 
and has paid taxes for several years, then this is evidence that an application is 
innocent. It means that the application is likely not from one of these fraudsters, 
and moreover presents a positive reason to think that the applicant is honest. One 
may worry, though, that it leads to a large number of false negatives; fraudu-
lent applications that are approved. Users might simply approve any application 
they see where the address checks out and the taxes have been paid properly. A 
crucial question here seems to be the extent to which this information has been 
incorporated by the automated system. If it has been weighed up, but there are 
sufficiently many other indicators to suspect fraud, then it could indeed lead to 
false negatives. Yet if, as with our barking example, it is system-independent and 
a strong indicator for a particular outcome, then it should be presented. Possibly 
it is better to send such applications on for further (human) review, rather than 
letting an official accept them directly, but we do think that it is important to con-
sider such information as well.

A different question, though related, is whether this external information that is 
being provided is still a good indicator of, in this example, an honest application for 
benefits. Perhaps the Bulgarians have shifted methods and are no longer using fake 
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addresses. This brings us to the case of covariate shift, as both our suggested rebut-
ting defeater and the system will be affected by it.

5.2  Defeaters Based on Covariate Shift

Our suggested tool for undercutting defeaters based on covariate shift from Sect. 4, 
outlier detection, will likely apply. Though we have been unable to verify this, it 
seems likely that there were some outliers in the data distribution to which the risk 
classification algorithm was applied. We can expect that in these cases, as typically 
holds, the algorithm is less reliable and so an undercutting defeater would be pro-
vided. So, outlier detection is an option that can be investigated, but focussing on 
specific cases of covariate shift such as the changing methods of the Bulgarian crim-
inals offers—in our opinion—a more promising way to mitigate the effects of epis-
temic dependence on the sociotechnical system.

For, after the fraud by Bulgarian criminals came to light they shifted their work 
to other regions and methods. This is a change in (criminal) behavior that has the 
effect that the data to which the algorithm is applied differs from the training data 
and makes the model inaccurate as a result. This covariate shift was known to many 
people working with the system, but the model was not updated to reflect this. Fea-
ture importance signaling can be used to make the operator aware of this kind of 
mistake in the model, especially if this implicit knowledge of the changing methods 
of Bulgarian criminals is made explicit by a message accompanying high feature 
importance of an applicants’ Bulgarian nationality. We can then present the user of 
the system with an undercutting defeater, by signalling that the system may have 
classified this application based on statistical correlations that no longer hold.

Focusing on such specific changes in the real world that invalidate the model pre-
dictions can also work as a method for finding rebutting defeaters. One of the fea-
tures used as indicators of fraud was the distance between the applicant’s address 
and the address of the childcare provider. After a few years it became well-known 
that this feature was a reason for the tax agency to look more closely at the applica-
tion. We have not been able to verify this, but it is likely that people with bad inten-
tions chose a childcare provider that is closest to their own address in the applica-
tion, meaning that a small distance between addresses was an indicator for fraud. If, 
instead, fraudsters systematically started to pick childcare providers that were fur-
ther away, then having an address near to the provider is a rebutting defeater for the 
system output. Not only does it give us a reason to doubt that the system is accurate 
(as it is based on data from before the change in locations picked by fraudsters), the 
knowledge that fraudsters avoid nearby childcare providers turns it into a positive 
reason to think that the applicant is honest. Naturally, the strength of such a defeater 
will depend on how strong the correlation between a small distance and the absence 
of fraud is. So, such cases need to be examined with care, but can—if the correlation 
is strong enough—at least provide reason for a more thorough review. It is, after all, 
this kind of missing information that can lead algorithms further and further astray. 
That is one reason why it is, additionally, relevant to have a mechanism for the iden-
tification of missing features.
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5.3  Defeaters Based on Missing Features

The system that was actually implemented did not allow for applicants to supply 
additional information to challenge the decision labelling them as potential fraud-
sters in the first phase of the review process. However, if the system had been 
designed for such contestation of the decisions then this would also have lead to the 
provision of rebutting defeaters. Applicants might have supplied additional informa-
tion, quite possibly not considered by the system, to prove that their application was 
honest. For operational reasons, not all indicators have been made public. We, there-
fore, have not been able to find exactly what information the system did and what it 
did not take into account. It seems plausible, though, that there will have been infor-
mation that the unfairly suspected applicants possesed which shows that they did not 
commit fraud. Whether this was a positive confirmation from the childcare provider 
or proof that they live at the stated address, such documents could have been looked 
for. In particular, the system might have indicated to applicants looking to contest 
the decision what features weighed most heavily in the decision, and so what type of 
information they should have provided to convince the tax agency that it had made 
a mistake. Although this process will require more human review, we think that this 
is ultimately a good thing in the high stakes context for which the risk classifica-
tion algorithm was developed. It might have mitigated the bias that was the ultimate 
reason for abandoning the system, though the steps above alone are not sufficient to 
fully signal such crucial mistakes. Therefore, we finally turn to the defeaters to be 
designed based on (possible) system bias. We omit the spurious correlation case as, 
like we mentioned in Sect. 4, it does not seem to apply here.

5.4  Defeaters Based on System Bias

Bias in the system played an important role in the resignation of the Dutch cabinet. 
Morally, this is also one of the more worrying ways in which an algorithm might 
present us with erroneous/undesirable output. So, we think any attempt to counter 
this will help, and in particular (as discussed) view defeaters as a promising way 
to control and hopefully prevent this type of error. As discussed, flipsets (or other 
counterfactual methods) can be used to inform the user about biases in a system. 
Spangher et  al. (2018) use these flipsets to identify “actionable” features that the 
user should change in order to alter the system’s decision to a more favourable one.
By altering this focus from actionable to “protected” features, identifying whether 
there are any such features that would lead to a change in outcome, biases can be 
signalled. Typical protected features are those characteristics that are protected in 
the constitution under anti-discrimination law. Chapter 1, article 1 of the Dutch con-
stitution prohibits discrimination on the basis of religion, philosophy of life (“lev-
ensovertuiging”), political affiliation, race and gender. The Dutch Data Protection 
Authority also deemed the use of the applicant’s nationality morally and legally 
problematic for the system under discussion. This feature should therefore also be 
classified as “protected”. If the system finds that a flipset can be generated using 
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only protected features, or with sufficiently small changes to non-protected fea-
tures along with larger changes to protected features, then this should be signaled 
to the operator as a rebutting defeater. In this particular context, we expect that dual 
nationality would have surfaced as such a feature, as it has by now emerged that 
exactly that feature led to a large number of false positives.

As such, we have a broad selection of defeaters that might have helped. From 
feature importance (generally and specifically focussed on protected features) to out-
lier detection, from the information that Bulgarian criminals changed their methods 
to potential proofs of non-fraudulent behaviour via e.g. documented proof from the 
childcare provider, a wide range of information could have been used to spot situa-
tions where the system would otherwise steer officials wrong. We are convinced this 
information can help, and presented some empirical studies showing exactly this in 
Sect.  4, but at the same time realize that the implementation will be a challenge. 
Most of all, then, we hope that this focus on information that might show a system is 
incorrect will be taken on board in the design process, leading to fewer issues stem-
ming from our epistemic dependence on these systems.

6  Conclusion

Users of sociotechnical systems are often in the difficult situation of having to make 
a decision based on system output while, at the same time, being unable to indepen-
dently verify the correctness of that output. They’re epistemically dependent on the 
system and therefore may make bad decisions, and likely violate norms of practi-
cal reasoning, in cases where the system makes an error. As we have argued, the 
main difficulty here is that there is no information provided to these users to indi-
cate to them when the system is less reliable (in which case it is an undercutting 
defeater) or when there is conflicting information available (a rebutting defeater). 
It is this information, these defeaters, that can help reduce mistakes that naturally 
result from the epistemic dependence on an imperfect system. They help limit the 
epistemic dependence on the main algorithm (e.g. the risk classification algorithm 
of the Dutch tax agency) and though the user is still epistemically dependent on the 
sociotechnical system as a whole, the defeaters present the user with more nuanced 
outputs.

To shift this from pure theory to a more practical design question we have 
therefore looked at what types of defeaters a designer might implement. We used 
a method similar to Failure Mode and Effects Analysis, which is used to mitigate 
the aviation errors we opened the paper with, to identify in what ways an algorithm 
might yield incorrect output. Each of these five leads to distinct types of defeaters, 
most of which apply to the case study we presented in Sect. 5. Now, as we men-
tioned in several places, defeaters will still be tricky to design. There are questions 
on how strongly to weigh each defeater, determined by the degree to which they 
lower the probability that the algorithm is reliable/the output is true, and the meth-
ods proposed (such as counterfactual methods) still come with technical challenges. 
We think, however, that the general goal of designing sociotechnical systems for 
defeaters is worthwhile and important to keep in mind.
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