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Preface 
System Dynamics (SD) was developed in the 1960s by J. Forrester, since many of 

the existing methods for solving problems did not offer a sufficient understanding of 

strategic problems in complex systems. The objective of SD modelling is, therefore, 

to clarify the relation between the behaviour of a system as a function of time and the 

underlying processes, which is referred to as the system structure in SD. The 

method consists of observing and identifying the behaviour of a system as a function 

of time and developing a model with the possibility of explaining existing system 

behaviour and designing improved system behaviour (Wolstenholme, 1989a). 

SD modelling can be used to understand complex systems in a wide variety of fields, 

such as healthcare, energy transition, environmental management, safety and 

security, public order, social dynamics, education, economics, business 

management, and operations and supply chain management. It is therefore essential 

for anyone working in these fields to have a basic understanding of what System 

Dynamics are, and gain some working skills in SD modelling. 

This e-book introduces System Dynamics Modelling to novice modellers. It is 

specifically designed to support courses on simulation methods at the Faculty of 

Technology, Policy and Management (TPM) at Delft University of Technology (TU 

Delft) in the Netherlands, including Systems Modelling 3 and Introduction to TPM 

Modelling. However, it can also be used by other institutions that follow a practice-

oriented and skill-oriented approach to learning, while it also offers sufficient 

theoretical information to support autonomous learning.  

We choose to publish the e-book under an open access license so that SD learners 

from all over the world can study the material, independent of their study 

programmes or university access.  

Authors 

The System Dynamics education team of TU Delft has developed and published this 

book. The material builds on decades of System Dynamic teaching experience at TU 

Delft, where Bachelor and Master students are trained in various methods for 

modelling and simulating complex challenges (Pruyt, 2013; Van Daalen, Thissen, & 

Phaff, 2006). All co-authors have contributed to the development of System 

Dynamics education at TU Delft. This e-book builds on earlier theory-oriented syllabi, 

materials drawn from Pruyt (2013) and experience built in decades of System 

Dynamics education.  

The Delft Method: a teaching philosophy for learning by doing 

Modelling is difficult and learning how to build simulation models is even harder. 

There are a many excellent books that provide methods for learning System 
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Dynamics (SD) (e.g., Bossel, 2007a, 2007b, 2007c; Coyle, 1996; Duggan, 2016; 

Ford, 2009; Meadows, 2008; Morecroft, 2015; Pruyt, 2013; Richardson & Pugh, 

1981; Sterman, 2000; Warren, 2002). Most of these books primarily focus on 

understanding theory first and practicing modelling skills later (cf., Carver, 1996). 

Others only focus on theory and hardly offer any (modelling) exercises. This book 

offers a unique approach to learning SD modelling, and therefore is a valuable 

addition to other works already available. 

The starting point of this is book is our conviction that modelling is best learnt by 

doing and practicing one’s skills. This book, The Delft Method for System Dynamics, 

is inspired by the Dutch language learning method “Delftse Methode” (the "Delft 

Method", Sciarone & Montens, 1985), which is used in courses for internationals at 

TU Delft and beyond. In these language courses, students are encouraged to learn 

Dutch by doing, following what is often called a ‘natural’ approach to language 

learning. Instead of learning the rules first and make sentences later, students build 

their language skills by ‘doing’: by speaking, by writing, by making mistakes, by 

many repetitions and constant feedback. Theory, and grammar and spelling rules 

stand in service to active language abilities. The method is particularly well suited for 

kinaesthetic learners: students who prefer to learn based on experiences – moving, 

touching, doing (Fleming, 1995; Gardner, 1983). Owing to the engineering focus of 

TU Delft, students flourishing with this type of learning are particularly frequent. 

Students at TU Delft also often do not have much linguistic knowledge, making the 

Delft Method particularly useful. 

This pedagogical philosophy inspired the System Dynamics modelling courses 

taught at TU Delft and this e-book. Indeed, there is overlap between learning spoken 

languages on the one hand and learning modelling and programming languages on 

the other. There are of course differences, not in the least the fact that spoken 

languages are vastly more complex, but the same language learning strategies can 

apply to both. In the Delft Method, the underlying logic of a language (the rules or 

‘syntax’) is revealed through practice. In our translation of the Delft Method to 

System Dynamics, we apply the same method: learning by doing.  

How to use this the e-book  

Focus on modelling  

In this e-book, we keep the theory sections short. Theoretical concepts are explained 

briefly and pragmatically; the emphasis, however, lies on the actual practice of 

modelling. Learners are encouraged to try the exercises early on, without fully 

understanding the theory. Exploring, struggling and reflecting are key components in 

the learning process. You are encouraged to try to do the exercises and don’t worry 

if you struggle at bit and must find some things out by yourself. 
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Working together works 

Modelling is not easy to do by yourself, although it is possible. We find that it works 

best if learners work together. It often helps to discuss things with classmates or in 

peer groups. You can also learn a lot from explaining things to others.  

Try first, but help is not far away 

If you get stuck, do not waste time worrying. Software documentation of the different 

modelling languages (e.g., Vensim, Stella, or Powersim) and fellow students can 

often be of help. For students following System Dynamics courses at TU Delft, 

teaching assistants (first line) and teachers (second line) are available for questions 

during the computer labs. 

Follow best practices in modelling 

It is important that you get used to good modelling practices. These are: 

• Define all units as soon as you formulate a variable. 

• Formulate the model variable by variable, equation by equation. Do not build 

the whole structure at once, before entering the equations. Finish the equation 

before you go to a next variable. 

• Always have a running model. 

• Save your model frequently. Backup versions may be helpful when modelling 

advances don’t work out as planned. 

• When you get stuck with modelling: take a walk.  

Reading guide  

Chapter 1 introduces the basic principles and background of System Dynamics.  

Chapter 0 through Chapter 5 describe the exercises. Each exercise chapter consists 

of two parts: theory and modelling questions. The theory questions are qualitative 

exercises in which concepts like diagramming conventions, transferring stock-flow 

diagrams into CLDs, and recognising the order (1st, 3rd, or infinite) and type (material 

or information) of delays. You should be able to make the theory exercises without 

using SD software (e.g., Vensim, Stella), but it is not forbidden to use software to 

solve them. The theory exercises are in the form of short answer questions.  

All modelling exercises contain a model. In this model description, all variables are 

given in italics. Emphasis lies on learners being able to distinguish different types of 

variables (e.g., stocks, flows and auxiliaries). The text generally only allows a single 

interpretation: if you model the description correctly, you should get a model that 

generates exactly the same behaviour as the exemplar. Also, the stock-flow 
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structure of your model should be the same as the example model. For most 

exercises, answers are available (see Auping et al., 2024). 

The theory in this book follows a typical modelling cycle: problem articulation and 

conceptualization are discussed in Chapter 0, model formulation in Chapter 0, 

evaluation including verification in Chapter 0, and model use and policy testing in 

Chapter 9.  

We hope you will enjoy this book and share the joy of systems thinking and 

modelling with us. We prepared the material in this e-book with care and foresee 

regular updates to the material. Please don’t hesitate to contact us with any remarks 

or feedback.  

 

Delft, August 2024,  

The authors.  
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1. Introduction to System Dynamics 
This chapter begins with a history and background of the System Dynamics (SD) 

field. It continues by explaining the basic principles of SD: stocks and flows, 

numerical methods, and feedback.  

1.1 History and background 

Many problems are too complex for people to understand. The lack of understanding 

can lead to ‘curing’ the symptoms rather than pin down the source of a problem, the 

so-called ‘end of pipe solutions’. System Dynamics was developed by J. Forrester 

(1961) at the Massachusetts Institute of Technology (MIT), who felt that many of the 

existing methods for solving problems did not offer a sufficient understanding of 

strategic problems in complex systems. Forrester combined ideas from three, at the 

time relatively new, disciplines (Meadows, 1976): 

• control engineering: the concepts of feedback and self-regulation, 

• cybernetics: the nature of information and the role of information in control 

systems,  

• organisational theory (management sciences): the structure of organisations 

and the decision-making processes.  

From these basic ideas, Forrester developed a philosophy and a collection of 

representation techniques to model complex systems. The method focuses on 

questions regarding dynamic behaviour of systems. This was how System Dynamics 

was developed. The continuous and deterministic nature of System Dynamics 

distinguishes it from, for example, Discrete Event Simulation and Agent-Based 

Modelling, both stochastic simulation methods that work with events scheduling or 

ticks instead of continuous time steps. 

The objective of System Dynamics modelling is to clarify the relation between the 

behaviour of a system as a function of time and the underlying processes, or system 

structure. The method consists of observing and identifying the behaviour of a 

system as a function of time and developing a model with the possibility of explaining 

existing system behaviour and designing improved system behaviour 

(Wolstenholme, 1989a). 

During the first years of the development of the method, the applications were mostly 

industrial, for example in Industrial Dynamics (Forrester, 1961). Later, the 

applications became broader and included urban development (Urban Dynamics) 

(Forrester, 1969) and global development (World Dynamics) (Meadows, Meadows, 

Randers, & Behrens, 1972). Since then, the field has expanded significantly. The 

scope of individual studies has become smaller, but the area of application is broad. 

In addition, a shift occurred away from the obligatory use of quantitative models to an 



   

 

   

 

12 

awareness of the relevance of the qualitative aspects of modelling (Wolstenholme, 

1989b) .  

Application domains in SD include, but are not limited to, health policy, energy 

transition and resources scarcity, environmental and ecological management, safety 

and security, public order and public policy, social and organisational dynamics, 

education and innovation, economics and finance, organisational and strategic 

business management, information science, and operations and supply chain 

management.  

1.2 Basic principles 

One of the basic principles of the System Dynamics philosophy is that the behaviour 

of a system is caused by the structure of the system. The structure not only contains 

all physical aspects of, for example, a production process, but also includes policies 

and traditions, both tangible and intangible, that are important to the decision-making 

process in the system (Roberts, 1978). Such a structure contains accumulation, 

delays and feedback. The feedback concept is an essential characteristic and major 

strength of SD. Considering feedback in systems prevents solutions based on linear 

reasoning, which often only highlight and treat the symptoms, but not the root cause.  

Another aspect of the SD philosophy is the idea that organisations can best be 

considered in terms of underlying ‘flows’ and ‘stocks’. For example, flows of people 

being born, migrating, or dying, increase or decrease the stocks of people.  

1.2.1 Stocks and flows 

SD models are in essence large sets of integral equations which are numerically 

solved, and can be depicted with SD-specific diagrammatic conventions. The most 

important elements in SD models are stocks, sometimes also called levels, which 

are connected by flows. The behaviour of a stock over time is mathematically 

defined as an integral equation: 

 𝑆(𝑡) = 𝑆(𝑡0) + ∫ (𝑓(𝑡) − 𝑔(𝑡))𝑑𝑡
𝑡

𝑡0
, Eq. 1.1 

where 𝑆(𝑡) is a stock at time 𝑡, 𝑆(𝑡0) the initial value of this stock, 𝑓(𝑡) an inflow and 

𝑔(𝑡) an outflow. 𝑑𝑡 refers to delta time, the integration step. Besides stocks and 

flows, SD also knows auxiliary variables and constants. 

Figure 1.1 shows a simple SD model, where constant 𝑆0 = 𝑆(𝑡0), flow 𝑓(𝑡) is a 

function of constant 𝑐1 and 𝑠(𝑡), auxiliary 𝑎(𝑡) is a function of constant 𝑐2 and 𝑠(𝑡), 

and flow 𝑔(𝑡) is a function of constant 𝑐3 and auxiliary 𝑎(𝑡). As the interconnected 

set of integral equations can become too large to analytically solve, SD languages 

like Vensim (Ventana Systems, 2010) use numerical integration methods like Euler 

(Euler, 1768) and Runge-Kutta 4 (Kutta, 1901; Runge, 1895). 
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Figure 1.1. Simple stock-flow structure in SD diagrammatic conventions 

1.2.2 Feedback 

Feedback means that a chain of causal connections between variables exists. This 

influence can take place directly or indirectly, through other variables. Feedback for 

example exists in situations in which a decision-maker is influenced by the 

consequences of his or her actions. These consequences may become clear quickly 

or after some time; for example, if an increase in the number of cycling lanes results 

in the increased attractiveness of cycling. This in turn boosts the use of the cycling 

lanes, and, therefore, a greater need for new cycling lanes emerges. This may lead 

to a further expansion of the number of cycling lanes, closing the feedback loop. 

Closed loops and delays (for example the time period between orders and deliveries, 

between decisions and consequences of decisions, etc.) are characteristic for all 

feedback processes. In reality, people are often not aware of the fact that they play a 

part in a large number of different and complex social, economic and organisational 

feedbacks. The larger the delays in the feedback loop and the more indirect the 

consequences, the more difficulties people have in recognizing feedback structures 

(Roberts, 1978).  

Feedback structures are briefly discussed below, using causal diagrams. A feedback 

loop consists of two or more connections between variables that are connected in 

such a way that if one follows the arrows starting at any variable in the loop, one 

eventually returns to the first variable. One loop will never contain the same variable 

twice. A feedback system consists of two or more connected feedback loops 

(Roberts, 1978). There are two types of feedback relations: positive or reinforcing, 

and negative or balancing feedback.  

Reinforcing or positive or feedback 

Reinforcing feedback loops result in a continuous increase or decrease of the value 

of related variables. Figure 1.2 shows two examples of reinforcing feedback loops. 

The curved arrows display a causal relationship between the variables, indicating the 

direction of the causality. A link marked “+” refers to a situation where, when one 

variable changes, the influenced variables change in the same direction, depicting a 
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positive correlation/causality. A link marked “-” describes a negative 

correlation/causality, where the variables move in opposite directions. 

  

Figure 1.2. Two examples of reinforcing feedback loops  

A feedback loop is called reinforcing (R) or positive (+), if an initial increase in 

variable A leads after some time to an additional increase in A and so on, or if an 

initial decrease in A leads to an additional decrease in A and so on. In isolation, such 

feedback loops are self-enhancing: they generate exponentially escalating behaviour 

which could be (extremely) beneficial or (extremely) detrimental. For this reason, 

some system dynamicists believe that the term reinforcing is preferable over the 

term positive, as it cannot be confused with its everyday meaning: vicious circles are 

in fact positive or reinforcing feedback loops, but highly undesirable ones 

(Wolstenholme, 1989b). 

Balancing (or negative) feedback 

 
 

Figure 1.3. Two examples of negative feedback loops.  

A feedback loop is called balancing (B) or negative (-), if an initial increase in 

variable A leads after some time to a decrease in A, or if an initial decrease in A 

leads to an increase in A. In isolation, such feedback loops generate balancing or 

goal-seeking behaviour. They are sources of stability as well as resistance to 

change. The presence of a balancing feedback loop in a system does not imply that 
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the objective will be achieved nor that the process is under control. Balancing, or 

negative, feedback may also cause undesirable behaviour, for example undesirable 

oscillatory behaviour due to balancing feedback loops with delays.  

Causal diagrams can be used to determine whether a particular loop is positive or 

negative. The net effect can be determined by multiplying the signs of all 

connections in the loop. If the net effect of the connections is negative, the entire 

loop is negative. Conversely, it can be stated that if the net effect is positive, the 

entire loop is positive.  

An important notion in the feedback perspective of system dynamics is that no ‘one’ 

variable is solely responsible for all changes in the system. Variables that are part of 

a loop are both the cause and effect of change. In general, this means that problems 

generated by a system are not the responsibility of one single actor (Senge, 1990). 

1.3 Modelling cycle 

Model development and use is generally considered to be part of a “modelling cycle”. 

These cycles emphasise the cyclical and iterative nature of model development, and 

distinguish multiple phases. In this book, we use the following steps in the modelling 

cycle: problem articulation, conceptualisation, formulation, evaluation, and policy 

testing.  

 

Figure 1.4. Modelling cycle 

The problem articulation phase is generally considered to be the first phase of the 

model development cycle. The overall goal of this phase is to formulate a research 

design. This design can be obtained by taking the following steps: problem 
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formulation, boundary or scope selection, time horizon selection, and, if desired, the 

identification of potential reference modes.  

The problem formulation determines the model’s main purpose. It is generally 

recommended that a modeller should not model ‘the system’, but ‘the problem’ (e.g., 

Sterman, 2000, p. 89). The idea is to stay away from trying to model the whole 

system and all its attributes, but to limit oneself to those parts and aspects that are 

relevant to the problem at hand and generate the problematic behaviour.  

During the problem articulation phase, you need to determine the time horizon. In 

problems of socio-technical systems such as those studied at TU Delft, the focus is 

mostly on future-oriented system behaviour: the purpose of the model is to explore 

how the future may unfold under various circumstances. Therefore, the time horizon 

is selected as a time period ranging from the present to a point in the future. 

Frequently, a section of the past is covered as well, in order to simulate how the 

problem emerged. Nevertheless, there are SD applications that purely focus on 

explaining an existing problem, where the time scope lies only in the past.  

Additionally, in this phase you may choose reference modes. These are defined as 

“a set of graphs and other descriptive data showing the development of the problem 

over time” (Sterman, 2000, p. 90). In the study of future-oriented developments, 

hypothesised behaviours can be used as references mode (Randers, 1980). For 

studies looking at past problems, existing data should be used for the reference 

modes. 

In the conceptualisation phase, you sketch an outline of the model that is going to 

be constructed. Diagrams like Causal Loop Diagrams (CLDs), Stock Flow Diagrams 

(SFDs), Sub-System Diagrams (SSDs), and Bull’s Eye Diagrams are frequently used 

to facilitate this. Later, once further research has been performed, updated versions 

of these same diagrams (especially CLDs, SFDs, and SSDs) can be used to 

communicate basic model structure. A dynamic hypothesis on how the structure may 

cause certain behaviour (e.g., the reference mode) to arise in the model is also part 

of the conceptualisation phase. 

In the formulation phase, the SD model is specified: equations are defined and 

parameter values are given. This frequently starts with deciding which stock-flow 

structures need to be included in the model and where important delays play a role. 

There are different successful ways of approaching formulation. Two options are to 

model “inside out” or “outside-in”. In “inside-out” modelling, you start with one of the 

more obvious stock-flow structures (e.g., the population submodel in a model on 

societal ageing, or the transmission sub-model in a model on an infectious disease) 

and gradually expand it. In “outside-in” modelling, you start with the data you want to 

use in the model, and start combining it bit by bit into model structures. 

In the evaluation phase, the model is subjected to various tests to assess its 

quality. These tests respectively focus on whether the model has been correctly 
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constructed (i.e., verification) and whether it is fit for purpose (i.e., validation) (Barlas, 

1996; Hodges & Dewar, 1992; Oreskes, Shrader-Frechette, & Belitz, 1994). The 

term ‘fit for purpose’ in the validation process refers to testing whether the model 

fulfils the purpose as defined in the problem formulation. The concepts of verification 

and validation in SD correspond to a large extent to the way in which these terms are 

used in operations research and management science (Balci, 1994, 2013; Lane, 

1995). The results of the tests can be communicated to convince stakeholders, 

policy-makers or other users of the model’s quality, given the purpose. Once the 

model passes the verification and validation tests adequately, one or more base runs 

are selected for analysis and communication. 

In the policy testing phase, the efficacy of policy levers is tested in an experimental 

set-up. In this phase, the modeller tests what will happen to the system behaviour if 

the model’s structure is changed. Policy testing is not predictive, but rather an 

exploration of potential futures; it may consider uncertainties and scenarios in the 

evaluation of policy efficacy. Thus, this phase explores which policies may offer a 

promising or robust solution to the problem formulated at the outset. 
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Exercises 

  



   

 

   

 

20 

  



   

 

   

 

21 

2. The first modelling cycle 
2.1 Theory exercises 

Exercise 2.1. Research problem   

Note: This type of exercise builds on the theory on archetypes in the chapter on 

Problem Formulation and Conceptualisation (section 6.2). 

Burn outs among university students – Explain why it can be useful to use an SD 

model when researching the causes for work pressure and burn outs amongst 

university students (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459661/). Name 

exactly 2 examples of different system characteristics related to this research, 

including feedback. 

Exercise 2.2. SFD to CLD 

Note: This type of exercise builds on the theory on aggregated and disaggregated 

models (Section 6.4.5). 

 

Figure 2.1 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459661/
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Exercise 2.3. SFD to CLD 

 

Figure 2.2. SFD of human trafficking 

Consider the SFD of the population sub-model of a model related to prostitution and 

human trafficking displayed above. 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.4. SFD to CLD 

 

Figure 2.3 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 
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Exercise 2.5. SFD to CLD 

 

Figure 2.4 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.6. SFD to CLD 

 

Figure 2.5 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 
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Exercise 2.7. SFD to CLD 

 

Figure 2.6 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.8. SFD to CLD 

 

Figure 2.7 

a. Draw a disaggregated CLD. 

b. How many feedback loops are there in the SFD above? 

Exercise 2.9. Units 

The unit of time in a model concerning the large-scale introduction of electrical 

vehicles (EVs) is expressed in month. The production capacity of a company that 
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produces EVs is modelled as a stock variable with units expressed in EV/month. The 

enormous growth of the expected demand for new EVs leads to an increase of the 

production capacity of EVs.  

a. What unit needs to be used for this increase of the production capacity? 

Exercise 2.10. Units 

The unit of time in a model concerning the large-scale introduction of wind turbines is 

expressed in months. The production capacity of a company that produces wind 

turbines is modelled as a stock variable with units expressed in turbine/month. The 

enormous growth of the demand for new wind turbines leads to an increase of the 

production capacity of the company.  

a. Which unit needs to be used for this increase of the production capacity? 

2.2 Modelling exercises 

Exercise 2.11. Cocaine Example 

The monthly change in the total quantity of cocaine in a country depends on the 

monthly quantity of cocaine imports, the monthly quantity of cocaine used and the 

monthly quantity of cocaine confiscated by the police. In a highly simplified model, 

we assume that 3000 kg of cocaine is used per month. The import of cocaine is 

constant and amounts to 4000 kg per month. And the monthly quantity of cocaine 

confiscated by the police is equal to 10% of the cocaine in the country. Suppose 

there was an initial amount of 3000 kg of cocaine in the country. 

a. Make a causal loop diagram (CLD) of this problem. What behaviour do you 

expect? 

b. Make a SD simulation model of this system. How would the total quantity of 

cocaine in the country evolve over time if initially there was 3000 kg of 

cocaine in the country? How would the total quantity of cocaine in the country 

evolve over time if initially there was 20000 kg of cocaine in the country? And 

how would the total quantity of cocaine in the country evolve over time if 

initially there was 10000 kg of cocaine in the country? 

Exercise 2.12. Muskrat Plague Example 

Suppose there is a muskrat plague in a particular area. At first, there were 100 

muskrats. The New muskats increase the number of Muskrats due to the 

autonomous increase in the number of muskrats per muskrat per year amounts to an 

average of 20 muskrats per muskrat per year. Muskrats decrease by Muskrats 

https://surfsharekit.nl/objectstore/637caae4-415d-4854-a87f-d03d5df1387c
https://surfsharekit.nl/objectstore/527b56b7-f417-40e5-a74b-e5dab93d3826


   

 

   

 

26 

caught. Suppose that each year, 10 licences are granted to set muskrat traps. The 

licences are only valid for one year and each person holding a licence may set 10 

traps. Assume the number of muskrats caught per trap is proportional to the number 

of muskrats and a catch rate per trap which is close to 0.2, say, on average 0.2, 

minimally 0.195, and maximally 0.205. 

a. Draw a CLD of the problem. 

b. Represent the system in Vensim. Simulate the model three different times 

with proportionality factors 0.195, 0.200 and 0.205, and make a graph of the 

muskrat population over a period of 10 years. 

c. Compare your model structure and behaviour with the example model. 

d. See what happens for different values of the proportionality factor and try to 

explain this. 

e. Design and test an open-loop policy (see section 9.1.1). 

f. Given the uncertainty (of the proportionality factor, of the initial number of 

muskrats, and of the exact number of muskrats at any time), design a better – 

more specifically a dynamic closed-loop (see section 9.1.2) – licensing 

strategy that allows for stabilization of the muskrat population. Modify your 

initial simulation model, and compare the outcome of your dynamic closed-

loop policy with the outcomes of the open-loop policy. 

Exercise 2.13. The Threat of the Feral Pig Example 

Many American Departments of Natural Resources have adopted the position that 

feral pigs (Latin: Sus scrofa) are exotic, non-native wild animals that pose significant 

threats to both the environment and to agricultural operations. See, for example, the 

website of the Southeastern Wisconsin Invasive Species Consortium, on which 

information this exercise is partly based. Due to feral pigs’ trampling and rooting 

behaviours, many American wildlife biologists and institutions are becoming 

increasingly concerned about the devastation these ‘exotic’ animals can cause to 

ecologically sensitive native habitats, particularly native plants and rare, threatened 

or endangered species. 

Suppose one of the Departments hired you to develop a SD simulation model of the 

feral pig population to assess the dynamics of the population over time, given the 

departmental gaming rules. In this region, feral pigs may be removed at any time 

throughout the year, as long as those hunting them possess a valid licence. Each 

year, 10 licences are granted to set feral pig traps. The licences are only valid for 

one year. Each person holding a licence may set 10 traps. The number of feral pigs 

caught per trap is proportional to 15% to 17% of the total number of feral pigs.  

https://surfsharekit.nl/objectstore/527b56b7-f417-40e5-a74b-e5dab93d3826
https://surfsharekit.nl/objectstore/1bb98708-7e16-43cc-a4d4-d12b45e4e97e
https://sewisc.org/invasives/invasive-animals/feral-pig
https://sewisc.org/invasives/invasive-animals/feral-pig
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Assume that, at this moment, there are about 20000 feral pigs in the area, that feral 

pigs can mate at any time of the year, that sows produce on average 4 litters per 

year with each litter consisting of 8 piglets on average, and that half of the pig 

population consists of sows. 

a. Draw a simple CLD of the feral pig problem. 

b. Make a simple SD simulation model of the feral pig population to assess the 

dynamics of the population over time, given the departmental gaming rules. 

c. Make a graph of the number of feral pigs over time. Show what happens in 

the graph for different values of the proportionality factor (15%, 16% and 

17%). 

d. Try to verify and validate your model. What would you do? 

e. Given the uncertainty (of the proportionality factor, of the initial number of feral 

pigs, and of the number of new pigs), design a better (dynamic) licensing 

strategy that allows for stabilisation of the feral pig population at less than 

25000 animals. 
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3. Model formulation 1 
3.1 Theory exercises 

Exercise 3.1. Units 

 

Figure 3.1 Sub-model 

Consider the fully displayed sub-model of a company with a large number of 

employees (Figure 3.1). The model is about gain and loss of experience, which is 

measured in weeks. The SD model aggregates the experience of all employees in 

the company. All relevant variables are displayed; no constants or parameters are 

used that are not shown.  

Employees gain experience over the course of time. If an employee leaves the 

company, it is assumed that the employee leaves with his/her experience, which 

equals the average experience. The formula for loss of experience is equal to the 

firing and attrition of employees times the average experience of employees. The 

formula for average experience is equal to the total experience of employees divided 

by the number of employees in the company. The number of employees is 

expressed in ‘person’, the unit of time is expressed in ‘week’.  

a. What units should be used for the average experience of employees and the 

total experience of employees? 

Exercise 3.2. SFD to CLD 

Various elements of the Dutch housing market, including the social housing market, 

have been criticised by different parties for the past few years. According to the 

European Commission, the rules and organization of the Dutch corporation system 

did not correspond to the purpose of social housing. That is, the social rental market 

was not restricted to the poor. Although nobody complained, the European 
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Commission argued that the Dutch rental market did not comply with the rules of free 

competition, creating a situation of unfair competition with the private rental market, 

resulting in a distorted housing market. After long negotiations, the Dutch 

government and the European Commission agreed that after 1/1/2011, 90% of all 

social housing vacancies would be allocated to families with incomes up to €28,475 

per year – which is below the modal income. However, no agreement was reached 

about the majority of above-modal income families already living in social housing. 

This resulted in a situation in which families with an income above the modal were 

not allowed to move house within the social housing sector any more. For them, 

moving meant, from then on, having to leave the social housing sector and buy or 

rent on the (excessively expensive) private market.  

Before 1/1/2011, the housing market was a pull system: after an attractive house had 

become vacant, another social housing family would soon move into the vacant 

house, freeing up their own house, which would soon be filled up by yet another 

social housing family, until finally, a ‘starter house’ would become vacant and be 

occupied by young entrants into the social housing system. Due to the new 

regulations, higher-income families now stay put, which has brought the dynamics on 

the social renting market to a halt. 

 

Figure 3.2. Social housing simulation model 

Consider the SFD of a Dutch social housing simulation model displayed above 

(Figure 3.2).  

a. Draw a disaggregated CLD. 

b. Draw an aggregated CLD. 
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Exercise 3.3. CLD to SFD 

 

Figure 3.3. CLD of disease outbreak 

Consider the detailed CLD on the outbreak of a disease displayed above (Figure 

3.3).  

a. What should be the stocks in the model to be made following this CLD? 

b. Draw a SFD which corresponds to this CLD. 

Exercise 3.4. Archetype 

Note: This exercise builds on the theory on archetypes in the chapter on Problem 

Formulation and Conceptualisation (section 6.6.2). 

Drought – Overuse of surface water and groundwater reduces the amount and 

quality of the water supply. When actors pump too much groundwater or surface 

water, the resources is depleted before it can be replenished. As the water table 

lowers, lakes, rivers, streams and canals that are connected to the groundwater 

have less supply to pull from. Additionally, especially along the coasts, excessive 

pumping ruins water quality by salt water intrusions. 

a. Which archetype fits this case? 

Exercise 3.5. Delays 

Note: This exercise builds on the theory on delays in the chapter on formulation 

(section 7.4.2). Make sure you made the modelling exercises from Exercise 3.7 till 

Exercise 3.11 before doing this exercise. 

Consider the figure below Figure 3.4. 
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Figure 3.4. Input (above left), variable time delay (above right) and different delays of the 
input with the variable time delay (below). 

a. What are the delay types (material or information) and orders (1st, 3rd, or 

FIXED) of each run? 

Delay Type Order 

Delay A   

Delay B   

Delay C   

Delay D   

Input

10

7.5

5

2.5

0

0 4 8 12 16 20 24 28 32 36 40

Time (Second)

D
m

n
l

Input : Run

Variable time delay

20

17.25

14.5

11.75

9

0 4 8 12 16 20 24 28 32 36 40

Time (Second)

S
ec
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n

d

Variable time delay : Run

Selected Variables

10

7.5

5

2.5

0

0 4 8 12 16 20 24 28 32 36 40

Time (Second)

D
m

n
l

Delay A : Run

Delay B : Run

Delay C : Run

Delay D : Run
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3.2 Modelling exercises 

Exercise 3.6. Pneumonic Plague Example 

Introduction 

On 3 August 2009, media reported on an outbreak of pneumonic plague in north-

west China ("Second plague death in west China," 2009): 

“A second man has died of pneumonic plague in a remote part of 

north-west China where a town of more than 10,000 people has 

been sealed off. […] Local officials in north-western China have told 

the BBC that the situation is under control, and that schools and 

offices are open as usual. But to prevent the plague [from] 

spreading, the authorities have sealed off Ziketan, which has some 

10,000 residents. About 10 other people inside the town have so far 

contracted the disease, according to state media. No-one is being 

allowed [to] leave the area, and the authorities are trying to track 

down people who had contact with the men who died. […] According 

to the WHO, pneumonic plague is the most virulent and least 

common form of plague. It is caused by the same bacteria that occur 

in bubonic plague – the Black Death that killed an estimated 25 

million people in Europe during the Middle Ages. But while bubonic 

plague is usually transmitted by flea bites and can be treated with 

antibiotics, [pneumonic plague, which attacks the lungs, can spread 

from person to person or from animals to people], is easier to 

contract and if untreated, has a very high case-fatality ratio.” 

Modelling a Pneumonic Plague Outbreak  

You are asked to make a SD model of this outbreak. Use the following assumptions: 

The total population of Ziketan amounted initially to 10000 citizens. New infections 

make that citizens belonging to the susceptible population part of the infected 

population, which initially consists of just 1 person. The number of infections equals 

the product of the infection ratio, the contact rate, the susceptible population, and the 

infected fraction. Initially, the normal contact rate amounts to 50 contacts per week 

and the infection ratio to a staggering 75% per contact. The infected fraction equals 

the infected population over the sum of all other subpopulations. If citizens from the 

infected population die, they enter the statistics of the deceased population; 

otherwise they are quarantined to recover. The recovering could be modelled 

simplistically as (1 − 𝑓𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑟𝑎𝑡𝑖𝑜) ∗ 𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦⁄ 𝑡𝑖𝑚𝑒.  

https://surfsharekit.nl/objectstore/933c8f71-5a39-463c-bb60-b0bb514003d8
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Suppose for the sake of simplicity that the average recovery time and the average 

decease time are both 2 days. The fatality ratio depends on the antibiotics coverage 

of the population which – in this poor part of China – is 0% at first. The fatality ratio is 

90% at 0% antibiotics coverage of the population and 15% at 100% antibiotics 

coverage of the population. Assume for the sake of simplicity that those belonging to 

the recovering population do not pose any threat of infection, either because they are 

fully quarantined or because they are not contagious any more. 

Simulate the model using a time horizon of 30 days. 

a. Make a SD simulation model of the local pneumonic plague epidemic. 

b. Assume in your base case simulation that the antibiotics coverage of the 

population remains 0%. Make graphs of the evolution of the infections, the 

deaths, the recovering population and the deceased population. 

c. Assume now that antibiotics coverage of the population is 100%. Compare 

the evolution of the infections, the deaths, the recovering population, and the 

deceased population with those obtained in the previous question. 

d. Make a detailed and highly-aggregated CLD of this model. 

e. What could stop the epidemic? Explain based on the structure of the model. 

Exercise 3.7. Step, Ramp, Time, Sin  

This technical exercise allows you to get familiar with some pre-defined functions. 

a. Open a new model. Change the model settings so that the model simulates 

from 0 to 20 years with a time step of 0.0625. Use the Euler numerical 

integration method. 

b. Add a variable named cte. Give it a constant value 5 and dimensionless units 

(Dmnl). Simulate the model. Select the variable and visualize its behaviour 

with the graph tool. 

c. Add a variable named step up. Add a STEP function to it which forces a 

discrete step with 6 units at time 10, i.e. 𝑆𝑇𝐸𝑃(6,10), using units Dmnl. 

Simulate the model. Select the variable and visualize its behaviour with the 

graph tool.  

d. Add a variable named step down. Add the function 10 − 𝑆𝑇𝐸𝑃(6,5) −

𝑆𝑇𝐸𝑃(3,15) to it, using units Dmnl. Simulate the model. Select the variable 

and visualize its behaviour with the graph tool. 
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e. Add a variable named ramp up. Add a RAMP function to it that grows from 

time 10 to time 20 with a slope of 1 per year, using units Dmnl. Select the 

variable and visualize its behaviour with the graph tool. 

f. Use the shadow variable tool to add the predefined variable Time. Select the 

variable and visualize its behaviour with the graph tool. 

g. Add a variable named sine with units Dmnl. Add a SIN function to it as a 

function of Time. In other words, link a Time shadow variable to the sine 

variable, open the equation editor and add the equation: 5 + 2 ∗ 𝑠𝑖𝑛(𝑇𝑖𝑚𝑒). 

Select the variable and visualize its behaviour with the graph tool. 

h. Now select all auxiliaries (hold the shift button while clicking them) and 

visualize them all, except for the Time shadow variable. 

Exercise 3.8. Min, Max, MinMax, MaxMin  

This technical exercise helps you to get familiar with different Max and Min 

constructs. Use the previous model from Exercise 3.7 for this exercise. 

a. Add a variable named max cte and step up. Open the equation editor and add 

the following function: 𝑀𝐴𝑋(𝑐𝑡𝑒, 𝑠𝑡𝑒𝑝𝑢𝑝). Simulate the model. Select the three 

variables (cte, step up and max cte and step up) and visualize their behaviour 

with the graph tool. What does the MAX function do? 

b. Now build a function that takes the maximum of all variables from Exercise 

3.7. Note: since max functions can only take two arguments, you will need to 

build nested max functions. 

c. Add a variable named min step down and sine. Open the equation editor and 

add the following function: 𝑀𝐼𝑁(𝑠𝑡𝑒𝑝𝑑𝑜𝑤𝑛, 𝑠𝑖𝑛𝑒). Simulate the model. Select 

the three variables (step down, sine, min step down and sine) and visualize 

their behaviour with the graph tool. What does the MIN function do? 

d. Now build a function that takes the minimum of all variables from Exercise 

3.7. Note: since min functions can only take two arguments, you will need to 

build nested min functions. 

e. Add two constants named floor and ceiling respectively. Set the floor to 4 and 

the ceiling to 6. Add three auxiliary variables called sine with ceiling, sine with 

floor and truncated sine. Suppose that the sine with ceiling equals 

𝑀𝐼𝑁(𝑠𝑖𝑛𝑒, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔), that the sine with floor equals 𝑀𝐴𝑋(𝑠𝑖𝑛𝑒, 𝑓𝑙𝑜𝑜𝑟), and that 

the truncated sine equals 𝑀𝐴𝑋(𝑀𝐼𝑁(𝑠𝑖𝑛𝑒, 𝑐𝑒𝑖𝑙𝑖𝑛𝑔), 𝑓𝑙𝑜𝑜𝑟). Simulate the model 

and visualize the behaviours of these three variables.  
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f. Draw you conclusion: what may the MIN and MAX functions be used for? 

Exercise 3.9. Stocks  

This technical exercise helps you to get familiar with the effects of stock variables. It 

builds on the previous two exercises. Use the previous model from Exercise 3.8 for 

this exercise. 

a. Add a stock variable named Material1 with initial value of 0. Connect an inflow 

Material in and an outflow Material out to this stock. The outflow Material out 

equals the stock variable divided by a depletion time of 1 year. Set the 

Material in inflow equal to each of the variables in Exercise : cte, step up, step 

down, ramp up, Time and sine. Compare for each variable the behaviour of 

the inflow and outflow of the stock. What happens? 

b. Do the same for the variables added in Exercise 3.8. Set the Material in inflow 

equal to each of the variables in Exercise 3.8: max cte and step up, min step 

down and sine, sine with ceiling, sine with floor and truncated sine. Compare 

for each variable the behaviour of the inflow and outflow of the stock. What 

happens? 

c. Add a stock variable named Cumulative in with initial value equal to 0. Add an 

inflow called Cumulative inflow. Equate the inflow to each of the variables in 

Exercise : cte, step up, step down, ramp up, Time and sine. Compare for each 

variable the behaviour of the inflow and stock variable. What happens? 

d. Add a stock variable named Cumulative out with initial value of 100. Add an 

outflow called Cumulative outflow. Equate the inflow to each of the variables 

in Exercise : cte, step up, step down, ramp up, Time, and sine. Compare for 

each variable the behaviour of the outflow and stock variable. What happens? 

e. Draw your conclusion: what is special about stock variables? 

Exercise 3.10. First-Order Material & Information Delays  

This technical exercise builds on Exercise 3.9. It helps you to get familiar with first-

order material delays and first-order information delays. 

a. The stock with an inflow and outflow proportional to the stock in Exercise 3.9 

is in fact a first-order material delay structure: the inflow is the input and the 

outflow gives the response or output of the delay. Now, let’s build a first-order 

information delay: add another stock variable Information1 with initial value of 

0, an inflow Information1In, an auxiliary In1, an auxiliary Out1, and a Delay 
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Time of 1 year. The auxiliary Out1 should be equal to the stock variable 

Information1, the inflow Information1In should be equal to: 

(1 − 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛1) 𝐷𝑒𝑙𝑎𝑦⁄ 𝑇𝑖𝑚𝑒. Replace the variable Depletion Time in the 

first-order material delay by the Delay Time. Equate the auxiliary In1 to each 

of the variables in Exercise : cte, step up, step down, ramp up, Time, and 

sine. Simulate and compare the inputs and outputs of this first-order 

information delay with the first-order material delay. Draw your conclusion: 

what does the information delay do? Do the responses of the material delay 

and information delay differ? 

b. Now change the constant Delay Time into the following function over time: 1 +

𝑆𝑇𝐸𝑃(3,5) − 𝑆𝑇𝐸𝑃(2,10) − 𝑅𝐴𝑀𝑃(0.1,15,20). Compare the effect on the first-

order material delay and the first-order information delay. What happens? Do 

the responses of the material delay and information delay differ now? What is 

your conclusion? 

c. Why do you think the terms ‘material delay’ and ‘information delay’ are used? 

What could material and information delays be used for? 

Exercise 3.11. Higher-Order Delays  

This technical exercise builds on Exercise 3.10. It helps you to get familiar with 

higher-order material and information delays. This exercise allows you to simulate 

and analyse the consequences of different delays (information and material), of 

different orders (1st order, 3rd order, 10th order, and pipeline delays aka delay fixed), 

for different inputs, and for fixed and variable delay times. 

a. Select the material delay structure, the information delay structure, and the 

step up variable from the model developed in Exercise 3.7. Copy them, open 

a new model, paste them, and adapt your model settings. Change the delay 

time into a constant 1 year. Name the simulation run, for example, ‘1st order’, 

and simulate the model. 

b. Extend both structures to a second-order delay by copying these structures 

linking the output variables to the input values and adding a variable delay 

order and delay time divided by delay order. The formula of the variable delay 

time divided by delay order is of course equal to the delay time divided by the 

delay order. Rename the simulation run, for example, ‘2nd Order’, set the 

delay order equal to 2, and simulate the model again. Visualize and compare 

the 1st order and 2nd order outputs of the material delay and the information 

delay. What is the difference between the 1st order and 2nd order delays? 

What is the difference between material delays and information delays? 
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c. Do the same for a 3rd order delay: extend the stock-flow structures, change 

the order, change the run name, simulate, and compare their behaviours. 

d. Delays can also be specified with predefined functions. Make a new variable 

called MaterialDelayFunction and a new variable called 

InformationDelayFunction. Open these variables with the equation editor and 

select the function DELAY3I for the MaterialDelayFunction and SMOOTH3I 

for the InformationDelayFunction. Select the same input In, delay time, and 

initial value 0 as before. Simulate the model and compare the outputs of the 

MaterialDelayFunction and the 3rd order material delay stock-flow structure. 

Do the same for the outputs of the InformationDelayFunction and the 3rd order 

material delay stock-flow structure. 

e. Now change the constant delay time into the following function over time: 1 +

𝑆𝑇𝐸𝑃(3,5) − 𝑆𝑇𝐸𝑃(2,10) − 𝑅𝐴𝑀𝑃(0.1,15,20). Compare the effect on the 1st 

order material delay and the 1st order information delay. What happens? What 

could be concluded? 

f. Change the 3rd order delay function and 3rd order smooth function into DELAY 

N and SMOOTH N which can be selected in the ‘all’ functions class. These 

functions do the same, but now the order can to be set as well. Choose for 

example a 10th order. Rename the run, simulate it, and compare the 

response. Double the order, rename the run, simulate it, and compare the 

output. What conclusion can you draw from this? 

g. Add another auxiliary variable MaterialDelayFixed, specify its function as 

DELAY FIXED (Vensim) or DELAY (Stella) and simulate it. Compare the 

output to the highest-order material delay function. What conclusion can you 

draw from this: what is a delay fixed aka pipeline delay and what does it do? 

h. Copy and paste the other inputs from the model developed in Exercise 3.7, 

connect them, and compare the responses of the delay and smooth structures 

with the corresponding inputs. 

i. What are your overall conclusions regarding material and information delays? 

Why do you think the terms ‘material delay’ and ‘information delay’ are used? 

Exercise 3.12. Lookups, With Lookups, Time Series Example 

If you solved Exercise 3.6 on the outbreak of pneumonic plague in China, then open 

your model, and set the antibiotics coverage of the population back to 0%. If you 

have not solved Exercise 3.6 yet, then read the description and open the 

https://surfsharekit.nl/objectstore/933c8f71-5a39-463c-bb60-b0bb514003d8
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corresponding model here (be aware that the model in the link is not complete, so 

compare it with the description in Exercise 3.6 and complete it). 

a. The fatality ratio is 90% at 0% antibiotics coverage of the population and 15% 

at 100% antibiotics coverage of the population. Add a table function (WITH 

LOOKUP or LOOKUP in Vensim) named effect of antibiotics coverage on 

fatality ratio to include this effect. 

b. The outbreak of an extremely contagious deadly illness such as pneumonic 

plague actually causes the contact rate to drop, because people get ill or 

because they isolate themselves. Adapt the model by closing the ‘loop’ 

between the infected fraction and the contact rate. Create a function impact of 

the infected fraction on the contact rate that, multiplied with the normal contact 

rate (without illness and isolation), gives the effective contact rate. The 

function takes a value of 1 at an infected fraction of 0%, of 0.5 at an infected 

fraction of 10%, of 0.25 at an infected fraction of 20%, of 0.125 at an infected 

fraction of 30%, of 0.0625 at an infected fraction of 40%, of 0.03125 at an 

infected fraction of 50%, and so on. Simulate the model over a time span of 1 

month. Make graphs of the evolution of the infections, the deaths, the 

recovering population, and the deceased population. Does this reduction of 

the natural contact rate result in the desired effect? 

c. Suppose that the antibiotics coverage of the population increases linearly in 

de first week of the epidemics from 0% to 100%. Add a table function to 

simulate this effect. What is the consequence for the variable deceased 

population? 

  

https://simulation.tudelft.nl/SD/model_files_nested/06_08/
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4. Model formulation 2 
4.1 Theory exercises 

Exercise 4.1. SFD to CLD  

Consider the SFD below. The Outflow is defined as DELAY3I (Inflow, Delay time , 

Stock / Delay time).  

 

a. Draw the disaggregated CLD of this SFD. Make the implicit delay function ex-

plicit and exclude initial causes. 

b. Draw the aggregated CLD of this SFD. 

c. Explain how the Outflow changes at the moment the Delay time is halved. 

Exercise 4.2. SFD to CLD  

Consider the SFD below. The Net flow is defined as ( Input – Stock ) / Delay time. 
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First, consider the situation in which the Output is defined as Stock (i.e., dashed 

line).  

a. Draw the disaggregated CLD of this diagram. Make the implicit delay function 

explicit. 

b. Draw the aggregated CLD of this SFD. 

Second, consider the situation in which the Output is defined as SMOOTH3I ( Input , 

Delay time , Stock ) (i.e., dotted line). 

c. Draw the disaggregated CLD of this diagram. Make the implicit delay function 

explicit. Make the implicit delay function explicit and exclude initial causes. 

d. Draw the aggregated CLD of this SFD. 

e. Explain how the Outflow changes at the moment the Delay time is halved. 

Exercise 4.3. Archetype   

Biodiversity – Despite decade-long attempts to combat loss of biodiversity, Earth is 

losing animal and plant species rapidly. Why can’t we seem to combat this? The 

marine biologist Daniel Pauly has offered an explanation for this. He reasons that 

each generation fish researchers accepts the situation at the beginning of their 

careers as a baseline. Fish stocks, and the number of alive fish species at that 

moment, count as the baseline. Subsequently, that baseline is used to determine fish 

quota. These fish quota are generally not complied with by countries. Fish stocks 

decrease. And a next generation researchers accept the newer, poorer situation as a 

new norm. This is how the baseline shifts over generations. 

a. What archetype could you recognize in this case? Name the archetype and 

explain it in 1 sentence 

Exercise 4.4. Archetype   

The birth month effect – The Royal Dutch Association for Football (KNVB) is 

rethinking their selection policy for talented players in the youth division. In the old 

system, players were selected based on their age category: the best players of a 

birth year were selected into the talented selections. Sport clubs invest more time 

and resources in the top selections. Research has shown the older players born in 

January, who are further in their cognitive and physical development than those born 

in December of the same calendar year, are more likely to be selected in those 

talented teams. As a result of more and better training, the relatively older players 

developed faster than their un-selected peers. Consequently, football clubs had 

significantly more players born early in the year as opposed to later in the year. They 

were losing out on talent. 
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a. What archetype could you recognize in this case? Name the archetype and 

explain it in 1 sentence 

Exercise 4.5. Research problem  

Antibiotics – Explain why it can be useful to use an SD model when researching 

agricultural and medical use of antibiotics in the European Union. Name exactly 2 

examples of different system characteristics related to this research, including 

feedback. 

Exercise 4.6. Delays  

What type of delays (material or information) and order (1st, 3rd, or FIXED) of delay 1, 

2, 3, and 4?

 

Exercise 4.7. Delays  

What type of delays (material or information) and order (1st, 3rd, or FIXED) of delay 1, 

2, 3, and 4? 
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4.2 Modelling exercises 

Exercise 4.8. Collapse of Civilisations Example 

This case is to a very large extent based on case 4.3 from Martín García (2006) 

(reproduced with permission). The introduction and the model upon which the 

remainder of the case is based is highly similar to Juan Martín García’s model.  

Introduction 

One of the great mysteries of human history has been the sudden collapse – around 

800 AD – of one of the main centres of Mayan civilization in Central America, at a 

time when it was apparently peaking in terms of culture, architecture and population. 

Research suggests that the population increased – just before the collapse – to 

about 200 to 500 persons per square kilometre. This population density required 

advanced agriculture and/or large-scale trade. Within two to four Mayan generations, 

the population density dropped to less than 20 persons per square kilometre (i.e., the 

same as 2000 years earlier). Furthermore, after the collapse, whole areas remained 

almost uninhabited for some thousand years. Some of the environmental changes 

appear to have been as long-lasting as the loss of population. Lakes that were 

apparently centres of settlement in the Maya era have not yet entirely recovered in 

terms of productivity. 

No one knows exactly why this society of several million people collapsed, but new 

research shows a gradually tightening squeeze between population and environment 

that may have been crucial to the fall. Scientists1 estimate that exponential growth in 

Mayan population took place for at least 1700 years in the tropical lowlands of what 

is now Guatemala, such that the population doubled every 408 years. This trend may 

have caught the Maya in a strange trap. Their numbers grew at a steadily increasing 

pace, but, for many centuries, the growth was too slow for any single generation to 

see what was happening. Over the centuries, the increasing pressure on the 

environment may have become impossible to sustain. Yet the squeeze could have 

been imperceptible until the final population explosion, just before the collapse.  

New estimates for the population of the southern lowlands are based largely on a 

detailed survey of traces of residential structures that were built, occupied and 

abandoned over the centuries. The studies focus on the region of two adjacent lakes 

 

1 Dr. Don S. Rice, assistant professor of archaeology at the University of Chicago and adjunct 

assistant curator of archaeology at the university museum, Dr. Edward S. Deevey, leader of the 
research team and graduate research, curator of paleoecology at the Florida State Museum, H.H. 
Vaughan, Mark Brenner and M.S. Flannery of the University of Florida and Prudence M. Rice, 
assistant curator of archaeology and assistant professor at Florida University. 

https://surfsharekit.nl/objectstore/4d4bfb23-83f3-4401-8687-24b064e08f92
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(Lake Yaxha and Lake Sacnab) in the Peten lake district of northern Guatemala. The 

area was inhabited as early as 3000 years ago and the first agricultural settlements 

appeared there about 1000 BC. The land was largely deforested by 250 AD. The 

gradual intensification of agriculture and increasing number of settlements seem to 

have caused severe cumulative damage to an originally verdant environment. 

Essential nutrients washed away into the lakes, diminishing the fertility of agricultural 

land. Increases in phosphorus in the lakes from agriculture and human waste seem 

to have aggravated the environmental damage. Tropical environments are 

notoriously fragile, so that at one point, the population became too large for the 

environment to sustain. 

Simulate this SD model over a period of 2000 years from 1000 BCE (-1000) till 1000 

CE.  

Model description 

At the time of onset of agricultural developments, around 100000 persons lived in the 

area. The Population saw a Natural increase due to a Natural increase rate of 0.17% 

per year. The Population could also decrease due to Emigration. For now, assume 

that this flow is equal to 0. We assume the Consumed food per person was around 

400 kg per person per year, which roughly corresponds to a bit more than one kg per 

day. Define the Food demand using the Population and the Consumed food per 

person.  

The Mayans converted Forest into agricultural Lands by Deforestation. The Forest 

initially measured 4992 km2, and the Lands used 8 km2, making the total area 5000 

km2. Assume for now that Deforestation is 0 and pick a suitable unit for this variable. 

The Fertility of lands, initially equal to 5 million kg of food produced per square km, 

decreased due to Losses in fertility. There was a Potential fertility to be lost, equal to 

the difference between the Fertility of lands and the Minimum fertility. This flow is the 

product of the Potential fertility to be lost and the lowest value of either the Max relative 

fertility reduction (equal to 2), or the quotient of Lands and Forest to the power of 

Fertility loss exponent, in which the exponent is equal to 1.9 to get the right population 

dynamics, divided by the Intensity of agriculture. The Intensity of agriculture is equal 

to 1 year to model the speed by which the Fertility of lands changes.  

The Food produced is the product of Lands and Fertility of lands. Define the Emigration 

flow now as the Gap in food production divided by the Consumed food per person, 

times an Emigration ratio of 5% per year, as due to food redistribution only a small 

proportion of people actually left. 

The Mayans deforested the area they needed to close the Gap in food production (in 

kg) between the Food produced and the Food demand, given the Fertility of lands 

(kg/km2) and the Intensity of agriculture. Deforestation should, therefore, be defined 

as the minimum of either the Gap in food production divided by the Fertility of lands, 
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or the area of Forest divided by the Maximum deforestation factor, and everything 

divided by the Intensity of agriculture. The Minimum fertility is equal to 1 kg per square 

kilometre per year, and the Maximum deforestation factor is 4. The Gap in food 

production is the difference between the Food demand and the Food produced. 

Questions 

Build the simulation model according to the above description and answer the 

following questions.  

a. Create an CLD on a high aggregation level. 

b. What are correct model settings? Give INITIAL TIME, FINAL TIME, TIME 

STEP and Integration type. 

c. Generate a graph for the Population. Give a structural explanation of its be-

haviour, and refer to loops in the CLD. 

d. What archetype fits the model behaviour? Explain why. 

e. Perform a structural validation test on the model. Describe the name of the 

test, how you performed it, what you observe, and your conclusions. 

f. Perform a behavioural validation test on the model. Describe the name of the 

test, how you performed it, what you observe, and your conclusions. 

g. A student made this model with five mistakes (find the incorrect model in the 

example folder). Find the errors, give the variable names, and the five im-

proved equations. 

Exercise 4.9. Gangs and Arms Races Example 

Arms races are escalation processes between two (or more) nations or parties in a 

conflict that ‘watch each other and [both] respond to [uncertain] arming activities of 

their opponent with [relatively greater] arming activities of their own’ (Bossel, 2007, p. 

36). The number of weapons held by one party may actually deter the other party 

from attacking and vice versa, resulting in a situation of escalating armed peace. 

This exercise is based on the escalation model described in Bossel (2007, Z507). 

Suppose there are two gangs, gang A and gang B. Initially, the arms stock of gang A 

amounts to 100% of the weapons needed to destroy gang B, and the arms stock of 

gang B amounts to 100% of the weapons needed to destroy gang A. The arms stock 

of gang A only increases or decreases via the arming of gang A; the arms stock of 

gang B only increases or decreases via the arming of gang B. Suppose that the 

arming of both gangs depends on an autonomous arming rate due to their intrinsic 

interest in arms and arming – the autonomous arming rate A and autonomous 

https://surfsharekit.nl/objectstore/4d4bfb23-83f3-4401-8687-24b064e08f92
https://surfsharekit.nl/objectstore/a5dd26c3-8f4b-4fb2-b764-d4a9df505a54
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arming rate B respectively – and on an arming rate relative to the expected first-

order arming of the adversary, that is, the arming of gang B from the point of view of 

gang A without consideration of the arming of gang A and vice versa. This relative 

arming rate of gang A – in terms of the weapons needed to destroy gang B – then 

equals the product of the overassessment factor of gang B arming by gang A, the 

arms obsolescence rate of gang A, and the arms stock of gang B minus the arms 

obsolescence rate of gang A times the arms stock of gang A. The same applies to 

gang B: the relative arming rate of gang B – in terms of the weapons needed to 

destroy gang A – equals the product of the overassessment factor of gang A arming 

by gang B, the arms obsolescence rate of gang B, and the arms stock of gang A 

minus the arms obsolescence rate of gang B times the arms stock of gang B. 

Assume that the autonomous arming rate of gang A and the autonomous arming 

rate of gang B are both equal to 5% of the weapons needed to destroy the other 

gang per month and that the arms obsolescence rates of both gangs equal 10% of 

the weapons needed to destroy the other gang per month. 

a. Suppose that gang A over-assesses the arming of gang B by 10% (i.e., the 

overassessment factor of gang B arming by gang A is 110%) and that gang B 

correctly assesses the arming of gang A (i.e., the overassessment factor of 

gang A arming by gang B is 100%). Model the arms race. What behaviour do 

you expect? Simulate the model over a period of 100 months. What behaviour 

does the simulation show? Why? 

b. Suppose that gang A underestimates the arming of gang B by 50% (i.e., the 

overassessment factor of gang B arming by gang A is 50%), and that gang B 

correctly assesses the arming of gang A, (i.e., the overassessment factor of 

gang A arming by gang B is 100%). Change the parameter, rename the run, 

and simulate the model again over a period of 100 months. What behaviour 

do you expect and what behaviour does the simulation show? Why? 

c. Make a CLD of arms races between two gangs. Use it to explain the link 

between structure and behaviour. 

Exercise 4.10. Unintended Family Planning Benefits Example 

Levitt and Dubner (2005, Chapter 4) argue in Freakonomics that dropping crime 

rates are in fact an “unintended benefit” of legalised abortion. In this exercise, we will 

build a simplistic, purely hypothetical, simulation model to simulate the first-order 

effects on crime statistics of a sudden drop in the birth rate of families with multiple 

problems – be it by voluntary abortion or by successful family planning measures. 

We focus on families with multiple problems only, and assume that individuals born 

in families with multiple problems are indeed trapped, but that they do not 

https://surfsharekit.nl/objectstore/3f6098a6-70e8-40d6-9d9c-8603e55df57d


   

 

   

 

48 

necessarily resort to crime. Model an ageing chain of kids, youngsters, adults and 

retirees. Initially, there are 1 million kids, 1 million youngsters, 3 million adults, and 

750000 retirees within these families with multiple problems. Suppose for the sake of 

simplicity that only retirees die, on average after an average time as retiree of 15 

years, which means that deaths equals retirees divided by average time as retiree. 

Similarly, adults flow from adults to retirees after an average time as adult of 40 

years, youngsters from youngsters to adults after an average time as youngster of 

12 years, and kids from kids to youngsters after an average time as kid of 12 years. 

Both adults and youngsters give birth: the birth inflow is thus the sum of the adults 

times the annual fertility rate of adults of 3 percent and the number of youngsters 

times the annual fertility rate of youngsters of 0.3%. 

Suppose 6 million crimes are committed annually by others, that is, by criminals that 

are not part of families with multiple problems. Apart from these crimes by others, 

crimes are committed by criminal kids at a rate of 2 criminal acts per criminal kid per 

year, by criminal youngsters at a rate of 4 criminal acts per criminal youngster per 

year, by criminal adults at a rate of 12 criminal acts per criminal adult per year, and 

by criminal retirees at a rate of 4 criminal acts per criminal retiree per year. Suppose 

that, in these families with multiple problems, the percentage of kids with criminal 

behaviour amounts to 5%, the percentage of youngsters with criminal behaviour 

amounts to 50%, the percentage of adults with criminal behaviour amounts to 60%, 

and the percentage of retirees with criminal behaviour amounts to 10%. 

a. Make a SD simulation model of this description and verify it. Simulate a base 

run over a period of 50 years. 

b. Now assume that due to successful voluntary family planning measures, the 

birth flow is 75% lower, that is, 25% times the sum of the adults times the 

annual fertility rate of adults of 3 percent per adult per year and the 

youngsters times the annual fertility rate of youngsters of 0.3 percent per 

youngster per year. Change the name of the run, and run it. 

c. Compare the behaviour of the latter run to the behaviour of the base run. How 

much time do you think it would take before people would notice something is 

going on? 

d. This simulation model only focuses on the first-order effects, that is, the 

reduction of individuals. The biggest gains, however, are likely to relate to 

higher-order effects such as the better socio-economic circumstances of 

those children that are born in families with fewer children that need to be 

taken care of. Make a highly aggregated CLD of the simulation model and 

extend it with higher-order effects. Use the CLD to explain the problem and 

possible solutions. 



   

 

   

 

49 

Exercise 4.11. Housing Stock Dynamics Example 

After reading this SD book, you make a wise decision and start to work as a SD 

modelling consultant (you don’t know it yet, but SD will become your passion soon). 

One of your first clients is the Dutch minister of Housing. Initially there are 5,000,000 

houses in the Netherlands. After a period of dynamic equilibrium in the housing 

system, the minister foresees the need to expand the number of houses to 

5,050,000 (an increase of 50,000 houses) and wants to understand the medium-term 

dynamics (about 8 years ahead) of this expansion of the housing stock after raising 

the desired housing stock with 50,000 units by month 20. 

The minister wants you to make a SD simulation model of the current situation. As 

already said, the system is currently in dynamic equilibrium. The houses have an 

average house lifetime of 100 years, after which the houses are demolished. The 

demolishing flow equals the number of houses divided by the average house 

lifetime. All demolished houses are replaced by new houses. This takes place in two 

steps and takes some time. First of all, the number of houses that are being 

demolished per month enter a planned houses stock via a planning flow. The initial 

value of the planned houses stock equals the planning times a constant average 

time from planning to building of 3 months. The planned houses stock is emptied by 

a building flow that feeds the houses under construction stock. Model the building 

flow as the planned houses divided by the average time from planning to building. As 

initial value of the houses under construction, take the building flow times the 

average time to build houses of 6 months. The completion flow – which equals the 

stock of houses under construction divided by the average time to build houses – 

empties the houses under construction stock and feeds the houses stock. Check 

whether this model is in equilibrium. 

If the model is indeed in equilibrium, then extend it as follows to test the expansion of 

the housing stock. Add a variable or constant desired number of houses and a 

variable called housing gap, which is equal to the desired number of houses minus 

the number of houses. The housing gap divided by the average time to respond to 

the housing gap of 8 months should now be added to the existing planning flow. Add 

the additional 50,000 desired houses with a STEP function. 

a. Build the model following the instructions above, simulate it, and assess the 

dynamics of the system. Roughly how long does it take before the system is 

back in dynamic equilibrium? 

b. Make graphs for the number of houses, the demolishing flow, the houses gap, 

the number of planned houses and the number of houses under construction. 

https://surfsharekit.nl/objectstore/e995fa41-5435-4d56-8914-da7e4966c8a1
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c. Perform two validation tests, one for structure and one for behaviour. Assume 

that the goal of the model is a rough exploration. Describe the name of the 

test, how you executed it, what you observe, and your conclusion. 

d. Draw a highly aggregated CLD of the system and use it to explain the link 

between the structure and the behaviour of the system. In other words: how 

could this behaviour be generated by the system’s structure? 

e. Contrary to the foreseen rise in the desired number of houses, things turn out 

differently: the housing market collapses due to an economic and financial 

crisis. Instead of raising the desired number of houses by 50000 houses, the 

minister decides to reduce the desired number of houses with 50000 houses 

(in the Netherlands, building permits are strongly regulated and social housing 

is huge). What happens? 

f. Twenty months later – that is, in month 40 – the same minister realises that 

the underlying desired outcome, which is housing for all (future) Dutch 

households, has not changed fundamentally. He suddenly decides to raise 

the level of houses to 5,050,000, which means raising it by 100,000 at the 

beginning of month 40. What are the consequences? 
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5. Model evaluation 
5.1 Theory exercises 

Exercise 5.1. Delays  

Consider the figure below with four outputs (right) of the same input and time delay 

(“Tijdsvertraging”, left).  

  

a. What are the types of delays (material or information) and orders (1st, 3rd, or 

FIXED) from Delay A to Delay D? 

Exercise 5.2. CLD to SFD (extra difficult)  

Consider the SFD below. The Outflow is defined as DELAY1I (Stock / dt, dt, Stock / 

dt). 

 

a. Draw the non-aggregated CLD of this system, using the information you have. 
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Exercise 5.3. Accumulation  

Consider the following inputs (left) and outputs (right) and the behaviour of a stock 

with all possible combinations of these inputs and outputs (below). 

  

 

a. Indicate for each run what the corresponding input and output are. 
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Exercise 5.4. Delays (extra difficult)  

Consider the figure below with three different outputs of the same input and dynamic 

time delay. 

 

a. What are the delay types (material or information) of each output? 

b. What are the delay orders (1st or 3rd) of Output 2 and Output 3? 

c. What does the input of the delays look like? Create a graph of the input. 

Exercise 5.5. Sensitivity analysis  
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Consider the seasonal flu model above. The sensitivity graph below was generated 

with this model, using large uncertainty intervals and Latin Hypercube sampling over 

200 runs (see section 8.2.2). 

 

a. What are your conclusions? 

Exercise 5.6. Archetype  

The real cause of the 2008 economic depression was – according to Nobel Prize 

winner Paul Krugman (2012, pp. 45-46) – systemic: ‘[I]f too many players in the 

economy find themselves in debt trouble at the same time, their collective efforts to 

get out of that trouble are self-defeating. If millions of troubled homeowners try to sell 

their houses to pay off their mortgages – or, for that matter, if their homes are seized 

by creditors, who then try to sell the foreclosed properties – the result is plunging 

home prices, which puts even more homeowners underwater and leads to even 

more forced sales. […] And if things get bad enough, the economy as a whole can 

suffer from deflation – falling prices across the board – which means that the 

purchasing power of the dollar rises, and hence that the real burden of debt rises 

even if the dollar value of debts is falling. […The latter] is the main explanation of the 

depression we’re in right now.’  

a. Which archetype corresponds best to this situation? Explain why in one 

sentence. 

Exercise 5.7. Model behaviour  

Consider the two CLD’s below. 
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(a) 

 

(b) 

a. Which simulation models represented by CLD (a) and CLD (b) displayed 

above are most likely to lead to radicalisation and/or deradicalisation? 

5.2 Modelling exercises  

Exercise 5.8. COVID-19 Example 

Introduction 

The COVID-19 pandemic was arguably the biggest health crisis in over a hundred 

years, causing one of the biggest economic crises ever. It led to misery around the 

globe due to sickness, death and mental health issues related to the lockdowns 

imposed by governments in many countries. 

Diseases like COVID-19 are often studied in so-called transmission models, which 

may be stochastic, like ABM models, or deterministic, as you will see here. Such 

models share a common SEIR structure (Susceptible, Exposed, Infectious, and 

Recovered), but are generally adapted to represent the specific functioning of the 

disease agent transmission in the case of interest. 

Below is a description of a simulation model roughly mimicking the start of the 

COVID-19 pandemic in the Netherlands. This model is based on a standard 

deterministic transmission model, adapted for the specificities of SARS-CoV-2 

transmission. 

Simulate this SD model over a period of 60 weeks from the beginning of January 

2020.  

Static transmission model 

We will first model the transmission model without any infections. The stock-flow 

structure of the transmission model is as follows. The Susceptible population, initially 

equal to 17 million persons, decreases by Infection, which increases the Exposed 

population, which is initially equal to 0 persons. For sake of simplicity, you are in this 

https://surfsharekit.nl/objectstore/640b53d1-6884-463e-82a8-1b14d8561853
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case allowed to not explicitly define these initial stock values, which are initially 

empty. Keep the Infection for now equal to 0. The Exposed population is decreased 

by Incubation to Presymptomatic infectious, initially 0, and by Asymptomatic 

incubation to Asymptomatic infectious, also initially 0. Asymptomatic incubation is 

defined as the Share of asymptomatic infections, which is believed to be 50%, times 

the Total incubation. The Total incubation is a third-order delay of Infection with the 

Average SARS-CoV-2 incubation time of 3 days divided by the number of Days per 

week. Choose a logical value for this last constant. Incubation is equal to 1 minus the 

Share of asymptomatic infections, times the Total incubation. 

Presymptomatic infectious also increases by the Influx of presymptomatic infectious 

people from abroad. Keep this flow equal to 0 for now. Presymptomatic infectious 

develops into Symptomatic infectious (again, initially 0) by Developing symptoms. 

Developing symptoms is equal to a third-order delay of the sum of Incubation and 

the Influx of presymptomatic infectious people from abroad, delayed by the 

Presymptomatic period of 3 days divided by the Days per week. Symptomatic 

infectious can either go via Recovery to the Recovered population, or via Dying of 

COVID-19 to the Cumulative COVID-19 deaths. Both these stocks are initially empty. 

Dying of COVID-19 is equal to the product of the Case fatality rate of COVID-19 

patients of 1% and the Symptomatic infectious, and is divided by the Average length 

of symptomatic period of 1 week. Recovery is thus to be defined as 1 minus the 

Case fatality rate of COVID-19, etc. The Recovered population also increases by the 

flow of Recovery without symptoms, which is equal to a third-order delay of 

Asymptomatic incubation with the Average period of asymptomatic infections of 6 

days, divided by the number of Days per week. Finally, to complete this rather 

elaborate stock-flow structure, you have to include the effect of Losing immunity, 

which leads from the Recovered population back to the Susceptible population. 

Losing immunity is to be equated to the Recovered population divided by the 

Average immunity period, which we assume to be 52 weeks. The Total population 

should be equal to the sum of all stocks you have now, excluding the Cumulative 

COVID-19 deaths. 

If you are building this model from scratch, check whether it simulates and save it. 

Dynamic transmission model 

To make the model dynamic, you first need to define the Influx of presymptomatic 

infectious people from abroad. This influx was created by people exposed to SARS-

CoV-2 on holiday destinations in especially the Alps, and was equal to 0 in the 

beginning of the run time. It gradually increased to 70 in week 4.5, to 500 in week 7, 

2000 in week 8, and 1000 in week 10. It then strongly reduced down to 80 in week 

12, and hovered around 5 between week 14 and week 17, only to increase gradually 

due to more people going on holiday to 200 in week 26, 500 in week 34, and 200 in 
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week 35. It reduced back to 5 in week 38, at which value it remained until week 52. 

After this, you may assume it gradually decreased to 0 in week 104. 

Change the Infection to the product of the Infectious population, the number of 

Contacts per person per week, the Infection rate per contact (30%), and the Chance 

of contact with an susceptible person. The Infectious population is equal to the sum 

of the Symptomatic infectious, the Presymptomatic infectious, and the Asymptomatic 

infectious. This is special about SARS-CoV-2: most other viruses are assumed to 

only be infectious when symptomatic. The Chance of contact with a susceptible 

person is equal to the Susceptible population as fraction of the Total population. The 

Contacts per person per week is equal to the Normal number of contacts per week of 

7.5 per week, times 1 minus the Social distancing measures. The Social distancing 

measures represent the effect of the interventions the Dutch government took to 

curb virus transmission by reducing the number of contacts people had.  

The interventions were at 0% until week 8.9, when the advice was introduced to stop 

shaking hands at week 9. Assume this had a 10% effect until the end of that week. 

Then, the advice was given to work from home and stay 1.5 metres away from other 

people at all times. The maximum group size allowed was reduced in week 10. 

Assume this led to 40% reduction up to week 10.9. Next, schools and day care 

facilities were closed in week 11, which resulted in 70% reduction between that 

moment and the end of week 18 (week 18.9), when the measures were relaxed a bit 

by carefully reopening primary schools, making the reduction equal to 60% between 

week 19 and week 21.9. After that, in week 22, secondary schools, restaurants and 

bars were reopened, reducing the number to 55%. Gradually, this decreased due to 

further relaxation of the interventions, as well the population being less careful, to 

50% in week 40.9. Increased infections led to renewed closing of restaurants and 

bars in week 41 till week 49.9 (leading to 55% reduction of contacts) and mandatory 

wearing of face masks, and finally a strict lockdown between week 50 and 55.9 (60% 

reduction). A curfew was enforced between week 56 and week 58 (70% reduction). 

After this, assume that measures were gradually relaxed till 0% contact reduction in 

week 104.  

If you are building the model from scratch, the model should simulate again. 

Testing and keeping track of the virus 

To keep track of the virus, the Actual reproduction number was continuously 

reported. This can be most easily calculated by the division of Infection by the 

infectious population. Make sure that this value is 0 when the Infectious population is 

equal to 0. Next, it is considered relevant to know the Estimated cumulative cases, 

which was of course initially 0, and increases by the Cases tested and Additional 

case estimates. The variable Cases tested is equal to the product of the 

Symptomatic infectious and the Testing grade, which increased from 0% per week in 



   

 

   

 

58 

week 7, to 20% in week 10, 70% in week 40, and 80% in week 104. The Additional 

case estimates are equal to the sum of two information delays: first the 

Asymptomatic infectious divided by the Measurement period of 1 week delayed by 

the Estimation period, and second the Symptomatic infectious times 1 minus the 

Testing grade, also delayed by the Estimation period. The Estimation period 

decreased from 20 weeks in week 0 to 2 weeks in week 52 and to 1 week in week 

104. 

If you build the model from scratch, check whether your model simulates and has the 

right settings, and save it. 

The model described above should have been modelled as precisely as possible. 

You can download several versions of this model from here. However, these SD 

models each contain three errors, despite the detailed description given. Please use 

the text and your common sense to correct the three errors. 

a. Debug one of the incorrect COVID-19 models. The behaviour of the variables 

Infectious population and Estimated cumulative cases should be exactly like 

the two graphs below. 

  

1. What are the correct model settings for this model? 

2. What are the three errors in this model? List the variable names and 

corrected equations. 

b. Draw a CLD of this model on a high aggregation level. 

c. Perform a validation test of the structure of the model. Describe the name of 

the test, how you executed it, what you observe, and what your conclusion is. 

d. Perform a validation test of the behaviour of the model. Describe name of the 

test, how you executed it, what you observe, and what the conclusion is. 

e. What is unrealistic about this model? What could one do to improve the 

model, its usefulness, and the simulations it generates? 
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Exercise 5.9. Bank run 
Example and 

explanation 

Introduction 

Many banks and financial institutions went bankrupt in 2009. The bankruptcy of a 

small Dutch bank, the Dirk Scheringa Bank or DSB Bank, is a very special case. The 

bankruptcy was actually caused by an orchestrated bank run by angry clients, 

following a call by Pieter Lakeman to empty their deposits.  

Disclaimer: The model underlying this exercise is a very simplistic and highly 

aggregated model. It does not capture important processes and events such as a 

‘haircut’, which we know – with hindsight – happened during the fall of DSB Bank. 

Hence, this is just an educational case: the model made in this case cannot be used 

to advise real banks. All values in this exercise are fictitious. 

Modelling this Bank Run 

Deposits being emptied are – from the point of view of a bank – liquid deposits and 

loans lost. These liquid deposits and loans lost drain the liquid deposits and loans, 

which initially amounted to €4,500,000,000.  

Liquid assets lost are equal to the liquid deposits and loans lost because of the 

double accounting system. Liquid assets lost decrease the amount of liquid assets, 

which initially amounted to €1,150,000,000. Suppose that DSB had a liquid asset 

liquid liability target of 20%, which means that fixed assets, which initially amounted 

to €4,600,000,000, need to be liquidated and turned into liquid assets if less than 

20% of liquid deposits and loans are covered by liquid assets. Suppose that the 

liquidation time is only 1 day, which means that there are enough parties willing to 

almost instantly buy these assets. However, in case of haste, there is a liquidation 

premium of 10% on emergency sales. In other words, only 90% of the fixed asset 

value is turned into liquid assets in emergency sales, and 10% of the fixed asset 

value is lost as liquidation losses. Keep in mind when you model the liquidation flow 

that the model you make is a crisis model and not a complete ‘going-concern’ 

banking model: there should be a net flow from fixed assets to liquid assets, but not 

the other way around. Apart from liquid deposits and loans, DSB also had fixed 

deposits and loans worth €1,000,000,000, which remained constant during the crisis 

because fixed deposits and loans cannot be emptied by depositors or lenders before 

their due date. 

In a normal bank run, the number of liquid deposits and loans lost equals the liquid 

fraction running away times the liquid deposits and loans divided by the withdrawal 

time. However, two factors amplified the ‘running away-effect’ in the case of DSB. 

First, clients were angry because of unacceptable sales practices and the mediatized 

https://surfsharekit.nl/objectstore/69306917-d0c5-498d-8cd5-08213791ecb9
https://surfsharekit.nl/objectstore/69306917-d0c5-498d-8cd5-08213791ecb9
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unwillingness of the bank to compensate the victims of these practices. Second, 

after having witnessed several bankruptcies in the banking world, people understood 

that a bank failure causes severe hindrance, since even if the clients of the bank get 

back their money back (in case of depositor guarantees), they have to wait months 

for this. Multiply the previous right-hand side of the equation, therefore, with the 

following two factors: (1 + ℎ𝑖𝑛𝑑𝑟𝑎𝑛𝑐𝑒𝑜𝑓𝑏𝑎𝑛𝑘𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠) and (1 + 𝑎𝑛𝑔𝑒𝑟). Suppose that 

the hindrance of bank failures amounts to 0.5.  

Since the DSB bank run was triggered by a call for a bank run, you have to add an 

additional term to take this orchestrated action into account, for example: 

orchestrated liquid fraction running away times liquid deposits and loans divided by a 

withdrawal time of 1 day. Note that the maximum number of liquid deposits and 

loans lost equals the number of liquid deposits and loans divided by the withdrawal 

time.  

Suppose that the liquid fraction running away amounts to 0% if the perceived 

likelihood of a bank failure is 0%, that it amounts to 0% if the perceived likelihood of 

a bank failure is 25%, to 1% if the perceived likelihood of a bank failure is 50%, to 

10% if the perceived likelihood of a bank failure is 75%, and to 50% if the perceived 

likelihood of a bank failure is 100%. Model the perceived likelihood of a bank failure 

as (100% − 𝑐𝑟𝑒𝑑𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑜𝑓𝑡ℎ𝑒𝑑𝑒𝑛𝑖𝑎𝑙𝑠) times the maximum of either the perceived 

likelihood of a liquidity failure or the perceived likelihood of a solvency failure.  

Suppose that the perceived likelihood of a liquidity failure amounts to 100% if the 

liquid asset liquid liability ratio equals -1, to 100% if the ratio equals 0, to 80% if the 

ratio equals 0.1, to 40% if the ratio equals 0.2, to 10% if the ratio equals 0.3, to 1% if 

the ratio equals 0.4, 0% if the ratio equals 0.5, and 0% if the ratio equals 1.  

Suppose that the perceived likelihood of a solvency failure amounts to 100% if the 

total asset total liability ratio equals 0, to 100% if the ratio equals 0.8, to 90% if the 

ratio equals 0.9, to 50% if the ratio equals 1, to 10% if the ratio equals 1.1, to 0% if 

the ratio equals 1.2, and to 0% if the ratio equals 2.  

The liquid asset liquid liability ratio is of course equal to the amount of liquid assets 

over the amount of liquid deposits and loans. And the total asset total liability ratio is 

equal to the sum of the fixed assets and the liquid assets over the sum of the liquid 

deposits and loans and the fixed deposits and loans.  

Suppose the central bank issues a bank failure declaration, forcing a bank into 

bankruptcy, if the liquid asset liquid liability ratio falls below 0.05 or the total asset 

total liability ratio falls below 0.9. 

a. Make a SD simulation model of this issue. Verify the model. 

b. Simulate the model, firstly, over a time horizon of about 60 days without any 

angry customers calling for an ‘organized’ bank run. In other words, set anger 

equal to 0, orchestrated liquid fraction running away equal to 0%, and the 
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credibility of the denials equal to 90%. Plot the liquid deposits and loans lost 

and the perceived likelihood of a bank failure. 

c. Now, adapt the model to simulate a bank run following Pieter Lakeman’s call 

for an orchestrated bank run. Suppose for example that the orchestrated 

liquid fraction running away jumps to 5% on day 2 and falls to 0% on day 4, 

and that the credibility of the denials falls from 90% to 10% from day 2 on. 

Suppose also that on top of these changes the variable anger amounts to 0.5 

and the liquidation premium to 25%. 

1. Simulate the model over a time horizon of 60 days. Plot the liquid 

deposits and loans lost and the perceived likelihood of a bank failure. 

2. Explain the behaviours obtained, especially if you obtain strange 

behaviours. 

3. Briefly describe if the bank could have done anything do to prevent this 

bank run, and if so, what (do not model it here). 

d. Simulate a bad case scenario, again over a time horizon of 60 days, in which 

anger is 1, hindrance of bank failures is 1, and the liquidation premium is 

25%. 

1. Plot the liquid deposits and loans lost and the perceived likelihood of a 

bank failure. 

2. Briefly describe the differences with the previous behaviour. 

3. Briefly describe whether if the bank could have done anything do to 

prevent this bank run, and if so, what (do not model it here). 

e. Validate the model. Use two different validation tests. List the tests used, how 

you performed them, and describe the conclusions of these tests. 

f. Draw an aggregated CLD of the system to help you communicate the main 

feedback effects responsible for the bank run after the call. 

g. Explain the link between structure and behaviour (e.g., for the ‘bad case’ 

scenario). 

h. Add a simple closed-loop or adaptive policy that prevents the bank from 

collapsing. Describe the policy briefly. Test the policy in the ‘bad case’ 

scenario and plot the resulting dynamics together with the original dynamics. 

i. What do we call variables like hindrance of bank failures and anger? 
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Exercise 5.10. Activism, Extremism and Terrorism 
Example and 
explanation2 

Introduction 

You are asked to make a more detailed model focused on phenomenon-based 

activism and extremism, for example animal rights activism and extremism. 

Citizens, Activists, and Extremists 

Just as in the more generic model, you can simplify the population sub-model by 

assuming that the population remains constant (no migration, no births and no 

deaths). Suppose that there were 16 million citizens in the Netherlands in 1980, of 

which about 3 million were citizens that cannot be convinced that animals should 

have any rights; 12900000 were initially unconvinced citizens, and about 100000 

were initially convinced citizens, who were already sympathetic towards animal 

rights. Initially, there were no activists and extremists. Unconvinced citizens become 

convinced citizens through persuasion. Convinced citizens could possibly become – 

still law-abiding – activists through activation. After some time, some activists start to 

operate outside of the legal framework and thus become extremists. The latter 

process may be called extremisation.  

The persuasion variable could be modelled as the product of the contact rate of 

convinced with unconvinced citizens, the fraction of all convinced citizens, the 

unconvinced citizens that are not (yet) convinced but possibly could be, the 

persuasion rate of 1%, and the reinforced visibility of animal distress divided by an 

average transition time of 10 years. Note that the persuasion flow cannot be greater 

than the number of unconvinced citizens divided by an average transition time. Set 

the contact rate of convinced with unconvinced citizens equal to the frustration of all 

convinced citizens times the normal contact rate of convinced of 1000 contacts per 

convinced citizen per year.  

Simplify the activation and extremisation flows. Assume the activation flow is equal 

to the difference between the potential number of activists and the number of 

activists, divided by the average transition time, and that the extremisation flow is 

equal to the difference between the potential number of extremists and the number 

of extremists, divided by the average transition time.  

The potential number of activists is determined by the product of the potential 

fraction of activists of 5%, the number of convinced citizens, and the frustration of all 

convinced citizens. Model the potential number of extremists as the product of the 

 

2 Be careful: the model in the link does not completely correspond with the description below. 

https://surfsharekit.nl/objectstore/4723ac2b-b732-401d-ad6a-1aad1e8578f5
https://surfsharekit.nl/objectstore/4723ac2b-b732-401d-ad6a-1aad1e8578f5
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potential fraction of extremists of 5%, the number of activists, the frustration of all 

convinced citizens, and the frustration through marginalization. 

Human Distress 

The frustration of all convinced citizens – always between 0% and 100% – can be 

modelled as the product of the perceived animal distress and the sum of the 

frustration through marginalization and the frustration through inertia. The frustration 

through marginalization is a function of the fraction of all convinced citizens 

connecting the following couples: (0, 1), (0.025, 0.50), (0.10, 0.20), (0.25, 0.04), (0.5, 

0), (1, 0). The fraction of all convinced citizens is of course equal to the sum of 

convinced citizens, activists, and extremists, divided by the total population.  

Model the frustration through inertia as the difference between the maximum 

attainable rate of decrease through societal change of 5% and the rate of decrease 

through societal change, divided by the maximum attainable rate of decrease 

through societal change, but then delayed by exactly one year (because statistics 

are always delayed and newspapers report statistics after publication). This rate of 

decrease through societal change is equal to the fraction of all convinced citizens 

times the maximum attainable rate of decrease through societal change. 

Animal Distress and Visibility 

Perceived animal distress could be modelled as the real animal distress divided by 

the societal acceptance threshold with regard to animal distress, but then smoothed 

(3rd order over a year). Suppose that the societal acceptance threshold with regard 

to animal distress changes over time from 100 in 1980, to 80 in 2000, to 40 in 2020, 

to 20 in 2040, to 12 in 2060, and to 10 in 2080.  

Real animal distress – in 1980 equal to the reference value 100 – increases or 

decreases through the net increase of animal distress, which can be modelled as the 

product of animal distress and the difference between the exogenous rate of 

increase of animal distress and the rate of decrease through societal change. The 

exogenous rate of increase of animal distress amounts to -0.1%; in other words, 

animal distress decreases exogenously.  

Model the visible animal distress as the difference between real animal distress and 

the societal acceptance threshold with regard to animal distress, divided by the 

societal acceptance threshold with regard to animal distress. The visible animal 

distress should always be non-negative. The visible animal distress multiplied by the 

radical action level results in the reinforced visibility of animal distress. The radical 

action level is equal to the number of extremists times the frustration of all convinced 

citizens times the fraction of all convinced citizens. 

a. Make a model based on the description above. Verify it. Then simulate the 

model over a time horizon of 100 years, starting in 1980. 
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b. Make a graph of the convinced citizens, activists, and extremists, and a graph 

of the persuasion rate and the frustration of all convinced citizens. 

c. Validate the model: name, describe and perform two different validation tests 

(except sensitivity testing – see following question) for a model like this. What 

conclusion can you draw from this? 

d. Perform a multi-variate sensitivity analysis. Briefly describe the tests 

performed, what you observe, and your conclusions. 

e. Make different consistent and interesting (i.e., behaviourally different) 

scenarios, starting from your conclusions in the previous question. Simulate 

these scenarios and draw graphs for two scenarios of convinced citizens, 

activists, and extremists, and the persuasion rate and the frustration of all 

convinced citizens. 

f. Make a highly aggregated CLD of this model that could be used to explain the 

link between the structure and behaviour of one of the scenarios. Use this 

CLD to explain that behaviour. 

g. Formulate policy advice – based on this exercise – with regard to animal 

rights activism. 

h. This model is only a simple starting model, and the analysis is explorative at 

most. Provide advice with regard to future extensions and refinements of the 

model. 

Exercise 5.11. Higher Education Stimuli 
Example and 

explanation 

Introduction 

A mass demonstration was organized on 21 January 2011 in the Netherlands in 

order to protest against proposed legislation to fine students taking more time for 

their degrees than the standard set by the government, and to also fine universities 

with ‘slow’ students. Students at the Faculty of Technology, Policy and Management 

at TU Delft – who are bright but also slow according to the definition of ‘slow 

students’ – are asked to model the potential consequences of such national policies 

for the faculty, based on the description below. 

BSc Students 

First, model the inflow of BSc students. There is an annual BSc inflow at the BSc 

inflow moment. Suppose for reasons of simplicity that there is one inflow moment per 

year. Use a PULSE TRAIN(start, width, time between, end) with a width equal to the 

https://surfsharekit.nl/objectstore/77f6417a-6861-451d-9831-8f748c20d6d6
https://surfsharekit.nl/objectstore/77f6417a-6861-451d-9831-8f748c20d6d6
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time step. Model the normal annual BSc inflow as the normal evolution of the new 

BSc inflow divided by the time step times the BSc inflow moment. Suppose that the 

normal evolution of the new BSc inflow gradually increased from 20 new BSc 

students when the faculty was founded in 1990, to 90 new BSc students in 1995, to 

120 new BSc students in 2000, to 130 new BSc students in 2008, to 200 new BSc 

students in 2010, and to 250 BSc students in 2014, and that it is believed to stabilize 

at 250 from the year 2030 onwards. The real inflow of BSc students is the product of 

the annual BSc inflow and the quality: the lower the quality of the education, the 

lower the real inflow will be. For now, set the quality equal to 100%. 

The real inflow of BSc students is added to the group of BSc students. The group of 

BSc students decreases through the outflow BSc students if students obtain their 

BSc or when they quit before graduating as BSc quitters. Model the outflow of BSc 

quitters simplistically (but not entirely correctly) as the fraction of BSc quitters times 

the BSc outflow after the fixed and additional study time. Suppose that 30% of the 

students quits during the first year, 10% in the second year, and 5% in the third year. 

The fraction of BSc quitters – always between 0 and 1 – is, therefore, the sum of 

these fractions divided by the quality: the lower the quality of the education, the more 

quitters. Those who do not drop out, obtain their BSc diploma eventually. The 

outflow of BSc students, therefore, equals the BSc outflow after fixed and additional 

study time multiplied by the complement of the fraction of BSc quitters. Model the 

BSc outflow after fixed and additional study time as the first-order delay of the BSc 

outflow without additional study time with a total delay time equal to the product of 

the minimum BSc study time of 3 years and the additional annual BSc study time of 

(on average) 50% divided by the quality. And model the variable BSc outflow without 

additional study time as the delay of the inflow of BSc students with a fixed minimum 

BSc study time of exactly 3 years. 

a. Make a SD model based on the description above. 

b. Make a complete CLD and a strongly aggregated CLD of this partial 

simulation model. 

MSc Students 

Now, model the throughput of MSc students. Almost the same applies to MSc 

students as to BSc students, but the following details are different. The real inflow of 

MSc students equals the quality of the education times the sum of the annual MSc 

inflow of new MSc students (who do not flow semi-automatically from BSc to MSc 

studies) and the product of the outflow of BSc students and the fraction of BSc 

students that flow semi-automatically from the BSc to the MSc program. The 

evolution of the new MSc inflow was 0 students per year until 2007, then started with 

2 students per year in 2008, and rose to 5 students per year in 2010, to 15 students 

per year in 2015, and 20 in 2020, after it remained constant. The fraction of students 
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(that flow semi-automatically) from the BSc to the MSc program was about 100% 

before the year 2008; suppose that it fell to 80% of the students in 2008 and 

afterwards. The minimum MSc study time is equal to 2 years. The fraction of MSc 

quitters – always between 0 and 1 – is lower than for BSc students: 10% in the first 

year and 10% in the second year. In summary: the structure of the MSc students 

sub-model is the same as the BSc students sub-model: a handful of new MSc 

students is absorbed by a larger, but decreasing group of students flowing semi-

automatically from the BSc to the MSc program. 

c. Extend the SD model using the description above. 

The Faculty 

The quality of the education is a function of the professor hours per student: if the 

number of professor hours per student is 0 hours per student per year, the quality is 

10%, if it is 50 hours per student per year then the quality is 60%, if it is 100 hours 

per student per year then the quality is 90%, if it is 150 or more hours per student per 

year then the quality is 100%.  

Model the professor hours per student as a 3rd
 order delay with one year of the 

product of 1000 hours per professor and the number of professors divided by the 

total number of students. Make sure in the previous formula that the denominator 

cannot become 0. 

Model the number of professors, starting initially at 5 in 1990, and the increase and 

decrease of the number of professors in a simplistic way. Suppose that net hiring of 

professors equals the difference between the maximum number of professors and 

the number of professors, divided by the average net hiring time. The hiring time 

(and firing time) for professors is rather long – they are hired on average 2 years 

after the moment a new professor is needed. The maximum number of professors 

then equals the amount of money available for education divided by the average 

professor salary of €100000 per professor per year. 

The amount of money available for education – initially 0 – increases through the 

inflow of money available for education and decreases through the outflow of money 

available for education. Without a fine for slow students, the outflow of money 

available for education approximately amounts to the number of professors times the 

average professor salary.  

The fraction of slow students seems to be – at least partly – a function of the quality 

of the education: if the quality is 0% then the fraction of slow students is 90%, if the 

quality is 25% then the fraction is equal to 85%, if the quality is 50% then the fraction 

is equal to 66%, if the quality is 75% then the fraction is equal to 40%, and if the 

quality is equal to 100% then the fraction is equal to 25%. 
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The inflow of money available for education equals the subsidy per new BSc student 

times the inflow of BSc students, plus the subsidy per BSc graduate times the 

outflow BSc students, plus the subsidy per new MSc student times the inflow of MSc 

students, plus the subsidy per MSc graduate times the outflow of MSc students, plus 

the annual lump sum and other subsidies. The subsidy per new BSc student 

amounts to €15000, the subsidy per BSc graduate to €5000, the subsidy per new 

MSc student €5000, and the subsidy per MSc graduate €5000. Suppose that the 

annual lump sum and other subsidies for educational purposes amount to an 

additional €1 million per year. 

d. Extend the SD model based on the description above. 

e. Simulate the model without fines for slow students from the year 1990 until 

the year 2030. Make graphs of following variables: BSc students and MSc 

students, outflow of BSc students and outflow of MSc students, professors, 

and the amount of money available for education. Is the faculty healthy 

without the proposed system of fines? 

And now with fines for slow students… 

However, what does the proposed system of fines for slow students mean for the 

faculty? Model the system of fines as follows. With the fine system, the outflow of 

money available for education changes to the fraction of slow students times the 

total number of students times the fine per slow student plus the number of 

professors times the average professor salary. Expect (at least) a one year delay 

before implementation due to opposition and demonstrations: you can assume that 

fines for slow students were introduced in 2012 and that the fine per slow student 

amounts to €3000 per year. This is of course only part of the picture: increased 

tuition fees to be paid by slow students are not taken into account here. 

f. Extend the SD model with the description provided above. 

g. Simulate the model with the system of fines. Make graphs of following 

variables: BSc students and MSc students, outflow of BSc students and 

outflow of MSc students, professors, and the amount of money available for 

education. Is the faculty financially healthy with the proposed system of fines? 

h. What would be the effect if the number of new students increased to 300 new 

BSc students per year and to 60 new MSc students per year in 2020? 

i. Your model is used by your university and national student council to fight 

these plans. The government is furious: they claim your model is wrong, 

because the outflow of money available for education still needs to be divided 

by a factor 2.5 (the average number of study years for BSc and MSc 

students). Is that correct? Do the conclusions change? 
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j. After the previous proposed correction has been made, the government now 

argues that the LOOKUP function of the fraction of slow students needs to be 

adapted too, since the government assumes, after all, that students will study 

faster in the new system. Change the lookup, discuss the new function and 

the consequences of this change for the faculty. 

k. It should be clear that this model requires further adaptation. How could you 

make it more realistic? Describe what and how should be added; model 

these, and describe the possible changes in results. 

From Fining to Lending 

When implementing the fine system, the Dutch government first turned the slow 

students fine forced upon universities into a lump sum cut in their subsidies. Then, 

during the first year of imposing an individual fine on slow students, the system was 

abolished. This resulted in big losses, both financial and human: financial systems 

had already been changed, students had dropped out, et cetera. The fine system 

was then turned into a social lending system. Nowadays, Dutch students can borrow 

money to finance their studies. 

l. If you feel like it, model the new system. What could be you conclusion? 

m. An even bigger challenge would be to model and simulate the political 

process. From this process, much can be learned about how not to change a 

system but nevertheless stay in power. 

Exercise 5.12. Financial Turmoil on the Housing Market 
Example and 

explanation 

Introduction 

The Dutch housing market has been in crisis for a while and will most likely remain in 

crisis for several years to come: average real estate prices have increased 

enormously; the largest mortgage lenders made it more difficult to get a mortgage, 

and new housing construction is only a fraction of what is needed. Policymakers, 

therefore, gain insight into how the existing shortage on the housing market may 

evolve in the medium to long term. Suppose that the Ministry of Housing asks you to 

develop a SD model that would allow them to foresee the evolution of the Dutch 

housing market and to assess policies related to it. 

Iteration I 

Assume for the sake of simplicity that the Dutch housing market only consists of 

houses for sale (no apartments, no rental market, and no social housing market). 

https://surfsharekit.nl/objectstore/526d9d27-73f9-4ecc-8e7f-420f1bcf9ce8
https://surfsharekit.nl/objectstore/526d9d27-73f9-4ecc-8e7f-420f1bcf9ce8
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Houses are either new (younger than 15 years old) or old (15 years or older). The 

supply of new houses, equal to 1500000 in the year 1985, increases through 

completion of brand new houses and decreases through aging of houses, after 

which they are added to the old houses. The supply of old houses, initially 3665000 

houses in 1985, decreases through demolishing of old houses. 

The completion of brand new houses could be approximated by dividing the houses 

in planning and under construction by the planning and construction time. The 

number of houses in planning and under construction increases only through the 

inflow into planning and construction and decreases only through the completion of 

brand new houses. Suppose that the initial number of houses in planning and under 

construction in 1985 was 175000. Suppose that the planning and construction time is 

a function of the number of houses in planning and under construction divided by the 

initial amount of houses in planning and under construction: the planning and 

construction time equals 1 year if this ratio is equal to 1, equals 1.5 years if the ratio 

is equal to 2, equals 2.5 years if the ratio is equal to 5, equals 3.25 years if the ratio 

is equal to 9, equals 4.5 years if the ratio is equal to 20, and equals 0.75 years if the 

ratio is close to 0.  

The inflow into planning and construction could be modelled as the housing gap 

multiplied by the profitability multiplier and divided by the delayed direct effect of 

uncertainty. Suppose in this first iteration that the profitability multiplier is 1. Model 

the delayed direct effect of uncertainty as a 3rd  order delay of uncertainty with a 

delay time of 1 year. Assume the uncertainty on the housing market was normal (i.e., 

100%) from 1985 until mid-2007, after which uncertainty suddenly doubled. The 

uncertainty remained this high until the end of 2013, and decreased linearly from 

double to normal between the end of 2013 and the beginning of 2015, and remained 

normal after this. 

The non-negative housing gap is equal to the estimated number of households times 

the number of houses per household minus the expected total housing supply. The 

estimated number of households amounted to 5,430,000 in 1985, to 5978000 in 

1990, to 6798000 in 2000, to 7397000 in 2010, to 7470000 in 2011, and is assumed 

to amount to 8500000 in 2050, and to 9000000 in 2085. Assume that households do 

not have more than one house: the number of houses per household is 1. The 

expected total housing supply is the sum of new houses, houses in planning and 

under construction, and old houses, minus the houses expected to be demolished 

over the course of the year. 

The aging of houses follows the completion of brand new houses with a delay time 

equal to the life expectancy as new houses of exactly 15 years. Model the 

demolishing of old houses as the number of old houses over the average life 

expectancy of old houses of about 60 years multiplied with a demolishing multiplier 

of old houses. Suppose the latter multiplier could be modelled as the 3rd order delay 
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of 1 divided by the housing scarcity ratio with a delay time of 1 year. The housing 

scarcity ratio is directly proportional to the estimated number of households and 

inversely proportional to the expected total housing supply. 

a. Model the description above. 

b. Simulate the behaviour from the year 1985 until the year 2085. 

c. Draw an extremely aggregated CLD which could be used to explain the 

general dynamics of the housing gap. Explain the general dynamics of the 

housing gap using, and referring to, this extremely aggregated CLD. 

Iteration II 

Suppose that the profitability multiplier is a function of the profitability of construction 

of new housing in such a way that this multiplier equals 0 if the profitability of 

construction of new housing is equal to -100%, that it equals 0.01 if the profitability is 

equal to -50%, that it equals 0.02 if the profitability is equal to -20%, that it equals 0.2 

if the profitability is equal to -10%, that it equals 0.8 if the profitability is equal to 0, 

that it equals 1 if the profitability is equal to 10%, that it equals 1.1 if the profitability is 

equal to 20%, that it equals 1.2 if the profitability is equal to 50%, and that it equals 

1.25 if the profitability is equal to 100%. 

The profitability of construction of new housing could be formulated simplistically as: 

(1 + 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒%𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑐𝑜𝑠𝑡𝑓𝑜𝑟𝑙𝑖𝑣𝑖𝑛𝑔 ∈ 𝑎𝑛𝑒𝑤ℎ𝑜𝑢𝑠𝑒) ∗ 𝑎𝑣𝑒𝑟𝑎𝑔𝑒ℎ𝑜𝑢𝑠𝑒𝑝𝑟𝑖𝑐𝑒 − 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡𝑛𝑒𝑤ℎ𝑜𝑢𝑠𝑒

𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑐𝑜𝑠𝑡𝑛𝑒𝑤ℎ𝑜𝑢𝑠𝑒
, Eq. 5.2 

with an acceptable % additional cost for living in a new house of 5%. The average 

construction cost of a new house equals the initial average construction cost of a 

new house of €95000 per house times the cumulative inflation since 1985. The 

cumulative inflation since 1985 could be calculated as the integral of: 

𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑟𝑎𝑡𝑒 ∗ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑖𝑛𝑓𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑐𝑒1985

∗ 𝑀𝐴𝑋 ((1 − (𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 − 1)), 0), 
Eq. 5.3 

with an initial value equal to 1. Assume for the sake of simplicity that the inflation rate 

is standard at 2% per year. The average house price corresponds – given the 

simplification that every household has no more than 1 house – to the delayed 

product of the average spending limit for buying one house per household and the 

housing scarcity ratio, with an average delay of one year. The average spending limit 

for buying one house per household equals the average salary per household times 

(1 + salary loan multiplier). Suppose that the average salary per household is the 

product of the initial average salary per working person of €27,000 per year in 1985, 

the cumulative inflation since 1985, and the expected work force divided by the 
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estimated number of households. Add the following time series: suppose that the 

expected work force amounts to 5.75 million in 1985, to 7.5 million in 2012, to 8 

million in 2020, to 7.6 million in 2040, to 7.3 million in 2050, and to 6 million in 2085. 

The salary loan multiplier used to calculate the average mortgage lending capacity of 

an average household is then: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑠𝑎𝑙𝑎𝑟𝑦𝑙𝑜𝑎𝑛𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 ∗ (1 − 𝑙𝑜𝑎𝑛𝑟𝑖𝑠𝑘)

𝑑𝑒𝑙𝑎𝑦𝑒𝑑𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑓𝑓𝑒𝑐𝑡𝑜𝑓𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦
 Eq. 5.4 

The normal salary loan multiplier increased linearly between 1985 and the end of 

2011 from 3 to 6, but decreased to 4 between 2011 and 2013 because of stricter 

rules for banks and mortgage transactions, and the gradual decline of the mortgage 

interest relief. It is expected to slowly fall back to 3.5 by 2050 and stay at that level 

afterwards. Suppose finally that the loan risk (i.e., the risk of non-repayment of 

loans), could be approximated by a 3rd
 order delay of MAX(0; uncertainty − 1)/6 with 

an average delay time of 2 years. 

d. Model the description above. Verify and simulate the model. Compare the 

dynamics of the average house price and the housing gap of the first and the 

second iteration model. 

e. Validate the second iteration model: name two good validation test for this 

phase in the modelling process, execute them, and describe the results. 

f. Some inputs, such as exogenous future evolutions (time series) and 

endogenous relations are rather uncertain. Test the sensitivity of the most 

important indicators (average house price and housing gap) for changes in at 

least one uncertain parameter and one uncertain time series or endogenous 

relation. Explain the results briefly: what happens and why, how it happens, 

and what the results are?  

g. Simulate – on top of the base case scenario – two very different scenarios 

with respect to the average house price and/or the housing gap. What is the 

narrative of the three scenarios? Plot their dynamics for the two key 

performance indicators. 

h. What is undesirable about these plausible futures? Design a policy to turn 

undesirable dynamics into desirable dynamics. Describe this briefly, test it in 

your model, and compare the undesirable and desirable dynamics that result 

from it. 

i. Test this policy under uncertainty: simulate the model, briefly describe the 

results, and draw your conclusions. Next, write a short model-based 
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recommendation concerning the real estate market: what is your advice to the 

government, to current homeowners, and to those looking to buy a house? 
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Theory 
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6. Problem Formulation and 

Conceptualisation 
This chapter focuses on conceptualisation as used in System Dynamics. The goal of 

the conceptualisation phase of the modelling process is to capture the feedback 

structure that can offer an endogenous explanation of the problem (Sterman, 2000). 

The conceptualisation phase results in one or several graphical conceptual models. 

These conceptual models are the basis for a quantitative specification of a system, 

but the models themselves can also be used for a qualitative analysis of system 

behaviour. The result of this qualitative analysis usually includes a theory of how the 

structure gives rise to the problem. Please note that this book only describes models 

that are suitable for systems that can be regarded as continuous.  

6.1 Problem Formulation 

The definition of the model objective has significant implications for the final model. 

An SD model is developed to understand the combination of forces that are causing 

the problem. To create a useful model, there must be an underlying problem that 

ensures a demand for improvement in the understanding of a system. After 

determining the problem field on which the model is focused, the modeller must 

collect information and define the function of the model in detail. This not only 

involves the collection of data points, but also information obtained from people who 

are familiar with the system involved.  

The modeller must also consider the people for whom the model is intended. A 

model relating to the causes of acid rain for a high school class will differ 

considerably from a model for the Ministry of Housing. If the structure and behaviour 

of a model are not understood by the people for whom the model is intended or if the 

model fails to answer the required questions, the model will be useless. This might 

seem obvious, but in practice it has been shown that it is very difficult to find out 

precisely what people are interested in. Only after the modeller has made a 

prototype of the model, the questions people are really interested in suddenly 

surface, because before that they could not imagine exactly what the model would 

do or they had not considered the situation thoroughly enough.  

Consequently, it is important to pay sufficient attention to the problem articulation 

and conceptualisation phase. Without a clearly described modelling objective, it is 

very difficult to determine which elements and aspects of the system are important. 

One has to ask oneself whether it is worth the effort to develop the model according 

to this description. An objective such as: “this model of the environment is intended 

to provide an understanding of the situation”, is very likely a waste of time. Such a 

description is too abstract and vague and, as a result, it is not clear where one must 
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start and what definition is required. Nor should the modeller attempt to develop a 

model that applies to all situations and that must answer both general and specific 

questions, as the model would become too detailed and complex to be used for a 

practical analysis.  

The model objective usually falls into one or more of the following categories: 

• Understanding and exploring plausible system behaviour; 

• Finding measures for improving system behaviour;  

• Hypothesis testing (Richardson & Pugh, 1981; Sterman, 2000); 

• Specifying mental models and serving as a communication tool. 

Example: Drug-Crime System 

A problem in combating drug crime is that if the police carries out more drug busts, 

this results in the undesired side effect of a rise in crime figures. In view of the broad 

problem field of the heroin-crime system, a model of drug busts and crime might be 

built for many different reasons. For example, if the modeller wants to contribute to a 

newspaper article on this problem, the objective of the model is studying if and why 

an increase in the number of drug busts in the short-term results in an increase of 

the number of drug-related crimes. In this case, the model is intended for the 

average person, and this target audience is interested in a simple model with 

aggregated components (i.e., on a low level of detail). If a model were to be built for 

a panel of experts in drug trafficking, aiming to reduce the number of drug-related 

crimes, it would need to be different. 

6.2 Motivating the Use of SD 

In your communication about your modelling research, you need to make insightful 

why you use, or want to use, SD. The stocks, flows, and feedbacks in SD models 

provide the reasons why an SD approach might be appropriate. The stocks allow the 

accumulation of important states in the system, like the size of different population 

cohorts, the number of houses, or the capacity for resource extraction. Stocks and 

flows together cause delays in the system. For example, it takes time for people to 

age, houses take time to be completed, and supply and demand of materials show a 

delayed reaction to price dynamics. Finally, feedback is often considered to be the 

most important reason for applying SD. Feedback may exist between people in 

fertile age, who cause births of new children, who age and in time become people  

childbearing age (a reinforcing feedback). Alternatively, an increase in houses 

causes housing prices to decrease, which causes fewer new housing projects to be 

developed, leading to fewer new houses (balancing feedback). Similar feedback can 

be recognised in resource supply systems. 

The complexity caused by accumulation, delay, and feedback renders mental 

simulation of the problems formulated in the first phase of the research impossible 
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(Sterman, 1994). This is why it is justified to use simulation models, which are time-

consuming and difficult (i.e., costly) to develop. For these problems, SD models can 

function almost as psychedelics, as they allow you to think – in a structured manner 

and based on available knowledge – beyond your mental simulation and come to 

new insights. 

6.3 Conceptualisation 

The following steps are performed during the conceptualisation phase of an SD 

project: 

• Determining model boundaries and identifying the important variables; 

• Creating diagrams of the major mechanisms, including feedback loops; 

• Formulating a dynamic hypothesis, describing the expected behaviour of the 

system linked to the system structure (Sterman, 2000). 

Some authors (e.g., Randers, 1980) consider the determination of the model’s 

objective and function to be part of conceptualisation, while most others (Auping, 

2018; Forrester, 1994; Keating, 1998; Richardson & Pugh, 1981; Sterman, 2000) 

consider it to be a step prior to conceptualisation. 

6.4 Diagrammatic Conventions 

Different types of diagrams are used in SD, both for model conceptualisation and 

model communication, and even for purely qualitative SD. Most often used are the 

Causal Loop Diagram (CLD), Stock-Flow Diagram (SFD), Sub-System Diagram 

(SSD), Bull’s Eye Diagram, Influence Diagram (ID), and Archetype Diagram (AD). 

Good overviews of these diagramming types can be found in Lane (2000) for CLD 

and SFD, Morecroft (1982) for CLD, SFD, and SSD, and Sterman (2000) for all 

except SSD. In this section, we will discuss the CLD, SFD, SSD, and Bull’s Eye 

Diagram, and the way in which an SFD can be translated into a CLD. 
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6.4.1 Causal Loop Diagrams 

 

Figure 6.1. Example of a Causal Loop Diagram (from Auping, 2018) 

System dynamicists mostly communicate system structures with feedback loop 

systems by means of CLDs like the one in Figure 6.1. The core building blocks of 

CLDs are variables and the direct causal relationships between them. These 

relationships are either positive or negative. However, the meaning of the terms 

positive and negative does not correspond to their use in everyday life (Sterman, 

2000). 

A link between two variables A and B is considered positive if: 

1. an increase in A causes B to rise above what it would have been otherwise, 

and  

2. a decrease in A causes B to fall below what it would have been otherwise.  

A link between two variables A and B is considered negative if: 

1. an increase in A causes B to fall below the value would have had otherwise, 

and  

2. a decrease in A causes B to rise above what it would have been otherwise. 

The polarity of causal relations is visualized in CLDs by means of link polarities (+ or 

–) or by means of qualifications of the direction of the cause-effect relation (Same or 

Opposite): 

• →+ and →𝑠 stand for a positive causal influence: an effect in the same 

direction; 

• →− and →𝑜 stand for a negative causal influence: an effect in the opposite 

direction; 
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• delayed relations are depicted by a double stripe ( || ) through the arrow (e.g., 

see the arrow in Figure 6.1 between Copper price and Copper substitution). 

The most important goal of CLDs is to identify feedback loops and communicate 

about them. There are two types of loops or loop polarities: reinforcing and 

balancing. The loop polarity is determined as follows. If the net effect of the causal 

links in a loop is negative, the entire loop is negative or balancing (– and B). 

Otherwise, a loop is positive or reinforcing (+ and R). Be consistent in either calling 

loops balancing and reinforcing (indicated by B and R), or negative and positive 

(indicated by – and +). 

A simple way to determine the polarity of a loop is thus to count the negative signs. If 

the number of ‘–’ or ‘o’ signs in the feedback loop is uneven, then the feedback loop 

is negative, and if the number of ‘–’ signs in the feedback loop is even, then the 

feedback loop is positive or reinforcing. The net effect can thus be determined by 

multiplying the signs of all connections in the loop. 

In creating the diagram itself, it is necessary that all loops in a CLD can be 

unambiguously identified. For this purpose, all loops need to have a name and a 

loop sign (a circular arrow around either the + or R, or – or B, indicating the direction 

of the loop in the diagram). If + and – are used to identify reinforcing and balancing 

loops, the loop names are placed below the loop sign. If R and B are used, loops are 

generally numbered. 

A feedback loop does not contain the same variable twice, except for the first 

variable. And every feedback loop contains at least one stock or delay variable. The 

stock variable or delay variable functions as a memory in the loop, and, therefore, 

helps to avoid simulation problems caused by simultaneous equations, that is, 

mutually dependent equations that need to be calculated at the same time without 

starting point. Note, however, that traditional CLDs do not distinguish stock variables 

whereas hybrid CLDs (i.e., CLDs combined with elements from other diagrammatic 

conventions) do. See the box for useful guidelines and diagramming conventions to 

be respected when drawing CLDs. 

Guidelines for drawing CLDs (cf., Sterman, 2000, pp. 135-190). 

• Iterate; 

• Use nouns or noun phrases with a clear (positive) sense of direction as 

variable names. Choose variable names that, together with the causal links 

and link polarities, enable users to easily ‘read the loops’; 

• Do not use or conjugate verbs in variable names. The arrows with their 

polarities perform the role of verbs when reading a CLD; 

• Links between variables must be causal and direct, not correlational nor 

indirect; 
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• Unambiguously label link polarities (split out links into different effects if 

polarities are ambiguous); 

• Links should be drawn and interpreted under the ceteris paribus assumption  

(i.e., that everything else remains the same); 

• Links are relative: they say that the value of the variable will be above or 

below what it would have been without the effect; 

• Explicitly include the goals of goal-seeking loops; 

• Distinguish between actual versus perceived conditions; 

• Indicate and unambiguously label loops by loop signs with their polarity and a 

loop name; 

• Indicate important delays on causal links with delay marks; 

• Use curved lines for causal links, try to make important loops circular, and 

minimize crossing causal links; 

• Make different types of CLDs for different purposes, audiences or uses (e.g., 

conceptualisation, loop analysis and communication), and at different levels of 

aggregation; 

• Choose the right level of aggregation (but never too detailed), dependent on 

the intended use, goal and audience; 

• Use SD software to redraw your diagrams; 

• For communication purposes, do not use too large a diagram with too many 

loops; 

• And again: iterate. 

6.4.2 Stock Flow Diagram 

SD simulation models are constructed using Stock-Flow Diagrams (SFDs) as in 

Figure 6.2. SFDs may also be qualitative and used for communication purposes. In 

those cases, they are generally simplified or “cleaned” versions of models, which 

exclude explicit initial values, auxiliary variables, and causal links. Examples of such 

SFDs are frequently found in literature on modelling of infectious diseases (e.g., 

Figure 6.3). 
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Figure 6.2. Example of a Stock-Flow Diagram in a model 

SFDs consist of stock or level variables ( ☐ , with the stock name inside or 

underneath the box) and flow variables ( ⇒ ). SFDs may contain auxiliary variables 

(no symbol or O), parameters and constants (no symbol, or in some packages ♢ or 

O), causal links between variables ( →± ), and causal links with delay signs ( ↛± ). 

Finally, SFDs often do not use other symbols (e.g., loops signs, link and loop 

polarities, and loop names). 

 

Figure 6.3. Extensive SFD for communication purposes. All causal links, initial causes, and 
auxiliary variables have been deleted in this figure, but were present in the simulation model 
(from Auping, Pruyt, & Kwakkel, 2017). The letters S, E, I, and R indicate traditional 
elements of disease transmission models and do not have any formal function in the 
diagram. 
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As Meadows (2008, p. 23) puts it: 

A stock variable – also called a level or a state variable – 

accumulates, i.e. integrates flows over time. Metaphorically, a stock 

variable could be seen as a ‘bathtub’ or ‘reservoir’. During 

simulation, a stock variable can only be changed by ingoing and 

outgoing flow variables (also called rates). A stock can be increased 

by increasing its inflow rate as well as by decreasing its outflow rate. 

Stocks generally change slowly, even when the flows into or out of 

them change suddenly. Therefore, stocks act as delays or buffers or 

shock absorbers in systems. 

There are two types of flow variables: inflows and outflows. Positive inflows 

increase the content of the reservoir, while negative inflows decrease it. Positive 

outflows decrease the content of the reservoir, while negative outflows increase it. 

Thus, ingoing flows correspond, metaphorically speaking, to taps or valves, and 

outgoing flows to drains. Flow variables regulate the states of stock variables. Flow 

variables are thus the variables that need to be targeted by strategies to improve the 

problematic condition or state of the more inert stocks variables. Stock variables also 

allow inflows and outflows to be decoupled from each other and to be independent 

and temporarily out of balance with each other (Meadows, 2008, p. 24). 

One way to distinguish between stocks and flows is to imagine what would happen if 

the entire system suddenly stopped. Flows would then become nil or would cease to 

exist, while stocks would equal their values prior to halting the system. Technically 

speaking, each SD model can built with stocks, flows and causal links only. In 

practice, SD models contain many auxiliary variables, because good SD models are 

understandable, transparent, glass-box models in which all variables correspond to 

real-world elements or concepts. Lumping all auxiliaries into the flows would result in 

opaque models with equations that are too complicated to understand. It is also 

important to explicitly model all parameters, constants and initial values. Hiding them 

in auxiliaries and flows makes models opaque and more difficult to use. 

Guidelines for drawing SFDs 

• Explicitly represent important stock-flow structures; 

• All stocks have a rectangular box; 

• All flows have a double arrow and a valve sign; 

• Stocks are only influenced by flows (or potentially initials, if unambiguously 

clear); 

• Initial values should be made explicit as separate variables; 

• Causal relations have single curved arrows; 
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• Causal relations and may have delay marks, flow may not have these; 

• In diagrams, it is generally not necessary to include all causal relations or 

auxiliary variables which are present in the model. You may even limit 

yourself to the relevant stock flow structures without including any auxiliaries; 

• Do not be afraid to redraw and restructure SFDs: it often takes several 

iterations to develop decent SFDs; 

• Avoid using unnecessary symbols (e.g., polarities) except for delay marks; 

• Link successive stocks by means of flows, but only if they are successive 

accumulations of the same; 

• Ageing chains, supply chains, etc. are easier and better represented using 

SFDs than CLDs; make hybrid diagrams if necessary; 

• Do not excessively reduce SFDs: variables should still relate to real-world 

elements or concepts and should be understandable and useful; 

If you need or want to discuss a model in detail, for example, in a modelling 

report written for an audience of modellers, then first show the overall SFD 

with clear sub-models for a big picture overview, followed by well-organized 

SFDs of each sub-model to be discussed; 

• Use the Hide and Unhide tools to hide or unhide parts of the model that are 

not necessary for the purpose at hand, for example, for explaining the link 

between structure and behaviour for a specific type of behaviour. 
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6.4.3 Sub-System Diagram 

 

Figure 6.4. Example of a sub-system diagram 

Sub-System Diagrams (SSDs) are aggregated diagrams that focus on the main sub-

models and the main relations between them, not on the relations within each of 

them (Morecroft, 1982). SSDs are ideally suited to provide a big-picture overview of 

issues or systems, with subsystems of variables with many relations between the 

variables within each of the sectors and few relations with variables in other sectors. 

Figure 6.4 shows an SSD of systemic factors that contribute to societal instability. 

The corresponding SFD of the model is too detailed for a big-picture overview. And 

although CLDs can be used to illustrate various effects, for an overview of the whole 

model they would be too complex.  

Guidelines for drawing SSDs 

• Place the names of the sub-systems in rectangles with rounded corners; 

• The relation between different sub-models is shown by curved single arrows 

with text explaining the relation; 

• There are no polarities and loop signs; 

• Exogenous influences can be linked by straight arrows without text, linking the 

exogenous influence to one or more sub-systems. 
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6.4.4 Bull’s Eye Diagram 

Bull’s Eye Diagrams provide a general overview of the elements modelled 

endogenously, partly endogenously or exogenously, and of all elements that were 

deliberately excluded from the model scope. Moreover, BEDs allow others to identify 

unintentional omissions at a glance. There are different ways to structure a BED (see 

Ford, 1999; Pruyt, 2013). The BED in Figure 6.5 shows for example in a very simple 

way what is, to various degrees, included in and deliberately omitted from a large 

and complex simulation model of energy systems (based on research of Kubli & Ulli-

Beer, 2016). 

It should be noted that BEDs are quite useful for modellers in the conceptualization 

phase, but less effective to communicate a final model structure to clients and 

stakeholders. After all, the diagram contains information about which elements are 

incorporated in the model, and to what extent they are exogenous or not, but does 

not include the relation between the variables. Therefore, a BED is not always 

suitable for communicating the system structure, which is, after all, caused by the 

relations between the variables in the model. The use of BEDs is thus mostly limited 

to scoping (which may be part of a joint sense-making process between modellers 

and stakeholders) and model documentation.  

  

Figure 6.5. General example of a BED (left) and a BED specific to the effect of consumer 
energy production on the energy system (right).  

6.4.5 Translating SFDs into CLDs 

SFDs can be directly translated into CLDs. The first important relation in that respect 

can be found in the definition of a stock: Stock = Inflow – Outflow. A stock is thus 

positively influenced by an inflow, and negatively by an outflow (Figure 6.6). 
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(a) (b) 

Figure 6.6. Translation of an SFD (a) into a disaggregated CLD (b). 

In this manner, a disaggregated CLD can be made of every SFD. Do note that in this 

case a decrease in the Inflow will not cause a decrease in the Stock, but only a 

smaller increase.  

  

(a) (b) 

 

(c) 

Figure 6.7. Relation between an SFD with a delay structure (a), a disaggregated CLD (b), 
and an aggregated CLD (c). 

In communications on SD research, disaggregated CLDs are rarely used. Instead, 

aggregated CLDs are more common. Aggregated CLDs make use of the fact that, by 

definition, Outflow which is defined as Stock / Time delay is a first-order delay of the 

Inflow of that same stock (Figure 6.7a). The disaggregated CLD of that same 

structure (Figure 6.7b) has a balancing loop between the Stock and the Outflow. This 

structure, or similar, can be translated into a single causal link between Inflow and 

Outflow, sometimes made explicit with a delay mark (Figure 6.7c). Figure 6.7c is 

thus an aggregated CLD of the SFD shown in Figure 6.7a. 

The basic rule in making aggregated CLDs is that directly connected stocks and 

flows should not be included together. This means that in connected stock-flow 

structures, like the ageing chain in a population model or the different phases of 

disease infection in a transmission model, you choose to either show the stocks or 

the flows. The choice is often based on which variable is most important for 

explaining the model’s structure, given the purpose of the model. The choice may 

also be informed by trying out different variants and seeing which generates the 

most elegant picture of the structure. 

When making highly aggregated CLDs, the goal is to reduce the number of variables 

further to the absolute essence of the structure that explains the behaviour of the 

model. You would do this when making a CLD about a project model. This is more 
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an art than a science. While the translation of a SFD into a disaggregated CLD is an 

exact science (there is exactly one solution), making aggregated CLDs is based on 

tacit knowledge of what to leave out and what to include. For highly aggregated 

CLDs, this applies even more. This knowledge can only be mastered by practicing a 

lot. 

6.5 The Dynamic Hypothesis 

The dynamic hypothesis is a working theory of how the problem arises from the 

structure of the system (Lane, 1993; Randers, 1980). It forms the link between the 

diagram used to conceptualise the system and a reference mode of behaviour. In 

formulating the dynamic hypothesis, you therefore do well to refer to structure 

elements, like feedbacks, delays, and accumulations, that cause specific system 

behaviour.  

The goal of the model analysis that occurs in a later phase can be seen as an 

attempt to falsify the dynamic hypothesis. For example, in research on the 

geopolitical impact of the US shale revolution, a new system of drilling that increased 

the use of oil and gas in US (Auping, Pruyt, De Jong, & Kwakkel, 2016; De Jong, 

Auping, & Govers, 2014), the researchers hypothesised that the shale revolution 

would cause gas for gas substitution (i.e., natural gas replaced by shale gas) both in 

the US and Europe. This was assumed to lead to significantly lower gas prices, but 

to affect oil prices only in a limited way. Running the model showed, however, that 

the accumulation of oil (a stock) would have a larger effect on the global energy 

market than the availability of natural gas, which can only be stocked to a limited 

amount and is thus sold from the pipeline (a flow). The model runs showed that the 

system structure made it more plausible that oil prices would come under pressure 

instead of the natural gas prices, and that this would have a large effect on 

government finances in rentier states around Europe. This research was performed 

and published before the oil prices collapsed in 2014, a period when most analysts 

believed that the oil prices could only rise. 

6.6 Qualitative analysis and system archetypes 

By analysing a conceptual model, information on the system can be obtained. This 

section is intended to give some understanding of the qualitative analysis of causal 

SD models and to provide knowledge about frequently occurring behaviour in 

various types of systems. We will first of all look at some simple structures, followed 

by some well-known and more complex structures, the so-called archetypes. 

6.6.1 Stability and causal diagrams 

The behaviour of a (simple) autonomous system, in which no time-dependent 

influences from the environment affect the system, can be stable or seek equilibrium, 

show oscillations, or even show continuous autonomous growth. For simple systems 
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it is also possible to establish indicative relations between the system structure and 

system behaviour without accurate mathematical formulations. A few examples can 

illustrate this. 

Example: capital and interest 

A starting capital is put into a bank account at a fixed interest rate. We are interested 

in the development of the capital as a function of time. The relevant variables are the 

size of the capital and the amount of interest added per time unit. The amount of 

interest is in proportion to the capital. As the capital becomes larger, the interest 

received will be larger; and as the interest is larger, the capital grows faster. Thus, 

both influences are positive and because they form a closed loop. This is called a 

positive feedback loop. 

 

Figure 6.8. Causal diagram of a positive feedback loop 

Such growth behaviour is typical for all dynamic systems with one positive, linear 

feedback as the basic structure. This is called a reinforcing loop. Examples include 

an economic system with a constant growth rate per year, or a population system 

with a constant growth percentage. 

Simple systems with a single, negative feedback loop without a time delay usually 

show a tendency towards stable behaviour. However, generalisations about the 

behaviour of these loops must be viewed with some caution, as we shall see below. 

Negative loops are called balancing loops. 

Example: water tank 

A water tank has a constant inflow, while the outflow depends on the level in the 

tank. As the level goes up, the outflow becomes larger, which in turn has a negative 

effect on the level. With a constant inflow, this system tends towards a state of 

equilibrium and is, therefore, stable. This causal structure is sketched in Figure 6.9. 
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Figure 6.9. Causal diagram of a negative feedback loop. 

Negative feedback is also shown to lead to stabilising behaviour in a number of other 

systems, such as a mass-spring system or a pendulum. In some economic 

processes, negative feedback also occurs. The classical example is the so-called 

hog (hogs are domesticated pigs) cycle (Hanau, 1928) discussed below (Figure 

6.10). 

Example: hog cycle 

When pork prices are high, pig breeders will buy more piglets. If these pigs are put 

on the market once they have grown, the supply goes up; if the demand stays the 

same, the price will drop. As a response, the pig breeders will breed fewer piglets, 

and the (negative) feedback loop is closed. However, if the responses are too strong, 

the system will show strong fluctuations. 

 

Figure 6.10. Causal diagram of the pork production cycle 

Negative feedback occurs in many processes controlled or invented by man (but 

also occur in nature). Examples include a supermarket where the manager will open 

more checkouts if there are long queues in order to reduce the waiting time: a 

negative feedback intended to limit the waiting time as much as possible. Another 
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example is stock management, where departures from the desired number of stock 

may lead to additional buying (if the stock is too low) or less buying (if there is too 

much stock).  

However, caution is needed, since negative feedback in a system does not always 

lead to stable behaviour. Negative feedback may also lead to instability in 

complicated systems of a higher order, or in systems with a delay. 

In reality there are few systems that are characterized by only one type of feedback 

loop. Usually there are combinations of positive and negative feedback. 

Example: population 

In an autonomous development of a population, the basic structure is as sketched in 

Figure 6.11. 

 

Figure 6.11. Development of population 

The development of the population as a function of time is determined by two 

feedback loops: a positive feedback loop (the larger the population → the larger the 

number of births per unit of time → the larger the population) and a negative 

feedback loop (the larger the population → the larger the number of deaths per unit 

of time → the smaller the population). 

The behaviour of this system is determined by the ratio between the two loops: if the 

positive loop dominates (the birth rate is consistently larger than the death rate), 

growth occurs; if the negative loop dominates (the death rate is consistently larger 

than the birth rate), a decrease towards an equilibrium occurs – in this case 0 – and 

the system consequently can be called stable. 

In practice, shifts in the ratio between the birth and death rates will occur over time, 

for example because a shortage of food occurs or wars break out when the 

population gets too large. In that case, growth can change to decrease and the 

system tends towards an equilibrium, for example depending on the food stock. 

The behaviour of most systems is the result of complex interactions of positive and 

negative feedback, which sometimes exist naturally and sometimes have been 

deliberately added by man. For now, we will suffice with the general observation that 
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– in simple cases – the nature and strength of the relations can be estimated from 

the system’s behaviour and the nature of the relations between the system variables, 

in particular the presence of positive and/or negative feedback loops. However, more 

accurate statements about the system’s behaviour require us to determine the 

relations more accurately. 

6.6.2 System archetypes 

Some particular, generic categories of qualitative system structures are called 

system archetypes. These are simple, small combinations of one to a couple of 

feedback structures that act together in causing particular system behaviour. In his 

book on systems thinking, The Fifth Discipline, Senge (1990) discusses archetypes 

that will be described in this section on the basis of the corresponding causal 

diagrams. They are the analyst’s tool to learn across problem domains in two ways. 

First, the system archetypes serve as prospective and diagnostic tools. In this way, 

system archetypes offer insight in underlying structures for problematic system 

behaviour. Looking at real-world problems, trained systems thinkers can recognise 

common patterns of behaviour, across systems and domains. Additionally, the 

system archetypes can help us to understand how situations can be improved, for 

instance by identifying policy levers that typically work in similar situations.  

Second, these system archetypes can also be used as a generic part of a 

conceptual model. System archetypes offer a scope and a basic structure within 

which a model can be further developed or constructed, which may be helpful when 

you undertake your own simulation modelling study. 

The archetypes we discuss here are the following: balancing process with delay, 

limits to growth, shifting the burden, eroding goals, escalation, success to the 

successful, tragedy of the commons, fixes that fail, and growth and underinvestment. 

Each archetype has so-called ‘early warning’ symptoms and there are several ways 

to deal with the resulting situations. These are described for each archetype. 

Balancing process with delay 

 
 

Figure 6.12. Archetype diagram and possible behaviour of a system with delay. 
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The ‘balancing process with delay’ archetype relates to systems characterized by 

regulation based on delayed feedback. Corrective interventions are often too strong 

and fast for the system, thus causing oscillatory behaviour or insufficient results. 

A person, group or organisation working to achieve a particular objective will adjust 

the behaviour on the basis of delayed feedback. If they are not aware of the delay in 

the system, more corrective action than necessary is taken, or they give up because 

they do not see any progress. In a slow system, action that is too aggressive can 

lead to instability, for example oscillations with an increasing amplitude. The beer 

game (see www.beergame.org) is one example of this type of system; other 

examples include a shower in which the water temperature only slowly responds to 

changes in the tap position. Yet another example can be found in housing: project 

developers keep building new houses until the demand goes down, but by that time 

so many houses are already being built that the market can collapse. Conversely, 

consider the balancing process of a system with no delay, or only a very small delay. 

What would happen? The system behaviour would approach stability. In this case, 

and many other cases, the delays determine the system behaviour.  

Situations that are characterised by a balancing process with a delay typically trigger 

the following actor reaction: ‘We thought we were in balance, but overshot the goal.’ 

To prevent this, one could adjust the delay times, for example by deciding to wait 

longer before making correcting interventions, using less strong interventions, or 

making the system more responsive. 

Limits to growth 

 

 

Figure 6.13. Archetype diagram and possible behaviour of a system with limits to growth. 

The ‘limits to growth’ archetype (sometimes called ‘limits to success’) describes 

situations in which growth is followed – after reaching a limit – by stagnation, and 

possibly by collapse. Any system with a carrying capacity or limiting condition can 

experience limits to growth.  

A system behaves in such a way that growth occurs during a certain period, after 

which this growth starts to stagnate and then stops. This may lead to a collapse. The 

growth phase is caused by one or several positive feedback loops. The slowing is 

http://www.beergame.org/
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caused by a balancing process, which starts if a particular limit is reached. Collapse 

takes place if the negative feedback loop becomes more dominant than the positive 

feedback loop.  

A well-known example is an animal population that starts to grow quickly after its 

natural enemy has been removed, reaching and then crossing the system’s carrying 

capacity, until the animals overgraze their land and collectively die from starvation. 

Another example is a town that continues to grow until the existing area has been 

filled up, which leads to higher land prices, limiting further population growth.  

The following question is often asked in reaction to early symptoms: ‘Why worry 

about problems that are not there?’ To deal with a situation in which limits to growth 

exist, one can accept the limits, remove the limiting conditions and/or balancing 

feedback loops, and/or identify potential balancing processes before they begin to 

affect growth. Removing or decreasing the restrictive conditions, for example, by 

importing food or reclaiming new land area, may ensure that the growth process 

continues, if this is desired. 

Shifting the burden 

  

Figure 6.14. Archetype diagram of shifting the burden.  

The ‘shifting the burden’ archetype relates to short-term ‘solutions’ that provide 

immediate and positive results. However, as this solution is used more frequently, 

more fundamental long-term corrective measures are used less frequently and after 

some time, the capabilities to achieve fundamental solutions may be rendered 

entirely inoperative. This archetype is sometimes called ‘addiction’, ‘dependence’, or 

‘shifting the burden to the intervener’.  

An example is when a company hires a consultant to solve a problem by treating the 

symptoms, but not teaching the employees to handle problems themselves in the 

future, thus losing the opportunity to acquire skills in-house. A similar critique is often 

voiced about international development aid. For example, when Western 

philanthropic organizations imported free drinking water wells (produced in Asia) to 

West-Africa in the nineties, they eliminated the use and upkeep for existing wells. 

When these cheap, imported wells started to break down, there was no maintenance 
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infrastructure and all local knowledge on well maintenance was gone, exacerbating 

the initial problem. Another example of ‘shifting the burden’ is trying to sell more 

goods to existing customers instead of expanding the number of customers. Paying 

bills by borrowing money instead of economizing may also lead to this behaviour.  

In all these cases, the initial solution seems to be effective (e.g., problems are 

solved, drinking water is available, more income is generated, bills are paid). So why 

should anything change? ‘Shifting the burden’ and addiction problems are very 

challenging to resolve, so preferably you should avoid these problems entirely. To 

prevent problems of this archetype, one should stay focused on long-term re-

structuring, analyse the consequences and side-effects of potential actions 

thoroughly, and beware of virtue signalling or symbolic measures.  

Eroding goals 

 
 

Figure 6.15. Archetype diagram and typical behaviour (with discrete adjustments of the goal) 
of eroding goals. 

The ‘eroding goals’ archetype describes situations in which short-term solutions lead 

to adjustment of long-term goals. These systems just keep getting worse. Other 

terms for this archetype are ‘the boiling frog syndrome’ or the ‘drift to low 

performance’. This archetype looks similar to the previous archetype (shifting the 

burden), but in the ‘eroding goals’ archetype, the goal is allowed to slip. In other 

words, the gap between the desired situation and the current situation is reduced by 

desiring less. 

An example of ‘eroding goals’ is a company that decreases the quality standard 

through economizing, instead of investing in qualitatively better production methods, 

while assuring that quality is maintained. Other examples can be found in 

continuously lower air quality standards or adjustment of sustainability goals. In such 

a situation one usually thinks that it is suitable to lower the standard for a short 

period, because things will turn out better after some time. It is, however, better to 

stick to long-term vision and goals. 
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To repair problems that fit into the ‘eroding goals’ category, one should either 

attempt to keep standards absolute, or make benchmark goals to the best 

performances of the past, instead of the worst.  

Escalation 

 

 

Figure 6.16. Archetype diagram and possible behaviour (after an initial perturbance of B’s 
results at t=10) of escalation. 

The ‘escalation’ archetype describes situations in which goals are dependent from 

the (perceived or real) status of other actors. In these situations, two or more parties 

aim for relative advantages over the other party or parties, resulting in an escalation. 

Note that the two negative loops in Figure 6.16 jointly form one positive loop, 

explaining the escalating behaviour. 

In this system archetype, two actors regard their welfare as depending on a relative 

advantage over the other. If one of the two gets an edge, the other feels threatened, 

which leads to more action to improve that person’s own relative position, after which 

the first one feels threatened, etc. This results in an escalation and may cause 

unstable behaviour. This type of situation can for example be seen in advertising 

campaigns or in an arms race. In these situations, we may say: ‘An eye (and 

something more) for an eye’. Note that positive forms of escalation can be good, for 

example the race to a cure an illness or the race to be the first on the moon.  

Whether positive or negative, it is notoriously difficult to stop such escalations, so 

one should avoid getting into this trap. Indeed, in this type of situation the opponent 

is often blamed for the outcome, saying: ‘If they stop, we will stop too’. Generally, the 

only ways out of an arms race are 1) unilateral disarmament (one person has to stop 

first) or 2) disarmament agreements, for instance by looking for win-win situations. 
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Success to the successful 

 
 

Figure 6.17. Causal diagram and possible behaviour of the situation in which the successful 
are becoming more successful. 

The ‘success to the successful’ (or: ‘competitive exclusion’) archetype describes 

situations in which resources are accumulated by single actors. Situations 

characterised by this archetype involve a minimum of two interacting, equal-status 

actors, of which one will stay behind even though they have the same attributes. 

These parties or activities compete for the same limited resources and even a small 

advantage results in more resources being allocated to the most successful party or 

activity, which reinforces the competition.  

Wealth, information and privilege are examples of such coveted resources. As such, 

the ‘success to the successful’ archetype is at the core of economic discourse, see 

for example Marx’ critique on capitalism, or more recent discussions about the 

wealth gap between billionaires and others. Another example of such a multi-actor 

situation is a company in which two products consume a certain amount of financial 

investment and attention from management. One of the products is a success on the 

market, so that more is invested in this product, which means that less money is 

available for the other product. Moreover, the board game ‘Monopoly’ shows how 

players who do well in the earlier rounds have a higher chance to bankrupt their 

opponents. 

The resolutions for the ‘success to the successful’ archetype can be individual and 

societal. Individually, the stay-behind can diversify: they try to fix their position by 

using different resources or other measures of success. Societally, bodies of 

authority can install policies that level the playing field, such as policies that create 

rewards for success that do not bias the next round of competition, and policies that 

put limits on monopolies or dominance (e.g., antitrust laws). There exist many 

devices that aim to break the loop of the richer getting rich and the poorer getting 

poor, including charity, gift-giving and public welfare. 
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Tragedy of the commons 

  

Figure 6.18. Causal diagram and possible behaviour of the situation in which a common 
resource runs out. 

The ‘tragedy of the commons’ archetype describes situations in which individual 

incentives lead to catastrophic dynamics for the collective. It describes systems with 

growth or escalation in a commonly shared, erodible environment, and where the 

number of users increases at a rate not influenced by the condition of the commons 

(as opposed to ‘limits to growth’). Moreover, missing or heavily delayed feedback 

from the resource to its growth hinders adaptation in these situations.  

In this case, actors use a common resource that is available to everyone but is 

limited in amount. First, they are rewarded for using the resource. Additional use 

results in a separate profit for each of them, but at a certain point, less and less of 

the resource is available, resulting in less profit, followed by intensification of the 

activity. Ultimately, the resource can become depleted. Examples of these situations 

are depletion of resource systems such as over-fishing, over-grazing or running out 

of raw materials.  

The ‘tragedy of the commons’ archetype makes people think that there is more than 

enough of the resource for everybody; a long-term vision is lacking. There are three 

general ways to govern the commons: 1) regulate the commons (e.g., by quoting), 2) 

appeal to the actors’ morality by education and exhortation (e.g., self-regulation, peer 

pressure), and 3) privatization of the commons, under the assumption that people 

have more self-control to stay below the carrying capacity of their own private 

resource, as they harm themselves in a more direct way (Meadows, 2008).  
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Fixes that fail 

 
 

Figure 6.19. Causal diagram of the situation in which a fix results in unintended effects. 

The ‘fixes that fail’ archetype describes fixes that result in substantial unintended and 

undesirable side effects, and as such, instead of solving the issue, create new 

issues. These fixes often are the result of linear causal thinking instead of system 

thinking, or of treating symptoms instead of root causes systemically. The archetype 

is sometimes called ‘fixes that backfire’ and – if implemented policies are never truly 

effective – ‘policy resistance’. In this situation people wonder why a measure is not 

working now, as it has always worked before. 

A difference between this archetype and the ‘shifting the burden’ archetype (Figure 

4.12) is that the unforeseen consequences in the ‘fixes that fail’ archetype result in 

the problem becoming worse, whereas in the ‘shifting the burden’ archetype the side 

effects result in a fundamental solution not being used. 

As a quick fix is effective in the short term, and only has unforeseen consequences 

in the long term, the same fix may possibly be used again. An example of such a 

situation is saving on maintenance costs, which leads to more breakdowns, higher 

costs and in turn, because of a lack of funds, to more savings on maintenance.  

A way to avoid ‘fixes that fail’ is to stay focused on the long term by considering long-

term effects and unintended consequences of policies from the outset. If you want to 

fix an already implemented fix that is failing, one can either overpower, or the 

counterintuitive opposite: let go entirely, give up ineffective policies and (re-)align 

actors’ goals. In all situations, one needs to stay focused on the long-term effects 

and solutions needed to manage this situation. 

Growth and underinvestment 

This archetype is an extended version of ‘limits to growth’. The difference with ‘limits 

to growth’ is in this case that the limiting condition can be fixed, but is not.  
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An example is a company in a growth situation, which makes insufficient 

investments. Goals may be adjusted to justify the underinvestment. If this happens, 

the lower goals will lead to lower expectations. Another example of such a situation 

is a company that hires employees to meet the growing demand, but fails to train the 

new employees sufficiently. Instead of investing more money in training, it adopts a 

wait-and-see attitude until the number of customers goes down as a result of 

dissatisfaction with the company’s service. A possible way of handling this might be 

creating sufficient personnel capacity in advance of the demand. This may also work 

as a strategy for creating demand. 

 

 

Figure 6.20. Causal diagram and possible behaviour of growth and underinvestment. 

A warning sign is if problem owners say: ‘We used to be good at this, but let’s save 

money now and not invest too much.’ Instead, in these situations it would be wiser to 

build capacity based on a solid long-term strategy, and hold on to the company’s 

vision.  
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7. Formulation 
This chapter discusses the formulation of System Dynamics models. The formulation 

phase results in a quantitative model. Formulation means that a conceptual model is 

transformed into a formal quantitative representation consisting of equations and 

specified parameters. The quantitative model is the starting point for a more detailed 

analysis of the system behaviour. 

7.1 Numerical methods 

In order to solve an SD model on the computer, the user has to select a numerical 

integration method. The user should therefore be aware of the pros and cons of the 

various methods and compare them for their trade-offs. The best choice chiefly 

depends on the formalisations used in the model. Similar considerations apply to the 

choice of the size of the time step (the delta time).  

Several general guidelines that may be useful in the selection of a method and 

corresponding time step are offered below. 

7.1.1 Choice of method 

The Euler method 

Strictly speaking, the Euler method of integration (Euler, 1768) should be used 

whenever the derivative of any variable in the model is discontinuous. This is 

frequently the case in SD models. For example, if a MIN or MAX function is used and 

switches from one argument to the other, then this frequently results in a 

discontinuity in the derivative. The same counts for LOOKUP functions, IF THEN 

ELSE logic, or the use of integer values. 

Only in the case of discrete functions, the Euler method will show better results. For 

example, if one uses PULSE functions to fill or empty a stock, the Runge-Kutta 

methods will not generate correct results.  

The Runge-Kutta methods 

The Runge-Kutta or RK methods (RK, Kutta, 1901; Runge, 1895) – specifically RK2 

and RK4, with fixed time step or auto – have been designed for continuous models; 

they cannot handle integer values and large discontinuities in the derivatives of 

variables. If you use a RK method, remember to check whether there are any 

discrete variables and whether integer values are generated in the model. Use one 

of the RK methods, preferably RK4 auto, if the model is continuous and has 

oscillating tendencies. 

Despite this general advice, it must be pointed out that the combination of the time 

step and the method chosen is essential. For the same step size, Runge-Kutta is 

more accurate than the Euler method, but Euler with a smaller time step can be 
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more accurate than Runge-Kutta with a larger time step. It is very important that the 

correct combination of method and time step is selected. If the combination is not 

accurate enough, the simulations may be erroneous. For instance, if you pick the 

wrong model, the model can exhibit oscillations of increasing amplitude although in 

reality, oscillations in the system are damped.  

7.1.2 Choice of time step 

• Choose a time step that is a good compromise between the accuracy of the result 

and the speed of calculation. 

The smaller the time step, the more accurate the result. Unfortunately, the price of 

accuracy is that it may take longer to run the model. Choosing the right step size 

may require a few test steps. As a rule of thumb, a time-step ranging from 1/2 to 1/10 

of the smallest time-constant in the system (for example smoothing time, decay time, 

adjustment time) is a good first approach. If you can trace the smallest time constant, 

this is a good starting point in determining the time step. 

• Always test the model for time step sensitivity. 

Always start with a full run of the model and plot a few variables, especially those 

showing capricious behaviour. Then halve the step size and repeat the run. 

Compare the values of these two runs. If they differ noticeably, repeat the process 

with the step size reduced by half again. Keep repeating this until there are no more 

visible differences between two consecutive runs. 

7.2 Stocks 

Setting up stocks is perhaps the most important part of SD model construction. It is 

important that you know how to set up stocks properly, as these basic principles 

allow you to construct models on subjects with which you do not yet have any 

experience. In many areas of physics, such as mechanics, fluid dynamics and 

electricity, commonly-known laws that are frequently used in these fields can be 

derived on the basis of balance equations. 

Within SD models, stocks have the function of keeping track of accumulations of 

physical quantities within the model. Examples include population development and 

the spread of infectious diseases. However, they also function as memory in your 

model for quantities more difficult to measure. 

In setting up a stock, we look at the quantity (level) of a variable within a particular 

scope and determine why and by how much this quantity changes as a function of 

time. The level of the stock is a “state variable” of the model. 

First of all, the scope must be defined. The boundary between this area and the 

environment must be clear. The scope does not have to be a spatial area, but in 

broad terms can be defined as the domain of interest.  
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In a stock equation, we are looking for an expression for the change in the level of a 

variable in during a particular interval. The general expression for a stock equation of 

a continuously modelled process is: 

𝑑𝑆𝑡𝑜𝑐𝑘(𝑡)

𝑑𝑡
= ∑(𝐼𝑛𝑓𝑙𝑜𝑤𝑠(𝑡) − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠(𝑡)) Eq. 7.5 

Or, as an integral: 

𝑆𝑡𝑜𝑐𝑘(𝑡) = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 + ∫ 𝐼𝑛𝑓𝑙𝑜𝑤𝑠(𝑡) − 𝑂𝑢𝑡𝑓𝑙𝑜𝑤𝑠(𝑡)
𝑡

𝑡0

𝑑𝑡 Eq. 7.6 

The flows are transports across the boundary of the stocks. The steps for setting up 

a balance equation are: 

1. Select stock; 

2. Select scope; 

3. Set up the stock equation; 

4. Set up flow equations. 

When numerical values are entered into a SD model, the sum of all flows to or from 

a stock must equal the right-hand side of the stock equation, representing the 

change in the stock as a function of time, i.e. the difference in the stock from one 

time step to the next.   

Example: population stock 

• Select stock 

If we are interested in the size of a population at a particular moment in time, a 

population stock can be formulated. 

• Select scope 

The scope must be determined next. In this case, for example, it could be the 

Netherlands. 

• Set up the stock equation  

The population flows going in and out must be determined, in this case how much 

emigration and how much immigration takes place each year. Finally, the numbers of 

births and deaths each year must be determined. This results in an equation with the 

following form: 
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𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡)

= ∫ 𝐵𝑖𝑟𝑡ℎ𝑠(𝑡) − 𝐷𝑒𝑎𝑡ℎ𝑠(𝑡) + 𝐼𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛(𝑡)
𝑡

𝑡0

− 𝐸𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) 𝑑𝑡 

Eq. 7.7 

• Set up flow equations 

The terms on the right-hand side of the equation are expressed in such a way that 

they can be calculated. For populations, the annual birth and death rates per capita 

are usually known. The equations will then be: 

𝐵𝑖𝑟𝑡ℎ𝑠(𝑡) = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝐵𝑖𝑟𝑡ℎ𝑟𝑎𝑡𝑒 Eq. 7.8 

𝐷𝑒𝑎𝑡ℎ𝑠(𝑡) = 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 ∗ 𝐷𝑒𝑎𝑡ℎ𝑟𝑎𝑡𝑒 Eq. 7.9 

For annual emigration and immigration – depending on the situation – a function can 

be based on figures from the past, for example, or they can be assumed to be 

constant. The data required may be retrieved from agencies such as national 

statistical agencies, or obtained through measurements, or by estimation. 

When solving the equations, the software will substitute the flow equations above 

into the stock equation. You do not have to do this yourself. This results in a 

differential equation that can be solved if the initial value is known. In this way, the 

value of the stock can be calculated as a function of time and, for example, a graph 

of the population as a function of time can be created. The software will thus solve 

the following equation numerically for each time step. 

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡)

= ∫ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡) ∗ 𝐵𝑖𝑟𝑡ℎ𝑟𝑎𝑡𝑒 − 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛(𝑡)
𝑡

𝑡0

∗ 𝐷𝑒𝑎𝑡ℎ𝑟𝑎𝑡𝑒 + 𝐼𝑚𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) − 𝐸𝑚𝑖𝑔𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑡) 𝑑𝑡 

Eq. 7.10 

This type of equation can also be set up, for example, for the staff size in a company, 

the quantity of algae in a lake, or the users of social media.  

7.3 Flows 

Flows are the only means of changing stocks. In the previous example, the flows are 

births, deaths, immigration and emigration. There are few rules for the equations of 

flows, apart from the fact that their units are always the units of the connected 

stock divided by the time unit.  

There are a number of frequently occurring types of flow equations, which can be 

classified into the following general categories:  
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1. Flow = coefficient * stock (see 7.3.1.) 

2. Flow = (variable - stock) / constant (see 7.3.2) 

3. Flow = normal flow + effect (see 7.3.4) 

4. Flow = normal flow * effect (see 7.3.5) 

This is not an exhaustive list; other situations may occur in practice. These different 

types of equations will be discussed below, using a number of examples. While 

studying this section, it is a good idea to create the stock-flow diagrams 

corresponding to the different flow equations to see how they work. 

7.3.1 Flow = coefficient * stock 

This type of flow equation can appear in several forms. In its simplest form, the 

coefficient is a constant.  

• Flow = constant * stock 

In the equation above, the change in the stock is linearly related to the value of the 

stock. These situations occur in modelling the size of a population, for example, or in 

determining the size of a bank account on which interest is received. The amount of 

extra money paid each month is a certain percentage of the amount of money 

already in the account. 

If this flow is the only effect on the stock, the corresponding stock equation is: 

𝑆𝑡𝑜𝑐𝑘(𝑡) = ∫ 𝑐 ∗ 𝑆𝑡𝑜𝑐𝑘(𝑡)
𝑡

𝑡0

𝑑𝑡 Eq. 7.11 

If we were to solve such an equation analytically as a function of time, an 

exponential function would result for the stock. This means that such a stock shows 

exponential behaviour. Always make sure that the dimensions or units of flow 

equations are correct and that the parameters have a meaning.  

• Flow = ( 1 / constant ) * stock 

An equation representing an outflow of a stock often has this form. The average 

outflow of employees from a company may be represented by dividing the number of 

employees at a certain moment in time by the average time employees work for a 

company (this is the same as multiplying by 1/(time worked). By using the time 

period in the equation, we ensure that a parameter is used that has a physical 

meaning. Natural processes of decay can also be described in this way. In any case, 

such an equation will never result in the stock’s value becoming negative. 

7.3.2 Flow = variable * stock 

The equation above is, in fact, a generalisation of the first two situations discussed, 

in that the coefficient is not a constant but a variable.  
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Example: waste load 

The figure below shows how waste load is added and subsequently decomposes. In 

this example, the decomposition time is considered to be a variable, because it is 

assumed that the decomposition time will increase as the total quantity of waste load 

increases. The decomposition then equals Total quantity / Decomposition time. The 

coefficient in this case is 1 / Decomposition time. 

 

Figure 7.1. Decomposition time represented as a variable 

7.3.3 Flow = (variable - stock) / constant 

A well-known flow equation of this type is the classic negative feedback loop. 

𝑓𝑙𝑜𝑤 = (𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑣𝑎𝑙𝑢𝑒– 𝑠𝑡𝑜𝑐𝑘) 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡⁄ 𝑡𝑖𝑚𝑒 Eq. 7.12 

A classic negative feedback loop has this general structure, in which the aim is for 

the value of the stock to achieve a desired level. The adjustment time relates to the 

speed with which the stock is adjusted. The flow can be both positive and negative. 

Example: housing policy 

The decision to build or demolish houses depends on the desired number of houses in a 
large city.  

 
 

Figure 7.2. Housing as a function of time as a result of a step applied to the desired number 
of houses. 
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Figure 7.2 shows a Vensim representation of this situation. At time 0 the desired 

number of houses changes from 100000 to 120000 houses. The figure shows the 

response of the output variable (housing) to a step input variable (desired number of 

houses). The figure also shows the effect of the adjustment time of 3 months. 

The model shows goal-seeking behaviour: the actual number of houses (Housing) 

moves towards the desired number of houses, i.e. the goal. A sudden decrease in 

the desired value would result in a similar response, except that the flow would be 

negative, decreasing the number of houses towards the lower goal. 

Delays and smoothing are two specific applications of flows of the type of flow = 

(variable - stock)/constant and will be discussed in section 7.4.2.  

7.3.4 Flow = normal flow + effect 

A more complicated flow may be formulated as a normal or reference flow that is 

adjusted by adding one or more effects, or by multiplying the flow by one or more 

effects. 

Example: housing portfolio 

 

Figure 7.3. Housing portfolio 

A large building company adjusts the normal production with a quantity of houses 

that ensures that the housing portfolio remains at the desired level. As a result, the 

production equation has the form normal flow + effect. If there are too many houses 

in the portfolio, the production of houses will be adjusted to below the normal flow. In 

such an additive equation, the units of all elements of the equation must be the 

same. Note that in such an equation, the monthly production could become negative 

if the housing portfolio is large enough. This cannot happen in reality, which indicates 

that an additive equation for a flow needs to be used with care.  
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7.3.5 Flow = normal flow * effect 

Multiplication of effects, as shown above, is frequently used in SD models. The flow 

often consists of an average flow that is multiplied by one or more factors (acting 

independently and simultaneously) that ensure that the flow becomes larger or 

smaller. 

Example: migration 

Migration into and out of a city is influenced by the available housing in the city, 

amongst other aspects. Figure 7.4 shows that migration is determined by the 

housing fraction, that is, the number of houses in the city divided by the number of 

potential residents requiring housing. 

 

Figure 7.4. Population change as a result of housing availability in a city. 

Immigration and emigration can be formulated in terms of normal immigration and 

normal emigration multiplied by a certain effect. In contrast to the additive effects 

discussed above, the multiplicative effects are dimensionless. 

Although it may seem easier to aggregate input and output into a net flow, this can 

lead to a loss of insight. When multiplicative effects are used, we are dealing with 

positive and negative flows together and in it is very difficult to see whether and why 

the net flow is positive or negative. A strengthening effect may not increase the 
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stock, as a positive effect and a negative normal flow will result in a negative flow. In 

such a case, the input and output may represent different processes that should not 

be combined. 

There are differences between additive and multiplicative effects. A multiplicative 

effect can shut off a flow – in other words, set the value to 0. An additive effect 

generally does not shut off flows, unless a positive term in the equation happens to 

precisely equal a negative term. The effect is described as a changing proportion or 

percentage, or as the addition or subtraction of actual quantities. For example, is a 

car company considering a productivity increase of 10% per year or are they 

considering increasing the output by 100 cars/month? In general, multiplicative 

effects are used for percentage changes, while additive effects are used for absolute 

changes. Multiplicative effects are advised, particularly when more than one factor is 

acting upon the normal flow. 

7.4 Auxiliaries 

Every SD model can be built without auxiliary variables. Stocks are the “engine” of 

the model, where the integration takes place. Flows change the stocks. Besides 

some special functions which are hard to create with stocks and flows, you need 

nothing more. However, if you choose to create a model with only stocks and flows, 

you may lose the general overview. A relevant rule of thumb for avoiding over-

complicating equations is “Richardson’s rule” (as cited in Martinez-Moyano, 2012): 

combine a maximum of three different variables in one equation. 

7.4.1 Parameters  

Although there are only few parameters, such as real, physical elements that remain 

constant in the real world, there are many variables that can be assumed to remain 

approximately constant over a simulation run for a particular model and for a 

particular time horizon. Examples are conversion factors (e.g., productivity), 

reference values (e.g., the normal delivery delay), average lifetimes or residence 

times, adjustment times, et cetera. They can be included in a model as exogenous 

parameters if they are hardly, or not at all, influenced by other model variables. 

Their values can be distilled from real data and existing knowledge about the 

relevant processes. However, they often are uncertain or inaccurate, as are models 

themselves. Hence, it is recommended to test the sensitivity of a model to small and 

larger parameter changes. The same is true for initial values. They are mostly 

inaccurate or uncertain and, especially in the case of highly non-linear models, 

require sensitivity and uncertainty analyses. 

7.4.2 Delays 

Delays occur in many systems. There are different ways to include delaying 

elements in your model; the choice for the method of representation depends on the 
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system’s characteristics. In this section we discuss two types of delays, material 

delays and information delays, as interconnections in systems can either be flows of 

physical material or flows of information. Delaying these two types of flows generates 

different behaviour. Additionally, the delays can be first-order or higher order. A 

special type of delay that is discussed is the pipeline delay. An overview of 

characteristics of material and information delays can be found in Table 7.1. 

Table 7.1. Material and information delays 

Material delay  Information delay  

Used to slow flows of physical material Used to slow a signal in information channels 

Preserves material quantities Preserves the range of input 

1st order 1st order 

2nd order 2nd order 

3rd order 3rd order 

… nth order … nth order 

Pipeline delay (infinite order)   

Material delays 

A first-order material delay can be modelled in an SD model by a stock-flow structure 

of an inflow, stock and outflow equal to the stock divided by a time delay constant. 

The inflow is the signal to be delayed, and the outflow is the delayed signal. In such 

structures, the flows and stock are generally non-negative. Most SD software 

packages allow using functions to represent such a delay implicitly, for example 

DELAY1 in Vensim. The implicit DELAY1 function is mathematically identical to the 

explicit stock-flow structure of Figure 7.5, and thus generates identical behaviour. 

If the outflow equals Stock divided by Time delay, then on average 1 / Time delay 

flows out per week. 

 

 

Figure 7.5. Left: Structure of a first-order material delay. Right: Behaviour of a first-order 
material delay, compared with its input (In training).  

An example of a situation in which a first-order material delay is appropriate is a 

large company in which recently-hired production employees have to be trained. 
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Some will become fully productive in a short time, while others will take longer. Such 

a first-order delay is shown in Figure 7.5. The figure shows the response of the 

system to a step change in the input (i.e., In training). The output variable we are 

interested in here is Out of training.  

One way to represent a first-order material delay is by specifying that the output 

equals the Stock / Time delay. We assume that the time delay in the example is 10 

months. This means that each month, on average 1/10th of employees in training 

finishes the training. Similarly, if the delay time equals 3 weeks, then on average 

1/3rd of the stock flows out per week. Note that the material in the stock (‘Being 

trained in Figure 7.5) is assumed to be perfectly mixed and entirely homogeneous. 

The larger the time constant, the less steep the graph will be. Figure 7.5 shows that 

the output immediately responds to the input and moves towards a final value. A 

first-order delay is constructed using one stock variable, meaning that it is 

represented by a first-order differential equation. In contrast, a third-order delay is 

constructed using three stock variables in sequence, meaning that it is represented 

by a third-order differential equation.  

Information delays 

Information flows can also be delayed in SD models. Different model structures are 

used than for delaying material flows, because information, unlike physical material 

(matter), is not preserved. Information delays occur in complex systems as it takes 

some time for information about the system state to be perceived elsewhere in the 

system, or a variable that suddenly changes or oscillates needs to be smoothed. 

This is also called smoothing information. 

For example, decisions in an organisation may be based on information from the 

past, in which the most recent information will usually weigh the most heavily. 

Smoothing can then be used to average out the weight of the information, thus 

taking more account of older information. Information can be smoothed using first-

order information delays (also called single exponential smoothing). This structure is 

formulated in a net input flow (which can also become negative). The input flow 

equation formulated for this is:  

𝑛𝑒𝑡𝑖𝑛𝑝𝑢𝑡𝑓𝑙𝑜𝑤 = (𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑡𝑜 𝑏𝑒 𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑– 𝑠𝑡𝑜𝑐𝑘) 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔⁄ 𝑡𝑖𝑚𝑒 Eq. 7.13 

The difference between the variable to be smoothed and the smoothed variable 

(stock) is divided by a smoothing time to represent the change in the stock (Figure 

7.6). 
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Figure 7.6. Structure of an information delay. Here, ‘Demand is the variable to be smoothed, 
‘Smoothed demand is the smoothed variable, and the ‘Change smoothing’ input is defined as 
(Demand – Smoothed demand) / Smoothing time.  

This structure can be used, for example, in situations where a product manufacturer 

looks at market demand, but does not respond immediately to every change in 

demand. In the case of smoothing, the manufacturer will not respond to the market 

demand, but to the smoothed market demand. This smoothed market demand will 

show fewer radical fluctuations. When a manufacturer responds to the smoothed 

input, smaller fluctuations will occur in the production than in the case of a direct 

response to the fluctuations in demand. 

Figure 7.7 shows the effects of smoothing in a model in which the demand is the 

input and this input is smoothed using a smoothing time of 10 weeks. Noise has 

been added to the input (modelled by a random variable) to represent the effect of 

seasonal influences. For the purpose of comparison with the smoothing time of 10 

weeks, the graph also shows the results for a smoothing time of 4 weeks. In both 

cases, the smoothed demand shows fluctuations with a smaller amplitude than the 

original demand. The figure also shows that a smoothing time of 4 weeks follows the 

input better, but gives larger fluctuations than a smoothing time of 10 weeks.  

  

Figure 7.7. Effect of smoothing a randomly fluctuating variable. 
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As indicated above, a smoothed variable is determined at each time-step by taking 

the difference between the actual variable and the smoothed variable up to that 

point, and by dividing this by the smoothing time. This divided difference is then 

added to the smoothed variable up to that point to obtain the new smoothed variable. 

Consequently, the flow is the difference between the real and the smoothed variable 

divided by the smoothing time. This means that, as the smoothing time increases, 

the change in the smoothed variable (i.e., the flow) decreases.  

Figure 7.7 shows the effect of smoothing for a varying input variable. A step function 

has been used for the demand to demonstrate what happens to the smoothed 

variable if a sudden change occurs in the input. 

  

Figure 7.8. Effects of different smoothing times on the smoothed variable (right) under a 
step-wise change in the input variable (left). 

Higher-order delays  

In the previous section, first-order time delays were described. For some systems, 

however, a first-order delay cannot adequately represent the system behaviour. For 

example, in a situation in which new employees are first trained and then start to 

work, but it still takes some time before they are fully productive, two stocks can be 

used. The total training time of the employees is seen as two linked first-order 

stocks, which jointly result in a second-order delay.  

Figure 7.9 shows four ways to represent a second-order delay. These result in the 

same value for the out variables if the time delay is constant. 
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Figure 7.9. Four ways to represent a second-order delay (bold). The model has stock-flow 
representations of second-order material and information delays, in addition to the same 
delays specified in functions. 

The Vensim equations of the four different delays are: 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑜𝑢𝑡 =
𝑆𝑡𝑜𝑐𝑘2

(
𝑇𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦
𝐷𝑒𝑙𝑎𝑦 𝑜𝑟𝑑𝑒𝑟

)
 

Eq. 7.14 

𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑜𝑢𝑡 = 𝐷𝐸𝐿𝐴𝑌𝑁(𝐼𝑛, 𝑇𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦, 𝐼𝑛, 𝐷𝑒𝑙𝑎𝑦𝑜𝑟𝑑𝑒𝑟) Eq. 7.15 

𝐶ℎ𝑎𝑛𝑔𝑒𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑜𝑢𝑡 =
(𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑡ℎ𝑟𝑜𝑢𝑔ℎ − 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑜𝑢𝑡)

(
𝑇𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦
𝐷𝑒𝑙𝑎𝑦 𝑜𝑟𝑑𝑒𝑟

)
 

Eq. 7.16 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑜𝑢𝑡

= 𝑆𝑀𝑂𝑂𝑇𝐻𝑁(𝐼𝑛, 𝑇𝑖𝑚𝑒 𝑑𝑒𝑙𝑎𝑦, 𝐼𝑛, 𝐷𝑒𝑙𝑎𝑦 𝑜𝑟𝑑𝑒𝑟) 
Eq. 7.17 

Here the Time delay included in the model and equations represents the total delay 

time. For consistency, between the delay functions in Vensim and the full model 

representation, the Time delay in the Material out and Change information out 

variables needs to be divided by the Delay order. This is important to ensure that the 

flows and stocks involved are only delayed by the time that applies to them 

individually and not by the total delay time. 

The top of Figure 7.9 depicts a typical stock-flow structure for a material delay. The 

bottom structure is used to average information, but will result in the same value for 

the output variable. Note that the output variable in the top structure is a flow, 

whereas the output variable in the second construction is a stock. The middle two 

variables Material function out and Information function out contain functions for the 
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same material and information delays. In Vensim, depending on whether a material 

delay or an information delay is involved, DELAY or SMOOTH are used (see Eq. 

7.14 and Eq. 7.16). 

  

Figure 7.10. Results for the four representations of a second-order delay (right) from the 

same input and constant time delay (left). 

Connecting three first-order systems results in a third-order delay. A third-order delay 

gives a somewhat more delayed response to a change in the input and will rise more 

sharply in the middle of the behavioural mode than a second-order delay (Figure 

7.10).  

Pipeline delays 

A pipeline delay is by definition an infinite-order material delay. In a pipeline delay, 

the output variable precisely follows the input variable, except that there will be a 

time lag. A pipeline delay of 10 hours with a stepped input variable, therefore, results 

in a stepped output variable, except that the step will take place 10 hours later. In the 

example of Figure 7.5, a pipeline delay would mean that the modeller makes the 

implicit assumption that the training of every employee takes exactly 10 months, no 

more, no less. In practice, pipeline delays do not occur very often, and the response 

to a stepped input variable usually shows a less marked response.  

In Vensim pipeline delays can be modelled with the function DELAY FIXED, in Stella 

with DELAY.  
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Comparing different orders of delays 

  

Figure 7.11. First-, second-, third-, hundredth- and thousandth-order delays and a delay 
fixed or pipeline delay. 

Figure 7.11 shows how the different types of delays respond to a step function and 

constant time delay. The figure shows that increasing delay orders look more like a 

pipeline delay. The lower delay orders, particularly the first-order delay, respond 

most quickly to a changing input. 

The choice of the order of the delay influences the model’s behaviour, especially 

when dealing with steep input variables, such as a step function (in mathematics 

also called Heaviside function). Usually, the difference between a third-order delay 

and, for example, a sixth-order delay is not significant and falls within the uncertainty 

of a system. As a consequence, the choice of the delay order is in practice usually 

restricted to a first-order delay, third-order delay, or pipeline delay. 

Comparing material and information delays 

Information delays and material delays are building blocks to model the appropriate 

system behaviour. Material delays are delays of flows of physical material, with 

physical units. Information delays are delays in information channels, for example a 

change of perception, updated beliefs, or a way to smooth variables. If you compare 

system behaviour, the material and information flows only behave differently if the 

delay time is variable. Indeed, the differences between material and information 

delays only become clear when the time delay is not constant.  
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Figure 7.12. Typical responses of first- and third-order material and information delays, 
combined with a pipeline delay (right) of the same stepwise input and variable time delay 
(left). 

Figure 7.12 shows the responses of first- and third-order material and information 

delays to a stepwise input and to an increase in the Time delay at t = 30 hours. Until 

the Time delay changes, there is no difference between the responses of the 

material and information delays to the stepwise input. However, the increase in Time 

delay is followed by a sharp decrease in the output of the first- and third-order 

material delays, but not the information delays. 

This is logical, and follows from the model structures, but many still find it hard to 

understand. Consider two examples. First, a production firm needs tools for 

maintaining its machines, but have to deal with a delay in procuring these tools (e.g., 

two months). If the procurement process becomes faster (e.g., the delay becomes 

one month) and the number of orders remains constant, the procurement process 

will temporarily generate a higher output to reduce the stock of tools from the original 

two month’s supply to the one month’s supply that is now needed. To satisfy 

conservation of matter, and not simply lose materials from the procurement stock, it 

is necessary that this temporary rise in output occurs. The opposite happens if the 

time delay on procurement increases, with a temporary decrease in the output as a 

result. Second, consider someone who uses price information for trading stocks. You 

can imagine that not much would change if the running average generated by the 

information delay changes from two months to one month. In an information delay, 

there is no conservation of mass or energy, after all.  

7.4.3 Time 

Sometimes, you want to use Time as a variable in a model. Time is a predefined, 

independent variable in SD software packages. It can be used in representing 

variables that are dependent on time, such as sin and step functions or even 

lookups. Figure 7.13 shows the behaviour of this variable during a simulation run. 
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Figure 7.13. The value of "Time" during a run. 

7.4.4 Table functions 

Table functions or lookups are typical features of SD models. The term “table 

function” arose because of the sigmoidal form of many of the graphical functions 

used in such models. Table functions form a simple way to specify nonlinear 

relations between two variables, particularly when the relation between two variables 

is not easily represented in a mathematical equation. A table function determining 

the relation can be graphically formulated in the software intended for SD models 

(e.g., Vensim, Stella, Powersim). Alternatively, the modeller can formulate the 

auxiliary variable as a mathematical function that reproduces the desired behaviour. 

This may be difficult to formulate, but is easier to parametrise. The terms “graphical 

function” or “lookup” are synonyms for table functions. Lookups can also be used to 

introduce a time-dependent scenario into an SD model in Vensim. 

Example: port development 

A city has a new port development in which the number of terminals built each year 

depends on the fraction of land occupied. The effect that the fraction of land 

occupied has on the number of terminals being constructed can be represented in a 

table function. This table function has a multiplicative effect on the normal 

construction of terminals. This is shown in Figure 7.14. In Vensim, a table function 

can be formulated by selecting Type as ‘Lookup’ and subsequently clicking on the 

‘as graph’ button on the right in the Equation Editor of the variable. The data points 

can then be entered numerically in the Input/Output columns or graphically by 

clicking in the diagram.  
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Figure 7.14. Terminals in a new port development. 

The fraction of land occupied can in principle range between 0 and 1. The most 

important characteristic of the table function Effect of Fraction Land Occupied is that 

this must have the value 0 if the fraction of land occupied equals 1 (1 , 0) , because 

in that case no more terminals can be built there. Because a multiplicative effect is 

involved, the value of the fraction of land occupied for which the effect equals 1 must 

also be considered (i.e., the normal value applies in that case). The value of the 

fraction of land occupied for which the effect equals 1 (x , 1) implicitly determines the 

normal or reference condition of the site: a data point in the table that can serve as a 

benchmark against which system behaviour can be compared. We will define the 

reference condition as 60% of the fraction of land being occupied. This means that 

(0.6 , 1) is a point that should be defined in the table. 

Following this, data must be found on the (normal) construction fraction. In this 

example we assume that this construction fraction equals 0.07 per year (7% new 

terminals per year) if the fraction of land occupied equals 0.6. This point in the table 

function is called the normal or reference point.  

After specifying the reference point, it is important to consider the gradient and form 

of the function. At a certain moment in time, as land becomes scarcer, the more 

popular or easily accessible areas are already occupied and the remaining land 

becomes more difficult to build on. Here, the relation between the fraction of land 

occupied and establishment of terminals has a negative gradient. Figure 7.15 shows 

two alternative curves that conform to the conditions laid down so far. 
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Figure 7.15. Two alternative curves (adapted from Richardson & Pugh, 1981). No further use 
allowed. 

In the first alternative, the effect is 1 when the fraction of land occupied is less than 

0.6. This means that at the start of development of the area, growth occurs with a 

constant factor (note that this constant growth factor is multiplied by the normal 

construction factor and the total number of existing terminals to determine the 

increase). As soon as the fraction of land occupied becomes larger than 0.6, the 

curve becomes steeper. The second alternative starts above 1 for low values of the 

fraction of land occupied up to the reference point. In this alternative, the gradient is 

the steepest for a fraction of land occupied of approximately 0.7. The alternative that 

corresponds best to the behaviour of the system and available data can then be 

selected.  

We can also consider the possibility that the curve could first increase before 

decreasing, that is, it could have had a slight bell shape rather than being 

monotonically decreasing. Such a curve would have conformed to the conditions 

identified at the start. However, this curve tries to combine two different effects in 

one table, a positive and a negative effect. The positive effect might imply that as the 

new port puts infrastructure in place, more terminals will be constructed. Only later, 

when more land is occupied, does this initially positive effect no longer apply. There 

is nothing wrong with using such a curve. However, in the curves defined above, the 

effect of less and less land being available is already included and, in the part with 

values of 1 or above, the presence of infrastructure is assumed. 

The following guidelines are important in formulating table functions: 

• A table function has several elements, including gradient, shape and one or 

more specific points; 

• Pay attention to the gradient and shape at both extremes and in the middle of 

the table. When a table function levels out, this represents a saturation effect. 

If a table function is steep, the effect of any change is stronger; 
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• Determine the coordinates of as many of the following points as possible: 

where the y-value equals 0 and 1, where the x-value equals 0 and 1, extreme 

x- and y-values; 

• For a table function representing a multiplicative effect, the point where the y-

value equals 1 is the normal point or reference point. For a table representing 

an additive effect, the point where the y-value equals 0 is the normal or 

reference point.  

The table function values can be distilled from real data and from existing knowledge 

about the relevant processes. However, their values can be uncertain or inaccurate. 

It is recommended to test the sensitivity of the model to changes in the table function 

values. See  Chapter 8 (section 8.2.2 for more information on sensitivity analyses.  

Example: population scenario input 

SD models frequently use dynamic inputs that are independent from the rest of the 

system model. In these cases it is generally better and easier to use a scenario input 

in a table function or lookup. This means that you make the lookup dependent on the 

time variable in your model (i.e., by definition “Time” in a Vensim model, which can 

be introduced as a shadow variable). 

 

Figure 7.16. Part of a model with four different population scenarios as time-dependent 
inputs. 

In this way, as shown in Figure 7.16, alternative scenarios can be introduced to the 

model, which allows both for linking the model to existing data, and for testing the 

model’s response to different input scenarios. The switch variable yields a constant 

value, with the World population variable using different inputs based on the constant 

value that the switch variable takes. 

The Vensim equations of all time dependent lookups are either: 

𝐴𝑢𝑥𝑖𝑙𝑖𝑎𝑟𝑦𝑤𝑖𝑡ℎ𝑙𝑜𝑜𝑘𝑢𝑝 = Eq. 7.18 
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𝐿𝑜𝑜𝑘𝑢𝑝𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
= [(𝑠𝑡𝑎𝑟𝑡𝑡𝑖𝑚𝑒, 𝑚𝑖𝑛𝑖𝑚𝑢𝑚𝑜𝑢𝑡𝑝𝑢𝑡)
− (𝑓𝑖𝑛𝑎𝑙𝑡𝑖𝑚𝑒, 𝑚𝑎𝑥𝑖𝑚𝑢𝑚𝑜𝑢𝑡𝑝𝑢𝑡)], (𝑡1, 𝑑𝑎𝑡𝑎1), (𝑡2, 𝑑𝑎𝑡𝑎2), (𝑡3, 𝑑𝑎𝑡𝑎3), … , (𝑡𝑛, 𝑑𝑎𝑡𝑎𝑛) 

Eq. 7.19 

Here, the use of the Lookup variable has the syntax Lookup variable (Time) with the 

lookup input between parentheses. The only difference between the two types of 

lookups is that an Auxiliary with lookup can only be used with one input, while the 

Lookup variable can be used with different inputs in multiple locations in the model. 

7.5 Standard structures 

SD models frequently contain similar model structures. Three examples of these 

often-used structures are the procurement delay, the ageing chain and the co-flow. 

Of course, these standard structures can also be combined. 

7.5.1 Procurement delay 

The procurement delay represents the effect that, once you decide that you need to 

expand a capacity, it takes time before the new capacity becomes available. 

Examples of such delays can be found, for example, in models of resource 

extraction. Before the capacity of a mine can be expanded, the owners need to 

request permits, organise funding and order machines, for example. The 

procurement delay arose in the first simulation models made during the Second 

World War. Military planners found that they had to account for delays in arms 

procurement to assess accurately how much capacity would be available on the 

battlefield. 

 

Figure 7.17. Typical procurement delay structure. 

The structure of a procurement delay (Figure 7.17) generally contains two stocks 

and three flows: planning, finishing the preparation or procurement, and discarding 

the capacity at the end-of-life. The second flow can be a higher-order delay of the 

first flow, where the initial value of the delay function may be given by the stock 

divided by the procurement period: 
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𝐹𝑖𝑛𝑖𝑠ℎ𝑖𝑛𝑔

= 𝐷𝐸𝐿𝐴𝑌3𝐼 (𝑃𝑙𝑎𝑛𝑛𝑖𝑛𝑔, 𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑,
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑝𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡

𝑃𝑟𝑜𝑐𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑝𝑒𝑟𝑖𝑜𝑑
) 

Eq. 7.20 

Discarding may be a standard first-order delay (i.e., Capacity/Average capacity 

lifetime), or can be a higher-order delay, depending on the nature of the discarding 

capacity. 

7.5.2 Ageing chain 

An ageing chain is in essence a set of interconnected, consecutive stocks. It is found 

in population models, but also for anything else that ages and where age is an 

important characteristic. Ageing chains thus allow us to model these systems in a 

less homogeneous manner than with a single stock. 

 

Figure 7.18. Ageing chain for cars. 

Figure 7.18 shows an ageing chain for cars with a fixed ageing period per age 

cohort. It is also possible to vary ageing periods per cohort. As the demolition rates 

(or mortality for human or animal populations) are often not the same for each 

cohort, ageing chains allow for more accurate descriptions of population 

development. The accuracy usually increases with the number of cohorts 

represented in the ageing chain.  

The flows in the ageing chain may make use of higher-order delays (e.g., third-order 

delays, similar to the delay function used in the procurement delay). The necessity 

for doing this decreases with the number of stocks in the ageing chain and with the 

continuity of the population development. If, in the example in Figure 7.18, the 

number of cars suddenly decreases or increases in one of the stocks (e.g., due to 

imports or demolition subsidies), it becomes more important to use higher-order 

delays. However, the use of pipeline delays is discouraged, as these only start 

reacting after the first ageing period, and so show less realistic behaviour. 

7.5.3 Co-flow 

The characteristics of a population in an ageing chain may be both dynamic and vary 

with the age. In such situations, it is useful to construct a co-flow next to the ageing 
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chain. The co-flow should have the same structure as the original flow. The flows in 

the co-flow contain the development of the ageing chain characteristic, divided by 

the ageing period.  

The co-flow contains the characteristics of an average individual from the 

corresponding ageing chain. Note that if the ageing chain has cohorts of non-equal 

size, the flows of the co-flow cohorts need to be disconnected. 

 

Figure 7.19. Co-flow structure connected to car population ageing chain. 

An example of a co-flow structure is shown in Figure 7.19. In addition to the cohorts 

for the different ages of cars, there is another flow chain, similar in structure to the 

original ageing chain (i.e., with the same cohorts) – this is the co-flow. In the first 

inflow to the co-flow, the new CO2 emissions per car per kilometre are divided by the 

car ageing period of ten years. As the “old” average flows out, the co-flow stock 

simultaneously and continuously keeps track of the average emissions per car of 

average age in the corresponding ageing chain stock. Ideally you should use the 

same order delays in the co-flow as in the ageing chain. 

In the car example, the lifetime in the last stock (classic cars) is different from the 

lifetime in the other ageing chain stocks. If we assume the lifetime is higher (after all, 

cars over a century old still exist), you would get CO2 emissions per car that are too 

high in this last cohort. You need to multiply the outflow of the Changing emissions at 

30 years with the Car ageing period, and divide it by the lifetime in the Classic car 

co-flow, which in this case is 1/Classic car demolition rate.  

Using this structure, you can calculate the total yearly CO2 emissions of all cars, if 

you know how many kilometres cars of each age drive in a year. You therefore have  

to multiply the number of cars in each cohort with their corresponding co-flow stock, 
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and the number of yearly kilometres for each cohort. If you then sum these yearly 

emissions per cohort, you will have the total yearly emissions from cars. 

7.5.4 Switches 

A switch is a structure which allows you to turn parts of a model on or off. Switches 

can be used, for example, to select input scenarios, switch between structural 

uncertainties, or turn policies on and off. 

Switches contain three elements. First, the structure that needs to be switched on 

and off needs to be modelled. Second, the switch itself is modelled. This is a 

constant that should take specific values. Third, there needs to be a variable that 

contains an IF THEN ELSE structure to connect values in the switch constant to the 

respective structures. 

Figure 7.16 shows how different input scenarios for the world’s population can be 

selected. The Switch population scenarios is intended to have values of 1, 2, 3 or 

ELSE. The equation below shows how the IF THEN ELSE function is used in the 

variable World population to link these values to the four potential input scenarios. 

𝑊𝑜𝑟𝑙𝑑𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 = 

𝐼𝐹𝑇𝐻𝐸𝑁𝐸𝐿𝑆𝐸 

World population - low scenario(𝑇𝑖𝑚𝑒), 

𝐼𝐹𝑇𝐻𝐸𝑁𝐸𝐿𝑆𝐸 

World population - medium scenario(𝑇𝑖𝑚𝑒), 

𝐼𝐹𝑇𝐻𝐸𝑁𝐸𝐿𝑆𝐸 

World population - high scenario(𝑇𝑖𝑚𝑒), 

World population - constant growth scenario(𝑇𝑖𝑚𝑒) 

Eq. 7.21 
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8. Evaluation 
Model evaluation consists of several steps. The first steps, verification and 

validation, aim to check whether the model is suitable for the intended purpose. 

Verification and validation can also be considered to be part of model development 

and are therefore most often discussed in SD literature directly after the structure of 

the model. Verification checks whether the model is correctly coded. A check is 

performed to ensure that no errors have been made in representing the model in the 

computer. Another very important test is the dimensional consistency check. The 

right-hand side and left-hand side of every equation must match in terms of the 

dimensions. It must be borne in mind that in SD only parameters with a meaningful 

interpretation may be used. A check of the numerical integration method and step 

size also has to be carried out. 

Conversely, the validation of a simulation model is about whether a model is fit for 

purpose (Oreskes et al., 1994) and builds confidence (Forrester & Senge, 1980). 

Investigating the suitability of a model for the intended objective is a very important 

part of a model study. SD often criticised because frequently informal, subjective or 

qualitative methods are used for model validation (e.g., a famous case was 

Nordhaus, 1973). Despite this criticism, several SD authors showcase more formal 

quantitative methods. This chapter discusses a wide range of both formal and less 

formal validation tests.  

After verification and validation, it is important to interpret the model behaviour by 

linking the observed dynamics to the model structure. In this book, we use the 

various types of tests discussed by (Forrester & Senge, 1980). These make a 

distinction between tests of model structure and model behaviour. Other literature, 

most notably Barlas (1996) and Sterman (2000), makes a distinction between “direct 

structure tests” – tests of model structure without simulating the model –, “structure-

oriented behaviour tests”, which test the model structure by simulating the model, 

and “behaviour reproduction tests”, which allow for statistical comparison of model 

output with past behaviour of the real system. Also, because of “Von Neumann’s 

elephant” (Mayer, Khairy, & Howard, 2010), being able to fit a large model (i.e., more 

than four parameters) to behaviour is not a relevant test of its validity. 

Although a substantial part of formal model testing is conducted after the formulation 

of the model, in practice, tests will be conducted at every stage of the model cycle. 

This chapter will discuss the different types of tests that can be used for model 

validation. In validation, a distinction can be made between causal-descriptive 

models (white box models) and correlational models (black box models). In black 

box models (statistical models), we are concerned with the model’s output, and a 

model will be valid if the output, with the same input, corresponds to the real situation 

within a particular margin. This type of output validation is in fact a statistical testing 
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problem. In white box models, the causal relations of the system are described. This 

not only involves the output, but the model’s internal structure, as well. The model 

must in fact also contain an explanation of how the system behaves.  

SD models are white box models and are, amongst other things, intended to study 

alternatives. This is only possible if the internal structure of the model contains the 

aspects of the system that are relevant to the problem behaviour. Therefore, a SD 

model must produce the right output behaviour for the right reasons, and this should 

be investigated during validation. 

8.1 Verification 

The verification of a model investigates whether the model has been coded correctly 

and consistently. In contrast to validation, the relevant tests do not require any 

comparison between the model and the real system. They are aimed solely at the 

question of whether the model has made the correct transition from concept to 

specification. This stage of testing can have significant overlap with the specification 

of the model, since the analyst will most likely test while building and iterate between 

testing and developing. 

Three different types of tests will be described:  

• Correct coding of the model; 

• Dimension analysis; 

• Numerical errors. 

This is in no way a complete list of all available tests. The tests presented here 

provide guidelines, a small set of consistency checks that are the absolute minimum 

of tests performed on a model. 

Once the errors in the model have been identified, the last part of the verification 

stage consists of debugging the model to make it more accurate. 

8.1.1 Correct coding of the model 

The first strategy to ensure the correct coding of a model is not a part of model 

testing but of building; prevention is less resource intensive than firefighting. Building 

a readable model will make it easier for the analyst to check his own work and forces 

a well-considered structure of the model. The goal here is to try to make the model 

easily understandable either to someone who joins the model development team 

later in the process of building the model, or a client who is going to use the model. 

Aside from reading the individual equations and evaluating them on a case-by-case 

basis, one way to test whether the model has been coded correctly is to isolate 

sections of the model. As a first step, the modeller takes a section from the model for 

which the intended outcomes are known under known input. Then, (s)he tests 

whether these outcomes are actually generated by the isolated (separate from the 
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rest of the model) section of the model under controlled input. This check is only to 

verify whether the isolated section performs as intended by the modeller, i.e., 

whether it is coded correctly. Whether this intended behaviour is suited for the 

purpose of the model is a question left for the validation. 

8.1.2 Dimension analysis 

In the dimension analysis the modeller performs two checks. First of all, the modeller 

checks whether the units of the model correspond with what the variables represent 

in the real world. For instance, in a model of a car factory, production capacity could 

be modelled as car per time unit (car / month, if the time unit of the model is month), 

i.e., the number of cars the factory can produce over a certain time interval. If that 

capacity is modelled as a stock, the rate of change of that capacity should be car / 

month^2. 

The second check should be whether these dimensions have been coded correctly. 

Some software automatically checks whether the output unit of a variable 

corresponds with the incoming variables and the equation of the variable; if these do 

not match, the software reports an error. However, due to several reasons this check 

is not sufficient: 

• The checks the software makes can be circumvented by “clever” modellers. 

For instance, in Vensim, the modeller can influence the outcome unit of an 

equation by multiplying it with the number 1 of a certain dimension, a so called 

“corrective constant”. 

• The software can never perform the semantic check whether each variable 

has the correct unit for what it should represent. 

• Certain functions can be very flexible in what kind of units they have as their 

outcome. For instance, in the GRAPH function in Vensim, the modeller can 

manually set the unit of the output of the function. 

• Not all modelling software provides this feature. Therefore, the modeller 

should still be able to check should be whether the dimensions have been 

coded correctly without the help of software. 

8.1.3 Numerical errors 

Two different classes of numerical errors can occur when numerically solving a 

model: numerical method-dependent errors and model-dependent errors. 

Numerical method-dependent errors 

This class of errors arises from the selection of a numerical solver and/or time step 

that is unsuited for the developed model. They can be fixed by selecting a different 

method or adjusting the current method’s settings.  
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The incorrect choice of method emerges when the behaviour of the model is 

dependent on the choice of integration method. This can be detected by comparing 

runs using one method with runs using another. It is up to the modeller to determine 

which outcome is correct. A classic example is a model that should display stable 

oscillation, but displays expanding oscillation when Euler is used (Figure 8.1). For a 

more extensive discussion on numerical methods see Boyce and DiPrima (2005, CH 

8), Borelli and Coleman (2004, pp. 122-129), or Strang and Herman (2016, theorem 

4.1 and following). 

 

Figure 8.1. Results of an incorrect choice of numerical method. The model should 

give stable oscillation, as per the RK4 method. Using Euler, however, results in an 

increasing amplitude of the oscillation. 

The second type of error is an incorrect choice of time step, where a reduction in the 

step size results in a significant change in the behaviour of the model (Figure 6.2). 

The solution is to reduce the step size to a size at which a reduction in step size no 

longer results in a significant change in behaviour. 
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Figure 8.2. Incorrectly chosen step size. Note that, while there is a significant 

difference in behaviour for the two step sizes (δ), the end values are practically the 

same. 

To check for these types of errors, the model can be run with different methods and 

settings for the time step. The most basic version of this tests checks for the results 

of different methods of integration and compares the original run to a run with the 

time step halved. 

Model-dependent errors 

The model dependent errors are a result of incorrect formulation of the model. Their 

magnitude and behaviour can depend on integration method and step size, but they 

originate from within the model, not the integration method. For instance, an 

equation causes erratic behaviour where behaviour should be continuous, or close to 

continuous. The solution of this type of error will always lie in reformulating that 

section of the model that is responsible for the erroneous behaviour.  

 

Figure 8.3. Typical behaviour of a numerical error that is dependent on the time step 

of the numerical solver. The model should display smooth behaviour, as per the solid 

line, but instead gives the non-solid line. 



   

 

   

 

 

Figure 8.4. Flowchart for the debugging process of SD models (Auping & d'Hont, 2023) 
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8.1.4 Debugging 

All modellers make mistakes. Some of these mistakes are clearly wrong and need to 

be addressed by debugging the model. Debugging is removing errors (so-called 

bugs), both in syntax and in logic, in your model. The process of debugging can be 

helped by correct coding, dimension analysis and avoiding numerical values, but 

often goes far beyond that. There are some rules of thumb on where to start, but it is 

important to realise that debugging only gets better with a lot of practice: debugging 

is built mainly on tacit knowledge and thorough understanding of SD models. 

Novice modellers often make specific mistakes. We tend to see the following 

mistakes with novice modellers (please note that the list is not intended to be 

exhaustive): 

• Wrong syntax in equations, especially when using functions; 

• Wrongly used delay functions, especially using material delays from stocks to 

flows in procurement-delay structures. These cause oscillations due to an 

added balancing feedback; 

• Summation of stocks in another stock; for example, summing the various 

cohorts of a population in another stock variable; 

• Divisions by zero: division of one variable by another variable which may 

become zero. This also happens together with the previous mistake, if the 

initial value of the stock summing the other stocks is chosen to be zero; 

• Mistakes with placing brackets, for example if a variable needs to be 

multiplied with one minus a certain percentage. If the brackets are forgotten, 

this may cause negative values; 

• Wrong operators in stock equations; sometimes people feel the urge to 

correct operators like minuses and plusses in stock equations, which may 

lead to mixing them up; 

• Wrong lookup or table functions; in lookups and table functions, all kinds of 

mistakes can be made. The wrong input can be used, or the order of inputs 

and outputs can be switched, leading outputs to be inputs and vice versa. 

Based on these observations, we made a debugging flowchart to help students 

make their debugging process more efficient. Figure 8.459 presents the debugging 

flow chart resulting from our analysis. It contains roughly seven different “debugging 

loops” (some loops overlap partially, making an exact count impossible). The loops 

are related to: 1) removing syntax errors, 2) fixing floating point errors due to 

excessive growth, 3) fixing floating point errors due to divisions by zero, 4) fixing 

negative stock values, 5) fixing incorrect delays, 6) fixing incorrect lookups, and 7) 

the nuclear option of systematically checking and improving all equations per sub-

model. It should be clear that option 7 should be avoided at all costs.  
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In debugging, the centre piece of the exercise is pressing “run”. If this fails, because 

the model contains syntax errors, it is crucial to remove these first. Error messages 

in SD modelling software (please note that it is actually relevant to read these!) help 

to point out which variables are concerned.  

The next step is pressing “run” again. If the model still fails, the second and third 

debugging loops focus on floating point errors which cause model runs to be not 

completed. To the best of our knowledge and experience, floating point errors are 

the sole reason of uncompleted runs, and floating point errors can only have two 

causes. The second debugging loop aims to fix excessive growth (often due to 

parameter values near inflows that are too high ). The third loop aims to correct 

floating point errors due to a division by zero. These can be caused by a division 

through a sum of stocks which is wrongly modelled. For example, if the variable type 

of the total population in the COVID-19 model is not auxiliary but level with an initial 

value of 0, any division by the total population will cause a floating point error. The 

division by zero may, however, also be caused by any other denominator becoming 

zero, whether that should be possible or not.  

At some moment, the error messages you receive after pressing “run” will not help 

you anymore. At that point, debugging will focus even more on behaviour of 

performance indicators in the model or other state variables. In debugging loop four, 

the aim is to solve wrong negative values which can be caused by wrong stock 

values, which in turn originate in either wrong (altered) stock equations, or incorrect 

flow equations. 

In debugging loop five, the modeller should correct strange oscillations in behaviour 

that may be caused by incorrectly formulated (material) delay functions. This is a 

frequently made error, even by intermediate modellers. The basic error is conceptual 

in nature and concerns the fact that in the delay function not a conceptually similar 

variable is being delayed (e.g., a flow), but a conceptually different variable (e.g., a 

stock). Especially in the case of delay functions in stock flow structures, this error 

causes the introduction of an additional balancing feedback loop. The consequence 

of this additional balancing loop is seemingly unexplainable oscillatory behaviour. 

Changing the input of the delay to the stock’s inflow solves the issue.  

In the sixth debugging loop, the modeller tries to find incorrect lookup functions. The 

easiest mistake is a wrong input, for example, TIME STEP (which is obviously static) 

instead of TIME if a time input was needed for an input scenario. Other mistakes, 

which are sometimes more difficult to find, originate in switching input and output 

values in the lookup definition.  

In some situations, the previous six debugging loops are insufficient to find the error. 

In these cases, modellers need to resort to systematically checking and improving of 

all equations per sub-model. Unfortunately, this is sometimes necessary, but it is a 

laborious and tedious task which is better avoided. 
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Note that in programming it is customary to first look at new pieces of the model 

when debugging. This may work in SD, but not always. For that reason, this step is 

not included in the debugging flowchart. This is because the feedbacks in the model 

may cause an earlier bug only to occur after a new part of the model is added. The 

bug is than not in the new part, but in an already existing part. 

Floating point errors 

Floating point errors are the only non-syntax errors, to the best of our knowledge, 

that can cause a run to be not completed. As such, they are the most important bugs 

to eliminate. Floating point errors can have two causes: 

1. Division by zero; 

2. Extreme exponential growth. 

A division by zero is easily found, as the error will point out the equation in which the 

division takes place. The error is that the denominator is equal to zero, which is 

generally caused by one variable which has value zero, but should not. You need to 

check whether that variable has the right equation or is of the right type. For 

example, if a variable is a stock with initial value 0, but should not be a stock, you 

have to change the type to auxiliary. Otherwise, you change the equation. Only if the 

value should be allowed to be zero, you can protect your model by using a ZIDZ (i.e., 

Zero If Divided by Zero) or XIDZ (X If Divided by Zero) function. 

Extreme exponential growth is more difficult to find, as the cause of the exponential 

growth is generally a feedback with the variable that gives the error. Therefore, you 

need to backtrack all causes of the variable mentioned in the error until you find a 

parameter with a wrong value or a wrong equation, and correct it. 

8.2 Validation 

Forrester and Senge (1980) distinguish two types of tests: tests of model structure 

and tests of model behaviour. This chapter discusses these tests and gives 

examples of how to perform these tests. We made some alterations to their paper, 

as one of the tests (extreme-conditions test) is considered by Forrester and Senge to 

be a test of model structure, while it relies on simulation of the model, and is thus a 

test of model behaviour. The dimensional-consistency test of Forrester and Senge is 

considered to be part of verification in this book. Finally, the extreme-policy test is in 

fact a form of the extreme-condition test. 

Many of these tests can also be supported by experts or stakeholders. For example, 

boundary-adequacy tests of both structure and behaviour, but also structure-

verification tests, behaviour-reproduction and surprise-behaviour tests can be 

performed by presenting the model structure during model formulation and 

evaluation to groups in sessions of joint sense-making. 

When performing validation tests, it is useful to follow and report the following steps: 
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1. Which test are you performing, and what type of test is it? 

2. How do you perform this test? 

3. What do you observe? 

4. What do you conclude: is your model fit for purpose? 

8.2.1 Tests of model structure 

Although all validation tests of an SD model are aimed at establishing confidence in 

the structure of the model, the tests in this section directly assess structure and 

parameters, although without investigation the relationship between structure and 

behaviour.  

Structure-verification test 

In this test you compare the system structure with the real-world system. Simply put, 

the model structure must not contradict knowledge about the structure of the real 

system. Typically, the structure-verification test is first performed with the modeller’s 

personal knowledge and then extended to others who have direct experience with 

the real system, such as experts, stakeholders and other actors (we also call the 

process of engaging other people to evaluate model elements ‘face validation’). Do 

they recognise the positive and negative feedback loops? Does the model structure 

match the observable goals, pressures and constraints of real decision makers?  

Verifying that the model structure exists in the real system is a relatively easy test 

that requires not as much skill as other tests. Many structures can pass the structure 

verification test.  

Parameter-verification test 

Similarly to the structure-verification test, the parameters must also correspond to 

the relevant descriptive, observed knowledge of the real-world system. Does the 

parameter conceptually correspond to elements of the real system structure? For 

example, conceptual parameter verification of a parameter such as ‘normal number 

of contacts per week ’ (Table 8.1) would involve examining determining how many 

face-to-face contacts the average person experiences per week. The parameters 

must also be checked on the basis of any numerical knowledge. For example, 

numerical parameter verification would determine if the value given to the parameter 

falls within a plausible range of values.3 

Boundary-adequacy (structure) test 

Whether the model has appropriate boundaries is a recurring question, as the 

adequacy of model boundaries can be verified structurally and behaviourally. Does 

 

3 Graham (1979) discusses a variety of techniques for parameter estimation in system dynamics.  
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the model contain the structural relationships necessary to satisfy the model’s 

purpose (i.e., is the model fit for purpose?)? Which variables are modelled 

endogenously and exogenously, and why? Is the model appropriately aggregated?  

The modeller must determine that the model contains the most important concepts 

required to analyse the problem. Given the model’s stated purpose, the boundary 

must be sufficiently broad, so that the model contains an endogenous representation 

of the most important mechanisms, but if the model is too expansive, it will no longer 

be transparent and less balanced. 

For example, say that we have a model built with the purpose of understanding the 

growth of the tourist industry in a certain region. This model does not include any 

information about the wildlife in the region. This is only a valid boundary if the wildlife 

in the region has no influence on the tourist industry and if the wildlife is not 

considered to have any value on its own (e.g., if no legally protected wildlife species 

live in the area). If the recreational activity in the region influences the wildlife and the 

wildlife forms a significant part of the attractiveness of the region, the model should 

include some representation of the wildlife. Therefore, the inclusion of a wildlife sub-

model is completely dependent on the previously specified model purpose or 

hypothesis.  

Note that criticism of the model boundaries (e.g., “wildlife should be included in the 

model”) is sometimes actually criticism on the model’s purpose (“we actually want a 

model that focusses on wildlife, instead of a model for tourism”).  

Extreme conditions test 

Another structure test is the direct extreme conditions test, in which the model 

equations are evaluated under extreme conditions. This test is done by determining 

whether the resulting values are plausible when compared to the knowledge or 

expectations of what would happen in the real situation. It is often easier to imagine 

what could happen in reality under extreme conditions than what could happen in 

reality without extreme conditions. For example, if the population is set to 0, there 

can be no births and there will be no consumption; if there is enormous pollution in a 

city, the death rate must go up and migration must go down; if there is extreme 

rainfall, floods occur. Every model equation can be checked this way by entering 

extreme values for the input variables and by comparing the output value to the 

expectations in the real situation. No model run is conducted for this; every equation 

is viewed separately, which is why this test belongs to the direct structure tests.   

A model should be questioned if the extreme conditions test is not met. It is not an 

acceptable counterargument to state that these particular extreme conditions do not 

occur in real life and therefore should not occur in the model, because the 

nonlinearities introduced by approaches to extreme conditions can have important 

effects in normal operating ranges. The extreme conditions test is a powerful test for 

discovering flaws and for identifying nonlinearities and asymptotes that should be 
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included in the model structure. For example, the extreme condition of a very tight 

labour market would affect production negatively and capital investments positively, 

so these relations should be included in the model. The extreme conditions test is a 

strong test that can aid in determining under which conditions the model works, and 

inform scenario building and policy analysis for policies that force a system outside 

historic behaviour.  

8.2.2 Tests of model behaviour 

Tests of model behaviour evaluate the model structure indirectly, by analysing the 

behaviour generated by the structure. Documenting hypothesised model behaviour 

is important. If a comparison is made with anticipated model behaviour instead of 

with information from the real system, the modeller must first record the anticipated 

model behaviour and, if necessary, graph this. Then the hypothesis can be checked: 

does the model behaviour correspond to the modeller’s expectations? Additionally, 

any unexpected behaviour can be analysed to see why it occurred. If the model 

shows unexpected behaviour, two conclusions can be drawn: either the model is 

incorrect and must be adjusted, or behaviour has been found that might also occur in 

the real system under similar circumstances.  

Sensitivity analysis (a.k.a. behaviour sensitivity test)  

A sensitivity analysis is designed to determine the elements in the model to which 

the model is sensitive, and that have a major influence on the behaviour when they 

are changed. Sensitivity analyses are essential, both in model validation and in 

model use. In model validation, the goal of a sensitivity analysis is to determine how 

sensitive the model is to plausible changes in data. In contrast, during model use, a 

sensitivity analysis is aimed at locating changes in the system that have the desired 

influence on the system’s behaviour and in this way contribute to the solution of a 

problem.  

Richardson and Pugh (1981) mention three types of model sensitivity (i.e., not three 

types of analysis, but three types of results): 

• Numerical sensitivity. Numerical sensitivity exists if a change in the 

assumptions changes the numerical value of the results. All models show 

numerical sensitivity. 

• Behavioural sensitivity. Behavioural sensitivity exists if a change in the 

assumptions changes the pattern of behaviour of the model. For example, 

there is behaviour sensitivity if different assumptions change the behaviour 

from a gradual adjustment to oscillating behaviour. Behavioural sensitivity 

may be a negative indication for the suitability of a model or may indicate that 

the sensitive assumption can be used for intervention.  

• Policy sensitivity. Policy sensitivity exists if a change in assumptions reverses 

the influence of a proposed policy. An example is if a reduction in the national 
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debt would result in an improvement of the economy, whereas in case of 

other assumptions the economy would decline. 

A sensitivity analysis is used to study whether the model is sensitive to plausible 

variations in the parameter values and to plausible alternative model structures. 

Confidence in the model is enhanced if such alternative parameter values are not 

found. An important aspect is also whether the conclusions of the model study will 

change when the parameter values or the structure undergo a plausible change, 

because in that case drawing these conclusions is no longer justified.  

The entire model is to be tested by increasing or decreasing each parameter a little 

bit (e.g., by 10%) and observing the effect of that change. In studying the 

parameters, the initial values of the levels and the table functions are also involved, 

as these are in fact made up of a series of parameters or approximations of 

polynomials of which the coefficients are parameters. It is also important to 

simultaneously study the effects of changes in different parameters. The modeller 

must not only check whether end values are changing, but also if the shape of 

graphs (trends) changes. 

If is it shown that the model is sensitive to a particular parameter, this may imply that 

the parameter must be determined accurately if the degree of sensitivity is important 

in view of the objective of the model study. If the model has already been evaluated 

and suffices given the objective, sensitivity may be an important leverage point for a 

policy.  

Sensitivity analysis 

In a model of the early phases of the COVID-19 epidemic in the Netherlands (see 

Exercise 5.8), we changed all uncertain parameters by +/- 10% to do a sensitivity 

analysis. In Figure 8.5, it is shown how this model behaves over 200 runs. To 

generate this set of runs, the simulation software created 200 experiments with 

values sampled between the minimum and maximum values for the listed 

parameters. We use selected Latin Hypercube sampling to generate these samples 

(McKay, Beckman, & Conover, 1979). 

We observe that for all runs, the behaviour is similar, although there are numerical 

differences. This is caused by the fact that model behaviour is largely “driven” by a 

lookup mimicking social distancing measures in the model. As a consequence, the 

infection rate causes the peaks in the infectious population, and the related actual 

reproduction number is not influenced sufficiently to flip around 1 (i.e., if the 

reproduction number is over 1, the number of cases increases, and if it is under 1, it 

decreases). Therefore, the model is numerically sensitive to the inputs and not 

behaviourally sensitive. 
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Figure 8.5. Two ways of showing the results of a sensitivity analysis. 

Behaviour-reproduction test 

Behaviour-reproduction tests examine how well the model-generated output matches 

the observed behaviour of the real system – especially the behaviour characteristics 

of the system that are important for the analysis of the problem. We briefly discuss 

four types of tests that focus on behavioural characteristics: trends, modes, 

frequencies, phases, and amplitudes. Consider these tests approaches to examine 

whether or not a model generates correct patterns of behaviour. To perform such 

tests in practice, a model may need to be excited by a simple test input, depending 

on the nature of the behaviour. For example, random disturbances are useful for 

systems that exhibit damped oscillation.  

• A symptom-generation test investigates whether the simulation model 

recreates the symptoms of the problem that was originally formulated. Thus, if 

the modeller cannot show how a specific undesirable situation arises through 

policies and structure, the model is of no use for improving those symptoms 

and resolving the problem. For example, in a model built to understand the 

mechanisms that result in immigration, the model should show how known 

policies and structure (i.e., causal loops) lead to immigration.  

• The frequency generation test and relative phasing test focus on the relative 

temporal aspects of relationships between variables, or “on periodicities of 

fluctuation and phase relationships between variables” (Forrester & Senge, 

1980, p. 217). In other words, can the model generate the short- and longer-

term fluctuations seen in de real world (frequency generation tests)? And 

does the relative timing of model output (i.e., the sequential order of values 

increasing and decreasing) match the relative timing of those variables in the 

real world (relative phasing tests)? If phase relations obtained from the model 

are different in the real system, the structure of the model may contain an 

error. If, for example, the temperature is high, the consumption of gas must be 

low and vice versa. This must also be reflected in the model behaviour. 

• The multiple-mode test is especially important in policy analysis, as it 

investigates whether the simulation model is able to generate more than one 
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mode of observed behaviour. Indeed, a simulation model that is able to 

produce two or more distinct modes of behaviour which could be observed in 

a real system (e.g., producing two types of output with the tendency to 

fluctuate at distinct intervals, for example an economic model that produces 3-

year fluctuations and 18-year fluctuations) provides the possibility to study 

how policies differently affect each of the two modes of behaviour. It is 

necessary to perform a sensitivity analysis and generate different scenarios 

with the model to perform this test. 

• Behaviour characteristic tests are a miscellaneous category for other 

behaviour reproduction tests that investigate peculiar aspects of model 

behaviour, e.g., sharp peaks, long troughs, and other unusual events such as 

a housing bubble or an oil crisis.   

Behaviour prediction tests 

Behaviour prediction tests are similar to behaviour reproduction tests, but focus on 

future behaviour, as opposed to observed current or historical behaviour. While SD 

models do not strive for prediction of future values (no “point prediction”), they should 

say something about future behaviour. These prediction tests should centre around 

the conditions leading to a future event or behaviour and on the dynamic nature of 

the system. In other words, the modeller looks for potential changes – patterns and 

events – that are likely to occur on the basis of analysis of the model behaviour. 

• The pattern prediction test qualitatively examines whether the model 

generates correct patterns of potential future behaviour. A pattern prediction 

test may include evaluation of periods, phase relationships (consider this the 

timing of the dynamic behaviour), shape or other characteristics of behaviour 

simulated by the model.  

• The event prediction test focuses on particular changes in circumstances, 

such as a sharp drop in market share or a rapid growth of housing prices.  

Behaviour anomaly test 

The behaviour anomaly test is extensively used with SD model development. It 

occurs when the modeller discovers anomalous model behaviour that strongly 

conflicts with real-world system behaviour. Where does this anomalous behaviour 

come from? Usually, tracing back to the model elements that cause the anomalous 

behaviour uncovers obvious flaws in the modelling. However, the behaviour anomaly 

test can also play a role in validation, in addition to model development, since it can 

be used to defend model assumptions by demonstrating that the model produces 

peculiar behaviour under different assumptions.  
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Family member test 

SD models have the characteristic that they can be generalised from specific 

contexts. The family member test checks whether this model would also be valid for 

a slightly different case study. For example, if you consider a population model for 

the Netherlands, the same structure should be able to generate correct behaviour for 

other countries, if only the relevant parameter values (e.g., the size of the different 

population cohorts, and data about fertility and death rates) are adjusted. 

Surprise behaviour test 

The best and most comprehensive SD models have the potential to generate 

behaviour that is present in the real system, but which has gone unnoticed by the 

system’s actors. When such unexpected behaviour surprises the modeller, they 

should aim to understand the underlying causes within the model, and then compare 

the behaviour and the identified causes to the real-world system. When this 

procedure leads to identification of previously unrecognized behaviour, the surprise 

behaviour test contributes to confidence in a model study’s usefulness.  

Extreme conditions test 

In extreme conditions tests as part of behavioural validation, you run the model after 

you changed parameter values to extreme values. These extreme values can be 

extremely low values (often 0) or extremely high values. You can also test the model 

behaviour by changing multiple values at the same time to extreme conditions.  

The goal is to check whether the behaviour generated by the model under extreme 

conditions still falls within realistic bounds. For example, if a population sub-model in 

a model of a country’s economy is set to be equal to zero initially, there should be no 

economy.  

Boundary adequacy (behaviour) test 

In the previous section we stressed the importance of building confidence in the 

choice for appropriate model boundaries. The structural boundary adequacy test 

from Section 8.2.1 should often be extended to include model behaviour analysis. 

Does the model include the necessary structure to address the issues for which it 

was designed? Again, the answer to this question is closely related to the model 

purpose. Changes in the model structure that alter the model boundaries can have a 

very significant impact on the behaviour of the model. Therefore, the modeller 

conceptualises an additional structure that makes sense (e.g., make an endogenous 

structure exogenous or vice versa) and that might influence model behaviour. The 

modeller then compares the model output with and without potential new structure to 

check its effect. If such additional structures have little effect on the original model 

behaviour, this strengthens the modeller’s confidence that the original model 

boundary was appropriate.  
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8.3 Interpretation of results 

The interpretation of results is based on a careful selection of graphs of behaviour 

from certain model variables. A model variable chosen in this selection is often 

referred to as a “key performance indicator” or KPI. In SD literature, generally graphs 

are shown which show the behaviour over time for various KPIs. Different KPIs may 

be combined in one graph, but it is advised to only do so when the units of the KPIs 

are the same. A special type of graph with multiple runs is the stack graph, in which 

data of different KPIs is stacked in one graph. It is possible to make these graphs in 

Vensim or other specialised SD software, but you can also export the run data and 

make the graphs in other software which allows more freedom in designing the 

picture (e.g., Figure 8.6). 

  

Figure 8.6. Two graphs of a single SD run which were produced in Python: two KPIs 

showing their behaviour over time in one graph (left) and a stack graph (right). 

In the interpretation of results, it is crucial to link the behaviour in the graph to the 

structure of the model. This can be done by linking behaviour to elements which 

were, for example, described in the conceptual overview of the model or in the model 

description. Therefore, it may help to adhere to the following basic questions that 

one should answer in a figure description: 

1. What do we observe in the figure? 

2. What behaviour stands out? 

3. What structure causes that behaviour? 

4. What does that imply? 
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Example: Evaluation of model behaviour 

 

Figure 8.7. Structure of a simple model of the beginning of the COVID-19 pandemic 

in the Netherlands. 

In the evaluation of a model (Figure 8.7, see Exercise 5.8) simulating the early 

phases of the COVID-19 pandemic in the Netherlands, we observe the behaviour of 

the variable infectious population (Figure 8.8). In this figure, it is striking that we see 

two “peaks” in the size of the infectious population. This behaviour is mainly caused 

by three distinctly different structures in the model. First, the social distancing 

measures control the contacts per person per week. If people have enough contacts 

per week, the reinforcing feedback between infectious people and new infections will 

be dominant. If the number of contacts is relatively low, the balancing feedback 

between the susceptible population and the total population makes that the chance 

of contact with a susceptible person is low, and the number of infections decreases. 

This means that, as expected, social distancing measures play a major role in 

controlling an epidemic. 
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Figure 8.8. Behaviour of the infectious population. 

8.4 Scenario development 

SD models are frequently used for scenario development. Scenarios can be 

developed by selecting different values of single (univariate) or multiple (multivariate) 

input parameters at the same time. The goal of scenario development is to get a 

broader bandwidth of behavioural modes. These can be used for two reasons. First, 

they give a better idea of how the system behaviour may plausibly develop. Second, 

they can be used to test policies for robustness: the policy’s ability to keep 

functioning in the desired way, regardless of how the future unfolds. 

A scenario analysis can be performed by hand or with the use of sensitivity analysis 

tools. If the scenario analysis is performed by hand, a good start is to make a table of 

all uncertain input parameters. This table lists parameter names, the standard 

values, units, data sources if applicable or the simple fact that the value is an 

assumption.  

If one wants to get a better idea of how system behaviour may develop, the goal 

would be to create a diverse set of scenarios. This can be achieved in the following 

way: 

1. Determine which input parameters or input scenarios are uncertain; 

2. Determine to which of the uncertain input parameters the KPIs are sensitive; 

3. Select two or three uncertain and sensitive parameters and make a scenario 

logic; 

4. Decide to do two or three runs per axis in the scenario logic; 
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5. Run the model for each different scenario and save the runs with different run 

names apart from the base case. 

If one wants do test policies for robustness, the goal would be to test the policies for 

each different scenario. Robustness is a policy characteristic which means that the 

policy functions in the desired way in all plausible futures (Lempert, Groves, Popper, 

& Bankes, 2006). There are different possible measures for robustness (e.g., see 

Kwakkel, Eker, & Pruyt, 2016), for example to make sure that the KPIs stay within 

desirable bounds, or that the results change in a desirable direction in all scenarios. 

Example: Scenario development 

Scenario development starts with creating an overview of the parameters or driving 

forces which are at least somewhat uncertain, and might influence model behaviour. 

Table 8.1 shows this for the COVID-19 pandemic. 

Table 8.1. Overview of uncertain parameter values in the COVID-19 model. 

Parameter Unit Value 

Average immunity period Week 52 

Average length of symptomatic 
period 

Week 1 

Average period of asymptomatic 
infections 

Day 6 

Average SARS-CoV-2 incubation 
time 

Day 3 

Case fatality rate of COVID-19 
patients 

Dimensionless 0.01 

Infection rate per contact Dimensionless 0.30 

Normal number of contacts per 
week 

1/week 7.5 

Presymptomatic period Day 3 

Share of asymptomatic infections Dimensionless 0.5 

The next step is to perform a univariate sensitivity analysis in order to find out for 

which of these parameters the model is sensitive. We can do this by changing their 

values one by one with, for example, plus and minus 10%, and observe the impact 

on the infectious population (Figure 8.9). This implies performing 19 runs in this 

case, as there are nine uncertain parameters plus the base case.  
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You can imagine that this job can quickly become very tedious if the model is 

relatively large. This is also why software like EMA Workbench (Kwakkel, 2017) has 

been developed, which contains algorithms to deduce in a multivariate way which 

parameters have a significant impact on the model behaviour. Specifically, what we 

call “scenario discovery” is aimed at this purpose (Bryant & Lempert, 2010; Kwakkel, 

Auping, & Pruyt, 2013). 

  

Figure 8.9. The sensitivity of infectious population to the different inputs. 

Figure 8.9 shows which inputs have most impact on the system, as measured by the 

variable infectious population. If you combine this with existing knowledge of the 

system, you can determine which inputs are the most uncertain. You can classify 

these variables in a table (see Table 8.2). In this case, the variables infection rate 

per contact and normal number of contacts per week are both uncertain and have a 

high impact in the univariate sensitivity analysis. 

Table 8.2. Classification of driving forces. 
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Once we have identified which variables are the most uncertain and have the most 

impact, we can develop a scenario logic. We will use the infection rate per contact 

and the normal number of contacts per week for that logic (see Figure 8.10). We use 

the logic to explain the experimental setup we can use for performing runs with the 

model.  
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Figure 8.10. Scenario logic for the COVID-19 model. 

In this experimental setup, you explain how many runs you perform, the time 

horizon, the time step and the integration method, and what the parameter values 

are that feed into these runs. In this case, the experimental setup could contain the 

following. 

We run the model five times over a time horizon of 60 weeks. We use Vensim Pro 

version 9.3.3. x64 on a Windows computer. The time step is 0.0078125 weeks and 

the integration type is Euler due to the discrete nature of the social distancing 

x 
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measures included in the model. The base case and the scenarios use the 

following input values (Table 8.3). 

Table 8.3. Experimental setup 

Scenario Infection rate per contact Normal number of 

contacts per week 

Base case 0.3 7.5 

Scenario 1 0.5 5 

Scenario 2 0.5 10 

Scenario 3 0.1 5 

Scenario 4 0.1 10 

  

You see that the bandwidth of the parameters for the scenario analysis is broader 

than the bandwidth used in the sensitivity analysis. This is intentional. The goal of 

the sensitivity analysis is to show the model’s sensitivity to fluctuating different 

parameters, each with the same relative difference. On the other hand, the goal of 

the scenario analysis is to show what different yet plausible futures might look like. 

Therefore, it is necessary to use broader bandwidths. 

  

Figure 8.11. Scenario runs with (left) and without (right) scenario 2. Note that the 

scale of the y axis is different in both graphs. 

Figure 8.11 shows the scenario runs. We observe that situations with a high number 

of contacts and high infectivity lead to a highly undesirable, extremely high first peak 

of infections. In that situation, the existing social distancing measures are insufficient. 

Therefore, policies should aim at reducing the case load in those situations (i.e., 

scenario 2), but they could be less stringent in case of situations with a far lower 

case load (i.e., scenarios 3 and 4). 
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In this case, we used a “full factorial” scenario design with two points per scenario 

axis. As a consequence, you have to perform 2#scenario axes, plus 1 for the base case. 

You could also choose for a design with more points, for example three, per scenario 

axis. In that case, the base case becomes one of the scenarios. This eventually 

leads to a situation in which an ensemble of runs is generated, in which there is no 

such thing as a base case, but rather a number of plausible futures. The likelihood of 

those scenarios is not communicated, just that they are all plausible. The base case 

is then abolished and replaced by a “base ensemble”: the total set of runs before 

policies are tested. 
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9. Model use and policy 

testing 
In this chapter, we will discuss how to test policies in SD models. First, we will look at 

how to design new policies for improving the behaviour of a system or to avoid 

undesirable futures. These policies may be either static or adaptive. Next, we will 

discuss how to measure the robustness of policies and how to consider their efficacy 

and efficiency. Finally, we will briefly consider the termination of policies. 

9.1 Policy design 

The first step of policy design with SD models is to identify which runs show 

undesirable behaviour. In different types of models, undesirable futures may be 

related to different modes of behaviour. For example, values may become 

untenable. If you consider the case of societal ageing, situations where government 

spending on retirement funds and healthcare becomes untenable are undesirable. In 

the case of the COVID-19 pandemic, situations with high mortality or many sick 

people simultaneously, can cause societal disruption and are undesirable. Policy 

design will have to alleviate such situations.   

The second step is to identify policy levers. These are variables in the model, often 

constants, that can be influenced by the problem owner. An example of a policy lever 

for the Dutch government in case of societal ageing is the formal retirement age. 

Examples of policy levers during the COVID pandemic were the average number of 

contacts per week, isolation of known positive COVID cases and the introduction of 

vaccines. 

9.1.1 Static policies 

Static policies generally rely on changing the value of a parameter that is linked to 

one of the problem owner’s policy levers. Static policies only change as a result of a 

conscious, deliberate decision. A good example of a static policy – for a very long 

time – was the retirement age of 65 years in most north-western European countries. 

Ad hoc policy changes without a predefined rule set to change them can be seen as 

a series of static policies. Static policies can also be referred to as open loop 

policies, as they do not structurally change the model and do not introduce new 

feedbacks. 
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Example: Static policy 

  

Figure 9.1. Actual reproductive number (left) and infectious population (right) with no 

policy, a static policy and the real policy derived from the actual situation in the 

Netherlands in 2020. 

In this example, we introduce a very stringent static policy for the case of the COVID-

19 pandemic. To do this, we first disconnect the original policy. Figure 9.1 shows, 

firstly, the behaviour of the model in an uncontrolled epidemic in a completely 

susceptible population. First there is exponential growth, followed by a situation in 

which the growth is reduced when a large enough share of the original susceptible 

population is either exposed, infectious or recovered, and finally a situation in which 

a new, smaller peak may grow as recovered people lose their immunity. 

The static policy with strict social distancing rules is strong enough to avoid the 

actual reproduction number ever getting over 1. As a consequence, it quickly stops 

infections from occurring. Policies like this are dangerous, however, as at some 

moment discontent among the population will grow and demand a relaxation of the 

policies. This is exactly what happened in China after the immediate suspension of 

the original, very strict policies. The population was insufficiently immune (i.e., a 

large share of the population was still susceptible), causing an enormous surge in 

cases.  

9.1.2 Adaptive policies 

Adaptive policies rely on changing the system structure by introducing feedback 

between an existing system variable and a policy lever. A rule linking the 

performance indicator with the policy lever should be made explicit and, ideally, be 

institutionally embedded. A good example of an adaptive policy is the change in the 

formal retirement age in the Netherlands, which was captured (with a formula) in new 

legislation. As a consequence, the retirement age will gradually rise from 65 to 70 

years in 2069. Adaptive policies can be seen as closed loop policies, as they add a 

balancing loop to the system. For the societal ageing case, this is visible in Figure 

9.2. 
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Figure 9.2. Hybrid CLD/SFD of the societal ageing model. Observe how the adaptive 

retirement age introduces two new loops (R2p and B1p). 

Example: Adaptive policies 

  

Figure 9.3. Actual reproductive number (left) and infectious population (right) with no, 

a static, an adaptive policy, and the real policy derived from the actual situation in the 

Netherlands in 2020. 

For the adaptive policy in the case of COVID-19, we introduce a rule to link the 

actual reproduction number to the number of contacts the population is allowed to 
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experience. As the severity of the epidemic increases, the reproductive number will 

become higher than 1 and keep increasing. The higher the reproductive number, the 

fewer contacts people are allowed, and the lower the reproductive number, the more 

contacts are allowed. 

Figure 9.3 compares the difference between the adaptive policy and a situation with 

no policy, a static policy and the ad hoc policy derived from reality. It is clear that it is 

possible to create a situation that allows approximately the same number of contacts 

as in reality, but does not have to become more stringent after the initial policy 

change. The adaptive policy will generally lead to less discontent, as it is clearer for 

the population what to expect. At the same time, the situation does lead to more 

infections than very stringent static policies. 

9.2 Policy robustness 

Policies need to function in the desired way under all plausible futures (i.e., 

scenarios). If policies meet this criterion, we consider them to be “robust”. There are 

multiple different definitions of robustness criteria, which are called robustness 

metrics (McPhail et al., 2018). It is, however, possible to distinguish all these 

different metrics in two main categories. In the first category, the “regret”-based 

metrics, policies need to have the desired effect in all different scenarios. In the 

second category, the “satisficing”-based metrics, the policies are considered 

desirable if they make outcomes fit certain bandwidths.  

An example of regret-based robustness is the assessment of policies during a 

pandemic like COVID-19. Policies aimed at reducing mortality through the disease 

should do so in all different futures, not just in the worst-case situations. An example 

of satisficing-based robustness is the effectivity of policies aimed at reducing costs of 

societal ageing. These policies should reduce the costs in such a way that they are 

in a sustainable bandwidth for the government. However, it does not matter if in the 

best-case scenarios the costs increase, as long as it remains within the allowable 

limits. 

Especially for SD models it is relevant to test for policy robustness. Even with 

minimal changes in inputs, SD models can generate completely different behavioural 

modes. This is called non-linearity. In all non-linear models, it is unknown whether a 

model will respond similarly to model inputs – which policies are by definition – if the 

model is in a different state or at a different moment in the simulated time horizon. 

Therefore, it is always relevant to check whether policies function in the desired way 

in a broad range of scenarios. 
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