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Spatio-Temporal Advanced Persistent Threat
Detection and Correlation for Cyber–Physical
Power Systems Using Enhanced GC-LSTM

Alfan Presekal , Member, IEEE, Alexandru Ştefanov , Member, IEEE,
Ioannis Semertzis , Graduate Student Member, IEEE, and Peter Palensky , Senior Member, IEEE

Abstract—Electrical power grids are vulnerable to cyber
attacks, as seen in Ukraine in 2015, 2016, and 2022. These
cyber attacks are classified as Advanced Persistent Threats
(APTs) with potential disastrous consequences such as a total
blackout. However, state-of-the-art intrusion detection systems
are inadequate for APT detection owing to their stealthy nature
and long-lasting persistence. Furthermore, they are ineffective
as they focus on individual anomaly instances and overlook the
correlation between attack instances. Therefore, this research
proposes a novel method for spatio-temporal APT detection
and correlation for cyber-physical power systems. It provides
online situational awareness for power system operators to
pinpoint system-wide anomaly locations in near real-time and
preemptively mitigate APTs at an early stage before causing
adverse impacts. We propose an Enhanced Graph Convolutional
Long Short-Term Memory (EGC-LSTM) by using sequential and
neural network filters to improve APT detection, correlation, and
prediction. Control center and substation communication traffic
is used to determine cyber anomalies using semi-supervised deep
packet inspection and software-defined networking. Power grid
circuit breaker status is used to determine physical anomalies.
Cyber-physical anomalies are correlated in cyber-physical system
integration matrix and EGC-LSTM. The EGC-LSTM outper-
forms existing state-of-the-art spatio-temporal deep learning
models, achieving the lowest mean square error.

Index Terms—Advanced persistent threat, anomaly cor-
relation, anomaly detection, cyber-physical system, graph
neural network, intrusion detection system, software-defined
networking.

I. INTRODUCTION

CYBER-PHYSICAL Power Systems (CPPS) are critical
infrastructures that have been targeted by a growing

number of cyber attacks in recent years. Some of the notable
cyber attacks on power grids are the cyber attacks in Ukraine
in 2015 [1], [2], 2016 [3], and 2022 [4]. These incidents
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highlight the imminent threat of cyber attacks on power grids,
which had patterns resembling to Advanced Persistent Threats
(APTs). The detection of APTs poses significant challenges
owing to their stealthy nature and long-lasting persistence [5].
The majority of the existing research on APTs focuses on
individual anomaly instances and overlooks the correlation
between them [5], [6], [7], [8]. Those studies have highlighted
the necessity of anomaly correlation, but there is still a
shortage of research in this area. Furthermore, according to
literature studies, existing research on APTs only focuses on
the cyber system [5], [6], [7], [8] and omits the APTs on
Cyber-Physical Systems (CPS).

The literature review lists four main methods for detecting
power grid communication traffic anomalies, i.e., signature-
based [9], sequence-based [10], rule-based [11], [12], and
machine learning-based [13], [14]. Machine learning-based
anomaly detection methods have gained popularity due to their
superior performance [15], [16]. However, machine learning
models need large amounts of data to learn and perform
well. Meanwhile, cyber attack data in CPPS is scarce [15],
especially for zero-day attacks. Given this constraint, a
fully supervised machine learning model may not be the
best option. Therefore, in this research, we employ semi-
supervised Deep Packet Inspection (DPI) to identify anomalies
in Operational Technology (OT) communication traffic of
CPPS. The technique leverages the advantages of the homo-
geneous characteristics of OT network traffic generated from
automated processes [17].

Semi-supervised classifiers can be constructed by com-
bining Convolutional Neural Network (CNN) and Hamming
Distance (HD). CNN usually solves supervised classification
problems, i.e., intrusion detection [18]. Integration of the
CNN classifier with the HD addresses data dependency in
supervised learning. The HD application for distance metric
learning has been proposed in [19]. CNN and HD generate
Gaussian Mixture Model (GMM) vectors for semi-supervised
classification with partial labeling. This GMM classification
strategy improves classifier robustness with scarce labeled
data [20], [21], [22]. Therefore, this classification method is
suitable for zero-day attacks.

Along with a semi-supervised classifier for anomaly
instance detection, system-wide monitoring is needed to corre-
late anomalies and track APT propagation. The state-of-the-art
system-wide intrusion detection graphs are only focused on
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cyber anomalies and omit physical anomalies [14], [23], [24].
Meanwhile, as demonstrated in [25], combining cyber and
physical anomalies would provide better cyber attack detection
on CPS. Our literature review shows that cyber and physical
system-wide anomaly detections in power systems are not
integrated. Existing methods track anomalies using cyber
graphs [14] and power system graphs [26], [27]. In [28], the
authors proposed Long Range Memory (LRM) to correlate
anomalies and use this knowledge to predict future attack
trends. In [29], the authors proposed an Artificial Intelligence
(AI) generative model for addressing limited OT traffic and
estimating the CPPS vulnerabilities and potential intrusion
likelihood based on anomaly correlation. Align with our
research objectives, these works highlight the necessity of
spatial and temporal correlation for cyber attacks mitigation.
Therefore, anomalies must be integrated and correlated to
provide a system-wide visibility for spatio-temporal APT
events.

Spatio-temporal correlation for APTs can determine the cor-
relation of the anomalies based on spatial and temporal data.
Spatio-temporal correlation based on a dynamic heterogeneous
graph network has been proposed to detect and correlate APTs
in [30]. Graph representation and natural language processing
were used to detect spatio-temporal APTs [31]. However,
these APT spatio-temporal correlation methods only use IT
system logs and are insufficient for the CPPS. Spatio-temporal
graph modelling was proposed in [32] to correlate spatial
and temporal features from sensor network measurement
data. This research only focused on sensor measurement
anomalies and did not consider cyber anomaly detection.
According to the literature review, graph-based methods are
used to develop state-of-the-art spatial correlations, and tem-
poral machine learning models like Recurrent Neural Network
(RNN), Gated Recurrent Unit (GRU), and Long Short-Term
Memory (LSTM) are used to build temporal correlations. The
LSTM is the most advanced temporal model and performs
best. However, LSTM has limitations when it comes to long-
term memory preservation [33]. Therefore, the LSTM is not
optimal for capturing the temporal correlation of APTs with
non-deterministic temporal windows.

In this paper, we propose a novel spatio-temporal APT
detection, correlation, and prediction in cyber-physical power
systems. It allows power system operators to locate system-
wide anomalies in near real-time from control centers and
mitigate APTs early before they cause adverse impacts. At
substations and control centers, distributed semi-supervised
DPI classifiers monitor OT communication traffic using
Software Defined Networking (SDN)-enabled switch. The
summary of the proposed architecture is presented in Fig. 1.
They communicate with the SDN controller at the control cen-
ter to construct a cyber anomaly graph. This is generated based
on the DPI classification results using a Traffic Dispersion
Graph (TDG) with SDN [14]. The power system graph is
constructed based on the energized power lines in accordance
with the status of Circuit Breakers (CBs) [34], [35]. The cyber-
physical anomaly graph is input into a Cyber-Physical System
Integration Matrix (CPSIM) for spatio-temporal correlation.

Subsequently, an Enhanced Graph-Convolutional Long Short-
Term Memory (EGC-LSTM) model with sequential and neural
network filters is used to predict APTs in CPPS. Furthermore,
to identify zero-day APT patterns, we propose a resilient
associative method based on vector databases and K-Nearest
Neighbor (KNN). The method employs a CPPS log compara-
tor function to verify and differentiate between circuit breakers
opened by operators, faults, and cyber attacks. The overall
processes from the proposed methods are presented in Fig. 2.
The scientific contributions of this paper are summarized as
follows:

1. We propose a novel semi-supervised deep packet inspec-
tion method for OT communication network traffic utilizing
the OT homogeneous characteristics. The method uses a
combination of CNN and Hamming distance to generate
vectors. The method identifies zero-day attacks by utilizing
semi-supervised clustering on the baseline OT traffic vectors
using a Gaussian mixture model with partial labeling. In
addition, the proposed method is also integrated with software
defined networking and traffic dispersion graph to facilitate
power system-wide OT communication traffic monitoring in
the control center and substations.

2. We propose a cyber-physical system integration matrix
that constructs a topological correlation of cyber and physical
system anomalies in CPPS. Control center and substation
OT communication network traffic is used to construct a
cyber anomalies graph. The circuit breaker status is used to
construct a power system graph. The CPSIM matrix serves as
the primary data for the APT spatio-temporal correlation and
prediction processes.

3. We propose a novel EGC-LSTM model with sequential
and neural network filters to predict subsequent anomalies
resulting from APT attacks. The proposed EGC-LSTM uses
the Sequential and Neural Network filter to minimize the
Mean Square Error (MSE). Standalone implementation of the
Sequential and Neural Network (NN) filter reduces the MSE
by 31% and 35%, respectively. Meanwhile, the integration of
both filters reduces MSE by 97%.

4. We propose a resilient associative method based on vector
databases and KNN to improve the resilience of EGC-LSTM
for detection of zero-day attack scenarios. The vector database
of CPSIM allows the proposed model to associate zero-day
attack scenarios with the known attacks using the KNN search.

5. We propose a CPPS log comparator to corelate
CPPS information, i.e., operator activities, OT communica-
tion network traffic, COMmon format for TRAnsient Data
Exchange (COMTRADE) information from protective relays,
power system circuit breaker (CB) status, and CPSIM. The log
comparator enables system operators to verify and differentiate
between physical power system anomalies caused by cyber
attacks and physical power system disturbances.

The paper is structured as follows. Section II explains
the CPPS and cyber threat model. Section III describes
the method for spatio-temporal anomaly detection, correla-
tion, and prediction. Section IV provides the experimental
results. Section V presents the conclusions and future
work.
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Fig. 1. Cyber-physical system model of the power grid with IT-OT communication networks.

II. CYBER-PHYSICAL POWER SYSTEM AND

CYBER THREAT MODEL

A. Cyber-Physical Power System Model

CPPS models are essential for conducting research on power
system cyber security. Therefore, we model the power system
integrated with IT-OT communication networks as depicted
in Fig. 1. The CPPS model incorporates SDN functionality
to establish OT communication network virtualization through
SDN switches in the substations and control center and SDN
controller in the control center. SDN has three abstraction
layers, i.e., data plane, control plane, and management plane.
The data plane forwards the OT network traffic, which is
controlled by the control plane. In the management plane,
SDN allows the deployment of custom network applications.
The model is built based on our previous research in [14].
Compared to the previous research, we improved the CPPS
model with new SDN management and control functionalities,
i.e., monitor the traffic of Supervisory Control and Data
Acquisition (SCADA) measurements and CB status, collect
the summary from the semi-supervised DPI, and deploy TDG.

The CPPS model is used to compute time-domain simu-
lations and generate measurement data from substation bays,
such as busbars, power lines, transformers, and generators.
This data includes measurements of active and reactive power,
voltage, current, and circuit breaker status. The measurements
are communicated from the substations to the control center
via a wide area communication network as SCADA telemetry.
The SCADA data is kept in local databases situated within
substations as well as the control center. The CPPS architec-
ture emulates the OT communication network traffic for power
system monitoring and control.

The OT communication network consists of customized
functionalities for each OT device within the communica-
tion network. The measurement devices include Merging
Units (MUs), Remote Terminal Units (RTUs), and Intelligent
Electronic Devices (IEDs). These devices collect data from
the power grid using SCADA with a sampling rate of one
sample per second. The control center uses control commands
to dynamically adjust the set points for power grid controllers
in real-time. For example, control commands are used to either
open or close circuit breakers for power lines, and change
set points for automatic voltage regulators and governors.
The measurement values and control set points are commu-
nicated across the OT network using Transmission Control
Protocol/Internet Protocol (TCP/IP) packets.

B. Cyber Threat Model for Cyber-Physical Power System

A cyber threat model is a systematic representation of
potential security threats and an analysis of the techniques and
pathways that attackers may employ to exploit communication
network vulnerabilities. In this research, the cyber threat model
is constructed based on the cyber attacks on the Ukrainian
power grid in 2015 [2], 2016 [3], and 2022 [4]. These
attacks resemble APT’s strategies from the early phase of
the intrusions until the power outages in the later stages.
In the Ukrainian power grid attack in 2015, the adversary
used spear phishing emails as an attack vector against the
distribution system operators. The phishing emails contained
a Microsoft Excel file attachment that was infected with the
BlackEnergy3 malware. Subsequently, adversaries performed
stealthy operations in the Information Technology (IT) and
OT communication networks while preparing for the final
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Fig. 2. Integrated processes for spatio-temporal anomaly detection, correlation, and prediction.

phase of the attack. During the early attack phase, the
adversaries conducted several malicious activities to intrude
from the IT communication network into the control center and
substations, i.e., reconnaissance, exploit, lateral movement,
firmware modification, and command and control. These
activities inevitably caused anomalies in the IT-OT commu-
nication network traffic. However, the absence of an early
detection mechanism rendered these activities imperceptible to
the distribution system operators.

In addition to the aforementioned threat posed by external
adversaries, there is also the possibility of an attack from
internal actors, known as an insider threat. Insider threats have
different characteristics from external threats. The external
threat required a lateral movement to reach its final objective
in a timely fashion. These scenarios provide an opportunity
for the early identification of external threats. However, insider
threat potentially has direct access to the substations and
control centers and has the potential to cause an immediate
severe impact. There is also a possibility when the external
and insider threats are combined into more sophisticated and
coordinated attack scenarios. However, modelling the insider
threat behavior and integration with the test simulation has
been identified as a notable challenge for anomaly detec-
tion [36]. Therefore, in this research, we omit the insider threat
constraint in our CPPS threat model.

Using the aforementioned CPPS co-simulation, our research
simulates the early phase of a cyber attack in the simulated
substations and control center, which includes reconnaissance,
command injection, and malware traffic. The normal and
anomalous communication traffic is then used to train the
semi-supervised deep packet inspection. Using a traffic dis-
persion graph, anomaly detection also tracks the sources and
destinations of anomalous packets. The graph representation
of anomalies is able to track lateral movement processes
within the OT network from the entry point to the end
device that has direct control of the power grid components.
This information is also combined with the CB status of the
power lines and transformers to track anomalies in power
system-wide. Subsequently, the cyber and physical anomalies
are used for the spatio-temporal anomaly correlation and
prediction.

III. SPATIO-TEMPORAL ANOMALY DETECTION,
CORRELATION AND PREDICTION

The cyber-physical power system architecture integrating
the power grid, IT-OT communication networks, and SDN
is depicted in Fig. 1. The wide-area network monitoring is
enabled based on data collected in near real-time at substations
and control center, i.e., OT communication network traffic
and CB status. Fig. 2 shows the integrated processes of
the proposed method for spatio-temporal anomaly detection,
correlation, and prediction. Their implementation in CPS
is represented in Fig. 1. The OT communication traffic is
monitored locally in all substations and control center on the
SDN-enabled switches. The OT traffic is classified using semi-
supervised DPI to determine whether an individual packet is
normal or anomalous. This information is combined with TDG
to generate and update in near real-time as a system-wide
cyber anomaly graph. A power system graph is updated in
near real-time based on the CB status. It is combined with
the cyber anomaly graph into CPSIM. The EGC-LSTM runs
continuously to predict subsequent anomalies according to the
input from the last four anomalies in CPSIM. To identify
zero-day attacks, the resilient associative method associates
the zero-day CPSIM with the known CPSIM scenarios using
a KNN-based search on the vector database. The CPPS log
comparator runs in near real-time to verify the CB status
and distinguish between a CB opened by cyber attacks and
physical power system disturbances.

The proposed method provides three main results,
i.e., (i) spatio-temporal APT detection, correlation and
sequence prediction, (ii) identification of zero-day attacks, and
(iii) identification of circuit breakers opened by cyber attacks.
A detailed description of the proposed method and correspond-
ing processes are provided in the following subsections.

A. Semi-Supervised Learning for Deep Packet Inspection

The DPI uses supervised CNN, HD, and semi-supervised
learning based on GMM with partial labeling. The CNN model
performs supervised classification for packet payload from
OT communication network into normal and anomalous. The
packet payload is converted into a 2-Dimensional (2D) data
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representation as an image. Eq. (1) shows the convolution
function from the 2D CNN layer. The * denotes convolution
operation, f is the filter size mxn and, g is the input data size
i,j. Bayesian optimization [37] is used to optimize the CNN
model. Between the convolutional layers, CNN uses Rectified
Linear Unit (ReLU) activation function and pooling layer. An
activation function is applied to introduce non-linearity into
the model, and pooling layers are used to reduce the size. In
the end part of CNN layers, there are flattening processes and
fully connected neural networks. The flattening layer converts
the 2D data into one-dimensional data. The fully connected
neural network allows weight adjustment during the training
to produce the best-fit output. After the fully connected neural
networks, a SoftMax function in Eq. (2) is used to classify the
output according to a probability distribution.

Typical neural networks use SoftMax to determine the
class categories. However, in our model, we use the SoftMax
probability score to generate a vector�. The vector � in
Eq. (4) is generated from the combination of SoftMax (σ )

in Eq. (2) and Hamming Distance (H) in Eq. (3). The HD
computes the distance between the average normal traffic
payload in OT and other traffic payloads. For normal traffic,
the hamming distance will be close to zero (HD ≈ 0).
Meanwhile, anomalous traffic tends to result in a larger HD
score. The combination of outputs from CNN and HD is then
used to generate 2D vectors� for semi-supervised learning.

(f ∗ g)(i, j) =
∑

m

∑

n

f (m, n).g(i− m, j− n) (1)

σ = ezi

∑K
j=1 ezj

(2)

H = 1

N

i=N∑

i=1

|ai − bi| (3)

� = 〈H,σ 〉 (4)

GMMp(�) =
K∑

k=1

πkℵ
(

�|μk,
∑

k

)
(5)

GMM with partial labeling is used as a semi-supervised
learning technique to classify the 2D vectors�. It uses both
labeled and unlabeled data to fit the model. The presence
of labeled data facilitates the learning process by enhancing
the accuracy of the estimation of GMM parameters. Eq. (5)
shows the equation for GMM probability where�is the 2D
vector data points, K is the number of Gaussian distributions
in the mixture, πk represents the mixing coefficient, and ℵ
is the probability density function. The presence of a limited
number of labels in the data denotes the presence of a limited
dataset that can be used for anomaly detection. Unlabeled data
represents the zero-day attack traffic. By employing this semi-
supervised learning strategy, our model can effectively identify
zero-day attack traffic.

B. Cyber-Physical System Integration Matrix

In order to integrate the cyber and physical components
of the CPPS as an integrated graph, we construct the
Cyber-Physical System Integration Matrix (CPSIM). CPSIM

Fig. 3. Cyber-physical system integration matrix.

is formed by combining the adjacency of the OT network
topology (c) with the power system topology (p). Fig. 3 shows
the representation of CPSIM integration. The cyber adjacency
matrix shown in the blue area is represented by ci,j, where
i and j indicate the element of the matrix. Meanwhile, the
power system adjacency matrix shown in the red area is
represented by pu,v where u and v indicate the element of
the matrix. The CPSIM Ac+p is a combination of cyber and
physical elements with dimensions Ai+u,j+v. Other than the
cyber and physical elements, we introduce a connection matrix
in the yellow area represented by x. This area represents the
functional connectivity between cyber and physical systems.
For example, a node in the cyber element is able to change
the physical state of a node in the physical element. The con-
nection matrix is constructed based on the prior information
of control function configuration from cyber into the physical
system. All information from cyber and physical topology and
connectivity information are integrated into a single adjacency
of CPSIM.

The adjacency matrix from CPSIM (A) serves as a main
reference for the entire cyber and physical system state in
CPSIM (A). In the CPSIM, the anomalous elements are
indicated by Ai+u,j+v=1, and Ai+u,j+v=0 otherwise. This
reference is then used to track anomalies in both cyber and
power systems. Our model identifies the power system graph
by analyzing the energized lines based on breaker status
information. When the circuit breaker is closed, it indicates
a normal condition (0) in the CPSIM. Alternatively, when
the breaker is in the open position, it indicates a potential
anomaly state (1) in the CPSIM. Meanwhile, to identify the
anomaly on the OT network, we use the semi-supervised DPI
and TDG. The TDG is utilized to determine the location
of OT communication traffic anomalies. The TDG utilizes
graph structures to depict nodal information. Every node
in a graph represents a distinct host in the communication
network. The transfer of information between hosts is shown
by the interconnectedness of nodes, specifically, the edges of
a graph [38]. By combining DPI and TDG, we identify the
location of anomalies in the OT communication networks. In
the CPSIM record, the cyber anomalous element is recorded
as Ai,j=1 in the CPSIM, and Ai,j=0 otherwise.

C. APT Spatio-Temporal Correlation

Methods exist in the literature for spatio-temporal cor-
relation, i.e., Graph Convolutional Gated Recurrent Unit
(GConvGRU) [39], Temporal Graph Convolutional Network
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Algorithm 1 Sequence Filter Algorithm
Inputs: A = [] // Initialize the log storage for CPSIM
n = 0 // Number of element in A

CPSIMt // CPSIM matrix stream for every time t

Outputs: A = [CPSIM1, . . . ., CPSIMn] // CPSIM matrix log

1 Iteration for every CPSIM stream
if CPSIMt �= A[n]:

2 A[n+ 1] == CPSIMt

3 n = n +1
4 else:
5 Continue
6 return: A = [CPSIM1, . . . ., CPSIMn]

(TGCN) [40], and Graph Convolution embedded LSTM
(GC-LSTM) [41]. These methods can capture the spatial
correlation of data using graph convolution. However, they
are not the best-fit solution to achieve optimal performance in
terms of temporal correlation for APTs. The APTs exemplify
non-deterministic temporal characteristics and typically endure
extended time intervals between attack stages. Meanwhile, the
time-series models, i.e., GRU and LSTM, have the limitation
to address long-term temporal correlation [33]. Therefore,
in this paper we propose an Enhanced Graph Convolutional
LSTM (EGC-LSTM) to address the issue arising from the
spatio-temporal correlation of APTs. There are three main
improvements in the EGC-LSTM, i.e., Bayesian optimization,
sequential filter, and NN filter. Bayesian optimization aims
to optimize the GC-LSTM model architecture [37]. The
sequential filter is implemented to reduce the recorded data
from CPSIM. The filter selectively saves CPSIM data that have
distinct values compared to the most recent data in CPSIM,
instead of saving all data indiscriminately. This mechanism
enables the GC-LSTM to prioritize the detection of anomaly
changes instead of analyzing the entire data stream. This
mechanism improves the temporal correlation performance.
Algorithm 1 shows the pseudocode of the sequence filter
algorithm. This algorithm aims to address the APT non-
deterministic temporal windows of anomaly records in the
CPSIM.

GCNk
t ←

(
Wgcn 
 Âk

)
A (6)

ft = σ
((

Wf GCNk
t

)
+ (

Uf ht−1
)+ bf

)
(7)

it = σ
((

WiGCNk
t

)
+ (Uiht−1)+ bi

)
(8)

ot = σ
((

WoGCNk
t

)
+ (Uoht−1)+ bo

)
(9)

c′t = tanh
((

WcGCNk
t

)
+ (Ucht−1)+ bc′

)
(10)

ct = (ft 
 ct−1)+
(
it 
 c′t

)
(11)

ht = ot 
 tanh(ct) (12)

EGC− LSTM = f (Wot + b) (13)

The output from the sequence filter serves as input
for GC-LSTM that combines Graph Convolutional Network
(GCN) and LSTM. The GCN function is utilized to extract

the nodal characteristics from CPPS elements in CPSIM A as
described in Eq. (6). GCN operates based on the Hadamard
product multiplication (

⊙
) of the weight matrix (Wgcn),

adjacency matrix (A), and node features from CPSIM A. The
adjacency matrix (A) is augmented with the identity matrix
(I) to create a modified adjacency matrix (Â). The equation
incorporates the number of hops from a communication node
to neighboring nodes, denoted as k. The temporal features are
processed using LSTM subsequent to the acquisition of the
spatial features through the GCN. The LSTM input originated
from the last four CPSIM anomalies to predict subsequent
anomalies in near real-time. The operations performed within
an LSTM cell are described in Eq. (7)–(12). There are six
main sub-equations in the LSTM process, including the forget
gate (ft), input gate (it), output gate (ot), internal cell state
(c′t), transferable cell state (ct), and hidden state (ht). The
predicted output from EGC-LSTM (ot) serves as an input for
the NN filter in Eq. (13). This EGC-LSTM and NN filter are
optimized using a Bayesian optimization for hyperparameters
tuning. The NN filter transforms the EGC-LSTM output into
a binary value of 0 or 1 to enhance the prediction performance
of the EGC-LSTM.

D. Resilient Associative Method

To enhance the resilience of EGC-LSTM in handling new
or unknown APT patterns, we propose a resilient associative
method by performing a KNN search on a vector database.
Vector databases are specifically designed to store and handle
vector data, which consists of data points defined by arrays or
lists of values [42]. Fig. 4 represents the vector database search
strategy with KNN. Vector database An represents known
historical anomalies recorded in the CPSIM matrix. There
are numerous potential combinations of anomalous events (U)
that may not be included in the existing data An, i.e., zero-
day attacks. Therefore, to address event detection for zero-day
attacks, the KNN algorithm is implemented to search for the
most similar pattern from known data. By implementing this
strategy, the model can identify zero-day anomalies (U) by
associating this anomaly with the known one (An).

E. CPPS Log Comparator

We introduce an innovative circuit breaker log comparator
as a multi-log anomaly detection system for CPPS that specif-
ically targets CB-related events. The breaker log comparator
function is utilized to compare recorded log activities from
CPSIM anomaly record (A), CB of SCADA and substations
traffic (N), operator control log (O), power system SCADA
database CB status (P), and relay COMTRADE (R). Fig. 5
shows the diagram of the breaker log comparator. Data A orig-
inates from the spatio-temporal data of anomalies in CPSIM.
Log N is generated by the observed CB control traffic in the
OT network. Log O is produced through authorized control
operations recorded by the power system operator. Log P

denotes the current state of the CB in the physical power grid.
Log R represents the relay COMTRADE that records transient
events in the power system. COMTRADE data has been used
to identify electrical disturbances in power systems based on
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Fig. 4. Vector database query search strategy with KNN.

Fig. 5. Circuit breaker log comparator function.

TABLE I
CPS BREAKER LOG COMPARATOR CATEGORIES

     Causes Categories 
0 0 0 0 0 - Normal operation 

1 0 0 0 1 Physical 

disturbances 

Direct response in BCU 

1 0 0 1 1 Coordinated protection 

0 1 0 1 1 Operator Operator control action 

0 1 1 1 1 

Cyber attacks 

Compromised operator control 

0 0 1 1 1 Spoofing attack 

0 0 1 0 1 Compromised BCU device 

0 0 1 0 0 Preliminarily kill chain stages 

transient waveforms [43]. The breaker log comparator utilizes
the COMTRADE to differentiate anomalies in the power
system caused by physical system events and cyber attacks.

Table I presents the log comparison categories correspond-
ing to the five types of data logs. The value of 1 indicates
the presence of an activity log or anomaly, while the value of

0 represents the normal operating condition. During normal
operation, all log parameters are indicated as 0. Otherwise,
elements of CPSIM (A) records are indicated with 1. The
anomalies in CPSIM are subsequently compared with other
logs to identify different scenarios, i.e., system operator
performing control actions, physical disturbances, activation
of protection relays, and cyber attacks. For physical distur-
bances, the COMTRADE data serves as a primary indicator.
Meanwhile, CPSIM (A) serves as a primary indicator for cyber
attacks.

There are four cyber attack scenarios. The first scenario
is when the adversaries compromise the legitimate operator’s
control workstation. Therefore, the operator control log (O)

will be indicated by 1. The second scenario is characterized
by the adversaries executing a spoofed remote control and
disguising themselves as a legitimate operator. It does not
originate from the legitimate operator’s control workstation
and is indicated by control log 0. The spoofed controls orig-
inate from a compromised device in the OT communication
network that sends malicious breaker control commands. The
third attack scenario occurs when the adversaries compromise
a device in the Bay Control Units (BCU). Compared to the
previous scenarios, this attack does not provide an indicator
of a breaker control command in the network. This is possible
due to the position of the BCU devices that have a direct
connection with the power grids. The fourth attack scenario is
a cyber anomaly, which refers to a situation where the cyber
anomaly is recorded in CPSIM (A) and does not have any
impact on the power system. This category corresponds to the
reconnaissance phase in the cyber kill chain.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results of the proposed
methods are presented. This section provides an overview
of the experimental setup, including the cyber-physical
power system co-simulation setup and dataset. Subsequently,
two main results are presented in this section. First, the
semi-supervised deep packet inspection is presented to quan-
titatively assess the capability of zero-day detection. The
experimental results demonstrate the effectiveness of the
proposed method in identifying unknown attacks despite hav-
ing a limited amount of training data. This solution intends
to address the problem of the limited availability of the
dataset acquired from the OT communication traffic of power
grids. Second, the spatio-temporal anomaly correlation and
prediction demonstrate the prediction performance for subse-
quent anomalies resulting from APT attacks. The experimental
results present the superiority of the proposed EGC-LSTM
in comparison with the state-of-the-art graph spatio-temporal
deep learning models. A more detailed explanation is provided
in the following subsections.

A. Experimental Setup

The experiments in this work are performed using the CPPS
model of the power grid represented in Fig. 1. The power
system is simulated in real-time using a Root Mean Square
(RMS) dynamic model of the IEEE 39-bus test system in
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Fig. 6. CPPS Adjacency Matrix.

DIgSILENT PowerFactory. The CPS model employs OPC
UA to establish a connection between the time domain
simulation of the power grid and simulated IT-OT communi-
cation networks. The OT network emulation utilizes Mininet
deployed on a total of 10 virtual servers. It consists of 27
user-defined substations, 118 measurement devices, and over
800 data points to emulate the OT communication network of
IEEE 39-bus test power system. The CPPS model comprises
a total of 185 nodes, consisting of 146 OT nodes and 39
physical nodes from the IEEE 39-bus system. Fig. 6 depicts
the adjacency matrix representing the connection between 185
nodes of CPPS that are associated with CPSIM. The nodes
that are connected are represented by the value 1 in the
adjacency matrix, whereas the nodes that are not connected
are represented by the value 0. The blue area corresponds to
the OT adjacency matrix, while the red area corresponds to
the IEEE 39-bus adjacency matrix. The cyber-physical control
region illustrates the functional connectivity between the OT
and power system, coupling the cyber and physical systems
together.

The SCADA functionalities in the OT communication
network are achieved by implementing customized Python
code on each Mininet host. The OT devices include MUs,
RTUs, IEDs, database server, gateway, human machine
interfaces, and control center. The measurement values and
control set points are communicated across the OT network
using TCP/IP packets. In this research, we focus on the control
traffic associated with CBs control. As shown in Fig. 1, the
CPPS model is integrated with the SDN application to monitor
OT traffic payload using SDN-enabled switch interfaces. With
this capability, the CPPS model performs traffic monitoring in
substations and control center.

Fig. 7. Statistical box plot from normal traffic and cyber attacks.

From the CPPS co-simulation, the experiment collects two
types of data. The first type of data is network traffic from the
OT communication network collected as .pcap files. The traffic
from multiple locations contains the source and destination
addresses. This is processed using a traffic dispersion graph.
In addition, the packet payload is classified as normal or
anomalous using semi-supervised deep packet inspection. The
second type of data is the CB status collected from the
DIgSILENT PowerFactory simulation, which represents the
status of the power system. Subsequently, both the cyber and
physical system data are combined into the CPPS dataset in
the CPSIM. The historical wide-area CPPS data from the
CPSIM is used as input parameters for the EGC-LSTM. Based
on this information, the EGC-LSTM performs spatio-temporal
anomaly correlation and prediction. In this experiment, the
ECG-LSTM model combines graph convolution and LSTM
with hidden state vector parameters with the size of 32.
Subsequently, the EGC-LSTM uses the ReLU as an activation
function.

B. Semi-Supervised Deep Packet Inspection for OT Anomaly
Detection

Our research uses OT traffic generated from the CPPS
simulation to evaluate the performance of DPI. The simulation
in Mininet produced TCP/IP traffic in the OT network. In
the CPPS model, we test several cyber attacks scenarios,
i.e., Denial of Service (DoS), network scanning, exploits,
and malwares. In addition to the OT traffic generated by
our simulation, we verify the model’s performances by using
open OT traffic datasets, i.e., IEC 61850 [44], Routable IEC
61850 [45], IEC 104 [46], DNP 3 [47], and Modbus [48].
Furthermore, we also incorporate samples of cyber attack
datasets [49] and Industroyer malware traffic samples [50]. A
total of 7.71 GB of .pcap data is collected from the OT traffic
samples for the evaluation of semi-supervised DPI. Fig. 7
depicts the statistical distribution of packet size using a box
plot across several OT traffic categories. Overall, the average
size of the normal OT traffic from various protocols is 118.599
bytes, and 304.735 bytes for cyber attacks. In order to handle
the size of the OT traffic, we use a 16x16 convolutional input
with a total capacity of 256 bytes. When the traffic exceeds
256 bytes, the extra bytes are discarded. Conversely, when
the traffic is less than 256 bytes, the remaining spaces are
filled with zeros. The top part of Fig. 8 shows the image
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Fig. 8. OT traffic images representation and the result of Gaussian Mixture with partial labelling for each protocols.

representation from each tested OT traffic. This 2D data is
used as input for the supervised CNN algorithms.

The outputs from CNN and HD generate vectors for GMM
with partial labelling. The bottom section of Fig. 8 depicts the
result from GMM with partial labelling for all protocols. K
represents the number of classes in the GMM classifier. This
parameter value is decided based on the number of classes
in the tested dataset. The GMM uses the probability density
function of multivariate Gaussian distribution with a full
covariance matrix. The GMM implementation does not utilize
an explicit distance metric, e.g., Euclidean distance. GMM
uses Mahalanobis distance to calculate a point’s likelihood
for a given Gaussian component. The Mahalanobis distance
quantifies the spatial separation between an individual data
point and a given probability distribution.

In our scenarios, we create a pair of two classes from
the normal/baseline OT protocols with cyber attack traffic. In
this experiment, we evaluate the performance of the GMM
with partial labelling with different proportion of training and
test data. The labeled data proportion selection is carried
out by running GMM with a variation of the labeled data
proportion between 1% and 30%. As shown in Fig. 9, the
majority of the tested dataset only required less than 5%
labelled data to achieve the minimum MSE. However, for
the DNP3, it required 19% labelled data to achieve the best
performance. This is because of the DNP3 characteristics,
which has more data variation, as shown in Fig. 8. In addition,
compared to other datasets, the DNP3 dataset has a substantial
amount of DNP3-modified attack packets, which resemble the
normal DNP3traffic. Therefore, the clustering plot of DNP3
is different from that of the other protocols. Consequently, to
achieve the best performance for all datasets, the experiment
incorporates a 20% proportion of labeled data.

The x-axis represents the probability scores from the CNN,
and the y-axis represents the HD scores. The red dots indicate
the cyber attack traffic that is associated with a higher CNN
anomaly probability and HD score close to one. Conversely,
the blue dots indicate normal OT traffic that has a lower
probability of CNN anomalies and a low HD score nearing
zero. Fig. 10 depicts the Receiver Operating Characteristic
(ROC) curve from all traffic categories and Area Under

Fig. 9. Proportion of labeled data impact on the MSE for all protocols.

the Curve (AUC) score. This plot indicates that the semi-
supervised DPI and GMM with partial labelling provides a
good classification performance.

C. Spatio-Temporal Anomaly Correlation and Prediction

The anomaly detection result generated from the semi-
supervised DPI is further processed using TDG and recorded
in CPSIM, together with the CB’s status retrieved from the
power grid. During instances of cyber attacks, the CPSIM
matrix will deviate from its normal state (all zeroes). As the
attack progresses, particular elements of CPSIM are shifting
to a value of 1. In the matrix, the value 1 corresponds to
traffic anomaly or an open CB in the power grid. Based on this
constraint, the transition on the CPSIM matrix will be varied
depending on the cyber attack scenarios and location.

This research performs 220 cyber attacks scenarios with
variation of location and methods. These scenarios serve as
primary data to evaluate the performance of EGC-LSTM.
In addition, we also perform benchmarking with the state-
of-the-art graph-based spatio-temporal deep learning models,
i.e., GConvLSTM and GConGRU [39], TGCN [40], and
GC-LSTM [41]. Table II shows the performance comparison
of the tested models based on MSE. A smaller MSE indi-
cates superior prediction results. Our proposed strategy with
sequence and NN filter reduces the MSE for all models.
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TABLE II
MSE SCORES COMPARISON OF GRAPH-BASED SPATIO-TEMPORAL DEEP LEARNING MODELS

Combinations 
Performance 
Parameters 

Tested Models 
GConvLSTM GConvGRU TGCN GC-LSTM EGC-LSTM 

Original 
MSE ± SDev 0.055±0.017 0.054±0.018 0.052±0.021 0.045±0.017 0.035±0.014 
Time ± SDev 528±112 371±91 253±67 304±84 307±79 

+ Seq. Filter 
MSE ± SDev 0.034±0.012 0.039±0.013 0.037±0.018 0.034±0.016 0.021±0.011 
Time ± SDev 532±118 381±97 259±64 308±81 309±80 

+ NN Filter 
MSE ± SDev 0.027±0.011 0.037±0.014 0.026±0.011 0.043±0.019 0.023±0.012 
Time ± SDev 542±145 378±94 258±66 311±81 323±72 

+ Seq. Filter 

& NN Filter 

MSE ± SDev 0.0026 ±0.0012 0.0011±0.0007 0.0016±0.008 0.0019±0.0009 0.0003±0.0002 
Time ± SDev 549±127 385±99 257±69 313±83 324±84 

Seq. Filter = Sequential Filter, NN. Filter = Neural Network Filter, SDev = Standard Deviation, Time in milliseconds 

TABLE III
PERFORMANCE COMPARISON OF GRAPH-BASED SPATIO-TEMPORAL DEEP LEARNING MODELS WITH SEQUENTIAL

AND NEURAL NETWORK FILTERS

Parameter Original Seq. Filter NN Filter Seq. and NN Filter 
Average MSE 0.0482 (+ 0 %) 0.033 (- 31%) 0.0312 (- 35%) 0.0015 (- 97%) 

Average Time (ms) 352.6 (+ 0%) 357.8 (+1.5%) 362.4 (+ 2.8%) 365.6 (+ 3.7%) 

 

Fig. 10. ROC curve from all traffic categories.

Table III shows the average performance comparison of the
five original graph-based spatio-temporal deep learning models
and their variants with Algorithm 1 Sequential and NN filter.
Table III quantifies the impact of the implementation of Seq.
filter, NN filter, and combination of Seq. filter and NN filter.
The standalone implementation of the Sequential and NN filter
reduces the MSE by 31% and 35%, respectively. Meanwhile,
the integration of both filters reduces MSE by 97%. The best
MSE of 0.0003 is achieved in the proposed EGC-LSTM that
implements Bayesian optimization, sequence filter, and NN
filter. Besides reducing the MSE, as shown in Table III, the
filters also increase the computing time by 1.5∼3.7%.

Fig. 11 depicts the sample prediction result from EGC-
LSTM for cases 76 and 218. In case 76, the cyber attack

started from substation 9 and compromised merging unit 9.1.
This MU has the capability to control the CB of the power line
between Bus 6 and Bus 7. During the state n, EGC-LSTM can
predict incoming events in n+1 before they actually happen.
In state n+1, the method can predict the circuit breaker that
will be affected after the power line between Bus 6 and 7
is disconnected. For case 218, the cyber attack is starting
from substation 27. Compared to case 76, this scenario shows
different highlighted anomalous locations. In the majority of
cases, the breaker opening attack will not trigger other breakers
to open. However, in cases 76 and 218, the opening a few
breakers will trigger more breakers to open due to protection
schemes implemented in the IEEE-39 bus model.

D. Detection for Zero Day Attack Scenarios

Considering the complexity of CPPS topology, there are
various possibilities of cyber attacks scenarios. To address
this concern, we implement the resilient associative method
of vector database search using KNN as depicted in Fig. 4.
To evaluate this method, we generate 20 new scenarios and
test several vector search strategies, i.e., KNN [51], Euclidean
Distance (ED), K Decision Tree (KDT) [52], Hierarchical
Navigable Small World (HNSW) [53], K Means (KM) [54],
and Locality Sensitive Hashing (LSH) [55]. Fig. 12 shows a
computation time comparison with variety of data quantities.
Compared to the tested methods, KNN provides the most
stable computational performance. Methods such as KDT,
HNSW, and LSH provide a faster search time. However,
these methods need preliminary computation to preprocess
or generate the hash map. Therefore, these methods may
not be suitable for fast pace changing data. Based on the
search evaluation, the tested methods find the most related
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Fig. 11. Sample EGC-LSMT Prediction Results from case 76 and 218.

Fig. 12. Search algorithms computation time comparison.

scenarios from the known scenarios. This strategy will serve as
a resilient mechanism in identifying new possible APT cyber
attack scenarios, i.e., zero-day attacks.

V. CONCLUSION AND FUTURE WORKS

With the growing threat of cyber attacks on power grids,
it is now more critical than ever to strengthen the attack
detection capabilities in OT communication networks. It is
important to note that, from 2024 onward, we will be living
in a world where AI plays an increasing role alongside
the advancement of AI models, i.e., deep learning, physic-
informed, and generative AI models. In this context, our
research aligns with this trend by proposing AI-based spatio-
temporal APTs detection, correlation, and prediction in power
systems. The implementation of deep learning for intru-
sion detection systems is becoming increasingly crucial to

address the sophisticated and evolving nature of APTs. The
proposed methods comprise of semi-supervised DPI, CPSIM,
EGC-LSTM, a resilient associative method, and CPPS log
comparator. The EGC-LSTM outperforms the state-of-the-art
graph-based spatio-temporal deep learning model with the
lowest MSE score of 0.0003. The proposed methods are also
capable of identifying zero-day attacks, locating anomalous
elements in the CPPS, and predicting the potential impact
of anomalies. In contrast to most research that emphasizes
the physical anomalies that occur during the later stages of
a cyber attack on power systems, the proposed methods have
the potential to detect cyber attacks during the early phases of
the cyber kill chain. In addition, AI-based intrusion detection
provides an online situational awareness for power system
operators to pinpoint system-wide anomaly locations in near
real-time and preemptively mitigate APTs at an early stage
before causing adverse impacts.

In this work, the methods primarily focus on cyber anoma-
lies that originate from external threat actors. The external
APT required a lateral movement to reach its final objective
in a timely fashion. These scenarios provide an opportunity
for the early identification of the APT. However, there is also
possibly an insider threat that can cause an immediate impact
on the CPPS. Currently, the insider threat constraint is omitted
from our objectives. Therefore, insider threat detection can
become a potential future research direction, along with exter-
nal threat detection. Furthermore, to enhance the methodology,
it is essential to conduct comprehensive testing of the OT
communication traffic by including a wider range of APT
scenarios.
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