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The use of ultrafast Ultrasound Localization Microscopy (uULM) is a promising technique for
obtaining images with a very high resolution. This technique is based on the localization of sub-
wavelength intravascular microbubbles resonating under ultrasound stimulus. Pre-clinical and post-
clinical ultrasound applications, such as tumour, microvascular or stroke imaging, are numerous.

This research investigates the theoretical precision limit of uULM in localizing a moving sub-
wavelength scatterer. A 1D transducer array and the scatterer are simulated with the Vantage
Research Ultrasound Simulator (Verasonics, Kirkland, WA, USA). A large beam is transmitted
through the medium by the transducer array and hits the scatterer. As a sub-wavelength scatterer
radiates as an omni-directional pressure field, transducer arrays of finite apertures receive a part
of this spherical wave back as parabolas (the radio-frequency data, or RF-data), from which a
beamformed images (the BF-data) can be reconstructed. The intensity of the RF-data is given in
arbitrary units, while the intensity for the BF-data is indicated in decibels. Both the RF-data and
BF-data are influenced by different sources of noise, such as jitter and false peaks, which can be
modelled with a zero mean white Gaussian noise. In this manuscript, the z-axis is defined to be the
direction away from the probe and the x-axis is defined to be colinear to the piezoelectric elements.
In Figure 1, an illustration of this process, called Plane Wave Imaging, with the given directions is
shown.

Figure 1: Schematic overview of Plane Wave Imaging: a) plane wave transmission, (b) reception of
the backscattered echoes (the RF-signal) and (c) image reconstruction (BF-data). [1]

The localization precision in x- and z-direction are computed for different intensities, different
signal-to-noise ratios (SNR’s) and different depths z for both the RF-data and the BF-data. For
the RF-data, there is a clear relation between the depth of the scatterer and the localization pre-
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cision: if the scatterer is moving further away, the minimum standard deviation decreases due to
attenuation in tissues. For example, for a depth of 11 mm and a SNR of 29 dB, one is able to
localize the microbubble with a precision of 10 nm in x-direction and 50 nm in z-direction based
on the RF-data, while this decreases to respectively 1 µm and 0.5 mm for a depth of 21 mm.

The BF-based precision limits are less dependent on depth: for different depths, the limits re-
mains approximately the same, being 0.5 µm in x-direction and 1 µm in z-direction for an intensity
of 20 dB and a SNR of 29 dB. A remarkable result is that the localization using the radiofrequency
data is more precise compared to the beamformed images if the scatterer is close to the transducer
array. However, after a certain depth, the BF-based localization surpasses the RF-based one. This
difference in precision is due to the beamforming process: to translate radiofrequency data in a
readable image, one need to sum the energy scattered back and select that value as the pixel inten-
sity for the final image. This process, called beamforming, can be done on the fly or in post-process.
In this research, it is complex to compare the initial values, being the SNR, the maximum intensity
value and the dependence on depth, between the RF- and BF-data.

The localization precision for the RF-data and for the BF-data reacted similar to changes in the
amount of noise. For a high SNR, the position of the scatterer can be determined more precisely
compared to a situation with a low SNR. For example, the RF-data revealed a localization precision
of 1 nm in x-direction for a SNR of 33 dB, while a SNR of 23 dB resulted in a precision of 10 mm
for the same intensity and depth.
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Introduction

Resolution is a measure of the ability of a microscope to see things in detail. The achievable
resolution of a conventional microscope is limited by the diffraction barrier, the so called Abbe’s
Limit. Traditionally, this barrier resulted in an optical resolution of about 0.2 µm. [2] In utrasound
imaging, the resolution limit depends on the wavelength and it is inversely proportional to the
penetration depth. To image small animals, the resolution usually equals around 100 µm for a pen-
etration depth of 2 cm. For human, the resolution is higher with higher penetration depth. In the
past few years, the use of super-resolution microscopy in the medical world has been successfully
growing. One is now able to create super-resolution images. For example, tissues and blood vessels
can be imaged very precisely, from which vascular damages can be detected. Besides, pre-clinical
and post-clinical ultrasound applications, such as tumour, microvascular or stroke imaging, are
numerous

An example of a procedure to create super-resolution images is the fluorescence photo-activated
localization microscopy (FPALM). This is an optical technique that uses the stochastic blinking
of fluorescent molecules to visualize vascular systems. Currently, a resolution up to 10 nm can be
achieved with this method, which is small compared to cells (1 µm to 100 µm), but large compared
to complex molecules (1 nm). [3] However, the problem of optical microscopy is due to the imaging
depth in opaque biological tissues rather than the resolution.

To reach new depths in biological tissues, one can use acoustic waves for imaging. Echography
is a whole field of radiology, using ultrasound for vascular, bone and soft tissue imaging. Ultra-
sound techniques make use of a small probe (a transducer) and a gel, placed directly on the skin.
High-frequency sound waves are transmitted through the gel into the body. [4] The back-bounced
waves are collected by the probe. With these sounds, an image can be created by a computer.

In this research, the possibilities of ultrafast Ultrasound Localization Microscopy (uULM) to track
microbubbles administered in blood vessels are evaluated. These microbubbles are gas-filled vesi-
cles, with lipid or protein outer shells. When hit by an ultrasound wave, the microbubbles scatter
a part of the wave back and start to vibrate, producing high energy echoes. These echoes are
clearly visible in echography. Thanks to these bright echoes, it has been shown than one can use
the microbubbles much like the fluorescent molecules in FPALM to break the diffraction limit. [5]

The aim of this research is to find the precision with which uULM can pinpoint the position
of a single sub-wavelength scatterer. Knowing this precision, will provide information about the
resolution of the used method. If the localization precision limits are very small, the position of the
microbubble can be determined very precisely, providing more information about, for example, the
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vascular system compared to high precision limits. The localization precision limits are given by
the Cramér-Rao Lower Bound, the minimum variance for a certain parameter. In Chapter 2, the
theory about this research will be provided. The used method are elaborated upon in Chapter 3.
This is followed by a presentation and a thorough discussion of the results in Chapter 4. Besides,
some recommendations for further research and improvements are given. Lastly, a conclusion of
this research will be presented in Chapter 5.

This research is part of the Bachelor Applied Physics at Delft University of Technology.
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Theory

In this chapter, the relevant theory for this research is described, starting with the introduction
of Abbe’s Limit, followed by an overview of fluorescence photo-activated localization microscopy
(FPALM). After this, the process of uULM (ultrafast Ultrasound Localization Microscopy) will be
evaluated and two statistical concepts, being the Maximum Likelihood Estimation and the Cramér-
Rao Lower Bound, will be introduced. This chapter will conclude with the theoretical localization
precision limits using uULM and an overview of different sources of noise.

2.1 Abbe’s Resolution Limit

Both the optical and the acoustic imaging techniques are limited in resolution. In this section, the
classical diffraction limit will be discussed.

If light passes an object, light waves will bend into different directions, called diffraction. The
way of bending is described by the Huygens-Fresnel principle. [6] This diffraction also occurs when
light passes an aperture, restricting the highest possible resolution for microscopical instruments.
This limit on the achievable resolution is called the diffraction barrier, or Abbe’s Limit, as given in
the following equation:

d =
λ

2NA
(2.1)

in which d represents the resolvable distance, λ the wavelength of light and NA the numerical
aperture. [6] This numerical aperture is equal to n sin θ, in which n represents the refractive index
in a medium and 2θ equals the maximal angle of the cone of light that can exit or enter the lens,
as shown in Figure 2.1. [7]

Figure 2.1: Numerical aperture of a lens. [7] f represents the focal length and
F the focal distance. The diameter of the lens is given by D. θ equals half of the

maximal angle of the cone of light that can enter or exit the lens
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Due to Abbe’s Limit, an optical instrument is not able to distinguish two different objects if
the distance between them is less than the resolvable distance d, as introduced in equation (2.1). [8]

Abbe’s limit holds for sub-wavelength sources. One single image of two sub-wavelength sources
will produce a diffraction limited image. To produce super-resolution images, the sub-wavelength
sources have to be locailzed with a higher precision. One method to achieve these super-resolution
images is using fluorescence photo-activated localization microscopy (FPALM). Instead of forming
a single image, FPALM will activate one of the sources. After localizing it with sub-wavelength
precision, another source is activated and localized. A final image if then formed by adding the two
sub-wavelength positions in a super-resolved image. In other words, FPALM overcomes the Abbe’s
limit by the decorrelation of space and time. In the next section, an overview of this process is
given.

2.2 Optical Imaging Method - FPALM

In this research, the precision with which uULM can pinpoint the position of a single sub-wavelength
scatterer is studied. Before explaining the process of uULM, it is useful to look into other imaging
techniques, such as optical microscopy. uULM mimics FPALM, by taking benefit of ultrafast
ultrasound imaging of transient changes in highly concentrated solution of ultrasound contrast
agents. [9] In this section, the FPALM method, as well as its resolution limits, will be evaluated.

2.2.1 Introduction to FPALM

FPALM is an optical imaging technique that uses fluorescent molecules to achieve super-resolution
images. These images are created by using stochastic blinking of switchable fluorescent labels. [5]
Dye molecules with a radius of approximately 2 nm [10], located at the surface of a certain subject,
are excited with lasers. The activation illumination intensity determines the activation rate. First,
a high frequency (approximately 400 nm) is used to excite non-fluorescent molecules. After this,
a lower frequency can be used to excite these molecules again. [10] In this way, a portion of the
molecules begin to fluoresce. An image can be created by capturing the light coming off, being a
dark picture with some bright stars. [11] Since there are only a very few molecules visible at a given
time, their location can be determined very precisely. By repeating this process over a thousands
of times and combining the obtained images, one is able to create a super-resolved image. [5]

2.2.2 Resolution limits for FPALM

With this use of fluorescent molecules, FPALM is able to go beyond the diffraction limit. [12] It is
however important to stop the fluorescing of the molecules after making each picture. Otherwise,
the accumulation of active molecules will bring back the diffraction limit and the resolution will be
limited again. Therefore, photobleaching is used to inactivate the fluorescing molecules. [10] After
a certain number of excitation cycles, depending on the type of molecule, a fluorescent molecule
transforms its single state into a triplet state. This causes irreversible modifications in the covalent
bonds of the fluorophores, resulting in a molecule unable to fluoresce. This process is called pho-
tobleaching. [13]

The resulting super-resolution is influenced by the localization precision and the particle den-
sity. [14] The maximal achievable resolution is determined by the sampling density, the instrument
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resolution and the SNR. [15]

The standard deviation of the localization in FPALM σFPALM can be determined using the fol-
lowing equation: [3]

σFPALM =

√√√√(σ2
PSF + a2

12

N

)
·

(
16

9
+

8πσ2
PSFθ

2
bg

a2N2

)
(2.2)

in which N represents the number of collected photons, a the pixel size of the imaging detector, θbg
the average background signal and σPSF the standard deviation of the point spread function. [3]

Using FPALM, one is able to create images with a resolution up to 10 nm. [3] This is a huge
improvement compared to the classical resolution of 0.2 µm due to Abbe’s Limit as stated in 2.1.
With this resolution of 10 nm, cells (with a size from 1 µm to 100 µm) can be images properly.
However, to image complex molecules (with a size around 1 nm), a higher resolution is needed. [3]
More about FPALM can be found in the Appendix part A.1. In this section, an overview of the
imaging process is given.

Transforming FPALM into an acoustic version, results in ultrafast Ultrasound Localization Mi-
croscopy (uULM). In the next section, an overview of this technique will be given.

2.3 Acoustic Imaging Method - uULM

Ultrafast imaging is a new technique in ultrasound. Instead of sending focused acoustic beams
and reconstructing an image line by line, unfocused pane waves are sent through a material. Im-
plementations relying on plane-wave transmission can reach hundreds to thousand of frames per
seconds. [9] In this research, the precision with which uULM can pinpoint the position of a single
sub-wavelength scatterer is studied. By determining the positions and flows of microbubbles with
uULM, one is able to make a construction of whole vascular systems. [16]

2.3.1 Analogy between FPALM and uULM

Both FPALM and uULM are localization methods that make use of Rayleigh particles. If a Rayleigh
particle is hit by a plane wave, it starts to reflect spherical waves. In FPALM, sub-wavelength emit-
ters reflect optical waves in all directions. uULM makes use of reflectors to reflect sound waves
omni-directional. Besides, uULM mimics FPALM by taking benefit of ultrafast ultrasound imaging
of transient changes in highly concentrated solution of ultrasound contrast agents. [9]

Apart from the analogous between FPALM and uULM, there are also some differences between
the optical and the acoustic method. To start with the position of the scatterer: in FPALM, one
can choose where the static emitter are located, while this is not the case for the moving reflectors
in uULM. Because of these characteristics, uULM lends itself to the imaging of whole vascular
networks, while this is not possible with using FPALM. Also the resolution characteristics of both
methods vary: in FPALM, the resolution only depends on the number of produced images, while
for uULM, the resolution is also influenced by the flow and the vascular shapes in the system.
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2.3.2 Plane Wave Imaging

The imaging process of uULM is called plane wave imaging, which aims to minimize the number
of transmissions needed to form an image, maximizing the frame rate. [17] Due to this high frame
rate, the process is sometimes called ultrafast. Ideally, one wants to have just one transmission
event per image. In this case, the frame rate is only limited by the speed of sound in its medium, by
the time needed to form an image and by the desired imaging depths. [17] In essence, this method
achieves a homogeneous and very wide beam (as wide as the aperture) by approximating the gen-
eration of a plane wave in transmission. [17] This is done by exciting all the transducer elements
with the same phase at each event, followed by processing these signals with different phase sets
and amplitudes in the receive phase. In this way, multiple lines are generated in parallel. The final
image is then formed by combining all the lines that are received from an echo signal with just one
single transmission event. [1]

In plane wave imaging, the temporal resolution is maximized, to the cost of all other image fea-
tures: the signal-to-noise ratio (SNR) is low and the penetration depths are small due to a very
low pressure amplitudes. Besides, the obtained image has a low quality in spatial resolution and
only a small contrast. [17] With image compounding, one can increase the contrast of uULM. By
combining images made with plane waves propagating under different angles with the transducer
array, to the cost of the very high frame rate, one can improve resolution and contrast. [18]

Without compounding, very high frame rates can be achieved, making this method suitable to
image fast phenomena, where temporal resolution is much more important than spatial resolu-
tion. [18]

Figure 2.2: Schematic overview of plane wave imaging: (a) plane wave
transmission, (b) reception of the backscattered echoes and (c) image

reconstruction. [1]

In essence, plane wave imaging consists of three steps, shown in Figure 2.2.

a) Plane Wave Transmission. A large beam with unique pulsed plane wave is transmitted
through the medium. In this way, the medium is insonified by the ultrasonic array. [1]

b) Reception of the backscattered echoes. Due to heterogeneities of the medium, the wave
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scatters back and hits the array. This echo signal is denoted as the RF-signal (radiofrequency
signal). Inhomogeneities result in depth and field of view (FOV) variations in the model. This,
however, is out of scope for this research and can be estimated from the data at a later stage.
During this project, the medium is considered to be homogeneous, thus assuming uniform
properties over its whole volume. Therefore, all backscattered echoes are due to collisions
with the sub-wavelength microbubble. The radiofrequency data is measured as an electric
signal and is proportional to acoustic pressure. In essence, the RF-data represents what is felt
by the transducer over time. Applying a voltage to the material, results in a vibration of the
transducer array, consisting of piezoelectric crystals. These vibrations produce an ultrasonic
burst of a few cycles. By using different delays, a whole volume can be scanned. When the
transmitted signal hits a certain object, a reflected field will go back to the transducer array.
When recording the echo, the received signal is a pressure hyperboloid, with its center and
shape depending on the position of the source, as can be seen in step b) from Figure 2.2.

The position of the source can then be found by using the reception time τi, being the sum
of the time for the plane wave to propagate from the transducer i (positioned at (xi, yi, zi))
to the source (positioned at (x0, y0, z0)) and the time for the echo to propagate back from the
source to the transducer. This sum is expressed in the time-of-flight equation: [9]

τi =
z0

c
+

√
(xi − x0)2 + (yi − y0)2 + (zi − z0)2

c
(2.3)

c) Image reconstruction. In the last step, an image is reconstructed from the RF-data with
the use of delay and sum beam forming. Adding different amounts of delay to the transducer
signals by changing the angle of incident and summing them, will result into an acoustic
antenna with a main lobe and suppressed side lobes. [19] All different angles represent different
parts of the surface. To reduce the error from the side lobes, uniformly distributed arrays
are used. Since the transmitted beam has no focusing, the echoes coming from the same
scatter are added coherently during the reception mode. This parallel processing determines
the image resolution. [1] The RF-data provides a hyperboloid for each pixel. Summing the
acoustic pressure along a certain hyperboloid, results in one value used for that pixel in the
final image. The intensity of the beamformed images (BF-data) is converted into decibels,
indicating the difference between the noise and the maximum backscattered echo.

Another schematic overview of plane wave imaging can be found in Figure 2.3. More about array
beam forming can be found in the Appendix part A.2. Here, the difference between Linear Array
Beam Forming and Phase Array Beam Forming will be evaluated.

In the next section, an overview about the estimation of a Maximum Likelihood Estimator and
the Cramér-Rao Lower Bound, being its minimum variance, will be given. After this, the resulting
localization precision limits for both the radiofrequency data and the beamformed images will be
discussed.

2.4 The Maximum Likelihood Estimation

The aim of this research is to determine the localization precision limits for a moving microbub-
ble using uULM. To estimate the parameters describing the problem, the Maximum Likelihood
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Figure 2.3: Schematic overview of plane wave imaging. [20]

Estimation (MLE) can be used. This method maximizes a likelihood function in such a way that
the observed data is most probable under certain statistical assumptions. The point at which this
happens is called the Maximum Likelihood Estimator. [21]

2.4.1 The goal of MLE

With the Maximum Likelihood Estimation, the joint probability distribution of random variables
{d1, d2, ...} can be formulated. These random variables do not have to be identically distributed or
independent. [22]

In the formulation of MLE, the vector θ = [θ1, θ2, ..., θk]
T represents the parameters used to index

the likelihood function. This is done within a parametric family {f(D; θ)|θ ∈ Θ}, in which Θ equals
the parameter space. For a given data sample D = (d1, d2, ..., dn), the joint density results in the
following likelihood function Ln: [22]

Ln(θ) = Ln(D; θ) = fn(D; θ) (2.4)

If the variables are random distributed and independent, fn(D; θ) can be found by multiplying the
density functions of each variable. [23]

2.4.2 The Maximum Likelihood Estimate

The maximum likelihood estimate θ̂ = θ̂n(D) ∈ Θ maximizes Ln and is given by the following
equation: [24]

θ̂ = arg max
θ∈Θ

L̂n(D; θ) (2.5)

In calculations, often the log-likelihood `(D; θ) = lnLn(D; θ) is used. This `(D; θ) has its max-
imum at the same position θ as Ln and thus the solution of the maximization problem is not
changed. [21], [23]

Assuming `(D; θ) is differentiable in θ, the following likelihood equations formulate certain con-
ditions for the occurrence of a maximum: [22]

∂`

∂θ1
= 0,

∂`

∂θ2
= 0, . . . ,

∂`

∂θk
= 0 (2.6)
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The maximum likelihood estimate can be used to determine the minimum variance of a certain es-
timator. This minimum variance is given by the Cramér-Rao Lower Bound, which will be discussed
in the next section.

2.5 The Cramér-Rao Lower Bound

To determine the localization precision limits of the microbubble using uULM, one is searching
for the minimum standard deviation in the localization of the scatterer. This lower bound on the
standard deviation for an unbiased estimator can be derived by the minimum variance, which is
given by the Cramér-Rao Lower Bound (CRLB). In this section, a derivation of this CRLB is given.

2.5.1 Fisher Information

The Cramér-Rao Lower Bound theorem states that for a given likelihood function f(D; θ) with
dataset D and parameter θ, the variance for any unbiased estimator θ̂ is given by the following
equation: [25]

var(θ̂) >
1

−E
[
∂2 ln f(D;θ)

∂θ2

]
>

1

I(θ)

(2.7)

In above equation, the Fisher Information I(θ) is introduced. [26] This matrix is a measure of the
amount of information given by an observable random variable D about an unknown parameter θ,
which defines the probability of D. [27] The Fisher Information it is given by the following equation:

I(θ) = −E
[
∂2 ln f(D; θ)

∂θ2

]
(2.8)

In case of the equal sign in equation (2.7), the estimator is said to obey the minimum variance. This
CRLB theorem is only valid if the probability distribution f(D; θ) satisfies the regularity condition,
which can be found in equation (2.9). [26]

E

[
∂ ln f(D; θ)

∂θ

]
= 0,∀θ (2.9)

In some cases, there exists a Minimum Variance Unbiased Estimator (MVUE) θ̂ = g(D), which
achieves the CRLB. Such a MVUE exists if and only if the following equation holds: [28]

∂ ln f(D; θ)

∂θ
= I(θ)(g(D)− θ) (2.10)

The minimum variance CRLB for this parameter can be determined by taking the inverse of the
Fisher Information:

CRLB = I(θ)−1 (2.11)
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2.5.2 The Fisher Information in case of k parameters

For a dataset D with k parameters, θ will be a vector with size k×1: θ = [θ1, θ2, ..., θi, ..., θk−1, θk]
T .

In this case, the Fisher Information will be a k × k matrix, with the components given by the
following (with i = {1, 2, ..., k − 1, k} and j = {1, 2, ..., k − 1, k}): [27]

[I(θ)]i,j = −E
[

∂2

∂θi∂θj
ln f(D; θ)

∣∣∣ θ] (2.12)

Each parameter has its own minimum variance, and thus its own Cramér-Rao Lower Bound. When
taking the inverse of the Fisher Information Matrix, the CRLB for each parameter can be found
on the diagonal: the minimum variance of parameter i can be found at position (i, i).

CRLBθi = [I(θ)−1]i,i (2.13)

The minimum standard deviation can then be determined by taking the squareroot of the minimum
variance. [23]

2.5.3 The Efficiency of an Unbiased Estimator

The efficiency of an unbiased estimator indicates how close the estimators variance comes to the
CRLB. The estimator efficiency is formulated as:

e(θ̂) =
I(θ)−1

var(θ̂)
(2.14)

Combining equation (2.7) and equation (2.14), one can easily see that e(θ̂) = 1 in case of the CRLB.

With this CRLB, the localization precision limits using uULM can be derived, as will be shown in
the next section.

2.6 Localization Precision Limits in uULM

As well as for FPALM, the resolution of uULM is not longer restricted by the diffraction limit.
Since the point spread function (PSF) in uULM is highly influenced by the location of the source,
it is more complex to determine the maximal achievable resolution compared to FPALM. [9]

The minimum variance of uULM is usually determined in frequency domain: the domain be-
fore beamforming. This method is using the parabolas from the Plane Wave Imaging (step b) as
introduced in Figure 2.3).

In this research, the maximal achievable resolution is also determined for the beamformed im-
ages. In other words, instead of the parabolas, the reconstructed images (as shown in step c) from
Figure 2.3) are used for the calculations of the minimum variance. It is interesting to investigate
how the RF-based localization precision limits are related to the BF-based ones.

In this section, a general overview of computing the Cramér-Rao Lower Bound in this project
will be given. After this, the method will be specified for both the beamformed images (BF-data)
and the radiofrequency data (RF-data).
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2.6.1 Computing the Cramér-Rao Lower Bound

Now the theory about the imaging method for uULM and the procedure to find the CRLB for
different parameters are known, the resulting model for this research can be formulated.

Suppose a detector provides a set of labeled data D = {dk,t}k=K,t=T
k=1,t=1 , in which k represents a

certain detector pixel, with a total of K and t equals the time. The total detection time equals T .

In this research, the parameters to be estimated are given in the parameter vector θ = [θx, θz, I, bg],
in which θx and θz represent the localization of the scatterer, I the intensity and bg the background
noise. The z-axis is defined to be the direction away from the probe and the x-axis is defined to
be colinear to the piezoelectric elements, as shown in Figure 1. To determine the parameters on
the entire dataset D, the probability of every measurement has to be computed. This probability
is given by the likelihood function f . In the case of microbubbles in blood vessels, all the noises
together can be modelled with a white Gaussian noise (WGN). [5] Different sources of noise will
be discussed in 2.7. Because of this WGN, the likelihood function is given as: [23]

f(D; θ) = N (D|µ, σ2)

=

k=K−1, t=T−1∏
k=0, t=0

N
(
dk,t

∣∣ µk,t, σ2
noise

) (2.15)

in which µk,t equals the expected value of the data without noise for the k-th pixel at time t and
σ2
noise represents the variance of the noise.

As stated before, it is often convenient to use the log-likelihood function for each data point,
which is given in (2.16).

ln f(D; θ) =

k=K−1, t=T−1∑
k=0, t=0

ln
(
N
(
dk,t

∣∣ µk,t, σ2
noise

))
(2.16)

The expected value for the k-th detector pixel at time t (indicated with the coordinates xk,t and
zk,t) is given by µk,t, which depends on the parameters θx, θz, the intensity I, the point spread
function PSF and the background bg:

µk,t = I ∗ PSF(xk,t − θx, zk,t − θz) + bg (2.17)

Combining equation (2.17) and equation (2.16), results in the following log-likelihood function: [29]

ln f(D; θ) =

k=K−1, t=T−1∑
k=0, t=0

ln
(
N
(
dk,t

∣∣ µk,t, σ2
noise

))

=

k=K−1, t=T−1∑
k=0, t=0

ln

 1√
2πσ2

noise

· exp

(
−1

2

(
(dk,t − µk,t(θ))2

σ2
noise

))
=

k=K−1, t=T−1∑
k=0, t=0

(
−1

2
ln
(
2πσ2

noise

)
− 1

2

(
(dk,t − µk,t(θ))2

σ2
noise

))
(2.18)
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With this function, the components of the Fisher Information Matrix can be determined using
equation (2.12):

I(θ0)i,j = E

[(
∂

∂θi
ln f(D; θ)

)
·
(
∂

∂θj
ln f(D; θ)

) ∣∣∣ θ0

]
(2.19)

The partial derivative of the log-likelihood with respect to θi is given in equation (2.20).

∂

∂θi
ln f(D; θ) =

k=K−1, t=T−1∑
k=0, t=0

dk,t − µk,t(θ)
σ2
noise

·
∂µk,t(θ)

∂θi
(2.20)

Recall that dk,t = µk,t + noise. Therefore, E[(dk,t − µk,t)
2] = E[(noise)2] = σ2

noise. [30] The
components for the Fisher Matrix will thus reduce to the following:

I(θ0)i,j = E

k=K−1, t=T−1∑
k=0, t=0

(
dk,t − µk,t
σ2
noise

)2

·
∂µk,t
∂θi

·
∂µk,t
∂θj

∣∣∣∣ θ0


=

k=K−1, t=T−1∑
k=0, t=0

E
[
(dk,t − µk,t)2|θ0

]
σ4
noise

·
∂µk,t
∂θi

·
∂µk,t
∂θj

=

k=K−1, t=T−1∑
k=0, t=0

1

σ2
noise

·
∂µk,t
∂θi

·
∂µk,t
∂θj

(2.21)

The partial derivatives of µ with respect to θ are given in the following equations, in which
PSFt(x, z) represents the point spread function at a given time frame t:

∂µk,t
∂θx

= −I · ∂ PSFt(x, z)

∂x

∣∣∣∣∣
(xk,zk)

∂µk,t
∂θz

= −I · ∂ PSFt(x, z)

∂z

∣∣∣∣∣
(xk,zk)

∂µk,t
∂I

= PSFt(xk, zk)

∂µk,t
∂bg

= 1

(2.22)

By combining equation (2.21) and (2.22), one can see that the minimum variance is independent
of the background.

With this information, the Fisher Information Matrix can be determined. As stated before, the
minimum variance for each parameter can be found on the diagonal of the inversed Fisher Matrix.
By taking the square root of this obtained CRLB, one can find the minimum standard deviation
σ. In this research, the precision limits in x- and z-direction for localizing the microbubble are of
interest, being respectively:

σx =
√

[I(θ)−1]1,1

σz =
√

[I(θ)−1]2,2

(2.23)
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The above derivation for the CRLB can be specified for both the beamformed and the radiofre-
quency data. The main difference between the two methods is due to the formulation of the PSF
and the intensity I as introduced in equation (2.17). To translate the RF-data into readable im-
ages, one needs to sum the energy over a backscattered echo and select that value as the pixel
intensity for the beamformed image. This process, called beamforming, can be done on the fly or in
post-process. Due to this beamforming, the intensity for the RF-data and the BF-data are defined
differently. In the next paragraphs, the specifications for both the BF-data and the RF-data will
be discussed.

2.6.2 Specifications for the BF-data

Point Spread Function

An imaging process is often modeled as a space-invariant linear system. A point spread function
(PSF) is used to describe the imaging system. The image I(x, z) of a certain object f(x, z) can be
obtained by computing the convolution of the object with the PSF:

I(x, z) = f(x, z) ∗ PSF(x, z) (2.24)

To find the image of the scatterer in the field of view, simulating the microbubble in a blood vessel,
it is therefore useful to find the PSF for this situation. In this research, a 1D transducer array
is considered. A derivation of the corresponding PSF can be found in the Appendix part A.3,
resulting in the following equations:

PSF(u, t) = max
∣∣∣ sinc2

(a
λ
u
)
{pulse(t) ∗ hPT (u, t) ∗ hPR(u, t)}

∣∣∣
hPT (u, t) =

NT∑
n=1

Anδ
(
t− r0

c −
xnu
c

)
r0

hPR(u, t) =

NR∑
m=1

Amδ
(
t− r0

c −
xmu
c

)
r0

(2.25)

in which pulse(t) is assumed to be a wideband Gaussian pulse, which covers the whole bandwidth
of the array. [31] This pulse is defined as follows (see A.3):

pulse(t) =

{
g0 exp

[
−π2∆f2(t−t0)2

β

]
sin (2πf0t) t > 0

0 elsewhere
(2.26)

For a few simple geometries, one can find the explicit solutions for the PSF as given in equation
(2.25). However, since the PSF of a transducer array highly depends on a.o. the depth of the
scatterer, the used intensity and the noise, this PSF is usually solved numerically using software
like Field II. In [31], it is shown that for a 1D transducer array the PSF obtained with a Field
II simulation perfectly overlaps the PSF computed analytically using equation (2.25). To reduce
complexity in this research, data from simulation software are used. From the obtained data, the
PSF can be determined, as will be explained in Chapter 3. There exist different softwares that can
be used to simulate the PSF, for example the Field II [32], SPRITE [33] or WebbPSF [34]. In this
research, the Vantage Research Ultrasound Simulator is used because it is easy and fast. [35] The
software does not do non-linearities and does not actually simulate a bubble, but is just simulating
a sub-wavelength scatterer. However, it will be easy to integrate the performed calculations to any
simulation.

13



Intensity

The intensity for beamformed images is given by the acoustic field, which is measured in decibels
(dB). This dynamic range indicates the contrast between noise and the bubble. In ultrasound
imaging, a signal is assumed to be visible when its dynamic range is in the order of 20 dB.

2.6.3 Specifications for the RF-data

Point Spread Function

As explained in 2.3.2, the RF-data is a hyperboloid, with its center and shape depending on the
position of the source. This hyperboloid represents the time-of-flight as introduced before. Using
equation (2.3), the position of the source can be determined, from which the PSF to use in equation
(2.17) can be derived. This method will be explained in more detail in Chapter 3.

More about the resolution in frequency domain can be found in the Appendix part A.4. In this
section, the spatial error on the reconstructed localization due to the imprecision of the arrival time
of the backscattered echo is derived. [9]

Intensity

The RF-data represents what is felt by the transducer array over time. This signal can be measured
as an electric signal in arbitrary units, which is proportional to the resulting acoustic pressure in
the beamformed images. Remark that the intensity in RF-data is measured linearly, while the
intensity in BF-data is measured on a logarithmic scale.

2.6.4 Resulting super-resolution

With the obtained results for the localization precision for both the radiofrequency data and the
beamformed images, the resulting super-resolution can be determined. This super-resolution is
often expressed as a factor SR, which means that the resolution is improved by a factor SR
compared to the wavelength. The classical resolution limit for this problem of a moving microbubble
in a blood vessel is given by one wavelength. To determine the resulting super-resolution and the
factor SR, one has to divide the wavelength over the obtained minimum standard deviation.

2.7 Sources of Noise

The localization of a microbubble in a blood vessel in real experiments, is subject to large errors.
In 2.6, these errors are introduced as σnoise, which contains all the errors together and which is
modelled as a zero mean white Gaussian noise. [36] In this section, some of the sources of these
noises are discussed.

2.7.1 Sampled Data

Recall that the RF-data represents what is felt by the transducer over time. It it is not possible
to record continuously what is felt by the piezoelectric element, which is partly due to the amount
of generated data. Therefore, the data is sampled and compressed as much as possible. Due to
the sampling, the results might deviate slightly compared to continuous data. To minimize this
deviation, the Nyquist theorem states that complete information is provided if the sampling rate
equals 4 times the transmit frequency. [37]
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2.7.2 False Peaks and Jitter

During the measurements and their processing, data is decorrelated by physical processes and cor-
rupted by electronic noise. This could result in an increase of a secondary correlation peak, such
that this peak is above the primary correlation peak in amplitude. In this case, one is speaking
of so called false peaks. With the use of nonlinear processing, these false peak errors can be mini-
mized. [37] In Figure 2.4, this false peak error is illustrated.

Another type of error is a slight shifting of the peak due to the decorrelation and corruption.
This is called jitter, which can be seen in Figure 2.4. All errors too small to be categorized as
false peaks, are classified as jitter. Since this type of error can not be removed, it will limit the
performance of the position estimation, and thus the localization precision. According to [37], the
magnitude of jitter errors can be estimated with Carter’s formulation. [38] An in depth derivation
of this formulation is out of scope of this research. According [37], the expected jitter when con-
sidering blood flow estimations without noise equals 31.1 ns. The resolution when only considering
jitter noise varies between 1 nm and 1 µm. [37] Jitter can be approximated as Gaussian noise. [36]

Figure 2.4: RF-data with errors. [37] ∆t indicates the position of
the peak without any errors. The dashed line equals the data with a
jitter error and the solid curve represents the data containing a false

peak error.

2.7.3 Readout noise

When measuring the signals, one has to take the limits of physical electronic devices into account
as well. A readout detector is used to measure very small packets of charge and on average, this
measurement gives the right value for the amount of charge. However, there is some random scatter
present as well. When this scatter is measured around the true value, there will be a certain readout
noise. For the Verasonics Beamformer, this readout noise equals approximately 10 dB. [39]

2.7.4 Movements

Another important source of error is the motion and the deformation of tissues during in vivo im-
plementation of the microbubble. These movements are difficult to predict or prevent. [9] However,
there exist different motion-correcting algorithms, that can compensate for these motions. [40]
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Method

In this section, a description of the used method to determine the minimum standard deviations
for both the RF-data and the BF-data are given. The calculations and derivations are executed in
Matlab. The script can be found in the Appendix part B. By varying the intensity, the behavior
of the minimum standard deviation with respect to the intensity can be determined. This process
is repeated for different signal-to-noise ratios. The method consists of the following steps:

I. Collect data

For this research, the microbubble is assumed to be a point scatterer moving in a homogeneous
medium. The Vantage Research Ultrasound Simulator (Verasonics, Kirkland, WA, USA) is used
to simulate a 1D transducer array and a scatterer. Data is provided by a simulation in which the
scatterer is moving away from the transducer array, while staying at the same x-position. In 256
time frames, the scatterer moves from z = 1 to z = 26 mm. For every frame, the obtained beam-
formed image and the radiofrequency data for that position are stored in a matrix. The RF-data is
sampled at 4 times the center frequency of the transducer to ensure Nyquist’s sampling theorem.
The coordinates of the scatterer, the BF-data and the RF-data are used in Matlab to determine
the localization precision limits of the sub-wavelength microbubble using uULM.

The images are beamformed using Single Crystal High Frequency Transducers from Verasonics,
made by Vermon, designed for imaging of small animals and superficial structures. [41] The used
probe is a L22-14vX, from which the specifications can be found in Table 3.1. [41]

Center Frequency (MHz) 18.5

Bandwidth (-6 dB) 67 % (avg)

Elements () 128

Pitch (mm) 0.10

Elevation width (mm) 1.6

Maximum Voltage (V) ±30

Cable Length (m) 2

Table 3.1: Specifications of the Verasonics L22-14vX. [41]

The used transmit frequency in this research equals 15.625 MHz. The assumed speed of sound is
1540 m/s. With these parameters, one can find that the wavelength equals 1

15.625·106 s-1
·1540 m/s ≈

100 nm. The readout noise for this beamformer is assumed to be zero-mean white Gaussian noise
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with a variance of 10 dB. [39] For the imaging process in this research, the pixelsize is chosen to be
39.424 µm in x-direction and 24.64 µm in z-direction.

II. Approximate the PSF

The next step is to approximate the PSF for both the BF-data and the RF-data. The provided
data is processed in Matlab 2017b (Mathworks, USA), using the Verasonics beamformer.

BF-data
During the processing of the beamformed data, a pixelsize of 39.424 µm in x-direction and 24.64
µm in z-direction is used. An example of the beamformed image at a certain time t can be found
in Figure 3.1a, in which the intensity in dB is represented as function of the position (x, z) in mm.
As one can see, there exists a point of maximum intensity. This is the position at which the scatter
is most likely located at this time t. At this point, the likelihood function achieves its maximum
and thus the Cramér-Rao Lower Bound is achieved. .

The areas of less intensities around the peak are side lobes. If there are more scatterers, these
side lobes can interfere with each other, resulting in an extra, unwanted point of high intensity.
This point would indicate a scatterer at this position, although this is not the case. Therefore, it
is important to make a proper approximation for the peak, while neglecting the side lobes. In this
research, this approximation is done by the fitting of a one-term Gaussian. The fitting can be seen
in Figure 3.1b. First, the BF-data for a certain time frame is loaded and the pixel position (xk, zk)
of maximum intensity is determined. After this, a cross section is made through this point in x-
and in z-direction. An example of such a cross section in z-direction is shown as a dashed line in
Figure 3.1c. An one-term Gaussian is then fitted to the cross section to find a point spread function
in z-direction, as plotted with the solid line in Figure 3.1c. As one can see, the fitted Gaussian
approximates the peak very well, while the side lobes are neglected. This same fitting is done for
the cross section in x-direction, to find the PSF in x-direction. By multiplying the point spread
function in x-direction with the point spread function in z-direction and normalizing the result,
the normalized approximation for the beamformed image is derived. By repeating this process for
every time frame t, the PSF for every time can be determined and used in equation (2.17).
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(a) BF-data.
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(b) Gaussian fit to the BF-data.
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Figure 3.1: The obtained BF-data for the scatterer at a depth of 20 mm, approximated with a Gaussian Fit.
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RF-data
The radiofrequency data at a certain time t is shown in Figure 3.2. For the processing, a pitch of
0.10 mm is used. [41] The RF-data represents the time-of-flight as introduced in equation (2.3).
To approximate this time-of-flight, one can use a parabola. To find the values for this parabola,
first cross sections are made for each transducer elements, as shown in Figure 3.2b and Figure 3.2c.
The point of maximum amplitude of these signals is determined and marked in the figures. The
corresponding time-of-flights of these points are used to define the parabola. For the two signals
as plotted in Figure 3.2b and Figure 3.2c, the points are marked in the RF-data in Figure 3.2d as
white dots. This process is repeated for every transducer element, resulting in the points as shown
in Figure 3.2e. Using the polyfit function from Matlab2017a to fit a polynomial curve of second
order [42], a parabola can be fitted through the points, resulting in the graph as shown in Figure 3.2f.
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(b) Cross section of the RF-data at
transducer element = 1.5 mm.

26 26.5 27 27.5

time-of-flight (  s)

-300

-200

-100

0

100

200

300

In
te

n
s
it
y
 (

a
.u

.)

Cross Section RF-data

Maximum Value

(c) Cross section of the RF-data at
transducer element = 7.1 mm.

2 4 6 8 10 12

transducer array (mm)

26.6

26.7

26.8

26.9

27

27.1

27.2

27.3

27.4

27.5

27.6

ti
m

e
 (

 s
)

-300

-200

-100

0

100

200

300

In
te

n
s
it
y
 (

a
.u

.)

(d) Two maximum values marked as white
points at the RF-data.

(e) All maximum values.
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(f) Parabolic fit to the RF-data.
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Figure 3.2: The obtained RF-data for the scatterer at a depth of 20 mm, approximated with a parabola.

The pixel (xk, τk) at which the parabola reaches its maximum is stored. With this information, the
position of the scatterer can be determined: the x-position can be found by multiplying xk with the
pixelsize in x-direction (being 39 microns): x = xk ·pixelsizex. The z-position can be determined by
looking at the time of flight, which represents the time it takes for the echo to propagate through
the medium from the source to the scatterer and back. Dividing this by 2, gives the time it takes to
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go from the transducer array to the scatterer. The z-position can then be derived by multiplying
this time with the speed of sound c: z = 1

2
τk·c
4f , with 4f being the sampling frequency according

the Nyquist rate to convert the pixel number into time.

This procedure to determine the position of the scatterer from the RF-data is repeated for ev-
ery time frame t. This results in 256 parabolas, each representing the RF-data for the scatterer at
a different z-position. These parabolas can be used to derive the point spread function for equation
(2.17).

III. Derive the Fisher Information Matrix

With the approximated PSF functions for both the RF-data and the BF-data, one can determine
the minimum standard deviation in the localization for both x- and z-direction, using equation
(2.22) and equation (2.23), resulting in respectively σx and σz. As stated before, it is impor-
tant to use different intensities for the beamformed images and the radiofrequency data. Besides,
one has to find a way to determine the derivative in both x- and z-direction for the approximations.

BF-data
In the case of the beamformed image with a Gaussian approximation, the derivatives with respect
to x and z can be derived easily by computing the gradient of the Gaussian approximation respec-
tively in x- and z-direction as shown in Figure 3.1b.

RF-data
For the radiofrequency data, the derivative with respect to x is determined by computing the gradi-
ent in x-direction of the parabola. Since the z-dependence of the approximation cannot be derived
directly from the approximation, the derivative with respect to z is computed using the following
equation:

∂ PSFt

∂z
=
p(t)− p(t− 1)

z(t)− z(t− 1)
(3.1)

in which p(t) represents the approximated parabola at a certain time frame t and z(t) equals the
z-position of the scatterer at a certain time frame t.

IV. Collect more data points

With this information, the minimum standard deviation in x- and z-direction can be determined
for both the beamformed images and the radiofrequency data. To collect more data points, steps
II and III are repeated for different intensities. Besides, different amounts of noise are added to the
data to see what happens with the localization precision limits. Figure 3.3 visualises what happens
with the beamformed images if the SNR changes.
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(a) SNR = 33 dB
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(b) SNR = 29 dB
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(c) SNR = 23 dB
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(d) SNR = 15 dB

Figure 3.3: BF-data: the obtained images for different signal-to-noise ratios, with the scatterer being
positioned at a depth of z ≈ 20 mm.

For every intensity I and for every SNR, the minimum standard deviations in x- and in z-direction
are computed and plotted against the intensity. This way, one can see what happens if the intensity
or the signal-to-noise ratio changes.

In the simulation, the intensity in the radiofrequency data varies between 0 and 40 in arbitrary
units. The intensity for the beamformed images is chosen to vary between 1 and 40 dB. Both the
RF-based and the BF-based localization precision limits are determined for different signal-to-noise
ratios, varying between 33 dB, 29 dB, 23 dB and 15 dB.
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Results & Discussion

In this chapter the results of the precision limits in x- and z-direction for localizing a sub-wavelength
microbubble using uULM are evaluated for both the RF-data and the BF-data. First the minimum
standard deviation for different depths of the scatterer are given, followed by the results for different
SNRs. This chapter will conclude with a discussion of the results and some recommendations for
further research.

4.1 Localization Precision Limits

4.1.1 Beamformed Images

The localization precision limits σx and σz for the BF-data determined with the Gaussian Approx-
imations and a signal-to-noise ratio of 23 dB are shown in Figure 4.1. In this graph, the minimum
standard deviation in the localization of the scatterer, being the microbubble, is shown. As stated
before, the scatterer is moving away from the transducer array in z-direction, which simulates a
microbubble moving deeper into a body. The two graphs show the minimum standard deviation in
x- and in z-direction for different depths z.
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Figure 4.1: The localization precision limits for the scatterer in both x- and z-direction (respectively σx
and σz) plotted against the intensity (dB) for different depths z, derived from the beamformed images with

a SNR of 23 dB.

When changing the amount of noise, the minimum standard deviations will change as well. The
behavior of σx and σz for a scatterer at a depth z = 11 mm and a different SNRs can be seen in
Figure 4.2.

0 5 10 15 20 25 30 35 40

Intensity (dB)

10
-20

10
-15

10
-10

10
-5

10
0

10
5

x
 (

 m
)

SNR = 33 dB

SNR = 29 dB

SNR = 23 dB

SNR = 15 dB

(a) BF-data: σx for different situations of noise.

0 5 10 15 20 25 30 35 40

Intensity (dB)

10
-20

10
-15

10
-10

10
-5

10
0

10
5

z
 (

 m
)

SNR = 33 dB

SNR = 29 dB

SNR = 23 dB

SNR = 15 dB

(b) BF-data: σz for different situations of noise.

Figure 4.2: The localization precision limits for the scatterer in both x- and z-direction (respectively σx and σz)
plotted against the intensity (dB), derived from the beamformed images. The depth of the scatterer equals 11 mm.
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4.1.2 Radiofrequency Data

The same simulations are run for the radiofrequency data: first the localization precision limits
are determined for different depths, followed by a comparison between different situations of noise.
The minimum standard deviations in the localization for different depths z are shown in Figure 4.3.
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(a) RF-data: σx for different depths z.
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Figure 4.3: The localization precision limits for the scatterer in both x- and z-direction (respectively σx and σz)
plotted against the intensity (a.u.) for different depths z, derived from the radiofrequency datat with a SNR of 23 dB.

The localization precision limits for the RF-data with different situations of noise are shown in
Figure 4.4.
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Figure 4.4: The localization precision limits of the scatterer in both x- and z-direction (respectively σx and σz)
plotted against the intensity (a.u.), derived from the radiofrequency data. The depth of the scatterer equals 11 mm.

4.2 Interpretation

Comparing the localization precision for the beamformed images and for the radiofrequeny data,
results in some remarkable differences.

4.2.1 Variation in Depth

When looking at the localization precision for the RF-data and different depths (see Figure 4.3),
one can see that the minimum standard deviation increases when the scatterer is moving away. For
a depth of 11 mm, an intensity of 20 a.u. and a SNR of 29 dB, the position of the scatterer can be
determined with a precision of 10 nm in x-direction and 50 nm in z-direction. However, for a depth
of 21 mm, this precision decreases to 1 µm in x-direction and 0.5 mm in z-direction. This makes
sense. To clarify, one could compare this situation with a small light bulb. Suppose there is a sheet
of paper between an eye and the light bulb. When the light bulb is moved close to the paper, one
can easily determine the shape of the light bulb. However, if one increases the distance between
the sheet of paper and the lamp, the exact shape will be harder to distinguish. In other words,
the localization precision of the light bulb will be less accurate. This same phenomena happens
for the microbubble. When the scatterer is moving deeper into the body, the attenuation of the
medium distorts the wavefronts. Therefore, the PSF is distorted as well with increasing depth and
the position is harder to estimate in detail. This distortion of PSF is shown in Figure 4.5a. For
this graph, the time-of-flight for a certain depth z is divided by its maximum value. This way, the
different shapes can be compared easily. As one can see, the position of the peak is less defined for
an increasing depth z. Thus, if the microbubble is moving deeper into the body, a higher intensity
is needed to achieve the same localization precision. When the microbubble is closer to the trans-
ducer array, the localization precision will increase. This means that, for example, following the
microbubble through a leg needs a higher intensity than following the bubble in an arm.
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So, for the RF-data, it is clear that the localization precision decreases when the microbubble
is moving further away. One would expect a similar behavior for the BF-data. However, using
the beamformed images, the precision limits are less influenced by the depth of the scatterer, as
one can see in Figure 4.1. From these graphs, it becomes clear that there is almost no variation
in the localization precision for different depths z. The localization precision approximates 0.5 µm
in x-direction and 1 µm in z-direction for all depths. Looking at the Gaussian approximations for
different depths z, results in the graph as shown in Figure 4.5b. Similar to the parabolas from the
RF-data, there is a variance in the width of the Gaussian. However, these differences are too small
to see a significant difference in the minimum standard deviations in the localization in Figure 4.1.
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Figure 4.5: The approximations for different depths z for both the radiofrequency and the beamformed images.

A remarkable results is that the minimum standard deviation is way higher for the RF-based lo-
calization compared to the BF-based localization. However, after a certain depth, the localization
precision limits obtained with the beamformed images surpass the limits obtained with the ra-
diofrequency data. This is due to the RF-migration, as explained in 2.3.2. Since the energy of the
whole parabola is concentrated into one pixel by the migration, the signal-to-noise ratio is higher
in the beamformed images compared to the radiofrequency data.

The beamforming step, in which the RF-data is converted into images, will thus influence the
localization precision. Comparing the RF-based minimum standard deviation with the BF-based
precision is comparing apples and oranges. The initial values for this beamforming process, a.o. the
SNR and the maximum intensity, are difficult to compare for the RF-data and the BF-data. For
example, the amount of energy between the radiofrequency data and the beamformed images is not
consistent, which makes it very difficult to compare the intensity between the two sets. Besides,
the geometry of the point spread function differs, since the localization step consists in determin-
ing the centroid of the PSF beyond the diffraction limit. The detailed process of beamforming is
complex and out of scope of this project. However, it is based on some assumptions which are
not completely correct. In further research, it is useful to take a closer look into the beamforming.
One should investigate how to convert the intensity in arbitrary units from the radiofrequency data
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into the intensity in decibels for the beamformed images. With this conversion, a better compar-
ison between the localization precision limits in RF-data and in BF-data can be made. Besides,
algorithms should be adapted such that they take into account the difference in SNR between the
BF-data and the RF-data and perform a two-step localization.

4.2.2 The Influence of Noise

As one can see in Figure 4.2 and 4.4, the localization precision limits are similarly influenced by
the noise for the RF-data and the BF-data in both x- and z-direction. Looking at the overview
of the beamformed images under different situations of noise as shown earlier in Figure 3.3, the
expectation arises that the localization precision limits will decrease if the amount of noise increases.
This is confirmed by the graphs as shown in Figure 4.2 and Figure 4.4: for the radiofrequency data,
for example, using the same intensity and depth, a localization precision in x-direction of 1 nm
can be achieved for a SNR of 33 dB, while a SNR of 23 dB results in a precision of 10 mm. It
is, therefore, desirable to minimize the noise during the localization process. This can be done
by, for example, using electronic devices with less readout noise, by the implementation of motion-
correcting algorithms or by using nonlinear processing to minimize the false peak errors as explained
before in 2.7.

4.3 Resulting super-resolution

With the above results for the localization precision limits for both the radiofrequency data and
the beamformed images, the resulting super-resolution can be determined. The classical resolu-
tion limit for this problem is given by one wavelength; being approximately 100 µm. The median
diameter of a microbubble contrast agent is assumed to be 3 µm. An entire overview of the super-
resolution factor SR for the different intensities and the different SNRs can be found in Table 6.1
and Table 6.2 in the Supplementary Data. Some of the results for the BF-data and the RF-data
are illustrated in respectively Figure 4.6 and Figure 4.7.
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Figure 4.6: The resulting super-resolution in both x- and z-direction obtained with the beamformed
images for different depths z or different signal-to-noise ratios SNR.
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Figure 4.7: The resulting super-resolution in both x- and z-direction obtained with the radiofrequency
data for different depths z or different signal-to-noise ratios SNR.

In medical applications, a transmit frequency of 15 MHz is typically used to scan biological tissues
up to 2 cm deep. Beyond that distance, the attenuation starts to be prominent and the SNR is not
sufficient anymore for imaging. In this research, the BF-based localization precision limits are way
lower and the super-resolution way higher compared to the RF-data. Besides, the signal-to-noise
ratio is higher in the beamformed images due to the RF-migration. Therefore, it seems better to
use the BF-data for the localization. However, it is risky to compare the results and decide which
data set should be used to localize the microbubble because of the beamforming step. As stated
before, the initial values for this process are difficult to define, which makes a comparison for the
obtained results ungrounded. Before comparing, the conversion of the measured voltages into the
intensity in the final images should be investigated and the algorithms should be adapted into a
two-steps localization. After these modifications, the results can be compared properly and one
can decide which data set is preferably used in the localization of the scatterer.

4.4 Further Recommendations

Apart from the recommendations to minimize the noise, to study the beamforming step and to
adapt the algorithms into a two-step localization, there are some more aspects to investigate in
further research.

4.4.1 Approximations

In this research, the radiofrequency data is approximated with a 1D-parabola, as shown in Figure
3.2f. With this approximation, however, some information from the RF-data is lost. For example,
the derivative in z-direction is now computed using equation (3.1). When fitting a 3D-function to
the RF-data instead of a parabola, this derivative could be determined more precisely. One way
to do this 3D-fitting is by using the Cubic Spline Data Interpolation Function in Matlab. With
this function, one can obtain a vector of interpolated values corresponding to certain query points,
using cubic spline interpolation. [43] One advantage of this Spline approximation is the fact that
the first and second derivative are continuous. However, the Spline approximation is that accurate
that it takes into account all the noises in the image as well. In further research, one has to find a
way to approximate the peak values with a Spline function, without including the noise.
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This same recommendations goes for the BF-data: in this research, the beamformed images are
approximated with a 2D-Gaussian, as shown in Figure 3.1b. The BF-data, however, is given as a
4D-function, depending on the intensity, the background, the x-position and the depth z. It would
be interesting to see what happens with the localization precision limits if the beamformed images
are approximated with a 4D-function.

The radiofrequency signals are measured voltages, oscillating around zero. An example of such
a signal can be found in Figure 4.8. During the process of beamforming, only the envelope of this
signals is used, which means that only the positive values are taken into account and the negative
values are neglected. Another method to increase the reliability of the localization precision, is by
using the whole signals, and not just the envelopes of the RF-data.
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(b) Zoomed RF-data.

Figure 4.8: The RF-data for a single transducer.

4.4.2 Increasing the range of measurements

Suppose a small object is positioned at 40 m from a person. When moving this object closer to
this man, he will be able to see the object sharply. However, at some point, the person is not able
to see the details anymore, because it has moved too close to his eye. There seems to be a relation
between the sharpness of the object and the distance to the person. When starting very close to an
eye, and moving away from it, the sharpness will increase, come to a maximum and then decrease
again. In optics, these different regions are indicated as the Fraunhofer Region for the far-field
approximation and the Fresnel Region for the near-field approximation. [44], [45]

This same difference between the far field and the near field occurs for the microbubble and its local-
ization precision limits. When the scatterer is too close to the transducer array, the backscattered
echo will not hit all transducer elements and thus not use the whole array, but just a sub-aperture.
If the microbubble is moving further away, more elements receive the backscattered echo and the
resolution will improve. However, when increasing this distance even more, there will be more
attenuation through the material, which will decrease the resolution again. In further research, it
would be interesting to map the whole imaged space with sub-wavelength displacements in both the
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x- and z-direction. After a certain depth, the signal-to-noise ratio will be too low to perform the
localization properly. It is interesting to determine this depth, to make sure that this distance will
not be exceeded during medical applications. Besides, instead of assuming a point like scatterer,
one could try to run the simulation for a little sphere with a radius of 3 µm, approximating the
shape of a real microbubble.

4.4.3 The Grid

During beamforming, the radiofrequency data is converted into images. As explained in 2.3.2,
the RF-data is measured as an electric signal. The parabolas are the truncated spherical waves,
scattered back from the point like scatterers. For the conversion of RF-data into images, first the
acoustic pressure along a certain parabola is summed to one value. This value is used to determine
the intensity in a pixel in the final image. After all pixels are done, the intensity in each pixel is
divided by the maximum intensity and converted to decibels. This results in the final beamformed
image.

In other words; the final image is divided into a grid in which each pixel corresponds to a cer-
tain parabola from the RF-data. Therefore, the summed parabolas depends on the grid in the final
image and thus it is important to choose this grid properly.

In further research, it would be useful to determine the localization precision limits in both the
RF-data and the BF-data using different grids in the beamformed image. This way, the relation
between the chosen grid, the localization percision in RF-data and the localization precision in
BF-data can be visualised. It could be that the chosen grid in this research is not suitable for this
problem, which could explain the difference in the minimum standard deviations obtained for the
RF-data and the BF-data. This however, lacks in the state of the art, as most scientist tend to
compare beamformer precision through signal-to-noise ratio measurements in simulated data, and
not through signal analysis.

4.4.4 Position of the Scatterer

In this research, there are three different data files from which the position of the scatterer can be
determined:

• The Beamformed Images: the location of the maximum intensity in the beamformed
images represents the position of the scatterer.

• The Radiofrequency Data: from the fitted parabola on the time-of-flight, the position of
the scatterer can be determined.

• The MediaCoordinates: during the simulation, the position of the scatterer is stored in a
matrix.

Plotting these three coordinates together, results in the graph as shown in Figure 4.9. As one
can see, the point of maximum intensity in the beamformed image is almost equal to the position
according the radiofrequency data, but they do not exactly overlap. This is due to inhomogeneities
in the PSF. In further research, it might be interesting to take these inhomogeneities into account
while approximating the PSF, to make sure that the maximum intensity and the location according
the time-of-flight are at the same position. The stored position according the MediaCoordinates
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are at a total different location compared to the point of maximum intensity and the position ac-
cording the time-of-flight. The deviation in x-direction is due to shifting and is not important in
this research. However, also the z-positions show a difference compared to the other two data sets.
According the MediaCoordinates, the scatterer is moving less far (the curve is much shorter), but
at a deeper location (the curve is much higher) compared to the RF-data and the BF-data. This
does influence the localization precision for the different depths.
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Figure 4.9: The position of the scatterer according the different data types.

Since the data was provided, the cause of the different positions for the scatterer according the
MediaCoordinates, the beamformed images and the radiofrequency is unknown. With the Medi-
aCoordinates, only 128 positions are given, while there are twice as much images (and thus 256
positions) for the BF-data and RF-data. Besides, it is important to check the exact depth of the
scatterer. In this research, the positions determined with the time-of-flight are taken as default
for the derivation of the localization precision in the radiofrequency data. For the beamformed
images, the position of the maximum intensity is used. The difference in z-direction between these
positions is negligible in the discussion of the results and might be caused by the error as derived in
the Appendix part A.4. This difference can be minimized by using probes with a higher sensitivity.

When using the coordinates as provided by the data MediaCoordinates as default in the calcu-
lations, all depths (for example the depths as given in the legend in Figure 4.1, Figure 4.3 and
Figure 4.5) will change. Besides, the derivation of the z-derivative using equation (3.1) will change
as well, resulting in a slightly different localization position. In further research, it would be good
to simulate all values again, while providing just as much coordinates as images. Besides, it would
be good to take the inhomogeneities of the tissues into account as well. These inhomogeneities
should be corrected before localization.
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Conclusion

This research has investigated the theoretical precision limit of ultrafast Ultrasound Localization
Microscopy (uULM) in localizing a moving sub-wavelength scatterer. In essence, the process of
acoustic imaging in uULM consists of three steps: the plane wave transmission, the reception of
the backscattered echoes (measured as an electric signal, denoted as the radiofrequency data or
RF-data) and the image reconstruction (resulting in the beamformed images or BF-data). In this
research, the localization precision limits for both the (RF-data) and the BF-data are determined.

With this investigation a difference in the localization precision limits considering different depths
of the scatterer using radiofrequency data or using beamformed images is revealed. According to
the RF-data, the minimum standard deviation decreases if the scatterer moves away to a deeper
position: for a depth of 11 mm, the position of the scatterer can be determined with a precision of
10 nm in x-direction and 50 nm in z-direction, while this decreases to 1 µm in x-direction and 0.5
mm in z-direction at a depth of 21 mm, using the same intensity and with the same SNR. Thus, if
the microbubble is moving deeper into the body, a higher intensity is needed to achieve the same
localization precision. When the microbubble is closer to the transducer array, the localization
precision will increase.

This z-dependence was less obvious in the BF-data. At an intensity of 20 dB and a SNR 29
dB, the localization precision approximates 0.5 µm in x-direction and 1 µm in z-direction for all
depths. A remarkable result is that the localization precision limits using the radiofrequency data
is way higher compared to the beamformed images. However, after a certain depth, the BF-based
localization surpasses the RF-based one. The differences between the results obtained with the
RF-data and the BF-data are due to the beamforming step. The SNR and the maximum intensity
for this process are difficult to define and compare for the RF-data and BF-data.

The RF-based and BF-based localization precision react similar to changes in the amount of noise.
For a low signal-to-noise ratio, the position of the scatterer can be determined with a lower pre-
cision compared to a situation with a high signal-to-noise ratio. For the radiofrequency data, for
example, using the same intensity and depth, a localization precision in x-direction of 1 nm was
obtained for a SNR of 33 dB, while a noise of 23 dB resulted in a precision of 10 mm.

Due to the influence of the beamforming step, it is difficult to determine from above results which
set should be used for the localization of a microbubble in medical applications. In further research,
it is therefore useful to investigate the beamforming step in detail. It is, for example, interesting to
see how the intensity in the radiofrequency is related to the intensity in the beamformed images.
In addition, uULM researchers should adapt their algorithm to perform a two-step localization,
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compensating for the RF-migration. This way, one is able to compare the BF-based and RF-based
results properly. Besides, it is interesting to increase the range of measurements, to see what hap-
pens if the microbubble is moving deeper into the body, or closer to the transducer array. Lastly,
one could approximate the RF-data and BF-data with other functions. Using 3D-approximations,
less information is lost and the derivatives, for example, can be determined more accurately.
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Supplementary Data

BF-data
super-resolution in x super-resolution in z

Intensity (dB) 1 10 20 30 40 1 10 20 30 40

σnoise = 0 dB z = 5 mm 2 17 9 · 103 8 · 106 5 · 1010 2 12 7 · 103 6 · 106 3 · 1010

z = 10 mm 2 17 10 · 103 8 · 106 5 · 1010 2 13 7 · 103 6 · 106 4 · 1010

z = 15 mm 2 16 9 · 103 7 · 106 4 · 1010 2 15 8 · 103 7 · 106 4 · 1010

z = 20 mm 2 14 8 · 103 7 · 106 4 · 1010 2 17 9 · 103 8 · 106 5 · 1010

σnoise = 10 dB z = 5 mm 1 2 56 5 · 103 3 · 106 0 2 40 3 · 103 2 · 106

z = 10 mm 1 2 56 5 · 103 3 · 106 1 2 42 3 · 103 2 · 106

z = 15 mm 1 2 51 4 · 103 3 · 106 1 2 48 4 · 103 2 · 106

z = 20 mm 1 2 47 4 · 103 2 · 106 1 2 55 5 · 103 3 · 106

σnoise = 20 dB z = 5 mm 0 1 4 34 2 · 103 0 0 3 24 1 · 103

z = 10 mm 0 1 4 34 2 · 103 0 0 3 25 1 · 103

z = 15 mm 0 1 3 31 2 · 103 0 1 3 29 2 · 103

z = 20 mm 0 0 3 28 2 · 103 0 1 3 33 2 · 103

σnoise = 30 dB z = 5 mm 0 0 1 3 21 0 0 1 2 15
z = 10 mm 0 0 1 3 21 0 0 1 2 16
z = 15 mm 0 0 1 3 20 0 0 1 2 18
z = 20 mm 0 0 1 2 18 0 0 1 3 21

Table 6.1: The super-resolution in both x- and z-direction for the beamformed images. The intensity and
noise are given in dB and the depth of the scatterer z in mm.
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RF-data
super-resolution in x super-resolution in z

Intensity (V) 1 10 20 30 40 1 10 20 30 40

σnoise = 1 V z = 5 mm 1 41 240 · 103 2 · 108 3 · 1011 0 26 149 · 103 1 · 108 2 · 1011

z = 10 mm 0 15 89 · 103 8 · 108 1 · 1011 0 4 25 · 103 2 · 107 3 · 1010

z = 15 mm 0 8 44 · 103 4 · 107 5 · 1010 0 2 9 · 103 8 · 106 1 · 1010

z = 20 mm 0 5 26 · 103 2 · 108 3 · 1010 0 0 1 · 103 1 · 106 2 · 109

σnoise = 3 V z = 5 mm 0 3 650 5 · 104 8 · 106 0 2 400 3 · 104 5 · 106

z = 10 mm 0 1 240 2 · 104 3 · 106 0 0 68 6 · 103 8 · 105

z = 15 mm 0 1 120 1 · 104 1 · 106 0 0 24 2 · 103 3 · 105

z = 20 mm 0 0 71 6 · 103 9 · 105 0 0 3 3 · 102 4 · 104

σnoise = 10 V z = 5 mm 0 1 6 47 668 0 0 3 29 417
z = 10 mm 0 0 2 17 248 0 0 1 5 70
z = 15 mm 0 0 1 9 122 0 0 0 2 25
z = 20 mm 0 0 1 5 73 0 0 0 0 4

σnoise = 30 V z = 5 mm 0 0 0 1 2 0 0 0 1 1
z = 10 mm 0 0 0 0 1 0 0 0 0 0
z = 15 mm 0 0 0 0 0 0 0 0 0 0
z = 20 mm 0 0 0 0 0 0 0 0 0 0

Table 6.2: The super-resolution in both x- and z-direction for the radiofrequency data. The intensity and
noise are given in voltages and the depth of the scatterer z in mm.
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Appendix

A.1 Optical beamforming

The procedure of imaging with FPALM consists of two steps: the activation and the readout/pho-
tobleaching, which can be seen in Figure A.1. The two steps are repeated until enough information
for the desired image is obtained, or until all molecules have been photobleached. [12]

Figure A.1: A schematic representation of the optical beamforming in
FPALM. [12]

1) Activation of the fluorophores
During the first step, mirror DM1 reflects the activation laser into lens L1, after which a
second mirror DM2 makes sure that this laser ends up into the objective back aperture. [12]
A shutter S1 blocks the readout laser during this activation phase.

2) Readout and photobleaching
During readout, shutter S1 is removed, while second shutter S2 blocks the activation laser.
Now it is the readout beam which goes through mirror DM1, followed by lens L1 and mirror
DM2 to be focused onto the objective back aperture. After this, the readout beam illuminates
the sample in circular area (which approximates a Gaussian profile) to activate molecules to
fluoresce. The objective collects the emitted fluorescence photons, after which the signal

39



is filtered to remove laser and scattered light, denoted with F. Now the signal, focused by
the microscope tube lens TL, hits a camera and an image can be made. [12] Due to the
photobleaching as described in 2.2.1, the number of visible molecules will decrease over time.

A.2 Ultrasound Beam Forming

Ultrasound sensors are able to both receive and transmit ultrasound signals. [17] When a sensor
is hit by a signal with a specific phase, amplitude and waveform, the sensor can be excited. In
this paragraph, two different ways of beamforming are discussed, respectively Linear Array Beam
Forming and Phase Array Beam Forming.

• Linear Array Beam Forming
In Linear Array Beam Forming, the sensors in the array are divided into different sub-
apertures, as can be seen in the left part of Figure A.2. Within each sub-group, the same
waveform is transmitted, but with a different amplitude and different phase. [17] By shifting
the sub-aperture over the array, many signals (the so called A-scan) can be obtained. With
this A-scan, one can determine the structures in front of the sub-aperture over depth. Linear
Array Beamformers are using information about the wave direction and the location of the
sensor to combine the A-scans, with a fixed set of time-delays and weightings. The linear
beams can not be steered, so they can image only the area in front of the aperture. How-
ever, when distributing the linear array sensors along a curve, one can obtain a larger field of
view. [46], [47]
When applying focusing, one can generate higher pressures and thus higher spatial resolu-
tion, higher SNR and higher penetration depth. However, this also results in smaller beams,
making it necessary to have more beams to cover the total field of view (FOV). Besides, the
need for more transmission events will cause a decrease in frame rate. [17]

• Phase Array Beam Forming
Another way for image forming is Phase Array Beam Forming. This method is equal to that
of Linear Array Beam Forming, but now each transmission is using the entire array aperture
(see the right part of Figure A.2). This method is only possible if the pitch (the distance
between the centres) is smaller than half of the wavelength. Otherwise, grating lobes will
degrade the image quality. Since the beam can be controlled in direction, it can image a
larger area compared to linear arrays. [17]

A.3 Find the point spread function

A.3.1 Determine the sound pressure

For now, a simple situation of a 1D-array with N transducer elements is considered, as shown in
Figure A.3. From this figure, it becomes clear that the steering vector ~r with length r can be
rewritten as follows:

~r = r

(
sin θ, sinϕ,

√
cos2 θ − sin2 ϕ

)
(A.1)
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Figure A.2: Linear Array Beam Forming and Phased Array Beam Forming. [17]

Figure A.3: The 1D-array and the sound field described in coordinates.

The velocity profiles on the surfaces are assumed to be the same: v0(t). Each transducer ele-
ment, denoted by n, produces a sound pressure. At a certain point P , this pressure pn(~r, t) can be
expressed as an Rayleigh integral over the n-th element surface Sn: [31]

pn(~r, t) = ρ
∂v0(t)

∂t
∗
∫∫

Sn

δ
(
t− |~r−~rn−~rS

′|
c

)
2π |~r − ~rn − ~rS ′|

dS (A.2)

in which ρ represents the medium density and c the sound velocity in the medium. ~r denotes the
spatial vector of point P , ~nn equals the vector of the center of the n-th transducer element and ~rS

′

represents the relative vector of a source point on the surface of the n-th element compared to its
center (see Figure A.3). The delta-function represents the impulse response of a single vibration. [31]

According the Rayleigh integral, spherical waves are emitted from each point in the plane z = 0,
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all contributing to the total field in a point (x, y, z). [6] This method is restricted to planar trans-
ducers. Therefore, the derived solution in this research only holds for these type of transducers. [48]

Combining the distribution of all different transducer elements NT with weighting coefficients An
in point P to reduce artifacts, results in the following transmitted sound pressure, in which hT (~r, t)
represents the spatial impulse response of the transmitting array: [49]

pT (~r, t) = ρ
∂v0(t)

∂t
∗
NT∑
n=1

An

∫∫
Sn

δ
(
t− |~r− ~rn−~rS

′|
c

)
|~r − ~rn − ~rS ′|

dS

= ρ
∂v0(t)

∂t
∗ hT (~r, t)

(A.3)

To describe the ultrasound pulse-echo process, the scattered pressure due to the m-th element, can
be determined by the following equation: [50]

pR (~r, ~rm, t) = s(t) ∗
∫∫

Sm

pT

(
~r, t− |~rR−~r|c

)
4π |~rR − ~r|

dS

= s(t) ∗ pT (~r, t) ∗
∫∫

Sm

δ
(
t− |~r−~rm−~rS

′|
c

)
|~r − ~rm − ~rS ′|

dS

(A.4)

in which again Sm and ~rm respectively represent the surface and the center vector of the m-th
element, ~rS

′ equals the relative vector of the receiving point on the m-th element compared to its
center and s(t) denotes the scattering impulse response.

A.3.2 Find the ultrasound pulse-echo

Above equations can be used to express the received output voltage Vout, defined as the pressure
wave at a certain point P due to a rigid small scatterer (diameter � λ). After scattering, the wave
propagates through the medium and hits the element again. This impulse response of a receiving
element is denoted with gR(t). The output voltage can be found by taking the convolution of
this gR(t) with the obtained scattered pressure pR(~r, t). The total voltage can now be found by a
superposition of all single voltages [51]:

Vout(~r, t) =

NR∑
m=1

gR(t) ∗ pR(~r, ~rm, t)

= gR(t) ∗ s(t) ∗ pT (~r, t) ∗ hR(~r, t)

(A.5)

Here, the spatial impulse response of the received array hR(~r, t) is introduced, which equals:

hR(~r, t) =

NR∑
m=1

∫∫
Sn

Amδ
(
t− |~r− ~rm−~rS ′|

c

)
|~r − ~rm − ~rS ′|

dS (A.6)

in which Am represents the weighting coefficient of the m-th element. [31] This apodization with
Am reduces the artefacts.

The velocity v0(t) at the surfaces of the elements can be found by taking the convolution of the
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impulse response of the transmitting elements gT (t) with the input excitation Vin(t): v0(t) =
gT (t) ∗ Vin(t). Combining all equations, the scatterer at (0, 0, |~r|) gives the following output volt-
age: [31]

Vout(~r, t) = ρ

[
gR(t) ∗ s(t) ∗ ∂

∂t
(gT (t) ∗ Vin(t))

]
∗ hT (~r, t) ∗ hR(~r, t) (A.7)

The terms between the square brackets represent the simulated pulse, the responses of transducers
and the backscattering included, and also the transmitted waveform. The array performance can
be evaluated with the adoption of the PSF. In this case, the backscattering process is assumed to
be frequency independent, and thus considered as scattering impulse response: s(t) = δ(t). [31]

A.3.3 Simplifications

For simplicity in calculation, the excitation pulse for the calculation of the PSF is assumed to be a
wideband Gaussian waveform, which covers the whole bandwidth of the array. This pulse depends
on the amplitude g0, the central frequency f0 and the bandwidth ∆f and is given by the following
equation: [51]

pulse(t) =

{
g0 exp

[
−π2∆f2(t−t0)2

β

]
sin (2πf0t) t > 0

0 elsewhere
(A.8)

The output voltage is oscillating. By taking the maximum value of this voltage, on can obtain the
maximum intensity. Therefore, the PSF can be determined by taking the maximum value of the
output voltage in time: PSF(~r) = max (|Vout(~r, t)|), which can be considered as a spatial impulse
response of the array. [31]

To speed up the computation of the PSF, one can use a narrowband assumption under the far-field
approximation. To simplify the expressions, introduce u = sin θ, with θ as defined in Figure A.3.
Then, the narrowband directivity A for a 1D array, is given as: [31]

A(u) = sinc
(a
λ
u
)

(A.9)

in which a represents the element dimension and λ the wavelength. [31]

Using again u = sin θ, one can simplify the expressions for hPT (~r, t) and hPR(~r, t). This results
in the following expression for the output voltage Vout:

Vout = A2(u) · {pulse(t) ∗ hPT (u, t) ∗ hPR(u, t)} (A.10)

The time-domain version of the PSF is then given by the following: [31]

PSF(u, t) = max
∣∣∣ sinc2

(a
λ
u
)
{pulse(t) ∗ hPT (u, t) ∗ hPR(u, t)}

∣∣∣
hPT (u, t) =

NT∑
n=1

Anδ
(
t− r0

c −
xnu
c

)
r0

hPR(u, t) =

NR∑
m=1

Amδ
(
t− r0

c −
xmu
c

)
r0

(A.11)

in which the n-th element is located at (xn, 0, 0) and the m-th element at (xm, 0, 0). The pulse
is defined in equation (A.8). Looking at the above equations, one can see that the PSF is not
dependent on the φ from figure A.3.
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A.4 Localization Precision in RF-data with noise fluctuations

In the main text, the point spread function to determine the CRLB for RF-data is given. In this
section, the maximal achievable resolution in this frequency domain in case of noise fluctuations
will be given.

Considering noise fluctuations in the arrival time of the echoes (equation (2.3)), the resolution
can then be determined in two steps: [9]

1) Determine the time precision
The time precision of the signal can be determined by estimating the error of the echo’s arrival
time at its maximum pressure. One way to find the standard deviation στ is by using the
Cramér-Rao Lower Bound, which will be thoroughly discussed in section 2.5. A second way
to determine στ is by directly measuring the standard deviation from experimental data. This
second method is favorable, since it immediately takes into account all the sampling errors. [9]
The time interval between two consecutive images is called the temporal resolution. [17] This
is the resolution in frequency domain.

2) Determine the spatial precision
The resulting time precision from step 1) can be transformed into spatial precision by fitting
a hyperboloid to the data. Since the time-of-flight model is not polynomial, one cannot
determine the accuracy of the results directly from the timing error. [9] Instead, an asymptotic
model is made to determine the back-propagation from the fitting to the resulting coordinates.
[52] This back-propagation can be described by minimizing the sum of the residuals squared
[9]:

S (x0, y0, z0) =

N∑
i=1

(τi − τ̂i)2 (A.12)

In equation (A.12), N represents the total number of transducers, τi the reception time as
described in equation (2.3) and τ̂i the measured time of reception of the maximum echo. Using
this method, combined with the variance-covariance matrix, one can estimate the position of
the source: (x̂0, ŷ0, ẑ0). [9] The squared deviation can be found in the diagonal elements of
the covariance matrix. Using the Taylor expansion for the far-field approximation, one can
find the following spatial variances [9]:

Var (x̂0) ≈ 12 · (c · στ )2 · z2
0

n · L2
x

Var (ŷ0) ≈ 12 · (c · στ )2 · z2
0

n · L2
y

Var (ẑ0) ≈ (c · στ )2

4 · n

(A.13)

in which Lx and Ly are the apertures in respectively x- and y-direction, c equals the speed of
sound, σt is the localisation precision of the peak and n represents the number of transducers
in the aperture. [9] From the variances given in equation (A.13), the standard deviation for
the position of the microbubble can easily be determined by taking the square root of the
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variances: [23]

σx̂0 ≈ 2
√

3 · c · στ · z0√
n · Lx

σŷ0 ≈ 2
√

3 · c · στ · z0√
n · Ly

σẑ0 ≈
c · στ
2 ·
√
n

(A.14)

It is important to realize that the above equations are in the frequency domain. This is, as
stated before, the resolution for the radiofrequency data and describes the smallest spatial
distance at which two different scatterers are distinguishable in the resulting image. [17]
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Matlab Scripts

In this part, the used scripts to determine the localization precision are given, starting with the
script for the RF-data, followed by the script for the BF-data.

B.1 RF-data

1 %% Make a c l e a r workspace
2 c l e a r a l l
3 c l c
4 c l o s e a l l
5

6 %% Load a l l data
7 load ( ’ RF 002 . mat ’ )
8 load ( ’ MediaCoordinates 002 . mat ’ )
9 load ( ’ MatIn 002 . mat ’ )

10 r f d a t a 1 = ce l l 2mat (RFDataP) ;
11 img data1 = ce l l 2mat ( ImgDataP) ;
12

13 %% Introduce cons tant s and v a r i a b l e s
14

15 p i x e l s i z e x = 39.424 e−6; % p i x e l s i z e in x−d i r e c t i o n in m
16 p i x e l s i z e z = 24 .64 e−6; % p i x e l s i z e in z−d i r e c t i o n in m
17

18 c = 1540 ; % speed o f sound in m/ s
19 f = 15.625 e6 ; % frequency in Hz
20 lambda = c/ f ; % wavelength in m
21

22 s i gma no i s e = db2mag (30) ; % readout no i s e o f the de t e c t o r
23

24 %% Determine the p o s i t i o n s o f maximum i n t e n s i t y
25 max x1 = [ ] ; max z1 = [ ] ; coord x0 = [ ] ; coord z0 = [ ] ;
26

27 f o r i = 1 : l ength ( img data1 ( 1 , 1 , 1 , : ) ) % for−loop
to look at every timeframe

28 img norm = img data1 ( : , : , : , i ) ; % s e l e c t
c e r t a i n image
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29 [ maxvalue , index ] = max( img norm ( : ) ) ; % f i n d
p o s i t i o n and value o f max i n t e n s i t y

30 [ max z1 ( i ) , max x1 ( i ) ] = ind2sub ( s i z e ( img norm ) , index ) ; % save the
p o s i t i o n s o f max i n t e n s i t y in x and z

31 end
32

33 img x0 uni t = p i x e l s i z e x ∗max x1 ; % x−p o s i t i o n accord ing ImgData
in meter

34 img z0 un i t = p i x e l s i z e z ∗max z1 ; % z−p o s i t i o n accord ing ImgData
in meter

35

36 f o r i = 1 : l ength ( MediaCoordinates ) % s t o r e the coo rd ina t e s o f the
s c a t t e r e r in x and z

37 coord = MediaCoordinates{ i } ;
38 coord x0 ( i ) = coord (1 ) ; coord z0 ( i ) = coord (3 ) ;
39 end
40

41 coo rd x0 un i t = coord x0 ; % x−p o s i t i o n accord ing MediaCoordinates
in meter

42 c o o r d z 0 u n i t = coord z0 ; % z−p o s i t i o n accord ing MediaCoordinates
in meter

43

44 %% Fit the parabo las to the RF−data
45

46 t = l i n s p a c e (1 ,6144 ,6144) ; % c r e a t e a time−array
47 t u n i t = t /(4∗ f ) ; % convert to seconds
48 s = l i n s p a c e (1 ,128 ,128) ; % c r e a t e a space−array
49 s u n i t = s ∗ lambda ; % convert to meter
50 x tau = l i n s p a c e (1 ,128 ,128) ; % c r e a t e an array f o r the f i t
51

52 po in t s = [ ] ; tau para = [ ] ;
53 max array = [ ] ; max tau = [ ] ;
54

55 f o r j = 1:256 % go through a l l time frames
56 f o r i = 1:128 % determine a rough es t imate f o r every

t ransducer element
57 index = min ( r f d a t a 1 ( : , i , : , j ) ) ;
58 po in t s ( i , j ) = min ( f i n d ( r f d a t a 1 ( : , i , : , j )==index ) ) ; % s e l e c t

one po int f o r each element
59 end
60 tau = po in t s ( : , j ) ; % s e l e c t the chosen

po in t s f o r timeframe j
61 min tau = f i n d ( tau == min ( tau ) ) ; % f i n d the minimum

value to prevent e r r o r s
62 i f min tau−50<1
63 p tau = p o l y f i t ( x tau ( 1 : min tau+50) , . . . % f i t a parabola to

the po in t s
64 tau ( 1 : min tau+50) ’ , 2 ) ;
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65 e l s e i f min tau+50>1280
66 p tau = p o l y f i t ( x tau ( min tau −50:1280) , . . .
67 tau ( min tau −50:1280) ’ , 2 ) ;
68 e l s e
69 p tau = p o l y f i t ( x tau ( min tau−50: min tau+50) , . . .
70 tau ( min tau−50: min tau+50) ’ , 2 ) ;
71 end
72 tau para ( : , j ) = po lyva l ( p tau , x tau ) ; % s t o r e

the parabo l e s in an array
73 max array ( j ) = f i n d ( tau para ( : , j )==min ( tau para ( : , j ) ) ) ; % s t o r e

the x−p o s i t i o n o f i t s maximum
74 max tau ( j ) = min ( tau para ( : , j ) ) ; % s t o r e

the z−p o s i t i o n o f i t s maximum
75 end
76

77 t au pa ra un i t = tau para /(4∗ f ) ; % convert to seconds
78 max array unit = max array∗ lambda ; % convert from p i x e l s to

meters
79 max tau unit = max tau /(4∗ f ) ; % convert the z−p o s i t i o n o f the

maximum to seconds
80

81 r f x 0 = max array ;
82 r f z 0 = max tau unit ∗c /2 / p i x e l s i z e z ;
83 r f x 0 u n i t = max array unit ; % x−p o s i t i o n o f the s c a t t e r e r

accord ing the r f−data
84 r f z 0 u n i t = max tau unit ∗c /2 ; % z−p o s i t i o n o f the s c a t t e r e r

accord ing the r f−data
85

86 %% Find the Fi sher In format ion Matrix
87

88 vo l tage = l i n s p a c e (1 , 40 , 10 ) ; % c r e a t e an array o f i n t e n s i t i e s
89 timeframe = 2 ; % choose a c e r t a i n time frame
90 N = 0 ; % s e l e c t number o f frames on both s i d e s

o f the chosen frame
91

92 I 11 = 0 ; I 12 = 0 ; I 13 = 0 ; I 14 = 0 ; % c r e a t e f i s h e r−matrix
components

93 I 21 = 0 ; I 22 = 0 ; I 23 = 0 ; I 24 = 0 ;
94 I 31 = 0 ; I 32 = 0 ; I 33 = 0 ; I 34 = 0 ;
95 I 41 = 0 ; I 42 = 0 ; I 43 = 0 ; I 44 = 0 ;
96 c r l b x = [ ] ; c r l b z = [ ] ; % c r e a t e ar rays to save the

c r l b
97

98

99 % run f o r d i f f e r e n t i n t e n s i t i e s
100 f o r i n t =1: l ength ( vo l tage )
101 d i s p l a y ( [ ’ This i s I t e r a t i o n Number ’ , num2str ( i n t ) ] )
102 I = ( vo l tage ( i n t ) ) ;
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103

104 % run f o r d i f f e r e n t t imeframes
105 f o r t = timeframe−N: timeframe+N
106 max x = r f x 0 ( t ) ;
107

108 % load and normal ize the r f−approximation
109 para norm = tau para ( : , t ) /max( tau para ( : , t ) ) ;
110 para norm prev = tau para ( : , t−1)/max( tau para ( : , t−1) ) ;
111

112 % determine the d e r i v a t i v e in x− and z−d i r e c t i o n
113 a fgx para = grad i en t ( para norm ) ;
114 a fgz pa ra = ( para norm−para norm prev ) /( r f z 0 ( t )−r f z 0 ( t−1) ) ;
115

116 % f i l l up the f i s h e r in fo rmat ion matrix with the summation
117 I 11 = I 11 + (sum( a fgx para ( 1 : max x ) ) ) ˆ2 ;
118 I 12 = I 12 + sum( a fgx para ( 1 : max x ) .∗ a fgz pa ra ( 1 : max x ) ) ;
119 I 13 = I 13 + sum( a fgx para ( 1 : max x ) .∗ para norm ( 1 : max x ) ) ;
120 I 14 = I 14 + sum( a fgx para ( 1 : max x ) ) ;
121 I 22 = I 22 + (sum( a fgz pa ra ( 1 : max x ) ) ) ˆ2 ;
122 I 23 = I 23 + sum( para norm ( 1 : max x ) .∗ a fgz pa ra ( 1 : max x ) ) ;
123 I 24 = I 24 + sum( a fgz pa ra ( 1 : max x ) ) ;
124 I 33 = I 33 + (sum( para norm ( 1 : max x ) ) ) ˆ2 ;
125 I 34 = I 34 + sum( para norm ( 1 : max x ) ) ;
126 I 44 = I 44 + 1 ;
127 end
128

129 % f i n i s h the components a f t e r the summation
130 I 11 = I 11 ∗ ( I / s i gma no i s e ) ˆ2 ; I 12 = I 12 ∗ ( I / s i gma no i s e ) ˆ2 ;
131 I 13 = I 13 ∗ −I /( s i gma no i s e ˆ2) ; I 14 = I 14 ∗ −I /( s i gma no i s e ˆ2) ;
132 I 21 = I 12 ; I 22 = I 22 ∗ ( I / s i gma no i s e ) ˆ2 ;
133 I 23 = I 23 ∗ −I /( s i gma no i s e ˆ2) ; I 24 = I 24 ∗ −I /( s i gma no i s e ˆ2) ;
134 I 31 = I 13 ; I 32 = I 23 ;
135 I 33 = I 33 ∗ 1/( s i gma no i s e ˆ2) ; I 34 = I 34 ∗ 1/( s i gma no i s e ˆ2) ;
136 I 41 = I 14 ; I 42 = I 24 ;
137 I 43 = I 34 ; I 44 = I 44 ∗ 1/( s i gma no i s e ˆ2) ;
138

139 % bui ld the f i s h e r in fo rmat ion matrix
140 f i s h p a r a = [ I 11 I 12 I 13 I 14 ;
141 I 21 I 22 I 23 I 24 ;
142 I 31 I 32 I 33 I 34 ;
143 I 41 I 42 I 43 I 44 ] ;
144

145 % determine the c r l b in x− and z−d i r e c t i o n in meter
146 c r l b p a r a = f i s h p a r a .ˆ(−1) ;
147 c r l b x p i x e l ( i n t ) = c r l b p a r a (1 , 1 ) ;
148 c r l b z p i x e l ( i n t ) = c r l b p a r a (2 , 2 ) ;
149 end
150
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151 s igma x = s q r t ( c r l b x p i x e l ) ∗ p i x e l s i z e x ; % convert from var iance in
p i x e l s to standard dev i a t i on in meters

152 s igma z = s q r t ( c r l b z p i x e l ) ∗ p i x e l s i z e z ; % convert from var iance in
p i x e l s to standard dev i a t i on in meters

153

154 %% Save the r e s u l t s in r e c o g n i z a b l e names f o r l a t e r use
155 r f s 3 0 t 2 c r l b x = c r l b x ;
156 r f s 3 0 t 2 c r l b z = c r l b z ;
157 r f s 3 0 t 2 s i g m a x = sigma x ;
158 r f s 3 0 t 2 s i g m a z = sigma z ;
159 r f s 3 0 t 2 v o l t a g e = vo l tage ;
160

161 %% Plot the cr lb ’ s
162 f i g u r e ( )
163 semi logy ( vo l tage , s igma x ∗1e6 , ’−o ’ , ’ DisplayName ’ , ’ \ s igma x ’ )
164 hold on ; legend
165 semi logy ( vo l tage , s igma z ∗1e6 , ’−o ’ , ’ DisplayName ’ , ’ \ s igma z ’ )
166 x l a b e l ( ’ Voltage (V) ’ ) ; y l a b e l ( ’ \ sigma (\mu m) ’ )
167 t i t l e ( ’Maximum Like l ihood ’ ) ; g r i d on
168

169 %% Image the r f−data with parabo las
170 c l o s e a l l
171 f o r i = [50 100 150 200 ]
172 f i g u r e ( )
173 imagesc ( s u n i t ∗1000 , t u n i t ∗1e6 , r f d a t a 1 ( : , : , : , i ) )
174 imagesc ( s u n i t ∗1000 , t u n i t ∗1e6 , [ ] )
175 ylim ( [ max tau unit ( i ) ∗1e6−0.2 max tau unit ( i ) ∗1 e6 +1]) ; hold on
176 t i t l e ( [ ’RF−data with time−of−f l i g h t − f i t t i n g f o r the s c a t t e r e r at z

= ’ , . . .
177 mat2str ( round ( r f z 0 u n i t ( i ) ∗1000) ) , ’ mm’ ] )
178 x l a b e l ( ’ t ransducer array (mm) ’ ) ; y l a b e l ( ’ time (\mu s ) ’ )
179 p lo t ( s u n i t ∗1000 , t au pa ra un i t ( : , i ) ∗1e6 , ’−k ’ , ’ l i n ew id th ’ , 2 )
180 xlim ( [ 1 1 2 ] ) ; yl im ( [ 2 6 . 6 2 7 . 6 ] )
181 end
182

183 %% Plot the parabo las in 1 f i g u r e
184 c l o s e a l l
185 tau para unit norm = [ ] ;
186 f o r i = 1 : l ength ( tau pa ra un i t )
187 tau para unit norm ( : , i ) = −t au pa ra un i t ( : , i ) /min ( tau pa ra un i t ( : , i

) ) ;
188 end
189 tau para unit norm = tau para unit norm + ones ( s i z e ( tau para unit norm )

) ∗2 ;
190

191 f i g u r e ( )
192 f o r i = [50 100 150 200 ]
193 p lo t ( s u n i t ∗1000 , t au pa ra un i t ( : , i ) /max( tau pa ra un i t ( : , i ) ) , . . .
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194 ’ l i n ew id th ’ ,2 , ’ DisplayName ’ , [ ’ z = ’ , mat2str ( round ( r f z 0 u n i t ( i )
∗1000) ) , ’ mm’ ] )

195 hold on
196 end
197 l egend
198 x l a b e l ( ’ t ransducer array (mm) ’ ) ; y l a b e l ( ’ t o f / t o f {max} ’ )
199 t i t l e ( ’Time Of F l i gh t f o r d i f f e r e n t depths ’ )
200

201 %% Compare the s c a t t e r e r p o s i t i o n s accord ing the RF−data , the ImgData
and the Coordinates

202

203 % the x−range from MediaCoordinates goes from −A to A. To compare these
204 % coord ina t e s with the other dataset s , i t i s moved such that i t only

has
205 % pos ive va lue s : from 0 to 2A.
206 coord x0 unit moved = coord x0 un i t + ones ( s i z e ( coo rd x0 un i t ) ) ∗ l ength (

coo rd x0 un i t ) /2∗ p i x e l s i z e x ;
207

208 f i g u r e ( )
209 f o r i = round ( l i n s p a c e (1 ,256 ,10 ) )
210 p lo t ( r f x 0 u n i t ( i ) ∗1000 , r f z 0 u n i t ( i ) ∗1000 , ’−or ’ )
211 hold on
212 p lo t ( coord x0 unit moved ( round ( i /2) ) ∗1000 , c o o r d z 0 u n i t ( round ( i /2)

) ∗1000 , ’−∗b ’ )
213 p lo t ( img x0 uni t ( i ) ∗1000 , img z0 un i t ( i ) ∗1000 , ’−ˆk ’ )
214 end
215 p lo t ( r f x 0 u n i t ∗1000 , r f z 0 u n i t ∗1000 , ’−r ’ )
216 p lo t ( coord x0 unit moved ∗1000 , c o o r d z 0 u n i t ∗1000 , ’−b ’ )
217 p lo t ( img x0 uni t ∗1000 , img z0 un i t ∗1000 , ’−k ’ )
218 hold on ; legend ( ’Time−Of−Fl i gh t from RF−data ’ , ’ MediaCoordinates ’ , ’

Maximum I n t e n s i t y from BF−data ’ ) ; g r i d on
219 x l a b e l ( ’ x (mm) ’ ) ; y l a b e l ( ’ z (mm) ’ )
220 t i t l e ( ’ Po s i t i on o f the s c a t t e r e r accord ing the d i f f e r e n t data ’ )
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B.2 BF-data

1 %% Make a c l e a r workspace
2 c l e a r a l l
3 c l c
4 c l o s e a l l
5

6 t i c
7 %% Load a l l data
8 load ( ’ RF 002 . mat ’ )
9 load ( ’ MediaCoordinates 002 . mat ’ )

10 load ( ’ MatIn 002 . mat ’ )
11 r f d a t a 1 = ce l l 2mat (RFDataP) ;
12 img data1 = ce l l 2mat ( ImgDataP) ;
13

14 %% Introduce cons tant s and v a r i a b l e s
15

16 p i x e l s i z e x = 39.424 e−6; % p i x e l s i z e in x−d i r e c t i o n in m
17 p i x e l s i z e z = 24 .64 e−6; % p i x e l s i z e in z−d i r e c t i o n in m
18

19 c = 1540 ; % speed o f sound in m/ s
20 f = 15.625 e6 ; % frequency in Hz
21 lambda = c/ f ; % wavelength in m
22

23 s i gma no i s e = db2mag (30) ; % readout no i s e o f the de t e c t o r
24

25 %% Determine the p o s i t i o n s o f maximum i n t e n s i t y
26 img x0 = [ ] ; img z0 = [ ] ; coord x0 = [ ] ; coord z0 = [ ] ;
27

28 f o r i = 1 : l ength ( img data1 ( 1 , 1 , 1 , : ) ) % for−loop
to look at every timeframe

29 img norm = img data1 ( : , : , : , i ) ; % s e l e c t
c e r t a i n image

30 [ maxvalue , index ] = max( img norm ( : ) ) ; % f i n d
p o s i t i o n and value o f max i n t e n s i t y

31 [ img z0 ( i ) , img x0 ( i ) ] = ind2sub ( s i z e ( img norm ) , index ) ; % save the
p o s i t i o n s o f max i n t e n s i t y in x and z

32 end
33

34 img x0 uni t = p i x e l s i z e x ∗ img x0 ; % x−p o s i t i o n accord ing ImgData
in meter

35 img z0 un i t = p i x e l s i z e z ∗ img z0 ; % z−p o s i t i o n accord ing ImgData
in meter

36

37 f o r i = 1 : l ength ( MediaCoordinates ) % s t o r e the coo rd ina t e s o f the
s c a t t e r e r in x and z

38 coord = MediaCoordinates{ i } ;
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39 coord x0 ( i ) = coord (1 ) ; coord z0 ( i ) = coord (3 ) ;
40 end
41

42 coo rd x0 un i t = coord x0 ∗ lambda ; % x−p o s i t i o n accord ing
MediaCoordinates in meter

43 c o o r d z 0 u n i t = coord z0 ∗ lambda ; % z−p o s i t i o n accord ing
MediaCoordinates in meter

44

45 %% Find the Fi sher In format ion Matrix with a Gaussian Fit
46

47 i n t e n s i t y = db2mag( l i n s p a c e (1 , 40 , 10 ) ) ; % c r e a t e an array o f
i n t e n s i t i e s

48 timeframe = 50 ; % choose a c e r t a i n time
frame

49 N = 0 ; % s e l e c t number o f frames
on both s i d e s o f the chosen frame

50

51 I 11 = 0 ; I 12 = 0 ; I 13 = 0 ; I 14 = 0 ; % c r e a t e f i s h e r−matrix
components

52 I 21 = 0 ; I 22 = 0 ; I 23 = 0 ; I 24 = 0 ;
53 I 31 = 0 ; I 32 = 0 ; I 33 = 0 ; I 34 = 0 ;
54 I 41 = 0 ; I 42 = 0 ; I 43 = 0 ; I 44 = 0 ;
55 c r l b x = [ ] ; c r l b z = [ ] ; % c r e a t e ar rays to save the

c r l b
56 xx = l i n s p a c e (1 ,1024 ,1024) ; % c r e a t e v e c to r s f o r the

gauss ian f i t
57 zz = l i n s p a c e (1 ,325 ,325) ;
58

59 % run f o r d i f f e r e n t i n t e n s i t i e s
60 f o r i n t =1: l ength ( i n t e n s i t y )
61 d i s p l a y ( [ ’ This i s I t e r a t i o n Number ’ , num2str ( i n t ) ] )
62 I = i n t e n s i t y ( i n t ) ;
63

64 % run f o r d i f f e r e n t t imeframes
65 f o r t = timeframe−N: timeframe+N
66

67 % Load the image
68 img 1 = img data1 ( : , : , : , t ) ;
69 max x = img x0 ( t ) ; % f i n d the x− p o s i t i o n

o f the maximum i n t e n s i t y f o r the chosen s c a t t e r e r
70 max z = img z0 ( t ) ; % f i n d the z− p o s i t i o n

o f the maximum i n t e n s i t y f o r the chosen s c a t t e r e r
71

72 % Def ine PSF
73 img 1 z = img 1 ( : , max x ) ; % d e f i n e the peak to

approximate in x
74 img 1 x = img 1 ( max z , : ) ; % d e f i n e the peak to

approximate in z
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75

76 fx = f i t ( zz . ’ , img 1 x . ’ , ’ gauss1 ’ ) ; % f i t a Gaussian to the
peak in x

77 p s f x = fx ( zz ) ; % save the ps f in x
78 f z = f i t ( xx . ’ , img 1 z , ’ gauss1 ’ ) ; % f i t a Gaussian to the

peak in z
79 p s f z = f z ( xx ) ; % save the ps f in z
80

81 psf x norm = p s f x /max( p s f x ) ; % normal ize the p s f
82 p s f s t o r e ( : , t ) = psf x norm ; % s t o r e the p s f
83

84 a fgx gaus s = grad i en t ( psf x norm ) ; % compute the
d e r i v a t i v e in x

85 a f g z g a u s s = ( psf x norm−p s f s t o r e ( : , t−1) ) /( img z0 ( t )−img z0 ( t
−1) ) ; % compute the d e r i v a t i v e in z

86

87 I 11 = I 11 + sum( a fgx gaus s . ˆ 2 ) ; % f i l l the f i s h e r
components

88 I 22 = I 22 + sum( a f g z g a u s s . ˆ 2 ) ;
89 I 33 = I 33 + sum( psf x norm . ˆ 2 ) ;
90 I 44 = I 44 + 1 ;
91 end
92

93 % f i n i s h the components a f t e r the summation
94 I 11 = I 11 ∗ ( I / s i gma no i s e ) ˆ2 ;
95 I 22 = I 22 ∗ ( I / s i gma no i s e ) ˆ2 ;
96 I 33 = I 33 ∗ 1/( s i gma no i s e ˆ2) ;
97 I 44 = I 44 ∗ 1/( s i gma no i s e ˆ2) ;
98

99 % bui ld the f i s h e r in fo rmat ion matrix
100 f i s h g a u s s = [ I 11 I 12 I 13 I 14 ;
101 I 21 I 22 I 23 I 24 ;
102 I 31 I 32 I 33 I 34 ;
103 I 41 I 42 I 43 I 44 ] ;
104

105 % determine the c r l b in x− and z−d i r e c t i o n in meter
106 c r l b g a u s s = f i s h g a u s s .ˆ(−1) ;
107 c r l b x p i x e l ( i n t ) = c r l b g a u s s (1 , 1 ) ;
108 c r l b z p i x e l ( i n t ) = c r l b g a u s s (2 , 2 ) ;
109 end
110

111 s igma x = s q r t ( c r l b x p i x e l ) ∗ p i x e l s i z e x ; % convert from var iance in
p i x e l s to standard dev i a t i on in meter

112 s igma z = s q r t ( c r l b z p i x e l ) ∗ p i x e l s i z e z ; % convert from var iance in
p i x e l s to standard dev i a t i on in meter

113

114 %% Save the r e s u l t s in r e c o g n i z a b l e names f o r l a t e r use
115 b f s 3 0 t 5 0 c r l b x = c r l b x ;
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116 b f s 3 0 t 5 0 c r l b z = c r l b z ;
117 b f s30 t50 s i gmax = sigma x ;
118 b f s 3 0 t 5 0 s i g m a z = sigma z ;
119 b f s 3 0 t 5 0 i n t e n s i t y = i n t e n s i t y ;
120

121 %% Plot the cr lb ’ s
122

123 f i g u r e ( )
124 semi logy (mag2db( i n t e n s i t y ) , s igma x ∗1e6 , ’−o ’ , ’ DisplayName ’ , ’ \ s igma x ’

)
125 hold on ; legend
126 semi logy (mag2db( i n t e n s i t y ) , s igma z ∗1e6 , ’−o ’ , ’ DisplayName ’ , ’ \ s igma z ’ )
127 x l a b e l ( ’ I n t e n s i t y (dB) ’ ) ; y l a b e l ( ’ \ sigma (\mu m) ’ )
128 t i t l e ( ’Maximum Like l ihood ’ ) ; g r i d on
129

130 %% Plot the Gaussian Approximation
131

132 c l o s e a l l
133 f i g u r e ( )
134 f o r i = [50 100 150 200 ]
135 p lo t ( p s f s t o r e ( : , i ) , ’ DisplayName ’ , num2str ( i ) )
136 hold on
137 end
138 l egend
139 xlim ( [ 1 5 0 1 7 0 ] )

55


	Introduction
	Theory
	Abbe's Resolution Limit
	Optical Imaging Method - FPALM
	Introduction to FPALM
	Resolution limits for FPALM

	Acoustic Imaging Method - uULM
	Analogy between FPALM and uULM
	Plane Wave Imaging

	The Maximum Likelihood Estimation
	The goal of MLE
	The Maximum Likelihood Estimate

	The Cramér-Rao Lower Bound
	Fisher Information
	The Fisher Information in case of k parameters
	The Efficiency of an Unbiased Estimator

	Localization Precision Limits in uULM
	Computing the Cramér-Rao Lower Bound
	Specifications for the BF-data
	Specifications for the RF-data
	Resulting super-resolution

	Sources of Noise
	Sampled Data
	False Peaks and Jitter
	Readout noise
	Movements


	Method
	I. Collect data
	II. Approximate the PSF
	III. Derive the Fisher Information Matrix
	IV. Collect more data points

	Results & Discussion
	Localization Precision Limits
	Beamformed Images
	Radiofrequency Data

	Interpretation
	Variation in Depth
	The Influence of Noise

	Resulting super-resolution
	Further Recommendations
	Approximations
	Increasing the range of measurements
	The Grid
	Position of the Scatterer


	Conclusion
	Bibliography

	Supplementary Data
	Appendix
	Optical beamforming
	Ultrasound Beam Forming
	Find the point spread function
	Determine the sound pressure
	Find the ultrasound pulse-echo
	Simplifications

	Localization Precision in RF-data with noise fluctuations

	Matlab Scripts
	RF-data
	BF-data


