

Delft University of Technology

Spotting When Algorithms Are Wrong

Buijsman, Stefan; Veluwenkamp, Herman

DOI
10.1007/s11023-022-09591-0
Publication date
2022
Document Version
Final published version
Published in
Minds and Machines

Citation (APA)
Buijsman, S., & Veluwenkamp, H. (2022). Spotting When Algorithms Are Wrong. Minds and Machines,
33(4), 541-562. https://doi.org/10.1007/s11023-022-09591-0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11023-022-09591-0
https://doi.org/10.1007/s11023-022-09591-0

Vol.:(0123456789)

Minds and Machines
https://doi.org/10.1007/s11023-022-09591-0

1 3

ORIGINAL ARTICLE

Spotting When Algorithms Are Wrong

Stefan Buijsman1 · Herman Veluwenkamp1

Received: 31 August 2021 / Accepted: 16 January 2022
© The Author(s) 2022

Abstract
Users of sociotechnical systems often have no way to independently verify whether
the system output which they use to make decisions is correct; they are epistemically
dependent on the system. We argue that this leads to problems when the system is
wrong, namely to bad decisions and violations of the norm of practical reasoning.
To prevent this from occurring we suggest the implementation of defeaters: informa-
tion that a system is unreliable in a specific case (undercutting defeat) or independ-
ent information that the output is wrong (rebutting defeat). Practically, we suggest to
design defeaters based on the different ways in which a system might produce erro-
neous outputs, and analyse this suggestion with a case study of the risk classification
algorithm used by the Dutch tax agency.

Keywords Sociotechnical systems · Oversight · Defeaters · Epistemic dependence

1 Introduction

We make more and more decisions in the context of sociotechnical systems, hav-
ing to reason with the information we receive from the system and act based on the
options it presents us with. Desiere et al. (2019) offer a range of such examples in
use by public employment services, and the use of COMPAS by the US judicial sys-
tem and HireVue’s AI system that automatically scores job applicants are two more
examples where users end up relying on system output to make (high impact) deci-
sions. This sociotechnical context1 brings with it a conceptual challenge: how can
we design the overarching systems such that their use leads to optimal decisions?

 * Stefan Buijsman
 s.n.r.buijsman@tudelft.nl

 Herman Veluwenkamp
 H.M.Veluwenkamp@tudelft.nl

1 TU Delft, Jaffalaan 5, 2628 BX Delft, The Netherlands

1 One where humans, institutions and technical (possibly but not necessarily AI) elements interact to
produce goal-directed behaviour. Sociotechnical systems are the overarching systems which encapsulate
these interactions.

http://orcid.org/0000-0002-0004-0681
http://crossmark.crossref.org/dialog/?doi=10.1007/s11023-022-09591-0&domain=pdf

 S. Buijsman, H. Veluwenkamp

1 3

One aspect of this is getting users to rely on the system when its outputs are correct.
That is a challenge of its own, as users frequently do not follow the advice of algo-
rithms as much as they should (e.g. Erlei et al., 2020; Logg et al., 2019). However,
we want to look at the opposite challenge: how to design for the case where the
algorithm is mistaken. What happens in these cases, and what are the different ways
in which we might try to make users aware of system errors?

This is a pressing issue, as mistakes of this kind are bound to happen and there
are a good number of historical examples to be found. The case of Stanislav Petrov,
who averted nuclear war by choosing to report an incoming missile alert as a sys-
tem malfunction to Soviet command (Chan, 2017), is a particularly admirable one.
On September 26, 1983, their early-warning system gave off a loud alarm that five
intercontinental ballistic missiles had been launched by the US. The system went
from reporting ‘Launch’ to ‘Missile strike’, indicating that this information was of
the “highest” level of certainty. Soviet ground radar had detected nothing, but would
not have during the first few minutes of a missile launch. Still, Petrov decided after
five minutes (of the 25 that he had before a missile might strike) that it was prob-
ably a false alarm, partly based on the idea that no first strike would have only five
missiles, partly based on his distrust in the system. It turned out afterwards that
the early-warning system was triggered by the reflection of sunlight off the tops
of clouds. Though the automated system malfunctioned, a good final decision was
reached thanks to the user. The sociotechnical system as a whole managed to avert a
catastrophic mistake.

This is the ideal situation, contrasted by cases where a sociotechnical system, due
to interactions between users and the automated parts, leads to bad decision making.
One such example is Iran Air Flight 655, which was mistaken for a military plane
and shot down by USS Vincennes shortly after take-off (Rochlin, 1991). Though the
onboard systems did not malfunction, a good amount went wrong. The system cor-
rectly identified the plane, which had a flight path crossing over the ship, as civilian
on the first ping. The second identification was as a military aircraft, though, but
only because the operator forgot to reset the range of the system and picked up a
stationary airplane on a nearby Iranian base instead of Flight 655. Meanwhile, the
commercial flight log containing the departure information of Flight 655 was briefly
consulted, but sharp turns of the ship sent the documents flying through the com-
mand center. As a result, the flight was missed, partly due to confusion about the
four different time zones in the area by the operator checking the schedule. Further
conflicting information, such as the fact that the plane was climbing, and not (as
would be the case in an attack run on the Vincennes) descending, was tracked but
only on screens far from where the flight path was tracked. Consequently, the opera-
tors missed it, and made the dramatic mistake of shooting down the plane, resulting
in 290 deaths.

More modern systems, incorporating machine learning (ML) algorithms, run
similar risks. HireVue’s system presents recruiters with a score on how well a candi-
date did during the interview. And while recruiters are in principle capable of watch-
ing the recorded interview themselves, they are under too much time pressure to
make that a realistic option. As a result they have to rely (in practice) on the infor-
mation the system presents, in the form of a suitability score. Whether that score

1 3

Spotting When Algorithms Are Wrong

is always an accurate reflection of the qualities of the candidate is far from clear,
and so hiring managers become dependent on a system that is opaque and whose
mistakes will be hard to spot without taking the time to watch the recordings. Con-
sequently, companies may end up making mistakes in the hiring process, just as the
Dutch tax authority made serious mistakes with its algorithm to detect fraudsters in
the case study worked out in Sect. 5.

Why exactly do sociotechnical systems give rise to such cases and what might
one do to avert bad outcomes? That is the question we aim to tackle in this paper.
We start with analyzing the underlying reason for the issue in Sect. 2, namely the
epistemic dependence of users on the automated system. This hampers apt practical
decision making in cases where the system gives wrong, or misleading, information.
Then, in Sect. 3, we present what we think is the most promising way to prevent
mistakes in these cases: providing defeaters. Defeaters are pieces of information,
like the commercial flight log, that undermine the (faulty) conclusion of the sys-
tem. We distinguish between two types of defeaters, undercutting and rebutting, and
discuss how they fit into the theoretical picture from Sect. 2. Still, the ultimate goal
is to enable sociotechnical design that allows users to make the best possible deci-
sion, relying on the information from the technical parts. So, in Sect. 4 we discuss
how one might, in general, design for defeaters by looking at the different reasons
for incorrect system output. We end by looking at a case study—regarding the fraud
system used by the Dutch tax agency—to show how design for defeaters might work
in practice, in Sect. 5.

2 Epistemic Dependence and practical decisions

2.1 Epistemic Dependence

The operators of the USS Vincennes and hiring managers using HireVue’s sys-
tem have to rely on the information of the system. The operators of the Vincennes
only worked with the information of the system tracking flight routes and are to be
blamed for their mistake primarily because conflicting information was readily avail-
able as part of the sociotechnical system. Hiring managers do have recordings avail-
able to check HireVue’s algorithmic scores, but are often assigned too little time
per decision to make this a viable option. Both cases in this way exemplify a gen-
eral pattern. Users of sociotechnical systems are typically epistemically dependent
on the system, as van den Hoven (1998) already discusses. This epistemic depend-
ence creates problems when the system is wrong, as it is precisely because of users’
dependence that they will have trouble differentiating correct system output from
incorrect system output. First, however, we should be clearer on what epistemic
dependence amounts to exactly. van den Hoven (1998) offers the following gloss:
“A user B is epistemically dependent on system S if B cannot but cast her account of
what she did and why she did it wholly in terms of the system. She may be unable
to put forward ’system independent reasons’” (van den Hoven, 1998, p. 104) Simi-
larly, Rooksby (2009), in a critique of the wider account offered by van den Hoven
(1998), compares the case to dependence on experts, where: “One is epistemically

 S. Buijsman, H. Veluwenkamp

1 3

dependent on an expert when one has good reason to believe true a claim held true
by the expert, but cannot assess its truth oneself.” (Rooksby, 2009, p. 82). She fol-
lows the account of Hardwig (1985) with this definition, and gives the same idea of
being unable to verify the veracity of a claim independently of the system one uses,
though note the addition that one needs to have good reason to believe the claim (i.e.
trust the expert).

While we do not think that it is necessary to trust a system to be epistemically
dependent on it (e.g. one may simply be given no other choice but to use the system
despite its flaws), it is common that the system in use is generally reliable. When
users are given a choice to dissent from the system, possibly presented with the
input information, they can after all decide to ignore the system outputs and make
decisions on their own. In fact, this happens in practice and trust calibration is a dif-
ficult issue for those working on Human–Computer Interaction (Erlei et al., 2020;
Logg et al., 2019). As such, the most common scenario is likely one where users
have the option to follow or not follow the system, and choose to do so based on a
measure of trust in (or epistemic authority of) the system—though other factors such
as time constraints for hiring managers can certainly contribute.

One reason why some underlying trust in the system is needed is that over time
users might have the ability to estimate the overall reliability of the system, if they
get some kind of feedback on their decisions. For the USS Vincennes there must
have been a good measure of trust in the systems used for that reason: the system
typically identified aircraft correctly and mistakes such as the one they made are
fortunately extremely rare. Such feedback can be hard to come by, as e.g. in the case
of hiring managers who do not see the good candidates that the system erroneously
rejected, and might get only limited follow-up on the candidates they did let through
to the next round. Moreover, this overall sense of reliability only reduces epistemic
dependence in part, as it offers little help in deciding in individual cases whether the
system is correct or not. Epistemic dependence will thus likely come hand in hand
with trust in the system, possibly established over time, though we do not consider it
absolutely necessary for such dependence to occur.

Finally, we should consider the even stronger definition of epistemic dependence
put forward by Adam Carter (2017, 2021)—applicable here if one takes epistemic
dependence to be the case where we do not have epistemic autonomy—and its rela-
tion to cognitive enhancement. His final formulation of the conditions for epistemic
autonomy goes as follows:

S’s belief that p is epistemically autonomous (viz., autonomous [in a] way
that is necessary for propositional knowledge) at a time, t, if and only
if p has a compulsion-free history at t; and this is a history it has if
and only if it’s not the case that S came to acquire her belief that p in a way
that: (i) bypasses or preempts S’s cognitive competences, and (ii) the bypass-
ing or preemption of such competences issues in S’s being unable to shed P.
(Adam Carter, 2021, p. 34)

This notion, as well as his idea in Adam Carter (2017) that accessibility, automatic
endorsement and cognitive ownership are important factors in determining epis-
temic autonomy, suggest a more stringent concept than that envisioned by van den

1 3

Spotting When Algorithms Are Wrong

Hoven (1998) and Rooksby (2009). He primarily discusses cases such as Truetemp
(Lehrer, 1990), where a person—Mr. Truetemp—gets a small machine implanted
into his brain that produces correct beliefs about the current temperature, without
his knowledge. Such beliefs are not, on Adam Carter’s definition, epistemically
autonomous, as the machine bypasses Truetemp’s cognitive competences. Now,
sociotechnical systems will typically not be as extreme as in the Truetemp case,
but this definition might still give us similar results to that of van den Hoven and
Rooksby. Their guiding idea is that it will be difficult to shed the belief formed on
the basis of the automated system. For example: if the system tells you that a can-
didate is unsuitable and has a record of high accuracy, it will be difficult to disagree
(and defend the disagreement later on) if little other information is available. If the
USS Vincennes systems warn of an incoming attack, it is hard not to believe this is
the case when those systems are trusted. Depending on the transparency of the sys-
tem, it might also be difficult to ascertain how this conclusion was reached, in effect
bypassing our cognitive competences/reasoning. The extreme case is where an auto-
mated system simply tells you: P, but gives no supporting evidence for it and one
has no alternative sources of information on whether P is true. In that case it seems
that this definition of epistemic autonomy just as readily tells us that the user of such
a system is epistemically dependent on it, though it is focussed on severe cases of
epistemic dependence. Still, we do think that the broader definition, leaving out the
clause on bypassing cognitive competences, is the better one.

For even if the system that the operators of the USS Vincennes worked with was
more transparent, they would still have to rely entirely on the information the system
provided. And while explainability methods (Guidotti et al., 2018 for a review) can
help users spot when the algorithm is wrong in some instances, and as such con-
stitute a way of providing information about the system that is independent from
the algorithm itself (in Sect. 4 we e.g. discuss saliency maps as potential defeat-
ers) they are not the only way to reduce epistemic dependence. Indeed, users receive
more information about the system’s decision, and might be better able to weigh
the strength of the evidence that the system outputs P, but at best this helps assess
the accuracy of the system that is explained. Explainability methods do count as
independent verification here, as they are not part of the original system/algorithm.
However, they are limited in scope, as they cannot provide the kind of additional
evidence that e.g. the flight log does in the USS Vincennes example, or as the rebut-
ting defeaters discussed in Sect. 5 do. Furthermore, explainability methods likely
do not catch all the ways in which an algorithm might produce incorrect outputs
(e.g. outlier detection is highly relevant but not a way to make the algorithm more
transparent) and so transparency does not imply that one is no longer epistemically
dependent on a system.

To further illustrate this difference, consider the definition of algorithmic opac-
ity by Humphreys: an algorithm is opaque relative to a cognitive agent X at time t
“just in case X does not know at t all of the epistemically relevant elements of the
process” (Humphreys, 2009, p. 618). It is possible to know all the epistemically rel-
evant elements of the process (i.e. fully understand how the system reaches its out-
put) while still being dependent on the system, because of a lack of outside informa-
tion. In an extreme case, if an algorithm flips a coin to decide between A and not-A,

 S. Buijsman, H. Veluwenkamp

1 3

then I can fully understand the system but would still be in a situation of epistemic
dependence if I am not given additional information and am forced to make a choice
given only the system information. If we compare this to opaque ML systems, then
their opacity makes it harder to spot when the algorithm is unreliable, but solving
that opacity is not guaranteed to give users the ability to always spot the mistakes of
the algorithm. That may need outside information as a way to verify the outputs. It
is this lack of outside information, in combination with possible difficulties to assess
the reliability of the system in specific instances, that leads to epistemic dependence.

So, we say that a user is epistemically dependent on a sociotechnical system S iff
it is difficult for the user to independently verify the outputs of S. Of course, epis-
temic dependence comes in degrees, as the difficulty of independent verification can
vary, and our cases so far have been examples with very strong epistemic depend-
ence. We’ll consider weaker cases in Sect. 4, but for all cases our claim is that this
epistemic dependence on sociotechnical systems leads to difficulties in practical
decision making for their users. In particular, epistemic dependence is problematic
when the system is wrong, as its definition implies that it will be hard for a user of
a sociotechnical system to correct the mistaken output. The result is, so we analyse
these situations, that users will take the output of the automated system as direct
input for their practical reasoning, and base their decisions (primarily) on that. In
other words, we consider cases where users typically trust the system (and thus con-
sider it an epistemic authority). Given the leeway that users are typically given in
socio-technical systems and the fact that they certainly do not always rely on the
system (as a matter of empirical fact), trust or the absence of alternatives are the two
additional elements leading to the use of the system’s output in practical reasoning.
The issue then is that even systems that users trust are imperfect and will make mis-
takes, though users will not be in a position to recognize when that happens.

Our goal is to offer solutions to this issue, by designing sociotechnical systems
in such a way that users are also presented with information that speaks against the
main algorithm in use. This reduces epistemic dependence on the main algorithm,
and hopefully prevents cases where it would lead the user into errors. However, it
usually does not reduce epistemic dependence on the sociotechnical system as a
whole, in which this additional information will be integrated. Before looking at
solutions, however, we analyse the problem somewhat further. For incorrect infor-
mation from the system can not only lead to wrong decisions, it can also conflict
with the norms of practical reasoning. We turn to this point next.

2.2 Norms of Practical Reasoning

Users of sociotechnical systems will have to make decisions based on the infor-
mation they receive. Ideally, we want to design systems such that good decisions
are fostered and bad decisions are avoided. It is with this goal in mind that we
consider the norms for practical reasoning to be relevant. For those decisions that
the user makes as operator of the sociotechnical system, some practical reason-
ing takes place (even if it is as little as doing whatever the system suggests). The
outputs of the system will act as inputs to this reasoning process, and if there is

1 3

Spotting When Algorithms Are Wrong

a case of epistemic dependence on the system then there will be relatively few
additional inputs for the reasoning process. As a result, whether or not the actual
reasoning meets the norms of practical reasoning will largely depend on the char-
acteristics of the system output. With that in mind we first briefly look at the
(sizable) literature on norms of practical reasoning to determine what conditions
system output should meet.

Opinions on what this norm is differ, and we aim for our analysis to be inde-
pendent of any particular choice here—it should work regardless of what exactly the
norm of practical reasoning turns out to be. A fairly popular idea, however, is that
there is a knowledge norm in place (Hawthorne & Stanley, 2008; Jackson, 2012;
Mehta, 2016; Mueller, 2021; Williamson, 2005). Though there are variations across
accounts, the basic idea is as follows: “Where one’s choice is p-dependent, it is
appropriate to treat the proposition that p as a reason for acting iff you know that p”
(Hawthorne & Stanley, 2008, p. 578). In other words, one should only use what one
knows as a basis for one’s practical reasoning. That norm is violated when the user
of a sociotechnical system relies on faulty system information (since knowledge is
factive). So, in the case of a hiring manager receiving an incorrect suitability score
he cannot know that the candidate is unsuitable, as the score is wrong. Similarly, for
the USS Vincennes, the operator based his reasoning on the identification of an air-
craft as ‘military’, but since the system picked up a different aircraft the belief that
‘the plane approaching us at speed is a military aircraft’ was not a piece of knowl-
edge. Ultimately that mistaken belief, formed on the basis of the automated system,
was the case for their decision to shoot. It is tempting, then, to analyse these cases
as ones where the underlying problem was the violation of the knowledge norm of
practical reasoning. That can happen in a far wider range of cases, but the epistemic
dependence on the system makes it much harder to spot such norm violations.

The fact that it can happen in far more cases also points to an issue for the knowl-
edge norm: there are plenty of violations of this norm where the person acting with-
out knowledge is not to blame. If I base my decision to walk to the fridge on a belief
that there is a carton of milk in it (because I bought one yesterday), but it turns out
that the milk was stolen, then I have violated the knowledge norm of practical rea-
soning, but I still acted rationally and am blameless. Similarly, while the Vincennes
operators may be to blame for missing readily available information showing their
error, a hiring manager is not so clearly to blame as it was unrealistic (given the time
constraints and stakes) to check the system output more thoroughly. There have been
different responses to this objection, which aims to show that one can still act ration-
ally even if the reasoning is not based on knowledge, but we aim to set as much of
this debate aside as possible. Our point, rather, is that if there is something like a
knowledge norm, then it is clear what is problematic about these cases: there was a
violation of the norm, and that led to a faulty reasoning process.

Furthermore, a knowledge norm is not required for our analysis to work, though
it works well if a knowledge norm holds. Weiner (2005) proposes a truth norm and
(Henning, 2021) an epistemic modal norm closely related to it, and on both norms
there is a violation in the cases where a user acts on erroneous information provided
by the system. Brown (2008) rejects the knowledge norm but maintains a context-
sensitive norm that is sometimes weaker than the knowledge norm and sometimes

 S. Buijsman, H. Veluwenkamp

1 3

stronger, and can function in the same way in this analysis (at least for cases where
the stakes are sufficiently high).

The main issue for our analysis is the few philosophers who suggest a norm based
on justified belief (Littlejohn, 2009) or warrant (Gerken, 2011). We assume that in
the situations where users take the outputs of the system into their practical reason-
ing they are justified to believe these outputs (e.g. have been correctly told by the
developers that the system is overall reliable, and so would not violate these norms
if the system output is wrong). Of course, under exactly which conditions users are
justified to trust a (ML) system is an open research question (cf. Durán & Jongsma,
2021; Ferrario, 2021; Ferrario & Loi, 2021; Jacovi et al., 2021) and so this assump-
tion may be wrong. Still, we mention the assumption because only in that case does
our account face a difficulty, as on the justified belief norm it is unproblematic to
follow the outputs of a trustworthy system even if they are wrong. It wouldn’t be a
problem if the user isn’t justified to believe the output (i.e. if the system isn’t trust-
worthy), as then this norm of practical reasoning is also violated and users shouldn’t
use the outputs in practical reasoning whether the output is correct or not. The ques-
tion then is how our analysis holds up in the situation where users are justified to
believe the outputs, whatever the conditions may have to be met to reach this state.

We think that even then we can say that the ultimate goal of these sociotechni-
cal systems is to foster good decisions. So, if there is conflicting information, in
the form of defeaters (our proposed solution to the issue of incorrect system out-
put), then that will remove or reduce the warrant or justification of the belief. A user
would violate the norm if conflicting information is willfully ignored, but does not
do so if the user was not aware of it at the time of the decision. This seems fair, and
tracks with the intuition that hiring managers would have attracted less blame if they
follow the AI advice when it is wrong, as time pressure makes checking conflict-
ing information difficult. It can also maintain the idea that the operators of the Vin-
cennes did something wrong: they had conflicting information, which would have
removed their warrant/justification, readily at hand but failed to pick it up. There
may not be a norm violation here, but there is a clear case where users should have
done something more to ensure that they had the right basis for practical reason-
ing and decision making. No matter what the norm for practical decision making is,
then, the case of incorrect system output is readily analysed by appealing to it. For
better practical decision making, we should aim for the situation where a user has
relevant conflicting information in cases where the system output is erroneous.

Yet, how does one design for that? We think this challenge can be approached
by looking at defeaters, i.e. pieces of information that reduce one’s justification to
believe a claim, and their two main types.

3 Defining Defeaters

In both of the examples in the introduction there is information that, had it been
available at the time of the decision, would have changed the outcome. This infor-
mation is readily classified as consisting of defeaters: propositions such that they
lower our credence in the claim of the system. For hiring managers this could be

1 3

Spotting When Algorithms Are Wrong

a warning that the algorithm is less reliable for a minority to which the candidate
belongs, or has been referred by an internal employee. In the case of the USS Vin-
cennes the commercial flight log is an obvious defeater, as is the information that
the plane was climbing rather than descending. Just as relevant would have been a
warning that the operator forgot to reset the range of the identification system, which
would defeat the reliability of the returned ‘military aircraft’ tag. Still, designing for
defeaters is no easy task, so we start by discussing the two main types of defeaters as
a way to structure the more applied Sect. 4.

Our point of departure is the distinction made by Pollock and Cruz (1986)
between rebutting and undercutting defeaters. Informally: we start in a situation
where proposition P is supported by evidence E. A rebutting defeater R directly
speaks against the truth of P. In contrast, an undercutting defeater U reduces E’s
evidential support for P. That means that the commercial flight log was a rebutting
defeater for the claim that the approaching aircraft was a military plane, whereas a
message that the identification system was not reset would have been an undercut-
ting defeater (as it raises doubts about the reliability of the identification system).
Similarly, a warning message about biases in the algorithm would be an undercut-
ting defeater for a hiring manager, whereas a referral or exceptionally good reference
could act as rebutting defeaters.

To make this more precise the formal definitions of Kotzen (2019) might help
(his ‘opposing’ is our more standard ‘rebutting’):

D is an opposing defeater for the evidence that E provides for H just in case
[p(H| E & D) < p(H|E)] & [p(H|D) < p(H)]. (Kotzen, 2019, p. 221)
D is an undercutting defeater for the evidence that E provides for H (relative
to background information K) just in case dc(E, H, K) > dc(E, H, K & D)
(Kotzen, 2019, p. 224)

where dc (E, H, K) is the degree to which evidence E confirms hypothesis H given
background knowledge K (where the defeater acts as additional background knowl-
edge). Kotzen (2019, p. 225) offers several formal definitions of this degree of con-
firmation, but prefers the log likelihood ratio:

Alternatively, the work of Mayo (1996, 2018) can be used to define defeaters in
a frequentist framework, using her notion of severe tests. As the basis for her frame-
work is the following:

Severity Requirement: for data to warrant a hypothesis H requires not just that
(S-1) H agrees with the data (H passes the test), but also
(S-2) with high probability, H would not have passed the test so well, were H
false. (Mayo, 2018, p. 92)

The hypothesis in the current situation is again the output of the system. This has
some support, as the system is (we will assume) reliable generally speaking. So,
H has in our scenario already passed one test by being output by a reliable system.

dc = log

(
p(E|H&K)

p(E|¬H&K)

)

 S. Buijsman, H. Veluwenkamp

1 3

Defeaters can be viewed as applying either to S-1, by presenting additional data
which does not agree with H (rebutting defeaters) or to S-2, by presenting evidence
that H could have passed the general test—being the output of the system—even if
H were false (undercutting defeaters). While undercutting defeaters are hard to con-
strue as new severe tests (as they do not confirm or disconfirm H), rebutting defeat-
ers can be seen as new severe tests. They bring in additional evidence, and the work
of Mayo (2018) might help with the inevitable trade-offs in situations where differ-
ent severe tests present different outcomes.

We should note here that these are not the only two types of defeaters suggested
in the literature. Kotzen (2019) already discusses hybrid variants, but Dutant and
Littlejohn (2021) offer a list of eight suggestions, with rebutting and undercut-
ting defeaters as the first two items. Muñoz (2019) adds the notion of a disquali-
fier, which makes more indirect evidence obsolete (and relying on the more indirect
evidence irrational). Furthermore, there is an ongoing philosophical discussion on
whether defeaters have some normative status (e.g. Goldberg, 2017; Lackey, 2006)
or are psychological states (Bergmann, 2006). While these discussions, and espe-
cially those on further types of defeaters, may be relevant for further work on design-
ing for defeaters, we leave them aside here. As we aim to show, the basic distinction
between rebutting and undercutting captures a lot of design options already, and is
helpful enough to capture the existing methods for detecting when an algorithm pro-
duces the wrong output. We therefore choose for the simplicity of the sparser clas-
sification of defeaters.

Given this basic classification we next turn to our more practical contribution.
The leading question for the paper is: how do we help users avoid following the
mistakes of an automated system? Our main suggestion is that we do so by actively
designing the sociotechnical system such that it looks for defeaters and, if any are
present, shows these to the user. One way to structure this idea is by conducting a
Failure Mode and Effects Analysis (FMEA), a method already commonly used for
anticipating mechanical failures.

4 Designing for Defeaters

Conducting an analysis of the ways in which a (sociotechnical) system can go
wrong is already standard practice in engineering, under the name Failure Mode and
Effects Analysis (FMEA, see e.g. Stamatis, 2003). It has made a wide variety of sys-
tems incredibly reliable, and so offers a promising basis for design aimed at reduc-
ing the consequences of errors in automated systems related to the information pro-
vided to users. It has, moreover, also been suggested as a basis for AI ethics audits
(Raji et al., 2020). The basic idea is that one identifies the different ways in which
a product, process, service or machine might fail, the likelihood and consequences
of those failures and preventative actions to take. We think the same can readily be
applied for the information provided in sociotechnical systems.

To see how this might work, consider the case of the USS Vincennes again. As
part of the design process one would then consider: what if the tagging system
incorrectly identifies an aircraft as ‘military’ (or vice versa)? Potential consequences

1 3

Spotting When Algorithms Are Wrong

are very serious, so defeaters should be designed into the system. This was done,
with the commercial flight log being available, but as the room was dark and the
ship made sharp turns during the decision process it was difficult to get the right
information from this log. Similarly, the information whether the plane was ascend-
ing or descending was available, but on a screen on the other side of the room. So
this is a case where the initial design step (ensuring defeaters are available) is cer-
tainly met, though it turned out that they were in practice too difficult to obtain to
prevent a mistaken decision. As we will see below, it is however far from standard
that defeaters have been included in the design of sociotechnical systems. So what
should one pay attention to in the case of automated systems? We think a high-level
classification of the different ways in which a sociotechnical system may lead to
erroneous output is a good starting point. Most of these are different cases of overfit-
ting, as that is the source of most mistakes made by ML systems. As such, defeaters
are certainly not the only way to tackle this problem, as e.g. correctly identifying the
underlying causal relations (in the spirit of Pearl (2000)) might in the long run pre-
vent systems from making these mistakes. While we encourage such efforts, we also
consider it unlikely that all such mistakes can be prevented in the short run. Hence
the cataloguing of ways in which systems can currently go wrong, and the choice to
present different causes of overfitting separately, as they will also be spotted in dif-
ferent ways. Consequently, they give rise to different defeaters.

First, there is the scenario where a system returns an incorrect output simply
because it is not completely accurate. A classification algorithm may, for example,
only classify 90% of cases correctly on the validation set, so even if the input is
relevantly similar there is a chance that the output is incorrect. What happens in
that case, and what information might help? Both undercutting and rebutting defeat-
ers can be relevant. Consider the simple example of a convolutional neural network
analysing video clips for the presence of cats or dogs, based on the visual informa-
tion. An undercutting defeater might be a saliency map (e.g. Fong & Vedaldi, 2017)
showing that for the output ‘cat’ the algorithm weighed pixels showing grass most
heavily. This undermines the confidence one should put in the correctness of the
algorithm, even though it might still happen to be right in this instance. Similarly,
ongoing work in uncertainty quantification (Abdar et al., 2021 for a review) aims
to offer information on how likely a certain algorithmic output is correct and can
provide undercutting defeaters in the cases where this certainty is low. A rebutting
defeater, on the other hand, might be a separate system that detects barking on the
same video clip, indicating that a dog is present (and thus conflicting with the output
of the visual classifier). Both approaches will give the user a reason to doubt the
outcome of the algorithm, possibly presenting failures in case the output is wrong.

Second, there is the possibility of covariate shift and concept drift, where the data
to which the algorithm is applied differs (sufficiently) from the training data and
makes the model inaccurate as a result. This difference can either result from a fail-
ure to sample the dataset representatively, or it can result from the world changing,
making the training data unrepresentative of the new situation (even though it was
representative for the old situation). This is a worrying case as without instructions
lay users seem to rely more on algorithms in these cases than otherwise (Chiang &
Yin, 2021). We distinguish this case from the first, as different types of defeaters

 S. Buijsman, H. Veluwenkamp

1 3

apply, and systems can have a degree of inaccuracy on the training dataset too with-
out having problems with covariate shift. So, aside from the defeaters mentions for
general inaccuracy, there is a second class here associated with this other reason for
incorrect model output. These defeaters will aim to signal that covariate shift has
occurred, and will generally be undercutting defeaters. For example, one might have
a signal that the input data is an outlier compared to the training data (which helps
users make better decisions in these cases; Poursabzi-Sangdeh et al., 2021). In the
case of rebutting defeaters, these might apply because covariate shift can also mean
that the weighing of different features is no longer correct for the data to which it is
currently applied. For example, if a system gives employability estimates then the
situation might shift due to the introduction of programs designed to help job seek-
ers with specific skill sets. If the model is not updated to reflect this, then the fact
that a job seeker has the relevant skills becomes a rebutting defeater for the model
output: their qualification for the program is a reason to think they will be more
employable. In the case of covariate shift, then, we might have undercutting defeat-
ers indicating that the data distribution has changed or that a specific instance is
an outlier, or rebutting defeaters based on the source of the changes that make the
model less accurate.

Third, the output of a system may be wrong because it is missing relevant fea-
tures. Again, we distinguish this from general inaccuracy because there is a more
specific reason for the error here rather than just the fact that algorithms are gener-
ally not 100% accurate. Feature selection is an important part of system design, but
one cannot guarantee that all the important features have been found. Additionally,
during deployment the situation may change resulting in new features becoming rel-
evant that were not important yet when the system was designed. For example, a
system designed to estimate the employability of citizens asking for benefits might
only ask for occupation, education, employment history and county (as some sys-
tems in the US did; Desiere et al., 2019). This can miss relevant features, such as
additional skills acquired. For example, a job seeker who has spent time acquiring
coding skills may well be more employable than the model estimates, if ‘education’
only contains school degrees. Conversely, if the job applicant also has a heavy bur-
den of care, reducing the number of hours he/she can work, the employability score
may be too high, giving too rosy a picture of how easy it will be to find a suitable
job. Though it will likely be difficult for public officials to spot such missing infor-
mation on their own, let alone for them to adjust the model outcome based on this,
we do suggest that those affected by the decision should be offered a way to present
such additional information (as rebutting defeaters), as part of the wider attempts to
make decisions contestable.

Fourth, one might consider (the socio-political notion of) bias as a way in which
an automated system may give incorrect outputs. Consider a case where an algo-
rithm suggests to reject a female applicant (which can be the case due to statistical
biases, because e.g. fewer female applicants were included in the training data, or
because gender correlated with the hiring decision in the data) even though it has
suggested that a male applicant with the same qualifications be hired. This earlier
recommendation can then act as a rebutting defeater for the case of the female appli-
cant. The absence of a clear reason for her rejection, other than her gender, is itself a

1 3

Spotting When Algorithms Are Wrong

reason to doubt the accuracy of the decision. Now, this is a somewhat different case
than the previous three. The underlying reason why bias is problematic is normative:
we think that decisions should not be based on such factors. That does not automati-
cally mean that outputs that are biased are also more likely to be incorrect, which
is the epistemic connection we need for information to count as a defeater. Still, we
consider bias as an appropriate type of system failure as it is plausible that biased
systems are generally less accurate. The very point is that these protected attributes
are often irrelevant: the information systems aim to provide (e.g. employability, risk
of fraud) typically does not causally depend on gender, sexual orientation or nation-
ality in the world even if the system output may depend on these features. Statistical
correlations will appear in the data, especially since we are not free from biases, but
they do not reflect causal relations. That mismatch, which links naturally to the pro-
ject of Pearl (2000) mentioned above, to work out causal models to such an extent
that algorithms can use proper causal reasoning. As the cases of socio-political bias
are instances of faulty causal reasoning they too signal that something is wrong with
the outcome of the algorithm. Signals of such bias give therefore, to our mind, suf-
ficient reason to think that there is also something epistemically wrong with a deci-
sion that is based on a biased process.

We thus count bias as a source for defeaters, and not just as a different type of
reason to question algorithmic output. Specifically, counterfactuals that show that
the outcome had been different if e.g. race or gender was changed may help to pro-
duce rebutting defeaters. This can be implemented in different forms, such as flipsets
(Spangher et al., 2018; a list of changes that can flip the prediction of a classifier) or
with other tools from the algorithmic recourse literature (Lyons et al., 2021). Fur-
thermore, Dodge et al. (2019) have found that offering such counterfactuals on pro-
tected features can help expose bias to users of a system. They are thus a good can-
didate for offering rebutting defeaters, as there are not only tools available but these
tools also seem to help users detect problematic cases.

Fifth, and by far the hardest to design for, systems may lead their users astray
because the statistical correlations they are based on are spurious. This is closely
related to the case of bias, but is a wider issue of the possibility to find statistical
correlations in datasets that do not reflect causal dependencies in the world. We can
expect such systems to lead users astray, as in the case of that developed by Wu and
Zhang (2016), to predict criminality based on images of people’s faces. There is no
scientific evidence that one can infer criminality on such a basis (phrenology has
been debunked long ago), and the fact that any such link between facial features and
criminality is missing is an undercutting defeater for systems attempting to do just
that. The same issue occurs for systems that try to infer emotions based on people’s
facial expressions (Barrett et al., 2019). However, this heavily depends on outside
evidence that the system is based on a spurious correlation in the dataset, so we see
no tools easily available to detect this, other than to consult the scientific literature
before designing such a system.

In these ways, we suggest that designers of sociotechnical systems look at the dif-
ferent reasons why system output might be wrong (or more accurately, might lead
to bad decisions by the user) and consider what information might be helpful to the
user to avoid those bad decisions. To recap, these are:

 S. Buijsman, H. Veluwenkamp

1 3

1. System inaccuracy
2. Covariate shift
3. Missing features
4. System bias
5. Spurious correlations

We may not have managed to be exhaustive in our list of suggestions here, but
hope that the idea is clear enough to pick up in the design process. Finally, we want
to add one further consideration with respect to defeaters. So far we have presented
them as information to give in case the algorithm output is wrong. I.e. notify the
user when a defeater is present. On the other hand, it might be equally helpful to
notify a user that nothing is amiss, i.e. that no defeaters have been found. Klein
(2014) introduces this idea as there being ‘confirmers’ (that the system is reliable
in this case and that other sources of information lead to the same conclusion). As
we focus here on the cases where it goes wrong, we will not discuss this idea much
further, but it could be that the absence of defeat is likewise helpful information for
users of sociotechnical systems. That being said, we lastly turn to a case study to
further illustrate how our idea of designing for defeaters might work in practice, and
in particular how it might apply to ML systems.

5 Case Study: The Dutch Childcare Benefits Scandal

In 2011 the Dutch tax agency decided to introduce a sociotechnical system to
carry out better checks before benefits were paid out. The reason for introducing
the system is to reduce the possibility of fraudulent applications, such as the later
discovered ‘Bulgarian fraud’ which consisted of Bulgarian criminals unjustifiably
collecting rent and healthcare benefits. The system was extended in 2013 with an
algorithm that assigns benefits applications a risk score, and in particular labels
some of them as potentially fraudulent. To do so, it uses the trove of data avail-
able to the tax authority. However, it gradually became clear that this algorithm (fre-
quently followed by the employees making the final decisions) was mistakenly clas-
sifying many people with dual nationality as (potential) fraudsters. This realization
led to the tax agency, in June 2019, deciding to no longer include dual nationality in
the database queries (van Huffelen, 2020). Moreover, in July 2020, the Dutch Data
Protection Authority “Autoriteit Persoonsgegevens” concluded that the processing
of dual nationality by the tax authorities in risk selection models was unlawful and
discriminatory. This affair played an important role in the Dutch cabinet resigning in
2021.2

Further investigation revealed that while designers had chosen to make an offi-
cial responsible for the final decision on whether or not to designate an applicant
as suspicious, the official was heavily epistemically dependent on the system. The

2 Another important factor in the resignation of the cabinet was the unnecessarily harsh approach to
fraud by the "Combiteam Aanpak Facilitators", aimed at, for example, guest parent agencies.

1 3

Spotting When Algorithms Are Wrong

management team had purposely decided to give the official as little information as
possible, with the system’s only output being that the application was suspicious or
not. No supporting evidence for this claim was presented and operators had no alter-
native sources of information regarding the correctness of the system classification.3
Moreover, it was discovered that even after the Dutch Data Protection Authority
concluded that the use of dual nationalities was immoral and illegal, this data kept
being requested from databases and used, probably perpetuating the bias against
dual nationals (van Huffelen, 2020).

How could this have been improved upon? The official here is supposed to decide
whether an applicant is to be investigated. In the current setting, clearly, the official
is epistemically dependent on the system due to the lack of options for independ-
ent verification, and so will be steered wrong if the system output is incorrect (as it
was for many dual nationals). We therefore suggest that at the design stage defeaters
should have been considered, as these could have helped alleviate the problematic
situation that resulted.

One general challenge in doing so will be the question of trade-offs in presenting
defeaters. Users of the system will have to integrate different sources of evidence
when receiving defeaters or may end up in a situation with no clear right answer
(e.g. if there are only undercutting defeaters, showing the system to be unreliable
without giving positive evidence for any decision). It could turn out that users of the
system have a hard time doing so, and end up making worse decisions in a range of
cases. Furthermore, having defeaters implies having to spend more time on a deci-
sion. So what is the threshold one puts up before presenting a defeater? This prob-
ably varies with the stakes, as we want to have a higher certainty before ordering
missile strikes than before rejecting a job candidate. Still, some decision has to be
made on when a defeater is relevant and strong enough. We’ll set aside this ques-
tion here to focus on what defeaters might be available, and merely note that the
statistical frameworks from Sect. 3, such as that of Mayo (2018) might be helpful
to make these trade-offs. That leaves us room to focus on the types of defeaters rel-
evant to the Dutch tax agency case. We’ll go through these based on the classifica-
tion provided in Sect. 4. To start with, there are mistakes based on general system
inaccuracy.

5.1 Defeaters Based on System Inaccuracy

ML algorithms do not always base their decisions on features that are actually
important, as with the example of the decision ‘this picture contains a cat’ being

3 To be precise, the entire assessment consists of two stages. The first stage assesses whether an appli-
cant is a potential fraudster. During this stage, no information is given to the operator as to why the sys-
tem sees an applicant as a potential fraudster. However, once the operator has decided that the applicant
should be investigated, she has the opportunity to check all the information herself in order to find out
the details. However, this is a time-consuming process in which all the data is in principle relevant. In
practice, applicants who are labelled "possible fraudster" in the first phase are often viewed very criti-
cally and small errors in the application can lead to penalties. In this paper we focus on the first stage of
the assessment.

 S. Buijsman, H. Veluwenkamp

1 3

based on pixels showing grass. Similarly, the tax agency algorithm could have
been based (and in fact was, at least in the case of nationality) on features that
are in fact irrelevant. Though we will discuss the dual nationality case under the
heading of Bias, we do think that feature importance methods can be relevant
generally speaking. Users could be presented with these on every application, but
to prevent information overload and focus the attention of officials on preventing
bad outcomes we suggest focusing on applications that are classified as poten-
tially fraudulent. In such cases the most important features for the algorithm’s
decision may be listed, so that it is possible to check whether these make sense. A
challenge, though, could be the non-linearity of ML algorithms that makes it hard
to evaluate whether the importance of ‘age’ is problematic or not.

More information could be of help here. If, in addition, uncertainty quantifi-
cation methods are used (e.g. Pearce et al., 2018), then an official would justifi-
ably doubt the system more in cases where the uncertainty is high. If, moreover,
this is coupled with unintuitive feature importance scores, then the official will
have salient undercutting defeaters and be in a good position to doubt the system.
Again, we suggest focussing on the applications labelled as suspicious to prevent
officials from having to sift through too many indicators. Furthermore, it can be
worthwhile to maintain a log of the important features that underlie (potentially)
wrong decisions, so that an overview emerges of the situations in which the algo-
rithm performs poorly. This overview can then be used for further undercutting
defeaters, by indicating that a combination of features is found in the application
that has led the algorithm astray in earlier situations.

Moreover, it was possible to design for rebutting defeaters early on based on
an analysis of the cases of fraudulent activities that were part of the training data.
It was known that the Bulgarian criminals that were the reason for implement-
ing the system encouraged Bulgarians to register at a fake Dutch address and
wrongfully apply for benefits. So, if data from external systems indicates that the
applicant has been registered at the address that is mentioned in the application
and has paid taxes for several years, then this is evidence that an application is
innocent. It means that the application is likely not from one of these fraudsters,
and moreover presents a positive reason to think that the applicant is honest. One
may worry, though, that it leads to a large number of false negatives; fraudu-
lent applications that are approved. Users might simply approve any application
they see where the address checks out and the taxes have been paid properly. A
crucial question here seems to be the extent to which this information has been
incorporated by the automated system. If it has been weighed up, but there are
sufficiently many other indicators to suspect fraud, then it could indeed lead to
false negatives. Yet if, as with our barking example, it is system-independent and
a strong indicator for a particular outcome, then it should be presented. Possibly
it is better to send such applications on for further (human) review, rather than
letting an official accept them directly, but we do think that it is important to con-
sider such information as well.

A different question, though related, is whether this external information that is
being provided is still a good indicator of, in this example, an honest application for
benefits. Perhaps the Bulgarians have shifted methods and are no longer using fake

1 3

Spotting When Algorithms Are Wrong

addresses. This brings us to the case of covariate shift, as both our suggested rebut-
ting defeater and the system will be affected by it.

5.2 Defeaters Based on Covariate Shift

Our suggested tool for undercutting defeaters based on covariate shift from Sect. 4,
outlier detection, will likely apply. Though we have been unable to verify this, it
seems likely that there were some outliers in the data distribution to which the risk
classification algorithm was applied. We can expect that in these cases, as typically
holds, the algorithm is less reliable and so an undercutting defeater would be pro-
vided. So, outlier detection is an option that can be investigated, but focussing on
specific cases of covariate shift such as the changing methods of the Bulgarian crim-
inals offers—in our opinion—a more promising way to mitigate the effects of epis-
temic dependence on the sociotechnical system.

For, after the fraud by Bulgarian criminals came to light they shifted their work
to other regions and methods. This is a change in (criminal) behavior that has the
effect that the data to which the algorithm is applied differs from the training data
and makes the model inaccurate as a result. This covariate shift was known to many
people working with the system, but the model was not updated to reflect this. Fea-
ture importance signaling can be used to make the operator aware of this kind of
mistake in the model, especially if this implicit knowledge of the changing methods
of Bulgarian criminals is made explicit by a message accompanying high feature
importance of an applicants’ Bulgarian nationality. We can then present the user of
the system with an undercutting defeater, by signalling that the system may have
classified this application based on statistical correlations that no longer hold.

Focusing on such specific changes in the real world that invalidate the model pre-
dictions can also work as a method for finding rebutting defeaters. One of the fea-
tures used as indicators of fraud was the distance between the applicant’s address
and the address of the childcare provider. After a few years it became well-known
that this feature was a reason for the tax agency to look more closely at the applica-
tion. We have not been able to verify this, but it is likely that people with bad inten-
tions chose a childcare provider that is closest to their own address in the applica-
tion, meaning that a small distance between addresses was an indicator for fraud. If,
instead, fraudsters systematically started to pick childcare providers that were fur-
ther away, then having an address near to the provider is a rebutting defeater for the
system output. Not only does it give us a reason to doubt that the system is accurate
(as it is based on data from before the change in locations picked by fraudsters), the
knowledge that fraudsters avoid nearby childcare providers turns it into a positive
reason to think that the applicant is honest. Naturally, the strength of such a defeater
will depend on how strong the correlation between a small distance and the absence
of fraud is. So, such cases need to be examined with care, but can—if the correlation
is strong enough—at least provide reason for a more thorough review. It is, after all,
this kind of missing information that can lead algorithms further and further astray.
That is one reason why it is, additionally, relevant to have a mechanism for the iden-
tification of missing features.

 S. Buijsman, H. Veluwenkamp

1 3

5.3 Defeaters Based on Missing Features

The system that was actually implemented did not allow for applicants to supply
additional information to challenge the decision labelling them as potential fraud-
sters in the first phase of the review process. However, if the system had been
designed for such contestation of the decisions then this would also have lead to the
provision of rebutting defeaters. Applicants might have supplied additional informa-
tion, quite possibly not considered by the system, to prove that their application was
honest. For operational reasons, not all indicators have been made public. We, there-
fore, have not been able to find exactly what information the system did and what it
did not take into account. It seems plausible, though, that there will have been infor-
mation that the unfairly suspected applicants possesed which shows that they did not
commit fraud. Whether this was a positive confirmation from the childcare provider
or proof that they live at the stated address, such documents could have been looked
for. In particular, the system might have indicated to applicants looking to contest
the decision what features weighed most heavily in the decision, and so what type of
information they should have provided to convince the tax agency that it had made
a mistake. Although this process will require more human review, we think that this
is ultimately a good thing in the high stakes context for which the risk classifica-
tion algorithm was developed. It might have mitigated the bias that was the ultimate
reason for abandoning the system, though the steps above alone are not sufficient to
fully signal such crucial mistakes. Therefore, we finally turn to the defeaters to be
designed based on (possible) system bias. We omit the spurious correlation case as,
like we mentioned in Sect. 4, it does not seem to apply here.

5.4 Defeaters Based on System Bias

Bias in the system played an important role in the resignation of the Dutch cabinet.
Morally, this is also one of the more worrying ways in which an algorithm might
present us with erroneous/undesirable output. So, we think any attempt to counter
this will help, and in particular (as discussed) view defeaters as a promising way
to control and hopefully prevent this type of error. As discussed, flipsets (or other
counterfactual methods) can be used to inform the user about biases in a system.
Spangher et al. (2018) use these flipsets to identify “actionable” features that the
user should change in order to alter the system’s decision to a more favourable one.
By altering this focus from actionable to “protected” features, identifying whether
there are any such features that would lead to a change in outcome, biases can be
signalled. Typical protected features are those characteristics that are protected in
the constitution under anti-discrimination law. Chapter 1, article 1 of the Dutch con-
stitution prohibits discrimination on the basis of religion, philosophy of life (“lev-
ensovertuiging”), political affiliation, race and gender. The Dutch Data Protection
Authority also deemed the use of the applicant’s nationality morally and legally
problematic for the system under discussion. This feature should therefore also be
classified as “protected”. If the system finds that a flipset can be generated using

1 3

Spotting When Algorithms Are Wrong

only protected features, or with sufficiently small changes to non-protected fea-
tures along with larger changes to protected features, then this should be signaled
to the operator as a rebutting defeater. In this particular context, we expect that dual
nationality would have surfaced as such a feature, as it has by now emerged that
exactly that feature led to a large number of false positives.

As such, we have a broad selection of defeaters that might have helped. From
feature importance (generally and specifically focussed on protected features) to out-
lier detection, from the information that Bulgarian criminals changed their methods
to potential proofs of non-fraudulent behaviour via e.g. documented proof from the
childcare provider, a wide range of information could have been used to spot situa-
tions where the system would otherwise steer officials wrong. We are convinced this
information can help, and presented some empirical studies showing exactly this in
Sect. 4, but at the same time realize that the implementation will be a challenge.
Most of all, then, we hope that this focus on information that might show a system is
incorrect will be taken on board in the design process, leading to fewer issues stem-
ming from our epistemic dependence on these systems.

6 Conclusion

Users of sociotechnical systems are often in the difficult situation of having to make
a decision based on system output while, at the same time, being unable to indepen-
dently verify the correctness of that output. They’re epistemically dependent on the
system and therefore may make bad decisions, and likely violate norms of practi-
cal reasoning, in cases where the system makes an error. As we have argued, the
main difficulty here is that there is no information provided to these users to indi-
cate to them when the system is less reliable (in which case it is an undercutting
defeater) or when there is conflicting information available (a rebutting defeater).
It is this information, these defeaters, that can help reduce mistakes that naturally
result from the epistemic dependence on an imperfect system. They help limit the
epistemic dependence on the main algorithm (e.g. the risk classification algorithm
of the Dutch tax agency) and though the user is still epistemically dependent on the
sociotechnical system as a whole, the defeaters present the user with more nuanced
outputs.

To shift this from pure theory to a more practical design question we have
therefore looked at what types of defeaters a designer might implement. We used
a method similar to Failure Mode and Effects Analysis, which is used to mitigate
the aviation errors we opened the paper with, to identify in what ways an algorithm
might yield incorrect output. Each of these five leads to distinct types of defeaters,
most of which apply to the case study we presented in Sect. 5. Now, as we men-
tioned in several places, defeaters will still be tricky to design. There are questions
on how strongly to weigh each defeater, determined by the degree to which they
lower the probability that the algorithm is reliable/the output is true, and the meth-
ods proposed (such as counterfactual methods) still come with technical challenges.
We think, however, that the general goal of designing sociotechnical systems for
defeaters is worthwhile and important to keep in mind.

 S. Buijsman, H. Veluwenkamp

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Abdar, M., Pourpanah, F., Hussain, S., Rezazadegan, D., Liu, L., Ghavamzadeh, M., Fieguth, P. W.,
Cao, X., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). A review of
uncertainty quantification in deep learning: Techniques, applications and challenges. Information
Fusion. https:// doi. org/ 10. 1016/j. inffus. 2021. 05. 008

Adam Carter, J. (2017). Intellectual autonomy, epistemic dependence and cognitive enhancement.
Synthese, 197, 2937–2961.

Adam Carter, J. (2021). Epistemic autonomy and externalism. In K. Lougheed & J. Matheson (Eds.),
Epistemic autonomy. Routledge.

Barrett, L., Adoplhs, R., Marsella, S., Martinez, A., & Pollak, S. (2019). Emotional expressions
reconsidered: Challenges to inferring emotion from human facial movements. Psychological Sci-
ence in the Public Interest, 20(1), 1–68.

Bergmann, M. (2006). Justification without awareness. Oxford University Press.
Brown, J. (2008). Subject-sensitive invariantism and the knowledge norm for practical reasoning.

Nous, 42(2), 167–189.
Chan, S. (2017). Stanislav Petrov, Soviet Officer who helped avert nuclear war, is dead at 77. The New

York Times. Retrieved September 18, 2017, from https:// www. nytim es. com/ 2017/ 09/ 18/ world/
europe/ stani slav- petrov- nucle ar- war- dead. html

Chiang, C., & Yin, M. (2021). You’d better stop! Understanding human reliance on machine learning
models under covariate shift. In The 13th ACM web science conference, June 2021.

Desiere, S., Langenbucher, K., & Struyven, L. (2019). Statistical profiling in public employment ser-
vices: An international comparison. OECD Social, Employment and Migration Working Papers,
224. OECD.

Dodge, J., Liao, Q., Zhang, Y., Bellamy, R., & Dugan, C. (2019). Explaining models: an empirical
study of how explanations impact fairness judgment. In Proceedings of the 24th international
conference on intelligent user interfaces (pp. 275–285).

Durán, J., & Jongsma, K. (2021). Who is afraid of black box algorithms? On the epistemological and
ethical basis of trust in medical AI. Journal of Medical Ethics, 47(5), 329–335.

Dutant, J., & Littlejohn, C. (2021). Defeaters as Indicators of Ignorance. In M. Simion & J. Brown
(Eds.), Reasons, justification, and defeat (pp. 223–246). Oxford University Press.

Erlei, A., Nekdem, F., Meub, L., Anand, A., & Gadiraju, U. (2020). Impact of algorithmic decision
making on human behavior: Evidence from ultimatum bargaining. In Proceedings of the AAAI
conference on human computation and crowdsourcing (Vol. 8(1), pp. 43–52).

Ferrario, A., & Loi, M. (2021). The meaning of “Explainability fosters trust in AI”. SSRN 3916396.
Ferrario, A. (2021). Design publicity of black box algorithms: A support to the epistemic and ethical

justifications of medical AI systems. Journal of Medical Ethics. https:// doi. org/ 10. 1136/ medet
hics- 2021- 107482

Fong, R., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation.
In 2017 IEEE international conference on computer vision (ICCV) (pp. 3449–3457), Venice,
Italy, 2017.

Gerken, M. (2011). Warrant and action. Synthese, 178, 529–547.
Goldberg, S. (2017). Should have known. Synthese, 194, 2863–2894.
Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., & Giannotti, F. (2018). Local rule-

based explanations of black box decision systems. arXiv preprint. arXiv: 1805. 10820.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.inffus.2021.05.008
https://www.nytimes.com/2017/09/18/world/europe/stanislav-petrov-nuclear-war-dead.html
https://www.nytimes.com/2017/09/18/world/europe/stanislav-petrov-nuclear-war-dead.html
https://doi.org/10.1136/medethics-2021-107482
https://doi.org/10.1136/medethics-2021-107482
http://arxiv.org/abs/1805.10820

1 3

Spotting When Algorithms Are Wrong

Hardwig, J. (1985). Epistemic dependence. The Journal of Philosophy, 82(1), 335–349.
Hawthorne, J., & Stanley, J. (2008). Knowledge and action. Journal of Philosophy, 105(10), 571–590.
Henning, T. (2021). An epistemic modal norm of practical reasoning. Synthese, 199(3–4), 6665–6686.
Humphreys, P. (2009). The philosophical novelty of computer simulation methods. Synthese, 169(3),

615–626.
Jackson, A. (2012). Two ways to put knowledge first. Australasian Journal of Philosophy, 90(2),

353–369.
Jacovi, A., Marasović, A., Miller, T., & Goldberg, Y. (2021). Formalizing trust in artificial intelli-

gence: Prerequisites, causes and goals of human trust in AI. In Proceedings of the 2021 ACM
conference on fairness, accountability, and transparency (pp. 624–635).

Klein, R. (2014). Where there are internal defeaters, there are “confirmers.” Synthese, 191,
2715–2728.

Kotzen M. (2019) A Formal Account of Epistemic Defeat. In: B. Fitelson, R. Borges & C. Braden
(Eds.) Themes from Klein. Synthese library (Studies in epistemology, logic, methodology, and
philosophy of science) (Vol. 404, pp. 213–234). Springer.

Lackey, J. (2006). Learning from words. Philosophy and Phenomenological Research, 73, 77–101.
Lehrer, K. (1990). Theory of knowledge. Routledge.
Littlejohn, C. (2009). Must we act only on what we know? Journal of Philosophy, 106(8), 463–473.
Logg, J., Minson, J., & Moore, D. (2019). Algorithm appreciation: People prefer algorithmic to human

judgment. Organizational Behavior and Human Decision Processes, 151, 90–103.
Lyons, H., Velloso, E., & Miller, T. (2021). Conceptualising contestability: Perspectives on contesting

algorithmic decisions. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW1), 1–25.
Mayo, D. (1996). Error and the growth of experimental knowledge. The University of Chicago Press.
Mayo, D. (2018). Statistical inference as severe testing: How to get beyond the statistics wars. Cambridge

University Press.
Mehta, N. (2016). Knowledge and other norms for assertion, action, and belief: A teleological account.

Philosophy and Phenomenological Research, 93(3), 681–705.
Mueller, A. (2021). The knowledge norm of apt practical reasoning. Synthese, 199(1–2), 5395–5414.
Muñoz, D. (2019). Defeaters and Disqualifiers. Mind, 128(511), 887–906.
Pearce, T., Brintrup, A., Zaki, M., & Neely, A. (2018). High-quality prediction intervals for deep learn-

ing: A distribution-free, ensembled approach. In International conference on machine learning (pp.
4075–4084).

Pearl, J. (2000). Causality: Models, reasoning and inference. Cambridge University Press.
Pollock, J., & Cruz, J. (1986). Contemporary theories of knowledge. Rowman and Littlefield.
Poursabzi-Sangdeh, F., Goldstein, D., Hofman, J., Wortman Vaughan, J., & Wallach, H. (2021). Manipu-

lating and measuring model interpretability. In Proceedings of the 2021 CHI conference on human
factors in computing systems (pp. 1–52).

Raji, I., Smart, A., White, R., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., &
Barnes, P. (2020). Closing the AI accountability gap: Defining an end-to-end framework for internal
algorithmic auditing. In FAT* ’20: Proceedings of the 2020 conference on fairness, accountability,
and transparency (pp. 33–44), January 2020.

Rochlin, G. (1991). Iran Air Flight 655 and the USS Vincennes. NATO ASI Series (Series D: Behav-
ioural and Social SciencesIn T. R. La Porte (Ed.), Social responses to large technical systems. (Vol.
58). Springer.

Rooksby, E. (2009). How to be a responsible slave: Managing the use of expert information systems. Eth-
ics and Information Technology, 11, 81–90.

Spangher, A., Ustun, B., & Liu, Y. (2018). Actionable recourse in linear classification. In Proceedings of
the 5th workshop on fairness, accountability and transparency in machine learning.

Stamatis, D. (2003). Failure mode and effect analysis: FMEA from theory to execution. American Society
for Quality, Quality Press.

van den Hoven, J. (1998). Moral responsibility, public office and information technology. In I. Snellen &
W. van de Donk (Eds.), Public administration in an information age: A handbook (pp. 97–112). IOS
Press.

van Huffelen, A. C. (2020). Kamerstuk II 2019/20, 31 066, Nr. 683. https:// zoek. offic ieleb ekend makin
gen. nl/ kst- 31066- 683. html

Weiner, M. (2005). Must we know what we say? Philosophical Review, 114(2), 227–251.
Williamson, T. (2005). Contextualism, subject-sensitive invariantism and knowledge of knowledge. The

Philosophical Quarterly, 55(219), 213–235.

https://zoek.officielebekendmakingen.nl/kst-31066-683.html
https://zoek.officielebekendmakingen.nl/kst-31066-683.html

 S. Buijsman, H. Veluwenkamp

1 3

Wu, X., & Zhang, X. (2016). Automated inference on criminality using face images, pp. 4038–4052.
arXiv preprint. arXiv: 1611. 04135

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

http://arxiv.org/abs/1611.04135

	Spotting When Algorithms Are Wrong
	Abstract
	1 Introduction
	2 Epistemic Dependence and practical decisions
	2.1 Epistemic Dependence
	2.2 Norms of Practical Reasoning

	3 Defining Defeaters
	4 Designing for Defeaters
	5 Case Study: The Dutch Childcare Benefits Scandal
	5.1 Defeaters Based on System Inaccuracy
	5.2 Defeaters Based on Covariate Shift
	5.3 Defeaters Based on Missing Features
	5.4 Defeaters Based on System Bias

	6 Conclusion
	References

