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SUMMARY

A system is a set of interconnected components whose individual behaviour and inte-
ractions determine the overall performance of the set. Wind farms are amongst the
most complex systems deployed worldwide, based on their uncertainty, heterogeneity
and complexity. Moreover, many technical and social disciplines may simultaneously
describe the performance of a complex system such as wind farms.

Currently, the components of offshore wind farms are to a large degree designed se-
quentially. The lack of knowledge about how some design decisions affect other aspects
of the plant leads to suboptimal designs and higher costs of energy. Furthermore, de-
sign automation is not fully exploited in the offshore wind industry. Multidisciplinary
Design Analysis and Optimisation, commonly shortened to MDAO, is a systems engi-
neering technique that allows to computationally explore many more designs than is
manually possible.

MDAO consists of a workflow where a set of computational tools are coupled to simu-
late the entire system. The coupling of the tools is called the analysis block. Additionally,
by including drivers that control how and when each tool is executed (e.g. optimisation
algorithm), the workflow can fulfil a certain functionality. The functionality of the work-
flow is defined by a use case. Use case is the term that describes a particular domain
problem that can be solved with an MDAO workflow.

Complications arise when its acknowledged that computational tools of varying le-
vels of fidelity and different driver algorithms may be used to solve the same use case.
Several MDAO workflows may thus be built for the same purpose.

Hence, the objective of this work is to develop a systematic and objective methodo-
logy for selecting the best-performing model fidelities and driver algorithms of an MDAO
workflow in the domain of offshore wind farms.

A tool was developed in this work with two layers of functionality. The outer layer
of the tool requests the models and driver algorithms to be coupled from the workflow
designer, instantiates and, if necessary, executes the MDAO workflow. The inner layer is
an MDAO workflow that requests from the wind farm designer the site conditions and
fixed design parameters, and its output is an improved design of the offshore wind farm.

This tool on its own can bring value to education and industry. Exploring the inte-
ractions between design choices of different sub-components of the wind farm leads to
better understanding of the complex dynamics that take place in the design and opera-
tion of an offshore wind farm.

This work further proposes a guideline to systematically, quantitatively and objecti-
vely simplify the decision making process to a more tractable problem when hundreds
of thousands of MDAO workflows can be built with a set of tools and drivers.

The guideline is broken down into two phases. In phase 1, the model fidelities of the
analysis block are optimised using the Multiobjective Particle Swarm Optimisation for
Categorical Variables (MOPSOC) algorithm. The output of this algorithm is the Pareto
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front of analysis blocks across any number of predefined and possibly conflicting crite-
ria. Phase 2 is a multi-criteria decision making process, where a few combinations of
best-performing analysis blocks and driver algorithms are coupled and scored against
multiple criteria.

The guideline helps select the set of solutions that efficiently solve trade-offs between
criteria and provides good compromises, and enables the designer take a lower risk by
choosing an MDAO workflow that maximises certain criteria while sacrificing the least
on others.

The guideline proposed in this work is a novel mechanism to evaluate, compare, and
rank different MDAO workflows. There are no known formal methodologies for this pur-
pose in the published literature.

A workflow designer benefits most from this guideline if the outcome of the use case
is sufficiently critical to a research or development project, or if the MDAO workflows
selected are expected to become the workhorse throughout a project.

At the last stage of the guideline, as with any other multi-criteria decision analysis
problem, the decision maker must take a more active role, supported by expertise, ex-
perience, data and the outcome of this guideline, to choose a final single or few MDAO
workflows that comply with the predefined requirements.

The guideline avoids the workflow designer from making catastrophic decisions ba-
sed on intuition while also avoiding becoming overwhelmed by the great amount of ana-
lyses and information involved in choosing the best-performing MDAO workflows. The
greatest advantage of adhering to this guideline is that in a short time, workflow desig-
ners can largely reduce the amount of alternatives to choose from. Using one of the
selected MDAO workflows for solving a use case can impact the total budget allocated to
a design optimisation or a what-if analysis campaign. The benefits can also cover the de-
velopment phase of an offshore wind plant, by providing a more accurate analysis block
for making financial, logistical or manufacturing decisions. Other positive impacts relate
to practical issues such as reducing the costs of computational hardware and software.

Conversely, the drawbacks of following this guideline are that the workflow designer
has to commit a good amount of effort into defining the criteria that will govern the se-
lection process and into enabling the automatic generation of analysis blocks and MDAO
workflows. In addition, the MOPSOC algorithm is of a stochastic nature.

The MDAO community benefits from this research as the ever-present trade-off be-
tween the sophistication and cost of multidisciplinary analysis and optimisation work-
flows continues to be overlooked. In essence, this guideline enables more efficient, che-
aper and optimal system design processes.

Finally, the guideline is instantiated and validated using a multidisciplinary design
optimisation problem, where the layout, electrical infrastructure and foundations of an
offshore wind farm are simultaneously optimised.



SAMENVATTING

Een systeem is een set van gekoppelde componenten. De kenmerken van de individuele
componenten en de interacties tussen de componenten zijn bepalend voor het functio-
neren van de volledige set. Windparken behoren tot de meest complexe systemen in de
wereld vanwege onzekerheden, heterogeniteit en complexiteit. Bovendien zijn er veel
technische en sociale aspecten gemoeid bij een complex systeem zoals een windpark.

Momenteel worden de componenten van offshore windparken veelal los van elkaar
ontworpen. Het gebrek aan kennis over hoe ontwerpkeuzes voor een component een
ander component beïnvloeden leidt tot suboptimale ontwerpen en hogere energiekos-
ten. De offshore windindustrie maakt weinig gebruik van technieken voor het automa-
tiseren van het ontwerp. Multidisciplinaire ontwerpanalyse en -optimalisatie (MDAO) is
een techniek waarmee veel meer verschillende ontwerpen kunnen worden geëvalueerd
dan handmatig mogelijk is.

MDAO bestaat uit een workflow waarin rekentools onderling zijn gekoppeld om het
hele systeem door te rekenen. De gekoppelde tools vormen samen het analyseblok. Te-
vens onderdeel van de workflow is een algoritme die regelt hoe en wanneer elk tool wordt
aangeroepen (bijvoorbeeld een optimalisatie-algoritme). Het algoritme zorgt ervoor dat
de workflow een bepaalde functionaliteit vervuld. De functionaliteit van de workflow
wordt bepaald door de use-case. De use-case beschrijft het specifieke probleem dat
kan worden opgelost met een MDAO worklow. Meerdere algoritmes en rekentools met
verschillende precisie kunnen worden gebruikt voor dezelfde use-case. Hierdoor kun-
nen verschillende varianten van MDAO-workflows worden samengesteld voor hetzelfde
doel.

Het doel van dit werk is om een systematische en objectieve methodiek te ontwikke-
len voor het selecteren van de best presterende rekenmodellen en algoritmen voor een
MDAO-workflow in het domein van offshore windparken.

Een tool is ontwikkeld bestaande uit twee lagen aan functionalitiet. De buitenste laag
van de tool vraagt de workflow-ontwerper om de te koppelen modellen en algoritmen,
maakt de MDAO-worklow aan en, indien nodig, voert deze uit. De binnenste laag is een
MDAO-workflow welke de wind condities en vaste ontwerpparameters nodig heeft als
input van de ontwerper van het windpark. De output is een verbeterd ontwerp van het
offshore windpark.

Deze tool kan van waarde zijn voor onderwijs en industrie. Het onderzoeken van de
interacties tussen ontwerpkeuzes van verschillende subcomponenten van het windpark
leidt tot meer kennis van de complexe dynamiek in het ontwerp en de werking van een
offshore windpark.

Dit werk stelt verder een richtlijn voor om het besluitvormingsproces systematisch,
kwantitatief en objectief te reduceren tot een beter hanteerbaar probleem wanneer hon-
derdduizenden MDAO-workflows kunnen worden samengesteld uit een set tools en al-
goritmes.
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xii SAMENVATTING

De richtlijn is onderverdeeld in twee fasen. In fase 1 worden combinaties van reken-
modellen van het analyseblok geselecteerd met behulp van het Multiobjective Particle
Swarm Optimization for Categorical Variables algoritme (MOPSOC). De output van dit
algoritme is een Pareto-front van analyseblokken over een willekeurig aantal vooraf ge-
definieerde en mogelijk tegenstrijdige criteria. Fase 2 is een besluitvormingsproces met
meerdere criteria, waarbij een paar combinaties van de best presterende analyseblokken
en algoritmes worden gekoppeld en op meerdere criteria worden beoordeeld.

Uit de richtlijn volgt de set aan oplossingen die op efficiënte wijze criteria afweegt en
tot goede compromissen komt. De MDAO workflows waaruit de ontwerper kan kiezen
zijn ieder optimaal bevonden bij een bepaalde afweging en de keuze heeft hierdoor een
lager risico.

De richtlijn die in dit werk wordt voorgesteld is een nieuwe manier om verschillende
MDAO-workflows te evalueren, vergelijken en rangschikken. Er zijn geen formele me-
thodieken bekend voor dit doel in de literatuur.

Een workflow-ontwerper kan het meest uit deze richtlijn halen wanneer de uitkomst
van de use case voldoende kritiek is voor een onderzoeks- of ontwikkelingsproject, of als
wordt verwacht dat de MDAO-workflows de werkpaarden worden gedurende een pro-
ject.

In de laatste fase van de richtlijn moet de beslissingsnemer, net als met elk ander
beslissingsanalyse-probleem met meerdere criteria, een actievere rol aannemen, met
behulp van expertise, ervaring, gegevens en de uitkomst van deze richtlijn, om één of
enkele MDAO-workflows te kiezen die voldoen aan de vooraf vastgestelde eisen.

De richtlijn voorkomt dat de workflow-ontwerper foute beslissingen neemt op ba-
sis van intuïtie. Bovendien wordt voorkomen dat de ontwerper overweldigd raakt door
de vele analyses en informatie die komen kijken bij het kiezen van de best presterende
MDAO-workflows. Het grootste voordeel van het volgen van deze richtlijn is dat in een
korte tijd workflow-ontwerpers het aantal alternatieven om uit te kiezen kunnen beper-
ken. Het gebruiken van één van de geselecteerde MDAO-workflows voor het oplossen
van een use case kan van invloed zijn op het totale budget dat is toegewezen aan een
ontwerpoptimalisatie of een what-if analyse. De richtlijn komt ook ten goede aan de ont-
wikkelingsfase van een offshore windmolenpark, door een nauwkeuriger analyseblok te
bieden voor het nemen van financiële, logistieke of productiebeslissingen. Andere po-
sitieve effecten hebben betrekking op praktische zaken zoals het verminderen van de
kosten van computer hardware en software.

Een nadeel van het volgen van deze richtlijn is dat het vaststellen van de criteria, die
bepalend zijn voor het selectieproces, veel inspanning vereist van de workflow-ontwerper.
Net als het mogelijk maken van het automatisch genereren van analyseblokken en MDAO-
workflows. Bovendien is het MOPSOC-algoritme stochastisch.

De MDAO-gemeenschap profiteert van dit onderzoek omdat de wisselwerking tus-
sen de verfijning en de kosten van MDAO-workflows nog steeds over het hoofd wordt
gezien. In wezen maakt deze richtlijn efficiëntere, goedkopere en optimale systeemont-
werpprocessen mogelijk.

Tot slot wordt de richtlijn aangemaakt en gevalideerd met behulp van een multidisci-
plinair ontwerpoptimalisatieprobleem, waarbij de lay-out, de elektrische infrastructuur
en de fundamenten van een offshore windpark gelijktijdig worden geoptimaliseerd.
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This research began with one goal: to improve the use of computational tools 
during the design process of offshore wind farms.
This chapter begins with the benefits from making renewable energy cheaper, 
and goes on to touch upon the current state of wind energy and presents 
methods for designing wind energy systems, the importance of optimisation for 
design, and ultimately, what it means to design wind farms using 
Multidisciplinary Design Analysis and Optimisation (MDAO) techniques.
By further introducing the concepts of model fidelity and optimisation 
algorithms, this chapter presents the value of using the right tools for the right 
job.
Finally, a description of the concrete research objective is given: to devise a 
methodology for selecting the best-performing model fidelities and optimisation 
algorithms of an MDAO workflow in the domain of offshore wind farms.

Design: To decide upon the looks and function
of something before it’s made.

Oxford English Dictionary

Introduction
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1.1. THE WORLD NEEDS COST-COMPETITIVE WIND ENERGY
1.1.1. GLOBAL WARMING
PLANET EARTH AND HUMAN LIVES are being dangerously threatened by global warming.
2017 was the hottest year on record with no occurrence of the climate phenomenon El
Niño, and 17 of the 18 hottest years have occurred since the year 2000 1. In 2010, Hansen
et al. concluded that since the late 1970s, there has been a trend of 0.15 - 0.20 ◦C increase
in the global temperature per decade 2. Until 2017 that trend has further worsened, as the
temperature increased a further 0.2 ◦C in only 8 years. Figure 1.1 shows that both CO2

equivalent (CO2e) emissions and global mean surface have gradually increased since
the 1960s. Furthermore, annual average temperatures may drop or increase from year to
year, though the 5-year average temperature is rising steadily.
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Figure 1.1: Global mean surface temperature anomalies compared to the average in the period 1951-1980. The
increase is more evident in the 5-year average (modified from 2).

The worrying fact is that global warming is associated with an increase in weather-
related catastrophes (see Fig. 1.2), the rise of the sea level, and the spread of tropical
diseases to geographic regions further north of the Equator. The combination of these
phenomena is what puts human life and Earth’s biodiversity at risk. Three of these phe-
nomena are explained in more detail.

First, storms and floods are becoming more frequent and more violent, due to higher
evaporation rates. Likewise, prolonged droughts and heatwaves result in water scarcity,
desertification and hunger behind.

Second, 600 million people live within 10 meters of sea level 4, and could face new
hazards due to a rise in sea level provoked by global warming. Mass migration is a phe-
nomenon no country is prepared for and could lead to more geopolitical instabilities.

Third, all living beings could be subject to diseases both existing and potentially new
ones. The spread of tropical diseases such as malaria and dengue fever is influenced
by climate, and epidemics could lead to human health crises and collapse of livestock
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Figure 1.2: Weather-related loss events worldwide (modified from a report by Muniche RE 3).

industry and plant life 5.
In short, if left unaddressed, global warming has the potential to lead to a total deva-

station of human society.

1.1.2. HUMAN IMPACT ON GLOBAL WARMING
The concentration of greenhouse gases are now at unprecedented levels in at least the
last 800,000 years, and their emission has increased since the industrial era 6. The In-
tergovernmental Panel on Climate Change (IPCC) has stated that “it is extremely likely
that more than half of the observed increase in global average surface temperature was
caused by the anthropogenic increase in greenhouse gases concentrations” 6. Figure 1.1
shows the increase in global anthropogenic CO2 equivalent annual emissions since 1960.

The burning of fossil fuels and industrial processes have contributed to 78% of the
CO2 equivalent in the atmosphere. Since 2010, roughly 50% of greenhouse gas emissions
came from transport and production of electricity and heat alone 6.

1.1.3. RENEWABLE ENERGIES AS MITIGATION FACTORS
Most renewable energy sources have much lower lifecycle greenhouse emissions than
fossil fuels 6. The right hand side of Fig. 1.3 compares the carbon dioxide equivalent
lifecycle emissions of different energy sources. Wind energy has a clear advantage in
this regard. In fact, according to the Global Wind Energy Council, 20% of the pledged
reductions of CO2 equivalent emissions by industrialised countries for 2020 can be met
by wind energy alone.

1.1.4. THE COST OF WIND ENERGY
A common system level performance indicator for comparing offshore wind plant pro-
jects is the levelised cost of energy (LCOE) 8–10, as it aggregates the levelised system per-
formance and costs in a single metric. LCOE is calculated as:



1

4 1. INTRODUCTION

Lifecycle greenhouse gas 
emissions [g CO2e / kWh]

Levelised cost of 
energy [US¢ / kWh]

Source: Intergovernmental Panel on Climate Change

Biopower

Wind

Photovoltaics

Geothermal

Hydropower

Ocean

Nuclear

Natural gas

Oil

Coal

0 500 1000 150020406080

Levelised cost of energy and lifecycle CO2e 
emissions by energy source

Figure 1.3: Levelised cost of energy and lifecycle CO2e emissions of different energy sources. Non-renewables
and their LCOE are shaded in light gray (modified from Edenhofer et al. 7).

LCOE = C APE X +∑n
t=1 OPE X t (1+ r )−t +DECOM(1+ r )−n∑n

t=1 e f f AEPt (1+ r )−t , (1.1)

where C APE X is the capital expenditure in year t = 0, OPE X t is the operational expen-
diture, including maintenance costs, in year t , DECOM are the decommissioning costs,
e f f AEPt is the effective annual energy production of the plant in year t after electrical
and availability losses, n is the economic lifetime of the project in years, and r is the real
interest rate.

The left hand side of Fig. 1.3 shows that the levelised cost per unit of electricity con-
verted (LCOE) from renewable sources tends to be higher than from non-renewable
sources.

Since wind turbines do not incur fuel expenses, their operation is cheap. However,
higher capital costs is what makes the LCOE of wind energy typically higher than their
non-renewable counterparts.

One of the goals set by governments, industry and academia is to reduce the LCOE of
wind energy. As an example, European wind farm developers DONG (now Ørsted) and
E.ON set out to reduce the LCOE of offshore wind farms from 160 e/MWh in 2012 to
less than 90e/MWh in 2020 11, and Ørsted claims they will reach an LCOE of 78e/MWh
in the Borssele 1 and 2 offshore wind farms, due to go live in 2020 12. Also, Vattenfall’s
Kriegers Flak project recently set a record LCOE forecast of 40e/MWh 13.
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1.1.5. HOW TO REDUCE THE COST OF WIND ENERGY
The long sought LCOE reduction has its origins in innovations on many fronts. Figure 1.4
shows the sensitivity of LCOE to major concepts that govern the performance and cost
of an offshore wind plant.
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Relative change of the levelised cost of energy of offshore wind energy
Sensitivity with respect to relative changes in key input parameters

Source: NREL

LCOE change relative to the LCOE of a baseline design
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Annual operating costs
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+77%-51%

+15% -23%

-24% +43%

+50%

Figure 1.4: Sensitivity of the levelised cost of energy of offshore wind energy with respect to changes in key
input parameters, compared to a baseline design (modified from Tegen et al. 14).

The keys to achieving LCOE reductions on the initial capital costs are the optimisa-
tion and streamlining of processes for installation, the economies of scales due to the
ever growing nameplate capacity of wind turbines, the maturation of the entire supply-
chain, and the technological innovations in most of the physical components of the wind
plant. In addition, optimisation of the operations, maintenance and decommissioning
logistics can lead to reductions in the annual operating costs 11,13,14. Furthermore, the
adaptation of some components and processes to specific sites and projects also helps
take advantage of the local conditions and thus improve the capacity factor and costs,
compared to off-the-shelf components. The same is valid for the wind farm layout, since
maximising the array efficiency improves the capacity factor and costs. The discount
rate is influenced by the risk the investor is willing to assume. Higher risk is rewarded
with higher returns, since greater losses are also possible. As a consequence, reducing
uncertainties in the performance and cost helps reduce the discount rate.

Table 1.1 shows concrete examples of research and development programmes in
offshore wind energy that could translate into a reduction of the cost of energy. Tegen et.
al. drew these potential improvements 14 with further elaboration.

1.1.6. REDUCING COSTS BY DESIGN
As mentioned earlier, the optimisation of procedures and physical components for a
specific site has the potential to reduce LCOE. This is achieved by improving the perfor-
mance of components and the efficiency of procedures, and by reducing their associated
costs. An example is the aeroelastic optimisation of a wind turbine blade. The shape of
aerofoils at each section of the blade can be optimised to improve the overall aerodyn-
amic performance of the blade, which in turn may translate into a higher energy yield.



1

6 1. INTRODUCTION

Table 1.1: Concrete examples of innovations and their implications for reducing overall costs or improving the
energy yield of offshore wind plants (modified from Tegen et al. 14).

Potential changesR&D area Expected impact

Turbine scaling Larger rotors, taller towers, higher nameplate 
capacity, primarily enabled by advanced 
controls. Manufacturing efficiency and quality 
assurance improvements.

Component and machine economies of scale. 
Fewer trips from port to installation site. Fewer 
foundations and maintenance trips per unit of 
installed capacity. Downward pressure on 
production, installation and O&M costs. 

Offshore specific
turbine designs

Explicit design for marine installations (i.e., port 
based assembly and industry specific 
installation vessels) and operating conditions. 

Minimise work at sea while increasing ease of 
maintenance and accessibility from offshore 
vessels. Maximise the value of simplified sea 
transport.

Foundation and 
support structures

Incremental modifications to existing technolo-
gy. Development and maturation of technology 
for deepwater installations. 

Minimise foundation costs through mass 
production, increased standardisation and design  
refinement. Reduce time to install foundation 
infrastructure.

Installation 
techniques and 

vessels

Mission specific installation vessels and 
enhanced installation techniques.

Increased installation efficiency, reduced weather 
risk, lower installation costs.

Grid
interconnection
infrastructure

Serial production of HV cable, improved DC 
conversion technology. Enhanced frequency 
and voltage control, fault ride-through 
capacity, broader operative ranges.

Reduced cost for grid interconnection, improved 
wind farm power quality and grid service 
capacity.

O&M strategy Enhanced condition-monitoring technology 
and design-specific improvements. Improved 
operations strategies.

Real-time, condition monitoring of turbine 
operating characteristics. Increased availability 
and more efficient O&M maintenance planning. 

Resource
assessment 

Turbine mounted real-time assessment 
technology (e.g., LIDAR) linked to advanced 
controls systems. Enhanced array impacts 
modeling and turbine siting capacity.

Increased energy capture while reducing fatigue 
loads, allows for slimmer design margins and 
reduced component masses; increased plant 
performance

Furthermore, the materials used to manufacture the blade and their layout may also be
optimised to improve the structural dynamics or reduce the weight and therefore, costs.
However, the optimisation of individual components may or may not reduce the LCOE
depending on trade-offs elsewhere in the system.

To optimise the design of any given component, a computational model needs to be
developed and calibrated, to search the design space for improved solutions. It may be
infeasible, costly or time-consuming to manufacture and test a real size version of the
component at each design iteration. Returning to the previous example, software that
predicts the energy yield of a particular wind turbine design can be run thousands of
times by an optimisation algorithm to find better-performing designs faster.

1.2. DESIGN OF OFFSHORE WIND FARMS

This section gives an impression of what present and upcoming wind farms look like,
and how they are currently designed.
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1.2.1. WIND FARMS ARE COMPLEX SYSTEMS
A system may be seen as a set of interconnected components whose individual behavi-
our and interactions determine the overall performance of the set.

Wind farms are amongst the most complex systems deployed worldwide, based on
their uncertainty, heterogeneity and complexity 15. The power output and costs of wind
farms are uncertain as they rely on many stochastic parameters and imperfect models.
Wind farms are heterogeneous in the sense that they all look and perform differently,
and the design of every new project will face particular constraints perhaps unseen in
other wind plants. Moreover, many technical and social disciplines may simultaneously
describe the performance of a complex system such as a wind farm, with coupled inte-
ractions across subcomponents and disciplines.

A complete description of a wind farm must include the behaviour of the atmosp-
here and water body (for the offshore case), the air flow inside the wind farm, the terrain
in which it is installed, the energy production, collection and transmission to shore, the
loads exerted on the turbines and support structures, plant control, balance of plant
construction and assembly including foundation structures, the operation and main-
tenance strategies, the electrical infrastructure and operation, finances and electricity
markets, as well as environmental and societal impacts 16. Figure 1.5 shows a sketch of
all these disciplines and components.

Additionally, the level of complexity of a single wind turbine in and of itself is very
large, compounding the overall complexity of the system, since disciplines such as ae-
rodynamics, structural dynamics, materials engineering, power and loads control, cost
modelling and electromagnetism interact significantly 18.

To give an idea of the scale of offshore wind farms that will become operational this
decade, Fig. 1.6 illustrates some facts about the Hornsea Project One. This wind farm is
being developed by Ørsted in the North Sea off the eastern coast of the United Kingdom
and will become the largest offshore wind farm ever built.

1.2.2. TRADITIONAL DESIGN METHODS
Offshore wind farms are grid-scale projects backed by consortia of multinational compa-
nies that typically have governments, electrical system operators, financial institutions
and consumers as stakeholders. This structure already hints at the complex decision ma-
king process to satisfy the requirements of all parties involved. The partitioned nature of
the industry is most evident during the design process, in which technical engineering
companies are responsible for different components of the system with limited commu-
nication between them 19. Consequently, the components of offshore wind farms are
to a large degree designed sequentially. An example of this engineering practice is for
a team to first design the wind turbines independent of the site location. Then layout
designers fix the positions of the turbines in such a way that turbines interact through
wakes as little as possible with each other, and thus to avoid energy losses to the grea-
test extent. Once the layout has been decided, then another team goes on to design the
support structures for the water depths and soil conditions at which every wind turbine
must be installed. Simultaneously, another team designs the topology of the power col-
lection system that must pass through every wind turbine, with the goal of reducing the
overall cable length.



1

8 1. INTRODUCTION

Wake
aerodynamics

Power
transmission

Grid integration

Wind turbine
control

Structural
dynamics

Rotor
aerodynamics

Power
generationMechanics

Wind plant
control

Economics

Ocean
conditions

Power
electronics

Installation
Operations &
Maintenance

Hydrodynamics

Hydrology

Tower
aerodynamics

Power
collection

Atmospheric
conditions

Figure 1.5: Sketch of some components and disciplines that govern an offshore wind farm (graphic elements
modified from Bos 17).

Furthermore, while experience and expertise are and always will be key to making
better design decisions and making engineering processes more efficient, design auto-
mation is not fully exploited in the offshore wind industry. Design automation is the
practice of building a computer simulation model and repeatedly exploring the design
space in search of a better design. Design automation augments the innate abilities
of the human designer to more thoroughly explore the design space and discover non-
intuitive designs that may actually be superior to what the designer could come up with
through a manual development process. Some facts that lead to suspect a lack of de-
sign automation are that existing offshore wind farms are arranged into regular grid-like
layouts and the reported topology of infield collection systems are using longer cables
than necessary 20. Thus, there seems to be little exploration of irregular layouts or cable
topology optimisation in utility-scale offshore wind farms. Nonetheless, these decisions
might result from other unknown design constraints.

A recurring theme in this thesis is the fact that sequential design is actually detri-
mental to the overall system cost and performance, and that the lack of automation in
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Figure 1.6: Infographic on Ørsted’s Hornsea Project One offshore wind farm.

the design process is a missed opportunity for improving the design.

1.2.3. SYSTEMS ENGINEERING FOR WIND ENERGY
Systems engineering is a well established branch of engineering that tackles holistic sy-
stem design. In contrast to traditional design methods, systems engineering considers
the contributions of every component and the advantages or disadvantages of their mu-
tual interactions for the system’s performance and cost 21.

Due to their complexity, wind plants qualify as prime beneficiaries of systems engi-
neering methods. The lack of knowledge about how some design decisions affect other
aspects of the plant leads to suboptimal designs and higher cost of energy 15. One com-
mon example of a missed opportunity for reducing the levelised cost of energy (LCOE)
of an offshore wind farm is to optimise the layout without robust consideration for plant
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balance of system costs— including the electrical collection system or the cost of the
support structure with varying water depths, among others.

The application of systems engineering relies on a number of methods, of which
this work is restricted to one: Multidisciplinary Design Analysis and Optimisation, com-
monly shortened to MDAO or MDO.

Multidisciplinary Design, Analysis and Optimisation is a technique that deals with
the interactions between different components and disciplines of a system. The explora-
tion of interactions is achieved by integrating information obtained from physics-based
models, measurements and experts elicitation that belong to a wide range of disciplines,
using numerical models. This technique allows the analysis not only of the behaviour of
every component and individual discipline, but also of their coupled behaviour 22.

Wind energy researchers, project designers, developers or policy makers will benefit
from applying MDAO to solve a myriad of problems. Examples include the optimisa-
tion of the LCOE with respect to the types of underwater foundations installed within
the wind farm; uncertainty quantification of wind turbine fatigue loads; assessment of
the impact of a new generator technology on the performance of the entire wind plant;
sensitivity analysis of LCOE with respect to a financial design variable, and design certi-
fication with respect to multiple cases 23,24.

An extensive review of MDAO applied to wind turbines was done by Caboni in his
work on multidisciplinary robust optimisation 25. The seminal paper by Dykes et al. ex-
plores works in MDAO applied to both wind turbines and wind farms, and sets the foun-
dations of what would later become the MDAO workflow WISDEM (Wind-Plant Integra-
ted System Design and Engineering Model) 15. Dykes et al. stated that most research
was being done on singular components or disciplines, and thus concluded that there
were huge opportunities for researching and developing MDAO in the domain of wind
energy. Similar observations and conclusions were made by Zaaijer in the context of
support structure design 26. Another MDAO workflow for wind plant layout optimisa-
tion is TOPFARM 27, which accounts for electrical infrastructure, foundation costs, fati-
gue degradation, O&M costs and AEP to maximise the finance balance, and makes use
of a gradient-free optimiser for searching the global optimum and then a gradient based
optimiser for refining the optimal solution.

More examples of MDAO for wind energy applications are the work by Ashuri et al. 28,
where an offshore wind turbine is optimised using multiple disciplines; the rotor nacelle
assembly comprehensive design tool by Zaaijer 10; a multi-level wind turbine design ap-
proach that makes use of metamodels by Maki et al. 29; and the work by Fleming et al. 30,
demonstrating that coupling two disciplines (in this case control and wake modeling)
decreases the cost of energy more than sequentially optimising layout and control stra-
tegy. Another comprehensive wind turbine design workflow is CpMAX 31, which success-
fully couples high fidelity aerodynamic, structural and control models with nested opti-
misation algorithms. All of these works report a system level performance improvement
through the use of multidisciplinary design, analysis and optimisation. This suggestion
is further supported by one conclusion drawn from a review of approaches for wind farm
design 8: “New holistic models are required to improve the wind farm performance mo-
delling and its optimisation. . . . optimisation frameworks must encompass all the design
variables during the micro-siting process, since current existing approaches have limited
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the number of design variables and their degrees of freedom.”

1.3. INTRODUCTION TO MDAO
MDAO developed within the aerospace industry, due to the strong influences between
diverse disciplines that impact the performance of aircraft. Later, MDAO went on to be
successfully applied in the automotive, naval and civil engineering industries, among
others 22.

MDAO consists of a workflow where a set of computational tools that represent diffe-
rent components and disciplines are coupled to simulate the entire system. The coupled
tools are called an analysis block. With this technique, valuable analyses that assist the
decision making process during the design of the system can be performed. Additionally,
by including drivers that control how and when each tool is executed, the workflow can
fulfil a certain functionality. The functionality of the workflow is defined by a use case.
In this context, use case is the term that describes a particular domain problem that can
be solved with an MDAO workflow, such as the optimisation of the annual energy yield
of a wind farm with respect to its layout.

Figure 1.7 depicts a simplified diagram of an MDAO workflow: an analysis block
composed of two computational tools coupled to a driver.

MDAO workflow
Analysis block and driver

Use case Solution

Module A Module B

Analysis
block
output
variables

Analysis
block
input
variables

Driver

Analysis block

Figure 1.7: Simplified diagram of an MDAO workflow with an analysis block composed of two modules and a
driver.

Drivers that are commonly used in an MDAO workflow serve different purposes, e.g.
to run design of experiments (DOE) or sensitivity analyses, to perform uncertainty quan-
tification (UQ) or to implement optimisation algorithms. DOE drivers systematically
analyse a subset of the design space to predict the performance of untested designs.
System level uncertainty is quantified by propagating input uncertainties, and thus typi-
cally requires the analyses to be performed many times. Finally, optimisation algorithms
attempt to find the optimal system design that maximises its performance by smartly ex-
ploring the design space.
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1.4. THE THREE CORE ASPECTS OF MDAO WORKFLOWS
The creation of MDAO workflows has three dimensions of complexity 16, all of which play
a key role in their performance: system scope, architecture and model fidelity/driver
algorithm. Each of these concepts is described next.

1.4.1. SYSTEM SCOPE
First, the scope of the system that must be included (depicted in Fig. 1.8) needs to be
defined before instantiating an MDAO workflow. The reason for this is that not all com-
ponents and disciplines influence one another with the same strength. Two particular
examples of use cases with different system scope in the field of wind energy are the fol-
lowing: in the optimisation of the layout of an offshore wind farm, a workflow will have
to include, among others, the calculation of wake losses and cable lengths. On the con-
trary, in a sensitivity analysis of LCOE with respect to the type of foundation, one does
not need to re-analyse the performance or cost of the electrical collection system, as the
interaction between them is negligible.

Component / discipline CComponent / discipline B

OutputInput

Component / discipline A

MDAO dimension: System scope
The disciplines and components coupled in the analysis block

Figure 1.8: Depiction of two workflows with different system scope. One (with dotted arrows) includes com-
ponents or disciplines A and B, while the other (with dashed arrows) includes A, B and C.

One work that has addressed the complex evaluation of system scope for offshore
wind farms is the OWFgraph knowledge database 32. The goal of this database is to
map the real world composed of components and their specifications and behaviour,
to the virtual world where they are simulated by models and specified by variables. One
strength of this database is that it enables the tracing of dependencies of the perfor-
mance and cost of any given component of the system, and therefore to establish a cau-
sal map that can inform the scope of a system simulation.

1.4.2. MODEL FIDELITY/DRIVER ALGORITHM
Second, the consideration of the fidelity of the models coupled (depicted in Fig. 1.9 with
the levels of detail of a tree) is key to ensure that results are representative of reality and
to avoid the unnecessary waste of resources. Particular use cases will require simpler or
more sophisticated models included in the workflow. Similarly, the consideration of the
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algorithm used to drive the analysis block is important to get useful results out of the
MDAO workflow.

Fidelity Fidelity Fidelity

MDAO dimension: Model fidelity
A measure of model sophistication

Figure 1.9: Depiction of three levels of model fidelity. The level of sophistication of computational tools is
represented by the quality of the representation of a tree.

Two absurd scenarios exemplify the previous statement 23. The first is a wind farm
layout optimisation using the solution of the full Navier-Stokes equation with fully re-
solved wind turbine blades. The second is the assessment of the 90-percentile of the
levelised cost of the energy converted by a wind plant for making an investment deci-
sion using lookup tables made with empirical models. In both cases, the choice of tools
is rather poor since their best attributes are not fully exploited. In the first scenario, the
optimisation would be prohibitively expensive and time consuming due to the conside-
ration of irrelevant details. In the second scenario, the uncertainty resulting from such
an unsophisticated model would be unacceptably high for the purpose of financial in-
vestment and lead to unreliable decisions. Nevertheless, this modelling approach could
be beneficial to the early stage design of the wind plant layout. In other words, the use-
fulness of any given model fidelity depends on its use case.

With regards to literature, the aspect of model fidelity has been under scrutiny only
recently. Some publications touch upon the possibilities of creating multi-fidelity work-
flows by combining the outputs of sophisticated physics and simple engineering mo-
dels 27, the exploration of surrogate modelling and model reduction techniques 33, and
sensitivity analyses with varying model fidelities 34.

Regarding the choice of driver algorithm, a good example is the wide range of alter-
natives for optimisers. Some gradient-based algorithms are better suited to continuous,
smooth functions with a single global optimum, whereas gradient-free optimisers out-
perform the former with multi-modal, discrete or discontinuous functions.

1.4.3. MDAO ARCHITECTURE
Third, the architecture of the workflow (depicted with solid and dashed arrows in Fig. 1.10)
is also partly responsible for the performance of the MDAO workflow. MDAO architec-
ture is concerned with the coupling between tools and drivers and between tools mutu-
ally.

For example, the selection of MDAO architecture has direct impact on the perfor-
mance of MDAO workflows for wind turbine blade optimisation. The tight coupling be-
tween aerodynamics and structural dynamics calls for both modules to depend on each
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MDAO dimension: architecture
The order in which the driver runs every module and its algorithm

Driver

Figure 1.10: Depiction of two workflows with different MDAO architecture. The dashed arrows show the driver
calling each discipline individually, whereas the dotted arrows show the driver calling the entire analysis at
every iteration.

other. That is to say that there is a feedback loop between both disciplines. While on the
one hand the avoidance of aerodynamic drag drives the external shape of the blade to be
as slender as possible, on the other hand the internal structure requires thicker blades
to withstand aerodynamic loads. Consequently, at every step of the optimisation of the
blade’s external geometry and internal structure, an iterative solver needs to converge
both disciplinary modules to a single design. One MDAO architecture (Multidiscipli-
nary Feasible) would couple the optimisation to the iterative loop between the modules,
while another architecture would only run every module once at each step (Individual
Discipline Feasible), and include the constraint that the external geometry and internal
structure of the blade be feasible until convergence to the optimal design.

The possibility of nesting driver algorithms at different levels of the analysis block,
increases the complexity of the problem of choosing the most useful combination and
architecture.

Most of the current research on the implementation of MDAO lies on the architec-
ture axis. Specifically, much scrutiny surrounds the subject of MDAO architecture, due
to its capacity to improve the speed of an optimisation problem by decoupling the dis-
ciplines and let the driver take charge of the coupling instead. Indeed, researchers have
developed several architectures, each with its own strengths. The strengths include the
reduced time of the optimisation process, the easiness to implement, the ability to yield
feasible results at every iteration, and the ability to parallelise the execution of the tools.

Several publications describe and compare different architectures using common
variables and reference problems for different engineering fields 22,35–40.

1.5. THE CASE FOR MDAO WORKFLOW SELECTION
In light of the aforementioned three dimensions of complexity of MDAO, it becomes
clearer that multiple different workflows can be used for solving the same use case, albeit
they will all perform differently.

In particular, it is acknowledged that computational tools of varying levels of fidelity
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may be used to simulate and analyse the same wind plant component 24. Since multi-
ple tools are coupled in an MDAO analysis block, there may be more than one possible
combination, i.e. different MDAO analysis blocks may exist for the same purpose.

At present, MDAO users usually provide qualitative reasons for the selection of model
fidelity and driver algorithms, if at all. Typical arguments are that tools are selected for
being the fastest, highest fidelity, in-house built or the only ones available.

It is argued that while their choice can yield acceptable results, MDAO users are mis-
sing out on the possibility of improving the performance of their MDAO workflow by
not exploring the coupling of other tools with different levels of fidelity. Likewise, some
MDAO users choose driver algorithms often based on intuition, without testing its per-
formance and comparing between alternatives 24. However, MDAO for wind energy ap-
plications is a relatively new research space, where there is much to be gained by expe-
rimenting with different levels of system scope, model fidelity and MDAO architectures.
As the field matures, there will be opportunities for more comparative work and develop
recommended practices.

It is not surprising then that some MDAO analysis blocks will outperform others for
the same use case.

The previous analysis reveals a problem in the application of MDAO, relevant in the
field of wind energy:

There currently exists no systematic and objective methodology
for selecting the best-performing MDAO workflow for a given use case.

1.6. RESEARCH OBJECTIVE
Given the problem statement, it is now possible to describe the objective of this research.
To define an attainable objective, one of the three dimensions of complexity of MDAO
workflows are explored in this work: model fidelity and driver algorithm. The system
scope dimension and MDAO architecture are fixed, as the input-output connections be-
tween modules are pre-established for all combinations of model fidelities and driver
algorithms. One consequence of defining a single use case for this research is that the
system scope is fixed. In addition, the MDAO architecture has been a studied aspect of
MDAO and it is thus out of the scope of this work. The use case behind this research is
the multidisciplinary optimisation of offshore wind farms.

Develop a systematic and objective methodology for selecting the
best-performing model fidelities and driver algorithms of an MDAO
workflow in the domain of offshore wind farms.

1.7. RESEARCH TASKS
The approach to tackle the research objective is broken down into tasks. Tasks represent
the necessary sequential steps envisioned to lead to the achievement of the research
objective.

Task 1: Build a tool that allows the creation of multiple MDAO workflow where models
of varying levels of fidelity and driver algorithms can be swapped in a plug-and-play
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fashion.
A methodology for selecting the best-performing model fidelities coupled in an MDAO

workflow requires a tool that can automatically coupled different tools. This tool shall
programmatically access a database of models, connect their input and output variables
to other models, and execute the MDAO workflow. Such a tool does not exist at pre-
sent, and the first task is therefore devoted to build it. This task is broken down into five
subtasks.

Task 1.1: Define a use case in the field of wind energy.
As mentioned earlier, every use case requires a different MDAO workflow. To make the

objective attainable, only one use case is chosen to drive the evaluation and selection of
MDAO workflows: the multidisciplinary optimisation of an offshore wind farm. In this
task, the specific formulation of the optimisation problem is defined.

Task 1.2: Define the requirements of the tool.
The tool must fulfil what is required of it. This task defined the exact expectations and

requirements of the tool.

Task 1.3: Make a conceptual model of the tool.
With the requirements laid out, this task deals with the definition and design of the

tool.

Task 1.4: Instantiate the tool.
Once the conceptual model of the tool exists, it can then be implemented.

Task 1.5: Validate and verify the tool.
This task is meant to increase the confidence of the user in the model fidelities availa-

ble, in the analysis block of one MDAO workflow enabled by the tool, and in the optimi-
sation results using that analysis block and one optimisation algorithm.

Task 2: Develop a guideline for evaluating, comparing and ranking MDAO workflows
for a given use case in the field of offshore wind farms.

In this task a methodology for selecting the best-performing combination of model
fidelities and optimisation algorithms is developed. The methodology or guideline must
provide mechanism to evaluate, compare, and rank different MDAO workflows. This task
is further broken down into four subtasks.

Task 2.1: Define the requirements.
The guideline for MDAO workflow selection is meant to comply with functional requi-

rements defined in this task.

Task 2.2: Define a process for determining the governing criteria that evaluate per-
formance.
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A methodology for evaluating the performance of every MDAO workflow is the deli-
verable of this task.

Task 2.3: Define comparison mechanisms.
Once the performance of two or more MDAO workflows is known, then a methodology

for comparing them is needed.

Task 2.4: Define ranking mechanisms.
Due to the multiple possible MDAO workflows enabled by having several model fi-

delities at every module, a methodology is needed to rank all the workflows, using the
information found with the methodologies defined in Tasks 2.2 and 2.3. The list of the
best and worst performing workflows can be extracted from the resulting ranking.

Task 3: Instantiate the guideline.
The tool built in Task 1 is used to test the guideline by enabling the automatic instan-

tiation of different MDAO workflows in the domain of offshore wind farm design. The
model fidelities and optimisation algorithms implemented in the tool are used to pro-
vide an example of the implementation of the guideline defined in Task 2. The outcome
of this task is the best-performing set of models and optimisation algorithms for the
multidisciplinary design of offshore wind farms.

Task 4: Validate and verify the guideline.
To increase the confidence in the guideline and test whether the guideline fulfils the

research objective, a validation study of the guideline ensues in this task.

1.8. OUTLINE
Every chapter in this thesis is dedicated to one of the major tasks presented above. Chap-
ter 2 reports the entire process that led to the instantiation of an MDAO workflow for offs-
hore wind energy. Then, Chapter 3 describes the core and main contribution of this re-
search, the guideline for evaluating, comparing and ranking multiple MDAO workflows.
Subsequently, Chapter 4 provides an example of the application of the guideline. Chap-
ter 5 reports the validation and verification studies of the guideline. Finally, Chapter 6
draws conclusions and comments on the generalisation and outlook of this research.

Figure 1.11 provides a visualisation of the distribution of information in the chapters
of this document.
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Chapter 4Task 3

Research objective

Chapter 5Task 4

Chapter 2Task 1

Task 1.1
Task 1.2
Task 1.3
Task 1.4
Task 1.5

Chapter 3Task 2

Task 2.1
Task 2.2
Task 2.3
Task 2.4

Chapter 6Conclusions

Figure 1.11: Outline of the chapters of this thesis.



A tool is built for instantiating MDAO workflows with models of varying level 
of fidelity and different optimisation algorithms, for testing the guideline for 
MDAO workflow selection.
The conceptual modelling, implementation, validation and verification of 
the tool is presented. The use case behind creation of the tool is a 
multidisciplinary offshore wind farm design optimisation to minimise LCOE 
with respect to the layout, the design of the electrical infrastructure and the 
design of the support structures.
The models included with the tool are verified with implementations 
previously reported in the literature, whereas the analysis block is validated 
by means of sensitivity analyses and a cost-breakdown comparison.
The optimisation algorithm is validated by comparing the sample evaluated 
by the optimiser against a random sample of the design space; and by 
analysing the optimised layouts of a utility-scale offshore wind farm using 
three distinct objective functions.

Everything should be made 
as simple as possible, but not simpler.

Albert Einstein

Perfection is achieved, 
not when there is nothing more to add, 

but when there is nothing left to take away.

Antoine de Saint-Exupéry

Tool for MDAO
workflow design
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2.1. INTRODUCTION
As mentioned in §1.7, the guideline for MDAO workflow selection can be better tested
with a tool that instantiates different MDAO workflows by allowing models with varying
levels of fidelity and driver algorithms to be exchanged in a plug-and-play fashion.

The Framework for Unified Systems Engineering and Design of Wind Plants (FUSED-
Wind) 41, made by the National Renewable Energy Laboratory (NREL) and the Technical
University of Denmark (DTU), is currently the only existing tool that enables the instanti-
ation of MDAO workflows with interchangeable models for wind farm design. However,
FUSED-Wind could not be used for the purpose of this work because it agglomerates the
balance of station costs in a single module, a feature that is less flexible to accommodate
the cost models of particular system components.

The further desire for the analysis block of the tool to include specific disciplines and
input-output connections between them, drove the development of a new tool from the
ground up. The tool is developed for a wind plant multidisciplinary optimisation use
case.

2.2. OVERVIEW AND TERMINOLOGY
The tool for MDAO workflow instantiation, referred to in this chapter as the tool, compri-
ses two layers of functionality. The outer layer is meant for users (referred to as workflow
designers) interested in designing MDAO workflows according to pre-established crite-
ria. The inner layer is meant for users interested in designing offshore wind farms (refer-
red to as wind farm designers). Each layer of the tool is sketched in Fig. 2.1. Both layers
interact when the outer layer communicates to the inner layer the models and driver
algorithm that are to be coupled. The instantiation of an MDAO workflow by the outer
layer is a necessary prior step for the inner layer to be executable.

Workflow designers require information from the wind farm designers. In particular,
the workflow designer instantiates the best-performing MDAO workflow for a given use
case, defined previously by the wind farm designer.

The outer layer of the tool requests from the workflow designer the models and driver
algorithms to be coupled, instantiates and, if necessary, executes the MDAO workflow.
The outer layer is meant to support the evaluation of the performance of different MDAO
workflows by the workflow designer.

The inner layer is an MDAO workflow that requests from the wind farm designer the
site conditions and fixed design parameters, and its output is the solution to the use case.

The tool is built to fulfil certain requirements, and these are listed below per layer.

Outer layer: This layer must allow the workflow designer to interchange the models
that analyse every system component and the optimisation algorithm, and instantiate
and execute the MDAO workflow for workflow-evaluation purposes. Fig. 2.2 shows a
diagram of this requirement.

Inner layer: This layer is a means for testing the functionality of the outer layer, and
thus it does not have to be readily suitable for deployment in industry practice. The-
refore, it must have the ability to capture realistic changes in the LCOE with respect to
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The flow of information in the tool

Site conditions
and fixed design
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wind farm
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Tool for workflow creation
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Inner layer: MDAO workflow
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design
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Models and
optimisation

algorithm

workflow
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Figure 2.1: Sketch of the layers of the tool, the users of each layer, and their inputs and outputs.

variations in the the design variables of the farm layout, electrical infrastructure and
support structures, rather than the ability to yield realistic accurate absolute numbers.
These realistic trends should then drive an optimisation algorithm towards the mini-
mum levelised cost of energy (LCOE) of an offshore wind plant.

To avoid confusion, a list with the terminology used throughout this work is listed
below:

1. Discipline: Technical or scientific branch of knowledge that governs one aspect of
a phenomenon or component. Example: wake aerodynamics.

2. Component: Specialised piece of equipment or hardware of the system (offshore
wind plant). Example: electrical infrastructure.

3. Module: Separable analysis of the MDAO analysis block. Modules may analyse
the performance or cost of an entire component of the system, or analyse a com-
ponent according to a single technical discipline. Example: analysis of the array
efficiency.

4. Model: Computational tool that implements a mathematical model for analysing
a component of the system or discipline. Models may have different levels of fide-
lity. Example: a specific implementation of the Jensen wake model.

The following sections describe the resulting tool.
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Figure 2.2: Different models can be used at every module. Likewise, different optimisation algorithms can be
coupled to the analysis block.

2.3. CONCEPTUAL DESIGN OF THE TOOL
The outer layer of the tool consists of a function that communicates the list of models
and optimisation algorithms to be plugged into an empty MDAO workflow in the inner
layer made specifically for the wind farm designer’s use case. The term empty is meant to
reflect that the MDAO workflow is initially void of any models that perform the analyses.
However, the inputs and outputs of modules and the connections between them are
included.

The ability to interchangeably accommodate user-defined models and optimisation
algorithms is best served by modularity. The analysis block of the MDAO workflows built
with the tool has clearly defined boundaries between independent modules that wrap
individual models and provide the input/output connections between them.

The ability of the inner layer to minimise the LCOE of a wind farm design is met with
a top level optimiser. Its input is the LCOE and its output is a multidisciplinary design
vector. The optimisation problem is formulated as follows:

minimise: LCOE

with respect to: wind farm layout,

design of the electrical infrastructure,

design of the support structures.

As mentioned in §1.6, a single use case defines the inputs, outputs and connections
of the modules of the empty MDAO workflow. This use case is the following:
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What is the optimal wind farm layout, number of wind turbines,
design of the electrical infrastructure and design of the support struc-
tures that jointly minimise the levelised cost of energy at a given wind
site, in a preliminary design phase?

The inner layer includes a descriptive analysis that estimates the LCOE of a wind
plant design at a given site. This analysis forms the analysis block of the empty MDAO
workflow, and comprises multiple modules coupled via their inputs and outputs.

As mentioned earlier in §1.4, the complexity in creating an MDAO workflow covers
three dimensions (see Figs. 1.8, 1.9 and 1.10): system scope, model fidelity/driver algo-
rithm, and MDAO architecture 16. Figure 2.3 shows an abstraction of the three-dimensional
space that the tool allows the workflow designer to explore.

The MDAO space that can be explored by the tool.

Source: IEA Wind Task 37

Model fidelity/driver algorithm

Multiple model fidelities and
optimisation algorithms are explored. One system

scope is
explored.

One MDAO architecture
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Figure 2.3: Abstract sketch of the three-dimensional space that can be explored by the workflow designer using
the tool.

The description of the MDAO workflow along each of these dimensions is presented
next.

2.3.1. SYSTEM SCOPE
The system scope of the analysis block is fixed. The choice for system scope is a conse-
quence of the use case set by the wind farm designer, and is described below.

Although the consideration of the social and environmental aspects of wind energy
are of utmost importance in its development, the MDAO workflows created by the tool
focus exclusively on technical disciplines.

Figure 2.4 illustrates the six major cost contributions to the LCOE of a large offshore
wind plant.

In spite of there being many components that impact the LCOE, the support struc-
tures and electrical infrastructure are the most dependent cost-wise on the wind farm
layout. Additionally, wind plants are built to a large extent with off-the-shelf wind tur-
bines, and manufacturing processes and facilities are not deemed to tailor wind turbine
designs for individual wind energy projects or sites. For this reason, a single wind turbine
is used to design the balance of station (BOS).
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Figure 2.4: Contributions to LCOE per subcomponent (modified from 9).

The design of the assembly, installation, operations and maintenance strategies and
logistics are out of the scope of the use case. However, there are reports where these have
partially been co-optimised with the rest of the BOS 10.

Moreover, the additional costs incurred from financial considerations are typically
set by shareholders and not designed. The effect of design decisions on finance is neg-
lected in this work.

The breakdown in Fig. 2.4 shows that the design of the electrical infrastructure and
the design of the support structures affect 17% of the LCOE. In addition, looking at
Eq. 1.1, it is expected that increasing the AEP leads to a decrease in the LCOE as well.
This is not apparent in the LCOE breakdown shown above, because the AEP has been
fixed.

The opportunities for maximising AEP and minimising the costs of the electrical in-
frastructure and the support structures are further explained next.

AEP The AEP of a wind plant is a function of the wind conditions at the site, and the
power that can be extracted by the wind turbines. Whereas the former is an external,
unmodifiable condition, the latter can be improved by the wind farm designer.

The power extracted by a wind farm is strongly influenced by the relative positions
of the wind turbines: the wind farm layout. Since wind turbines generate a wake behind
them where the wind has less kinetic energy, turbines placed inside the wakes of up-
stream turbines generate less power than those situated outside the wakes. These array
power losses can be minimised if the layout is smartly designed taking into considera-
tion the wind conditions.

The layout is perhaps the single most studied design variable of a wind farm. The
optimisation of a wind farm layout to maximise power production, while satisfying mul-
tiple constraints is a complex task, and is one of the reasons why it has attracted much
research. Layout optimisation alone can return improvements in AEP of up to 15% de-
pending on the baseline design 42.
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Electrical infrastructure The electrical infrastructure of a wind plant comprises the
collection and transmission to shore systems, and their combined cost of procurement
and installation amounts to 9-24% of the capital expenditure (CAPEX) 9,43,44. The col-
lection system is responsible for gathering the electrical energy generated by the indivi-
dual turbines at the offshore substations, where the voltage is increased for long distance
transmission, using transfomers. The transmission system transfers the electrical energy
from the offshore substation to an onshore substation connected to the local grid. Mul-
tiple studies have addressed the optimal configuration of the collection system 20,45,46.
Other studies have analysed the cost of alternating and direct current transmission-to-
shore systems 45,47. Costs can be cut by optimising the collection cable topology, cable
ratings, transformer ratio, substation foundation, voltage ratings and installation logis-
tics. Important is to note that besides cost, electrical power losses should also be mini-
mised by design.

The wind farm layout strongly influences the cost of the electrical infrastructure through
cable length.

Support structures Installation and procurement of support structures contribute on
average to 14-22% of the CAPEX 9,43,44. While several types of foundations exist, roughly
90% of all offshore wind farms use monopiles. Costs of monopiles can be reduced by
designing them specifically for the local water depth and metocean and soil conditions
at every wind turbine location 10,48, and by optimising the logistics in their installation
and transportation. Similarly to the electrical infrastructure, the wind farm layout deter-
mines to some extent the cost of the support structures due to the local bathymetry.

Assumptions are made for simplifying the analysis block of the MDAO workflow. The
estimation of the LCOE of an offshore wind farm does not include a detailed assessment
of manufacturing costs, onshore transportation, installation, operations, maintenance
and decommissioning costs and logistics, degradation and failures of components, fati-
gue of support structures, electrical power losses, wind turbine loads and unsteady aero-
and hydrodynamics, as well as behaviour of the energy market, risk and asset manage-
ment. These limitations impact the accuracy of LCOE, and potential couplings involving
these disciplines are ignored.

2.3.2. MDAO ARCHITECTURE
The architecture of the MDAO workflow is fixed, as this dimension is outside the scope
of the research objective of this work (see §1.6).

Figure 2.5 shows the MDAO architecture chosen for the MDAO workflow of the tool.
Stemming from the fact that AEP, cost of the electrical infrastructure and cost of the

support structure are all competing values to improve the LCOE, a closer look at how
they depend on the design variables informs the choice of MDAO architecture.

The design variables of the electrical infrastructure that define the cable topology or
offshore substations are assumed to be local design variables, as they mainly affect the
cost of that component, and have little influence on either AEP or the cost of the support
structures. In contrast, the remaining design variable, the wind farm layout, is global,
because it affects AEP and support structures costs, too.
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Figure 2.5: MDAO architecture of the tool.

Similarly, except tower height, which is fixed, the variables that describe the support
structures, such as the geometry of the monopile and the turbine tower, penetration
depth and scour protection, are local design variables, as they have no effect on the cost
of the electrical infrastructure or AEP. The layout, once again, is the only global design
variable of this component.

AEP is only affected by the wind farm layout, as the design of the wind turbine is
outside the scope of the use case.

To summarise, the wind farm layout (shown in Fig. 2.5) as connecting variable Xi )
is the only global design variable common to all three modules, whereas the rest of the
design variables only affect a single component. This separation of design variables in-
forms that a top level optimiser can drive the layout to minimise the LCOE, while the
electrical infrastructure and support structures are driven by a nested optimiser at every
iteration of the top level optimiser. As identified earlier in §2.3.1, there are other costs
that contribute to the LCOE, but they are assumed to be independent of the design vari-
ables.

2.3.3. MODEL FIDELITY/DRIVER ALGORITHM
The level of fidelity of the models and algorithm of the driver is the only dimension ex-
plored in this research. However, the model fidelities investigated are constrained, as the
input-output connections are fixed by the system scope, and thus some model fidelities
are not readily compatible with the MDAO workflow. This limited subset of model fi-
delities can be used to demonstrate the process of selecting the best-performing MDAO
workflows.

Wind plants will typically undergo a preliminary- and a detailed-design phase. Du-
ring the first phase certain design decisions are made based on feasibility studies relying
mostly on unsophisticated computational tools. Design variables such as number of
wind turbines, layout, topology of infield cables, number of offshore substations, wind
turbine power rating, etc. are decided and fixed to a certain degree at this stage, as they



2.4. EXTENDED DESIGN STRUCTURE MATRIX

2

27

have influence on power production and overall costs.
In contrast, during the second phase the previously fixed design variables are revisi-

ted with more sophisticated computational tools to reduce the uncertainty in their per-
formance and cost. The other sets of design variables that have less influence on power
production or costs are decided upon in the detailed design phase, and are instead dri-
ven by manufacturing or physical constraints. Furthermore, the second phase consists
of the detailed redesign of all system components under new constraints. For example,
the design of the support structures for load-bearing capacity, wind farm layout consi-
dering unexploded ordnances or existing infrastructure, as well as the design of installa-
tion, maintenance and transportation logistics.

Since the use case explicitly relates to a preliminary design stage, the constraints of
the detailed design phase are neglected.

The constraints presented above suggest that the models compatible with the MDAO
workflow must be fast, as multiple scenarios are to be analysed in this design stage. Ho-
wever, speed will usually imply a poorer accuracy. This loss of accuracy is justified as
final investment decisions are not made until after the preliminary design stage. The
set of tools that comply with this requirement are engineering models that either make
assumptions to simplify the physics, or make use of empirical rules. In addition, fas-
ter models are typically deterministic. Although the quantification of uncertainty using
probabilistic models is valuable for robust optimisation, it is not the norm at preliminary
design stages and is outside the scope of this work.

2.4. EXTENDED DESIGN STRUCTURE MATRIX
Figure 2.5 is expanded to include all the modules of the MDAO workflow and the con-
nections between them. This information is formalised into an extended design struc-
ture matrix (XDSM) 22. Figure 2.6 shows the XDSM of the MDAO workflow for the opti-
misation of the layout, electrical infrastructure and support structures. The local input
parameters to every module are omitted from the XDSM. The modules and connections
of the XDSM are explained in the following sections.
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Figure 2.6: XDSM of the MDAO workflow in the tool.
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2.5. MODULES
The modules coupled into the MDAO workflow of the tool to estimate the LCOE of an
offshore wind plant are listed below and explained from physical principles and referred
to the XDSM in Fig. 2.6 by their numbers. Section 2.7 describes the actual models or tools
provided for every module.

1. Water depth: This module requests a bathymetry file where water depth is defined
for a list of x and y coordinates, and outputs the interpolated water depth at any
other position.

2. AEP model: The module to estimate AEP is composed of four sub-modules: wind
turbine performance, wake wind speed deficit, wake merging and an energy con-
volution module. Each of these is further explained next.

(a) Wind turbine performance: Modelling the conversion of the kinetic energy
in the wind into electrical energy requires a wind turbine simulation module
that requests the local wind conditions and outputs electrical power conver-
ted and aerodynamic thrust.

Wind turbine moduleWind conditions
Electrical power

Aerodynamic thrust

(b) Wake wind speed deficit: Because wind turbines extract energy from the up-
stream flow, the wind is on average slowed down in the downstream wake
of the turbine, affecting turbines that lie in its wake. The linear momentum
the turbine extracts from the wind is a function of the thrust force exerted by
the wind on the turbine. The dimensionless thrust coefficient is thus used to
characterise the wind turbine. The wind turbine rotor diameter affects the
diameter of the wake. Lastly, the ambient turbulence intensity influences the
mixing of the wake with the freestream unperturbed flow. Most engineering
wake models require a subset of the upstream wind speed, thrust coefficient
of the turbine, turbulence intensity, rotor diameter and downstream location
as input. Their output is the wind velocity deficit in the wake at the down-
stream location.

Wake module

Position downstream

Thrust coefficient

Turbine geometry

Wind conditions

Wind speed deficit

(c) Wake merging: As multiple wakes may converge at the same place in space,
their deficits are mathematically combined using a wake merging model. Its
input is the multiple wind speed deficits and the output is the local wind
speed at that location.
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Wake merge moduleWake deficits Wind speed

(d) Energy convolution: The annual energy production is obtained by combi-
ning the information in the windrose and Weibull wind speed distributions
for a particular site, with the total power produced per wind direction and
wind speed.

Energy convolution
module

AEP
Wind distribution
Farm power per

wind direction
and wind speed

3. Wake-added turbulence: The added turbulence intensity in the wake is calcula-
ted by another module. The input are the wake deficits that all turbines induce
in each other, as calculated by the wake model, and the output is the maximum
local turbulence intensity at every wind turbine. The wake deficits are used to de-
termine the closest turbine which is assumed to be the only one contributing an
added turbulence intensity 49.

Wake-added
turbulence intensity

module
Turbulence intensity

Downstream distance
Thrust coefficient
Wind conditions

Wake deficits

4. Electrical system design: The cost of the electrical infrastructure is a function of
the plant layout because turbines spaced further apart demand longer electrical
collection cables. A module is integrated that minimises the cost of the electrical
collection system for a given layout with respect to its topology. The inputs to
this module are the number and position of offshore transformer substations, the
capacities and costs of up to three electrical collection cable types, and the wind
farm layout.

Electrical collection
system design

module
Electrical collection cable topology

Electrical collection cable length

Electrical collection system costCable capacities
Number of substations

Positions of substations
Position of onshore substation

Layout

5. Support structure design: The water depth at every turbine location determines
the cost of the support structure. A module is integrated that minimises the cost
of the support structure for a given water depth and local wind turbulence. The
inputs to this module are the local metocean conditions, geometry of the wind
turbine and water depth. This workflow considers only bottom-fixed monopiles.
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Support structure
sizing module

Support structure cost

Water depth

Metocean conditions

Wind turbine geometry

6. O&M analysis: The cost of operations and maintenance is calculated in this work
as directly proportional to the nominal power rating of the wind plant. Besides
cost, this module outputs the availability.

O&M modulePlant nominal
power rating

Annual O&M costs

Availability

7. Effective AEP: The AEP calculated so far does not account for electrical losses in
the electrical infrastructure nor availability issues due to failures or planned main-
tenance works. These efficiencies are factored in in this module, and are inputs to
the analysis block.

Effective AEP module Effective AEPElectrical efficiency

Availability

AEP

8. Cost model: Additional integrated modules calculate the cost of engineering, ma-
nagement, procurement, installation, and decommissioning of the entire wind
plant. Some of the costs are assumed constant whereas others are a function of
the nominal capacity of the plant.

Cost module

Number of turbines
Rated power

Electrical cable length
Water depth at

offshore substations

CAPEX

Decommissioning costs

9. LCOE: A last component aggregates the effective AEP, all the costs, the economic
lifetime of the project and the annual real interest rate into the LCOE using Eq. 1.1.

LCOE module LCOE
All costs

Economic lifetime
Interest rate

Effective AEP

2.6. I/O CONNECTIONS BETWEEN MODULES
The connections between the modules of the analysis block presented above are listed
in this section.

1. Wind farm layout to AEP module. The wake models require the relative positions
between the turbines, which are imposed by the layout. The layout is the output
of the top-level optimiser.
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2. Wind farm layout to electrical collection topology optimiser module. The topology
of the electrical collection cables is optimised for the given position of the wind
turbines.

3. Wind farm layout to support structure sizing module. Since the geometry of the
support structure is a function of water depth, it needs to be given at every position
of the layout.

4. Wind speed deficits matrix from AEP model to wake added turbulence intensity
module. The wind speed deficits inform which is the upstream turbine affecting
each downstream turbine the most. Only the wake of this specific upstream tur-
bine contributes to added turbulence intensity.

5. Turbulence intensity (TI) from wake added TI module to the support structure
sizing module. TI is used to account for fatigue damage due to turbulence in the
wind.

6. AEP to O&M. The simple O&M module estimates annual costs from AEP before
wake losses.

7. AEP from AEP module to the effective AEP module. This connection ensures the
AEP is combined with the electrical efficiencies and availability.

8. Costs of support structures, electrical infrastructure from their respective modules
to a cost-aggregating module.

9. Costs and AEP from their respective modules to determine the LCOE in the LCOE
module.

10. LCOE from the LCOE module to the top level optimiser. This connection closes
the MDAO loop by providing the objective function evaluation to the optimiser.

2.7. MODELS AND OPTIMISATION ALGORITHMS INCLUDED
The following sections provide a list of the models available at every module and a com-
parison of their output.

2.7.1. AEP MODEL
The AEP model used integrates the power produced by the farm for a sample of wind
speeds and wind directions. The number of samples of the Weibull distribution of wind
speeds can be adjusted by the wind farm designer to change this model’s fidelity. Simi-
larly, the wind farm designer can select the number of wind directions to be analysed for
power production. Probabilities are obtained from the wind rose provided.

2.7.2. WIND TURBINE POWER AND THRUST MODELS
Since the wake models adapted in the MDAO workflow simulate the steady state of the
plant, the following rotor aerodynamics simulation tools were used to create power and
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thrust coefficient look-up tables as functions of upstream wind speed at hub height. Fi-
gure 2.7 shows the power curve of the NREL 5 MW reference wind turbine 50 calculated
with each of these tools, and Fig. 2.8 shows the thrust coefficient curves.

Wind turbine power models
Simulation of the NREL 5 MW wind turbine
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Figure 2.7: Plot of the power curves made with different turbine rotor simulation tools.

Wind turbine thrust coefficient models
Simulation of the NREL 5 MW wind turbine
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Figure 2.8: Plot of the thrust coefficient curves made with different turbine rotor simulation tools.

FAST
FAST is an open source time-based aero-hydro-servo-elastic wind turbine simulator de-
veloped by NREL 51. The aerodynamic calculation of power and thrust are done with
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an implementation of the Blade Element Momentum (BEM) model that includes three-
dimensional and tip correction factors. The turbine is coupled to a monopile in an offs-
hore environment. To create lookup tables of power and thrust coefficient, FAST is run
with a steady uniform inflow field for 300 s to avoid any transient responses and reach a
steady power output.

QBLADE

TU Berlin’s QBlade calculates the aerodynamic performance of a rotor using a time-
based lifting line model 52. The lookup table is generated by running QBlade with steady
uniform wind fields for 300 s to ensure the full development of the wake and a steady
operation.

WINDSIM

A simple BEM model and a seven-degrees-of-freedom dynamic module that evaluates
forces at equilibrium are included in the WindSim tool developed by TU Delft 53. The
lookup table is generated by running WindSim at the operating wind speeds.

BEM
This model is simple in that it only takes into consideration the aerodynamic modelling
of the rotor by means of a BEM model. The implementation corresponds to that reported
by Tanmay 54, following the model description by Manwell et al. 55.

2.7.3. WAKE MODELS
Four engineering wake models are available in the MDAO workflow. A downstream wind
velocity field of a single wind turbine according to the different wake models is plotted
in Fig. 2.9.

JENSEN

The Jensen empirical wake model 56 is the most commonly used for wind plant design
due to its simplicity. It is based on the law of conservation of mass, and assumes a linear
expansion of the wake radius and uniform wind speed in the radial direction. Figure 2.9
shows the downstream field of a wake predicted with the Jensen model and a wake decay
factor of 0.04 suitable for offshore applications.

LARSEN

The Larsen wake model is an analytical model obtained from Prandtl’s turbulent boun-
dary layer equations. These equations are an asymptotic version of the Navier-Stokes
equations for large Reynolds numbers 57. Figure 2.9 shows the downstream field of a
wake predicted with the Larsen model. The finite radius of the wake is given by an ana-
lytical expression.

AINSLIE 2D EDDY VISCOSITY

The Ainslie or eddy viscosity wake model 58 is a field model that results from solving a
thin shear layer approximation of the Navier-Stokes equations, and neglecting viscous
terms, together with a Reynolds stress definition of the turbulence viscosity, and the
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Jensen

Larsen

Ainslie 1D

Ainslie 2D

9 10876543

Wind speed

Distance

2D 4D 6D 8D 10D

2D 4D 6D 8D 10D

2D 4D 6D 8D 10D

2D 4D 6D 8D 10D

Figure 2.9: Average wind velocity in the downstream field of a wind turbine according to different wake models.
The turbine rotor has a diameter of 126 m, a thrust coefficient of 0.79, the freestream wind velocity is 10 ms−1

and the ambient turbulence intensity is 8%.
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continuity equation. Figure 2.9 shows the downstream field of a wake predicted with
the Ainslie 2D model. The axial and radial directions are discretised into 100 elements.
To improve the model’s efficiency, the wind speed in the radial direction is solved only up
to a distance equal to twice the rotor diameter, beyond which freestream wind speed is
assumed. The differential equations are solved with an Euler forward numerical scheme.

AINSLIE 1D EDDY VISCOSITY

Anderson 59 reduced the order of the Ainslie model to one dimension, solving only the
wake centreline velocity, by noting that the velocity in the radial direction is self-similar
in the axial direction and follows a Gaussian profile, which was determined empirically.
Figure 2.9 shows the downstream field of a wake predicted with the Ainslie 1D model.

2.7.4. WAKE MERGING MODELS
Four mathematical expressions for merging wake velocity deficits are included in the
tool 60–62. These are listed next:

Root sum square ∆u2
i =

∑
j
∆u2

i j ,

Maximum ∆ui = max(∆ui j ),

Summed ∆ui =
∑

j
∆ui j ,

Multiplied ∆ui =
∏

j
∆ui j ,

where ∆ui is the wind speed deficit with respect to the freestream velocity at turbine
i , and ∆ui j is the deficit at turbine i due to the upstream turbine j .

2.7.5. WAKE ADDED TURBULENCE MODELS
The MDAO tool includes five models to calculate the wake added turbulence intensity
at a downstream turbine due only to the upstream turbine that is closest in distance to
it 49. Figure 2.10 shows a plot of the local turbulence intensity (TI) as a function of the
normalised downstream distance, calculated with all the models described below.

LARSEN

The Larsen model 63 provides an empirical expression to characterise the added wake
turbulence, as a function of spacing and the thrust coefficient of the upstream turbine.

DANISH RECOMMENDATION

The Danish recommendation model 64 is an empirical model in which the added tur-
bulence intensity in the wake results from multiplying two correction factors related to
wind speed and wind farm configuration 61. This model is a basic model that ignores
the thrust coefficient of the upstream turbine, and only considers spacing and upstream
wind speed.
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Wake-added turbulence models
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Figure 2.10: Plot of the total turbulence intensity as a function of downstream distance using different wake-
added turbulence models.

QUARTON

The Quarton model 65 is derived from measurements, and it attempts to model the ad-
ded turbulence in the near- and far-wake. It is a function of the ambient turbulence
intensity, the spacing, the thrust coefficient, number of blades and the tip speed ratio of
the upstream wind turbine.

FRANDSEN

The Frandsen model 66,67 provides two empirical expressions to characterise the added
wake turbulence, as a function of spacing, upstream wind speed, ambient turbulence
intensity and the thrust coefficient of the upstream turbine. It has one expression for
closely spaced turbines in the crosswind direction, and another for large spacings in all
directions.

FRANDSEN 2
A modified expression for the Frandsen model 68 is used in the European Wind Turbine
Standards 69. This model is a function of the spacing, ambient turbulence intensity and
the thrust coefficient of the upstream turbine. The output of this model diverges at spa-
cings smaller than one rotor diameter.

2.7.6. ELECTRICAL COLLECTION
Two methods for designing the topology of the electrical collection cables are included
in the tool. One utilises the Esau-Williams heuristic to generate a branched topology,
whereas the other is the Planar Open Savings heuristic that generates a radial topology.
In both algorithms up to three cable capacities can be used and cable crossings are for-
bidden. The topologies and cable lengths of a wind farm with 74 turbines and three
offshore substations are shown in Fig. 2.11. While the electrical cable lengths are similar



2

38 2. TOOL FOR MDAO WORKFLOW DESIGN

in this case, the Esau-Williams heuristic yields lower cable lengths than the Planar Open
Savings heuristic when a single offshore substation is centrally located. The inputs to
both of these heuristics are listed in Table 2.1.

Planar Open Savings heuristic
Length: 127,634 m

Esau-Williams heuristic
Length: 127,972 m

Wind turbines
Offshore substations

Figure 2.11: Electrical collection cable topologies made with the Esau-Williams heuristic and the Planar Open
Savings heuristic. The total lengths of both topologies are also shown.

Table 2.1: Inputs to the Esau-Williams and Planar Open Savings heuristics for designing the electrical collection
system.

Variable Unit

Number of turbines per cable type [-]

Number of offshore substations [-]

Cost per cable type (incl. installation) [€ m¹]

Layout [(m, m)]

Coordinates of onshore substation [(m, m)]

Coordinates of offshore substations [(m, m)]

ESAU-WILLIAMS HEURISTIC

The Esau-Williams heuristic 20,70 optimises the topology of the electrical collection ca-
bles. It starts from a star topology whose centre is the offshore substations and at each
iteration routes are merged if there is a saving in cable cost. The resulting optimal cable
topology is branched.

PLANAR OPEN SAVINGS

The Planar Open Savings (POS) heuristic 20,71 is a greedy algorithm that connects the
turbines to the substation in strings that form a star or radial topology. The term greedy is
used because every string is made by merging two routes that maximise the cost savings
from the current solution. In the initial solution every turbine is connected directly to
the substation using a single line.
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2.7.7. SUPPORT STRUCTURES

TEAMPLAY

The support structure sizing model of TeamPlay 10 comprises an analysis of aero- and
hydrodynamic loads for a given monopile and tower geometry. Hydrodynamic loads are
calculated using the Morison equation while aerodynamic loads are calculated by ana-
lytically integrating the drag over a cylinder. A root-finding algorithm then drives the
geometry of the entire support structure to equalise the stresses to the critical yield va-
lues. Additionally, this model sizes the rocks of the scour protection layers to ensure the
lateral loads are equal to the lateral bearing capacity of the soil without a scour hole.
TeamPlay includes an empirical cost model for the support structure as a function of
its mass and the volume of the scour protection. Only ultimate limit states are calcula-
ted for parked and operation load cases. Fatigue is neglected in the calculation and is
compensated instead by a safety factor. The inputs of this model are listed in Table 2.2.

2.7.8. COST MODEL
The cost model implemented in the tool is divided into four modules: the procurement
and installation of support structures, the procurement of the electrical collection ca-
bles, the O&M annual costs and all the other associated costs. The first two are embed-
ded into the support structures and electrical infrastructure models explained above.
The last two are explained next.

2.7.9. OPERATIONS AND MAINTENANCE
The average annual costs of O&M per MW of power capacity installed at realised offs-
hore wind plants (135,000e/MW 9) is used to estimate the total annual O&M costs. This
empirical model is thus only a function of the plant’s nominal capacity, and is not in-
fluenced by array or electrical losses. One of the outputs of this model, availability, is
kept equal to a constant percentage (98%), representative of current large offshore wind
plants at the North Sea 72.

TEAMPLAY

The cost model of TeamPlay 10 is an empirical model that yields the cost of engineer-
ing, management, insurance, procurement, installation and decommissioning of the
balance of station. The costs are a function of the number of turbines, number of sub-
stations and length of the electrical collection cables. The inputs of this model are listed
in Table 2.3.

2.7.10. OPTIMISATION ALGORITHMS
Since some of the design variables in the problem formulation are discrete (see §4.2.1),
only gradient-free optimisation algorithms are explored in this work. Furthermore, al-
gorithms known for converging to local maxima (e.g. hill-climbing) are also not explo-
red in this work. This is a consequence of the multimodality of the layout optimisation
problem 73. Feasibility is enforced at every iteration in all the following optimisation al-
gorithms.
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Table 2.2: Inputs to the TeamPlay support structure sizing model.

Variable Component Unit

Site Reference height for wind speed [m]

Wind shear exponent [-]

Highest astronomical tide [m]

Lowest astronomical tide [m]

Storm surge positive [m]

Storm surge negative [m]

50-year extreme significant wave height [m]

1-year extreme significant wave height [m]

[m s¹]50-year extreme depth-averaged current

[°]50-year extreme wave-current angle

[kg m³]Water density

[m]50th percentile soil sieve size

[m]90th percentile soil sieve size

[°]Wave friction angle

[N m³]Submerged unit weight

[-]Ambient turbulence intensity

[m]Water depth

[m]Rotor radiusWind turbine

[m]Hub height

[-]Rotor solidity

[-]Drag coefficient rotor idle

[-]Drag coefficient of nacelle

[m²]Front area of nacelle

[N]Maximum thrust

[m]Distance from yaw to hub height

[kg]Rotor mass

[m]Rotor mass eccentricity

[m]Yaw diameter

[m s¹]Wind speed at maximum thrust

PARTICLE SWARM OPTIMISATION

The Particle Swarm Optimisation (PSO) algorithm 74,75 mimics a swarm of particles ex-
ploring the design space, where each particle represents a design solution. Each particle
broadcasts information to the rest of the swarm about the best solution (lowest fitness
value) it has found at every iteration. Each particle is attracted at every time step to its
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Table 2.3: Inputs to the TeamPlay cost model.

Variable Component Unit

Wind farm

Finance

Rated power [W]

Distance to grid [m]

RNA purchase price [€]

Warranty percentage of RNA purchase price [%]

Distance to harbour [m]

[m]Rotor radius

Wind turbine

[m]Hub height

[m]Onshore transport distance

[Hz]Grid frequency

[V]Electrical transmission voltage

[V]Grid coupling point voltage

[-]Number of substations

[-]Number of turbines

[(m,m)]Layout

[-]Interest rate

[years]Operational lifetime

[%]Management percentage of CAPEX

own best-known solution and to the swarm’s best-known solution. Since PSO makes
no assumptions about the underlying function, it is particularly fit for approximating
the global minimum of multimodal functions. The layout and position of the offshore
substations are continuous design variables, whereas the number of turbines, number
of substations and electrical cable capacities are discrete. Discrete variables are dealt
with by considering them as continuous coordinates and rounding up their values to the
nearest integer when evaluating their fitness value, effectively creating a stepwise multi-
variate function.

GENETIC ALGORITHM

Genetic optimisers are algorithms based on natural evolution. They recreate the mecha-
nism by which the fittest set of individuals of a certain species survive and mate more
often than those unfit, rendering thus better offspring and improving the average fitness
at every generation 76. The genetic optimiser used in this work creates an initial set of
random individuals, evaluates their fitness (cost) function, and then selects the top 20%
of the population and 5% of the remaining individuals to increase the genetic pool and
thus the variability 77. If only a few individuals were kept, the algorithm would more ra-
pidly converge to a local optimum, without a wider exploration of the solution space.
The individuals kept then mate randomly to produce offspring which include a random
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percentage of one parent’s genes, and the rest from the other. Furthermore, each off-
spring is mutated randomly and at a random gene, with a predefined mutation probabi-
lity of 1%. Genetic algorithms have been used extensively for wind turbine blade design
and wind farm layout optimisation 8,78. The convergence of this family of algorithms is
slower than PSO since evolution is a rather slow mechanism by which species improve
their average fitness. A limitation of genetic algorithms is that the best final solution is
typically strongly dependent on the initial population, so higher variability of the genetic
pool improves the exploration of the design space.

DIFFERENTIAL EVOLUTION

Another population-based evolutionary algorithm is the differential evolution (DE) op-
timiser 79. DE, in essence, adds the weighted difference between two randomly-selected
individuals to a third individual. If the resulting mutant individual has better fitness than
a predetermined population member, then the later is replaced element-wise by the mu-
tant with a probability of 80%. The weight of the differential is typically set to 0.9. Out of
several strategies, the random selection strategy is pursued in this work. DE is designed
to handle multimodal functions and consistently converge to the global optimum.

SIMULATED ANNEALING

Simulated annealing (SA) is an optimisation algorithm based on the field of statistical
mechanics 80. SA emulates the process by which the internal energy of a crystal configu-
ration is reduced by slowly decreasing the temperature, finding ground states of matter,
where atoms are in equilibrium. In this analogy, the cost function of the optimisation
problem plays the role of the energy. Small random displacements of the atoms (or de-
sign variables) are used to explore the design space, and when a new solution has lower
energy than before, that solution is accepted. Instead, if the energy of the new solution is
higher, then the new solution is accepted with a probability that decreases exponentially
with temperature. In optimisation, the temperature decreases from high values where
the material melts, to zero where the system freezes and no changes are further allowed.
SA is therefore, a probabilistic search technique.

2.8. INPUTS AND OUTPUTS OF THE TOOL
The inputs of the tool are divided into two layers. The inputs to the outer layer are the
models to be plugged in at every module, and the top-level optimisation algorithm. The
wake models included in the AEP estimation module can be further tweaked by setting
the number of wind directions and wind speeds that are to be sampled for wake analysis.

The set of inputs to the inner layer comprises the site conditions where the offshore
wind farm is to be installed, fixed design parameters of the turbine and the plant, as well
as finance- and market-related variables.

The output of the analysis block of the MDAO workflow is the LCOE of the given wind
farm design, which is an input to the top-level optimiser.

The output of the MDAO workflow to the wind farm designer is the optimised wind
farm design and its performance. However, the workflow designers may require other
outputs to evaluate the performance of the MDAO workflow itself. The performance of
the workflow is the information needed by the workflow designer to iterate on the model
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fidelities and optimisation algorithms in the search for the set of best-performing MDAO
workflows.

2.9. IMPLEMENTATION
To facilitate modularity, the Python programming language 81 is selected for its support
for object oriented programming, wide availability of libraries and easiness to learn and
implement.

NASA’s open source framework for MDAO, OpenMDAO 82,83, is used to link the sepa-
rate modular analyses and manage the data flow of the workflow. OpenMDAO is useful
to speed up the creation and modification of input-output connections between modu-
les, and to provide a standard canonical way to declare modules with their inputs and
outputs accessible by others. OpenMDAO is also written in the Python programming
language.

The outer layer of the tool includes an interface that enables the workflow designer
to select the models to be plugged into the OpenMDAO framework.

An OpenMDAO workflow is instantiated with the set of models and number of sam-
pling points of the windrose and Weibull distributions.

The code is available for download at:
https://github.com/sebasanper/WINDOW_openMDAO.

2.10. VERIFICATION AND VALIDATION
This section is devoted to validate and verify the tool for MDAO workflow instantiation.
The analysis block of the workflow is verified and validated first, and then the optimisa-
tion algorithm is validated.

2.10.1. VERIFICATION OF THE ANALYSIS BLOCK
The verification of a computational model must answer the question: Is the model being
implemented correctly? In other words, does the analysis block do what it’s supposed to?

First, to verify whether the analysis block is implemented correctly, only the study of
the AEP model is reported. The verification of the cost models and sizing tools is repor-
ted in their original sources, and is not necessary here as the original implementations
are used in this tool.

The power production of one turbine at the offshore wind farm Horns Rev I is asses-
sed at every wind direction with the same freestream wind speed, and compared to the
values of another implementation reported in literature. Figure 2.12 shows the layout
of the Horns Rev I wind farm and the reference turbine used for verification of the AEP
module. Figure 2.13 displays the normalised power of the reference turbine predicted
by the AEP module with different wake models, as well as the power estimated by the
implementation and measured power reported by van Luvanee 84. This study is used
to first verify the correct implementation of the wake models, as all wake models yield
similar results to the van Luvanee implementation. Secondly, this study validates the im-
plementation too, as the results also fall within one standard deviation of the measured
power.

https://github.com/sebasanper/WINDOW_openMDAO
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The windrose is made with a constant and equal wind speed at all wind directions.
The difference between the Ainslie 1D and 2D models is negligible. The power peaks and
troughs coincide in wind direction for all wake models, and with the measured data.
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Figure 2.12: Layout, spacings and orientation of the offshore wind farm Horns Rev I.
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Figure 2.13: Plot of the normalised power of the reference turbine per wind direction with constant wind speed.

This study shows that the AEP model with the Jensen, Larsen, Ainslie 2D and Ains-
lie 1D wake models are correctly implemented, since the power of the reference turbine
matches well with a previously verified implementation. The reference turbine is located
inside the wind farm, and is thus subjected to wake effects from several wind directions.
Since the choice of reference turbine is made arbitrarily, it is concluded that the AEP
model is well implemented. Together with all cost models previously verified, it is con-
cluded that the analysis block is well implemented.
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2.10.2. VALIDATION OF THE ANALYSIS BLOCK
A reality referent is an abstraction of reality that a model intends to replicate. In practice,
reality is too complex and uncertain to fully be described, and instead, a representation
of reality is used. This representation—or referent—is limited to the scope of the appli-
cation at hand 85.

The validation of a tool answers the question: Is the reality referent being modelled
correctly? In other words, does the analysis block yield results that resemble the reality
referent? In this work, the reality referent for component costs, AEP and LCOE is their
expected behaviour reasoned from physical principles. Also, the reality referent for the
CAPEX breakdown is a set of values previously reported in literature.

As stated in §2.2, the MDAO workflow is meant to minimise the LCOE with respect to
design variables of multiple wind farm subcomponents. A model is only validated with
respect to its application. It can not be assumed that a model valid for one purpose is also
valid for another 86. Therefore, the following validation study does not include the pur-
pose of using the MDAO workflow as an offshore wind farm design tool, but as a model
that captures and exploits trade-offs between the design of several system components.

Instead of validating every aspect of a model and striving to measure absolute model
accuracy, one should aim at improving the confidence in the model 86. The aim, thus, is
to increase the wind farm designer’s confidence in the analysis block. Because even real
world data is inaccurate, nothing can represent reality perfectly 86.

The LCOE of an offshore wind farm is an elusive figure because it can only be preci-
sely known after the project has reached the end of its lifetime. Moreover, the LCOE of an
industrial project is typically confidential. For these reasons, and the fact that LCOE is
strongly affected by financial interests, risk management and unexpected costs, none of
which is considered in the MDAO workflow, validating the absolute LCOE value returned
by the analysis block of the analysis block is not a fruitful exercise.

Doing sensitivity studies of the output with respect to its input helps increase the
confidence in a model 86. The following sensitivity studies consist in the change of a
single input variable and keeping all others constant, and recording certain outputs. The
goal of these studies is to increase the confidence of the wind farm designer on the ability
of the inner layer of the tool to guide the optimiser towards the optimal layout.

The first sensitivity analysis assesses the responses of the normalised LCOE, AEP and
costs of the electrical collection cables to changes in the power density of the site. Power
density is decreased by linearly increasing the length of the sides of a squared site and
fixing the number of turbines within the site to 15. For every power density, a new layout
is made with a greedy algorithm that places a new turbine as far as possible from all
the previous. A flat seabed is considered to avoid any influence from water depth in
the layouts. Figure 2.14 shows the normalised values of the outputs. AEP increases with
decreasing power density as wake effects tend to disappear, eventually limiting AEP to
a constant value. On the other hand, the total cost of the electrical collection cables
increases as turbines are spaced farther apart. In consequence, at first, LCOE starts to
decrease due to higher energy yield, until the increase in costs of the electrical cables
have a greater impact than AEP. It is concluded that the analysis block correctly captures
the trends of the costs of the electrical collection cables, AEP and LCOE. As a result, the
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optimiser will be driven to place turbines closer together to minimise electrical cable
costs, but also to space turbines farther apart to maximise AEP. The optimiser will have
a trade-off to solve to minimise LCOE.
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Figure 2.14: Plot of the normalised LCOE, AEP and cost of the electrical collection cables as functions of the
power density of a wind farm.

Second, the responses of the normalised LCOE and cost of the support structures to
water depth are analysed. This is done by analysing a single layout with varying depths
of a flat seabed, so all turbines are affected identically. The results are shown in Fig. 2.15.
The cost of the foundations and the LCOE increase at deeper waters, because the support
structures need additional mass to support the higher bending moments, have longer
monopiles and deeper penetration depths. The analysis block captures a negative im-
pact of greater water depth on LCOE. Thus, the analysis block is able to correctly capture
the impact of the local bathymetry on the optimal layout.
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Figure 2.15: Plot of the normalised LCOE and cost of the support structures as functions of the depth of a flat
seabed.
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Third, the changes in the normalised LCOE, AEP and costs of the electrical collection
cables with respect to the number of turbines in a fixed area with a flat seabed are as-
sessed. For every number of turbines, a new layout is made with a greedy algorithm that
places a new turbine as far as possible from the previous ones. Figure 2.16 shows that
both the AEP and the costs of the electrical cables increase with increasing number of
turbines. A higher AEP results from adding operational wind turbines, and AEP is ex-
pected to plateau with more turbines due to stronger wake effects. Longer electrical ca-
bles to connect more turbines results in ever-increasing costs. LCOE is seen to decrease
at first due to the increase in AEP until the increase in cost of the electrical cables start
dominating the increase in AEP. The analysis block again provides the optimiser the op-
portunity to solve a trade-off between packing more turbines in a fixed area to increase
AEP and reducing the number of turbines to reduce the costs of the electrical cables.
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Figure 2.16: Plot of the normalised LCOE, AEP and cost of the electrical collection cables as functions of the
number of turbines in a fixed area.

Fourth, the normalised LCOE and costs of the electrical collection system of a wind
plant are analysed when one offshore transformer substation is located at different pla-
ces inside a squared site. The seabed is an inclined plane that rises with the positive
horizontal direction. Fig. 2.17 shows the positions of the wind turbines with blue dots,
the optimal position of the offshore substation with white circles, and heatmaps of the
costs and the LCOE. If only the costs of the electrical collection costs are considered, the
optimal position of the substation is that which minimises its distance to the turbines.
When LCOE is considered, it can be seen that water depth (in the form of additional costs
of installation and procurement of the foundation of the substation) affects the optimal
positioning of the substation too. The analysis block is able to capture the effect of wa-
ter depth and length of the electrical collection cables on the optimal positioning of the
offshore substation.

Fifth, to demonstrate that the analysis block captures the effect of modifying the ca-
pacities of up to three different electrical collection cables on the LCOE, the normalised
LCOE of all possible combinations between 0 and 7 turbines is assessed. The position
of the offshore substation and the layout are fixed. The results are shown in Fig. 2.18.
The blocks, rows and columns tell the number of turbines allowed per cable string, and



2

48 2. TOOL FOR MDAO WORKFLOW DESIGN
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Figure 2.17: Heatmaps of the normalised LCOE and cost of the electrical collection system with respect to the
position of an offshore transformer substation inside the wind farm area. Water depth increases linearly in the
horizontal direction.

the LCOE is represented with a colour scale. In this case study, the electrical collection
system with cable types that support the electrical current of up to 3, 6 and 7 wind turbi-
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nes respectively yields the lowest LCOE. This study shows that the analysis block predicts
that the use of more than one cable type leads to a decrease in costs and LCOE, as short
branches of the cable topology can be made of cheaper, lower capacity cable types. Key
to note is that the optimal combination of cable types is not a trivial solution and can
thus be optimised.
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Figure 2.18: Plot of the normalised LCOE of a wind farm with three cable capacities expressed in number of
turbines per string.

Finally, to validate that the cost models of the analysis block realistically represent
the CAPEX distribution of a utility-scale offshore wind farm in the North Sea, a com-
parison is made between the cost distributions modelled and published in literature.
Figure 2.19 shows the CAPEX distribution of the offshore reference wind plant of the IEA
Wind Task 37 73. Table 2.4 summarises the CAPEX distribution of the cost model and
those published by NREL 9, IRENA 44 and the compilation made by Crabtree et al. 43. The
CAPEX distribution calculated by the analysis block is deemed to be within the bounds
reported in literature, and thus correctly captures the relative importance of designing
the different system components.

2.10.3. VALIDATION OF THE OPTIMISATION ALGORITHMS
To validate whether the PSO algorithm coupled in the MDAO workflow optimises LCOE
better than by random sampling the design space, LCOE is minimised with respect to
the wind farm layout, number of turbines, number and positions of the offshore trans-
former substations and the ratings of the collection electrical cables. The percentiles of
LCOE as sampled by the optimiser and a random sample of the same size is shown in
Fig. 2.20. These results suggest that the PSO samples the design space at points closer to
the optimum than a random sample.

To validate if the PSO algorithm is reaching sensible optimal solutions, three layout
optimisations are carried out with different objective functions: AEP, electrical collection
costs, and support structure costs.

The case study is performed for the reference wind plant of the IEA Wind Task 37.
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Figure 2.19: CAPEX breakdown of a large offshore wind farm in the North Sea, calculated with the MDAO
analysis block’s cost models.

Table 2.4: CAPEX breakdown of a large offshore wind farm in the North Sea calculated with the MDAO workflow
and reported in literature. Note that columns do not sum to 100% as some costs may belong to more than one
concept.

MDAO
analysis 
block [%]

NREL [%] IRENA [%] Crabtree et al. [%]
Component

36 33 44 36-41WT procurement

41 52 57 41-56WT procurement and
installation

48 47 43 40-59Balance of station

7 19 13 20BOS installation

22 9 17 14-24Electrical infrastructure

19 14 16 18-22Support structures

The site is the Borssele wind energy area off the coast of the Netherlands, with 74 10 MW
wind turbines installed 73. A minimal inter-turbine spacing of 2D is enforced in all three
cases. Each optimisation run consists of 24 particles in the swarm and the termination
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Figure 2.20: Percentiles of LCOE as sampled by the PSO optimisation algorithm and a random sample of the
same size.

criterion is a number of time steps equal to 300. In total, the analysis block is called 7200
times.

Figure 2.21 shows the three resulting layouts of this validation activity. The AEP-
driven layout increases the inter turbine spacing, and places half of the turbines on the
site’s boundaries to minimise wake effects. The layout found with electrical costs as ob-
jective function pulls all the turbines as close as possible to the offshore transformer,
to minimise the length of the electrical collection cables. The last layout driven by the
cost of the foundations places most of the turbines on the shallowest regions of the site.
Table 2.5 shows the improvement of the three optimised objective functions and LCOE
compared to a baseline design made with a greedy algorithm that spaces turbines as
far as possible from each other 73. The large spacings between the turbines of the base-
line design is the reason why AEP sees the least improvement in the optimisation, while
electrical cable costs sees the highest. The LCOE actually increases when the objective
functions are the cost of the electrical system and the cost of the support structures.
LCOE decreases more, however, when minimising the LCOE than when maximising AEP.
It is concluded that if the MDAO workflow is able to drive the layout towards optima-
lity for different objective functions, then it is also able to find the trade-off between the
three objective functions when minimising the LCOE.
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Figure 2.21: Optimised wind farm layout designs according to three objective functions: AEP, cost of the elec-
trical collection cables, and cost of the support structures.

Table 2.5: Improvement in the objective functions of the optimised layouts with respect to a baseline design.

Improvement of the
optimised design

LCOE improvement of
the optimised designObjective function

1.96% 1.03%AEP

51.98% -7.36%Electrical collection cables cost

3.42% -0.02%Support structures cost

— 1.12%LCOE



A guideline for selecting the most useful models and optimisation 
algorithms for an MDAO workflow for a predefined use case is presented.
The guideline is separated into two phases. In the first phase the most 
useful analysis blocks are found, and in the second these are coupled to 
multiple driver algorithms to select the overall most useful MDAO 
workflows. Both phases are further subdivided into guidelines for the 
evaluation, comparison and ranking of alternatives. 
The selection process is treated as a multiple criteria decision analysis, 
where criteria are defined, scored and aggregated to detect the 
best-performing alternatives.

Guideline for
MDAO workflow
selection
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Decision makers can satisfice 
by finding optimum solutions for a simplified world,

or by finding satisfactory solutions for a more realistic world.

Herbert A. Simon
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3.1. INTRODUCTION
Section 1.5 lays the case for selecting the most useful MDAO workflows for a given use
case. The guideline presented in this chapter responds to that need, formally expressed
in the description of Task 2 in §1.7:

Develop a guideline for evaluating, comparing and ranking MDAO work-
flows for a given use case in the field of offshore wind farms.

It is emphasised that the differences in the MDAO workflows treated by this guideline
lie in the fidelity of the models coupled, as well as the choice for driver algorithm.

Ideally, MDAO workflows should yield results of the highest quality, in an inexpensive
way. In practice, however, these two objectives can not be met simultaneously. There-
fore, the evaluation of the performance of an MDAO workflow should judge how good
its results are and the cost of achieving them. For practical reasons, the quality of the
results by an MDAO workflow is traced back to the quality of the results of the analysis
block and the quality of the results provided by the driver. Analogously, the cost of the
entire workflow is divided into the cost or use of resources of the analysis block and those
of the driver.

Key in this work is to recognise that the behaviour of a system cannot be predicted
by aggregating the behaviour of its components, but it will also be a function of their
interactions. This remark leads us to suspect, likewise, that the realism of an analysis
block cannot be estimated by only measuring the realism of its isolated constituent mo-
dels. Instead, the realism of the analysis block as a whole should be assessed. Evaluating
the realism of the analysis block by comparing its output with measured data is a more
informative activity than evaluating the realism of the individual models coupled into it.

The following is an example of a two-way interaction between two phenomena in a
wind farm that translates into a key coupling that affects the evaluation of the realism
of two coupled models that simulate both phenomena. The total energy harvested by
a wind farm is a function of the local wind speed experienced by every wind turbine,
which in turn is a function of the wake effects. Equally important, the energy conver-
ted by every wind turbine is a function of the fraction of time that they are operational,
also known as their availability. Consequently, in order to estimate the total electrical
energy converted by a wind farm realistically, both the wake effects and the availabi-
lity of the turbines—among others—should be taken into consideration. Consider an
analysis block that includes the simulation of both phenomena to estimate the energy
converted by a wind plant. Suppose, furthermore, that for the purpose of benchmarking
the accuracy of both simulations independently, the measurement of the electricity con-
verted by a real wind farm is available. The measurements consist of a time series of the
local wind speed experienced by every turbine, the time it is operational and the total
energy produced by the wind farm. The total energy produced by the wind plant will
naturally be determined by the wake effects and availabilities. However, it will also be
determined by two interactions: first, the wake behind every turbine is responsible for
higher induced loads at the downstream wind turbines, which lead to higher failure rates
and thus, lower availability. Second, a non-operational wind turbine due to a failure or
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planned maintenance will lead to a change in the farm wake effects. Hence, besides the
validity of each model, the validity of the coupled analysis block needs to be ensured.

Notwithstanding, it is acknowledged that currently the most common way of valida-
ting models that simulate individual system components is by isolating the component
in an experimental set-up that avoids complex interactions, even if it is not representa-
tive of the real environment.

Because the usefulness of an MDAO workflow relies on several, often conflicting cri-
teria (that collectively quantify cost and quality of the results), the selection of MDAO
workflows is treated as a Multiple Criteria Decision Analysis (MCDA) problem. MCDA
helps a decision maker resolve the trade-offs between criteria 87.

This chapter contains a description of the requirements that the guideline must ful-
fil. Then, the conceptual design of the guideline and a detailed description of the steps
and activities recommended for selecting the best-performing MDAO workflows is pre-
sented.

3.2. REQUIREMENTS OF THE GUIDELINE
The guideline will be designed to comply with certain functional and non-functional
requirements. The only functional requirement is the ability to semi-autonomously rank
the alternative MDAO workflows with respect to their overall utility for a predefined use
case. The non-functional requirements are that the guideline is:

• concrete, with the goal of it being understandable to workflow designers and unam-
biguous, to avoid personal interpretations;

• flexible, so it can accommodate the specific requirements of workflow designers
and adapt to their use case and set of MDAO workflows;

• objective, so the opinion of the workflow designer has minimal impact on the
choice of models and driver algorithm to be coupled and thus providing the gui-
deline with higher credibility;

• simple, for wide deployment, accessibility and acceptability.

3.3. CONCEPTUAL DESIGN
Evaluating the utility or usefulness of an MDAO workflow is in the broadest sense com-
posed of two parts: scoring the performance of MDAO workflows according to multiple
criteria, and aggregating the scores with an MCDA method to yield an overall utility. This
approach should make the guideline meet the requirement of being objective. Accor-
dingly, the guideline includes rules to evaluate, compare and rank the alternative MDAO
workflows.

However, the criteria may be conflicting, and thus, in this guideline, the concept of
solving the trade-offs between criteria is interpreted as finding the set of non-dominated
solutions or Pareto front, explained next.

Given two analysis blocks, W1 and W2, the standard definition of dominance is used
to compare them: W1 dominates W2 if it satisfies the following two conditions:
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1. Ck (W1) ≤Ck (W2) ∀k ∈ (1, . . . ,n),

2. ∃k ∈ (1, . . . ,n) 3Ck (W1) <Ck (W2),

where n is the number of criteria and Ck (Wl ) is the score of the l-th analysis block
with respect to the k-th criterion.

When an alternative is not dominated by any of the other alternatives, it is said to be
non-dominated. Due to the conflicting nature of the criteria, usually several alternatives
are non-dominated, and the set of non-dominated alternatives form what is called the
Pareto front of a design space. Solutions in the Pareto front solve the trade-offs between
competing criteria and it is then up to the designer to select a subset of solutions for furt-
her exploration by assigning higher preference to certain criteria.

Because certain criteria require the execution of the MDAO workflows—some of them
multiple times—, attempting to choose the workflow in its entirety at once is intracta-
ble due to the high computational burden of scoring the metrics that are proposed for
the judgement of workflows. In consequence, the guideline for selecting the most use-
ful MDAO workflows is divided in two sequential phases: selecting first the most useful
analysis blocks and then the most useful driver algorithms. By dividing the guideline in
two phases, all driver-analysis interactions are neglected. This is considered a reasona-
ble assumption because the analysis block simulates a part of reality while the driver is a
mathematical artificial technique that determines which design solutions are evaluated.
The performance of the driver therefore relates directly to the nature of reality and only
indirectly to the nature of the analysis block by which reality is represented.

MCDA problems can typically be classified into two groups: those with a finite num-
ber of alternatives explicitly defined, and those with an infinite number of unknown so-
lutions or a very large number with discrete variables. The problem of analysis block
selection of Phase 1 belongs to the second group due to the large number of permuta-
tions that may result from having access to many models and the workflow containing
many modules.

There are three categories of MCDA techniques based on their underlying theory:
outranking methods, utility function-based methods, and multiobjective programming
support 88. The first two categories are better suited for MCDA problems with a finite
number of alternatives explicitly defined. Multiobjective programming, the paradigm
followed in this work, is meant to support problems with a very large number of alterna-
tives with discrete variables.

Due to the large amount of different analysis blocks, it is foreseen that it will be in-
tractable to score all the alternatives in a reasonable amount of time. Therefore, it will be
necessary to sample the space of alternatives in a smarter way using multiobjective pro-
gramming. In contrast, the usually low number of alternative driver algorithms should
be solved with an outranking or utility function-based MCDA method, where all the al-
ternatives are scored.

Consequently, phase 1 is formulated as a multiobjective optimisation problem that
yields the Pareto front of the most useful analysis blocks, while phase 2 is a multicrite-
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ria decision problem that yields the most useful driver algorithms by means of applying
MCDA techniques. Combined, both phases yield the most useful MDAO workflows. Fi-
gure 3.1 sketches the outline of the guideline.

Key:

Most useful
MDAO workflow(s)

Alternative MDAO workflows

+

PHASE

PHASE

Evaluate
analysis block
multicriteria

performance

Evaluate
MDAO workflow

multicriteria
performance

Multiobjective optimiser
for analysis blocks (MOPSOC)

MCDA for
MDAO workflows

Analysis
block

Design variables of
MDAO workflow

selection problem

Most useful
analysis block(s)

Driver
algorithm

(e.g. optimiser)
Use case

Criteria scores

External dataCase study

MDAO workflow
scores

Analysis block
scores

Selection method

Criteria scoring

Figure 3.1: Diagram of the phases and procedures described in the guideline for MDAO workflow selection.

To generate the alternatives that will be subject to evaluation and ranking, feasible
MDAO workflows have to be instantiated with the permutations of the models and driver
algorithms available. At this point, all unfeasible workflows (which cannot be connected
due to input-output variables inconsistencies) are discarded.

Figure 3.2 sketches what is meant by workflow feasibility. If models A1 and A2 are
available for module A, and models B1 and B2 for module B, the four possible analysis
blocks that can result are A1−B1, A1−B2, A2−B1, A2−B2. Of these, workflow A1−B2
can be discarded, as B2 requires inputs that cannot be obtained from the outputs of
A1. There are then three feasible MDAO workflows from which to select the most useful
(workflows 1, 2 and 4).

Having set the feasible alternatives from which to select the best MDAO workflows,
the workflow designer can define further constraints on the workflows to reduce the size
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Figure 3.2: Diagram of four possible MDAO workflows where two modules can be filled by two tools each.
MDAO workflow 3 is the only non-feasible alternative.

of the set, such as the requirement that models provide analytic derivatives or be pro-
grammed in a specific language.

The following sections describe, in agreement with the outline, the selection of analy-
sis blocks first and then the selection of driver algorithms.

3.4. ANALYSIS BLOCK SELECTION
To get from a set of analysis blocks to a subset of the best-performing alternatives (a
Pareto set), the guideline proposes to perform the following activities:

1. Define the criteria and metrics that judge the utility of the analysis blocks.

2. Formulate the multiobjective optimisation problem in terms of the objective
functions and constraints.

3. Run the multiobjective optimiser to to find an approximation of the Pareto front
of alternatives.

4. Reduce the cardinality of the Pareto set, if judged necessary by the workflow de-
signer.

The following sections describe these activities in more detail.

3.4.1. DEFINITION OF THE CRITERIA
In MCDA, alternatives are evaluated with the purpose of comparing them. This means
that the evaluation of the usefulness of an analysis block is useless if there is a single al-
ternative. Instead, when multiple alternatives are present, there are qualitative aspects
in which several alternatives stand out. In this work, these aspects are called objecti-
ves and sub-objectives, which are, in turn, measured with quantitative criteria. Because
the alternatives are meant to be useful, criteria typically correspond with tangible (sub-
)objectives they must comply with.
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Examples of criteria that may be of relevance to the evaluation of an MDAO analy-
sis block include: accuracy, precision, repeatability, detail, range, resolution, sensitivity,
execution time, convergence, parallelism, feasibility, robustness, presence of analytical
derivatives, availability, integrability, interoperability, causality, consistency, program-
ming complexity, numerical stability, temporality, dependency, accountability, augmen-
tability, communicativeness, completeness, conciseness, device-independence, efficien-
cy, legibility, self-containedness, self-descriptiveness, structuredness and open-source-
ness 85,89–91. The exact interpretation of these criteria is still a matter of debate.

To shortlist the criteria used to evaluate the feasible analysis blocks, this guideline
proposes to combine two methods.

The first method is a top-down approach where the following question (Q) is answe-
red (A) recursively:

What makes an MDAO analysis block [(sub-)objective here]?

An example of this process is:

◦ Q: What makes an analysis block useful?

◦ A.1: its practicality to the use case and realism.

◦ Q: What makes an analysis block practical?

◦ A.1: its ability to achieve a solution fast and use resources efficiently.

◦ A.2: its suitability to represent reality.

and so on.

The second method, in contrast is a bottom-up approach, where the meaningful dif-
ferences between the alternatives are listed and then structured to higher level objecti-
ves. For example, if some analysis blocks are entirely made of open-source models, and
some are not, this difference can then be take into account by an open-sourceness crite-
rion, in turn responding to an objective that favours cost-effective solutions. Therefore,
this method is informed by doing static and dynamic analysis of the different analysis
blocks to discover potential differences and how meaningful they are. Static analysis, for
evaluating criteria such as open-sourceness, do not need to execute the workflow and
assess its structure, while dynamic analyses, to evaluate criteria such as execution time,
do need to execute the workflow.

In this way a criteria tree is progressively built where each branch is a sub-objective
and the branches at the lowest level are the criteria to be measured. Every use case might
have different sub-objectives, e.g. optimisation would have high optimality as one of its
objectives, whereas a design certification use case would care for low uncertainty of the
outputs.

An example of a criteria tree for judging analysis blocks is provided in Fig. 3.3.

The difficult task is, however, to identify the relevant and most useful criteria for each
specific use case and set of available alternatives. The reason why the set of alternatives
may impact the criteria tree development process is that in practice, the alternatives will
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Figure 3.3: Example of a criteria tree for the multiple criteria decision analysis of MDAO analysis blocks.

share certain attributes and differ in others. It is their differences that need to be detected
by the criteria.

Keeney and Raiffa 92,93 state that the list of criteria with which MCDA shall be per-
formed must comply with five attributes: completeness, operability, decomposability,
non-redundancy and size. The meaning of these five attributes is explained below, al-
ong with a discussion of how they are addressed in the guideline.

Completeness addresses the adequacy of the list of criteria to meet the overall ob-
jective (in this case usefulness) and if its sub-objectives cover all areas of concern related
to the performance of an analysis block. A test for completeness entails logical deductive
and inductive reasoning for proving that no gaps are left by the chosen objectives and cri-
teria. The goal of this test is to have the list fully describe the utility of each alternative.
By making a criteria tree with the methodology proposed in this guideline, gaps are more
easily identified and dealt with from the early inception of the list.

Operability means that criteria must be meaningfully used in MCDA, have metrics
that make (sub-)objectives measurable, be understandable and pragmatic, and be useful
for making decisions. Measurable criteria should be a monotonic metric that produces
values or probability distributions that reflect the decision maker’s preference between
alternatives. The requirement for monotony on the metrics guarantees transitiveness
between the decision maker’s preferences of alternatives. In addition, criteria are re-
sponsible for advocating for a particular alternative, so they should represent differen-
ces in the alternatives. If all available alternatives have the same negative or positive
attribute, then a criterion quantifying that attribute will not comply with the operabi-
lity attribute. Operability is addressed in this guideline by means of argumentation. The
MCDA is based on the premise that the predefined metrics explain the variability in the
performance of the alternatives and thus, the operability of the metrics can be deducted
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from analysing the scores of the alternatives throughout the MCDA.
Decomposability refers to the capacity of a list of criteria to be arranged in the form

of a tree. A decomposable list of criteria allows the decision making problem to be disag-
gregated into smaller problems, since criteria will fit a hierarchy. Furthermore, decom-
posing a problem guarantees that criteria can be measured one at a time and they should
have no explicit dependencies on other criteria. The list-building approach proposed in
this guideline also guarantees decomposability.

Non-redundancy in the list of criteria strives to avoid double counting any effect.
Criteria must be pairwise independent. There exist a number of correlation measures
that determine the degree of independence between the scores of any two criteria, and a
correlation matrix helps determine whether some criteria can be discarded or combined
into one. It is stressed the fact that non-redundancy is tested for the list of criteria that
govern the selection problem at hand in combination with the tested MDAO workflows,
and does not attempt to elevate the overlap between criteria to an absolute truth.

Size refers to the number of criteria and should be kept as small as possible. Follo-
wing Occam’s razor, there is great value in avoiding unnecessary complexity.

3.4.2. FORMULATION OF THE MULTIOBJECTIVE OPTIMISATION PROBLEM
Once the criteria and their metrics to evaluate the performance of an analysis block are
defined, the scores of the alternative analysis blocks with respect to these individual cri-
teria can be jointly optimised with a multiobjective optimisation algorithm.

The problem formulation of the optimisation problem is stated as:

minimise
W

Ci (W ) i ∈ (1, . . . ,n),

subject to: C j ≤ R j j ∈ (1, . . . ,m)

where it is assumed that the criteria to be minimised (Ci ) and the criteria to be con-
strained (C j ) are subsets of all the criteria. These need not be mutually exclusive. R
stands for the criteria scores that the workflow designer sets as constraints, and W is the
categorical vector that defines the models implemented in the analysis block.

The choice of which criteria to use as objective functions or constraints is left for the
workflow designer to make.

The use case can provide significant hints towards making this decision, e.g. an op-
timisation may benefit from having low execution time of the analysis block as one of
the objective functions, and keeping its accuracy as a constraint, as the overall goal of
the optimisation is not to reduce the error with respect to a referent, but to capture the
trends in the behaviour of the system performance with respect to the design variables.

The following analysis is meant to provide insight into the differences of the Pareto
front of analysis blocks when the optimisation problem is formulated differently.

In the extreme case where all criteria are constrained and none are minimised, the
first feasible alternative found that satisfies all constraints will be the solution, as there
is no global best solution in the MOPSOC algorithm.

When one criterion is minimised and the rest are treated as constraints, the multiob-
jective optimiser will move the swarm along a single dimension as long as the solutions
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are feasible. A single solution will be returned by the algorithm. Figure 3.4 shows the
solution of this case in two and three dimensions.

C2

C1

C1

C2

C3

Figure 3.4: The green dot shows the solution of a multiobjective optimiser when the criterion C1 is treated as
the single objective function and the rest as constraints, in two and three dimensions.

Figure 3.5 shows the 2-dimensional Pareto front yielded by the multiobjective opti-
miser if two criteria are jointly minimised and the rest are constrained.

C3

C1

C2

Figure 3.5: The green line shows the solution of a multiobjective optimiser when the criteria C1 and C2 are
treated as objective functions and C3 is constrained.

In general, if there are m criteria, of which n are minimised and m−n are constrained,
the Pareto front of analysis block will have n dimensions.
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Lastly, when all criteria are jointly minimised, the multiobjective optimiser will pro-
vide an approximation of the entire Pareto front of the alternatives.

3.4.3. EXECUTION OF THE MULTIOBJECTIVE OPTIMISER
This section describes the procedure by which the Pareto front of the alternatives is
found.

While the Pareto front be can found by scoring and comparing all alternatives pair-
wise, this becomes unfeasible when the analysis blocks have several modules and there
are several models available to each module.

The proposal in this guideline is to approximate the Pareto front by means of a com-
binatorial multi-objective optimisation algorithm. This algorithm works by minimising
all criteria, so lower scores in metrics are expected to represent a higher preference of
the workflow designer.

The design variables of the optimisation formulation at hand are categorical by na-
ture (module A, module B, etc.), while the objective functions are continuous (the scores
of the analysis blocks with respect to the metrics of the criteria). As a consequence, it is
necessary to use an optimiser for categorical variables.

Although a genetic algorithm for this type of problems exists 94, it was deemed va-
luable to develop a new algorithm based on the particle swarm optimisation (PSO) al-
gorithm 95. PSO is a family of nature-inspired algorithms, where a swarm of particles
traverses the design space, where every particle is influenced by a combination of its
individual cognition and the collective behaviour of the swarm 75. PSO algorithms con-
verge faster than genetic based algorithms as the latter rely on long-term evolution while
the former aggregates the short-term social knowledge of the swarm 96, and their explo-
ration capabilities for finding the global optimum are enhanced by randomly scaling the
velocity vectors and by adding a turbulence variable—sometimes referred to as crazi-
ness.

The new Multiobjective Particle Swarm Optimisation algorithm for Categorical Vari-
ables (MOPSOC) 95 proposed here uses probability distribution functions as design va-
riables instead, and the Pareto front (even if non-convex) is approximated by using dy-
namic weight aggregation and an archive of non-dominated solutions. The next section
describes the MOPSOC algorithm in detail.

The output of the MOPSOC algorithm is an approximation of the set of analysis
blocks that dominate all others, across multiple criteria. As explained before, this is the
approximated Pareto front. These analysis blocks are candidates to be included in the
most useful and thus optimal MDAO workflows.

MOPSOC
Particle Swarm Optimisation (PSO) 75 is a heuristic algorithm originally developed for
approximating the global optimum of functions of continuous variables. In nature, a
swarm of bees or a flock of birds collectively explores its surroundings for a source of
food that can provide for the entire colony. This mechanism is the inspiration for PSO,
as every individual particle will fly about in the design space remembering the minimum
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Figure 3.6: Particle Swarm Optimisation. The red particle’s velocity is the linear combination of three velocity
components driven by inertia, the global best solution and its own local best solution.

(or maximum) value of the underlying function it has encountered so far. This point in
the search space is called the local best Pl

i , and every particle will have its own. Meanw-
hile, particles broadcast their local best solution to all other particles, so that they are all
aware of the best global solution Pg found by all particles together.

The process that updates the velocity of particle i at time step j , v j
i , is sketched in

Fig. 3.6. Particles are attracted from their current position x j
i at every time step to Pl

i

and Pg with cognition and social weights w l and w g , respectively. Both the cognition
and social velocity vector are multiplied by random numbers r1 and r2 in [0,1]. Particles
also keep their velocity from the previous time step, with a weight w i n that represents
their inertia. The sum of the three resulting velocity vectors yields the particle’s velocity

with which its new position x j+1
i is calculated by using a time step equal to one (∆T = 1).

Finally, a random mutation in [0,1], called turbulence (δ), is added to the velocity with
probability Pδ, leading to the following equations of motion:

v j+1
i = w i n v j

i + r1w g (Pg −x j
i )+ r2w l (Pl

i −x j
j )+δ,

x j+1
i = x j

j +v j+1
i ∆T. (3.1)

The ratio between the inertia, cognitive and social weights can drive the swarm to
converge prematurely to a local optimum or to converge very slowly to a single global
optimum or to multiple local optima. However, there have been meta-optimisation stu-
dies that recommend particular sets of weights 97.

This section describes MOPSOC (Multiobjective Particle Swarm Optimisation for Ca-
tegorical variables), a hybrid PSO algorithm that leverages and slightly modifies two ex-
isting mechanisms: the adaptation of PSO to single objective functions of categorical
variables by Strasser et. al. 98, and the multiobjective Pareto-front-finding algorithm for
functions of continuous variables by Jin et al. 99.

Concerning previous related work, there is one alternative optimisation algorithm
that could potentially handle functions of categorical variables, namely genetic algo-
rithms (GA), in particular the NSGAII algorithm 94. However, as published, NSGAII is



3.4. ANALYSIS BLOCK SELECTION

3

65

x1 x2 x3

P31
P21

P32

P22

P33

P23

P240.35

1

0.10

0.20

0.25

0.10

0

Figure 3.7: Diagram of the discrete probability distribution of three categorical variables. Variable x1 admits
five possible values, x2 four and x3 three.

validated and tested with functions of continuous variables and the encoding and de-
coding operators would need to be adapted for categorical variables. Beyond genetic
algorithms, there exist a few multiobjective Particle Swarm Optimisation algorithms for
mixed-integer problems 100, but they use continuous operators for discrete ordinal va-
lues and then assign the new particles the closest discrete value. This notion of distance
is meaningless for unorderable categorical variables.

The capabilities of MOPSOC to execute multiobjective optimisation and explore no-
minal design spaces are described in the following sections.

Categorical variables feature A key characteristic of categorical variables is that their
ordering is a spurious and misleading exercise. Generally, it cannot be stated that an
apple is two or three times an orange, so they should not be assigned integer values but
rather a symbolic, otherwise meaningless code. Therefore, MOPSOC ignores any infor-
mation regarding the possible order of the alternative values of a categorical variable.

As described with more detail by Strasser et al. 98, the particle swarm lives in a space
of discrete probability distributions (DPD). Every dimension of categorical data of the
original problem is now described by a DPD that expresses the probability of that dimen-
sion taking on each of the possible values of that variable. To illustrate the new search
space, letχi be the DPD of the i -th entry of the position vectorχ= (χ1,χ2, . . . ,χm), then:

χi = {P xi 1,P xi 2, . . . ,P xi n},

where P xi j = P x(xi = y j ) is the probability that variable xi takes on the nominal value y j

(y is the vector of categorical alternatives for variable xi ), and n = n(i ) is the number of
possible values of the variable xi . Figure 3.7 shows the DPD of three categorical variables.
This formulation increases the number of dimensions of the swarm to

∑
i n(i ). Note that:

n∑
j=1

P xi j = 1.

In an analogous manner, νi = {P vi 1,P vi 2, . . . ,P vi n} is the velocity in the probability
distribution sub-space of the i -th dimension of the velocity vector ν= (ν1,ν2, . . . ,νm).
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The global and local best positions are expressed as χg and χl
k , where subscript k is

for the k-th particle of the swarm.
By definition, χ and ν belong to a continuous space bounded by 0 and 1, and thus

the subtraction and summation operators needed for PSO (Eq. 3.1) can be applied albeit
with slight modifications.

Subtraction and summation in Eq. 3.1 operate component-wise on the probability
distributions. After a particle’s position is updated, if one of its new probabilities is less
than zero or greater than one, it is reassigned to the nearest boundary and the DPD is
renormalised to ensure the sum remains equal to one.

Since particles represent probability distributions, the solutions to be evaluated by
the fitness function are obtained by sampling the DPDs a user-defined Ns times and
then taking the mode of the values of the samples. On one hand, when the DPDs are
sampled once (Ns = 1), similar distributions have a higher probability of having radi-
cally different fitnesses. On the other hand, when Ns →∞, similar distributions tend to
yield the exact same solutions and have the same fitnesses, thus increasing the risk of
prematurely converging at a local minimum.

Furthermore, when the global (and local) best solution is assigned a new distribu-
tion, it is ensured that sampling χg (and χl

k ) returns a solution similar to the sample
s = (s1, s2, . . . , sm) produced by sampling the new distribution. This is done because the
fitness value is valid for s, and not for χ. The mechanism to do so is the following:

P xg
i j =

ε×P xi j for y j 6= s j

P xi j + ∑
l 6= j

(1−ε)×P xi l for y j = s j
.

In other words, the probability of the values of the global best distribution that are
not equal to the mode of the samples are scaled by a user-defined factor ε, and the value
that corresponds to the mode absorbs the reductions in the probabilities of the other
values. This is done equivalently for the local best solutions.

Additionally, MOPSOC includes the option to add turbulence to particles with pro-
bability Pδ, which adds randomness to the search and may increase the exploration ca-
pabilities of particles at the cost of slower convergence.

Multiobjective feature The second core feature of MOPSOC is its ability to find the set
of non-dominated solutions with respect to multiple criteria.

This section describes the concept of an archive that stores the Pareto front at every
time step of the optimisation algorithm.

MOPSOC uses the Dynamic Weighted Aggregation (DWA) technique to approximate
the Pareto front 99. A weighted sum of the n criteria Ck and weights ak is expressed as:

n∑
i=1

akCk .

Aggregating the criteria into a single objective function using the weighted sum leads
the optimiser to converge to a single non-dominated solution. However, according to Jin
et al. 99, a gradual change in the weights forces the optimiser to move along the Pareto
front whether it is convex or concave. It is important to note that it should be ensured
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Figure 3.8: Diagram of the Pareto front, the isolines of the weighted sum and the origin of the α angle that
characterises the ratio between the weights.

that the metrics of all the criteria cover the same range, for example by normalising them.
This lets the weights represent only the ratio between the preferences of the criteria and
avoids the weighted sum to be influenced by their different scales.

Constraints are dealt with in MOPSOC by adding penalties to the weighted sums of
infeasible solutions.

Since the global optimum of the swarm moves slowly along the Pareto front, an ar-
chive is kept and maintained at every time step to store the non-dominated solutions
found so far. The archive has a user-defined size and at every time step it is evalua-
ted whether particles in the swarm dominate solutions in the archive and replace them
accordingly. To avoid non-dominated solutions that are too similar in the archive, a mi-
nimum Euclidean distance is enforced with respect to all solutions in the archive to be
admitted into it.

Dynamic Weighted Aggregation (DWA) relies on the generation of weights at every
iteration. This algorithm includes a novel approach to generate the weights of the DWA,
regardless of the number of objective functions. The concept is exemplified first in two
dimensions, and then extended to higher-dimensional spaces.

The slope of the isolines (∆ f2/∆ f1) of the weighted sum is equal to the ratio−w1/w2 101,
as shown in Fig. 3.8.

Taking into account that the solution of the weighted sum problem is always Pareto
optimal, without loss of generality, the big yellow circle in Fig. 3.8 will represent the solu-
tion for a given set of weights. This point lies in the intersection of the Pareto front with
the line tangent to the curve, which is parallel to the isolines of the weighted sum. The
direction normal to the tangent is characterised by the angle α equal to the arctangent
of the weights ratio:

α= t an−1(w2/w1).

Therefore, ifα is regularly sampled from the range bounded by the angles 0◦ and 90◦,
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and w1 = 1 is fixed as the reference weight, then the set of weights for w2 can be obtained
with:

w2 = t an(α).

Because the tangent function diverges at 90◦, the sample cannot include this value,
but can be arbitrarily close.

In particular, at the lower extreme of the Pareto front, the weighted sum function is
horizontal, and has its minimum at the minimum of the objective function f2. This line
has a gradient of zero (−1/w2 = 0), which results when w2 →∞. At the opposite upper
extreme, when the vertical weighted sum function has a gradient of infinity, w2 is equal
to zero. Halfway through the range, at an angle of 45◦, w2 = w1 = 1 and both functions
have thus the same importance on the weighted sum.

In problems with n objective functions, this concept holds. The normal to the n −1-
dimensional isosurfaces of the weighted sum is the vector of weights 101. The search has
to fill the space defined by [0◦, 90◦)1 × [0◦, 90◦)2 × . . .× [0◦, 90◦)n−1, since one reference
weight can be made equal to 1. Ideally, traversing the angles space should not have ab-
rupt changes to let the particle swarm traverse the Pareto front smoothly.

It is furthermore suggested, when possible, to traverse the angle(s) space more than
once to reduce hysteresis effects.

Algorithm MOPSOC is condensed in Algorithm 1. It is broken down into five sections:
initialisation of particles and archive (lines 2-4), fitness evaluation (lines 9-12), DWA (li-
nes 15-16), PSO operators (lines 19-20) and management of archive of non-dominated
solutions (lines 23-33).

3.4.4. REDUCTION OF THE PARETO FRONT
The set of non-dominated solutions found by MOPSOC might be too large to be carried
onto the next phase. It is also possible for the workflow designer to get rid of certain
solutions by setting new constraints a posteriori on the scores of the criteria.

The most common approach for reducing the size of the Pareto front, is to rank the
non-dominated alternatives based on their distances either to the utopia point or the
anti-ideal points 102. The distance can be calculate using different norms, most notably
the 1, 2 and ∞-norms. This method belongs to the family of methods that find the knee
regions. The knee of the Pareto front is where a small improvement along one criterion
leads to a large deterioration in at least one other criterion 103. Knee regions are usually
the most interesting for a designer with no articulated preferences.

Furthermore, the utopia point can be defined as the non-existing alternative that
scores the lowest possible values in all criteria, or the non-existing alternative that scores
all the lowest values found within the Pareto front. Similarly, the anti-ideal point scores
the worst possible values across all criteria. It is necessary to normalise the values of
the criteria for finding their distances to utopia points. This method can be combined
with the preferences of the designer by weighting the differences in values along every
criterion in the overall distance norm.

Another approach to rank the alternatives, independent of the ranges of the values of
the criteria, is to average the rankings of the solutions along every individual criterion 104.
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Algorithm 1 Multiobjective PSO for Categorical Variables

Require: archive size Na , number of samples Ns , number of time steps Tmax , number
of particles, w i n , w g , w l , ε, Pδ

Ensure: Archive of non-dominated solutions
1:

2: Randomise positions and velocities χ, ν
3: Set global and local best fitnesses at infinity
4: Create empty archive
5:

6: for T = 0 to Tmax do
7: Old swarm ← swarm
8: –Evaluate fitnesses–
9: for n = 0 to Ns do

10: Sample the positions of the swarm
11: Calculate mode of samples of the swarm
12: Evaluate criteria at the modes of the swarm
13:

14: –Dynamic Weighted Aggregation–
15: Generate DWA weights for current time step
16: Sum weighted criteria
17:

18: -PSO operators–
19: Update local and global best solutions using weighted sums, ε and Pδ

20: Calculate new velocities and positions of the swarm using w i n , w g , w l

21:

22: –Archive management–
23: for particle pi in swarm do
24: if pi dominates a particle in old swarm and pi is not dominated by any solution

in the archive and pi is not similar to any solution in the archive
25: if archive size ≤ Na

26: add pi to the archive
27: else if pi dominates any solution a in the archive
28: replace a with pi

29: else if any solution a1 in the archive dominates another solution a2

30: replace a2 with pi

31: for a1, a2 in the archive do
32: if a1 dominates a2

33: remove a2

This approach can be combined with designer’s preferences by weighting the individual
rankings per criterion.

The k-modes algorithm is an extension of the well-known k-means algorithm for
finding representative solutions of clusters 105, but for categorical variables. This method
does not rank solutions, but simply reduces every cluster of alternatives into a single
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solution.
Another method for reducing the cardinality of the Pareto front is to define objectives

that quantify the utility of the non-dominated alternatives, such as how low their scores
are, or how many criteria are minimised for each alternative. The problem then is to find
the alternative that jointly minimises the metrics 106. Depending on the problem, the
solution may be a single alternative, or a set of non-dominated alternatives.

This activity is suggested by the guideline for cases where there are too many solu-
tions in the original Pareto front found with the multiobjective optimiser. The method
chosen for that purpose is left for the workflow designer to decide. It is suggested to use
multiple approaches to compare the alternatives favoured by each.

3.5. DRIVER ALGORITHM SELECTION
The set of analysis blocks deemed the most useful for the predefined use case in phase
1 are now coupled to a top-level driver, as per the MDAO architecture defined in §2.3.2.
In phase 2, thus, driver algorithms are selected by evaluating full MDAO workflows (see
Fig. 3.1), where the alternatives result from permuting the available driver algorithms
and the set of non-dominated analysis blocks.

In contrast to phase 1, only a few alternatives are ranked in phase 2. The consequence
is that the selection process differs to phase 1.

The guideline for phase 2 is divided into the following activities:

1. Define the criteria and metrics that judge the utility of the driver algorithms.

2. Score all the alternative MDAO workflows.

3. Sorting the alternatives to find the Pareto front.

4. Reduce the cardinality of the Pareto set, if judged necessary by the workflow de-
signer.

The next sections elaborate on the methods and definitions used in every activity.

3.5.1. DEFINITION OF THE CRITERIA
The process for evaluating MDAO workflows continues by establishing the criteria and
metrics with which the usefulness of a driver is assessed.

Examples of criteria for the evaluation of MDAO drivers include precision, repea-
tability, convergence, sensitivity, execution time, optimality, parallelism, feasibility, ro-
bustness, integrability, programming complexity, numerical stability, efficiency, legibi-
lity and open-sourceness.

The process for making the list of criteria is covered in §3.4.1 for the analysis block,
and it applies identically for making a criteria tree for evaluating a driver algorithm. An
example of a criteria tree for evaluating an optimisation algorithm is provided in Fig. 3.9.

3.5.2. SCORING THE ALTERNATIVES
Once the tree of governing criteria has been chosen, all alternatives can be scored against
them. Due to the low number of driver algorithms and analysis blocks, it is expected that
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Figure 3.9: Example of a criteria tree for the multiple criteria decision analysis of MDAO driver algorithms.

this activity can be executed in a reasonable amount of time. The scores per alternative
per criterion should be stored for sorting the alternatives later.

3.5.3. SORTING THE ALTERNATIVES
The concept of non-dominance for comparing alternatives, introduced in §3.4.2, applies
to phase 2 as well. Alternative drivers are thus compared by means of detecting if they
dominate each other in the sense of Pareto.

Provided that the number of alternatives in phase 2 is expected to be in the order of
tens, the entire set of alternatives may be evaluated without incurring in extreme costs
or use of resources. Therefore, it is suggested to score all alternatives with respect to all
criteria and then use the ε-non-dominated sorting algorithm 107. This algorithm sorts all
alternatives and provides the non-dominated set of alternatives, or the Pareto front of
the complete set.

3.5.4. REDUCTION OF THE PARETO FRONT
The process for reducing the cardinality of the Pareto front in phase 2 is identical to
phase 1. Some techniques are recommended and discussed in §3.4.4, and the choice
is left to the workflow designer.





The guideline described in the previous chapter is put to the test in this 
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4.1. INTRODUCTION
The guideline for selecting the set of best-performing MDAO workflows presented in
chapter 3 describes the activities that a workflow designer should follow.

This chapter reports one implementation of the guideline. It is important to show-
case what every step of the guideline requires to reach a solution that is useful to the wind
farm designer. This is also a first exercise to critically assess the utility of the guideline.

The multidisciplinary design optimisation of an offshore wind farm is the use case
that drives the search for the most useful MDAO workflow.

The set of alternative MDAO workflows to select from are built using the tool descri-
bed in chapter 2, with its empty MDAO workflow, and its available models and optimisa-
tion algorithms. A total of 3,317,760 different feasible MDAO workflows are available to
select from, made of 663,552 analysis blocks and 5 optimisation algorithms.

The implementation of the guideline follows, with sections devoted to every activity
suggested by the guideline and in the same order.

Finally, the entire process of instantiating the guideline is discussed, putting forward
the challenges that may be encountered by a workflow designer, a few suggestions to
solve them.

4.2. USE CASE
The use case presented in §2.3 is also chosen for implementing the guideline for se-
lecting the best-performing MDAO workflows. It is repeated here to define the context
of this chapter:

What is the optimal wind farm layout, number of wind turbines,
design of the electrical infrastructure and design of the support struc-
tures that jointly minimise the levelised cost of energy at a given wind
site, in a preliminary design phase?

Sensitivity analyses of the LCOE with respect to the design of all the components and
sub-components considered in the use case were presented in §2.10.2. The analyses
show an associated LCOE curve with a non-trivial minimum, which justifies the use of
the MDAO workflow presented in chapter 2 for solving this use case.

4.2.1. OPTIMISATION FORMULATION
The optimisation problem is formulated with LCOE as the objective function, the design
variables are listed in Table 4.1, and the constraints are listed in Table 4.2.

The number of wind turbines is allowed to vary between 2 and 50. The upper bound
results in a very large power density of 28 W m−2, unseen in offshore wind farms, and
helps maintain acceptable analysis times. The wind farm layout is constrained to keep
all turbines inside a square with its bottom left corner placed at the origin. The layout is
constrained to maintain a minimum separation between adjacent turbines of two rotor
diameters (Dr otor ) to avoid collisions, avoid large fatigue loading, and remain within the
operable domain of the wake models.

Concerning the electrical collection system, the cabe topology is expressed as a list
of connections between two turbines or between a turbine and a substation. Cables are
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Table 4.1: Design variables per component

Design variables (number) Bounds UnitComponent

Layout [2, 50] [-]Number of turbines NT (1)

 [(0, 3000), (0, 3000)] [(m, m)]Coordinates (2 NT)

[(1, 9), (0, 9), (0, 9)] [turbines]Cable capacities (3)

[1, NT] [-]Number of substations NS (1)

— [-]List of cable links (NT)Electrical
collection

[(0, 3000), (0, 3000)] [(m, m)]Position of the substations (2 NS)

Support
structures

Monopile diameter (NT) [(0,1)] [(m)]

Monopile penetration depth (NT) [(0,1)] [(m)]

Tower wall thicknesses (50 NT) [(0, 0.5 Dtower)] [(m)]

Transition piece wall thickness (NT) [(0, 0.5 DTP)] [(m)]

Scour protection d50 (NT) [(0, H)] [(m)]

Table 4.2: Constraints per component

Constraints (number)Component

Layout distance(Ti, Tj)  ≥  2Drotor   
A

  i ≠ j  (NT²)

 No cable crossings (NT)Electrical
collection

Support
structures

Combined stress on monopile ≤ Critical stress (NT)
Overturning moment of monopile ≤ Soil lateral bearing capacity (NT)

Shear stress on scour protection ≤ Critical stress (NT)

not allowed to cross each other as they are trenched into the seabed 20. Up to three ca-
ble capacities are allowed to be used in the topology, and the optimiser is free to choose
them. Cable capacity is bounded by 9 turbines, corresponding with the highest cable
capacity available to the optimiser. Furthermore, the number and location of the offs-
hore substations are optimised as well. The top-level optimiser is responsible for driving
the electrical collection cable types, number and location of the substations, whereas a
nested optimiser drives the topology of the electrical collection cables for every layout
(see the XDSM in Fig. 2.6).

The design variables of the support structure and scour protection are bounded by
physical constraints. The tower wall thicknesses can not be greater than half the diame-
ter of the tower (0.5D tower ) and the thickness of the transition piece can not be greater
than half its diameter (0.5DT P ). Water depth (H) is the maximum size the scour pro-
tection rocks can have. Other geometrical parameters are found using knowledge-based
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rules 10. The support structures are designed by matching the maximum stresses of the
monopiles and towers, and the maximum lateral load on the soil under extreme loads,
to their critical values. The support structures are optimised in their entirety by a nested
optimiser, as per the XDSM in Fig. 2.6.

4.2.2. CASE STUDY
This section describes the case study of the offshore wind farm to be optimised. It inclu-
des the site conditions and the fixed design parameters.

Because the goal of implementing the guideline is to understand and interpret its re-
sults, an artificial case study is developed to gain control of the site conditions and fixed
design parameters. The case study is complex enough to provide the MDAO workflow
the possibility to capture the multiple trade-offs between disciplines and components.

The site corresponds to a square area whose side length is 3 km. If 70 MW of nominal
power is installed, this area would have a power density of 7.8 W m−2, a value represen-
tative of recent commercial developments in the North Sea.

The site is located 60 km away from the onshore electrical substation. The opera-
tional lifetime of the wind farm is 25 years at an interest rate of 0.075%. The electrical
collection system operates at 33 kV, and the transmission line has a nominal voltage of
220 kV.

The bathymetry is designed as a Gaussian hill. This shape is expected to attract turbi-
nes and the offshore substation towards the centre to minimise installation costs, whe-
reas the wake interactions will push the turbines towards the boundaries.

The wind rose is also artificially created to have a uniform wind direction distribution
with the same Weibull wind speed distribution at all wind directions (A=8.15, k=2.11).
Ambient turbulent intensity is assumed constant and equal to 8%.

Figure 4.1 shows the bathymetry at the site of this case study. The chosen bathymetry
and windrose increase the interpretability of the optimised designs.

3000 m3000 m
0 m

10 m

20 m

30 m

40 m
45 m

Bathymetry

Figure 4.1: Gaussian hill bathymetry at the site of the case study.

One wind turbine type is to be installed on site, corresponding to the NREL 5 MW
reference wind turbine 50. This turbine is chosen due to the wide availability of its design
parameters and input files that describe this turbine for different simulation software
packages.
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4.3. ALTERNATIVE MDAO WORKFLOWS
This section reports which are the alternative MDAO workflows considered in the se-
lection process. The alternatives are divided into analysis blocks and optimisation algo-
rithms.

4.3.1. ANALYSIS BLOCKS
Table 4.3 lists the available models and the numbers of sampling points of the distribu-
tions of the wind speed and direction. The samples are taken at regular intervals instead
of randomly. The table also lists whether each model is supposed to be open-source or
not, and a short identifier. Most models are described in §2.7, but a few other dummy
models are added solely to test the guideline. The dummy models are built to yield little
to no variation in their outputs. The Ainslie 2D wake model is used as the referent to
score the performance of the other wake models, and is deemed too slow for wind farm
optimisation. This model is therefore not included in the selection process.

The alternative analysis blocks that can be built with the available models and num-
bers of sampling points result from the permutation of all the models per module, as
shown in Fig. 4.2. A total of 663,552 different analysis blocks can be built. This large
amount of alternatives stresses the need to sample the models sub-space smartly.

4.3.2. OPTIMISATION ALGORITHMS
Four optimisation algorithms and one random-sampling algorithm can be plugged into
the top-level driver as described in §2.7.10. These are all gradient-free methods that can
optimise continuous and integer design variables. The random-sampling technique is a
dummy method, included to test the guideline.

4.4. ANALYSIS BLOCK SELECTION
As expressed previously in §3.3, the guideline suggests starting with the selection of the
set of best-performing analysis blocks. This section follows the first phase of the guide-
line described in §3.4 and reports the results of all the suggested activities in the same
order: defining the criteria, formulating the multiobjective optimisation problem, exe-
cuting the optimiser and reducing the Pareto front.

4.4.1. DEFINITION OF THE CRITERIA
This section gives an account of the implementation of the activities suggested in §3.4.1
of the guideline.

The choices of criteria that will be used to compare the features and the performance
of analysis blocks are the result of a top-down approach, in which higher order objectives
are broken down into sub-objectives, followed by a bottom-up approach in which the
differences and similarities of the analysis blocks are identified and grouped into higher-
level objectives.

In the top-down approach, the process of building the criteria tree starts by defining
the top-level objective of the analysis blocks: the desire that it is useful for solving the use
case. An analysis block is expected to be useful for wind farm optimisation if it simulates
reality well, and if it uses as few resources as possible. A model simulates reality well if it
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Table 4.3: Available models (and their ID) to every module and number of sampling points. Open-sourceness
is a fictitious attribute.

Models Open-source IDModule

Number of sampling pointsDistribution

Wake deficit Yes JJensen

No LLarsen

Yes CConstant deficit
Yes A1Ainslie 1D

Yes RSSRoot sum square

Yes MAXMaximum

Yes SUMSummed
Yes MULMultiplied

Wake merge

Yes LLarsen

Yes DRDanish recommendation

No FFrandsen
No QQuarton

Yes CConstant effective turbulence intensity
Yes F2Frandsen 2

Wake-added
turbulence

Yes FASTFAST

No QBQBlade

Yes BEMBEM

Yes WSWindSim

Yes C2Constant power and thrust coefficient
Yes C1Step function power and thrust coefficient

Wind turbine
power and
thrust

No EWEsau-Williams

Yes POSPlanar Open Savings

Yes CNT-dependent cables length and cost

Electrical
collection
design

Yes TPTeamPlay

Yes CConstant support structure cost
Support
structure
sizing

2, 3,     , 25Weibull

12, 18, 24, 30, 36, 45, 60, 90Windrose

…

yields accurate and precise results. Resources that an analysis block can consume are of
a storage, memory, monetary, labour or timely nature. Accurate results should capture
absolute output values close to a referent, and their sensitivities with respect to changes
in the input should match the behaviour of a referent.

A bottom-up approach looks at the alternative analysis blocks, their attributes and
characteristics that make them distinguishable. The differences between the models
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4 × 4 × 6 × 3 × 2 × 6 × 24 × 8  =  663,552 permutations

Figure 4.2: There are multiple permutations of models to build different-performing analysis blocks.

presented in §2.7 will certainly lead to different output values, i.e. they will have their
own associated accuracy. Similarly, analysis blocks have an associated resolution and
sensitivity. Resolution measures the minimum change in the input that corresponds to a
change in the output while sensitivity captures the magnitude of the change of the out-
put with respect to changes in the input. Moreover, precision captures the variation in
the output values calculated with the exact same inputs. In addition, models will have
different execution times and memory use depending on their level of complexity or
number of sampling points. A noticeable feature of the models is that they all request a
different number of inputs, represented by a criterion called detail 85. Lastly, all models
have been assigned a fictitious binary value that represents their open-sourceness. This
attribute has been assigned arbitrarily to test the capabilities of the guideline.

Altogether, accuracy, precision, use of resources, sensitivity, resolution, detail, and
open-sourceness, are the criteria found relevant in this selection process.
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The tentative list of criteria found above is evaluated against the completeness, ope-
rability, decomposability, non-redundancy, and size attributes.

Completeness: The optimisation of the design of a wind farm benefits from an ana-
lysis block that captures the effect of the variation of the design variables on the system
level performance, and that does so in an acceptable amount of time, as it will be run
many times over. The top-down approach yields a complete list of criteria that fulfil
these two objectives. Missing criteria, such as the existence of analytical gradients or
programming language, are irrelevant for the use case at hand, where only gradient-free
optimisation algorithms are coupled in the workflows, and all the models are coded or
wrapped in the same programming language.

Operability: Accuracy, execution time, open-sourceness and detail are the only ope-
rable criteria, as they can be measured in a short time and have the power to distinguish
between alternatives. Accuracy can be measured by comparing the estimated LCOE of
a design with a referent LCOE value. Execution time can simply be measured with a
stopwatch. The open-sourceness of an analysis block can be assigned the percentage
of open-source models coupled into it. Finally, by counting the number of inputs to an
analysis block, the detail criterion expresses to a first degree the level of complexity of
the physics modelled.

On the other hand, the rest of the criteria are deemed inoperable. The fact that all the
models are deterministic, renders the precision criterion useless. The resolution crite-
rion is also regarded as a useless criterion, since the resolution of the inputs and outputs
of most models is limited only by machine precision. The sensitivity criterion is conside-
red too expensive to be measured since the behaviour of LCOE with respect to changes
in all the design variables is needed. The memory consumption of all models is low com-
pared to the memory of a desktop computer, and thus this criterion is not meaningful as
it will hardly point out distinction between different analysis blocks. A similar reasoning
yields storage and monetary cost as inoperable criteria.

Decomposability: The criteria tree shown in Fig. 4.3 tells that the problem can be
decomposed into measuring how well it simulates reality (realism) and how many re-
sources it consumes (practicality). Realism can be also decomposed into accuracy and
detail. Likewise, practicality can be decomposed into speed and efficiency.

Non-redundancy: It is crucial to avoid the list of criteria from counting any effect
two or more times. For that purpose, Fig. 4.4 plots the values of the four operable criteria
pairwise, for a random sample of 6000 analysis blocks, using normalised metrics defined
later. It can be seen that no salient correlations between criteria exist, which is evidence
to support the non-redundancy of the list.

Size: The list of operable criteria has, conveniently, a number of criteria (four) that
the MOPSOC algorithm can deal with in an acceptable number of iterations. The num-
ber of dimensions of the MCDA make the problem tractable.

With regards to the metrics, some criteria will need to have a referent defined, to
indicate how well the analysis block represents it, e.g. an output value should match
a reference value determined by another method, either a measurement or simulation,
while other criteria will only have a desired minimum or maximum value to achieve. The
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Figure 4.3: Criteria tree to evaluate the analysis block.

Figure 4.4: Correlation plots of a random sample of analysis blocks.

metrics are designed to be minimised by the optimiser, so lower values should represent
better alternatives. The metrics of the final list of criteria are described below.

Accuracy: To measure how accurately a given analysis block simulates a reality re-
ferent, this metric (Cacc ) calculates the root of the sum of the squares of the absolute
difference between the estimated (LCOEe ) and referent LCOE (LCOER ) of five random
design vectors. These designs are drawn once and used to score all the analysis blocks.
The referent LCOEs of the designs are estimated with the analysis block that couples the
most sophisticated models: Ainslie 2D wake model, RSS wake merge model, Quarton
turbulence model, Esau-Williams heuristic for cable topology, TeamPlay support struc-
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ture design tool, FAST aeroelastic wind turbine simulation, 26 sampling points of the
Weibull distribution, and 360 1◦ wind direction sectors. Lower values of Cacc represent
more accurate analysis blocks. Mathematically, this metric is expressed as:

Cacc =
√√√√ 5∑

i=1
(| LCOERi −LCOEei |)2. (4.1)

Execution time: The time it takes to run the analysis block for all of the five designs
mentioned above is recorded. The metric (Ct i me ) corresponds to the measured time
divided by 5, to represent an average execution time per design. The additional time
incurred in building the wind turbine look-up tables for power and thrust curves is not
included in this criterion for simplicity purposes. Lower values of Ct i me represent faster
analysis blocks. This metric reads:

Ct i me = 1

5

5∑
i=1

Ti . (4.2)

Detail: The cardinality of the set of input parameters that the models coupled in an
analysis block request is a proxy for the level of detail of the physics simulated. This me-
tric counts the cumulative input parameters (I ) of the models and it is normalised with
respect to the analysis block that couples the models with the most input parameters
(Imax ). Only five modules (wake, turbulence, electrical design, turbine and support de-
sign) have exchangeable models with varying values of detail. Lower values of this metric
(Cdet ) represent alternatives with higher level of detail. Its expression is:

Cdet = 1.0− | I |
| Imax | . (4.3)

Open-sourceness: This metric (Cos ) measures the fraction of open-source models
that are coupled into an analysis block. Since the open-sourceness of individual models
(OS(Mi )) are counted with a binary variable, the total open-sourceness of the analysis
block can only take its value from a set discrete values. Only five modules (wake, tur-
bulence, electrical design, turbine and support design) have exchangeable models with
varying values of open-sourceness. Lower values of this metric represent analysis blocks
with higher open-sourceness. The metric is the following:

Cos = 1.0−
∑5

i=1 OS(Mi )

5
. (4.4)

4.4.2. FORMULATION OF THE MULTIOBJECTIVE OPTIMISATION PROBLEM
This section describes the implementation of the activities described in §3.4.2 of the
guideline.

A multiobjective optimisation will be performed to approximate the Pareto front of
the analysis blocks with respect to the criteria and metrics defined above.

The Pareto front found by minimising some criteria while constraining the values of
the rest of the criteria is a lower dimensional subset of the Pareto front found by optimi-
sing all the criteria without constraints. The only difference in applying constraints on
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the values of the objective functions a priori and a posteriori is that the former is a faster
approach, as the search space is reduced and convergence is achieved faster.

At one extreme, placing constraints on the maximum values of all the criteria would
lead to a focalised search near the section of the Pareto front that satisfies the constraints.
At the other extreme, when no constraints are defined, the optimisation yields the entire
Pareto front.

In this case study, no constraints are enforced a priori and instead the values of all
the criteria are optimised. Formally, this formulation is written as:

minimise
W

Cacc (W ),Ct i me (W ),Cdet (W ),Cos (W ),

where W is the vector that defines the models coupled in the analysis block and the
number of sampling points of the wind speed and direction probability distributions.

4.4.3. EXECUTION OF THE MULTIOBJECTIVE OPTIMISER
This section reports the implementation of the activities suggested by the guideline in §3.4.3.

Using the set of feasible alternative analysis blocks, the tree of criteria and the formu-
lation of the multiobjective optimisation problem, the Pareto front of the alternatives is
approximated using the MOPSOC algorithm.

MOPSOC compares analysis blocks by assigning them a weighted sum of the criteria,
and the weights are dynamically changed to have the swarm follow the Pareto front.

The weights for the weighted sum should only represent the relative importance bet-
ween criteria. Hence, the criteria are normalised prior to the multiobjective optimisation
to avoid their scales from influencing the weighted sum. The normalisation procedure
is only done for the accuracy (Ĉacc ) and execution time (Ĉt i me ) criteria, as the metrics
for detail and open-sourceness are already normalised. The normalised criteria depend
on user-defined maximum acceptable values for accuracy(Caccmax ) and execution time
(Ct i memax ), beyond which their metrics tend to 1. The hyperbolic tangent is one exam-
ple of a continuous differentiable function with range [0, 1) in the domain of the non-
negative real numbers. The functions used in this work are:

Ĉacc = t anh (Cacc ) , (4.5)

Ĉt i me = t anh(Ct i me ), (4.6)

The execution time beyond which a metric is close to 1, results from the total op-
timisation budget. Suppose the wind farm design optimisation needs to last at most
24 hours. If an optimisation algorithm with 300 iterations and 20 individuals calls the
analysis block 6000 times, the maximum time allowed to be spent per execution of the
analysis block is 14.4 seconds.

Analogously, the accuracy of the analysis block is designed to be at its worst if it ex-
ceeds or falls short of the LCOE estimated by the referent analysis block by 30%. The
normalisation functions are modified accordingly, and result in the following equations:

Ĉacc = t anh (0.08Cacc ) , (4.7)
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Ĉt i me = t anh(0.04Ct i me ). (4.8)

MOPSOC is run with 20 particles in the swarm, as recommended in literature 75,108.
The optimisation consists of 343 iterations, to sample a three-dimensional weight-space
at 7 regular intervals along all axes.

Figure 4.5 shows the level diagrams representation of the Pareto front of alternative
analysis blocks found with MOPSOC. The level diagrams is a technique for visualising n-
dimensional Pareto fronts 109, and consists of making several plots where each of them
shows the values of a criterion or a design variable against the distance to the utopia
point of all the solutions in the Pareto front. This technique has two useful features: the
solutions can be ranked according to their proximity to the utopia point, and solutions
have the same y-coordinate across all the plots. The distance can be calculated based
on different norms. In this example 12 plots are shown: 4 for the criteria and 8 for the
design variables, using the 2-norm Euclidean distance of the normalised criteria. The
criteria values on the x-axis appear in their original scale.

Figure 4.5: Level diagrams of the Pareto front using the 2-norm distance to the utopia point. The dashed lines
define the value of each criterion when all the other criteria are zero.

Several conclusions can be drawn from the level diagrams. First of all, all the analysis
blocks lie within a 0.3 and 1.37 2-norm distance to the utopia point. Of these, several
have a 2-norm lower than 0.6, which represent solutions with low scores across all the
criteria.

By inspecting the first level diagram for the accuracy criterion, it is observed that the
solutions that have an error greater than ∼30 e/MWh score nearly zero in all the other
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criteria. There is a big cluster of solutions with 6.2 < Cacc < 9.4, of which several score
nearly zero in all other criteria. Below an error of 6.2 e/MWh there are solutions with
a 2-norm distance between 0.3 and 0.8, meaning that very accurate analysis block may
quickly score worse in the other criteria. It is noteworthy that no solution has an error
lower than 0.92e/MWh.

The execution time of the solutions with the lowest 2-norm distance is between 2
and 4 seconds, an indication that both faster and slower models quickly lose value with
respect to the rest of the criteria. In particular, faster analysis blocks tend to be less accu-
rate and have less level of detail. It can be seen that the other three criteria barely ever are
valued close to zero simultaneously, as all solutions have are well above the line defined
by the execution time metric. Moreover, most of the analysis blocks in the Pareto front
take less than 4 seconds to execute.

There is a gap in the level of detail between 0.24 and 0.6. All the solutions with Cdet <
0.24 couple the more accurate FAST wind turbine model, and many of them are closer to
the utopia point than all the analysis blocks without FAST because all the wind turbine
models are represented by look-up tables and have the same execution time. Similarly,
the distance of the solutions to the line defined by the detail metric indicates that the
other three criteria do not score values near zero simultaneously.

With respect to the open-sourceness criterion, most of the solutions closer to the
utopia point are between 60 and 100% open-source (Cos ≤ 0.4), and none have 20 or 0%
open-sourceness. The solutions closest to the utopia point have an open-sourceness va-
lue of 0.2 and 0.4. The lowest 2-norm is achieved by an analysis block with Cos = 0.2, fol-
lowed by analysis blocks with Cos = 0.4. Therefore, high open-sourceness helps achieve
lower 2-norm distances. However, solutions with all levels of open-sourceness can also
have high 2-norm distances, a result of assigning this attribute to models arbitrarily wit-
hout correlation to other criteria.

Regarding the design variables, most of the solutions of the Pareto front, including
those closest to the utopia point, couple the Jensen wake model. This model has the
best compromise between accuracy and execution time. The Larsen model is negatively
affected by fictitiously not being open-source. The constant dummy wake model is the
least accurate, and this is well reflected by the higher 2-norm distance of the blocks that
include it. Similarly, the Ainslie 1D wake model is too slow to be closer to the utopia
point than the other models.

The wake-merging method most commonly found in the Pareto front is the root sum
square, and the least found is the multiply method. The root-sum-square, maximum
and summed methods appear in the solutions with the lowest 2-norm distances. The
solutions that couple the multiply method always have a 2-norm distance greater than
0.8, so this model seems to negatively influence the overall utility of the analysis blocks.
A single analysis block of the Pareto front has a 2-norm lower than 0.4 and it couples the
maximum wake-merging method.

All the turbulent models appear in the non-dominated solutions, but the Frandsen
2, Danish Recommendation, and Quarton models appear the most times. The Quarton
model, although fictitiously not open-source, appears in the solutions closest to the uto-
pia point. This can be traced to its accuracy, since it is the model used in the referent
analysis block. The fact that all models appear with low and high 2-norm distances, can
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be explained by the low sensitivity of the LCOE with respect to the added turbulence
intensity in the wake.

Interestingly, all three models for designing the electrical cable topology appear in
the analysis blocks that are farthest and closest to the utopia point. This is an indication
that the cost of the electrical infrastructure affects the LCOE much less than other costs
or the AEP, and that the variation in the output of the three models is small in terms of the
LCOE. Therefore, those analysis blocks that yield a very inaccurate cost of the electrical
infrastructure are fast and may still be accurate in the LCOE.

The support-structure sizing model TeamPlay appears in the alternatives with the
lowest distance to the utopia point. This is because it is the most accurate and more
detailed of the two. Nevertheless, the dummy constant support structure cost model
can appear in good analysis blocks, too. Although the TeamPlay model can also appear
in the solutions farthest from the utopia point, it clearly provides an advantage in terms
of the 2-norm distance.

The analysis blocks that couple the FAST wind turbine model are clearly favoured.
This models appear in the solutions closest to the utopia point, whereas the other mo-
dels appear less often and in solutions farther from the utopia point. The dummy step
and constant output models, are too inaccurate to be worth coupling them to the analy-
sis block. FAST is very much favoured because it is coupled in the referent analysis block
for the accuracy metric and also has the highest level of detail. At the same time, FAST
has no negative implications because look-up tables are used as surrogates for all the
models and do not incur additional execution time.

The solutions with the lowest 2-norm distance sample the Weibull distribution bet-
ween 15 and 25 times. This is an expected result, since the referent analysis block for the
accuracy criterion samples the Weibull distribution in 26 points. However, most soluti-
ons, whether close or far from the utopia point, sample the distribution in less than 10
points. More sampling points results in a higher execution time and the improvement in
accuracy is seemingly not enough to counteract the loss in time.

On the contrary, the number of wind directions sampled from the windrose distri-
bution seems to have very little effect on the overall utility of the analysis block. A lower
number favours execution time at the expense of accuracy, and vice-versa. The irregula-
rity of the five wind farm layouts used to measure the accuracy criterion, show that wake
losses are insensitive to wind direction, as the wind direction sample size barely influen-
ces the accuracy of the analysis block.

While the 2-norm distance is helpful to see the geometrical distance to the utopia
point, the ∞-norm distance is better suited to see the trade-offs. Figure 4.6 shows the
level diagrams based on this norm.

The ∞-norm-based level diagrams show that analysis blocks with Ct i me lower than 5
seconds, Cdet lower than 0.2, and CoS lower than 0.2 rapidly deteriorate due to other cri-
teria. The fact that the ranges where all the criteria have an ∞-norm closer to zero, also
include many solutions with large ∞-norm distances, is an indication that the Pareto
front is non-convex. This is further supported by the range of the 2-norm distances in
Fig. 4.5. All the solutions in the Pareto front lie between the hypersphere of radius 0.3 and
the hypersphere of radius 1.4. Because the hypersphere of radius 1 is non-convex, the
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Figure 4.6: Level diagrams of the Pareto front using the ∞-norm distance to the utopia point.

solutions above the unit hypersphere correspond to non-convex regions of the front 109.

In addition, by colouring the ∞-norm-based level diagrams based on the wake mo-
del coupled in Fig. 4.7, it can be seen that the choice has the highest impact on the accu-
racy and execution time criteria. These two criteria roughly cluster analysis blocks with
the same wind wake model together. In particular, the Jensen and Ainslie 1D wake mo-
dels are coupled in the most accurate analysis blocks, followed by the Larsen and the
dummy constant wake deficit model. Furthermore, The Jensen and dummy models are
in the fastest analysis blocks, followed by the Larsen model and with the Ainslie 1D mo-
del being by far the slowest. Also, the most detailed analysis blocks are closer to the uto-
pia point when coupling the Jensen wake model, due to its good performance in accu-
racy and execution time. The summed wake-merging method is almost exclusively cou-
pled to the Jensen wake model, and the Jensen model is never coupled to the multiply
wake-merging method. Because the dummy constant-wake deficit model is indepen-
dent of the ambient wind speed, the MOPSOC finds that there is no gain in sampling
the Weibull distribution in more than 10 wind speeds, whereas the Jensen and Larsen
models benefit the most from increasing the number of sampling points. The Ainslie 1D
model is too slow when run with many wind speed sampling points. The Jensen model
is closest to the utopia point when sampling the windrose at 30 or more wind directions.
Finally, the Ainslie 1D wake model is never run at less than 30 wind directions, unlike
the rest of the models. Therefore, the Ainslie 1D model is most useful when more time is
spent sampling the windrose than the Weibull distribution.
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Figure 4.7: Level diagrams of the Pareto front using the∞-norm distance to the utopia point. Colour represents
the wake model coupled in the analysis blocks. Use the wake-deficit model as legend.

Other relevant observations provided by level diagrams not shown are the following.

Accuracy is higher when more points of the Weibull distribution are sampled, but at
the cost of execution time.

Almost all the analysis blocks that sample the Weibull distribution at more than 15
points, couple the Quarton wake-added turbulence model. This artefact results from
the fact that both choices appear in the most accurate analysis blocks, which, like the
referent analysis block for accuracy, also couple the TeamPlay support structure sizing
tool.

The dummy constant support structure cost model appears in the fastest analysis
blocks, while TeamPlay appears in the most accurate. After the FAST wind turbine mo-
del, TeamPlay is the model with the largest number of inputs, and this is reflected in the
detail criterion. The analysis blocks that couple TeamPlay either score ∼0.1 or ∼0.6 in
Cdet , whereas those that couple the dummy model score either ∼0.2 or ∼0.9, depending
on whether the FAST model is present or not.

Noteworthy is the fact that the analysis blocks that do not couple the FAST wind tur-
bine model, are closer to the utopia point when coupling the TeamPlay support structure
sizing tool. This could indicate that the impact of the choice of support structure cost
model on level of detail and accuracy outweighs the combined impacts of the choice of
wind turbine model. And given that besides FAST all the other wind turbine models ap-
pear in analysis blocks that score higher than 0.6 in the detail criterion, it can be stated
that it is the accuracy criterion which determines that the support structure model is
more impactful.
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4.4.4. REDUCTION OF THE PARETO FRONT
This section exemplifies the activities of the guideline suggested in §3.4.4.

If the workflow designer has absolutely no preferences on the criteria or design vari-
ables, then two approaches—amongst many others—to select the set of analysis blocks
that will be carried onto phase 2 are to rank the solutions in the Pareto front with respect
to their distance to the utopia point, and by averaging their rankings when sorted per
criterion.

Table 4.4 shows the 3 closest solutions to the utopia point using the 2-norm distance.

Table 4.4: Models and number of sampling points in the top 3 solutions using the 2-norm distance to the utopia
point.

First place Second place Third placeModule

Wake deficit J

MAX

POS
Q

TP
FAST

12
21

J

SUM

EW
Q

TP
FAST

12
23

A1

RSS

POS
Q

TP
FAST

30
23

Wake merge

Wake-added turbulence

Wind turbine power and thrust

Electrical collection design

Support structure sizing

Weibull sampling points

Windrose sampling points

Table 4.5 shows the 3 closest solutions to the utopia point using the 1-norm distance.

Table 4.5: Models and number of sampling points in the top 3 solutions using the 1-norm distance to the utopia
point.

First place Second place Third placeModule

Wake deficit J

MAX

POS
Q

TP
FAST

12
21

J

RSS

POS
DR

TP
FAST

18
3

J

RSS

POS
F2

TP
FAST

36
3

Wake merge

Wake-added turbulence

Wind turbine power and thrust

Electrical collection design

Support structure sizing

Weibull sampling points

Windrose sampling points

Table 4.6 shows the 3 closest solutions to the utopia point using the ∞-norm dis-
tance.

Table 4.7 shows the 3 most consistent solutions according to the average ranking by
their 1-norm, 2-norm and ∞-norm distances to the utopia point.

Finally, Table 4.8 shows the top 3 ranked analysis blocks when averaging their ran-
kings with respect to every criterion. The advantage of this method with respect to the
previous four, is that it disregards the utopia point and the scales of the criteria.
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Table 4.6: Models and number of sampling points in the top 3 solutions using the ∞-norm distance to the
utopia point.

First place Second place Third placeModule

Wake deficit J

MAX

POS
Q

TP
FAST

12
21

J

SUM

POS
Q

TP
FAST

18
17

J

SUM

EW
Q

TP
FAST

12
23

Wake merge

Wake-added turbulence

Wind turbine power and thrust

Electrical collection design

Support structure sizing

Weibull sampling points

Windrose sampling points

Table 4.7: Models and number of sampling points in the 3 most consistent solutions according to the average
ranking by their 1-norm, 2-norm and ∞-norm distances to the utopia point.

First place Second place Third placeModule

Wake deficit J

MAX

POS
Q

TP
FAST

12
21

J

SUM

EW
Q

TP
FAST

12
23

J

RSS

EW
Q

TP
FAST

45
19

Wake merge

Wake-added turbulence

Wind turbine power and thrust

Electrical collection design

Support structure sizing

Weibull sampling points

Windrose sampling points

Table 4.8: Models and number of sampling points in the top 3 analysis blocks using the average ranking met-
hod.

First place Second place Third placeModule

Wake deficit J

SUM

EW
F2

TP
FAST

30
3

J

SUM

EW
DR

TP
FAST

36
3

J

RSS

POS
DR

TP
FAST

18
3

Wake merge

Wake-added turbulence

Wind turbine power and thrust

Electrical collection design

Support structure sizing

Weibull sampling points

Windrose sampling points

In the 15 best solutions found with all methods there are 8 unique analysis blocks.
The top 1st and 2nd places—in total six analysis blocks—are selected to be coupled to
the alternative optimisation algorithms in phase 2. These are the 1st analysis block of
Table 4.4 (ID: 1A), the 2nd of Table 4.5 (ID: 2B), the 2nd of Table 4.6 (ID: 2C), the 2nd of
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Table 4.7 (ID: 2D) and the 1st and 2nd of Table 4.8 (IDs: 1E, 2E).

If a workflow designer does want to include preferences, one example of a procedure
to do so a posteriori, is to filter the solutions in the Pareto front that have an accuracy
Cacc < 10, are 100% open-source, and do not couple the FAST wind turbine model. The
blue dots in the level diagrams in Fig. 4.8 show the solutions that fulfill these constraints,
and the black square is the solution with the lowest∞-norm distance to the utopia point.
This solution happens to be the same with the Euclidean distance.

Figure 4.8: Level diagrams of the Pareto front using the ∞-norm distance to the utopia point. The filtered
solutions are shown with blue dots, and the closest one to the utopia point is marked with a black square.

The preferred analysis block that incorporates the designer’s preferences couples the
Jensen wake model, root-sum-square wake-merging model, Danish Recommendation
wake-added turbulence model, the POS electrical cable design tool, the support struc-
ture sizing tool TeamPlay, the WindSim turbine model, and samples the Weibull distri-
bution at 3 wind speeds, and the wind rose 60 times every 6 degrees.

Because this analysis blocks includes subjective preferences added by the workflow
designer, it is not mixed with the previous six selected for the second phase of the imple-
mentation.

4.5. OPTIMISATION ALGORITHM SELECTION
This section applies the second phase of the guideline presented in §3.5 to the use case
defined in §4.2. The objective is to select the set of best-performing MDAO workflows
by coupling five alternative optimisation algorithms to the set of the most useful analy-
sis blocks found in phase 1 (§4.4.4). The steps to be taken in this phase are reported in
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the order they are suggested in the guideline: defining the criteria to evaluate the per-
formance of the MDAO workflows, scoring all the alternatives against all criteria, sorting
the alternatives to find the set of non-dominated workflows and reducing, if necessary,
the size of the Pareto front.

4.5.1. DEFINITION OF THE CRITERIA
As with the criteria to evaluate the analysis blocks, a top-down approach is followed first
to find the criteria with which different optimisation algorithms can be evaluated.

The usefulness of an optimisation algorithm for wind farm design relies on two broad
aspects: its adequacy to find good designs, and its ability to do it efficiently using the
least possible amount of resources. Design solutions are deemed to be good if their per-
formance is close to the optimal, if they are robust design solutions insensitive to small
changes in their design variables, and if they are feasible. On the other hand, an effi-
cient optimiser will find the solutions with the least amount of effort and have the ability
to consistently reach the same optima when the algorithm is run multiple times (pre-
cision). Effort can be classified as computational expenses, human labour or monetary
costs.

Because the global optima are not known a priori, other objectives are needed to
quantify the quality of the resulting designs. One of them is the overall improvement
between the final design and the initial designs explored, and another is the ability to
find all the global optima, if there is more than one. In wind farm layout optimisation,
symmetries in the layout and site conditions may lead to several different design vectors
with the same performance.

By looking at the alternative optimisation algorithms available, it is possible to dis-
card a few criteria from those mentioned above. All the optimisation algorithms enforce
feasibility at every iteration, which ensures the final design is always feasible, rendering
this criterion useless for ranking purposes. Similarly, all the alternative algorithms are
only capable of producing a single optimal result, and so number of optima found is not
a good criterion. Additionally, effort is only differentiated in the number of function calls
needed to achieve convergence. Hence, monetary, time and human labour expenses are
not considered.

The initial tentative list of criteria to use for evaluating the performance of the opti-
misation algorithms is: optimality, robustness, number of function calls to convergence,
overall improvement, and precision. The criteria tree is shown in Fig. 4.9.

Therefore, the tentative list of criteria is evaluated against the completeness, opera-
bility, decomposability, non-redundancy, and size attributes.

Completeness: The list of criteria captures the differences in the resulting designs,
the process that leads to finding the optimum, and the resources needed to find the opti-
mum. The list is complete to evaluate the set of alternatives at hand, e.g. if there were ot-
her feasibility-enforcing techniques present, a measure of the feasibility of the resulting
design would be necessary for the list to be complete.

Operability: Optimality is typically the first point of comparison between optimisers
and its equal to the LCOE of the optimal design calculated with the most accurate ana-
lysis block. Robustness is measurable using the variation of the objective function when
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Function calls

Precision

Robustness

Optimality

Improvement

Adequacy

Efficiency

Useful optimisation algorithm

CriteriaSub-objectivesObjective

Figure 4.9: Criteria tree to evaluate the optimisation algorithms.

the design variables sample the vicinity of the optimal solution, and it is an operable
criterion if a small number of points are sampled. Number of function calls to find the
optimal design is easily found after the optimisation has finished and its history is revi-
sed. Improvement is the difference between the objective function evaluated at the ini-
tial design and at the last iteration. It is key to be aware that a good value of improvement
might be due to a good value of optimality or a bad performance of the initial designs,
and vice-versa. Recognising this undesired behaviour will lead to a careful treatment in
the later stages of the MDAO workflow selection process where the preferences of the
workflow designer play a determinant role. Finally, precision measures the spread of the
objective function across multiple identical runs. Because the optimisation algorithms
are non-deterministic heuristics, precision is a meaningful criterion. All the criteria are
measurable and expected to capture differences between the alternatives.

Decomposability: By design, the tree of criteria built with the top-down approach
(Fig. 4.9) is decomposable.

Non-redundancy: To verify the level of redundancy between the criteria, it is ap-
propriate to make a correlation plot of their values and show their Pearson correlation
coefficients. This plot and the Pearson coefficients are shown in Fig. 4.10.

Most of the criteria have low pairwise correlation coefficients which is a evidence
of their non-redundancy. However, it is critical to focus on the Pearson coefficients of
robustness with precision and improvement.

Indeed, improvement and robustness have the highest correlation (r= −0.75), fol-
lowed by robustness and precision (r= 0.63). Since improvement and precision do not
have a direct causal relationship and are not strongly correlated to each other, the com-
mon cause for their correlation with robustness is the low sensitivity of the analysis
block. A flat LCOE response surface due to the poor accuracy of the analysis block can be
responsible for a higher precision value, instead of due to the virtues of the optimisation
algorithm. Evidently, the lack of sensitivity of an inaccurate analysis block is also present
at the optimal design. A good value in the robustness criterion, in this case, can mean
poor accuracy too, rather than a robust design. An inaccurate LCOE function can have
two features that impact its sensitivity. On the one hand, the correlation between im-
provement and robustness can be a consequence of the flatness of an inaccurate LCOE
function. On the other hand, the correlation between precision and robustness can be
a consequence of the smoothness of an inaccurate LCOE function, because the optimi-
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Figure 4.10: Correlation plot of the values of the criteria for all alternatives.

ser may be steadily moving towards the optimum, and once there, it happens that the
function is locally flat.

Notwithstanding, correlation does not always imply causality and therefore, redun-
dancy. Because the correlated criteria result from non-redundant aspects of the MDAO
workflow, these are all kept.

In addition, improvement is defined by the distance between the performance of the
best initial design of the population and the performance of the optimal design found.
Therefore, improvement must be, at least partially, redundant with the optimality crite-
rion. By acknowledging this and the fact that they both enable different points of view of
the evaluation of MDAO workflows, they will both be kept for the following activities. Be-
cause the presence of an alternative in the Pareto set of non-dominated solutions should
not be affected by the redundancy of the metrics, these correlations will be dealt with in
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the final stage of the implementation, where the solutions in the Pareto set are reduced
and ranked.

Size: Executing the MCDA with five criteria to evaluate and rank 20 MDAO workflows
is considered a feasible problem to solve.

The metrics of the criteria are shown next. Note that because the Pareto front will be
found with a sorting algorithm, these need not be normalised at this stage. The stopping
criterion of all algorithms is when the LCOE has not improved in the last 1,000 iterations.
The tolerance for improvement in this work is zero.

Optimality: This metric (Copt ) is simply the LCOE of the optimal design, calculated
with the most accurate analysis block defined previously in §4.4.1. Each MDAO workflow
is run three times and the best value is recorded. The metric reads:

Copt = LCOE(x̂). (4.9)

Robustness: To measure this criterion the design variables of the optimal solution
(x̂) are perturbed five times according to certain rules and the average of the absolute
difference between the LCOEs of the perturbed design vectors and the LCOE of the op-
timal design vector is recorded. The rules to calculate the perturbation ∆x are the fol-
lowing: wind turbines and offshore substations positions are moved randomly by up to
one rotor diameter, number of turbines is changed by randomly subtracting or adding
one turbine, number of offshore substations is kept equal and electrical cable capacities
are modified randomly by ± 1. The metric Cr ob is expressed as:

Cr ob =
∑5

i=1 | LCOE(x̂)−LCOE(x̂ +∆x) |
5

. (4.10)

Number of function calls to convergence: This metric (Cn f ) is the number of times
the analysis block has been called when the stopping criterion is met. Because every
run is limited to calling the analysis block 6000 times, if the optimiser has not satisfied
the stopping criterion at the end, the metric will take the value 6,000. This metric is
measured three times and averaged across the runs. It is written as:

Cn f = Ncal l s s. t. LCOE n = LCOE n−1000. (4.11)

Improvement: The metric is defined as the relative difference between the LCOE of
the final optimal design and the best LCOE found at the first iteration (LCOE1). This
metric (Ci mp ) is measured three times and averaged across the runs. Its mathematical
expression is:

Ci mp = LCOE1 −LCOE(x̂)

LCOE1
. (4.12)

Precision: This metric (Cpr e ) is the standard deviation of the optimal LCOE values
found across three runs. It reads:

Cpr e =σ(LCOE(x̂)i ). (4.13)
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4.5.2. SCORING THE ALTERNATIVES
Five optimisation algorithms: Genetic (GA), Differential Evolution (DEA), Particle Swarm
Optimisation (PSO), Simulated Annealing (SA) and a random search (RS), are coupled to
the six analysis blocks found in phase 1: 1A, 2B, 2C, 2D, 1E, and 2E. In total, there are 30
MDAO workflows to be compared.

The metrics are normalised with respect to the range of values across all alternatives,
so the alternatives in the Pareto front can be ranked using the distance to the utopia
point. Zero is therefore assigned to the best performing MDAO workflow and 1 to the
worst.

Figure 4.11 shows the scores across all criteria of all the MDAO workflows with a co-
lour range, with alternatives ordered by their optimisation algorithm and by their analy-
sis block.

To interpret the results, it is useful to mention the differences between the analysis
blocks. These are listed in Table 4.9.

Table 4.9: Differences between the models and number of sampling points of the analysis blocks.

Wake-
merge

Wake-
added
turbulence

Electrical
collection
design

Wind
speeds
sampled

Wind
directions
sampled

Analysis
block ID

1A MAX Q POS 21 12
RSS DR POS 3 182B

SUM Q POS 17 182C

SUM DR EW 3 362E

SUM Q EW 23 122D

SUM F2 EW 3 301E

A few patterns are recognisable on the left-hand side of Fig. 4.11. First of all, the SA
and RS algorithms converge with the least number of function calls. These two optimi-
sers move about the design space randomly, and so as they advance, the probability of
finding a better solution becomes smaller, while the probability of moving into infeasi-
ble designs is very large. In this criterion, the GA has the worst score, because the only
way an individual can become infeasible is by mutation, which has a probability of 1%.
Let us remember that feasibility is enforced by randomly reinitialising the vector of an
infeasible design, and thus infeasibility leads to a more random search. Therefore, most
of the solutions remain feasible, and the crossover operator provides new feasible and
improved solutions for longer. Remember, the RS algorithm is a dummy method that
is not properly used for optimisation, so the fact that it performs well in one criterion,
does not mean it is a promising solution, nor that the function-calls criterion is reliable
for assessing optimisation algorithms.

The DEA and GA algorithms seem to achieve the worst improvements. This is an
indication that although the GA continuously improves the solution, the improvements
are small. The DEA algorithm also incurs many feasibility violations, a probable cause
for the small improvements seen.

The RS and DEA algorithms score the highest in the precision metric. There is little
variation in the LCOE of the optimal designs under identical conditions. However, these
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Figure 4.11: Heatmap of the scores of all the MDAO workflows across all the criteria. The left hand heatmap
organises the workflow by their optimisation algorithm whereas the right hand heatmap organises them by
their analysis block. Green represents a better criterion value, while red represents a worse one.

two algorithms have the most randomness, and the optimal values they consistently find
is driven by the shape of the LCOE hypersurface. The LCOE function seems to be a very
flat hypersurface with narrow optimality troughs.

With regards to optimality, it is the better-established PSO and GA algorithms that
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score the highest. Every generation of the GA algorithm is composed of 120 individuals.
It can be stated that by having a large population, GA covers a large sub-space of the
design space, getting a head start with respect to other algorithms. The PSO algorithm
is well known for its capabilities of exploring large areas of the design space and con-
sistently moving towards the best solution found by all the particles in the swarm. The
LCOE function is also highly multimodal, which makes all the algorithms converge to
local optima.

Looking at the right-hand side of Fig. 4.11, it can be noted that analysis blocks 1E,
2E and 2B are responsible for the low improvement of all the optimisation algorithms
coupled to them. These three analysis blocks sample the Weibull distribution at only 3
wind speeds and their associated LCOE errors are 6.69, 6.77 and 7.97 e/MWh, whereas
the remaining three alternatives have lower values of 1.53, 5.15 and 1.47 e/MWh. This
strongly limits the sensitivity of AEP with respect to the wind farm layout, and so the
optimiser benefits less from manoeuvring the layout.

As expected from the correlation coefficients shown above, the robustness follows a
completely opposite pattern of the improvement. Analysis blocks 1E, 2E and 2B score
the highest values in robustness.

4.5.3. SORTING THE ALTERNATIVES
To deal with the pairwise correlations, the robustness criterion is dropped. This avoids
double counting inherent characteristics of the underlying LCOE function of the analysis
blocks during the decision-making process. The objective of this phase is to select the
best-performing MDAO workflows altogether, and not only optimisation algorithms.

Hence, using the four other criteria for optimisation algorithms, the set of non-dominated
solutions can be found using the ε-sorting algorithm 107. Of the 30 original alternatives,
16 are non-dominated, and are listed in Table 4.10. The optimisation algorithm that
appears the most times is PSO and the most frequent analysis block is 2E. The DEA algo-
rithm does not belong to the Pareto front at all.

Table 4.10: Combinations of analysis blocks and optimisation algorithms that belong to the Pareto front.

Particle
swarm
optimisation
(PSO)

Genetic
algorithm
(GA)

Random
search
(RS)

Simulated
annealing
(SA)

Differential
evolution
algorithm
(DEA)

Analysis
block

Optimiser

1A Yes
Yes
Yes
Yes

Yes
—

—
—
Yes
—

Yes
Yes

—
Yes
—
Yes

Yes
Yes

Yes
—
Yes
—

Yes
Yes

—
—
—
—

—
—

2B

2C

2E

2D

1E

4.5.4. REDUCTION OF THE PARETO FRONT
If the number of MDAO workflows in the Pareto front is still too large for the workflow
designer to make a decision, the concepts of the minimum distance to the utopia point
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and average ranking can be used again to reduce the number of alternatives and alleviate
the problem.

In §4.5.2, it was found that the inaccuracy of analysis blocks 1E, 2E and 2B was not
counteracted by any other criterion and performed well under the criteria used in phase
1. It was also discussed that the inclusion of a sensitivity criterion would have filtered
out these alternatives. Alternatively, a constraint on the accuracy of the selected analy-
sis blocks could have also avoided carrying these three to the second phase, but it was
decided to reduce the Pareto front without any subjectivity from the workflow designer.

As it has become evident, analysis blocks 1E, 2E and 2B are not fit for wind farm
layout optimisation. Sampling the Weibull distribution at 3 wind speeds leads to very
inaccurate analysis blocks which negatively influence the optimisation problem.

Therefore, in this case study, the nine MDAO workflows that couple analysis blocks
1E, 2E and 2B are discarded. It is acknowledged that this should have been an outcome
of the guideline, and it proves that more than one iteration of the implementation can
help detect issues like this.

Figure 4.12 shows the level diagrams of the Pareto front with the average ranking on
the vertical axis. Optimisation algorithms are represented by colour, and the analysis
blocks by marker symbol. The discarded alternatives are shown, nevertheless, with gray
dots.

In this phase, to exemplify a real decision analysis done by a workflow designer, pre-
ferences are assigned to the criteria and the top ranked alternatives are discussed.

If the workflow designer is interested in the MDAO workflows that provide the de-
signs with the lowest LCOE, then good options would include PSO-2D, GA-2C and PSO-
2C. To achieve lower LCOEs, these MDAO workflows have to call the analysis block more
times, and would also have to be run several times to compensate for their low precision.

All solutions fall within a short range of the improvement metric, so it is no longer an
informative criterion.

Focusing on the number of function calls, this criterion benefits the simulated anne-
aling (SA) optimisation algorithm coupled to the 1A and 2C analysis blocks, at the cost
of other criteria.

If the workflow designer is after precision, then the GA-2C, SA-1A are the best alter-
natives. In this regard, the dummy random search algorithm has the highest score, but
at a cost in optimality.

It is concluded that from the original 30 alternative MDAO workflows, 9 are discarded
outside of the guideline by the workflow designer due to a shortcoming of the implemen-
tation, and 7 non-dominated options can cater to different relative preferences between
the criteria.

4.6. RESULT OF THE IMPLEMENTATION
Within the limits imposed by the chosen criteria, there is evidence that an MDAO work-
flow for the multidisciplinary design optimisation of offshore wind farms would better
serve its utility if it is composed of the following: the Jensen wake model, the sum wake-
merging model, the Quarton wake-added turbulence model, the Esau-Williams electri-
cal collection design heuristic, the TeamPlay support structure sizing tool, the surrogate
wind turbine power and thrust coefficient look-up tables made with FAST, sample the
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Figure 4.12: Level diagrams of the Pareto front of MDAO workflows where the vertical axis represents the avera-
ged rankings per criterion. Colours represent the optimisation algorithm coupled, and the shape of the mar-
kers represents the analysis block coupled.

Weibull wind speed distribution at over 20 points, and sample the windrose between 12
and 18 wind direction sectors.

Moreover, because optimality is typically the most sought-after virtue of optimisa-
tion algorithms, the particle swarm optimisation and genetic algorithms satisfy this de-
sire better than the simulated annealing and differential evolutionary algorithms, and
without sacrificing much in the improvement and precision criteria.
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4.7. DISCUSSION
This case exemplifies that the guideline can be implemented and the MCDA problem
solved in a matter of days when the alternative MDAO workflows can be programmati-
cally instantiated and run.

The objective of the guideline is to systematically, quantitatively and objectively sim-
plify the decision to a more tractable problem. The guideline selects the set of solutions
that efficiently solve the trade-offs and provide good compromises, and enables the de-
signer take a lower risk by choosing an alternative from that set that maximises certain
criteria while sacrificing the least on others.

The assumptions, strengths, weaknesses and challenges of the guideline, together
with suggestions to deal with them are discussed next.

Guideline The guideline is most useful when the use case is detailed enough to capture
what are the desired treats from the MDAO workflow.

Similarly, a workflow designer would benefit most from this guideline if the outcome
of the use case is sufficiently critical to a research or development project, to justify the
computational cost incurred in implementing it for selecting a set of best-performing
MDAO workflows. Likewise, the MDAO workflows selected should be expected to be
the workhorse throughout the project, to outweigh the cost of selecting it by using this
guideline. In other words, this guideline is not meant to select an MDAO workflow that
will be used only once.

In addition, only if the complete set of alternative number of analysis blocks can
not be evaluated in a reasonable amount of time, then this guideline has a reason to
exist. Running the multiobjective optimisation would be an excessive effort if all the
alternatives could be scored against all the criteria.

At the last stage of the guideline, as with any other multi-criteria decision analysis
problem, the decision maker must take a more active role, supported by expertise, ex-
perience, data and the outcome of this guideline, to choose a final single or few MDAO
workflows that comply with the predefined requirements.

The MCDA suggested by the guideline can be revisited and iterated upon as many
times as the workflow designer needs to feel confident on the results.

The guideline avoids the workflow designer from making catastrophic decisions ba-
sed on intuition while also avoiding becoming overwhelmed by the great amount of ana-
lyses and information involved in choosing the optimal MDAO workflow.

Phase 1: analysis block selection One assumption of the first phase is that all the avai-
lable analysis blocks are feasible. This means that all connections between different mo-
dels can be made programmatically, and that no inputs are left unconnected.

Definition of the criteria The selection of the criteria and play the most dominating
role of the entire guideline. Because an ill-posed problem leads to a useless, untrust-
worthy solution, the criteria have to represent the preferences of the workflow designer
and have distinguishing power between the alternatives.
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One of the roles of the guideline is to help detect the criteria that provide more me-
aningful solutions to the problem of choosing an MDAO workflow. In this implementa-
tion, a critical criterion measuring the sensitivity of the analysis blocks was missing, and
the repercussion of this decision was that the optimisation algorithms were negatively
affected by some underlying unrealistically flat LCOE functions.

Dealing with redundant criteria is a challenge. The Pearson correlation coefficient
establishes the strength of linear correlations only. Correlation plots should reveal any
other strong non-linear correlation. Although the Pareto front of alternatives should not
be affected by redundant criteria, their ranking is biased towards alternatives that out-
perform the others on correlated criteria.

The guideline does not suggest ways to define the metrics of the criteria. Similarly
to the criteria themselves, ill-defined metrics can break the utility of the alternatives
selected by the guideline. It is key, however, that these metrics are normalised, so the
weighted sum reflects only the relative importance between criteria and not their mag-
nitudes. The MOPSOC algorithm, in particular, works by minimising the metrics, so
non-decreasing functions should be used, where higher values represent worse soluti-
ons along that criterion.

Iterating on the application of the guideline also helps refine the criteria tree and
metrics that lead to a truly useful solution.

Formulation of the multiobjective optimisation problem The guideline does not sug-
gest a method to formulate the multiobjective optimisation. However, the choice of ob-
jective functions and constraints does have an impact on the results. A constrained op-
timisation places more effort to search in the feasible regions of the Pareto front, but
the workflow designer has to make a priori decisions on the thresholds of some criteria,
which is a difficult task.

MOPSOC algorithm The higher the dimension of the criteria space, the more iterati-
ons the MOPSOC algorithm will need to traverse the Pareto front with enough granula-
rity. The size attribute of the criteria tree should help limit the number of criteria used,
and to discard beforehand those deemed less relevant.

Naturally, the MOPSOC algorithm is sampling the analysis block space, so the work-
flow designer should temper expectations of the speed of the algorithm when sampling
computationally expensive alternatives.

While the MOPSOC algorithm guides the search towards the unknown true Pareto
front of the universe of analysis blocks, its probabilistic nature implies that its output
will be different at every execution. However, the non-dominated alternatives provided
by different executions should perform similarly.

Reduction of the Pareto front The approximated Pareto front might include hundreds
of alternatives, although this limit can be preset by the workflow designer. In any case,
while a large Pareto set is still a great improvement to the initial universe of alternatives,
it might be overwhelming to choose a smaller set of solutions from it.

The guideline does not recommend a way to rank the alternatives in the Pareto front.
This implementation shows a few methods, amongst many other existing ones.
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If the decision-maker has no preferences, then ranking the solutions by their distance
to the utopia point yields the solutions for which the loss along all criteria is minimal.
This distance, however, can be negatively affected by the normalisation procedure of
the metrics. Alternatively, ranking the alternatives per criterion is independent of the
magnitude of their values, and averaging the rankings is an indication of the consistency
of the strength of a particular analysis block.

The guideline aims at providing a set of solutions that objectively dominate the rest.
Nevertheless, it is acknowledged that frequently, the decision-maker will have preferen-
ces over the criteria. These can be introduced in the form of a weighted distance to the
utopia point, or a weighted average of the rankings per criterion.





A theoretical guideline for MDAO workflow selection has been proposed and 
implemented once to demonstrate the practical aspects associated to it.
This chapter now reports the validation study of the guideline. Its goal is to 
increase the confidence on the usefulness of the guideline to select 
better-performingMDAO workflows.
Validation is enforced through logical argumentation for the unbiased nature 
of each of the activities suggested in the guideline, and controlled 
experiments that prove the correct functioning of the MOPSOC and 
ε-non-dominated sorting algorithms under different scenarios.

Validation of
the guideline
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All models are wrong
but some are useful.

George Box87



5

106 5. VALIDATION OF THE GUIDELINE

5.1. INTRODUCTION
The purpose of this chapter is to increase the confidence of workflow designers in the
guideline. The validation of the guideline is done by progressively building trust on the
activities suggested. Trust is represented in this case by proving that the activities are
unbiased and are reliable. The activities should therefore provide meaningful results
consistently across different scenarios 110.

The validation aims to answer the question: Does the guideline help the workflow
designer make better decisions and build better MDAO workflows? The aim is thus to
prove that the guideline is a good method for selecting MDAO workflows, and not that it
is the best method.

Three methods are used to validate different parts of the guideline: informed argu-
mentation, experimental set-up, and comparing with other selection methods 10. A valid
informed argument should include three propositions: the claim, the data or evidence,
and the warrant. The claim is the disputed conclusion of the argument, e.g. "An apple
a day keeps the doctor away", the data or evidence sustains the claim, e.g. "Apples are
a source of healthy nutrients and its consumption can prevent strokes and lowers LDL
cholesterol", and the warrant acts as a bridge between the data and the claim, e.g. "Fewer
strokes and low LDL cholesterol lead to a reduction in medical attention and prescripti-
ons" 111. An experimental set-up is analogous to laboratory tests, where conditions are
controlled and the effect of every parameter can be studied in near isolation. Finally, the
results of the guideline are compared with the outcome of other informal methods that
workflow designers might use in the absence of a formal approach for MDAO workflow
selection.

The claim of the validation study is the following:

The guideline is useful for aiding the selection of the set of best-
performing MDAO workflows.

The next sections report the evidence gathered, and its implication on the validity of
the guideline is discussed.

This validation is only concerned with the activities of the guideline where there is a
concrete suggestion for the workflow designer to follow.

Three levels of the guideline are assessed for its validation, from top to bottom: the
guideline in its entirety, phases 1 and 2 in isolation, and the activities defined in each
phase. Following Fig. 5.1, V refers to the validation process of the overall guideline in
§5.2 by informed argumentation. V1 and V2 indicate the validation processes of phase
1 in §5.3 and phase 2 in §5.4, respectively, where their validity with respect to the set of
alternatives is argued, and phase 1 is compared with other analysis block selection met-
hods. V11 and V21 denote the validation by informed argumentation of the activities
to define the criteria, presented together in §5.3.2. V13 stands for the validation pro-
cess of the MOPSOC algorithm using experimental set-ups in §5.3.3. V22 is the process
to validate the activity of sorting the MDAO workflows in phase 2 using an experimen-
tal set-up, described in §5.4.2. Finally, the activities for formulating the multiobjective
optimisation of phase 1 and for reducing and ranking the solutions in the Pareto front
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of phases 1 and 2 are not validated, as the workflow designer is free to choose the ap-
propriate techniques. The impact of the choices are discussed, however, in §3.4.2 and
§3.4.4.

Use caseSet of
alternatives

Set of
criteria

Set of criteria

Pareto front

Pareto front

Solution set

Set of
alternatives

Guideline

Phase 1

Criteria definition

Problem 
formulation

MOPSOC

Pareto front
reduction

Pareto front
reduction

Criteria

Sorting

Phase 2

V

V11

V13

V21

V22

V1

V2

Figure 5.1: Outline of the validation study.

5.2. VALIDATION OF THE OVERALL GUIDELINE
This section presents the validation activity of the entire guideline, marked with V in
Fig. 5.1, discussing the concepts behind it and the influence of the use case.
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"If humans were always successful in instinctively making optimal decisions on their
own, there would be no need for formal decision theory" 112. This note by Thurston et.
al., implies that workflow designers, in their human condition, are not always successful
in building optimal MDAO workflows, and a formal decision theory for that purpose is
necessary.

While a formal approach could overwhelm the workflow designer and lead to a stall
in the decision-making process, the guideline is meant to support a semi-automated
decision analysis. This approach reduces the burden of analysing all alternatives, and
provides the workflow designer a much smaller set of solutions to choose from and in-
formation about the performance of these workflows.

The guideline uses the multiobjective programming MCDA paradigm for its ability
to approximate the set of non-dominated solutions or Pareto front. All the optimal solu-
tions that satisfy any combination of preferences of the workflow designer are elements
of the Pareto front. The guideline proposed in this work avoids the need for subjective
preferences a priori that affect the information made available to the designer.

Theoretically, the guideline has therefore the ability to yield all the best-performing
solutions. In practice, however, all multiobjective programming techniques only approx-
imate the Pareto front. This is due to time limitations and the stochastic nature of the
optimisation algorithm.

The fulfilment of the requirements of the guideline presented in §3.2 is discussed
next.

The guideline is deemed to be concrete because there is no ambiguity in the descrip-
tion of the activities. The activities must be followed in a predefined order and none of
their outputs are left to the interpretation of the workflow designer. The outputs of the
suggested activities are: a single list of useful criteria, a single multiobjective optimisa-
tion formulation, a set of non-dominated alternatives and a ranked subset of the Pareto
front of MDAO workflows.

The guideline is flexible because it allows the workflow designer to have an active
role in the selection process. The criteria are not predefined, but the workflow designer
is given a framework for developing a list of criteria for different use cases and sets of
alternatives. Additionally, the formulation of the multiobjective optimisation is also not
fixed, and it may instead cater to the preferences of the decision maker. Finally, the
workflow designer is allowed to choose freely the technique for reducing the Pareto front.

The guideline is objective because it makes no assumptions about the preferences
of the designer on the criteria. It simply looks for non-dominated solutions and pre-
sents them to the designer to apply preferences at a very late stage, and with much fe-
wer alternatives. The MOPSOC algorithm is the only known multiobjective optimisation
algorithm for categorical variables, which justifies its inclusion in the guideline. The ε-
non-dominated sorting algorithm finds the exact Pareto front of any given set, with a
user-defined tolerance for the maximum distance between elements across all criteria.

Finally, the guideline is simple because the steps are clearly defined, there is no in-
formation withheld from the workflow designer for maximum transparency, and it com-
prises a sequence of eight activities that always yield a solution. All the steps in the im-
plementation of chapter 4 are fully described, and they all follow the exact instructions



5.2. VALIDATION OF THE OVERALL GUIDELINE

5

109

of the activities of the guideline in chapter 3. There is a one-to-one correspondence bet-
ween the implementation and the guideline.

The concepts of the guideline that need a critical reflection regarding their effective-
ness are treated below.

This guideline proposes the separation of the selection of MDAO workflows into two
phases: the selection of analysis block and the selection of driver algorithm. It is claimed
that the Pareto front of all the possible MDAO workflows contains the Pareto front of the
MDAO workflow found by separating the selection into two phases. The separation of
phases is equivalent to finding the Pareto front of MDAO workflows with constraints on
the performance of its analysis block. The drawback of the separation of the phases is
that the entire Pareto front of MDAO workflows is not found. Nonetheless, the analysis
block is the most influential part of an MDAO workflow. A bad driver algorithm cou-
pled to a good analysis block yield much more useful results than a bad analysis block
coupled to a good driver algorithm. Furthermore, in chapter 4 roughly 6,000 analysis
blocks were evaluated by the MOPSOC algorithm. Coupling each of these to a driver al-
gorithm and evaluating the performance of the resulting MDAO workflow would take an
unreasonably large amount of time due to the iterative nature of the optimisation. The
separation of phases enables the benefits of implementing the guideline to outweigh its
cost.

Other problems may arise from the definition of the criteria using separated phases.
If the criteria to evaluate the analysis block are redundant with the criteria used for eva-
luating the driver algorithms, the analysis blocks chosen may bias the selection of the
driver algorithm.

The feasibility of implementing the guideline is not always guaranteed. The MOP-
SOC algorithm requires the automatic generation of analysis blocks, a task that can be
difficult to achieve and impose restrictions in the set of alternative analysis blocks wit-
hout full access to the programmatic instantiation of models with varying parameters.

5.2.1. INFLUENCE OF THE USE CASE
The use case driving the design or selection of MDAO workflows influences only the acti-
vities for defining the criteria and for reducing the Pareto front by applying the preferen-
ces of the designer, if any. The rest of the guideline is blind to the use case.

Any use case would likely require MDAO workflows to be evaluated along several cri-
teria. Although different use cases might have the same sub-objectives, they may also
have very different requirements, which could translate into different criteria. For ex-
ample, it could be argued that an investor stakeholder would have no preference over
the execution time of the analysis block, as there are qualities of the MDAO workflow of
much higher priority. In other words, the criterion execution time is not meaningful to
the workflow designer, and thus has no power to discern between alternatives. On the
contrary, any certification analysis would have a computational budget allocated to it,
making execution time a criterion of interest to the workflow designer.

Similarly, the use case may have implications on the preferences of the designer, in-
cluded at the last step of the selection process. While chapter 4 exemplified a case with
no preferences on the criteria, the workflow designer may have non-zero preferences on
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some criteria. The workflow designer will typically shift his preferences according to the
use case. For example, the execution time of the analysis block will attract more interest
relative to other criteria the more times the analysis block is needed to be run.

The guideline is thus able to handle different use cases by design. It is a task of the
workflow designer to capture the requirements of the use case, and use them to drive the
instantiation of the guideline, to eventually reach solutions that satisfy the requirements.

5.3. PHASE 1: ANALYSIS BLOCK SELECTION
The validation of phase 1 with respect to the set of alternatives, shown as V1 in Fig. 5.1, is
treated here. Then the activities of phase 1 are validated one by one, followed by a com-
parison of the selected analysis block using phase 1 of the guideline with other selection
methods, and an assessment of the sensitivity of the output of phase 1 with respect to
the criteria used.

5.3.1. INFLUENCE OF THE SET OF ALTERNATIVES
This section addresses whether phase 1 works for all kind of models and analysis blocks.

Notwithstanding the dependency of the performance of the MOPSOC on the metrics
of the criteria, the greatest showstopper for the ability of MOPSOC of providing meaning-
ful results is the execution time of the alternative analysis blocks.

Knowing in advance that the MOPSOC algorithm samples analysis blocks in the or-
der of thousands, it would not be worth following this procedure for selecting an analysis
block that will be used for less time than it takes selecting it.

With the computational power currently available to offshore wind farm developers
and researchers it is infeasible to run MOPSOC with high-order physics models that re-
quire a high-density mesh, such as computational fluid dynamics or finite element met-
hods. Moreover, analysis blocks that involve several solving cyclic-connections with non
linear iterative solvers can also be prohibitively expensive to optimise with MOPSOC.

However, it is hypothesised that beyond the guideline proposed in this work, any
MCDA method would struggle to select a set of better-performing analysis blocks from
a universe of alternatives that couple very computationally expensive tools. While this
hypothesis does not increase the value of the guideline, it highlights the need to conti-
nue the development of MCDA theories for selecting analysis blocks with high levels of
sophistication. One possible line of research is the use of surrogate models as stand-ins
for sophisticated high-order physics modelling tools.

It is therefore affirmed that the set of alternatives should have no implications on the
validity of the guideline, but there may be practical limitations regarding execution time
or the ability to automatically generate the analysis blocks.

5.3.2. DEFINITION OF THE CRITERIA
The validation activities V11 and V21 in Fig. 5.1 are discussed together here.

This guideline is based on the premise that the MDAO workflow used for solving a
use case will be evaluated based on multiple criteria. It is better to choose (or design)
the MDAO workflow by looking at all the criteria since its inception, instead of designing
it for a single or few criteria and then judging its performance against another set of
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criteria 112.
This is a critical activity, as the result of the entire guideline will be defined by the

criteria. Analogous to how the solution of an optimisation problem is as good as the ob-
jective function, good MCDA with bad criteria will lead to meaningless solutions. Work-
flow designers need to solve the right problem.

The guideline assumes that a compromise between certain criteria exists, otherwise
the criteria only reinforce the fact that a single solution is the absolute best alternative.
In that case the problem becomes unidimensional and MCDA theory is no longer neces-
sary. The guideline further assumes that criteria are not preference-complementary, i.e.
that the value of one criterion must not depend on the value of another 110.

A multicriteria evaluation function can include criteria and binary constraints 112.
Binary constraints express whether the designer is willing to pay to exceed a certain value
of a given performance indicator. Criteria differ from binary constraints in that a range
of acceptability exists, and the designer has a preference over the range of the criterion,
i.e. that more or less of that criterion is better.

Inspiration for criteria in the domain of computer simulations can be found in pa-
pers that attempt to quantify simulation fidelity 85,89. Simulation utility is a trade-off
between the (relevant) information acquired and the cost of acquiring it. Falkenhainer
states the trade-off as having sufficient fidelity to answer a query and contain as little
extraneous detail as possible to avoid wasting computational resources 113, while Rad-
hakrishnan declares the usefulness of a simulation if it predicts reality accurately at a
small cost 114. Instead of using the concept of cost, Provan says model complexity can be
the overarching sub-objective counteracting accuracy 115. Harmon suggests criteria that
evaluate the actual federation of simulations, in terms of their connections and simula-
ted representations, as done in MDAO 90.

Regarding the metrics, non-linear evaluation functions are not trivial to determine
and the process can be very time-consuming 112. However, it is important for MCDA
that the metrics are monotonically increasing, for transitivity and to correspond to the
designer’s preferences.

The scores of some criteria will depend on the environment, and for repeatability
this should be taken into account when formulating the criteria and metrics. For exam-
ple, the execution time of the analysis block will depend on the computational power
available.

The guideline is blind to the criteria selected, and therefore works regardless of the
criteria and metrics. As stated above, the guideline will undoubtedly yield useless ans-
wers, if the criteria or their metrics are meaningless.

5.3.3. MOPSOC ALGORITHM
This section reports the validation of the MOPSOC algorithm, shown as V13 in Fig. 5.1.

The MOPSOC algorithm is validated using three sources of evidence. The first is the
evaluation of the performance of the algorithm with multiobjective optimisation test
functions. The second source of evidence is the comparison of the distribution of the
Euclidean distances of the Pareto front found with the MOPSOC algorithm, with that of
the Pareto front of a random sample. Third, the MOPSOC algorithm is run for the use



5

112 5. VALIDATION OF THE GUIDELINE

case defined in chapter 4 with different optimisation formulations, and the results are
discussed.

TEST FUNCTIONS

The MOPSOC algorithm is partly validated with continuous test functions of which the
Pareto front is known. The functions are adapted by discretising the search domain and
randomising the order of the sample points.

The following multiobjective test functions have the same notation: fi for the m ob-
jectives to be minimised, subject to h j constraints:

minimize
x

fi (x1, x2, . . . , xn),

subject to h j (x1, x2, . . . , xn) ≤ 0.

The results of the tests will be shown in graphs (Figs. 5.2-5.7), which show the Pareto
front of the test functions with a yellow line and their approximation found by MOP-
SOC with a black line or dots. Furthermore, the dotted areas show the mapped se-
arch space of the objective functions found by randomly sampling 100,000 points in the
function’s original continuous domain. The dark gray areas show the feasible regions
that fall within the constraint functions. For clarity, the objective functions spaces that
are well-delimited are shaded with a dotted pattern.

All functions were optimised using 20 swarm particles and 300 time steps, which
require 6,000 function evaluations. Each dimension of x is discretised into 200 intervals
of equal length.

The next sections show the results for the following test functions:

1. Binh-Korn function

2. Chankong-Haines function

3. ZDT3 function

4. Poloni function

5. Fonseca-Fleming function

6. Viennet function

Binh-Korn function The Binh-Korn function 116 is chosen to prove the ability of MOP-
SOC to approximate a convex Pareto front of a constrained function (see Fig. 5.2). This
function reads:

f1(x) = 4x2
1 +4x2

2 ,

f2(x) = (x1 −5)2 + (x2 −5)2,

h1(x) = (x1 −5)2 +x2
2 −25 ≤ 0,

h2(x) = −(x1 −8)2 + (x2 +3)2 +7.7 ≤ 0,
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Figure 5.2: Pareto front of the Binh-Korn function approximated by MOPSOC.

and the search domain is:

0 ≤ x1 ≤ 5,

0 ≤ x2 ≤ 3.

The MOPSOC algorithm is able to approximate the Pareto front of the feasible regi-
ons. MOPSOC manages to find the narrow feasible region at the bottom.

Chankong-Haimes function The Chankong-Haimes test function 117 is also selected
to show the ability of MOPSOC to approximate the convex Pareto front of a constrained
function (see Fig. 5.3). This function reads:

f1(x) = 2+ (x1 −2)2 + (x2 −1)2,

f2(x) = 9x1 − (x2 −1)2,

h1(x) = x2
1 +x2

2 ≤ 225,

h2(x) = x1 −3x2 +10 ≤ 0,

and the search domain is:

−20 ≤ x1, x2 ≤ 20.

MOPSOC is able to closely approximate the true Pareto front of the feasible region.

ZDT3 function The Zitzler-Deb-Thiele 3 (ZDT3) test function 118 is commonly used to
benchmark multiobjective optimisation algorithms. The ZDT3 function is expressed by:
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Figure 5.3: Pareto front of the Chankong-Haimes function approximated by MOPSOC.

f1(x) = x1,

f2(x) = g1(x)g2( f1(x), g1(x)),

where:

g1(x) = 1+ 9

n −1

n∑
i=2

xi ,

g2(x) = 1−
√

f1(x)

g1(x)
−

(
f1(x)

g1(x)

)
sin(10π f1(x)),

and the search domain is:

0 ≤ xi ≤ 1, i ∈ [1,2, . . . ,7].

In this work, the dimension of the design vector, n, has been set equal to 7, instead
of the more common n = 30, which would make MOPSOC’s swarm particles live in a
200×30-dimensional space and converge extremely slowly. In spite of the reductions of
the number of dimensions to make MOPSOC tractable to solve the ZDT3 test function, 7
dimensions is representative of many practical categorical functions. The random sam-
pling of function ZDT3 (Fig. 5.4) shows that the density is much higher about f2 ' 4 than
in the vicinity of the Pareto front, and that MOPSOC is able to separate from the denser
region and approximate the Pareto front better than by random sampling the function.

Poloni function The Poloni function 119 is used to prove the ability of MOPSOC to ap-
proximate a discontinuous Pareto front (see Fig. 5.5). This function is given by:
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Figure 5.4: Pareto front of the ZDT3 function approximated by MOPSOC.

f1(x) = [1+ (A1 −B1(x))2 + (A2 −B2(x))2],

f2(x) = (x1 +3)2 + (x2 +1)2,

where:

A1 = 0.5sin(1)−2cos(1)+ sin(2)−1.5cos(2),

A2 = 1.5sin(1)−cos(1)+2sin(2)−0.5cos(2),

B1(x) = 0.5sin(x1)−2cos(x1)+ sin(x2)−1.5cos(x2),

B2(x) = 1.5sin(x1)−cos(x1)+2sin(x2)−0.5cos(x2),

and the search domain is:

−π≤ x1, x2 ≤π.

MOPSOC approximates the true Pareto front of the function, even though it is dis-
continuous.

Fonseca-Fleming function The Fonseca-Fleming test function 120 is selected to show
the ability of MOPSOC to approximate a concave Pareto front. The Fonseca-Fleming
function is given by:

f1(x) = 1−exp

[
−

n∑
i=1

(
xi − 1p

n

)2
]

,

f2(x) = 1−exp

[
−

n∑
i=1

(
xi + 1p

n

)2
]

,
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Figure 5.5: Pareto front of the Poloni function approximated by MOPSOC.
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Figure 5.6: Pareto front of the Fonseca-Fleming function approximated by MOPSOC.

where the dimension of the design vector, n, is set to 3. The search domain is:

−4 ≤ x1, x2, x3 ≤ 4.

It is worth noting in Fig. 5.6 that the Fonseca-Fleming function has a higher density
at higher values of f1 and f2, and yet MOPSOC is able to move away and towards the
Pareto front.

Viennet function The Viennet test function 121 is chosen to show the ability of MOP-
SOC to approximate a three dimensional Pareto front (see Fig. 5.7). The Viennet set of
functions read:
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Figure 5.7: Pareto front of the Viennet function approximated by MOPSOC.

f1 (x) = 0.5
(
x2

1 +x2
2

)+ sin
(
x2

1 +x2
2

)
,

f2 (x) = (3x1 −2x2 +4)2

8
+ (x1 −x2 +1)2

27
+15,

f3 (x) = 1

x2
1 +x2

2 +1
−1.1exp

(−x2
1 −x2

2

)
,

and the search domain is:

−3 ≤ x1, x2 ≤ 3.

The Pareto front approximated by MOPSOC is a subset of the true Pareto front. The
density of the non-dominated solutions, however, is not uniform. There is no mecha-
nism in the MOPSOC algorithm to avoid clusters of non-dominated solutions.

The validation functions used in this study show that MOPSOC approximates Pareto
fronts closely using only 6,000 function evaluations. In comparison, the ZDT3 function
in its original continuous form is recommended to be optimised with at most 25,000
function calls 94.

RANDOM SAMPLE OF ANALYSIS BLOCKS

In this section the Pareto front approximated by the MOPSOC algorithm is compared to
the Pareto front of a random sample of analysis blocks.

Figure 5.8 shows the minimum, first, second and third quartiles, and the maximum of
the Euclidean distances of the analysis blocks to the utopia point, for the approximated
Pareto front found with MOPSOC comprising 118 analysis blocks, for the Pareto front
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of a random sample of the same size as the number of workflows evaluated by MOP-
SOC, and for the entire random sample. The utopia point is defined as the point where
Cacc =Ct i me =Cdet =Cos = 0. The distance is calculated using the normalised versions
of the criteria. The median Euclidean distance of the Pareto front of six thousand rand-
omly sampled analysis blocks is 0.9992, whereas the median of the set of non-dominated
analysis block found with MOPSOC is 0.9464. The minimum distance found is 0.6061 for
the random sample while MOPSOC is able to find a solution with a distance of 0.2947.
This is an indication that MOPSOC is able to break away from the dense regions in the
criteria space and move towards the true Pareto front of the universe of analysis blocks.
The approximated Pareto front contains 119 analysis blocks, and the Pareto front of the
random sample contains 105.
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Figure 5.8: Minimum, quartiles and maximum of the Euclidean distances to the utopia point of the analysis
blocks in the approximated Pareto front found with MOPSOC, of a random sample of 6,000 analysis blocks and
the Pareto front of the sample.

OPTIMISATION FORMULATION

The goal of this section is to assess the robustness of MOPSOC for producing meaning-
ful results under different optimisation problem formulations. Besides the formulation
used in chapter 4 where all the four criteria are treated as objective functions, one and
two objective functions are used here with three and two constraints, respectively.

One objective function Accuracy is the criterion to be minimised by the MOPSOC
algorithm while complying with constraints on the execution time, detail and open-
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sourceness criteria. Formally, the optimisation formulation is the following:

minimise
W

Ĉacc (W )

subject to: Ĉt i me (W ) < 0.2,

Cdet (W ) < 0.2,

Cos (W ) < 0.2.

Formulations with a single objective function produce a single optimal analysis block.
In this case the solution has an accuracy metric of 0.07 (0.92e/MWh), 4.21 s of execution
time (metric equal to 0.16), a detail of 0.03 and an open-sourceness of 0.2.

The resulting analysis block slightly dominates the Pareto fronts found with more ob-
jective functions. The MOPSOC algorithm is more efficient with less objective functions.
This is partly due to the reduced weight-sampling frequency since there are a limited
number of iterations and a fixed size of the swarm.

Two objective functions Accuracy and execution time are minimised in this formula-
tion, with constraints in place for limiting detail and open-sourceness. This formulation
is formally expressed as:

minimise
W

Ĉacc (W ),Ĉt i me (W )

subject to: Cdet (W ) < 0.2,

Cos (W ) < 0.2.

Figure 5.9 shows that by reformulating the original problem, the new Pareto fronts
are farther from the utopia point than the unconstrained problem chapter 4. In addi-
tion, compared to the formulation reported in §4.4.2 where all four criteria are jointly
minimised (projected in Fig. 5.9 onto the accuracy-execution time plane), the resulting
Pareto front is a 2D subset of the full 4D Pareto front.

This exercise helps validate the robustness of the MOPSOC algorithm with respect
to changes in the formulation of the optimisation problem. The approximated Pareto
fronts comply with the expectations that the constrained optimisation will limit the lo-
wer values that execution time and accuracy can achieve and always produce feasible
results, and that the unconstrained optimisations produce similar results. Nevertheless,
the constraint-handling technique of the MOPSOC algorithm can be improved to allow
greater exploration of the infeasible regions.

5.3.4. INFLUENCE OF THE CRITERIA
This section describes the validation of phase 1 of the guideline by solving the use case
defined in chapter 4 with different sets of criteria and discussing the impact these have
on the resulting Pareto fronts.

The MOPSOC algorithm is run with a single criterion, and certain combinations of
two and three criteria. All the following where run with the same conditions as the im-
plementation of chapter 4: 300 iterations with 20 particles in the swarm.
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Figure 5.9: Scatter plot of the Pareto front when the execution time and detail criteria are jointly minimised.
Three cases are considered: all four criteria minimised, accuracy and time minimised unconstrained, and
accuracy and time minimised with constraints on detail and open-sourceness.

Accuracy only By optimising only accuracy and disregarding execution time, detail
and open-sourceness, an error of 1.84% or 0.54e/MWh is achieved. The optimal analy-
sis block is very similar to the analysis block used as reference for the accuracy metric,
coupling the most sophisticated models and a high number of sampling points. Further-
more, the accuracy of the analysis block found with MOPSOC is compared to the accu-
racies of 6000 randomly-sampled analysis blocks in Fig. 5.10. Two random samples are
slightly more accurate, but MOPSOC breaks away from the denser regions of accuracy
after only 17 iterations.

Figure 5.10: Accuracy of 6000 randomly-sampled analysis blocks (orange circles) and of the optimal analysis
block found with MOPSOC (blue line). The dotted line shows the history of the accuracy of the best solution
found by the MOPSOC algorithm.

Time only MOPSOC finds an alternative with 0.65 s of execution time when this is the
sole criterion to be minimised. This analysis block couples all the very basic dummy
models, with the lowest possible number of sampling points. The FAST wind turbine
model is the only non-dummy model coupled, because it has the same execution time
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as the dummy model, as it is a look-up table made from FAST simulations.

Detail only The metric for detail can only have discrete values and only five modules
have models that contribute to the detail criterion. The other modules only have avai-
lable models with the same level of detail. Only 768 workflows (0.11% of the possible
analysis blocks) have the best detail value of zero. One of these is found by MOPSOC.

Open-sourceness only 27% of the possible analysis blocks have the best open-sourceness
value of zero. It is thus relatively easy to find a best-scoring analysis block, and MOPSOC
manages to do that.

Accuracy and time The Pareto front resulting from running the MOPSOC algorithm
with the accuracy and execution time as objective functions shows that these are two
competing criteria. The wake model and the number of sampling points are the most
consequential choices for the accuracy and execution time of analysis blocks. Figure 5.11
shows that the position of the analysis blocks on the Pareto front approximated by the
MOPSOC algorithm largely depends on the wake model coupled and the number of
sampling points, as expected.
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Figure 5.11: Scatter plot of the Pareto front when the accuracy and execution time criteria are jointly minimi-
sed. Colour represents the wake model coupled and number of sampling points.

Time and detail Detail depends largely on the presence of FAST and TeamPlay models.
Neither of these have great implications on the execution time of the analysis block, and
can be expected to appear in this Pareto front. Detail and time are competing criteria,
where the sole responsible for analysis blocks belonging to either side of the Pareto front
is the model for the support structure sizing module as seen in Fig. 5.12. All the analysis
blocks in the Pareto front couple the FAST wind turbine model, since it increases the le-
vel of detail without affecting time. Because accuracy is not an objective nor a constraint,
the dummy constant wake model appears often to decrease execution time without in-
curring in a loss of detail. The same happens with the low number of wind speed and
wind direction sampling points.
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Figure 5.12: Scatter plot of the Pareto front when the execution time and detail criteria are jointly minimised.
Colour represents the support structure sizing model.

Accuracy and detail Because the reference for accuracy is calculated using one of the
most detailed and sophisticated analysis blocks, accuracy and detail are not competing
criteria. The MOPSOC algorithm captures this behaviour as evidenced by the fact that
this Pareto front only has two analysis blocks that are very close to each other and have
high accuracy (errors of 0.95 e /MWh) and high level of detail (0.006). The difference
between the analysis blocks in the Pareto front lies in the wake model. The Larsen model
is slightly more detailed than the Ainslie 1D model, but marginally less accurate.

Accuracy, time and detail Analysis blocks with a higher level of detail, should have
higher accuracy due to their sophistication, at the cost of higher execution times. Fi-
gure 5.13 shows the 2D projection of the three-dimensional Pareto front onto the plane
defined by the normalised metrics for accuracy and execution time. The plot shows the
isolines of the detail metric. Precisely as expected, the contour lines progressively re-
ach more accurate and computationally expensive alternatives as the metric for detail
decreases.
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Figure 5.13: Two-dimensional plot of the three-dimensional Pareto front when the accuracy, execution time
and detail criteria are jointly minimised. Contours of detail are shown in colour.
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Criteria are the most defining elements in MCDA. This study has demonstrated that
the MOPSOC algorithm, and consequently phase 1, yield entirely different solutions
when different criteria are used. In particular, obtaining a 2D Pareto front using 2 ob-
jective functions provides much more information than running twice a single-objective
optimisation. In that light, it is seemingly beneficial to use all the criteria and obtain as
much information as possible, as phase 1 and the MOPSOC are perfectly able to handle
them. It should be reminded, nonetheless, that the list of criteria should comply with
the size attribute, to avoid placing much burden on the optimisation. The results of this
exercise were expected and no non-trivial information was obtained from this particular
set of alternatives, which helps validate the effectiveness of phase 1.

5.3.5. COMPARISON WITH OTHER SELECTION METHODS
Because a case could be made for quickly picking a sub-optimal analysis block, the
weight of the potential benefits of implementing phase 1 of the guideline and enacting
the solution against its cost is emphasised in this section. In particular, the implementa-
tion of phase 1 of the guideline takes a couple of days to execute, and the analysis block
selected by the guideline in §4.4.4 has an error of 2.76e/MWh, 2.27 s of execution time,
is one of the most detailed workflows (0.01) and has a score of 0.4 in open-sourceness.

Figure 5.14 shows the performance of one analysis block found with the guideline in
chapter 4 (Method G) and the analysis blocks selected with seven other approaches that
a workflow designer may use in the absence of a formal decision theory. These methods
are described next.

Method A: first satisfactory solution This approach consists of selecting a solution
that satisfies predefined constraints on all the criteria. To implement it, analysis blocks
are randomly sampled and scored until a satisfactory solution is found. The constraints
are Ĉacc < 0.5, Ĉt i me < 0.25, Cdet < 0.2 and Cos < 0.2.

The workflow selected in an exemplary execution of this approach couples the Jen-
sen wake model, summed deficits wake-merging model, Larsen wake-added turbulence
model, Esau-Williams electrical collection design tool, dummy constant support struc-
ture cost model, FAST wind turbine model, and samples 3 wind speeds and 36 wind
directions.

Method B: greedy for accuracy Analysis blocks can be built without knowing their per-
formance a priori. In this method, design choices are made by the workflow designer
with the aim of increasing for accuracy, while keeping an eye on execution time, open-
sourceness and detail. This procedure would function as follows.

For accuracy, a seasoned workflow designer would keep the Ainslie 1D wake mo-
del together with a large number of sampling points for wind speed, avoid the inaccu-
rate multiplied wake-merging model and couple the RSS model, and the Quarton wake-
added turbulence model. For acceptable execution times, the number of wind directions
would be capped at 12 wind directions. Accuracy is more sensitive to the number of wind
speed sampling points than to the number of wind directions sampling points. Open-
sourceness can be increased by coupling the POS electrical collection design heuristic.
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Finally, the TeamPlay support structure sizing tool and the FAST wind turbine model
would be used to increase the level of detail of the analysis block.

This analysis block has indeed a high accuracy, detail and open-sourceness, at the
cost of the execution time.

Method C: greedy for execution time This method follows the procedure of method B,
though prioritising execution time and being aware of the rest of the criteria. The im-
plementation of this method would encourage the workflow designer to avoid the time-
consuming Ainslie 1D wake model and use a low number of wind speed sampling points.
Then accuracy would be better served by increasing the number of wind directions sam-
pled to the maximum possible, coupling the Quarton, RSS, FAST and TeamPlay models,
which do not significantly impact execution time. Open sourceness would require not to
couple the QBlade wind turbine model, the Larsen wake model, the Frandsen and Lar-
sen wake-added TI models and the Esau-Williams heuristic. The Jensen model and POS
heuristic are chosen instead.

This analysis block has low execution time, detail and open-sourceness at the cost of
accuracy.

Method D: minimum execution time This approach sees the workflow designer choose
the analysis block that minimises execution time and disregards the rest of the crite-
ria entirely. Evidently, without any optimisation algorithm, the global optimal analysis
block cannot be known. In this case, the optimal is approximated by the best-performing
analysis block of a set of 6000 randomly sampled alternatives.

The resulting analysis block reduces the sampling points to the minimum possible
and couples the Jensen, RSS, Larsen wake-added TI, POS, TeamPlay and BEM models.
This choice has naturally a positive effect on execution time at a huge cost on accuracy
and detail. Open-sourceness is at its lowest value too, as closed-source models were
chosen in between the most and least sophisticated models.

Method E: maximum accuracy This method complies with the objective of the work-
flow designer to maximise accuracy and disregard the rest of the criteria.

The solution is merely the analysis block closest to the alternative used as reference
for the accuracy metric. This solution couples the Ainslie 1D, RSS, Quarton, Esau-Williams,
TeamPlay, FAST models and samples 25 wind speeds and 90 wind directions. As ex-
pected, the wake analysis is very expensive with this analysis block. Detail is low due to
the great sophistication of the models coupled and open-sourceness is 60%.

Method F: maximum detail Because detail is a criterion that takes only discrete va-
lues, there are several analysis blocks with the highest level of detail. These solutions are
picked from a random sample of 6000 analysis blocks and their range of accuracies and
execution times are shown in Fig. 5.14.

All these analysis block couple the Larsen, Quarton, Esau-Williams, TeamPlay and
FAST models, and they all have a high open-sourceness score of 0.6. As shown also in
Fig. 5.13, accuracy and time will typically not reach low or high values simultaneously.
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Method H: maximum open-sourceness This method is analogous to method F, in that
many solutions have an open-sourceness of 100%. Figure 5.14 shows the range of values
of the rest of the criteria for these analysis blocks.

None of the solutions couple the closed-source models Larsen, Frandsen, Quarton,
Esau-Williams and QBlade models. Detail, execution time and accuracy will typically
not reach their lowest values simultaneously.
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Figure 5.14: Performance of analysis blocks selected with the guideline in chapter 4 and using other methods.

The analysis block selected by the guideline (method G in Fig. 5.14) can be seen to be
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the only solution that jointly minimises accuracy, time and detail, at the cost of opens-
sourceness. Other solutions, such as those found with methods A and B also tend to
score low in all criteria. However, they do not consistently have better scores than the
analysis block found with the guideline. Methods A, B and C try to cater for all the crite-
ria, while methods D, E, F and H cater for a single criterion.

Therefore, methods B and C can more directly be compared with the guideline, as the
solution marked with G is chosen under no preferences on the criteria. The Euclidean
distances to the utopia point of the solutions found using methods A, B, C are all higher
than that of the solution of the guideline. In ascending order, these distances are: G:
0.46, A: 0.66, B: 0.78, C: 0.97. Complementary, the average ranking of the analysis blocks
along the four criteria are: G: 2.83, B: 3.41, C: 3.91, A: 4.41. In both analysis, the solution
of the guideline comes out on top of the four methods. Additionally, the solution of the
guideline is non-dominated in the sense of Pareto with respect to the solutions of other
methods.

The analysis blocks found with methods D, E, F and H help to evaluate the trade-offs
that the guideline solves. The birth of the guideline is rooted at the notion of avoiding
the design or selection of MDAO workflows based on a single criterion, and instead pro-
viding a means to find a compromise between criteria. Methods D, E, F and H fail to
acknowledge that the analysis blocks will be judged along several criteria.

Admittedly, this analysis uses the criteria and metrics defined in the guideline itself
to compare workflows selected with other methods. However, this comparison is dee-
med inevitable due to a lack of standards and methodologies for MDAO workflow evalu-
ation. In addition, the guideline outperforms the other methods using various ranking
methods.

More interesting, however, is to discuss when the improved performance of solutions
found with the guideline outweigh the extra efforts compared to other methods. It can
be safely assumed that a minimum level of accuracy is needed in all use cases. For this
reason, the guideline is only compared to methods A, B and E, and the solutions of the
rest of the methods are deemed much more inaccurate than the solution obtained with
the guideline and never worth implementing. Method A can be claimed to be a good
enough analysis block worth implementing if the workflow designer is willing to use a
less accurate alternative, though not by much, and also less detailed, in exchange for a
gain in open-sourceness. Method B’s greatest disadvantage with respect to the guideline
is the slightly higher execution time of its solution. A use case with multiple iterations of
the analysis block that can not afford 25 seconds per call, would benefit from the solution
of the guideline. Conversely, if 25 s per iteration is deemed acceptable, then method B
would provide a workflow with less effort than using the guideline. Finally, the solution
of method E has the highest execution time of all the methods, and the highest accuracy.
Certain use cases related to certification and sensitivity analysis for making investment
decisions would benefit from using this workflow instead of the solution of the guideline,
due to the higher accuracy needed and the low number of iterations of the analysis block
required. For use cases that require many iterations, then the guideline should provide
a much faster option with minimum losses in accuracy.
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5.4. PHASE 2: DRIVER ALGORITHM SELECTION
The validation of phase 2 with respect to the set of alternatives, shown as V2 in Fig. 5.1,
is treated here. Of all the activities suggested in the second phase of the guideline (§3.5,
only the alternative-sorting algorithm to find the Pareto front needs to be validated. The
other activity for defining the list of criteria is identical in phase 1, and its validations is
treated in §5.3.2.

5.4.1. INFLUENCE OF THE SET OF ALTERNATIVES
This section addresses whether phase 2 works for all kind of models and driver algo-
rithms.

With respect to the selection of driver algorithms, the second phase of the guideline
is an objective approach that reduces the number of alternatives to the size of the set of
non-dominated analysis blocks times the number of driver alternatives.

The burden of scoring all the alternatives depends on the number of MDAO work-
flows considered by the workflow designer.

Furthermore, the activities of phase 2 provide a deterministic process. When the
scores of all the alternatives across all the criteria have been measured, the resulting
Pareto front is always the same. In other words, the guideline is blind to the intrinsic
nature of the alternatives once the scores are known.

Naturally, as with any other MCDA method, the criteria tree should have discerning
power over the alternatives.

5.4.2. SORTING THE MDAO WORKFLOWS
To demonstrate the capabilities of the ε-non-dominated sorting algorithm in the MDAO
workflow selection process of phase 2, a set of 6000 randomly sampled analysis blocks is
used with different criteria to find different Pareto fronts. Figure 5.15 plots the random
sample of analysis blocks (orange dots) and their non-dominated set (purple dots). Three
combinations of two criteria and one combination of three criteria are shown.

The sorting algorithm manages to find the exact subset of non-dominated analysis
blocks. This exercise is evidence of the general validity of this algorithm.

5.5. DISCUSSION
Informed argumentation, controlled laboratory experiments and simulated field expe-
riments have been used to increase the confidence of workflow designers on the guide-
line. These are sources of evidence that point towards the original claim of this validation
study: that the guideline is useful for selecting MDAO workflows. The guideline relies on
validated theories that have stood the test of time, and which have remained essential
to the operational research community. These theories are core elements of the MCDA
approach taken by the guideline, which favours the concept of Pareto dominance over
utility functions. Furthermore, validated theories support the activities suggested to de-
fine the list of criteria, to rank the solutions in the Pareto front and to find the Pareto
front of MDAO workflows in phase 2.

The MOPSOC algorithm is the novel element that can be most contested, and much
of the focus has been put on delivering examples of its proper response to varying defi-
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Figure 5.15: Scatter plots of a random sample of analysis blocks and their Pareto front found with the ε-non-
dominated sorting algorithm. Four combinations of criteria are shown.

nitions of the criteria and optimisation formulation, and to underlying functions.

The guideline is an asset when there is a need to trade-off attributes of the MDAO
workflow and when the choice of MDAO workflow can have serious repercussions on
finance and/or safety. In this cases, the benefits of implementing a solution found with
the guideline should outweigh the effort of implementing the guideline and the time
devoted to it.

On the contrary, the guideline is less useful for selecting MDAO workflows when
there are few alternatives, or when many alternatives couple very time-consuming mo-
dels. It is also considered an overly complicated approach when a good enough MDAO
workflow is needed for a simple job without much repercussions.

Key is to note that the criteria and their metrics used to judge MDAO workflows, as
well as the non-deterministic nature of the MOPSOC algorithm will inevitable incur in
assumptions and measurement errors. These errors translate into an underlying uncer-
tainty in the main outcome of the guideline: the ranking of the alternatives. It is there-
fore suggested to experiment with the choices made throughout an implementation of
the guideline to raise awareness of their implications on the output and to increase the
confidence in the chosen solution.



This chapter brings this book to an end by recapitulating the research done 
as well as the main contributions and findings.
Additionally, the compliance of the initial research objective is discussed.
Furthermore, assumptions and limitations of this research, recommendations 
for future work, the generalisation of the contributions and their implications 
for society are examined. 

’Tis better to have loved and lost
than never to have loved at all.

Alfred Tennyson

Conclusions
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6.1. INTRODUCTION
Defined in §1.6, the objective of this research was to develop a systematic and objective
methodology for selecting the best-performing model fidelities and driver algorithms of
an MDAO workflow for the domain of offshore wind farms.

A methodology for selecting different MDAO workflows greatly benefits from the abi-
lity to automate the creation and evaluation of alternatives. The first part of this work has
entailed, therefore, the design and development of a tool that instantiates MDAO work-
flows for offshore wind farm design optimisation. The instantiations differ from each
other in the models that are coupled in the analysis block that evaluates the LCOE of an
offshore wind plant, and in the algorithm used to drive the optimisation of its design.
The tool enables workflow designers to choose the models and optimisation algorithm
coupled, instantiate the MDAO workflow by making the connections between modules
and between the analysis block and the driver, and execute the MDAO workflow.

In the second part of this work, a guideline for selecting the set of best-performing
MDAO workflows has been developed, shown how to instantiate it, and validated. The
guideline is based on the concept of multicriteria decision analysis, where several, con-
flicting criteria are used to evaluate, compare and rank multiple alternatives. In particu-
lar, the notion of non-dominance in the sense of Pareto is used to compare the alterna-
tives. The guideline is divided into two phases. In the first phase a set of analysis blocks
is selected, and in the second these are coupled to driver algorithms to select a set of
MDAO workflows.

Both phases of the guideline start by suggesting a method for defining and assessing
the quality of the list of criteria against which the alternatives will be judged.

Because an analysis block comprises multiple modules, each of which may be in-
stantiated with multiple different models, the number of analysis blocks that can be built
is too large to evaluate all of them. In light of that, the first phase of the guideline treats
the problem of finding the set of non-dominated analysis blocks as a multiobjective op-
timisation problem. For that purpose, a novel algorithm called MOPSOC (Multiobjective
Particle Swarm Optimisation for Categorical Variables) has been developed, which ap-
proximates the Pareto front of a function of categorical variables, such as the choice of
models coupled in the analysis block. The guideline includes information about the con-
sequences of using different formulations of the optimisation problem.

Depending on the number of criteria, the Pareto front approximated by the MOPSOC
algorithm can include in the order of a hundred solutions. To further reduce this number
to a more tractable decision problem, the guideline suggests a couple of techniques for
ranking non-dominated solutions with or without preferences over the criteria.

The second phase of the guideline assumes that in the order of ten MDAO work-
flows can be built by coupling the analysis blocks selected in the first phase with a small
number of driver algorithms. It is further assumed that it is reasonable to score all the
alternatives against all the criteria. The ε-non-dominated sorting algorithm is then used
to extract the true Pareto front of the set of alternatives. This new set can be further re-
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duced using the techniques mentioned above.

The guideline is subsequently instantiated to select a set of MDAO workflows for the
multidisciplinary optimisation of an offshore wind farm built in the North Sea. Of over
650,000 different analysis blocks, phase 1 of the guideline is able to recommend six alter-
natives, in a case where the workflow designer has no preferences over the criteria. The
six analysis block are then coupled to five optimisation algorithms to build 30 MDAO
workflows. The second phase of the guideline then reduces this list to 16 non-dominated
MDAO workflows, and then suggests which one to choose based on the workflow desig-
ner’s preferences.

To validate the guideline, informed argumentation, controlled laboratory experiments
and simulated field experiments are drawn upon to produce evidence that supports its
unbiased and reliable performance. In particular, the MOPSOC algorithm is validated
with a set of multiobjective test functions, by comparing the distribution of the distances
to the utopia point of the approximated Pareto front, with the Pareto front of a random
sample of analysis blocks, and by analysing its performance under a diverse set of op-
timisation formulations. The results of phase 1 of the guideline are compared with the
analysis blocks obtained with other selection methods, and the influence of the set of
criteria on the results is also assessed. The validity of the ε-non-dominated sorting al-
gorithm is proven by visualising the Pareto front of a random sample of analysis blocks
yielded by the algorithm.

The following sections delve deeper into the conclusions drawn about the tool built
for instantiating MDAO workflows, and the guideline for selecting MDAO workflows.

6.2. TOOL FOR MDAO WORKFLOW INSTANTIATION
There are several aspects in which this tool is unique. Regarding its ability to instantiate
MDAO workflows, no other tool is known to provide a set of model fidelities to choose
from and to programmatically build and execute different analysis blocks. Without this
tool, it would have been impossible to optimise the choice of models and number of
sampling points using the MOPSOC algorithm.

Regarding the analysis block, it is useful for the optimisation of offshore wind farms
with respect to LCOE. Although the validation study presented in §2.10 was done with a
single set of models and number of sampling points, it showed that the sensitivities of
the approximated LCOE with respect to multiple design variables have the correct signs.
This increases the wind farm designer’s confidence in the tool for optimisation purpo-
ses. Optimisation algorithms can exploit these sensitivities to drive the design towards a
minimum LCOE.

The XDSM of the analysis block is deemed correct and in line with similar existing
tools. The correctness of the XDSM of the analysis block can be assessed by discussing
the completeness of the system scope and the existing connections between modules.
By definition, simulations are abstractions of reality and assumptions have to be made.
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The extent and validity of these assumptions define how well reality is represented. The
XDSM of this tool represents all phases of the development of an offshore wind farm:
from installation to operation to decommissioning. However, for simplicity and lack of
access to modelling data, not all aspects of these phases are treated in the tool. For ex-
ample, the impact of the logistics of installation and decommissioning procedures, and
manufacturing costs of diverse components on the LCOE is ignored. Concerning the
connections between modules, hard-coding these limits the choices of design variables
and the capability to host high fidelity models. For example, the wind turbine can not
currently be jointly designed with the wind farm as the tool has no connections between
the parameters of the turbine and the rest of the farm-level modules, nor between the
cost of the wind turbine to the LCOE module. In addition, the impact of the placement
of the wind turbines on the fatigue of the blades and support structures is also not con-
sidered. Physics-based models with a higher degree of sophistication lack support for
connecting their inputs and outputs. However, the modularity of this tool ensures that
with proper continued development, any model fidelity can eventually be added to the
pool of models available. At its current stage, on average, this tool matches the fidelity of
other wind farm design tools publicly available.

The development of this tool can continue in multiple directions. Work has already
began on the expansion of the XDSM to support the joint optimisation of the wind tur-
bines with the design of the wind farm. In addition to LCOE, the tool is able to support
other system level performance indicators with slight modifications. A recommended
step is the addition of analytical gradients to the models. NASA’s OpenMDAO frame-
work, upon which this tool is built, is meant to facilitate the propagation of model’s de-
rivatives throughout an analysis block. Taking advantage of this feature would allow the
rapid calculation of the full gradient of the LCOE, and explore faster gradient-based op-
timisation methods with multiple starts. However, these methods need modification to
handle discrete design variables.

The tool was validated for an optimisation use case. Nevertheless, the use of the
analysis block with other drivers, such as uncertainty quantification and robust optimi-
sation, is not only possible but encouraged.

Furthermore, this tool is envisioned to eventually be able to read files that describe
use cases by means of an XDSM, and automatically implement the connections between
the necessary modules to create analysis blocks, and make the entire MDAO workflow
by coupling the desired driver algorithm.

Lastly, this tool can bring value to education and industry. Exploring the interactions
between design choices of different sub-components of the wind farm leads to better
understanding of the complex dynamics that take place in the design and operation of
the system. After proper calibration of the cost models included in the tool using field-
measured data, the tool has the potential to become the industry workhorse for early-
stage design explorations. Its open-sourceness ensures collective development and wide
availability, in addition to helping spread and promote the adoption of systems engi-



6.3. GUIDELINE FOR MDAO WORKFLOW SELECTION

6

133

neering and MDAO design philosophies.

6.3. GUIDELINE FOR MDAO WORKFLOW SELECTION
The guideline proposed in this work is a novel mechanism to evaluate, compare, and
rank different MDAO workflows. There are no known formal methodologies for this pur-
pose in the published literature.

The validity of the guideline concluded in chapter 5 applies to two concepts: the pro-
ven unbiased set of resulting MDAO workflows, and the ability to provide the workflow
designer with a more tractable problem that requires a small effort compared to choo-
sing from the entire set of alternatives. The validation study of the guideline was blind to
the use case, arguing the usefulness of the guideline for multiple use cases.

The greatest advantage of adhering to this guideline is that in a short time, workflow
designers can largely reduce the amount of alternatives to choose from. Using one of the
selected MDAO workflows for solving a use case can impact the total budget allocated to
a design optimisation or a what-if analysis campaign. The benefits can also cover the de-
velopment phase of an offshore wind plant, by providing a more accurate analysis block
for making financial, logistical or manufacturing decisions. Other positive impacts relate
to practical issues such as reducing the costs of computational hardware and software.

Conversely, the drawbacks of following this guideline are that the workflow designer
has to commit a good amount of effort into defining the criteria that will govern the se-
lection process and into enabling the automatic generation of analysis blocks and MDAO
workflows. In addition, the MOPSOC algorithm is of a stochastic nature. The analysis
blocks that comprise the Pareto front will differ at every equal execution of the optimi-
sation. However, the overall conclusions about the nature of the models to be coupled
should be more enlightening than the exact analysis block yielded by the algorithm.

Key is to be aware that the hardest limitation for implementing this guideline is its
infeasibility of handling highly sophisticated models or XDSMs with multiple cyclic-
connections to be solved iteratively, both of which may lead to long execution times.
However, this limitation could be partly mitigated by using surrogate models.

Noteworthy is the fact that the guideline might be considered too complicated for
simple use cases or when a good enough solving philosophy provides useful results to
the workflow designer.

One further achievement of this work is the encapsulation of the description of the
MDAO workflow selection problem, which has lead to the compartmentalisation of the
research. In particular, suggestions for further research can be broken down into the
following units.

• Criteria:

– (Sub-)objectives: It is imperative that the MCDA problem is properly defined
to find a meaningful solution. A good problem definition depends mostly
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on using the right criteria. A more thorough treatment of the list of criteria
that differentiate MDAO workflows is in order. However, the criteria are to an
extent determined by the differences between the alternatives, and naturally,
strongly dependent on the use case.

– Metrics: Another focal point for future research is the principle behind the
quantitative measurement of criteria. The elusiveness of the term fidelity ex-
tends to the quantification of individual attributes of a simulation, a prime
example being accuracy. In engineering design, models are evaluated in a
domain for which they have not been validated. Therefore, workflow desig-
ners can only gain more confidence on the accuracy of the analysis block by
doing more evaluations, which is expensive.

• Optimisation formulation: Although less critical than the criteria, the analysis
block optimisation formulation influences the usefulness of the solution. Further
research can lead to suggestions on how to decide which criteria should remain
objective functions and which should become constraints.

• MOPSOC: The MOPSOC algorithm has been tested and validated. Its performance
in the context of the guideline is acceptable. However, more effort can be put to
investigate the effect of the parameters of the algorithm on the optimal solution.
Parameter meta-optimisation is a common follow-up study on most novel algo-
rithms. Additionally, the treatment of the constraints can be improved from the
penalty functions currently used. In general, this algorithm can be optimised for a
more efficient performance. Any optimisation problem would greatly benefit from
increasing the number of iterations and better sampling the design space, at little
additional cost.

• Pareto front reduction: The techniques suggested for reducing the cardinality of
the Pareto front work well. However, there are several other methods, especially
for including the preferences of the workflow designer on the criteria. It is recom-
mended to expand the evaluation of other techniques.

Although industry would greatly benefit from the inclusion of this guideline for MDAO
workflow selection, expectations in the short term must be tempered. There is currently
limited availability for a wide range of model fidelities that simulate multiple disciplines
that can be programmatically coupled into a fixed XDSM.

Despite the guideline having been instantiated and validated in the context of offs-
hore wind energy, its deployment can be generalised to any other knowledge domain or
industry. The core concepts of the guideline belong to the field of operational research,
and as such, may be drawn upon by any scientific and engineering field.

The MDAO community benefits from this research as the ever-present trade-off be-
tween the sophistication and cost of multidisciplinary analysis and optimisation work-
flows continues to be overlooked. This guideline is expected to increase awareness of the
need to improve the design and selection of MDAO workflows. In essence, this guideline
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enables more efficient, cheaper and optimal design processes. These gains should trans-
late into a cost reduction in the development of future offshore wind farms by solving use
cases more efficiently, and to the reduction of the CAPEX, OPEX and LCOE of wind farms
by implementing more accurate models and more efficient optimisation algorithms.

To conclude, the tool for generating MDAO workflows for offshore wind energy and
the guideline are the first of their kind. This work attempts to make MDAO more visi-
ble and accessible to the wind energy community, and is meant to encourage the wider
deployment of systems engineering in the field of wind energy.
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