
 
 

Delft University of Technology

Adapting TCP for the Bridge Architecture

Kashyap, Shruthi; Rao, Vijay; Venkatesha Prasad, Ranga Rao; Staring, Toine

DOI
10.1007/978-3-030-85836-0_5
Publication date
2021
Document Version
Final published version
Published in
SpringerBriefs in Applied Sciences and Technology

Citation (APA)
Kashyap, S., Rao, V., Venkatesha Prasad, R. R., & Staring, T. (2021). Adapting TCP for the Bridge
Architecture. In SpringerBriefs in Applied Sciences and Technology (pp. 41-61). (SpringerBriefs in Applied
Sciences and Technology). Springer. https://doi.org/10.1007/978-3-030-85836-0_5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-030-85836-0_5
https://doi.org/10.1007/978-3-030-85836-0_5


Chapter 5
Adapting TCP for the Bridge
Architecture

Some experiments have been designed to understand what parameters of the TCP/IP
protocol affect the performance of the cordless kitchen system. These parameters are
recognized and adapted to the system appropriately in order to boost the performance
of Internet applications.

5.1 Experimental Setup

The experimental setup consists of three Linux-based systems that behave as the
cordless appliance, PTx and the end-user device. The Lightweight IP (LwIP) stack
[1] is installed on these, where only the required layers of the stack are utilized, as
shown in Fig. 3.3. An Ethernet connection is used between the PTx and the end-
user device. An NFC communication channel is set up between the PTx and the
cordless appliance. The block diagram of the NFC module used in this experiment
is illustrated in Fig. 5.1 and the actual hardware setup is shown in Fig. 5.2. It consists
of an NFC Reader/Writer (RW) device, an NFC Card Emulator (CE) device and
micro-controllers (MCU) connected to each of them as shown in the figures. The
NFC devices have the following characteristics.

• They operate at 13.56MHz and use the ISO/IEC 14443-4 half-duplex transmission
protocol.

• They support bit rates of 212 and 424kbps.
• They are capable of transferring a chunk of 14 bytes (at 212kbps) and 30 bytes
(at 424kbps) in one time slot of 1.5ms. So the bandwidth in the NFC time-slotted
mode would be 11.2kbps (at 212kbps) and 24kbps (at 424kbps).

• They require the data chunk to be available at least 2ms before the occurrence of
a communication time slot.

• The distance of about 3cm is used between the NFC RW and CE devices (see
Fig. 5.3).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
S. Kashyap et al., Cook Over IP,
SpringerBriefs in Applied Sciences and Technology,
https://doi.org/10.1007/978-3-030-85836-0_5

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-85836-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-85836-0_5


42 5 Adapting TCP for the Bridge Architecture

Fig. 5.1 Block diagram of the NFC module

Fig. 5.2 NFC module used for the experiments

• In a kitchen scenario, one may not place the appliance exactly on top of a PTx
always. TheWPC standard allows a leeway of up to 10cm and hence requires that
no bit errors occur up to this radius from the center of the PTx. Therefore, error
correction techniques are not used. The NFCRWdevice terminates the connection
with an NFC CE device when bit errors are detected with the assumption that the
appliance is in an unsafe position.

TheMCUs used in the module are responsible for the fragmentation of the incom-
ing packets from the TCP/IP stack. The defragmentation is done in the PTx and appli-
ance stacks. The MCUs are also responsible for synchronizing the data transfer with
theNFC communication time slots. A serial communication (UART) is used between
the MCUs and the NFC devices. According to the cordless kitchen specification, the
PTx needs to behave as the NFC RW device and the appliance as the CE device, so
the connections are made by interfacing the PTx and the appliance to the appropriate
MCUs using UART communication. The MCUs have an incoming packet buffer of



5.1 Experimental Setup 43

Fig. 5.3 NFC RW and CE modules used in the experiments

Table 5.1 LwIP stack configuration used in the experiments

Configuration type Value

Protocol Version IPV4

TCP Maximum Segment Size (MSS) 1024 bytes

Initial Contention Window (CWND) size 4096 bytes

Send buffer size 4096 bytes

Maximum CWND size 8096 bytes

For every ACK received CWND increases by 1024 bytes

TCP Retransmission Timeout (RTO) 1s

TCP timer period 500ms

TCP fast timer period 250ms

2kB. The Maximum Transmission Unit (MTU) over the Ethernet channel is 1500
bytes. So a packet buffer size of 2kB is chosen considering the overheads from the
UI protocol and packet processing. They have an interrupt-driven UART reception,
and they store and process only one packet at a time.

The proprietary DICOMM UI protocol is used between the end-user device and
the appliance. The TCP server and client applications are run on these two devices
to exchange data using the UI protocol. The TCP/IP stack configuration used for the
experiments is listed in Table5.1. Table5.2 summarizes the communication overhead
in the cordless kitchen. In the experiments, the cordless appliance is assigned with an
IP address of 192.168.1.102, and the end-user device with 192.168.1.202, as shown
in Fig. 5.4. Note that for ease of implementation, the PTx is also given the same IP
address of 192.168.1.102 as that of the appliance. Wireshark packet analyzer tool is
used over the Ethernet link. The packets over the NFC channel cannot be captured
by this tool, so logs from the NFC and the TCP/IP stacks are also used for analysis.



44 5 Adapting TCP for the Bridge Architecture

Table 5.2 Communication overhead in the cordless kitchen system

Overhead type Size (Bytes)

IPV4 20

TCP 20

UI protocol 8

Packet handling 8

NFC protocol 4 per time slot

Total 56 + (4 * No. of time slots per packet)

Fig. 5.4 TCP client as the cordless appliance and TCP server as the mobile app

5.2 Challenges in Adapting TCP

TCP is a transport layer protocol which is responsible for ensuring reliable transmis-
sion of data across Internet-connected networks. It is called a connection-oriented
protocol as it establishes a virtual connection between two hosts using a series of
request and reply messages. It divides the messages or files to be transmitted into
segments that are encapsulated into the body of the IP packets. Upon reaching the
destination, these segments are reassembled to form the complete message or file.
TCP defines a parameter known asMaximum Segment Size (MSS) which represents
the maximum payload size a TCP segment can hold excluding the TCP header. It is
basically the application data size that can be sent in a single TCP/IP packet. TCP
executes a three-way handshake sequence for connection establishment between two
hosts, as shown in Fig. 5.5. During the handshake, the hosts agree upon theMSSvalue
that will be used during the data transfer. Once the hosts finish exchanging data, the
TCP session will be terminated using the connection termination procedure.

While the connection is established and the data transfer is in progress, TCP uses
several mechanisms such as congestion control and flow control to provide a reliable
connection. The congestion control includes the slow start, congestion avoidance, fast
retransmit and fast recovery mechanisms [2]. TCP maintains a retransmission timer
to detect and retransmit lost segments. Each time a segment is sent, TCP starts the
retransmission timer which begins at a predetermined value called Retransmission



5.2 Challenges in Adapting TCP 45

Fig. 5.5 TCP connection
establishment, data transfer
and connection termination
procedures

Timeout (RTO) and counts down over time. If this timer expires before an acknowl-
edgment is received for the segment, TCP retransmits the segment assuming that
the packet is lost. The RTO value for segments is set dynamically by measuring the
Round Trip Time (RTT) of the previous segments. This helps in setting appropriate
RTO values by understanding the current delay on the channel.

The flow control determines the rate at which data is transmitted between the
sender and receiver in a TCP session. TCP uses a sliding window mechanism for
flow control. Due to the limited buffer space, the sender and receiver maintain a
congestion window (CWND) and receive window which represent the amount of
unacknowledged data that can be in transit at any given time. (Note: Please refer to
[2] for a detailed explanation on the working of the TCP/IP protocol).

In this book, the TCP MSS, RTO, RTT and CWND parameters are considered
while adapting TCP/IP for the slotted NFC channel as they are the fundamental
factors that affect the performance of the cordless kitchen. This chapter mainly con-
centrates on adapting the TCP RTO and RTT parameters to the given system. The
effects of TCP MSS and CWND sizes on performance are discussed in Chap. 7.

To analyze the performance of tunneling TCP/IP over the time-slotted NFC chan-
nel, a TCP session is established over NFC at a bit rate of 11.2kbps and an initial
TCP RTO value of 1 s. The PTx and appliance are configured to run the TCP server
(192.168.1.202) and client (192.168.1.102) applications, respectively. A payload size
equal to TCP MSS of 1024 bytes is exchanged in the session, which generates an
NFC payload size of 1080 bytes, including all the overheads mentioned in Table5.2.
The result obtained is depicted in Fig. 5.6. It shows the output from the Wireshark
tool taken over the Ethernet link. The packets over the NFC channel are not visible
in the capture.



46 5 Adapting TCP for the Bridge Architecture

Fig. 5.6 TCP session with a data exchange of 1080 bytes at 11.2kbps

In Fig. 5.6, it can be noticed that there are some retransmitted and duplicate ACK
(Dup ACK) packets in the TCP session (highlighted in black). The Dup ACKs are
transmitted when the receiver sees a gap in the sequence number of received pack-
ets. The logs from the TCP/IP stacks show that there are two retransmissions from
the appliance, and one retransmission from the PTx followed by a Dup ACK sent
in response to the retransmission from the appliance. The presence of such retrans-
missions has a large impact on the latency of the TCP session. This is because the
latency of the system is already in the order of seconds due to the constrained band-
width of the NFC channel, and transmitting these extra packets would increase the
latency even further, impacting the end-user experience. It is therefore important to
eliminate these retransmissions by identifying the cause of their occurrence. The
subsequent sections discuss in detail the classification of these retransmissions and
their elimination techniques.

5.2.1 TCP Spurious Retransmissions

The packets 8 and 9 in Fig. 5.6 are spurious retransmissions from the client and server
stacks, respectively. Spurious retransmissions occur when the sender thinks that its
packet is lost and sends it again, even though the receiver sent an acknowledgment for
it. This happens when the sender experiences a timeout before the ACK is received
due to the TCP RTO value being very small compared to that of the packet RTT.
Figure5.7 depicts a case where a spurious retransmission problem occurs. Here, the
appliance stack does not wait long enough to receive the ACK from the end-user
device, which leads to a series of unnecessary transmissions.

To confirm if some or all of these are spurious retransmissions, the experiment
is repeated with smaller NFC payload sizes. Table5.3 gives an overview of the
number of retransmissions and Dup ACKs observed for different payload sizes at a
bit rate of 11.2kbps. It can be noticed that as the data size decreases, the number of
retransmissions also decreases. If these are spurious retransmissions, this behavior
makes sense because smaller data sizes will have smaller RTT. So the chances of
the RTO timer of 1 s getting triggered will be less which would result in fewer or no
spurious retransmissions. At 11.2kbps, the RTT of a 500-byte packet is about 1.1 s,



5.2 Challenges in Adapting TCP 47

Fig. 5.7 Spurious retransmissions in a TCP session

Table 5.3 Number of retransmissions and Dup ACKs in TCP sessions for varying payload sizes
at 11.2kbps

Payload on NFC (Bytes) Appliance PTx

Retxs. Dup ACKs Retxs. Dup ACKs

250 1 0 0 0

500 1 0 1 0

1000 2 0 1 1

1080 2 0 1 1

resulting in a total of two retransmissions, and the RTT of a 250-byte packet is about
0.6 s, which results in only a single retransmission.

The experiment is repeated at anNFC bit rate of 24kbps for a payload size of 1080
bytes. The result is depicted in Fig. 5.8. It can be seen that there is one retransmission
from both PTx and appliance, and two Dup ACKs only from the appliance stack. At
higher bit rates, the RTT of the packets over NFCwill be even less. This would further
reduce the number of spurious retransmissions. Table5.4 summarizes the results for
different NFC payload sizes exchanged in the TCP session at 24kbps. It can be
observed that fewer retransmissions are observed compared to that in 11.2kbps.

These experiments confirm that the TCP RTO value is very small for the given
system which makes the stacks timeout sooner than the expected arrival time of the
acknowledgment, leading to spurious retransmissions. To overcome this, the TCP
packet size could be reduced such that its RTT will be less than the RTO value that is
set by default. For this, however, the TCP MSS value will have to be reduced, which



48 5 Adapting TCP for the Bridge Architecture

Fig. 5.8 TCP session with a data exchange of 1080 bytes at 24kbps

Table 5.4 Number of retransmissions and Dup ACKs in TCP sessions for varying payload sizes
at 24kbps

Payload on NFC (Bytes) Appliance PTx

Retxs. DUP ACKs Retxs. DUP ACKs

250 1 0 0 0

500 1 0 0 0

1000 1 0 0 0

1080 1 2 1 0

would lower the goodput of the system. Therefore, it makes more sense to adjust the
RTO value appropriately to suit the system.

The TCP/IP stack updates the RTO for its packets dynamically by constantly
measuring the RTT of its data packets. The authors of [3, 4] propose methods of
avoiding spurious retransmissions in wireless networks that have high delay vari-
ability by injecting delays into the network. These delays increase the RTT of the
packets and hence the calculated TCP RTO values. Leung et al. [5] present another
technique to increase the TCP RTO value by increasing the mean deviation of the
measured packet RTT. Although these solutions promise to reduce spurious retrans-
missions, they will not be very useful in the cordless kitchen system because TCP
timeout occurs for the first data packet of the TCP session, for which the RTT mea-
surement has not been made yet. The stack therefore ends up using the initial TCP
RTO that is set at compile time, for this packet. Moreover, the TCP sessions in this
system can be short, so there will not be enough time to adapt to the dynamically
calculated RTO values. Furthermore, this system uses low bandwidth and large delay
channel; it is therefore necessary to remove the retransmissions as much as possible,
right from the beginning of the TCP session, to ensure a good end-user experience.

To avoid spurious retransmissions, the initial TCP RTO needs to be greater than
the RTT of the maximum packet size traveling through the NFC channel. This value
gets automatically updated after TCP starts making RTT measurements. It is rec-
ommended to set the RTO slightly higher than the RTT of the data packet. This
guarantees that there are no spurious retransmissions and also ensures quick retrans-
mission in case of packet loss. Figure5.9 shows a scenario where the appliance stack
waits sufficiently to receive an ACK for the transmitted data packet. It can be seen



5.2 Challenges in Adapting TCP 49

Fig. 5.9 Spurious retransmissions solved by increasing the initial RTO value

Fig. 5.10 TCP session with a data exchange of 1080 bytes at 11.2kbps with initial RTO of 5 s

that eliminating the retransmissions and Dup ACKs saves a lot of time by reducing
the number of packets transmitted over the constrained NFC channel, which in turn
improves the overall responsiveness of the system.

In the presence of somany retransmissions, it is difficult to estimate and generalize
the exact RTT of the packets. Therefore, initially a high RTO value greater than the
total TCP session duration is chosen so that all the spurious retransmissions are
eliminated, which would make the analysis of the packet RTT easier. At an NFC bit
rate of 11.2kbps, the average TCP session duration with 1080 bytes of data exchange
is about 4.56 s, so an initial RTO of 5 s is chosen for both the client and server stacks
to make sure that TCP does not timeout before the first data acknowledgment is
received.

Figure5.10 shows the result after updating the initial TCPRTO to 5s. No spurious
retransmissions are observed in the TCP session, and both server and client stacks
wait sufficiently to receive an acknowledgment. However, there is one retransmission
at the appliance as indicated by the stack logs. It can be seen that the time difference
between packets 5 and 6 is about 5 s, which is equal to the RTO set. This implies
that packet 6 is a retransmitted packet. The fact that this was not removed by setting
a high RTO suggests that this is not a spurious retransmission. Further analysis on
this will be discussed in Sect. 5.2.2.

Similar results are obtained at other data sizes (refer Table5.5), where one retrans-
mission exists from the appliance stack. The experiment is repeated at 24kbps by



50 5 Adapting TCP for the Bridge Architecture

Table 5.5 Number of retransmissions and Dup ACKs in TCP sessions for varying payload sizes
at 11.2kbps with an initial TCP RTO of 5 s

Payload on NFC
(Bytes)

Appliance PTx

Retxs. DUP ACKs Retxs. DUP ACKs

250 1 0 0 0

500 1 0 0 0

1000 1 0 0 0

1080 1 0 0 0

setting an initial RTO of 3 s, as the average TCP session duration is around 2.45 s.
It is again observed that although all spurious retransmissions are removed, one
retransmission from the appliance stack still exists.

It is very important to set an optimum TCP RTO value for every packet to avoid
spurious retransmissions. For this, it is necessary to understand the channel TCP is
dealing with. Using RTT of the previous packets cannot be the only factor that should
be considered for estimating the RTO for the data packets. The estimation needs to
be done by analyzing the following parameters as well.

• NFC bit rate being used;
• Speed/bandwidth of the channel between PTx and the end-user device;
• Total packet size, as the RTT depends on the size of the packet.

Note: For the initial TCP RTO, the RTT of the maximum possible packet size that
can be transferred over the NFC channel should be used.

Generalizing the RTT estimation procedure would be more precise when the
TCP session is free from all kinds of retransmissions and Dup ACKs. Therefore,
it is necessary to first eliminate the remaining retransmissions before proceeding
to a generalized approach for setting an optimum TCP RTO, which is explained in
Sect. 5.3.2.1.

5.2.2 Packet Drops Due to Small Inter-Packet Delay

In Fig. 5.10, although the spurious retransmissions and duplicate ACKs are removed,
the total time of the TCP connection has considerably increased to about 7.4 s com-
pared to the one with an initial RTO of 1 s, which was 4.56 s on an average. This
sudden increase takes place between packets 5 and 6 (highlighted in Fig. 5.10). The
time difference of about 5 s between these packets, which is equal to the initial RTO
set, suggests that packet 6 is a retransmitted packet from the appliance.

The result of the experiment at a bit rate of 24kbps with an exchange of 1080
bytes of NFC payload and an initial RTO of 3 s is represented in Fig. 5.11. Again,



5.2 Challenges in Adapting TCP 51

Fig. 5.11 TCP session with a data exchange of 1080 bytes at 24kbps with initial RTO of 3 s

Fig. 5.12 TCP session with a data exchange of 1080 bytes without the NFC channel

the time difference of about 3 s between packets 5 and 6, equal to the initial RTO,
suggests that packet 6 has been retransmitted by the appliance stack, just like the
previous case. The NFC interface and appliance stack logs reveal that the first data
packet (packet 6) which was sent right after packet 5 was dropped at the interface by
the NFC module. This is the reason that it cannot be seen on the Wireshark capture.

To understand why the packet was dropped, it is important to study the time delay
between TCP/IP packets exchanged between two devices in normal situations, i.e.
without the NFC channel. This would give an idea of what the ideal delay between
packets 5 and 6 should have been. Figure5.12 shows the packet capture taken between
two devices connected via Ethernet. The TCP client is at 192.168.1.102 and the TCP
server is at 192.168.1.202.

The average delay between packets 5 and 6, representing the ACK of the TCP
handshake and the first data packet, respectively, is around 50.6µs. This means that
when the NFC channel is being used, the TCP stack generates packet 6 50.6µs
after packet 5 and pushes it to the NFC channel. This inter-packet delay between
consecutive packets would be too small for the NFC channel as it is half-duplex and
can only transmit packets one at a time.Moreover, the NFCmodule used in this setup
can store and process only a single packet at a time. It discards all the packets that it
receives while it is transmitting. In this case, packet 5 takes around 69.04ms to travel
through the NFC channel at 11.2kbps and around 39.76ms at 24kbps. So when the
appliance stack sends packet 6 only 50.6µs after sending packet 5, the NFC module
discards it as it will be busy transmitting packet 5. Figure5.13 summarizes this
problem. It shows how a small inter-packet delay between two consecutive packets
causes packet loss, which impacts the overall latency of the TCP session.



52 5 Adapting TCP for the Bridge Architecture

Fig. 5.13 Packet drop at the NFC interface due to small inter-packet delay

5.3 Addressing the Challenges

Both the outlined problems are due to the low data rate, time-slotted NFC channel.
The packet drops at the NFC interface causes retransmissions, and spurious retrans-
missions can cause further packet drops at the NFC interfaces. We break this tie by
first solving the packet drops issue, and then address the spurious retransmissions
problem.

5.3.1 Avoiding Packet Drops Due to Small Inter-Packet Delay

To avoid packet drops at the NFC interface caused due to small inter-packet delay
between consecutive packets, there must be a way for the stack to sense the NFC
channel before sending packets to it. An NFC channel sensing mechanism is imple-
mented where the NFC channel notifies the stack when it is busy or free. The stack
keeps track of this and sends the packets onlywhen the channel is free. By implement-
ing this mechanism on both the ends of the NFC channel, i.e. in the NFC-appliance
and the NFC-PTx interfaces, it can be ensured that packet drops are not caused due
to sending the packets too soon into the channel. This way the processing speed of
the TCP/IP stack can be brought down to match the speed of the NFC channel so
that they function in sync. Figure5.14 shows how the packet drop problem is solved
by implementing the NFC channel sensing mechanism.

Figures5.15 and 5.16 show the result after implementing the mechanism at
11.2kbps and 24kbps, respectively. The TCP sessions are free from retransmis-



5.3 Addressing the Challenges 53

Fig. 5.14 NFC channel sensing mechanism

Fig. 5.15 TCP session with a data exchange of 1080 bytes with NFC channel sensing mechanism
at 11.2kbps and initial RTO of 5 s

Fig. 5.16 TCP session with a data exchange of 1080 bytes with NFC channel sensing mechanism
at 24kbps and initial RTO of 3 s

sions and Dup ACKs which results in the reduction of latency. With a payload size
of 1080 bytes, the TCP session latency is about 2.87 s at 11.2kbps, which was 4.56 s
before solving the retransmission problems. At 24kbps the latency is around 1.33 s
which was initially 2.45 s.



54 5 Adapting TCP for the Bridge Architecture

Fig. 5.17 TCP session with a very large TCP RTO

5.3.2 Avoiding TCP Spurious Retransmissions

5.3.2.1 Generalized Approach for TCP RTO Estimation

Setting a high initial TCPRTOwill avoid spurious retransmissions for sure, however,
it may also delay the retransmission when a packet is really lost. Figure5.17 shows
how the latency of the TCP session increases when a large initial TCP RTO is set and
when packet loss occurs. It is therefore recommended to set the RTO slightly higher
(at least one timer period) than the RTT of the data packet. This is because when the
TCP stacks have coarse timers, there will be a tendency of timing out around one
timer period sooner than what is estimated.

Now that all the retransmissions are removed, the RTT of the TCP packets can
be estimated by analyzing the transmission conditions of the system in detail. The
TCP/IP packet from the appliance travels through the NFC and Ethernet/Wi-Fi chan-
nels before reaching the end-user device. So the packet RTT can be broadly defined
as

RT T = RT TNFC + RT TWiFi (ms) (5.1)

where RT T is the total packet round trip time, RT TNFC is the round trip time over
the NFC channel and RT TWiFi is the round trip time over the Wi-Fi channel.

The initial RTO set at compile time for standard wireless (or Ethernet) channels
should be used as RT TWiFi . Paxson et al. [6] recommend a minimum value of 1 s as



5.3 Addressing the Challenges 55

Fig. 5.18 TCP session capture in the direction from the appliance through the NFC-CE and NFC-
RW modules at 11.2kbps

the TCP RTO for wireless channels. The measured RTT of the previous packet can
later be used to vary this value dynamically, as explained in the next section.

The RT TNFC is the critical component which consumes most of the time. When
the appliance stack transmits a packet, it first travels over the UART channel to reach
the NFC module, as shown in Fig. 5.1. The NFC module then fragments the packet
into chunks and transmits it over the NFC channel to the PTx stack. Figure5.18
shows an oscilloscope output of a TCP session with 1080 bytes of data exchange
at 11.2kbps, captured between the ends of the NFC module. It depicts the packet
transmissions in the direction from the appliance through the NFC-CE and NFC-RW
modules. Different signals seen in the capture are explained below.

1. Yellow signal: it represents the transmission of data packets from the appliance
stack to the MCU over UART.

2. Green signal: it represents the transmission of data chunks from the MCU to the
NFC-CE module over UART.

3. Purple signal: it represents the transmission of data chunks from the NFC-RW
module to the MCU over UART.

The time to transmit a fragmented 1080-byte data packet over the NFC channel is
depicted as NFC Data Tx in Fig. 5.18. This value is equal to the theoretical time
to transmit the data over the NFC channel, unless some time slots are missed in
between. The UART Data Tx in the figure depicts the time needed to transfer the
data packet from the appliance to the NFC module. This value adds to the packet
processing time.

Apart from these, it is also important to take the waiting time for a time slot into
account. From Sect. 5.1, it is clear that the packet chunks need to be present in the
NFC module at least 2ms before the arrival of the time slot. When the TCP/IP stack
sends a packet, the packet can arrive at the NFC module at any point between two



56 5 Adapting TCP for the Bridge Architecture

time slots. So the maximum amount of time a packet would need to wait for a time
slot would be 12ms.

When the chunks are received at the other end of the NFC channel, they are
transmitted over the UART to the PTx stack. This transmission will be done in
parallel to the transmission on the NFC channel, so they do not add to the RTT of the
packet. However, the transmission of the last chunk needs to be taken into account.
Considering all these, the RT TNFC will be

RT TNFC = 2 ∗ (tU ART + tmaxslotwait + tN FC + tU ARTchunk) (ms) (5.2)

where tU ART is the packet transmission time over UART. It depends on the baud of
the UART being used. tmaxslotwait is taken as 12ms, as explained above. tN FC is the
theoretical transmission time over the slotted NFC channel, and tU ARTchunk is the
transmission time of the last chunk over UART.

The tU ART is given by the following equation:

tU ART = si zepckt
baudU ART

(ms) (5.3)

where si zepckt is the total packet size sent to the NFCmodule in bytes and baudU ART

is the baud of the UART in bytes per millisecond.
The tN FC is given by the following equation:

tN FC = slotspckt ∗ 10 (ms) (5.4)

slotspckt = si zepckt
si zechunk

(5.5)

where slotspckt is the number of time slots needed to transmit the packet. si zechunk
is the size of the payload section of the NFC protocol (in bytes). This depends or
varies with the bit rate of the NFC being used.

The tU ARTchunk is given by the following equation:

tU ARTchunk = si zechunk
baudU ART

(ms) (5.6)

The initial RTO to be set must be greater than the maximum packet size that is
transmitted through the NFC channel. In this experiment, the TCP MSS is set as
1024 bytes, which gives a maximum packet size of 1080 bytes. The total RTT for
this packet size is estimated using Eq.5.1, and it is found to be 3373.24ms. As the
timer period of the LwIP stack is 500ms, this RTT value needs to be rounded up
to the nearest 500ms. This results in an optimum initial RTO of 3500ms (3.5 s) for
an NFC bit rate of 11.2kbps. For the bit rate of 24kbps, the optimum initial RTO is
found to be 2.5 s.



5.3 Addressing the Challenges 57

5.3.2.2 New Algorithm for Dynamic TCP RTO Estimation

TCP in LwIP calculates the RTO after measuring the RTT of the data packets using
Van Jacobson’s (VJ)RTTestimation algorithm [7].VJ’s algorithmuses the Smoothed
RTT (SRTT) calculation for RTO prediction. It measures the RTT value of the data
packets to estimate the RTO of the next packet to be sent. Therefore, the RTO which
is assigned to a packet is based on the RTT of the previous packet, which is done
irrespective of the packet size.

Consider situations where the TCP sessions are long and the initial TCP RTO
is set to 3.5 s at compile time (NFC bit rate of 11.2kbps). For example, if a user
chooses to cook step by step by creating their own recipe instead of uploading a
recipe in one go, the TCP session would last very long and it could comprise several
TCP messages with randomly varying sizes. If the application sends very small data
packets of less than 10 bytes for a long time, TCP would adjust the RTO to a smaller
value of about 1 s. Now, if the application suddenly sends very large packets, like
recipes greater than 1kB, an RTO of 1s would be too small. This would result in
spurious retransmissions until TCP adjusts the RTO according to the new packet
sizes. On the contrary, if the application sends very small data packets right after
sending large packets, the RTO of the small packets would be large initially until it is
gradually adjusted to an appropriate value. In the meanwhile, if one of these packets
gets lost, the systemwould take longer to timeout resulting in delayed retransmission
(see Fig. 5.17). This would increase the overall latency of the system.

Figure5.19 shows the TCP stream diagram of the client stack in a long session
with 68 data packets of varying sizes. Points with the same sequence number denote
retransmissions. It can be noticed that every time a large packet (denoted by a large
jump in sequence number and/or time) is sent after a series of small packets, spurious
retransmissions occur. This is because TCP would have adjusted the RTO suitable
for small packets, and when large packets are suddenly sent this RTO would become
too small considering the RTT of large packets. In the diagram, this is represented
by packets having the same sequence number being sent more than once at different
times. There are eight spurious retransmissions and eight Dup ACKs resulting in a
total session duration of 22.58 s. It is very important to eliminate these retransmissions
because it increases the latency of the TCP session in the order of seconds, due to
the constrained nature of the NFC channel.

To mitigate this, a new algorithm is introduced that sets the TCP RTO depending
on the estimated RTT of the current packet to be sent, instead of completely relying
on the RTT estimation of the previous data packet. This approach has been designed
by taking the following problems into account.

1. When the RTT estimation is made before sending the packet, the delay variability
of the channels should also be considered. In VJ’s RTT estimation algorithm,
the RTO is adapted to the changing delay of the channel. If this mechanism is
removed, then the stack will always assume a constant delay which may affect the
latency by either causing spurious retransmissions or delaying retransmissions.
Therefore, the new algorithm must take the delay variability into account.



58 5 Adapting TCP for the Bridge Architecture

Fig. 5.19 Long TCP session with VJ’s algorithm for setting the TCP RTO

Table 5.6 Problems due to delayed ACK and/or Nagle’s algorithm

Packet size Sent/Received Large Small

Large (Good) No spurious retx. (Not bad) No spurious retx. but
packet loss leads to delayed
retx.

Small (Bad) Spurious retx. (Good) No spurious retx.

2. TheWi-Fi and the NFC channels could have variable delays. The NFC channel in
the cordless kitchen would be used to send non-TCP/IP messages such as power
control messages every now and then. This would affect the RTT of the TCP/IP
messages and could delay their delivery. If the delay of the channel increases over
time, it is difficult to identify if this increase is on the NFC channel or on the
Wi-Fi channel. If the delay decreases from the theoretical value, it will be due to
the reduced delay only on theWi-Fi channel because the RTT on NFCwill not go
below the theoretical value (maximum reduction can be 10ms, i.e. packet gets a
time slot as soon as it arrives). So the RTO must be updated by closely observing
the changing channel delay.

3. The RTTwill be estimated considering the packet transmission time in both direc-
tions. The receiver may not always send back a packet of the same size. If only an
ACK is received, the estimation will be larger than anticipated. But if the receiver
replies with a bigger packet, for example, the delayed ACK algorithm does not
send an ACK immediately, it waits for <= 500ms [8] to check if the application
has any further data to send so that it can piggyback the ACK with the next data
packet. Another example is Nagle’s algorithm which combines smaller packets
to form a full-sized packet. In these cases, the estimated RTO will be smaller
than the estimated value, which will lead to spurious retransmissions. Table5.6
summarizes this problem. To solve this, the delayed ACK algorithm can be mod-
ified such that the stack sends an ACK for the received packet immediately, if the
response packet is bigger than the received packet. This would avoid unnecessary
spurious retransmissions.



5.3 Addressing the Challenges 59

4. If there is a packet loss, then that packet needs to be retransmitted using exponen-
tial backoff, where the RTO is doubled every time the same packet is retransmit-
ted. For this, the estimated RTT of the packet needs to be used with the back-off
multiplier.

Algorithm 1 New RTO estimation algorithm
1: RT Tp: Theoretical RTT of the previous packet
2: RT Tmeas_p: Measured RTT of the previous packet
3: RT Oc: RTO of the current packet
4: RT TN_c: RT TNFC of the current packet
5: RT TW_c: RT TWiFi of the current packet
6: r : Factor r
7: expBackoff(): computes binary exponential backoff based on retransmit count
8:
9: procedure
10: r ← 1 // Initialize r to 1
11: while Packet queue is not empty do
12: RT TN_c ← Calculate theoretical RT TNFC using Eq.5.2
13: RT TW_c ← Use recommended initial RTO
14: RT Tp ← RT TN_c + RT TW_c // Store theoretical RTT to calculate r
15: if r >= 1 then
16: RT TN_c ← r ∗ RT TN_c
17: RT TW_c ← r ∗ RT TW_c
18: else
19: RT TW_c ← max(1000, r ∗ RT TW_c)

20: RT Oc ← �(RT TN_c + RT TW_c)/500� ∗ 500 //Round-up to the next 500ms
21: if Retransmission = true then
22: RT Oc ← RT Oc ∗ expBackoff() // Backoff procedure
23: RT Tmeas_p ← Measure and update RTT of the packet transmitted
24: r ← RT Tmeas_p/RT Tp // Compute r

Based on this analysis, the new algorithm is designed to dynamically estimate
the optimum packet RTO value. The working of this algorithm is discussed in detail
below.

• The theoretical RTO is calculated for each packet before its transmission, using
Eq.5.1. RT TWiFi is set according to the initial RTO recommended for Wi-Fi
(or Ethernet) channels. Furthermore, a minimum RTO value of 1 s is maintained
for RT TWiFi as recommended by [7]. The RT TNFC is calculated as explained
previously, using Eq.5.2.
(Note: The LwIP stack uses an initial RTO of 3 s. However, as the experiments are
carried out on an Ethernet channel with <1ms delay, an initial RTO of 1 s is used
in the experiments.)

• The RTT of each data packet transmitted is dynamically measured to estimate the
current delay in the NFC andWi-Fi (or Ethernet) channels. The delay is estimated
by comparing the theoretical RTT of the previous packet with the measured RTT



60 5 Adapting TCP for the Bridge Architecture

of the previous packet. The factor (r) by which the measured value varies from the
theoretical value is calculated.

r = RT TmeasuredPrev

RT TPrev
(5.7)

where r is the ratio ofmeasuredRTT to theoreticalRTTof apacket, RT TmeasuredPrev

is measured RTT of the previous packet and RT TPrev is the RTT of the previous
packet calculated using Eq.5.1.

• When the factor r ≥ 1, the theoretical values of both RT TNFC and RT TWiFi are
scaled up by this value. If r< 1, then only RT TWiFi is scaled down. As explained
earlier, this is due to the fact that the RTT of a packet over the NFC channel cannot
go lower than its theoretical value. A minimum value of 1 s is maintained for
RT TWiFi as recommended by [7]. The new RTT is calculated with these scaled
values using Eq.5.1. For better estimation of the delay, a window of recent values
of r can be maintained and the highest value in the window can be used for the
current RTT estimation. The window size should be chosen depending on the type
of applications being supported and the rate of packet transmission.

RT TNFC := r ∗ RT TNFC (ms) i f r ≥ 1 (5.8)

RT TWiFi := max(1000, r ∗ RT TWiFi ) (ms)∀ r (5.9)

• The LwIP stack has a timer period of 500ms to check for retransmission timeout.
The RTO is therefore calculated as a multiple of 500ms. So in the new RTO
estimation algorithm, the estimated RTO of the current packet is rounded up to the
nearest 500ms.

• In case of packet loss, the exponential backoff algorithm is used with the estimated
RTO of the lost packet. Using the estimated RTO for the backoff procedure would
be more accurate than using the RTO of the most recently sent packet.

• To solve the spurious retransmission problem described in Table5.6, the delayed
ACK algorithm is modified such that an empty ACK will be sent if the size of the
received packet is less than the size of the packet to be transmitted. A drawback of
this solution is that the stack would send ACK packets even if the received packet
size is slightly smaller than the packet to be sent. The RTO values are rounded
up to the nearest 500ms, so the packets of similar sizes may (but not necessarily)
have the same RTO value. In this case, it would be unnecessary to send an extra
ACK packet which could increase the latency of the system. It would be safe to
use the modified algorithm even though it may not give the best result in the case
discussed above.

Algorithm5.1 summarizes the procedure for RTO estimation. It is tested on the
TCP session shown in Fig. 5.19. The same experimental setup with the Ethernet
channel is used for testing. Without the modification in the delayed ACK algorithm,
a latency of 15.96 s is achieved as shown inFig. 5.20,which is 6.62 s less than thatwith



5.3 Addressing the Challenges 61

Fig. 5.20 Long TCP session
with new algorithm for RTO
estimation

the original algorithm. This gives a 29.32% reduction in the latency in this example.
However, there is still one spurious retransmission and one Dup ACK caused due to
the delayed ACK algorithm. When the modified delayed ACK algorithm is used, all
of the retransmissions are removed but the overall latency will be 16.1 s, which is
slightly higher than the previous case. This is due to the fact that the stack sends out an
ACK evenwhen the received packet is sightly smaller than the packet to be sent. Note
that the percentage improvement in the case of the new RTO estimation algorithm
solely depends on the data set that is in consideration. It varies with different data
sets.

References

1. lwIP - A Lightweight TCP/IP stack - Summary [Savannah]. (n.d.). Savannah. https://savannah.
nongnu.org/projects/lwip/. Accessed 6 June 2021

2. TCP/IP Illustrated (3 Volume Set) by W.R. Stevens, G.R. Wright (2001) Hardcover. (2021).
Addison-Wesley Professional

3. T. Klein, K. Leung, R. Parkinson, L.G. Samuel, Avoiding spurious TCP timeouts in wireless
networks bydelay injection. IEEEGlobal TelecommunicationsConference, 2004.GLOBECOM
’04., 5, 2754-2759 vol.5 (2004)

4. G.I. Fotiadis, V. Siris, Improving TCP throughput in 802.11WLANs with high delay variability,
in 2005 2nd International Symposium onWireless Communication Systems (2005), pp. 555–559

5. K. Leung, T. Klein, C. Mooney, M. Haner, Methods to improve TCP throughput in wireless
networks with high delay variability [3G network example], in IEEE 60th Vehicular Technology
Conference, 2004. VTC2004-Fall, vol. 4 (2004), pp. 3015–3019

6. V. Paxson, M. Allman, H.K. Chu, M. Sargent, Computing TCP’s Retransmission Timer. RFC
6298, 1–11 (2011)

7. V. Jacobson, Congestion avoidance and control. SIGCOMM (1988)
8. M. Allman, V. Paxson, E. Blanton, TCP Congestion Control. RFC 5681, 1–18 (2009)

https://savannah.nongnu.org/projects/lwip/
https://savannah.nongnu.org/projects/lwip/

	5 Adapting TCP for the Bridge Architecture
	5.1 Experimental Setup
	5.2 Challenges in Adapting TCP
	5.2.1 TCP Spurious Retransmissions
	5.2.2 Packet Drops Due to Small Inter-Packet Delay

	5.3 Addressing the Challenges
	5.3.1 Avoiding Packet Drops Due to Small Inter-Packet Delay
	5.3.2 Avoiding TCP Spurious Retransmissions

	References


