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Abstract
In this paper, we present a two-dimensional numerical model for modelling of hydraulic fracturing in anisotropic media. 
The numerical model is based on extended finite element method. The saturated porous medium is modelled using Biot’s 
theory of poroelasticity. An enhanced local pressure model is used for modelling the pressure within the fracture, taking into 
account the external fluid injection and the leak-off. Directional dependence of all the rock properties, both elastic and flow 
related, is taken into account. A combination of the Tsai–Hill failure criterion and Camacho–Ortiz propagation criterion 
is proposed to determine the fracture propagation. We study the impact on fracture propagation (in both magnitude and 
direction) due to anisotropies induced by various parameters, namely ultimate tensile strength, Young’s modulus, perme-
ability and overburden pressure. The influence of several combinations of all these anisotropies along with different grain 
orientations and initial fracture directions on the fracture propagation direction is studied. Different regimes are identified 
where the fracture propagation direction is controlled by the degree of material anisotropy instead of the stress anisotropy.

Keywords Rock anisotropy · Transverse isotropy · Hydraulic fracturing · Porous media · Extended finite element method

List of symbols
u  Displacement of the solid grains
p  Fluid pressure in the pores
pd  Fluid pressure in the fracture
�d  Line of discontinuity
nd  Normal to the discontinuity
�  Total stress in the porous media
�e  Terzaghi’s effective stress
�  Biot’s poroelastic coefficient
C  Constitutive relationship matrix
nf  Porosity of the porous media
�  Dynamic viscosity of the pore fluid
E∥,E⟂

  Young’s moduli parallel and perpendicular to 
the grain direction, respectively.

�ult∥ , �ult⟂  Ultimate tensile strength parallel and perpen-

dicular to the grain orientation direction, 
respectively.

�∥, �⟂  Permeability values parallel and perpendicular 
to the grain orientation direction, respectively

Sult  Ultimate shear strength of porous media
�  Grain orientation with respect to global hori-

zontal direction
�  Fracture propagation direction with respect to 

global horizontal direction
�  Angle between fracture propagation direction 

and the grain orientation direction
DOA  Degree of anisotropy

1 Introduction

Hydraulic fracturing is a process of inducing fractures in 
rock structures by injecting fluid at high pressures. Interest in 
hydraulic fracturing has been increasing in recent years due 
to its applications in the oil and gas industry for enhanced oil 
recovery in conventional reservoirs, for heat recovery from 
geothermal reservoirs and for the profitable extraction of oil 
and gas from unconventional reservoirs. A better understand-
ing of the fracture growth phenomena will enhance produc-
tivity and also reduce the environmental footprint as less 
fractures can be created in a much more efficient way.

Several models have been developed for this purpose, the 
earliest of which was by Khristianovic and Zheltov (1955) 
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and later extended by Geertsma and Klerk (1969) to form 
the KGD model, which proposed an analytical solution to 
the problem by assuming plane strain conditions. Although 
this model has been accepted as a standard case for hydraulic 
fracturing due to its simplicity, it suffers from the assump-
tion that there is no leak-off from fracture into formation 
and also the formation is assumed to be solid. Another 
analytical solution with a different geometrical assumption 
(fracture length ≫ fracture height) was given by Perkins 
and Kern (1961) and extended to include fluid loss by Nor-
dgren (1972). Analytical asymptotic solutions were formu-
lated (Adachi and Detournay 2002; Garagash and Detournay 
2005; Detournay 2016), based on a parametric space to iden-
tify the significant parameters in a given regime. Later, these 
asymptotic solutions have been modified to take into account 
the leak-off, fracture toughness and fluid viscosity (Adachi 
and Detournay 2008; Kovalyshen 2010; Dontsov 2017).

The first numerical models for modelling hydraulic frac-
turing were developed by Boone and Ingraffea (1990) using 
finite elements for modelling the formation and using finite 
volume for modelling flow with cohesive zones along ele-
ment edges describing the fractures. In recent times there 
have been several models developed based on different 
numerical techniques. A linear elastic fracture mechanics 
(LEFM)-based finite element model (FEM) was proposed 
by Hossain and Rahman (2008). To avoid the singularity 
problems at the crack tip in LEFM, FEM models with zero-
thickness elements (describing the fractures using cohesive 
zones) were developed (Carrier and Granet 2012; Chen 
2012). The FEM approach requires re-meshing to capture 
the fracture propagation accurately, whereas extended finite 
element (XFEM)-based models allows for fracture propaga-
tion in arbitrary directions without the need for re-mesh-
ing (Mohammadnejad and Khoei 2013; Remij et al. 2015; 
Meschke and Leonhart 2015). A novel approach in which 
the asymptotic behaviour near the fracture tip was resolved 
with extended finite element method (Gordeliy and Peirce 
2013a, b, 2015). An alternate approach based on phase field 
modelling which combines FEM with continuum damage 
mechanics has been developed (Mikelic et al. 2015; Miehe 
and Mauthe 2016) which provides a convenient way for 
modelling complex fracture interactions. But all the above 
hydraulic fracture models assume the rock formation to be 
isotropic in nature.

Most rocks (especially shales, which are the most com-
mon rock type to be hydraulically fractured) are highly 
anisotropic in nature (Jaeger et al. 2009; Barton 2007). 
Kaarsberg (1959) and Sayers (1994) observed that shales 
have a bedding plane along which the grains are oriented 
causing the properties along the grain direction to be 
vastly different from the properties perpendicular to the 
grain direction. This causes a special type of anisotropy, 

called transverse isotropy, where the material properties 
in any direction in the plane can be obtained by using the 
material properties along any two mutually perpendicular 
set of directions in that plane. Although there are several 
studies (Abousleiman et al. 2008; Zhubayev et al. 2015) 
experimentally obtaining the anisotropic parameters, there 
are few papers by Cheng (1997) analytically deriving the 
anisotropic poroelastic coefficients. Abousleiman et al. 
(1996) modelled the deformation and pressure in a trans-
versely isotropic porous medium without any fracture. 
Porous material with a stress-driven fracture in an ortho-
tropic medium was modelled by Remij et al. (2015). More 
recently, the influence of rock anisotropy on tensile frac-
tures was studied experimentally by Mighani et al. (2016).

In this paper, we enhance the aforementioned XFEM 
model by Remij et  al. (2015) to include the effects of 
anisotropy on hydraulic fracturing. Using the model we 
analyse the effect of anisotropic rock properties (Young’s 
modulus, ultimate tensile strength and permeability) on 
the fluid-driven fracture propagation and also the impact 
when combined with loading.

2  Mathematical Formulation

In order to solve a poroelastic problem, we need to solve 
for the solid deformation ( � ) and fluid pressure (p) at all 
points within the porous media. Biot’s theory of poroelas-
ticity (Biot 1941) is used to describe the porous media, 
and fluid flow is described using Darcy’s law. The porous 
medium is assumed to be saturated.

In addition for the hydraulic fracture problem, we make 
use of an enhanced local pressure (ELP) as proposed by 
Remij et al. (2015) to model the pressure inside the frac-
ture at all points along the fracture length. This additional 
degree of freedom ( pd ) enables us to model the compli-
cated phenomenon happening within the fracture, namely 
the injection of external fluid, moving boundaries of frac-
ture surface and the leak-off. Leak-off from fracture to 
formation is described using the 1-D Terzaghi’s consoli-
dation equation.

For solving the unknowns, a set of governing equations 
along with auxiliary equations are used. The governing 
equations used to describe the poroelastic problem are of 
two types: solid deformation-based momentum balance and 
fluid flow-based mass balance. We consider an additional 
equation to ensure the mass balance inside the fracture. The 
auxiliary equations are used for relating these governing 
equations with the unknowns and also for coupling them. 
A schematic flow chart of the mathematical formulation is 
represented in Fig. 1.
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A schematic of a body � with a discontinuity �d , which 
splits the body into two domains �+ and �− , along with 
prescribed boundary conditions is represented in Fig. 2.

3  Implementation

3.1  Discretisation

We need a numerical method in order to solve the set of 
coupled differential equations and also incorporate the 
discontinuous jump in various parameters due to the frac-
ture. Hence, we make use of XFEM which models the 
discontinuous jump due to fractures by using additional 

degrees of freedom. XFEM allows for the fracture to 
propagate through the elements, thus ensuring accuracy 
in capturing the fracture even with a coarse mesh mak-
ing it computationally very efficient. Similar to tradi-
tional FEM, the unknowns are obtained at certain control 
points (nodes) by solving the differential equation and 
the unknowns in the intermediate regions are obtained by 
interpolation using shape functions. The discretised form 
of the unknown displacement and pressure in a porous 
medium intersected by the fracture is expressed as:

 where H�d
 is the Heaviside step function given as:

û and p̂ represent the regular nodal degrees of freedom for 
displacement and pressure, respectively, while ũ and p̃ rep-
resent the enhanced nodal degrees of freedom represent-
ing the discontinuous jump in displacement and pressure 
across the fracture. p̂d represents the pressure inside the 
fracture at points where the fracture intersects the element 
edges (Fig. 3). N, L are two-dimensional interpolation or 
shape functions for the displacement and pressure fields, 
whereas V is a one-dimensional shape function for interpola-
tion of the pressure along the fracture length.

(1)u = Nû + H�d
Nũ when x ∉ �d

(2)p = Lp̂ + H𝛤d
Lp̃ when x ∉ 𝛤d

(3)pd = Vp̂d when x ∈ 𝛤d

(4)H�d
=

{
1 when x ∈ �+

0 when x ∈ �−

Fig. 1  Solution procedure for 
poroelastic fracture problem
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3.2  Solution

The governing equations are combined with the auxiliary 
equations as shown in Fig. 1. Weak form of this set of equa-
tions is obtained by integrating them along with a test function. 
By substituting the discretised unknowns given by Eqs. (1), 
(2) and (3) into the weak form, we convert the set of differ-
ential equations into a set of algebraic equations. In order to 
solve this set of equations simultaneously, we make use of the 
Newton–Raphson iterative solver in combination with Euler’s 
forward scheme for obtaining the time derivative, and Euler’s 
implicit scheme for time-independent parameters. A detailed 
description of the solution procedure is given in Remij et al. 
(2015).

The unknown 
(
X =

[
û ũ p̂ p̃ p̂d

]T) degrees of freedom 

are solved at each grid point (nodes) for every time step.

3.3  Propagation

A propagation criterion is needed in order to determine the 
propagation initiation and also the magnitude and direction 
of propagation. Hence, we make use of the Camacho–Ortiz 
criterion (Camacho and Ortiz 1996) which can be used for 
mixed mode fractures as well. This criterion states the condi-
tion for fracture propagation as:

where teq is the equivalent traction ratio in a specific direc-
tion, �ult and Sult represent the ultimate tensile and shear 

(5)teq > 1 where teq =

√
t2
n

𝜏2
ult

+
t2
s

S2
ult

strength of the porous media, respectively, tn and ts are the 
normal and shear tractions along that orientation which are 
obtained from average stresses as:

where � is the coefficient of friction, and n and s are the unit 
normal and tangent vector to the direction. �av is the average 
stress, used to obtain a better approximation of the stress 
state in the vicinity of the fracture tip. The average stresses 
are obtained by assigning weight functions to the Gaussian 
integration points within a certain distance (generally three 
times the characteristic element length) from the fracture 
tip, as derived by Jirasek (1998). As an averaged stress is 
used, this may lead to a slight delay in the onset of fracture 
propagation.

The direction of propagation is taken to be the direction 
in which the equivalent traction is maximum. The fracture 
is assumed to propagate through the entire element length 
in a single time step in a straight line. Further details on 
the implementation of the solution are described by Rem-
mers (2006) and Remmers et al. (2003).

4  Anisotropic Parameters

In this section, we highlight the parameters which need to 
be modified to incorporate the effect of anisotropy.

(6)tn =

{
nT�avn if nT�avn > 0

0 if nT�avn < 0

(7)ts =

{
sT�avn if nT�avn > 0

sT�avn − 𝛹 (nT�avn) if nT�avn < 0

Fig. 3  Discretisation in XFEM

Regular Nodes

Enhanced Nodes

1-D ELP Nodes

Regular Elements

Enhanced Elements

Fracture Path
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4.1  Constitutive Relation

The effective elastic stress ( �e ) in the solid grain is related 
to the elastic strain by means of the generalised Hooke’s law.

 where C is the constitutive relationship matrix and � is the 
elastic strain in the solid grains.

The coefficients of the constitutive matrix depend on the 
material type and geometrical assumptions. The constitu-
tive relation matrix can be obtained as the inverse of the 
compliance matrix, C = S−1 . We assume a plane strain case 
with a transverse isotropic material for which the compli-
ance matrix in the grain direction is given as:

where E∥ and E
⟂
 are the Young’s moduli parallel and perpen-

dicular to the grain direction and �in is the in-plane Poisson’s 
ratio, representing compressive strain perpendicular to the 
grain direction due to a tensile stress parallel to the grain 
direction and �out represents the out-of-plane Poisson’s ratio.

The constitutive matrix at any arbitrary direction is 
obtained from the following expression:

where T is the transformation matrix given as a function 
of the angle ( � ) between the global direction and the grain 
orientation direction.

4.2  Ultimate Tensile Strength

The ultimate tensile strength ( �ult ) is an important parameter 
which determines the fracture propagation. The ultimate ten-
sile strength is maximum in the grain orientation direction 
and minimum perpendicular to it. Some previous studies 
(Remij et al. 2015; Yu et al. 2002; Lee and Pietruszczak 
2015) have assumed cosine functions to interpolate the ulti-
mate tensile strength at arbitrary directions from the values 
along the grain direction and the perpendicular direction. 
Here we make use of the Tsai–Hill failure criterion (Jones 
1998) to model the directional dependence of the ultimate 
tensile strength. The Tsai–Hill failure criterion for a 2-D 
transverse isotropic material is given as:

(8)�e = C�

(9)Slocal =

⎡
⎢⎢⎢⎢⎣

(E⟂
−E∥�

2
in)

E∥E⟂

−(�in+�in�out)
E
⟂

0

−(�in+�in�out)
E
⟂

(1−�2out)
E
⟂

0

0 0
1

2G

⎤
⎥⎥⎥⎥⎦

(10)Cglobal = T−1ClocalT

(11)T =

⎡⎢⎢⎣

cos2 � sin2 � 2 sin � cos �

sin2 � cos2 � −2 sin � cos �

− sin � cos � sin � cos � cos2 � − sin2 �

⎤⎥⎥⎦

where �||,�ult|| and �
⟂
,�ult

⟂

 are the stresses, ultimate tensile 

strengths parallel and perpendicular to the grain direction, 
respectively, and �s and Sult indicate the shear stress and ulti-
mate shear strength in the plane.

Assuming a fracture propagating at an angle � with 
respect to the x-axis, the ultimate tensile strength perpen-
dicular to the fracture propagation direction �frac is given 
as the normal stress perpendicular to fracture propagation 
direction which can satisfy the Tsai–Hill failure criterion. To 
obtain �frac , this stress state ( �frac =

[
0 �frac 0

]T ) is rotated 
to the grain orientation direction by using the stress trans-
formation relations and then substituted into Equation (12).

where � = � − �, � is the grain orientation angle with respect 
to the x-axis, and � is the fracture propagation angle with 
respect to the x-axis  (Fig. 4).

Hence, for a randomly oriented fracture, we obtain the 
ultimate tensile strength in the direction perpendicular to 
the fracture propagation direction ( � + 90◦ ) as:

In order to validate the proposed Tsai–Hill-based theory, we 
make a comparison with experimental results. Mighani et al. 
(2016) conducted tensile fracture experiments on Lyon’s 
sandstone and pyrophyllite rocks and observed the ultimate 
tensile strength variation with � which is the angle between 

(12)

(
�||
�ult∥

)2

+

(
�
⟂

�ult
⟂

)2

−
�||�⟂
�2
ult∥

+

(
�s

Sult

)2

= 1

(13)�grain = T�frac �grain = �frac

⎡⎢⎢⎣

sin2 �

cos2 �

sin � cos �

⎤⎥⎥⎦

(14)
1

�frac
=

√
sin4�

�2
ult∥

+
cos4�

�2
ult

⟂

−
sin2�cos2�

�2
ult∥

+
sin2�cos2�

S2
ult

X

φ

θ

Y

⊥

t

n

Global Co-ordinates

Grain Orientat
ion

Fracture Propagation

Fracture Tip

γ

Fig. 4  Schematic for rotation of parameters
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the grain orientation direction and the fracture propagation 
direction. We make use of the experimental values for maxi-
mum and minimum ultimate tensile strengths and interpolate 
for various angles. As one can observe in Fig. 5, Tsai–Hill 
failure criterion provides a much better fit for the experimen-
tal values when compared to the previously assumed cosine 
functions (Remij et al. 2015; Lee and Pietruszczak 2015).

4.3  Poroelastic Coefficients

Cheng (1997) derived the analytical expressions for the 
transverse isotropic poroelastic coefficients based on the 
constitutive relationship matrix.

In a fully saturated porous medium, the external stresses 
on the porous media are partly taken by the fluid pressure in 
the pores and partly by deformation of the solid grains. This 
can be represented mathematically as:

where � is the total stress, �
e
 is Terzaghi’s effective stress, 

and � is Biot’s coefficient matrix.
The anisotropic Biot’s coefficient matrix reduced to the 

2-D form is given by the expression:

The other poroelastic constants such as bulk modulus and 
compressibility modulus are given as:

(15)� = �
e
− �p

� =

⎡⎢⎢⎣

�∥ 0 0

0 �
⟂
0

0 0 0

⎤
⎥⎥⎦

where

�∥ = 1 −
(C11 + 2C12)

3Ks

�
⟂
= 1 −

(C12 + C22 + C23)

3Ks

(16)Kbulk =
C11 + 2C22 + 4C12 + 2C23

9

where nf is the porosity of the porous media, and Ks and Kf 
are the bulk modulus of the solid and fluid, respectively.

4.4  Permeability

Permeability enters into the formulation through Darcy’s 
law which describes the fluid flow in the porous medium as:

where � is the intrinsic permeability tensor, � is the dynamic 
viscosity of the pore fluid, q is the flux, and p refers to the 
pressure in the porous media.

Permeability tensor for an anisotropic rock in the princi-
pal grain directions is given as

where permeability in the grain direction �∥ is larger than 
the permeability perpendicular to the grain direction �

⟂
 . For 

permeability in any arbitrary orientation we make use of the 
transformation matrix:

5  Results

5.1  Validation

Since there are no studies which exactly deal with hydrau-
lic fracturing in anisotropic media, we divide the validation 
into two parts: (1) Mandel’s problem which compares the 
numerical results with an analytical solution for a transverse 
isotropic porous medium without fractures and (2) the stand-
ard KGD problem which compares the numerical results 
with the ELP model (Remij et al. 2015) for a hydraulic frac-
ture problem in an isotropic medium.

5.1.1  Mandel’s Problem

Abousleiman et al. (1996) provided an analytical solution 
for Mandel’s problem in a transversely isotropic porous 
medium. Mandel’s problem (Fig.  6) consists of an infinitely 
long rectangular block with the left and right ends free from 
stresses and the fluid is free to flow, whereas an external 
force is applied on the top and bottom boundaries. The 
external force is taken as 10.5 MPa. The Young’s moduli 
along horizontal and vertical directions are 20 and 10 GPa, 

(17)M =
Ks

(1 −
Kbulk

Ks

) − nf(1 −
Ks

Kf

)

(18)q = −
�

�
.�p

(19)�grain =

[
�∥ 0

0 �
⟂

]

(20)�frac = ΦT
⋅ �grain ⋅Φ where Φ =

[
cos � − sin �

sin � cos �

]
.
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respectively. In-plane Poisson’s ratio is assumed to be 0.30, 
whereas the out-of-plane one is taken as 0.20. Similarly, 
permeability values are taken to be 10−19 and 10−17 m2 along 
horizontal and vertical directions. The bulk moduli of the 
solid grains and the pore fluid are assumed to be 36 and 
3 GPa. A time step of 500 s is used.

We compare the pore pressure solution from the numeri-
cal model with the analytical solution at different time peri-
ods in Fig. 7. The numerical pore pressure decay from the 
centre of the specimen to the free edges is found to be con-
sistent with the analytical solution with relative errors (< 
5%). The displacement in the x-direction along the centre 
line of the specimen is plotted and compared with the ana-
lytical solution.

5.1.2  KGD

In this validation case we consider a KGD problem (Fig. 8) 
which is a standard test case for hydraulic fracture problems. 
When the rock is assumed to be isotropic, there exists a 
theoretical solution given by Geertsma and Klerk (1969). 

The Young’s modulus and Poisson’s ratio are taken as 
20 MPa and 0.2. The ultimate tensile strength is assumed to 
be 2 MPa, while the toughness is 120N/m . The permeability 
and viscosity are given as 10−19 m2 and 0.1 Pa s . The initial 
fracture at the boundary is injected at the rate of 25 mm2∕s 
for a time period of 100 s with a time step of 0.1 s. The 
KGD problem considered here lies in the viscosity–storage 
propagation regime.

The fracture propagates on a non-predefined path. In 
Fig. 9, we compare the fracture profiles at various time 
steps from the current numerical model and the ELP model 
(Remij et al. 2015). As observed the current model accu-
rately reduces to the ELP solution for isotropic values 
of the parameters. The fracture mouth opening pressure 
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variation with time is also plotted and compared. A mesh of 
50 × 50 mm2 is used for the purpose.

5.2  Vertical Hydraulic Fracture Problem

The test case (Fig. 10) that is used here is very similar to the 
previous KGD problem, but an initial crack is placed at the 
bottom of the model, to model the vertical fracture growth 
representative of the hydraulic fractures. The model is simu-
lated for 10.5 s with a time step of 0.1 s. Also the model is 
subjected to external stresses of 40 MPa, due to the overbur-
den pressures or in situ stresses existing at depths of around 
1.5 km. The fluid is free to flow from the top and the right 
boundaries, whereas no-flow conditions exist at the left and 
bottom boundaries. The isotropic values of the parameters 
used in the model are specified in Table 1. All angles are 
with respect to the horizontal axis. For cases of anisotropy, 
these isotropic values are perturbed depending on the degree 
of anisotropy. The degree of anisotropy is defined as:

By using the parameters in Table 1 to obtain the non-
dimensional parameter ( k ) described in Bunger et al. 
(2005), we observe that the hydraulic fracture problem 
described here lies in the viscosity-dominated regime and 
closer to the storage edge. In the following Sects. 5.3 and 
5.6.1 we try to understand the influence of anisotropy in 
each individual parameter by keeping all other parameters 
isotropic. We also look at the possible combination of ani-
sotropy in these parameters in Sects. 5.4 and 5.6.2.

(21)Degree of Anisotropy (DOA) =
(⋅)max − (⋅)min

(⋅)max

5.3  Parametric Anisotropy

In this subsection, we vary one parameter at a time to find 
out the fracture propagation variation with anisotropy in 
each individual parameter. In all the considered test cases 
we assume that the grains are oriented along the horizontal 
direction ( 0◦ ) and the initial fracture is oriented in the verti-
cal direction ( 90◦).

5.3.1  Anisotropy Due to Young’s Modulus

We consider three possible scenarios for varying Young’s 
modulus: (1) E-Parallel: anisotropy caused by increasing the 
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Young’s modulus ( E∥ ) parallel to the grain direction alone. 
(2) E-Perpendicular: anisotropy caused by decreasing the 
Young’s modulus ( E

⟂
 ) perpendicular to the grain direction 

alone. (3) E-Combined: anisotropy caused by varying both 
parallel and perpendicular values from the isotropic values 
given by following equation:

Both in-plane and out-of-plane Poisson’s ratios are assumed 
to have a constant value of 0.2.

From the fracture length plot in Fig. 11, we can observe 
that E∥ has a much greater effect on fracture propagation 
than E

⟂
 . This is due to the fact that the propagation of the 

initial vertical fracture is dependent on the stresses which are 
perpendicular to it. Hence, an increase in E∥ results in higher 
stresses perpendicular to the initial fracture, which promotes 

(22)(⋅)∥ =
(⋅)isotropic

1 − (DOA∕2)
(⋅)

⟂
= (1 − DOA)(⋅)‖

fracture growth significantly, whereas a decrease in E
⟂
 only 

has a smaller Poisson’s effect on the stress. Since E∥ > E
⟂
 

always, the fracture prefers to orient itself perpendicular to 
the grain orientation which is observed in all the three sce-
narios in the fracture orientation plot.

Also we plot the pressure at the mouth of the fracture, 
which is a much more easily measurable quantity in the field. 
Since all the three scenarios favour fracture propagation in 
the same initial fracture direction, there is little variation 
( < 5% ) in the pressure required to open the fracture.

5.3.2  Anisotropy Due to Ultimate Tensile Strength

Similar to the Young’s modulus variation, we consider the 
same three scenarios for understanding ultimate tensile 
strength-induced anisotropy. Fracture propagation is resisted 
by the ultimate tensile strength perpendicular to the fracture 
orientation. Hence, the fracture tends to propagate along the 
direction perpendicular to the minimum ultimate tensile 
strength. Since �ult

⟂

 is always lower than �ult‖ , the fracture 

tends to propagate parallel to the grain orientation. But since 
the initial fracture is oriented in an unfavourable direction 
(perpendicular to the grain direction), the fracture continues 
to propagate in its initial direction until a threshold level 
where the effect of anisotropy becomes significant to rotate 
the fracture as observed from the fracture orientation plot in 
Fig. 12.

Also looking at the fracture length variation we observe 
that there is a significant increase in the fracture length when 
the fracture re-orients itself from its initial direction to the 
favourable direction. Since the fluid inside the fracture has 
to go through steep rotation ( ∼ 80◦), much higher pressures 
are required in order to drive the fracture.

Table 1  Isotropic value of parameters

Parameter Isotropic value

Young’s modulus 20 GPa
Poisson’s ratio 0.2
Toughness ( G

c
) 120 N/m

Ultimate tensile strength 6 MPa
Ultimate shear strength 60 MPa
Permeability 10−19 m2

Porosity 0.1
Viscosity 10−2 Pa s
Solid bulk modulus 36 GPa
Fluid bulk modulus 3 GPa
Injection rate 0.0006 m2∕s

Overburden pressure 40 MPa
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Fig. 11  Fracture variation with Young’s modulus anisotropy after 20 s for an equivalent injection volume of 0.012m2
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5.3.3  Anisotropy Due to Permeability

Anisotropy in the permeability of the rocks was considered 
in the formulation. As indicated in Table 1, the isotropic 
permeability of shales was assumed to be 10−19 m2 (100 nd). 
It was varied within two orders of magnitude, i.e. 10−18 to 
10−20 m2 (1000–10 nd). However, its impact on the fracture 
growth was found to be very negligible since shales already 
have very low permeability values (almost impermeable).

5.4  Degree of Material Anisotropy

In the following subsections, we focus only on the fracture 
propagation direction. This is because variation in fracture 
length or width due to various anisotropies and combinations 
can be overcome by varying the fluid injection time, but the 
fracture orientation direction cannot be modified by means 
of any external influence as it is solely dependent on the 
field conditions. Hereafter, all the anisotropies considered 
are by varying both the values parallel and perpendicular to 
the grain direction as given by Eq. (22).

In this set of cases, we study the interplay between ani-
sotropy due to Young’s modulus and the anisotropy due to 
ultimate tensile strength by varying them from 0 to 75% 
individually. As seen from the previous Sect. 5.3, both these 
anisotropies have contrasting effect on the fracture propa-
gation direction. Therefore, it is important to identify the 
regions where one parameter has a higher degree of influ-
ence than the other.

Figure 13 represents a schematic of the material anisot-
ropy contour plots shown in Fig. 14. As can be seen there are 
two distinct regimes: (1) Regime A, influenced by anisotropy 
in ultimate tensile strength causing the fractures to propagate 
parallel to the grain direction, (2) Regime B, influenced by 
anisotropy in Young’s modulus resulting in fractures finally 
getting oriented perpendicular to the grain direction. There 

is a sudden transition from one regime to another once a 
threshold value is crossed.

In Fig. 14, we observe that contour plots are represented 
for four different grain orientation ( � ) directions. � refers to a 
grain orientation with respect to the global horizontal direc-
tion (x-axis). The non-smooth variations in the threshold 
values for transition between regimes in the contour plots 
are due to the variation of anisotropies in step sizes of 5%. 
Looking at the different contour plots we can see that the 
size and shape of the different regimes vary with varying 
grain orientation angles.

From the � = 0◦ plot, we observe that beyond a threshold 
value of 50% DOA in �ult the fracture moves from Regime 
B to Regime A (red regions representing 𝜙 < 20◦). Looking 
at the plot for � = 30◦ , we observe that the fracture tries to 
align itself perpendicular to the grain direction (blue regions 
representing 𝜙 > 100◦ ) even for relatively low values of 
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E anisotropy, but requires much higher ( > 40% ) DOA in 
Young’s modulus along with low ( < 10% ) DOA in ultimate 
tensile strength when � = 60◦ . Young’s modulus anisotropy 
cannot influence the fracture at all when the fracture needs 
to be completely rotated by 90◦.

Looking at all the contour plots we can observe that the 
area of Regime A increases with grain orientation angle. 
The influence of �ult anisotropy is much higher as the grain 
orientation angle increases due to the fact that the fracture 
needs to be rotated by a smaller angle from its initial vertical 
orientation to align itself with the grain orientation direction. 
The converse is true for the influence of Young’s modulus 
anisotropy.

5.5  Angle of Orientation

In this set of cases, we vary the degree of anisotropy of the 
material parameters (namely both Young’s modulus and 
ultimate tensile strength simultaneously) between 0 and 
75% as well as the grain orientation direction from 0◦ to 
90◦ . The results of these cross-sets of cases are represented 
in the form of a contour plot as shown in Fig. 15.

5.5.1  Grain Orientation Direction

We observe that along the vertical axis (for a particular grain 
orientation direction), after a certain degree of combined 
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Fig. 14  Final fracture orientation angle ( � , with respect to global hor-
izontal axis) variation with material anisotropy at different grain ori-
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material anisotropy the crack always tends to align with the 
grain direction. This is due to the fact that �ult anisotropy 
has a greater impact than the E anisotropy at larger values 

of DOA ( > 30%), whereas E anisotropy has a much larger 
impact when the DOA is lower ( < 30%). Along the hori-
zontal axis (for a particular combined material DOA), we 
observe that the fracture tends to re-orient itself with relative 
ease as the angle ( � = � − � ) between the initial fracture 
orientation and the grain orientation reduces.

In Fig. 16, the fracture propagation at a constant com-
bined material degree of anisotropy of 55% for various grain 
orientation angles from 0◦ to 90◦ is plotted.

5.5.2  Initial Fracture Orientation

In all the previous and later cases, the initial fracture is 
assumed to be along the vertical direction ( 90◦). In this sub-
section, three initial fractures at varying initial orientation 
angles of 90◦ , 60◦ and 0◦ are included simultaneously. The 
grain orientation angle is assumed to be 60◦ with a combined 
material DOA of 15%.

From Fig. 15 for a material DOA of 15%, we observe that 
the fracture aligns along the grain orientation direction when 
𝜃 < 50◦ and aligns perpendicular to the grain direction when 
𝜃 > 50◦ . For the initial fractures 90◦ , 60◦ and 0◦ correspond-
ing theta values are 30◦ , 0◦ and 60◦ , respectively. Hence, the 
first two initial fractures ( 90◦ and 60◦ ) are expected to be 
aligned along the grain orientation direction ( 60◦), while the 
0◦ initial fracture is expected to be aligned perpendicular to 

M
at

er
ia

l A
ni

so
tro

py
(%

)

Grain Orientation (degree)
0 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

0

20

40

60

80

100

120

Fig. 15  Final fracture orientation angle ( � ) variation with different 
degrees of combined material anisotropy and grain orientation angles 
with respect to horizontal axis. The transition between the blue and 
red colours along the vertical direction in the left corner would be a 
very sudden transition if smaller anisotropic step sizes are used (col-
our figure online)

0 degree 

50 degrees

60 degrees

10 degrees

40 degrees

70 degrees

20 degrees

30 degrees

90 degrees

Fig. 16  Propagation of an initial vertical fracture with different grain orientation angles for a material anisotropy of 55%



A Numerical Study on the Effect of Anisotropy on Hydraulic Fractures  

1 3

the grain orientation direction ( 150◦ ) which is exactly repli-
cated by the results shown in Fig. 17.

5.6  Lithostatic Stresses

5.6.1  Anisotropy Due to Lithostatic Stress

Similar to other parametric variations, we consider the 
three possibilities of stress-induced anisotropy due to (1) 
an increase in vertical stresses, (2) a decrease in horizontal 
stress, (3) a combination of both. Note that in real hydraulic 
fracture scenarios in the field, the vertical overburden pres-
sure is assumed to be slightly larger than the horizontal pres-
sure. The fracture orients itself preferably in the direction 
parallel to the maximum compressive stress, which is same 
as the initial fracture direction ( 90◦ ) in all the three sce-
narios. The decrease in horizontal stresses results in much 
lower compressive stresses perpendicular to the fracture, 

thereby promoting fracture growth and also requiring less 
pressure to open the fracture as seen from Fig. 18. Similarly, 
the increase in vertical stresses only causes a mild increase 
in the tensile stresses acting perpendicular to the fracture 
due to Poisson’s effect.

5.6.2  Combined Anisotropy

In this final scenario we look at combining all the above-
discussed anisotropy scenarios. The material anisotropy 
refers to varying both Young’s modulus and ultimate tensile 
strength simultaneously from 0 to 75% by using Eq. (22). 
The stress anisotropy refers to variation of the overburden 
pressures from 0 to 50% given by Eq. (22). The contour plots 
are obtained for four different grain orientation angles ( �), 
namely 0◦ , 30◦ , 60◦ and 90◦.

Fig. 17  Influence of initial fracture orientation on fracture propagation
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Looking at the schematic (Fig. 19) for the combined ani-
sotropy contour plots shown in Fig. 20, we observe that apart 
from Regimes A and B, there is an additional Regime C in 
which the in situ stresses play a major role in determining 
the final fracture orientation. The fractures get oriented par-
allel to the maximum compressive stress direction in this 
regime. Looking at the plot for � = 0◦ , as already seen in 
Fig. 14 the fracture tends to re-orient itself parallel to grain 
direction after a combined material DOA of 50%. But this 
re-orientation is possible only when the stress anisotropy 
is less than 20%, beyond which the fracture transitions into 
Regime C. In this case, Regime B and Regime C coincide 
with each other as perpendicular to the grain direction 
and maximum compressive stress are both in the vertical 
direction.

The plot for � = 30◦ is the most complete plot with all 
the regimes which are influenced by the various anisotropy 
parameters. The dark blue regions representing fracture 
orientations ( � ) larger than 110 are indicative of Regime B 
at low material DOA ( < 25% ) and low stress DOA ( < 25%).  
The high material DOA ( > 25% ) and low stress DOA 
( < 30% ) regions represented by varying intensities of red 
colour (Regime A) are indicative of the ultimate tensile 
strength influence. For high stress DOA ( > 30% ) (Regime 
C), the fractures are more influenced by the stress-induced 
anisotropy. But the fracture orientation angles ( � ) are not 
exactly 90◦ which it is supposed to be as the vertical over-
burden pressures are maximum. This is because of the 
fact that although external stresses are maximum in one 
direction the local stress state has maximum values in a 

different direction as a result of the Young’s modulus ani-
sotropy. Therefore, the fracture ends up oriented at angles 
( ∼ 100◦ ) in between perpendicular to the grain orientation 
( 120◦ ) and the vertical direction ( 90◦).

When � = 60◦ , the ultimate tensile strength has great 
influence over most of the regions except the regions with 
high stress DOA ( > 30% ) and high material DOA(> 40% ) 
where both the stress and Young’s modulus anisotropy 
combine. When � = 90◦ , both the combined material DOA 
and the stress anisotropy prefer the fracture to propagate 
along its initial vertical direction causing all the regimes 
to coincide.

Looking at all the four contour plots together one can 
observe the reduction in the influence of stress-induced 
anisotropy as the grain orientation direction increases, or 
in other words when the angle ( � = � − � ) between the ini-
tial fracture orientation and the grain direction decreases, 
while the converse is true for material-based anisotropy.

6  Conclusion

From all the above simulations, we observe that the 
hydraulic fractures are greatly influenced by the anisotropy 
arising due to various parameters. Some of the important 
observations are as follows:

(a) Young’s modulus anisotropy promotes fracture growth 
perpendicular to the grain direction.

(b) Ultimate tensile strength anisotropy promotes fracture 
growth parallel to the grain direction.

(c) Stress-induced anisotropy promotes fracture growth 
parallel to the maximum overburden pressure.

(d) At high degrees of material anisotropy, ultimate ten-
sile strength has a greater influence than the Young’s 
modulus, while the converse is true for low degrees of 
anisotropy.

(e) Most important angle influencing fracture orientation 
is the angle between grain orientation and the initial 
orientation. When this angle decreases, the influence of 
ultimate tensile strength anisotropy increases, while the 
influence of Young’s modulus anisotropy and stress-
based anisotropy decreases.

Combination of stress anisotropy, material anisotropy and 
the initial fracture orientation with respect to the grain 
orientation is observed to determine the final fracture 
propagation direction.
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Appendix

In this appendix we provide the final fracture orientation 
angle with respect to the horizontal axis (x-axis) due to 
various anisotropies, which was used in the contour plots 
(Tables 2, 3, 4, 5, 6, 7, 8).
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Fig. 20  Final fracture orientation angle ( � , with respect to global hor-
izontal axis) variation with material anisotropy and stress anisotropy 
at different grain orientation angles: a 0◦ , b 30◦ , c 60◦ and d 90◦ . The 
blue colour indicates the final fracture gets oriented perpendicular to 
the grain orientation, whereas the red colour indicates the final frac-

ture gets oriented parallel to grain orientation. The transition between 
the blue and red colours (indicated by white colour) would be a very 
sudden transition if smaller anisotropic step sizes are used (colour fig-
ure online)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Table 2  Degree of material anisotropy versus degree of stress anisotropy (for grain orientation: 0◦)

Stress 
DOA  
(in %)

Material DOA (in %)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

 0 90 90 90 90 90 90 90 90 90 90 11 13 13 11 10 10
 5 90 90 90 90 90 90 90 90 90 90 17 18 17 17 17 13
 10 90 90 90 90 90 90 90 90 90 90 90 26 26 22 21 21
 15 90 90 90 90 90 90 90 90 90 90 90 90 31 31 32 31
 20 90 90 90 90 90 90 90 90 90 90 90 90 88 88 88 88
 25 90 90 90 90 90 90 90 90 90 90 90 90 90 89 88 87
 30 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89
 35 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
 40 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
 45 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
 50 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89

Table 3  Degree of material anisotropy versus degree of stress anisotropy (for grain orientation: 30◦)

Stress 
DOA  
(in %)

Material DOA (in %)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

 0 90 115 115 37 37 36 36 35 34 33 33 33 32 32 31 32
 5 90 114 115 115 40 40 40 39 40 39 38 38 37 36 36 34
 10 90 113 113 113 45 45 45 45 45 45 44 45 43 43 42 44
 15 90 111 112 112 112 48 49 49 49 49 51 52 51 51 52 50
 20 90 111 111 111 111 111 54 54 56 55 56 56 57 58 58 62
 25 90 109 110 110 110 110 110 109 109 109 109 57 62 63 63 64
 30 90 109 109 109 109 109 109 109 109 109 109 109 60 64 65 66
 35 90 108 108 108 108 108 109 109 109 109 108 108 108 66 68 68
 40 90 108 108 108 108 108 108 108 108 108 108 108 108 80 88 88
 45 90 107 107 107 107 107 97 97 97 97 107 107 107 101 84 83
 50 90 107 106 107 97 97 97 97 97 97 107 107 99 99 82 83

Table 4  Degree of material anisotropy versus degree of stress anisotropy (for grain orientation: 60◦)

Stress 
DOA 
(in %)

Material DOA (in %)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

 0 90 65 65 65 65 65 65 66 66 66 66 67 67 67 67 69
 5 90 66 66 67 66 67 67 67 67 67 68 68 68 68 69 69
 10 90 67 68 68 68 68 68 68 68 69 69 69 69 70 72 72
 15 90 70 69 69 69 69 69 69 70 70 70 70 70 72 72 77
 20 90 69 69 70 70 70 71 71 71 72 71 72 74 74 74 74
 25 90 70 71 71 72 71 71 72 72 72 73 74 74 74 77 75
 30 90 71 71 72 72 72 72 73 73 74 74 74 74 74 75 76
 35 90 72 72 72 72 73 74 74 74 74 72 72 75 75 76 77
 40 90 72 73 73 73 74 74 74 74 75 75 75 76 76 76 77
 45 90 73 73 73 74 74 74 75 75 75 76 76 76 77 77 77
 50 90 73 74 74 74 74 74 74 75 76 76 76 77 77 77 77



A Numerical Study on the Effect of Anisotropy on Hydraulic Fractures  

1 3

Table 5  Degree of Young’s modulus anisotropy versus degree of ultimate tensile strength anisotropy (for grain orientation: 0◦)

Ultimate ten-
sile strength 
DOA (in %)

Young’s modulus DOA (in %)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

 0 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
 5 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
 10 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
 15 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
 20 90 90 90 90 90 90 90 90 90 90 90 89 89 89 89 89
 25 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89 89
 30 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89 89
 35 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
 40 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 89
 45 90 90 90 90 90 90 90 90 90 90 90 90 11 11 11 89
 50 16 12 12 12 15 15 15 15 15 11 11 11 11 11 11 11
 55 15 12 15 15 15 15 15 15 12 12 12 13 11 11 13 13
 60 13 12 12 12 12 12 12 12 12 12 12 12 13 12 11 12
 65 13 12 12 12 12 12 13 12 12 12 11 11 11 11 12 12
 70 13 11 12 12 12 12 13 12 12 11 11 11 11 12 10 10
 75 12 12 12 12 12 12 12 12 12 12 12 13 10 11 11 10

Table 6  Degree of Young’s modulus anisotropy versus degree of ultimate tensile strength anisotropy (for grain orientation: 30◦)

Ultimate tensile 
strength DOA 
(in %)

Young’s modulus DOA (in %)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

 0 90 115 115 116 118 118 119 119 120 120 121 122 123 123 126 127
 5 90 115 115 116 118 118 119 119 120 120 121 122 123 123 126 127
 10 90 115 115 116 116 118 119 119 120 120 121 122 123 123 125 127
 15 38 37 37 37 36 36 118 119 120 120 121 122 122 123 125 127
 20 38 37 37 37 37 36 35 34 34 120 37 121 122 123 125 127
 25 38 37 37 37 37 36 35 34 34 33 33 33 122 123 125 127
 30 38 38 37 37 37 36 36 35 34 33 33 33 122 123 125 126
 35 39 38 37 37 37 36 36 35 34 34 33 33 33 123 124 125
 40 39 38 37 37 37 36 36 35 34 33 33 33 33 33 123 125
 45 39 38 37 36 37 36 36 35 34 33 33 33 33 33 123 124
 50 39 38 37 37 37 36 36 35 34 34 33 33 33 33 122 123
 55 39 38 37 37 37 36 36 34 34 34 33 33 33 32 32 31
 60 39 38 37 37 37 36 36 35 35 34 33 33 32 32 31 31
 65 39 38 37 37 37 36 35 36 34 34 33 33 33 32 32 31
 70 39 39 38 37 37 36 35 36 35 34 34 33 32 33 31 31
 75 38 38 37 37 36 36 36 35 35 34 34 33 33 33 31 32
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