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The recently isolated methanogen Methanonatronarchaeum thermophilum is

an extremely haloalkaliphilic and moderately thermophilic archaeon and

belongs to the novel class Methanonatronarchaeia in the phylum Halobac-

teriota. The knowledge about the physiology and biochemistry of members

of the class Methanonatronarchaeia is still limited. It is known that

M. thermophilum performs hydrogen or formate-dependent methyl-

reducing methanogenesis. Here, we show that the organism was able to

grow on all tested C1-methylated substrates (methanol, trimethylamine,

dimethylamine, monomethylamine) in combination with formate or molec-

ular hydrogen. A temporary accumulation of intermediates (dimethylamine

or/and monomethylamine) in the medium occurred during the consump-

tion of trimethylamine or dimethylamine. The energy conservation of

M. thermophilum was dependent on a respiratory chain consisting of a

hydrogenase (VhoGAC), a formate dehydrogenase (FdhGHI), and a

heterodisulfide reductase (HdrDE) that were well adapted to the harsh

physicochemical conditions in the natural habitat. The experiments

revealed the presence of two variants of energy-conserving oxidoreductase

systems in the membrane. These included the H2: heterodisulfide oxidore-

ductase system, which has already been described in Methanosarcina spe-

cies, as well as the novel formate: heterodisulfide oxidoreductase system.

The latter electron transport chain, which was experimentally proven for

the first time, distinguishes the organism from all other known methano-

genic archaea and represents a unique feature of the class Methanona-

tronarchaeia. Experiments with 2-hydroxyphenazine and the inhibitor

diphenyleneiodonium chloride indicated that a methanophenazine-like

cofactor might function as an electron carrier between the hydrogenase/

formate dehydrogenase and the heterodisulfide reductase.

Abbreviations

CoM-S-S-CoB, heterodisulfide of HS-CoM and HS-CoB; DMA, dimethylamine; DPI, diphenyleneiodonium chloride; Fd, ferredoxin; Fdh,

membrane-bound formate dehydrogenase; Fdox, oxidized ferredoxin; Fdred, reduced ferredoxin; FeS, iron–sulfur; Hdr, heterodisulfide
reductase; HS-CoB, 7-mercaptoheptanoylthreonine phosphate; HS-CoM, 2-mercaptoethanesulfonate; M., Methanonatronarchaeum; MMA,

monomethylamine; MPhen, methanophenazine; MPhenred, reduced methanophenazine; MV, methyl viologen; OD600, optical density at 600-

nm; ODmax, final optical density; OH-Phen, 2-hydroxyphenazine; td, doubling time; TMA, trimethylamine; Vho, membrane-bound

hydrogenase.
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Introduction

Methanogenic archaea play a crucial role in the carbon

cycle. They metabolize the end products of the anaero-

bic decomposition of organic material by hydrolytic

and fermenting bacteria to methane, a powerful climate

gas [1–4]. A variety of new methanogenic genera and

species have been isolated from extreme ecosystems

such as hypersaline or extremely cold habitats [5,6]).

The study of the influence of these ecosystems on global

climate and investigation of the organisms involved is

of great interest. Among the newly discovered organ-

isms are two genera of extremely (halo)alkaliphilic

methyl-reducing methanogens forming the new class of

Methanonatronarchaeia [7,8]. These organisms are only

distantly related to the taxonomic groups of methano-

genic archaea currently described and, according to the

recent phylogenomic-based analysis, represent a deep

phylogenetic lineage branching at the base of a new

phylum ‘Halobacteriota’ [9,10].

Methanogenic archaea differ with respect to their

substrate spectrum and the pathway of methanogene-

sis. The hydrogenotrophic methanogens use carbon

dioxide and H2 or formate as substrates to form

methane [11], and the aceticlastic microorganisms

metabolize acetate to carbon dioxide and methane

[4,12]. The third group are the methylotrophic metha-

nogens, which convert methylated compounds such as

methanol, methylamines, and methyl sulfides to

methane [13,14]. Moreover, methanogens were discov-

ered, which use methoxylated aromatic compounds as

source for methyl groups [15]. In this pathway, part of

the methyl groups are oxidized to CO2 and the result-

ing reducing equivalents are used for the reduction in

the remaining methyl groups to methane. In addition,

some methanogens have been described that cannot

oxidize the methyl groups. Instead, they reduce methy-

lated compounds to methane using electrons derived

from the oxidation of hydrogen [16–19]. This variation
of methylotrophic methanogenesis is referred to as

methyl reduction.

Methanonatronarchaeum thermophilum AMET1T

(M. thermophilum; DSM 28684) belongs to the afore-

mentioned new class of Methanonatronarchaeia and is

an extremely haloalkaliphilic and moderately ther-

mophilic methanogen living in sulfidic sediments of

hypersaline soda lakes [7]. The organism is able to

reduce methanol and methylamines to methane using

H2 as a reductant [8]. In contrast to all other methano-

gens that rely on H2-dependent reduction in methy-

lated C1-compounds, this organism is also able to use

formate as an electron donor for this process of

methanogenesis.

Sorokin et al. [7] postulated a corresponding meta-

bolic model based on growth experiments and bioin-

formatic analyses. According to this model, the

oxidation of formate is catalyzed by a membrane-

bound formate dehydrogenase (FdhGHI), whereas the

oxidation of H2 takes place via a membrane-bound

hydrogenase (VhoGAC). Based on this, the electrons

fed into the anaerobic respiratory chain by FdhGHI

and VhoGAC are subsequently used by a membrane-

bound heterodisulfide reductase (HdrDE) to reduce

the heterodisulfide (CoM-S-S-CoB), which is the termi-

nal electron acceptor of this system. So far, three

energy-conserving, membrane-bound electron trans-

port systems are known in methanogens: (a) H2: CoM-

S-S-CoB oxidoreductase, (b) coenzyme F420H2: CoM-

S-S-CoB oxidoreductase, and (c) reduced ferredoxin:

CoM-S-S-CoB oxidoreductase [12]. The formate-

dependent electron transport system would be a new

feature that could be used for the generation of an

electrochemical ion gradient across the cytoplasmic

membrane. The utilization of formate for methanogen-

esis was previously only known from some hydrogeno-

trophic methanogens, which use formate as a source of

electrons to reduce CO2 to methane [1,11].

Here, we present experimental data describing the

electron flow in membranes of the type strain M. ther-

mophilum AMET1T from the class Methanonatronar-

chaeia. Based on membrane preparations, we provide

biochemical proof that electron flow occurs from for-

mate or hydrogen to CoM-S-S-CoB. Furthermore, we

provide first evidence that a methanophenazine

(MPhen) derivative is the potential electron carrier in

the membranes of M. thermophilum AMET1T.

Results

Growth parameters

The knowledge about the physiology and biochemistry

of members of the class Methanonatronarchaeia and

the enzymes, which are involved in the methanogenic

pathway, is still limited. Recently, multiple strains of

M. thermophilum were enriched and further isolated in

pure culture using a combination of C1-methylated

compounds as electron acceptors in combination with

formate or hydrogen as the external electron donors

[7,8]. Here, we present detailed growth data showing

that M. thermophilum AMET1T was able to grow on

all tested substrates (methanol, trimethylamine (TMA),

dimethylamine (DMA), monomethylamine (MMA)) in

combination with formate or molecular hydrogen.

However, different doubling times and final optical

densities (ODmax) were observed, although equimolar
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amounts of available methyl groups were added

(methanol 100 mM, TMA 33.3 mM, DMA 50 mM, and

MMA 100 mM). The organism showed the fastest

growth (td = 44.3 � 2.0 h) using the substrates TMA

and formate (Fig. 1A). Similar td values were obtained

for methanol with formate (48.8 � 1.0 h) and DMA

with formate (49.7 � 1.3 h; Fig. 1B,C). The doubling

time with MMA as a substrate in combination with

formate was distinctly longer, with 75.1 � 5.2 h (Fig. 1

D). ODmax values for methanol and TMA with for-

mate were in the range of 0.35. In the case of DMA

and MMA, the values were comparatively lower

(ODmax = 0.25 and 0.08, respectively). In general, it

was observed that the consumption of formate and

methyl groups and methane formation took place in a

1 : 1 : 1 stoichiometry. The methyl groups applied

were completely reduced to methane with the help of

formate. TMA contains three methyl groups, which

are sequentially transferred to HS-CoM in the course

of methane formation. Hence, there are two possible

intermediates, DMA and MMA. Similarly, DMA con-

tains two methyl groups and MMA could be an inter-

mediate. Therefore, the question arose of whether

these intermediates were accumulated or whether

TMA and DMA were immediately converted to CH4

and NH3. In cultures grown on TMA plus formate,

significant amounts of DMA appeared in the culture

supernatant with the highest concentration of 11 mM

after 144 h. In addition, MMA was secreted in the

medium, with the highest concentration of 10 mM after

144 h. Both, DMA and MMA, concentrations

decreased in the further cultivation process and were

completely consumed at the end of the growth experi-

ments. In the cultures grown on DMA with formate,

an increase in the MMA concentration in the medium

was observed. After 288 h, approx. 25 mM MMA was

detected. However, in the course of cultivation, MMA

in the medium was also completely consumed. Interest-

ingly, the temporary accumulation of intermediates

(DMA or/and MMA) in the medium occurring during

the metabolism of TMA or DMA has already been

described for Methanomassiliicoccus luminyensis and

Methanosarcina mazei [20,21]. Furthermore, the results

are consistent with the presence of the genes in the

genome of M. thermophilum AMET1T, which encode

all necessary methyltransferases (Fig. 2A) for the uti-

lization of methylamines and methanol (Fig. 2B) [7].

In comparison with hydrogen instead of formate as

a reducing agent (Fig. 3), similar doubling times of

45.4 � 2.0 h (methanol; Fig. 3A), 46.7 � 2.0 h (TMA;
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Fig. 1. Growth parameter of M. thermophilum during methanogenesis from methylated C1-compounds and formate. (A) 33.3 mM TMA, (B)

100 mM methanol, (C) 50 mM DMA, D) 100 mM MMA. Experiments were performed in 50-mL serum flasks under an atmosphere of N2/CO2

(80%/ 20%) with 100 mM formate as described in Materials and Methods. Yellow circles: formate; black circles: methanol; red circles,

methane; gray circles: TMA; green circles: DMA; white circles: MMA; blue circles: optical density (OD600). The experiments were

performed three times. One representative experiment is shown for each substrate combination.
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Fig. 3B), 49.0 � 1.2 h (DMA; Fig. 3C), and

94.3 � 1.0 h (MMA; Fig. 3D) were obtained. The con-

sumption of the methyl groups and the release of

methane also occurred in equimolar ratios. For growth

on TMA and DMA, the data likewise showed that the

intermediates DMA and MMA were released into the

medium to a similar extent as in the cultures with for-

mate and were subsequently completely consumed.

Interestingly, the growth yields were significantly lower

than in the cultures with formate, with ODmax values

of 0.23 (methanol and TMA), 0.125 (DMA), and 0.05

(MMA).

Analysis of enzymes involved in the respiratory

chain of M. thermophilum

The growth analysis shown above and the data of Soro-

kin et al. [7] and Borrel et al. [22] led to the hypothesis

that the energy conservation of M. thermophilum is

dependent on a respiratory chain consisting of a hydro-

genase, a formate dehydrogenase, and a heterodisulfide

reductase. It is predicted that the H2-dependent

membrane-bound electron transport is catalyzed by the

hydrogenase VhoGAC and the heterodisulfide reductase

HdrDE, which reduces CoM-S-S-CoB. If formate serves

as the electron donor, it is most likely that the

membrane-bound formate dehydrogenase FdhGHI oxi-

dizes the electron donor, and the electrons are then

transported via an unknown electron carrier in the

membrane to the heterodisulfide reductase, which

reduces the final electron acceptor CoM-S-S-CoB to

coenzyme M and coenzyme B.

To prove the presence of the three key enzyme com-

plexes in M. thermophilum biochemically, we tested the

activity of membrane preparations with respect to the

oxidation of formate and H2 and the reduction of

heterodisulfide using the artificial electron carrier

methyl viologen (MV, Table 1). We detected a total

Vho activity of 20.0 � 0.3 U mg membrane protein−1.

To measure FdhGHI activity, the gas atmosphere

was N2, formate served as electron donor, and MV

was added as an electron acceptor. In membrane frac-

tions of M. thermophilum, an FdhGHI activity of

5.9 � 0.1 U mg protein−1 was observed. To examine

the activity of the HdrDE complex in the membrane,

the natural electron acceptor CoM-S-S-CoB was

m B m C

mtbB mtbC2mtbC1

mtbC3

mtmBmtmC mtaB1 mtaC1

mtaB2mtaC2

mtaA1

mtaA2

mtbA1

mtbA2

Con g2

Con g 4

Con g 5

Con g3

Methanol
TMA
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MMA
all methylamines

Substrate:corrinoid
methyltransferase

(B-protein)

Substrate

Methyl-Corrinoid Corrinoid protein
(C-protein)

Corrinoid:coenzyme M
methyltransferase

(A-protein)

Methyl-S-CoM

A B

Genes involved in 
the degrada on of:

Fig. 2. Methyl group transfer from methylated substrates in M. thermophilum. (A) General scheme. Substrate: corrinoid methyltransferases

(B-protein) forward methyl groups from the substrate to a corrinoid-containing methyl-accepting protein (C-protein). From the methylated

corrinoid proteins, the methyl moieties are transferred to HS-CoM as catalyzed by corrinoid: coenzyme M methyltransferases (A-protein). (B)

Localization of genes according to Ref. [7]. B and C-proteins are substrate specific and are encoded by the genes mtaB/C for methanol,

mttB/C for TMA, mtbB/C for DMA, and mtmB/C for MMA utilization. There a two types of A-proteins, MtaA and MtbA, which use MtaC

and MttC, MtbC or MtmC for methylation of HS-CoM, respectively. Contig 2—mttB: OUJ19433.1/OUJ19434.1; mttC: WP_086636534.1;

mtaA1: WP_086636593.1. Contig 3—mtbC1: WP_086636757.1; mtmB: OUJ18809.1/ OUJ18808.1; mtmC: WP_086636534.1; mtbB:

OUJ19071.1/ OUJ19070.1; mtbC2: WP_086637115.1; mtaB1: WP_086637136.1; mtaC1:WP_086637137.1; mtaA2: WP_086637345.1.

Contig 4: mtbA1: WP_161490776.1; mtaC2: WP_086637445.1; mtaB2: WP_086637136.1, mtbC3: WP_086637468.1. Contig 5: mtbA2:

WP_143406904.1. Methyltransferases (B-proteins) initiating methanogenesis from TMA, DMA, and MMA possess a novel residue,

pyrrolysine, which is encoded by a single amber(UAG) codon (blue arrow).
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added. Reduced methyl viologen (MVred) was used as

an artificial electron donor. The specific activity for

CoM-S-S-CoB reduction in the membrane prepara-

tions was 3.3 � 0.2 U mg protein−1 (Tab. 1). These

results strongly indicated that all expected enzymes are

catalytically active in the membrane compartment of

M. thermophilum.

For a detailed analysis of the individual enzymes

and to get an impression of their adaptation to the

natural habitat of M. thermophilum, we analyzed the

enzymes with regard to their dependence on pH

(Fig. 4A-C) and ions (Fig. 4D-F). The organism was

isolated from a hypersaline soda lake and is an obli-

gate haloalkaliphilic methanogen, with an optimum

growth at pH 9.5–9.8 and 4 M total Na+ [7]. The cat-

alytic subunits of the hydrogenase (VhoA) and the for-

mate dehydrogenase (FdhH) are most likely oriented

toward the extracellular space [23–25] and thus

exposed to the conditions in the natural habitat. In

contrast, the catalytic subunit of heterodisulfide reduc-

tase (HdrD) is located at the cytoplasmic side of the

cytoplasmic membrane. In addition, the organism

accumulates about 2.2 M KCl in the cytoplasm due to

its most probable ‘salt-in’ osmoprotection strategy

[7,8]. Therefore, analysis of the pH optimum was per-

formed at a salinity of 2 M NaCl and 2 M KCl,

respectively. The highest hydrogenase activity

(31.2 � 8.3 U mg protein−1) was detected at a pH

value of 9.5 and 2 M NaCl (Fig. 4B). The activity was

about 20% lower when KCl was used instead of NaCl

in the buffer. The analysis of the optimal ion concen-

tration was therefore carried out with NaCl at a pH of

9.5. The highest activity of 46.9 � 7.4 U mg protein−1

was obtained with 1 M NaCl (Fig. 4E). However, even

with 0 M and 2 M NaCl, more than 63% of the
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Fig. 3. Growth parameters of M. thermophilum grown on methanol and methylamines with H2 as reducing agent. (A) 100 mM methanol. (B)

33.3 mM TMA. (C) 50 mM DMA. (D) 100 mM MMA. Experiments were performed in 50-mL serum flasks under an atmosphere of H2 as

described in Materials and Methods. Black circles: methanol; red circles, methane; gray circles: TMA; green circles: DMA; white circles:

MMA; blue circles: optical density (OD600). The experiments were performed three times. One representative experiment is shown for each
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Table 1. Specific activities of enzymes involved in membrane-

bound electron transfer.

Electron

donor

Electron

acceptor DPIa

Specific activityb,c

(U�mg−1 membrane

protein)

FdhGHI Formate MV − 5.9 � 0.1

FdhGHI Formate MV + 5.9 � 0.2

VhoGAC H2 MV − 20.0 � 0.3

VhoGAC H2 MV + 20.2 � 0.3

HdrDE MVred CoM-S-S-CoB − 3.3 � 0.2

HdrDE MVred CoM-S-S-CoB + 3.4 � 0.2

a1 µmol * mg membrane protein−1 diphenyleneiodonium chloride

(DPI) was added as indicated.; bAssay conditions for FdhGHI and

VhoGAC: pH 9.5, 2 M NaCl; assay conditions for Hdr: pH 8.5, 2 M

KCl.; cThe experiments were performed three times.
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maximum activity was still present. Using 4 M NaCl,

40% of the maximum activity was observed. FdhGHI

showed the highest specific activity at a pH of 9.5 in

the presence of 2 M NaCl (Fig. 4A). Formate oxida-

tion was slightly lower with 2 M KCl instead of NaCl.

Therefore, the activity tests were carried out with

NaCl at a pH value of 9.5. Interestingly, the specific

activity was highest in the absence of NaCl (20.5 � 4.2

U mg protein−1) and decreased with increasing ion

concentration (Fig. 4D). However, it should be noted

that even at a NaCl concentration of 4 M, 34% of the

maximum activity was still present. In summary, the

enzymes were well adapted to the natural physico-

chemical conditions and showed adaptation to a wide

range of ion concentrations.

HdrDE showed its highest activity at a pH value of

7.5 with 10.7 � 1.4 U� mg protein−1 in the presence of

2 M KCl (Fig. 4C). Even at a pH of 8.5, about 50%

of the activity was still present. The enzyme activity

was higher with potassium chloride than with sodium

chloride. At pH 7.5, the specific activity with 2 M

potassium chloride was about 40% higher than with

2 M sodium chloride. Therefore, the analysis of the

salt dependence was carried out with potassium chlo-

ride at a pH of 8.5 (Fig. 4F). The highest activity was

obtained with 3 M KCl (3.8 � 0.4 U mg protein−1).

With 2 and 4 M KCl, about 50% of the activity was

still present. The higher activities with KCl compared

with NaCl probably represent an adaptation to the

concentration of 2.2 M KCl in the cells and is an

additional confirmation of the proposed haloarchaeal

type of osmoprotection in Methanonatronarchaeum [7].

Analysis of H2: CoM-S-S-CoB and formate: CoM-

S-S-CoB oxidoreductase

To analyze the electron transfer between the enzymes

described above, the entire membrane-bound electron

transport from H2 or formate to CoM-S-S-CoB was

analyzed (Fig. 5). The H2: CoM-S-S-CoB oxidoreduc-

tase system, already described in other species such as

Methanosarcina mazei [12], was measured under an H2

atmosphere after adding CoM-S-S-CoB as electron

acceptor. Thiol formation proceeded with a velocity of

784 � 51.4 nmol mg−1�min−1 in the presence of H2.

Hence, 392 � 25.7 nmol CoM-S-S-CoB was reduced

per min and mg membrane protein. The reaction only

took place whether membranes, CoM-S-S-CoB, and

molecular hydrogen were present (Fig. 5).

Thiol production from the reduction in CoM-S-S-

CoB with formate as electron donor was also mea-

sured with a rate of 369 � 35 nmol mg−1�min−1 under

an N2 atmosphere (Fig. 5). Therefore, 184.5 � 17.5

nmol CoM-S-S-CoB was reduced per min and mg

membrane protein. The formation of thiols was only

observed in the complete assay with membranes,

CoM-S-S-CoB, and formate. The results confirmed the

presence of the novel formate: CoM-S-S-CoB oxidore-

ductase system in the membranes of M. thermophilum.

This system, which has been experimentally proven for
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the first time, distinguishes the organism from all other

known methanogenic archaea and represents a unique

feature of the class Methanonatronarchaeia.

We also tested diphenyleneiodonium chloride (DPI)

for its effect on membrane-bound electron transport.

DPI is a potential inhibitor of flavoproteins and low

potential cytochromes (Fig. 6) [26,27]. DPI is also an

analogue of methanophenazine and blocks electron

flow in membranes of Methanosarcina mazei [28]. The

electron transport within the H2: CoM-S-S-CoB and

formate: CoM-S-S-CoB oxidoreductase of M. ther-

mophilum was also inhibited by DPI (Fig. 6). With

0.1 µmol DPI per mg membrane protein, the thiol for-

mation rate decreased by 45% (formate) and 33%

(H2) compared to the activity without DPI. In the

presence of 1.0 µmol DPI mg protein−1, the residual

activity was only 14% and 12%, respectively. In con-

trast to the overall electron transport, the activity of

the FdhGHI and VhoGAC with MV as electron

acceptor was not inhibited by DPI. This was also true

for electron transfer from MVred to CoM-S-S-CoB as

catalyzed by HdrDE (Tab. 1). This effect is due to the

process of electron transport within the enzyme com-

plexes and is explained in detail in the Discussion.

To further verify that a MPhen derivative is the

potential soluble electron carrier in the membranes of

M. thermophilum, we performed additional photometric

enzyme assays with the MPhen analogue 2-hydrox-

yphenazine (OH-Phen). The compound is reasonably

soluble in water and is an excellent analogue to MPhen

in enzymatic assays [28]. The electron transfer from for-

mate or hydrogen to OH-Phen in the presence of mem-

branes of M. thermophilum proceeded with a rate of

1.4 � 0.6 U mg protein−1 (formate) and 9.6 � 2.0 U

mg protein−1 (H2), respectively (Fig. 7A/B). After com-

plete consumption of formate, reduced OH-Phen was

almost completely reoxidized upon the addition of

heterodisulfide with a specific activity of 0.6 � 0.2 U

mg protein−1 (Fig. 7B). As shown above for the entire

electron transport chain, DPI also inhibited the reaction

of the single enzymes with OH-Phen (not shown).

Discussion

In addition to the triple extreme growth conditions

(high salt, high pH, moderately high temperature),

members of the new class Methanonatronarchaeia show

some further special features. For example, the genes

for the oxidative branch of methanogenesis are incom-

plete. Thus, the membrane-bound methyltransferase

(Mtr) and the formyl-methanofuran dehydrogenase
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(Ftr) are missing. The soluble heterodisulfide reductase

HdrABC is also absent [7]. Hence, there are some

major differences to the previously known methano-

genic archaea, and the investigation of the energy meta-

bolism is of special interest. Based on this, we

performed experiments to elucidate the mechanisms of

ATP synthesis of M. thermophilum AMET1T, the type

strain of the genus Methanonatronarchaeum.

Methanogenic archaea can be divided into two

major groups based on their energy conservation.

Members of the order Methanosarcinales possess a

membrane-bound respiratory chain, with cytochromes,

MPhen, and several membrane-bound enzymes, which

translocate ions (H+ or Na+) across the cytoplasmic

membrane and generate an electrochemical ion gradi-

ent (ΔµH+ and ΔµNa
+) [3,12]. In contrast, obligate

CO2-reducing methanogens lack cytochromes and

membrane-bound electron transport chains [13,29]. In

these methanogenic archaea, only the membrane-

bound methyltransferase is directly involved in the for-

mation of a ΔµNa
+ [29]. Fdred, necessary for the ender-

gonic reduction in CO2, is provided by an electron

bifurcating reaction of a soluble heterodisulfide reduc-

tase (HdrABC) and a cytoplasmic hydrogenase

(MvhAGD) [30]. Another group of methanogens

forms methane from the H2-dependent reduction in

methylated C1-compounds [15]. One example is

Methanosphaera stadtmanae [17], which uses the

HdrABC/ MvhAGD complex for Fdred production.

Fdred is then reoxidized by the multisubunit hydroge-

nase Ehb in the membrane, forming H2 and an electro-

chemical ion gradient [13]. Hence, the mode of energy

conservation in Methanosphaera stadtmanae resembles

the one in obligate CO2-reducing methanogens. In

principle, also M. thermophilum performs an H2-

dependent reduction in methylated C1 substrates for

methanogenesis; however, the processes for the forma-

tion of an electrochemical ion gradient are totally dif-

ferent compared with Methanosphaera stadtmanae. The

biochemical data presented here showed that M. ther-

mophilum contains an active membrane-bound hydro-

genase (VhoGAC) and an active heterodisulfide

reductase (HdrDE) (Figs 8 and 9A/B), which are

highly homologous to the corresponding enzymes from

Methanosarcina species. In addition to VhoGAC,

M. thermophilum contains genes encoding a

membrane-bound multisubunit hydrogenase complex,

which is distantly related to NADH dehydrogenases.

In contrast to VhoGAC, this hydrogenase possibly

provides Fdred for anabolism [15].

In Methanosarcina mazei and Methanosarcina bark-

eri, VhoGAC and HdrDE constitute an electron trans-

port system that is referred to as H2: heterodisulfide

oxidoreductase (Eqn 1).

H2þCoM�S�S�CoB!HS�CoMþHS�CoB

ðΔG00 ¼�51:9kJ �mol�1Þ (1)

The hydrogenase consists of the subunits VhoGA

and contains several FeS centers and the Ni/Fe center,

which is responsible for H2 oxidation. The membrane-

integral subunit VhoC contains heme b and transfers

electrons to the natural electron carrier MPhen (Figs 8
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and 9 A). In the course of the reaction, two protons are

translocated across the cytoplasmic membrane [12,31].

Genetic and biochemical data support the assumption

that VhoA is cotranslocated with VhoG across the

cytoplasmic membrane [23]. Therefore, it is most likely

that the active center of the enzyme is located at the

periplasmic side of the membrane [24,32]. The

heterodisulfide reductase catalyzes the final step in the

anaerobic respiratory chain of Methanosarcina species.

The HdrDE enzyme is firmly integrated into the mem-

brane by the cytochrome b-containing subunit HdrE.

The HdrD subunit forms the catalytic center at the

cytoplasmic side of the membrane (Fig. 9B) [33,34].

This reaction involves the two-electron reduction in

CoM-S-S-CoB to the free thiols HS-CoB and HS-CoM

[35]. Electrons are provided by reduced MPhen

(MPhenred), which are transferred via the heme groups

of HdrE to the catalytic site of HdrD. This reaction is

also coupled to a transfer of 2H+/2e− (Fig. 8).

In addition to H2, M. thermophilum can use formate

as electron donor for the heterodisulfide reduction.

HCOOHþCoM�S�S�CoB!CO2þ

HS�CoMþHS�CoBðΔG00 ¼�53:4kJ �mol�1Þ (2)

The key enzyme is a membrane-bound Fdh, which is

well described in several bacteria. Formate dehydrogenase

N from, for example, E. coli consists of the three subunits

FdnG, FdnH, and FdnI. FdnG forms the catalytic site

containing FeS clusters and two molecules of

molybdopterin-guanine dinucleotide (MGD) as prosthetic

groups [25,36]. In some organisms, such as Clostrid-

ium thermoaceticum or Campylobacter jejuni, molybdate

is replaced by tungstate [37,38]. The FdnH subunit coordi-

nates four [4Fe-4S] clusters that mediate electron transfer

from FdnG to FdnI. FdnI is a membrane-bound b-type

cytochrome that transfers electrons to menaquinone

[25,36]. In M. thermophilum homologues, subunits are

present encoded in one cluster, and amino acids for bind-

ing of the prosthetic groups are conserved (Figs 8 and

9C). In some hydrogenotrophic methanogenic archaea,

cytoplasmic forms of formate dehydrogenase were

described, which transfer electrons to F420 [39–42]. Other

soluble formate dehydrogenases are coupled to the

HdrABC complex and are involved in Fdred formation

[43–45]. Hence, cytoplasmic formate dehydrogenases play

an important role in obligate hydrogenotrophic methano-

gens (reduction of F420, Fdox, or CoM-S-S-CoB [13]), but

none of these cytoplasmic enzymes is involved in respira-

tory electron transport.

The data presented here indicate thatM. thermophilum

possesses very similar electron transport systems and ion
translocating enzymes (Fig. 8) as described for M. mazei

(VhoGAC, HdrDE) and E. coli (FdnGHI): (a) DNA
sequence analysis and amino acid sequence alignments
revealed that all enzymes mentioned above show high

similarities to the corresponding enzymes from M. mazei
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and E. coli. Moreover, all amino acids are conserved,

which are involved in the coordination of the essential

prosthetic groups of VhoGAC, FdhGHI, and HdrDE

(NiFe center, FeS clusters, heme groups, and MGD;

Fig. 9). In addition, the signal peptide, which mediates

the extracellular localization of VhoGA, is homologous.

(b) In the presence of hydrogen and formate as electron

donors and membranes of M. thermophilum, a reduction

of about 390 and 190 nmol CoM-S-S-CoB min−1�mg

protein−1 could be observed, respectively. This value is

comparable with respiratory electron transport activities

in other methanogens such as Methanosarcina mazei,

Methanolobus tindarius, and Methanomassiliicoccus lu-

minyensis [28,46]. (c) The use of the water-soluble MPhen

analogue OH-Phen allowed a more detailed analysis of

the electron transport system in M. thermophilum. It was

shown that OH-Phen is reduced by molecular hydrogen

and formate as catalyzed by the Vho hydrogenase

and Fdh formate dehydrogenase. Furthermore, the

membrane-bound Hdr was able to use OH-Phenred as

electron donor for the reduction in CoM-S-S-CoB. The

results clearly indicated that a MPhen derivative could be

present and could serve as an electron carrier in the mem-

brane of M. thermophilum. (d) The membrane-bound

electron transport systems (formate: heterodisulfide oxi-

doreductase and H2: heterodisulfide oxidoreductase) of

M. thermophilum were inhibited by DPI. These effects

are due to a complex interaction of DPI with the key

enzymes of the electron transport chains. It was found

that the reactions catalyzed by the Vho hydrogenase, for-

mate dehydrogenase, and heterodisulfide reductase were

inhibited by DPI. Interestingly, the H2-dependent and

formate-dependent MV reduction as catalyzed by Vho

and Fdh present in washed membranes was unaffected

by DPI, respectively. This was also true for the

heterodisulfide reduction by reduced methyl viologen as

catalyzed by HdrDE. As DPI and phenazines are struc-

turally similar with respect to their planar configuration,

we assume that the inhibitor is able to bind to positions

where interaction between phenazines (OH-Phen and
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MPhen) and cytochrome b subunits of the key enzymes

(VhoC, FdhI, HdrE) takes place (Figs 8 and 9) [28]. Since

MV probably reacts directly with the FeS clusters of the

catalytic subunits (VhoA, HdrD, and FdhG), electron

transfer by DPI is not inhibited (Fig. 8). Again, these

findings indicate that a phenazine derivate is the natural

electron carrier responsible for electron transport from

Vho/Fdh to Hdr. Our results are in line with the identifi-

cation of a substance with a mass similar to MPhen in

the membranes ofM. thermophilum [7].

Electron transport is coupled to the formation of an

electrochemical ion gradient, which can be used by an

A1Ao ATP synthase for ATP synthesis [12]. In general,

protons and sodium ions can function as coupling ions.

From the proposed reaction scheme shown in Fig. 8, it is

obvious that VhoGAC and FdhGHI inM. thermophilum

could translocate H+ by scalar proton transfer. The same

might be true for HdrDE. Mechanistically, it is difficult

to assume that the enzymes transfer sodium ions across

the membrane. Accordingly, we performed a sequence-

based analysis of the ATP synthase subunit c in M. ther-

mophilum, which defines the coupling ion specificity of

the enzyme (not shown). In accordance with our hypoth-

esis, the corresponding gene does not encode a typical

sodium ion binding motif but only a glutamate residue

that is sufficient for H+ transport [47,48], indicating that

an H+-dependent AoA1-ATP synthase is present in

M. thermophilum. As a consequence, adaptive strategies

are needed for intracellular pH homeostasis. Not much is

known about these processes in haloalkaliphilic metha-

nogens but one strategy could be the expression of a

Na+/H+ antiporter (OUJ19168.1-OUJ19176.1) that

could contribute to ion homeostasis.

In summary, our experiments revealed that M. ther-

mophilum possesses two variants of energy-conserving

oxidoreductase systems in the membrane. These

include the H2: heterodisulfide reductase system, which

has already been described in Methanosarcina species,

as well as the novel formate: heterodisulfide oxidore-

ductase system, which is unique for representatives of

the class Methanonatronarchaeia.

Materials and methods

Materials

All chemicals and reagents were obtained from Sigma-Aldrich

(Munich, Germany) or Carl Roth (Karlsruhe, Germany).

Strains and culture conditions

Methanonatronarchaeum thermophilum AMET1 (DSM

28684) was obtained from the German Collection of

Microorganisms and Cell cultures (Braunschweig, Ger-

many). Growth experiments were performed in a modified

complex medium based on Hippe et al. [49] and Sorokin

et al. [7]. The medium contains per liter: 0.35 g K2HPO4,

0.23 g KH2PO4, 0.5 g NH4Cl, 0.5 g MgSO4 x 7H2O, 0.25 g

CaCl2 x 2 H2O, 116.9 g NaCl, 2 mg FeSO4 x 7 H2O, 1 mL

trace element solution (DSMZ 1369) [50], 1 mL selenite

tungstate solution (DSMZ_Medium 385), 1 mL trace ele-

ment solution SL-6 (DSMZ_Medium 27), 2 g yeast extract,

2 g casein hydrolysate, 1 g Na acetate x 3 H2O, and 106 g

Na2CO3. The pH was adjusted to 9.5 with hydrochloric

acid. Subsequently, the medium was filled in 50-mL or 500-

mL serum flasks and gassed with N2 for 10 min. Before

closing, the flasks were gassed with a mix of N2 (80%) and

CO2 (20%) for thirty seconds. After sterilization, 1 mL 10

x Wolin’s vitamin solution (DSMZ Medium 141), 1 mL

Hemin solution (DSMZ Medium 78), 250 µL FeS suspen-

sion (DSMZ Medium 1267), and 100 µM sodium 2-

mercaptoethanesulfonate were added per liter. Subse-

quently, the methylated growth substrates were added in

equal concentrations with respect to the number of methyl

groups (33.3 mM TMA, 50 mM DMA, 100 mM MMA,

100 mM Methanol). 100 mM sodium formate was added for

culture grown on formate. For growth with hydrogen, the

serum flasks were gassed for one minute with 100% molec-

ular hydrogen and an atmosphere of 200 kPa was adjusted.

The gas phase was refreshed at regular intervals. Before

inoculation, 1.5 mM cysteine and 0.5 mM sodium sulfide

were added to the medium to remove residual oxygen. The

cultures were incubated at 50 °C without agitation, and

growth was observed by measuring the optical density

(OD600) at regular intervals.

Quantification of methane, methylamines,

methanol, and formate

The CH4 concentration was quantified by gas chromatogra-

phy (GC). From the headspace of the culture, samples with

a volume of 5–50 µL were taken and injected into a gas

chromatograph (PerkinElmer Clarus® 480, Rascon FFAP

column 25 m × 0.25 micron, PerkinElmer, Waltham, MA,

USA) with a flame ionization detector (FID). Measure-

ments were performed at a detector temperature of 250 °C,
an injector temperature of 150 °C, and a column tempera-

ture of 120 °C with N2 as carrier gas. Standards with a

defined volume of methane were used as a reference.

TMA, DMA, and MMA consumption was analyzed in

the medium. 500 µL samples were taken, and cells were

removed by centrifugation. Subsequently, 0.5% (v/v) H2O2

was added to the supernatant, and precipitates were

removed by centrifugation. The further steps for the quan-

tification of the three methylamines were performed as

described by Krätzer et al. [21]. Methanol and formate

were quantified via HPLC. The measurements were per-

formed using an Aminex HPX-87H 300 mm × 7.8 mm
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column (Bio-Rad, Munich, Germany) with 5 mM H2SO4 as

eluent at 65°C and a flow rate of 0.6 mL min–1. For the

preparation of samples, cells were removed by centrifuga-

tion from the medium and the supernatant was diluted in

appropriate amounts with 5 mM H2SO4. Methanol and for-

mate were quantified by standard curves.

Preparation of membrane fractions from

M. thermophilum

The preparation of cytoplasmic membrane from M. ther-

mophilum was performed anaerobically in an anaerobic

chamber (Coy laboratory products, Grass Lake, Michigan,

USA) under N2 / H2 atmosphere (98% / 2%, v/v). Five 1

L cultures of M. thermophilum were grown on methanol or

TMA with formate or H2 to the late exponential growth

phase and were harvested by centrifugation (6000 g,

20 min, RT). The cell pellet was resuspended in a Tris/HCl

buffer (100 mM Tris, 2 M NaCl, 5 mM dithiothreitol,

1 mg�L−1 resazurin, pH 8.5), lyzed by sonification, and cen-

trifuged for 20 min at 11 000 g (4 °C) to remove the cell

debris. The cell-free extract was ultracentrifuged at

150 000 g (2 h, 4 °C). The resulting supernatant was care-

fully removed, and the pellet was dissolved in the afore-

mentioned Tris/HCl buffer. The ultracentrifugation step

was repeated, the supernatant was discarded, and the mem-

brane pellet was again homogenized in 1 mL Tris/HCl buf-

fer. Membrane fractions were stored at −70 °C under a

nitrogen atmosphere. The protein content was determined

according to Bradford [51].

Enzyme reactions

All enzyme activities were analyzed at 50 °C. The determi-

nation of thiol formation from CoM-S-S-CoB by mem-

branes of M. thermophilum in the presence of formate

(10 mM) or molecular hydrogen was performed under an

atmosphere of molecular hydrogen (H2-dependent CoM-S-

S-CoB reduction) or N2 (formate-dependent CoM-S-S-CoB

reduction) in 1-mL glass vials, filled with 200 µL 100 mM

Tris/HCl buffer, pH 8.5 containing 2 M NaCl and

1 µg�mL−1 resazurin. The buffer was reduced by titration

with Ti(III)-citrate until resazurin turned colorless. After

the addition of 50 µg membrane protein, the reaction was

started with 5 mM CoM-S-S-CoB. To follow the reduction

in CoM-S-S-CoB, aliquots of 5–20 µL were withdrawn and

analyzed for thiol groups with Ellman’s reagent as

described [52]. DPI was solved in dimethyl sulfoxide and

added as indicated in Fig. 6.

Enzymatic activities in washed membranes (1–5 µg pro-

tein) were measured in anaerobic cuvettes containing

700 µL buffer. For the analysis of H2-dependent MV reduc-

tion, the assay was performed under an atmosphere of H2,

using a 100 mM Tris/HCl buffer pH 9.5 supplemented with

1 µg�mL−1 resazurin, 2 M NaCl or 2 M KCl, and 5 mM

dithiothreitol. The reaction was started by the addition of

7 mM MV. Fdh activity was analyzed under an N2 atmo-

sphere using the same buffer. The final concentrations of

the electron acceptor MV and electron donor formate were

7 mM and 10 mM, respectively. For measurement of

HdrDE, a 100 mM Tris/HCl buffer, pH 8.5 containing 2 M

KCl, 5 mM dithiothreitol, and 1 µg�mL−1 resazurin were

used. 7 mM MV was added and reduced by the addition of

titanium citrate until an absorption of approximately 2.0 at

604 nm was reached. The reaction was started by the addi-

tion of membranes (1–5 µg protein) and 100 µM CoM-S-S-

CoB. To determine the pH optima (Fig. 4A–C), a com-

bined buffer system was used composed of Tris/HCl,

MOPS, and glycine-HCl (50 mM final concentration each).

For measurements with OH-Phen, rubber-stoppered and

N2-flushed glass cuvettes were utilized, which were filled

with 700 µL 100 mM Tris/HCl, pH 8.5, containing 2 M

KCl, 5 mM dithiothreitol, 1 µg�mL−1 resazurin, and 200 µM
OH-Phen. Washed membranes of M. thermophilum (7.5 µg
protein) were added to the assay, which was started by

adding 50 µM formate or a stepwise addition of H2. When

the electron donors were oxidized, 1 mM heterodisulfide

was added and the oxidation of OH-Phenred was measured.

Redox reactions with MV and OH-Phen were analyzed at

604 nm (εMV = 13.6 mM
−1�cm−1) and at 420 nm (εOH-

Phen = 2.9 mM
−1�cm−1), respectively.

Bioinformatic analysis of the enzyme complexes involved

in the energy metabolism of M. thermophilum AMET1 was

performed by BLASTp analysis [53] and alignment analysis

(Clustal Omega) [54].
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