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ABSTRACT 

Hydrate slurry has been reported to be a suitable secondary fluid for refrigeration and air-conditioning systems. The 

latent heat of CO2 hydrate is 387 kJ/kg under phase equilibrium condition of 7 °C and 30 bar. The utilization of CO2 

hydrate slurry in air-conditioning systems is promising in improving the energy efficiency and shifting energy 

supply and demand load as well as relieving greenhouse effect caused by normal refrigerants like CFCs, HCFCs etc.  

The production of CO2 hydrate slurry in a coil heat exchanger is investigated in this study. Crystals are supposed to 

firstly form on the wall of the tube, generating a solid layer. The appearance of the solid layer increases the heat 

resistance from liquid to the refrigerant. Type-III antifreeze proteins have been added to the solution to better control 

the crystallization process of hydrate formation since AFPs have proven to be an effective hydrate formation 

preventer which is environment friendly. A kinetic model is developed based on the gas hydrate growth model of 

Skovborg and Rusmussen (1994), taking the mass transfer process to be the rate-control step. The influence of 

pressure, temperature and concentration of the hydrate formation preventer on the diffusion coefficient of dissolved 

gas into the solid interface is investigated  and mainly the concentration of hydrate formation preventer appears to 

have a large impact. 

Results show that the growth rate decreases with the increase of the concentration of AFPs. Higher concentrations of 

AFPs move the equilibrium line to slightly higher temperatures. 

Keywords: hydrate slurry; crystallization; kinetic model. 

1. INTRODUCTION 

Pumpable phase change materials (PCMs) are one of the most efficient candidates to be applied as secondary 

cooling fluids due to the large latent heat when undergoing a phase change from solid to liquid or liquid to gas or 

vice versa, which can substantially increase the energetic and economic performance of secondary cooling systems. 

Ice slurries have been introduced as secondary cooling fluids in the beginning of the century (Bel and Lallemand, 

1999; Tanino and Kozawa, 2001; Ayel et al., 2003; Matsumoto et al., 2004). These systems show improved 

performance when compared with single-phase secondary refrigerants (Kauffeld et al., 1999). CO2 hydrate slurry is 

a favourable secondary fluid which can be applied in air-conditioning systems: it has a large latent heat (387 kJ/kg) 

and positive phase change temperature (7-8 °C). This allows for the application of primary refrigeration cycles 

which operate at significantly higher evaporating temperatures than cycles applied in conventional rapid chilling 

plants. Making use of a latent heat thermal storage system (LHTS), the generation unit runs in a day/night mode, 

therefore the condensing temperature of the refrigeration cycle can be lowered. In these ways, the refrigeration cycle 

efficiency is correspondingly significantly improved in comparison with conventional designs. 

Formation of gas hydrates in oil and gas pipelines and processing equipment is something that the petroleum 

industry is most concerned about since it can lead to flow blockage and severe economic loss. A fluidized bed  

generator has been used to produce CO2 hydrate slurry continuously as shown by Zhou et al. (2015). However, the 

construction of such a system with a fluidized bed heat exchanger requires a large investment which is not cost-

effective for industry. Simpler generators are expected to significantly improve the economy of these systems. In 
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this study, a coil heat exchanger is proposed to produce CO2 hydrate slurry. The extremely rapid formation rate 

attained in these heat exchangers cannot be controlled, so that a blockage of the flow always limits the operation. In 

order to use this simpler generator to produce CO2 hydrate continuously, it is necessary to slow down the formation 

rate and so to prevent the blockage. Addition of a hydrate inhibitor is proposed to control the hydrate formation 

process so that the slurry remains pumpable. 

Antson et al. (2001) studied the mechanism of type-III AFPs on ice growth. They confirm that type-III AFPs can 

make energetically favourable interactions with several ice surfaces, in which way inhibiting crystal growth. 

Kutschan et al. (2014) studied the dynamic mechanism of AFPs on inhibiting of ice growth and derived a correlation 

of the induction time as a function of concentration. Bagherzadeh et al. (2015) pointed that the ice-binding AFPs can 

act as a gas hydrate inhibitor. In this work the effect of type-III AFPs on CO2 hydrate formation rate in a coil heat 

exchanger was investigated. The experiments were done with various concentrations of AFPs (up to 50 ppm). A 

hydrate crystal growth model is developed taking the concentration of AFPs into consideration. The experimental 

results were compared to those obtained using PVP and PVCap which are the leading KHIs on the market and thus 

serve as a good reference when testing the KHI potential of the AFPs. The results can be used to guide the design of 

a crystallizer when continuous CO2 hydrate slurry is to be produced. 

2. EXPERIMENTAL METHOD 

2.1 Experimental apparatus 
The experimental system has previously been utilized by Zhou et al. (2016) to produce TBAB hydrate slurry and it 

allowed continuous production up to hydrate concentrations OF 40 wt%. Therefore, it’s considered that this system 

could also work for the generation of CO2 hydrate slurry. Ultra-deionized water is used in this study to exclude the 

impact of other ions such as Na+, Mg2+ and Cl-. 

2.2 Experimental procedure 
Experiments are firstly done with pure water and CO2 water solution separately to validate the experimental method. 

The pressure drop and heat transfer coefficient of the coil heat exchanger will firstly be discussed. 

The flow phenomena in helically coiled tubes are more complex than in straight tubes due to centrifugal force 

effects. The transition from laminar to turbulent flow is shifted to higher Reynolds numbers (Kast, 2010): 

0.45

2300 1 8.6 i
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c

d
Re

D

  
    
                                                                          (1) 

For the experimental conditions, Recrit = 7437, for all tests the flow is laminar. 

The pressure drop is calculated based on Darcy–Weisbach’s equation: 
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In which, the friction factor is obtained with the Poiseuille relation for laminar flow: 

64
strf

Re
                                                                                (3) 

Frictional factor for curved tubes in relation to the friction factor for straight tubes is obtained from Naphon and 

Wongwises (2006): 
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LF in Eq. (2) stands for the loss caused by the sharp corners in the tubes. It was determined to be 0.9 (derived from 

Kast, 2010) for one turn, there are totally 5 turns in the coil tube. 

The experimental pressure drop has been compared with the pressure drop derived from Eq. (2) and is shown in Fig. 

1. It indicates that the pressure drop of water test can be well predicted. While Eq. (2) always under predicts the 

experimental value for CO2 water solution circulation. That is because the saturated CO2 gas bubbles in the solution 

increase the pressure drop during circulation and this effect is not taken into account in Eq. (2). 

The experimental overall heat transfer coefficient of the system is calculated based on the energy balance that is 

based on the measured temperatures, pressures and flow rates 

exp
ln

P
m i m Qloss

sU
A T




  




                                                            (5) 

   

Where  lnT is defined as 

ln
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T T T T
T
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  
 





                                                    (6) 

The energy loss in Eq. (5) has been estimated to be equal to 3 W by calculating it from the length of the tube and its 

insulation thickness. 

The heat transfer performance has been derived from Eq. (7) 

ln
1 1 1

2

o
i

i i

i w o o

d
d

d d

U h d h
                                                                   (7) 

In which, the internal heat transfer coefficient, hi, is predicted by Xin and Ebadian (1997). Their correlation is 

obtained experimentally for the local heat transfer in helical pipes. 

0.643 0.177(2.153 0.318 )Nu De Pr                                                         (8) 

Eq. (8) is applicable for 20 < De < 2000, 0.7 < Pr < 175, 0.0267 < d/Dc <0.0884. 

The external heat transfer coefficient, ho, is predicted by Eq. (9), which has been derived in Zhou et al. (2016). 

1.4 32oh Q                                                                                (9) 

The thermal conductivity of the stainless-steel wall is 13 W m-1 K-1. 
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Fig. 2 shows the comparison of the predicted and experimental overall heat transfer coefficient of CO2 water 

solution. It indicates that Eq. (7) under predicts the experimental results, however, the average deviation is within 

±10%, which is considered acceptable. 

 

 

 

 

 

 

 

 

After validation, CO2 water solution with or without the addition of AFPs is filled in the system. The type-III AFP 

used in the experiments was purchased from A/F Protein Canada Inc. The solution in the coil is cooled by the two 

thermostatic baths filled with tap water from 10 °C with steps of 0.5 K until there are crystals appearing in the sight 

glasses. The effective cooling capacity of each bath is 0.3 kW. The warm bath is kept at a temperature higher than 

the cold bath, in this way, part of the crystals formed in the cold bath are supposed to be melted. In this way it 

should be possible to keep the concentration of crystals in the solution at the required level. 

3. EXPERIMENTAL RESULTS 

3.1 Super-cooling degree to initiate hydrate formation 

Hydrates formation is a crystallization process. A supersaturation 

is required normally to initiate crystal formation which can be 

considered as driving force. Hydrates, in this study, are supposed 

to form on the tube wall firstly according to the temperature profile 

shown in Fig. 3. Therefore, the super-saturation degree of hydrate 

formation is defined as the difference between the wall 

temperature and the equilibrium temperature of the solution under 

the same pressure. 

w eq
T T T                                     (10) 

Sabil (2009) has experimentally investigated the equilibrium 

condition of CO2 hydrate formation. The super-cooling degree of 

the CO2 solution to initiate hydrate formation with different 

concentrations of AFPs has been obtained taking Sabil’s phase 

equilibrium line as reference. Fig. 4a shows the points when 

hydrates start forming with AFPs added. Symbols marked by 1, 2 

and 3 represent the condition with 0, 5 ppm and 10 ppm AFPs 

respectively. It indicates that without the addition of AFPs,   the 

supercooling degree is only 0.5 K when hydrate started forming, while with the addition of 5 ppm AFPs, 0.8 K 

supercooling degree is needed to start hydrate formation. When there are 10 ppm AFPs added in the solution, an 

even larger supercooling degree (ca. 2.75 K) has to be achieved before hydrates start forming. The addition of AFPs 

increases the required super-saturation degree before hydrate formation can be initiated which means it’s more 

difficult for hydrates to start forming with the addition of type-III AFPs up to 10 ppm.  

Figure 1: Comparison of the pressure drop of 

water and CO2 solution. 

Figure 2: Comparison of the experimental and predicted 

overall heat transfer coefficient of CO2 water solution. 

Fig. 3: Crystal layer formation on the 

tube wall. 
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Fig. 4b shows the cases with the addition of AFPs from 20 ppm to 50 ppm. It illustrates quite different behaviour in 

comparison with Fig. 4a. The symbols stand for the temperature and corresponding pressure of the wall when 

hydrates start forming. It illustrates that the symbols for the cases, when the addition of AFPs is higher than 30 ppm, 

always appear in the right region of the equilibrium line, which means hydrates start forming above the equilibrium 

condition defined by Sabil (2009) shown in Fig. 4a. While, for the cases with AFPs 20 ppm and 30 ppm, formation 

can start with positive and negative supersaturation depending on the operating conditions. Thereby, a conclusion 

has been drawn that the addition of AFPs shifted the hydrate formation equilibrium line to higher temperature when 

the concentration of AFPs is higher than 30 ppm.  Hydrate formation trend line has been drawn for the case of with 

the addition of 50 ppm AFPs. It indicates a shift of 0.5 K of the equilibrium line for the case of 50 ppm.  

3.2 Heat transfer performance under hydrate formation condition 
The adhesion of hydrates on the tube wall increases the thermal resistance resulting in an overall heat transfer 

coefficient given by Eq. (11).  

ln ln
1 1 1

2 2

o i
i i

i i h i

h h i w h o o

d d
d d

d d d d

U d h d h 
                                                     (11) 

In which, the thermal conductivity of  CO2 hydrate solid has been taken as 0.54 W/m K for the relevant temperature 

range according to the value reported by Sloan and Koh (2008). The thickness of the crystal layer δ can then be 

derived from Eqs. (5), (7) and (11) to be δ=(di-dh)/2. 

 

 

 

 

 

 

 

 

Figure 4: a) Supercooling degree of CO2 solution under AFPs concentration up to 10 ppm; b) Supercooling 

degree of CO2 solution under AFPs concentrations of 20 and 50 ppm; 

ΔT a) b) 

Figure 5: Pressure and temperature change during 

hydrate formation. 
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Figure 6: Overall heat transfer coefficient change 

during hydrate formation. 
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Fig. 5 shows the temperature change of one test during hydrate formation without the addition of AFPs. The bath 

temperatures are lowered down gradually until there is a sharp increase of the inlet temperature, which indicates the 

hydrate formation. The experimental and predicted overall heat transfer coefficients during this period are shown in 

Fig. 6. From the comparison, in the beginning before hydrates are formed, the experimental overall heat transfer 

coefficient can be well predicted by the correlation of Xin and Ebadian (1997). There is a sudden decrease of the 

overall heat transfer coefficient at 9100 s which is consistent with the data of Fig. 5. The experimental overall heat 

transfer coefficient decreases to zero in the end which indicates the blockage. The adherence of hydrates on the tube 

wall increases the thermal resistance which results in a sharp decrease of the heat transfer coefficient. Fig. 6 also 

indicates that without the addition of AFPs there is a rapid blockage after hydrates start forming. 

Figs. 7 a~d show the comparison of the experimental and predicted overall heat transfer coefficient during hydrate 

formation with the addition of 5 ppm, 10 ppm, 20 ppm and 50 ppm. They all show a similar trend. Taking Fig. 7a as 

an example, it illustrates that from 3050 s there is a sudden decrease of the overall heat transfer coefficient from 180 

W m-2 K-1 to 140 W m-2 K-1, and the experimental overall heat transfer coefficient starts being lower than the 

predicted value, which indicates the formation of hydrates on the wall. It keeps an almost straight line (marked by 

the dashed-line circle) until a sharp decrease to zero at time 5800 s, which indicates the blockage of the tube. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows the length of the formation period before a blockage takes place. The period with 10 ppm is 

significantly larger than that with 5 ppm AFPs. However, the lasting period for the case with 20 ppm AFPs is shorter 

than that with 10 ppm AFPs and even shorter than that with 5 ppm AFPs, which is possibly due to the change of 

Formation period 

Onset of hydrate 

formation 

Blockage 

a) 

c) 

b) 

d) 

Figure 7: a) Comparison of experimental and predicted overall heat transfer coefficient with the addition 

of 5 ppm AFPs; b) Comparison of experimental and predicted overall heat transfer coefficient with the 

addition of 10 ppm AFPs; c) Comparison of experimental and predicted overall heat transfer coefficient 

with the addition of 20 ppm AFPs; d) Comparison of experimental and predicted overall heat transfer 

coefficient with the addition of 50 ppm AFPs. 

Onset of hydrate 

formation 
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equilibrium condition, which weakened the effect of the additive. The 

period of operation is the largest for the case with the addition of 50 ppm 

AFPs. 

3.3 Investigation of hydrate growth rate 

The experimental growth rate of crystals can be predicted by the change of 

the internal diameter due to the adherence of solids on the tube wall 

2

i h
d d

v
t





                                                                                  (12) 

Figs. 8a~d show the internal diameter change corresponding with the cases shown in Fig. 7a~d. Fig. 8a shows that 

the internal diameter starts decreasing from 3050 s. It decreases slowly in the time period from 3400 s to 5600 s 

followed by a sharp decrease to zero at time 5600 s, which is agreement with Fig. 7a. Figs. 8 b-d are in agreement 

with Figs. 7 b-d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 summarizes the influence of AFPs on CO2 hydrate formation compared with the results from Uchida et al. 

(2002) and Shadi et al. (2008). It indicates that the supercooling degree of CO2 hydrate formation is influenced 

significantly when the concentration of AFPs is 10 ppm, while with 5 ppm AFPs there was a much smaller effect on 

the supercooling degree. Even though there is a supercooling-degree of 0.5 K when there is no AFPs addition to the 

Figure 8: a) Change of internal diameter of the coil during hydrate formation experiment with the 

addition of 5 ppm AFPs; b) Change of internal diameter of the coil during hydrate formation 

experiment with the addition of 10 ppm AFPs; c) Change of internal diameter of the coil during 

hydrate formation experiment with the addition of 20 ppm AFPs; d) Change of internal diameter of the 

coil during hydrate formation experiment with the addition of 50 ppm AFPs. 
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solution, during this experiment, the hydrate formation cannot be measured because of instantaneous blockage. 

Table 2 also shows that the hydrate formation rate can only be quantified when there is an addition of AFPs to the 

solution. The density of CO2 hydrate slurry is determined to be 1036 kg m-3 as measured the same with Zhou et al. 

(2015). The addition of AFPs significantly lowers the formation rate of the gas hydrate. The growth rate of hydrate 

with 10 ppm AFPs is only 6.6% of the growth rate with 5 ppm AFPs in the solution. While the growth rate with the 

addition 50 ppm AFPs is 5.8% of the growth rate with 5 ppm. It should be noticed that 50 ppm the phase change 

temperature is 0.5 K higher. 

 

Concentration of AFPs 

/ ppm 

Super-

cooling / K 

Growth rate (G) / (kg/h) Formation rate (mm/s) 

This 

study 

Shadi et al. 

(2008) 

This 

study 

Uchida et al. 

(2002) 
0 0.5 ― 0.013 ― ― 
5 0.8 0.1482 ― 0.5e-3 0.519 

10 2.75 0.00978 ― 0.033e-3 3.63 
20  0.1897  0.64e-3  

50  0.00859  0.029e-3  

35 （Poly VP/VC） ― ― 0.0105 ― ― 

70 ― ― 0.0095 ― ― 

 

4. DEVELOPMENT OF CRYSTAL GROWTH MODEL  

Gas hydrate formation is a crystallization process, which requires a certain supersaturation degree to initiate the 

crystal formation as illustrated in the experiments reported in Fig. 4. Without any addition of inhibitor, 0.5 K super 

cooling degree is required to initiate hydrate formation. 

In this study, the CO2 gas is supposed to be supersaturated in the bulk aqueous phase, the diffusion rate of CO2 gas 

from bulk aqueous phase to the interface of water-hydrate (diffusion layer in Fig. 3b) is considered to be the rate 

controlling step. The tube wall is assumed to be uniform in temperature. Therefore, the crystal layer forms along the 

tube wall and increases to a thickness of δ. A modified Skovborg and Rusmussen (1994) model is developed to 

describe the crystal growth mechanism depicted in Fig. 3b. 

int( )sol i bG k A x x                                                                  (13) 

Where k is the mass transfer coefficient of CO2 gas from the water phase to the interface of water-hydrate. In the 

present study this is the internal surface of the crystal layer which grows inside the coil. It can be obtained from Eq. 

(14). 

2i

Sh
k

d

Ð





                                                                             (14) 

In which the Sherwood number is predicted making use of the analogy with heat transfer correlations from Edwards 

et al. (1979) for laminar flow 

2/3

0.065( / )Re
3.66

1 0.04[( / )Re ]

i c

i c

d L Sc
Sh

d L Sc
 


                                         (15) 

The  concentration of CO2 in the bulk water under the supersaturation condition can be derived from the equation of 

Diamond and Akinfiev (2003). 

Table 2: Summary of experimental results of hydrate growth rate 
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The crystal layer thickness δ keeps increasing and thus the slurry velocity will also increase according to the 

conservation of mass until the friction between the slurry and the crystal layer is high enough causing detachment of 

crystals from the layer into the slurry. At this point, the mass of crystals that are formed at the layer is equal to the 

mass of crystals that are transported to the slurry and the crystal layer thickness is constant. 

The experimental growth rate derived from Eq. (12) is used to calculate the mass transfer coefficient k in Eq. (13). 

The diffusion coefficient Ð of CO2 in the solution can then be derived from Eq. (14), in which, the crystal thickness 

δ for each case is the value derived during the hydrate formation period pointed in Figs. 7a and 7b. The results are 

shown in Table 3. It shows that the diffusion coefficient of CO2 in the solution is significantly reduced as the 

concentration of AFPs increases, the diffusion coefficient with the addition of 10 ppm AFPs is 44 times lower than 

that with the addition of 5 ppm AFPs. Resulting an extreme reduction of mass transfer coefficient (17 times lower 

when the concentration of AFPs is 10 ppm). Table 3 also indicates that the diffusion coefficient for the cases with 

AFPs higher than 20 ppm is not predictable because of the negative driving force shown in Fig. 4b. The results 

indicate that the addition of AFPs prevents the movement of CO2 gas to the interface of liquid-crystal (in the 

diffusion layer shown in Fig. 2b). As the amount of free gas reduces, the hydrate formation is slowed down from the 

reaction balance shown in Eq. (16). 

 
2 2 2 2W WCO N H O CO N H O                                               (16) 

 

 

 

 

5. CONCLUSION 

The addition of Type-III AFPs changes the CO2 hydrate formation behaviour. With the addition of 10 ppm AFPs in 

weight percent, the supercooling degree is increased significantly compared with that without the addition of AFPs. 

The addition of 5 ppm AFPs has a much smaller effect. With concentration of AFPs higher than 20 ppm, CO2 

hydrate formation equilibrium line moves to higher temperature. The diffusion coefficient in the cases with 20 ppm 

and 50 ppm AFPs cannot be derived without the determination of the new equilibrium line. 

With the addition of 5 ppm and 10 ppm AFPs, the hydrate growth rate can be better determined from the 

experimental data. In the case without the addition of AFPs  the growth rate is too large so that its rate cannot be 

determined from the present experiments. With the addition of 10 ppm AFPs, the hydrate growth rate is 6.6% of that 

of 5 ppm AFPs. The growth rate with the addition 50 ppm AFPs is 5.8% of that of 5 ppm. The gas diffusion 

coefficient is significantly reduced with the addition of AFPs, in particularly with the addition of 10 ppm AFPs, the 

gas diffusion rate is 44 times lower than that with the addition of 5 ppm AFPs, resulting in a 17 times lower mass 

transfer coefficient.  

NOMENCLATURE 

A Area m2 v Film growth rate m s-1 

d Diameter m ρ Density kg m-3 
Ð Diffusion coefficient m2 s-1 ω Velocity m s-1 

Dc Coil diameter m Subscript   

De Dean number ( Re
d

Dc

) 
 

bath Bath  

f Friction factor  b Bulk  

F Energy loss  c Coil  
G Growth rate kg h-1 crit Critical  

h Heat transfer coefficient W m-2 K-1 eq Equilibrium  
i Enthalpy J kg-1 exp Experimental  

AFPsx
 intT

/°C bT
/°C intx

/(mol %) bx
/(mol %) 

δ/(m s-1) k/(m s-1) Ð/(m2 s-1) 

0 7.55 7.05 2.507 2.427 ― ― ― 

5 ppm 6.45 6.15 2.317 2.286 0.005 1.6×10-5 6.0339×10-7 

10 ppm 8.35 6.2 2.64 2.29 0.007 9×10-7 4.1736×10-9 

Table 3 Diffusion coefficient derived from experiments 
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k Mass transfer coefficient m s-1 g-l Gas to liquid  

L Length m h Hydrate  
ṁ Mass flow rate kg s-1 i Inner  

N Number of water moles 

molecules 

 inlet Inlet  
Nu Nusselt number 

 
int interfacial  

pred Predicted  ln Logarithmic  

P Pressure Pa loss Loss  
Pr Prandtl number  L Local  

Q
 

Energy flow J s-1 o Outer  

Re Reynolds number  outlet Outlet  

Sc Schmidt number  s Slurry  
Sh Sherwood number  sol Solution  

T Temperature K str Straight   
t Time s w Wall  

U Overall heat transfer 

coefficient 

W m-2 K-1 W Water  

x Molar concentration mol mol-1 Abbreviations   

Greek   AFP Anti-Freeze Proteins 

Δ Difference  KHIs Kinetic Hydrate Inhibitors 
δ Crystal layer thickness m LHTS  Latent Heat Thermal Storage 

λ Thermal conductivity W m-1 K-1 PCM Phase Change Material 
µ Viscosity Pa·s PVCap Polyvinyl Caprolactam 

   
PVP Polyvinyl Pyrrolidone 
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