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Abstract

We present an isogeometric method for Kirchhoff–Love shell analysis of shell structures with geometries composed of
ultiple patches and which possibly possess extraordinary vertices, i.e. vertices with a valency different to four. The proposed

sogeometric shell discretisation is based on the one hand on the approximation of the mid-surface by a particular class of
ulti-patch surfaces, called analysis-suitable G1 (Collin et al., 2016), and on the other hand on the use of the globally C1-

mooth isogeometric multi-patch spline space (Farahat et al., 2023). We use our developed technique within an isogeometric
irchhoff–Love shell formulation (Kiendl et al., 2009) to study linear and non-linear shell problems on multi-patch structures.
hereby, the numerical results show the great potential of our method for efficient shell analysis of geometrically complex
ulti-patch structures which cannot be modelled without the use of extraordinary vertices.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Isogeometric analysis; Kirchhoff–Love shell problem; Multi-patch structures; C1-smooth functions

1. Introduction

Isogeometric analysis [1] (IGA) is a powerful numerical framework for solving partial differential equations
y employing the same (rational) spline function space for representing the geometry and the solution space of
he considered partial differential equation. In the last years, it has been widely used as an effective tool for the
nalysis of shells in various engineering disciplines including aerospace, automotive, maritime, civil and biomedical
ngineering. Thereby, the high continuity of the employed splines allows to achieve a high accuracy and efficiency
n the numerical simulation. Shell analysis is a field where IGA had an especially high impact, and many innovative
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shell formulations have been developed, including Kirchhoff–Love shells [2,3], Reissner–Mindlin shells [4–9],
hierarchic shells [10,11], and solid shells [12–16].

In this work, we will focus on the use of the Kirchhoff–Love shell element [2]. It is a popular element due to its
otation-free nature, which is enabled by the use of second-order derivatives of the underlying basis functions, and
hich implies a low number of element-wise degrees of freedom. The requirement for the existence of second-order
erivatives of the underlying basis of the isogeometric Kirchhoff–Love shell elements can be easily satisfied for
pline functions within a single patch. But in case of multi-patch geometries with possibly extraordinary vertices,
hich are typically needed for modelling complex shell structures, the C1 continuity across the patch interfaces has

o be additionally enforced. There exist two main strategies for imposing C1-smoothness across the interfaces of
ulti-patch structured Kirchhoff–Love shells.
The first approach couples the neighbouring patches in a weak sense, which means that the used isogeometric

iscretisation space is just approximately C1-smooth instead of exactly C1-smooth. The so-called bending strip
ethod [17] was the first developed technique for weak patch coupling and falls under the category of penalty
ethods. It uses the concept of a stiff strip to connect patches with arbitrary angle and requires a conforming patch

nterface. Besides the bending strip method, different penalty methods [18–21], Nitsche coupling techniques [22–
7], and other methods which are reviewed in [28] have been developed. While penalty methods provides a simple
mplementation but require the choice of a parameter, the Nitsche coupling techniques are parameter-free but need
arger implementation efforts. An alternative to penalty and Nitsche methods are mortar methods [29–31]. They are
arameter-free and also provide flexibility for the patch connection angle as well as for non-conforming coupling
ut require the finding of Lagrangian multipliers. Contrary to the penalty, Nitsche and mortar methods, where the
ariational formulation is altered to establish the weak C1 coupling across patches, the methods [32–35] directly
enerate basis functions which are approximately C1. However, the techniques [32,34,35] are restricted so far to
lanar domains and to the solving of the biharmonic equation.

The second strategy for imposing C1-continuity across the patch interfaces couples the neighbouring patches in a
trong sense, which leads to C1-smooth discretisation spaces that are exactly C1-smooth. Then after constructing a
asis for the resulting C1-smooth space, the Kirchhoff–Love shell formulation [2] can be directly applied. The
xisting techniques for the Kirchhoff–Love shell analysis can be classified depending on the employed multi-
atch parameterisation of the mid-surface of the considered Kirchhoff–Love shell. They are either based on the
se of globally C1-smooth multi-patch surfaces with singularities at the extraordinary vertices [36,37], on the
pplication of globally C1-smooth multi-patch surfaces with specific G1-smooth caps in the vicinity of extraordinary
ertices [38,39], or on the most general case namely on the use multi-patch surfaces which are just G1-smooth2 [41].
or the latter case, the usage of a particular class of G1-smooth multi-patch surfaces, called analysis-suitable-G1

in short AS-G1) [42], allows the construction of C1-smooth multi-patch spline spaces with optimal polynomial
eproduction properties. This has been demonstrated so far just for the solving of the biharmonic equation over
lanar multi-patch parameterisations [42–46] and multi-patch surfaces [47], and will be extended in this work to
he case of multi-patch shell structures. Thereby, the representation of the mid-surface of the shell by an AS-G1

ulti-patch surface is not restrictive, since any (approximate) G1-smooth multi-patch surface can be approximated
y an AS-G1 multi-patch surface [47,48].

In this work, we will develop a novel, simple isogeometric method for the analysis of shell structures composed
f several patches with possibly extraordinary vertices. The presented technique will follow the second strategy
bove, and will rely on three main ingredients, namely first on the representation of the mid-surface of the shell by
n AS-G1 multi-patch surface, then on the usage of the globally exactly C1-smooth multi-patch spline space [47]
s discretisation space of the shell and finally on the application of the Kirchhoff–Love shell formulation [2] for the
nalysis. An advantage of our proposed approach compared to other strong coupling techniques is that our method
an be applied to any G1-smooth multi-patch spline surface, which is then modelled by an AS-G1 multi-patch
urface, and is not based on the usage of a particular class of multi-patch surfaces. E.g. the technique [37] cannot
e applied to smooth multi-patch spline surfaces, which possess boundary vertices, where two patches just meet
ith C0-smoothness. A benefit of our strong coupling method compared to existing weak coupling techniques is

hat the employed discretisation space [47] is exactly C1-smooth, which allows to directly apply the Kirchhoff–Love
hell formulation [2]. Hence, it is not necessary e.g. to add penalty terms to the weak form of the problem and to

2 A surface is G1-smooth if it possesses at each point a well-defined tangent plane, cf. [40]. The G1-continuity of a surface is a weaker
condition than the C1-continuity, where at each point the partial derivatives have to be well-defined.
2
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deal with penalty factors as in penalty methods or to use Lagrange multipliers as in mortar methods. Several linear
and non-linear benchmark examples will demonstrate the great potential of the presented method for performing
analysis of complex Kirchhoff–Love shells.

The outline of the paper is as follows. Section 2 provides the basics of isogeometric Kirchhoff–Love shell analysis
ith the focus on the used Kirchhoff–Love shell formulation [2]. In Section 3, we introduce the employed C1-

smooth multi-patch discretisation, which is based on the one hand on the approximation of the mid-surface of the
shell by a particular class of multi-patch surfaces, called AS-G1 multi-patch geometries [42], and on the other hand

n the application of the C1-smooth spline space [47]. The detailed construction of the used C1-smooth spline space
ith implementation details is discussed in Appendix. Section 4 presents the novel isogeometric method for the

nalysis of multi-patch structured Kirchhoff–Love shells with several linear and non-linear numerical benchmark
xamples. Finally, we conclude our work in Section 5.

. Kirchhoff–Love shell formulation

Based on the works [2,49,50], we will briefly recall the Kirchhoff–Love shell formulation, which will be used
hroughout the paper. For the sake of brevity, we will restrict ourselves in this section to a single-patch mid-
urface r : [0, 1]2

→ R3, but the presented formulation can be simply extended to the employed multi-patch setting
ntroduced in Section 3 by just applying it in each case to the single surface patches. Firstly, Section 2.1 will define
he shell coordinate system, followed by Section 2.2 where the shell kinematics will be defined accordingly. Finally,
n Section 2.3 the variational form of the shell problem will be given. In the following, we will use Greek indices
, β, γ, δ ∈ {1, 2} and Latin indices i, j ∈ {1, 2, 3}.

.1. Shell coordinate system

The Kirchhoff–Love shell formulation is defined on the surface r(ξ 1, ξ 2) with parametric coordinates ξα . By the
irchhoff Hypothesis [51], which implies no shear in the cross section and orthogonality of orthogonal vectors after
eformation, any point in the shell y(ξ 1, ξ 2, ξ 3) can be represented by a point on the mid-surface and a contribution
n normal direction:

y(ξ 1, ξ 2, ξ 3) = r(ξ 1, ξ 2) + ξ 3a3, (1)

here a3 is the unit normal vector to the surface and ξ 3 is the through-thickness coordinate. The deformed and
ndeformed configurations are denoted by y, r and ẙ, r̊, respectively. The covariant basis of the mid-surface and
he normal vector are obtained by the partial derivatives of r with respect to its parametric coordinates, i.e.

aα =
∂r
∂ξα

, a3 =
a1 × a2

|a1 × a2|
.

In addition, the first and second fundamental forms aαβ, bαβ are defined as follows:

aαβ = aα · aβ, bαβ = a3 · aα,β = −a3,β · aα, (2)

where aα,β is the Hessian of the surface and a3,α is the derivative of the normal vector, which can be obtained by
Weingarten’s formula a3,α = −bβ

αaβ with bβ
α = aαγ bγβ as the mixed curvature tensor [52]. From Eq. (2) it can be

bserved that second-order derivatives are required for evaluation of the second fundamental form.

.2. Shell kinematic and constitutive relations

The Green–Lagrange strains Eαβ at any point in the shell are defined as:

Eαβ = εαβ + ξ3καβ, (3)

here εαβ, καβ are the membrane strains and curvature change, respectively, which are obtained by the first and
econd fundamental forms (2) of the undeformed and deformed configurations [2,49]:

εαβ =
1
2

(aαβ − åαβ)

˚
(4)
καβ = bαβ − bαβ .

3
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Stresses are represented by the stress resultants n and m, corresponding to membrane forces and moments,
respectively. Assuming isotropic linear elastic material, they are obtained by

nαβ
= Cαβγ δ

: εγ δ,

mαβ
= Cαβγ δ

: κγ δ,

where Cαβγ δ is the plane stress material tensor. Within this paper, only isotropic linear elastic materials are
considered, but the formulation can be easily extended to nonlinear materials as shown in [49].

2.3. Variational formulation

The variational formulation for the Kirchhoff–Love shell problem is defined by using the principle of virtual
work as in [2,49], and by following the notations from [50]. Denoting the internal and external energies by W int

and W ext, respectively, the variations of the internal and external work are defined as

δW (u, δu) = δW int
− δW ext

=

=

∫
Ω

n : δε + m : δκ dΩ −

∫
Ω

f · δu dΩ .

Here, we denote by u the displacements, by δu the virtual displacements, by δε the virtual membrane strain and
by δκ the virtual curvature change.

Furthermore, r̊ represents the undeformed mid-surface of the shell, defined on the parametric domain [0, 1]2. Note
that the metric basis of the deformed configuration is computed on r, which has the same parametric domain as the
undeformed configuration. In addition, dΩ =

√⏐⏐åαβ

⏐⏐dξ 1dξ 2 is the differential area in the undeformed configuration
apped onto the parametric domain [0, 1]2.
Following a Galerkin approach, we represent the shell displacements u by a finite sum of basis functions φi and

heir coefficients ui , i.e. u =
∑

i uiφi . Then, the discrete residual vector Ri is defined by taking the first Gateaux
erivative with respect to ui [2], i.e.

Ri = F int
i − Fext

i =

∫
Ω

n :
∂ε

∂ui
+ m :

∂κ

∂ui
dΩ −

∫
Ω

f ·
∂u
∂ui

dΩ , (5)

here Ω ⊂ R3 represents the surface domain defined by the mid-surface r. Applying a second linearisation of the
ariational form with respect to u j , the components Ki j of the tangential stiffness matrix, can be found as

Ki j = K int
i j − K ext

i j =

=

∫
Ω

∂n
∂u j

:
∂ε

∂ui
+ n :

∂2ε

∂ui∂u j
+

∂m
∂u j

:
∂κ

∂ui
+ m :

∂2κ

∂ui∂u j
dΩ .

(6)

Lastly, for non-linear simulations, Newton iterations are performed for solution u and increment ∆u by solving

K∆u = −R.

hroughout these iterations, the deformed geometry r is updated with the displacement field.
Due to the appearance of the curvature variations of the curvature tensor καβ in Eqs. (5) and (6), second-

rder derivatives for the basis functions φi are required for the variational formulation. This means that the basis
unctions φi have to be at least globally C1-smooth. Considering a multi-patch structured Kirchhoff–Love shell as
n this work, the C1-smoothness can be trivially satisfied within a single surface patch but has to be imposed across
he patch interfaces, which gives rise to the globally C1-smooth isogeometric multi-patch spline functions presented
n Section 3.

. C1-smooth multi-patch discretisation space

We will briefly describe the C1-smooth multi-patch space construction [47], which will be used as discretisation
pace for the isogeometric Kirchhoff–Love shell analysis of multi-patch geometries with possibly extraordinary
ertices in Section 4. Before, we will also present the employed multi-patch structure for the mid-surface r as well
s the particular type of multi-patch surface, called AS-G1 multi-patch surface [42], which is needed to represent
he mid-surface r. Details of the construction and implementation of the basis of the C1-smooth spline space will

e discussed in Appendix.

4
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Fig. 1. The multi-patch setting demonstrated on the basis of an example of a three-patch surface.

.1. The multi-patch surface structure

In the following, let the mid-surface r be a G1-smooth conforming multi-patch surface which consists of regular
quadrilateral surface patch parameterisations r(i)

∈ (Sp,s
h )3, i ∈ IΩ , given by

r(i)
: [0, 1]2

→ Ω (i),

here S
p,s
h is the tensor-product spline space S

p,s
h ⊗ S

p,s
h , with p = (p, p) and s = (s, s) on the parameter domain

0, 1]2, obtained from the univariate spline space S
p,s
h of degree p, continuity C s and mesh size h =

1
k defined

on the parameter domain [0, 1]. We will require that p ≥ 3, 1 ≤ s ≤ p − 2, k ≥ 1, and will further denote
by N p,s

j , j = 0, . . . , n − 1, with n = p + (k − 1)(p − s) + 1, the B-splines of the spline space S
p,s
h , and by

N p,s
j = N p,s

j1
N p,s

j2
, j = ( j1, j2) ∈ {0, . . . , n − 1}

2, the associated tensor-product B-splines of S
p,s
h . We will further

onsider the univariate spline spaces Sp,s+1
h and S

p−1,s
h with the corresponding B-splines N p,s+1

j , j = 0, . . . , n0 −1,

0 = p + (k − 1)(p − s − 1) + 1 and N p−1,s
j , j = 0, . . . , n1 − 1, n1 = p + (k − 1)(p − s − 1), respectively.

The multi-patch surface r defines a surface domain Ω ⊂ R3, which can be represented as the disjoint union of
he open quadrilateral surface patches Ω (i), i ∈ IΩ , of open edges (i.e. interface and boundary curves) Σ (i), i ∈ IΣ ,
nd of inner and boundary vertices x(i), i ∈ Iχ , i.e.

Ω =

⎛⎝ ⋃
i∈IΩ

Ω (i)

⎞⎠ ∪

⎛⎝ ⋃
i∈IΣ

Σ (i)

⎞⎠ ∪

⎛⎝⋃
i∈Iχ

x(i)

⎞⎠ ,

f. Fig. 1. To distinguish the case of an interface or boundary curve and the case of an inner or boundary vertex,
e further divide the index sets IΣ and Iχ into IΣ = I◦

Σ ∪ IΓΣ and Iχ = I◦
χ ∪ IΓχ , where in both cases the symbol

denotes the boundary case and the symbol ◦ the interface/inner case.

.2. AS-G1 multi-patch surfaces

In this work, we will model the mid-surface r by a specific G1-smooth multi-patch surface, called analysis-
uitable G1 (in short AS-G1) multi-patch surface [42]. AS-G1 multi-patch surfaces are of great importance,
ince they are needed to ensure the construction of C1-smooth isogeometric multi-patch spline spaces with
ptimal polynomial reproduction properties. More precisely, in case that a multi-patch surface is not AS-G1, the
5
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approximation power of the resulting C1-smooth spline space over the multi-patch surface can be dramatically
reduced, cf. [48].

We recall first that a C0-smooth multi-patch surface r is G1-smooth if and only if for any two neighbouring
atches Ω (i1) and Ω (i2), i1, i2 ∈ IΩ , with the common interface curve Σ (i)

⊂ Ω (i1) ∩ Ω (i2), there exists functions
α(i,i1)

: [0, 1] → R, α(i,i2)
: [0, 1] → R and β (i)

: [0, 1] → R satisfying

α(i,i1)(ξ ) α(i,i2)(ξ ) > 0, ξ ∈ [0, 1],

nd

α(i,i1)(ξ ) ∂2r(i2)(ξ, 0) + α(i,i2)(ξ ) ∂1r(i1)(0, ξ ) + β (i)(ξ ) ∂2r(i1)(0, ξ ) = 0, ξ ∈ [0, 1], (7)

cf. [40], where r(i1) and r(i2) are the corresponding patch parameterisations of Ω (i1) and Ω (i2), respectively, both
(re)-parameterised (if needed) into the so-called standard form [47], which means that the common interface
curve Σ (i) is given by r(i1)(0, ξ ) = r(i2)(ξ, 0). (See Appendix A.1 for details about the standard form.) Thereby,
the functions α(i,i1), α(i,i2) and β (i) are uniquely determined up to a common function γ (i)

: [0, 1] → R via the
patch parameterisations r(i1) and r(i2). A G1-smooth multi-patch surface is then called AS-G1 if for each interface
curve Σ (i), i ∈ I

(i)
Σ , the functions α(i,i1) and α(i,i2) can be linear polynomials and if there further exists (non-uniquely

determined) linear polynomials β (i,i1)
: [0, 1] → R and β (i,i2)

: [0, 1] → R such that

β (i)(ξ ) = α(i,i1)(ξ ) β (i,i2)(ξ ) + α(i,i2)(ξ ) β (i,i1)(ξ ) ξ ∈ [0, 1].

To uniquely determine the functions α(i,i1), α(i,i2), β (i,i1) and β (i,i2), we select those relatively prime functions α(i,i1)

and α(i,i2) and those functions β (i,i1) and β (i,i2), which minimise

∥α(i,i1)
− 1∥

2
L2([0,1]) + ∥α(i,i2)

− 1∥
2
L2([0,1]) and ∥β (i,i1)

∥
2
L2([0,1]) + ∥β (i,i2)

∥
2
L2([0,1]),

respectively, cf. [45]. In case of a boundary curve Σ (i)
⊂ Ω (i1), i ∈ IΣ , we simply set α(i,i1)

= 1 and β (i,i1)
= 0.

The design of AS-G1 multi-patch spline surfaces was studied so far for the case of planar domains in [42,44,
46,48], and for the case of multi-patch surfaces in [47,48]. In this work, we will employ the methods [47,48] to
generate AS-G1 multi-patch parameterisations of the mid-surface r, e.g. by approximating a non-AS-G1 multi-patch
parameterisation of the mid-surface r by an AS-G1 multi-patch geometry.

3.3. The specific C1-smooth multi-patch spline space

Let the mid-surface r be an AS-G1 multi-patch surface. The space of C1-smooth isogeometric spline functions
over r is defined as

V1
= {φ ∈ C1(Ω ) : φ ◦ r(i)

∈ S
p,s
h , i ∈ IΩ },

or equivalently as

V1
= {φ ∈ L2(Ω ) : φ ◦ r(i)

∈ S
p,s
h , i ∈ IΩ , and r (i,i1)

j (0, ξ ) = r (i,i2)
j (ξ, 0), ξ ∈ [0, 1] j = 0, 1, i ∈ I◦

Σ },

with

r (i,i1)
0 (0, ξ ) =

(
φ ◦ r(i1)) (0, ξ ) and r (i,i2)

0 (ξ, 0) =
(
φ ◦ r(i2)) (ξ, 0),

r (i,i1)
1 (0, ξ ) =

∂1
(
φ ◦ r(i1)

)
(0, ξ ) + β (i,i1)(ξ )∂2

(
φ ◦ r(i1)

)
(0, ξ )

α(i,i1)(ξ )
,

and

r (i,i2)
1 (ξ, 0) = −

∂2
(
φ ◦ r(i2)

)
(ξ, 0) + β (i,i2)(ξ )∂1

(
φ ◦ r(i2)

)
(ξ, 0)

α(i,i2)(ξ )
,

f. [47], where each interface curve Σ (i), i ∈ I◦

Σ , is locally parameterised in standard form, see Appendix A.1. For
function φ ∈ V1, we denote the equally valued terms r (i,i1)

0 (0, ξ ) = r (i,i2)
0 (ξ, 0) and r (i,i1)

1 (0, ξ ) = r (i,i2)
1 (ξ, 0) by

he functions r (i)
0 (ξ ) and r (i)

1 (ξ ), respectively, where r (i)
0 represents the trace of the function φ along the interface

(i) (i) (i)
urve Σ and r1 describes a specific transversal derivative of the function φ across the interface curve Σ ,

6
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cf. [42]. In case of a boundary curve Σ (i)
⊂ Ω (i1), i ∈ IΓΣ , locally given in standard form, see Appendix A.1, we

can equivalently define the functions r (i)
0 and r (i)

1 just as r (i)
0 (ξ ) = r (i,i1)

0 (0, ξ ) and r (i)
1 (ξ ) = r (i,i1)

1 (0, ξ ).
Due to the dependence of the dimension of V1 on the initial geometry of the single patch parameterisations r(i),

∈ IΩ , cf. [53], the entire C1-smooth space is, even for simple configurations, hard to study and analyse. Therefore,
e consider instead the C1-smooth subspace A ⊂ V1 introduced in [47], which is simpler to generate, whose
imension is independent of the initial geometry of the single patch parameterisations r(i), and which still possesses

optimal approximation properties as numerically verified in [47]. The C1-smooth subspace A is given as

A = {φ ∈ V1
: r (i)

0 ∈ S
p,s+1
h , r (i)

1 ∈ S
p−1,s
h , i ∈ IΣ , and φ ∈ C2

T (x(i)), i ∈ Iχ },

where each edge Σ (i), i ∈ IΣ , is locally parameterised in standard form, see Appendix A.1, and where φ ∈ C2
T (x(i))

means that the function φ is C2-smooth at the vertex x(i) with respect to the tangent plane at x(i), cf. [47].
By requiring k ≥

4−s
p−s−1 , a possible basis of the space A can be given by the set of functions

Φ =

⎛⎝ ⋃
i∈IΩ

ΦΩ (i)

⎞⎠ ∪

⎛⎝ ⋃
i∈IΣ

ΦΣ (i)

⎞⎠ ∪

⎛⎝⋃
i∈Iχ

Φx(i)

⎞⎠
with

ΦΩ (i) = {φΩ (i)

( j1, j2) : j1, j2 ∈ {2, . . . , n − 3}},

ΦΣ (i) = {φΣ (i)

( j1, j2) : j1 ∈ {3 − j2, . . . , n j2 − 4 + j2}, j2 = 0, 1},

nd

Φx(i) = {φx(i)

( j1, j2) : j1, j2 = 0, 1, 2, j1 + j2 ≤ 2},

here the sets ΦΩ (i) , ΦΣ (i) and Φx(i) collect the basis functions with respect to the individual patches Ω (i), edges Σ (i)

nd vertices x(i), respectively. Thereby, all C1-smooth basis functions are locally supported with a support fully
ontained within the patch Ω (i) for a function φΩ (i)

( j1, j2), j1, j2 ∈ {2, . . . , n − 3}, with a support in the vicinity of the
urve Σ (i) for a function φΣ (i)

( j1, j2), j1 ∈ {3 − j2, . . . , n j2 − 4 + j2}, j2 = 0, 1, and with a support in the vicinity of the
ertex x(i) for a function φx(i)

( j1, j2), j1, j2 = 0, 1, 2, j1+ j2 ≤ 2. For the full details of the C1-smooth subspace A and of
ts basis functions, we refer to [47]. A summary of the construction of the basis functions with some implementation
etails is presented in Appendix.

. Kirchhoff–Love shell analysis of multi-patch structures

Representing the mid-surface of a multi-patch structured Kirchhoff–Love shell by an AS-G1 multi-patch
urface r, see Section 3.2, and employing the globally C1-smooth multi-patch discretisation space [47], recalled
n Section 3.3, we can directly apply the Kirchhoff–Love shell formulation [2], introduced in Section 2, to the
ndividual surfaces patches r(i) of the multi-patch mid-surface r. This leads to a novel, simple isogeometric method
or the analysis of Kirchhoff–Love shells composed of multiple patches with possibly extraordinary vertices. The
erformance of this method will be tested in this section on the basis of a series of benchmark problems. In
ection 4.1 the linear Kirchhoff–Love shell equation will be solved for a hyperboloid shell, adding a hole for the
enchmark in Section 4.2. In Section 4.3, post-buckling analysis of a clamped corner piece will be performed. In
ection 4.4, holes are added to this geometry. For the geometric and material properties of the considered shells we
ill denote by L , W and a the lengths, by t the thickness, by E the Young’s modulus, and by ν the Poisson’s ratio.

n all examples, we will perform uniform h-refinement for the convergence analysis. In cases where the penalty
ethod from [18] is employed, a penalty parameter of α = 103 will be used, unless another value will be required

o produce good convergence rates and stress fields.

.1. Hyperboloid shell

We represent the mid-surface of a hyperboloid shell, given by the hyperbolic surfaceˆ 1 2 [
ξ 1 ξ 2 (ξ 1)2

− (ξ 2)2
]T
r(ξ , ξ ) = (8)

7
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Fig. 2. Set-up of the clamped hyperboloid problem from [54]. The displacements and rotations are fixed on the left boundary represented
by the thick line. The distributed load px3 is applied over the whole domain in vertical direction. Furthermore, the point A is used for
reference.

for the parameter domain D = [−L/2, L/2]2, by the two different 6-patch AS-G1 multi-patch surfaces rℓ, ℓ = 1, 2,
visualised in Fig. 3. The multi-patch parameterisation from Fig. 3(a) is selected since it has two interior extraordinary
vertices, i.e. vertices where 3 or more than 4 patches join. The geometry from Fig. 3(b) is selected due to its interior
extraordinary vertices and due to the fact that it has boundary vertices, where two patches join C0 in the south-east,
south west and north east corners of Fig. 3(b); an aspect where the method from [37] would smoothen the geometry.

For the design of the multi-patch surfaces in Fig. 3 we follow the strategy from [47, Example 3]. Let r̃ℓ, ℓ = 1, 2,
be the bilinearly parameterised multi-patch parameterisations shown in Figs. 3(a) and 3(b) (left), respectively, which
represent in each case the parameter domain D. We then generate the multi-patch surfaces rℓ, ℓ = 1, 2, just

y choosing the single surface patch parameterisations r(i)
ℓ as r(i)

ℓ = r̂ ◦ r̃(i)
ℓ , where r̃(i)

ℓ are the individual patch
arameterisations of the parameterisations r̃ℓ, which implies that r(i)

ℓ ∈ (Sp,s
h )3 with p = (2, 2), s = (∞, ∞) and

h = 1. The two resulting multi-patch surfaces rℓ, ℓ = 1, 2, are AS-G1 by construction, since the surface r̂ is just a
ivariate polynomial surface patch, and the bilinear parameterisations r̃ℓ, ℓ = 1, 2, are trivially AS-G1.

The benchmark problem is based on [54], and an overview is depicted in Fig. 2. The geometric and material
roperties of the hyperbolic multi-patch shells yℓ, ℓ = 1, 2, are determined by the length L = 1 [m], thickness
= 0.01 [m], Young’s modulus E = 2 · 1011 [N/m2] and the Poisson’s ratio ν = 0.3 [−]. The shell is fully clamped
n the west side at x1

= −L/2, which means that all displacements and rotations are fixed weakly [18]. We apply
uniformly distributed vertical load with magnitude px3 = −8000 · t [N/m2] and perform linear analysis. We study

he vertical displacement at point A = (x1, x2, x3) = (L/2, 0, L4/4) as in [54] as well as the strain energy norm
B =

1
2 uT K u, where u is the solution displacement vector and K is the linear stiffness matrix. Numerical tests

re performed on the two multi-patch shells yℓ, ℓ = 1, 2, possessing the mid-surfaces rℓ, for polynomial degrees
p = 3, 4, 5, and maximal possible regularity s = p − 2 for the C1 spline space A. These geometries are presented
n Fig. 3.

The results for the fully clamped hyperboloid shells with the two different AS-G1 multi-patch configurations
or the mid-surfaces are presented in Fig. 4. The convergence plots include for comparison the results for a single
atch geometry and for a penalty coupling with penalty parameters α = 101, 103, see [18], with degree p = 3 and
egularity s = 1. The penalty parameter of α = 101 is selected for comparison purposes, given its convergence to
he single patch solution. It can be seen that the AS-G1 multi-patch results show in the point-wise displacement
s well as in terms of the energy norm convergence towards the single-patch results, but with a lower rate as the
esults for the single-patch or for the penalty coupling case.

Furthermore, the Von Mises membrane stress is computed for the single-patch hyperboloid as well as for the
onsidered multi-patch geometries. The results are obtained for degree p = 4 and regularity s = 2 with 16 × 16
8
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Fig. 3. AS-G1 mid-surfaces of hyperboloid multi-patch shell geometries consisting of 6 patches in two different configurations. For both
ubfigures (a) and (b) the left figure represents the parametric domain and the right figure gives and impression of the resulting geometry.
he reference point A is used in the numerical tests, cf. Fig. 4.

lements per patch. Since the regularity is equal to 2, it is expected that the stresses are C1 continuous in the interior
nd C0 continuous over the patch boundaries, as they are derivatives of the C2 interior basis which is C1 over the
atch boundaries by construction. The results obtained by the penalty method are also given for degree p = 4,
egularity s = 2 and for the penalty parameter α = 101. Fig. 5 verifies that the stress fields are smooth and well
epresented by our AS-G1 multi-patch construction compared to the single-patch stress field and the field obtained
y the penalty method. For the AS-G1 geometry, small artifacts can be observed on the top and bottom boundaries
or the stress field. This could be simply solved in future by using for each boundary edge e.g. the entire space
nstead of the subspace which has been selected in [47] to have a simple and uniform construction. Furthermore, it
hould be noted that the results of the penalty method depend on the choice of a coupling parameter, as shown in
ig. 4, whereas the present method is parameter-free.
9
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Fig. 4. Results for the 6-patch hyperboloid geometries from Fig. 3 subject to a uniform vertical load. The left plots represent the vertical
displacement in the reference point A (wA) and the right plots represent the strain energy norm (uT K u), both against the number of degrees

f freedom (#DoFs). For the AS-G1 constructions, the degree p is varied between 3 and 5 with maximum regularity s = p − 2. The results
or the single-patch case as well as for the penalty method are obtained for degree p = 3 and regularity s = 1 and in case of the penalty

method using the penalty parameters α = 101 and α = 103.

4.2. Hyperboloid shell with a hole

We consider as in the previous example in Section 4.1 a hyperboloid shell but now with a hole, see Fig. 6.
Although this geometry does not possess extraordinary vertices, it cannot be represented by a regular single-patch
surface due to the presence of vertices on the outer boundary, where two patches join C0, and of the presence of
the smooth inner boundary at the same time. The AS-G1 4-patch geometry representing the mid-surface of the
shell is constructed via trimming from the hyperbolic surface r̂, given in (8), by following the strategy from [47,
Example 2]. For this, we first trim the parameter domain D = [−L/2, L/2]2 of the hyperbolic surface by
cutting out an approximated disk with radius R = 0.15 whose boundary is a B-spline curve of degree 2, see
Fig. 7(a). The associated untrimmed parameter domain (see Fig. 7(b)) is then described via a planar AS-G1 4-patch
parameterisation r̃, consisting of individual patch parameterisations r̃(i), i = 1, . . . , 4, with r̃(i)

∈
(
S

p,s
h

)2, p = (2, 2),
s = (1, 1) and h =

1
4 , see Fig. 7(b). Via r(i)

= r̂◦̃r(i), i = 1, . . . , 4, we obtain surface parameterisations r(i)
∈

(
S

p,s
h

)3,
with p = (4, 4), s = (1, 1) and h =

1
4 , which finally form together the AS-G1 4-patch surface r, shown in Fig. 7(b),

representing the mid-surface of the desired hyperboloid shell with hole. Note that this geometry cannot be used by
the method from [37], since it contains vertices on the boundary, where two patches join C0.

We perform on the resulting hyperboloid shell with hole numerical tests as in the previous example in Section 4.1
y selecting the same geometric and material properties for the shell, i.e. the length by L = 1 [m], the thickness
y t = 0.01 [m], the Young’s modulus by E = 2 · 1011 [N/m2] and the Poisson’s ratio by ν = 0.3 [−], again
y fully clamping the shell on the west side at x1 = −L/2 by and applying a uniformly distributed vertical
oad px3 = −8000 · t [N/m2]. Fig. 8 presents the results including a convergence analysis for studying the vertical
isplacement at the reference point A = (x1, x2, x3) = (0, 0, 0) for degrees p = 4, 5 and maximal possible regularity

= p − 2 of the spline space A by performing h-refinement. For this example no reference solution is provided,

10
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Fig. 5. Von Mises membrane stress fields for the single-patch and multi-patch hyperboloid geometries in Fig. 3 on a 16 × 16 element
mesh per patch for degree p = 4 and regularity s = 2. The penalty parameter for the penalty method results is α = 101. All stress fields
are plotted on the same colour scale. The contour lines are provided for values 10, 102, 103, 104 and 105 [MPa]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Set-up of the clamped hyperboloid with a hole of radius R = 0.15. The displacements and rotations are fixed on the left boundary
epresented by the thick line. The distributed load px3 is applied over the whole domain in vertical direction. Furthermore, the point A is
sed for reference.

ince no single-patch equivalent for this case exists, hence a penalty coupling [18] with parameter α = 102 is used
s reference, which appeared to be the optimal choice for displacement and stress reconstruction. Again, we see that
he solutions for our AS-G1 method converge, but with a lower rate compared to the penalty method. The speed of
onvergence grows by increasing the degree p. In addition, the stress field for the untrimmed hyperboloid with a
ole by using our AS-G1 method and the penalty method are presented in Fig. 9 and show good correspondence with
gain small artifacts on the top and bottom boundaries for the stress field from the AS-G1 method. As mentioned
efore, this could be simply solved in future by using for each boundary edge e.g. the entire space instead of the
ubspace selected in [47]. The stress field resulting from the penalty method show a good stress field as well, but
epends, as mentioned previously, on the choice of the penalty parameter.

.3. Post-buckling of an L-shaped domain

We apply our developed method to a geometrically non-linear Kirchhoff–Love shell on the post-buckling response
f an L-shaped domain, inspired by an example from [55] later performed by [56] using beam and flat shell elements.
he problem set-up is depicted in Fig. 10. The geometry has length L = 255 [mm] and width W = 30 [mm] with a

hickness of 0.6 [mm] and Young’s modulus E = 71240 [N/mm2] and Poisson ratio ν = 0.31 [−]. The material law
s a linear isotropic Saint-Venant Kirchhoff model. Furthermore, Crisfield’s arc-length method is employed [57].
he solutions are computed for degrees p = 3, 4, 5 with maximum regularity s = p − 2. Furthermore, the results
re calculated by using the penalty method [18] with penalty parameter α = 103 and degree p = 3 and regularity
= 2 as a reference since reported benchmark results have been only provided for beam elements.
The results for the (post-)buckling analysis of the 2 patch L-shaped domain are presented in Figs. 11 and 12. As

an be seen in Fig. 12, buckling occurs around λP = 1.19 [N], which is higher than the value of λP = 1.1453 [N]
s reported by [55], but a converged value for the AS-G1 multi-patch and the penalty coupled multi-patch technique
as been tested here. In addition, it can be seen that the load–displacement curves resulting from the AS-G1 method
or degree p = 4 and p = 5 approach the penalty curve with degree p = 3. The AS-G1 curve for degree p = 3,
n the other hand, is considered inaccurate.

.4. Post-buckling of an L-shaped domain with holes

As last example, we consider the L-shaped geometry from Section 4.3 with rectangular holes, c.f. Fig. 13.
he material and geometric parameters are the same as in the previous example, additionally with the size of the
ectangular holes given by Lh = 55 [mm] and Wh = 10 [mm].

12
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Fig. 7. Multi-patch hyperboloid shell with a hole. (a): Trimmed parameter domain. (b): Untrimmed parameter domain given by an AS-G1

-patch parameterisation. (c) AS-G1 4-patch surface of the hyperboloid shell with hole with the reference point A for the numerical tests,
f. Fig. 8.

Fig. 8. Results for the 4-patch hyperboloid with a hole from Fig. 7 subject to a uniform vertical load. The left plot represents the vertical
isplacement in the reference point A (wA) and the right plot represents the strain energy norm (uT K u), both against the number of degrees
f freedom (#DoFs). For the AS-G1 constructions, the degree p is varied between 4 and 5 with maximum regularity s = p − 2. The results
or the penalty method is obtained for degree p = 4 and regularity s = 2 using the penalty parameter α = 102.
13
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Fig. 9. Von Mises membrane stress field for the untrimmed hyperboloid geometry with a hole in Fig. 3 on a 16 × 16 element mesh per
patch. The stress field is plotted on the same colour scale as in Fig. 5. The contour lines are provided for values 10, 102, 103, 104 and
105 [MPa]. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Geometry of the L-shaped domain with length L = 255 [mm] and width W = 30 [mm] consisting of two bi-linear patches. The left
side of the domain is fixed in all directions and rotations and on the bottom right a point load with magnitude λP is applied in horizontal
direction. To replicate the example from [56], an unbalancing load λPs in out-of-plane direction is applied to force buckling. The factor λ

is the load magnification factor used in the arc-length methods to solve the problem.

The results are presented in Fig. 14 and Fig. 15. The load–displacement curves in Fig. 15 are given for p = 3, 4
and maximum regularity s = p − 2. The curve for p = 5 is omitted because it overlaps with the p = 4 curve.
Furthermore, the example has been computed by using the penalty method [18] with the penalty parameter α = 103.
The results show that the AS-G1 technique provides a very good estimate of the load–displacement curve compared
to the penalty method for degree p = 4. For degree p = 3, however, the results show a large deviation with the
other lines, similarly to the results in the previous section.
14
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Fig. 11. Deformed geometry of the L-shaped domain with 2 patches corresponding to Fig. 10 on the last point of the load–displacement
urve for the AS-G1 method for p = 5 in Fig. 12. The colour scale represents the out-of-plane displacement. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Displacements at the point where the load is applied in Fig. 10. All results are plotted with the out-of-plane displacement component
n the horizontal axis and the load λP on the vertical axis. The penalty parameter used for the penalty method is α = 103.

5. Conclusion

We presented an isogeometric method for the analysis of complex Kirchhoff–Love shells, where the mid-surface
of the shells is approximated by a particular class of G1-smooth multi-patch surfaces, called AS-G1 [42]. This class
of multi-patch surfaces allows to use for the discretisation space of the considered shell the globally C1-smooth
isogeometric multi-patch spline space with optimal polynomial reproduction properties [47], whose construction is
simple and uniform. Our proposed method further relies on the usage of the Kirchhoff–Love shell formulation [2],
which can be directly applied due to the globally C1-smoothness of the employed discretisation space.

We used the developed isogeometric technique to study several linear and non-linear benchmark problems for
geometrically complex multi-patch structures. We compared our results to single patch solutions (where possible)
and to results obtained by the penalty method [18]. We get good results with our AS-G1 approach for displacements
and stresses. The convergence of our method is slower than for the penalty method, which is a disadvantage, but
the advantages of our AS-G1 approach are that strong C1 coupling is guaranteed, there is no need for the selection

f a penalty parameter and that geometries can be handled which are not possible by some other methods like [37].
The slower convergence of our method compared to the single patch case and to the penalty method is caused

y the fact that the used C1-smooth space [47] is a subspace of the complex, entire C1-smooth space over the
15



A. Farahat, H.M. Verhelst, J. Kiendl et al. Computer Methods in Applied Mechanics and Engineering 411 (2023) 116060

r

c
b
s
t
a
T
e

Fig. 13. Geometry of the L-shaped domain with length L = 255 [mm] and width W = 30 [mm] and with rectangular holes of size
Lh = 55 [mm] and Wh = 10 [mm]. The geometry consists of 25 bi-linear patches. The setting of the problem is like in Fig. 10.

Fig. 14. Deformed geometry of the L-shaped domain with 25 patches corresponding to Fig. 13 on the last point of the load–displacement
curve for the AS-G1 method for p = 4 in Fig. 15. The colour scale represents the out-of-plane displacement. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)

onsidered AS-G1 multi-patch mid-surface. A first possible future work could be now to enlarge the space [47]
y constructing the entire C1-smooth space or by partly increasing the degree of the space along the edges, which
hould considerably increase the speed of convergence. Since the employed C1-smooth spline space [47] allows
he construction of a sequence of nested spaces, one further possible future work could be the extension of our
pproach to an adaptive method to perform local refinement for the analysis of multi-patch Kirchhoff–Love shells.
his would allow a reduction of the needed degrees of freedom for solving the problems with an approximation

rror of similar magnitude.
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Fig. 15. Displacements at the point where the load is applied in Fig. 13. All results are plotted with the out-of-plane displacement component
n the horizontal axis and the load λP on the vertical axis. The penalty parameter used for the penalty method is α = 103.
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Appendix. Construction of the basis of the C1-smooth subspace A

We will summarise the construction of the basis functions of the C1-smooth isogeometric spline space A

ntroduced in [47], and will further give some implementation details for the functions. Before, some required
reliminaries will be presented.

.1. Local parameterisations in standard form

For each edge Σ (i), i ∈ IΣ , or vertex x(i), i ∈ Iχ , the patch parameterisations r(i j ) in the neighbourhood of the

dge or vertex can be always locally (re)parameterised (if needed) into the so-called standard form [47].

17
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Fig. A.16. Parameterisation in standard form in case of an interface curve (left) and of an inner vertex (right).

tandard form for an edge. In case of an interface curve Σ (i), i ∈ I◦

Σ , with Σ (i)
⊂ Ω (i1) ∩ Ω (i2), i1, i2 ∈ IΩ , the

patch parameterisations r(i1) and r(i2) are (re)parameterised in such a way that the curve Σ (i) is given by

r(i1)(0, ξ ) = r(i2)(ξ, 0), ξ ∈ (0, 1),

see Fig. A.16 (left). Similarly, in case of a boundary curve Σ (i)
⊂ Ω (i1), i ∈ IΓΣ , the curve Σ (i) is just taken as

Σ (i)
= {r(i1)(0, ξ ) : ξ ∈ (0, 1)}.

Standard form for a vertex. In case of an inner vertex x(i), i ∈ I◦
χ , with patch valence νi , assuming that the

atches and interface curves around the vertex x(i) are labelled in counterclockwise order as Σ (i1), Ω (i2), Σ (i3), . . .,
(i2νi −1), Ω (i2νi ) (and further setting Σ (i2νi +1)

= Σ (i1) and Ω (i0)
= Ω (i2νi )), the associated patch parameterisations r(i2ℓ),

ℓ = 1, . . . , νi , are (re)parameterised in such a way that the interface curve Σ (i1) is given by

r(i2νi )(0, ξ ) = r(i2)(ξ, 0), ξ ∈ (0, 1),

and the interface curves Σ (i2ℓ+1), ℓ = 1, . . . , νi − 1, are given by

r(i2ℓ)(0, ξ ) = r(i2ℓ+2)(ξ, 0), ξ ∈ (0, 1),

which leads to

x(i)
= r(i2)(0, 0) = · · · = r(i2νi )(0, 0),

cf. Fig. A.16 (right). In addition, the patch parameterisations r(i2ℓ), ℓ = 1, . . . , νi , are collectively rotated in such a
way that their normal vectors at the vertex x(i) are parallel to the x3-axis. Similarly, the patch parameterisations r(i2ℓ),
ℓ = 1, . . . , νi , around a boundary vertex x(i), i ∈ IΓΣ , with patch valence νi are (re)parameterised and rotated, where
the curve Σ (i1) and the additional curve Σ (i2νi +1) are the two boundary curves.

A.2. Construction of the basis functions

We present the construction of the patch, edge and vertex functions for the single patches, edges and vertices,
respectively. This will require the use of the functions M p,s

i , i = 0, 1, M p,s+1
i , i = 0, 1, 2, and M p−1,s

i , i = 0, 1,
which are defined as

M p,s
0 (ξ ) =

1∑
j=0

N p,s
j (ξ ), M p,s

1 (ξ ) =
h
p

N p,s
1 (ξ ),

M p−1,s
0 (ξ ) =

1∑
N p−1,s

j (ξ ), M p−1,s
1 (ξ ) =

h
p

N p−1,s
1 (ξ ),
j=0
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and

M p,s+1
0 (ξ ) =

2∑
j=0

N p,s+1
j (ξ ), M p,s+1

1 (ξ ) =
h
p

2∑
j=1

ϑ( j)N p,s+1
j (ξ ), M p,s+1

2 (ξ ) =
h2µ

p(p − 1)
N p,s+1

2 (ξ )

with ϑ( j) = j and µ = 1 for s < p − 2, and ϑ( j) = 2 j − 1 and µ = 2 for s = p − 2.

atch functions. For each patch Ω (i), i ∈ IΩ , the patch functions φΩ (i)

( j1, j2), j1, j2 ∈ {2, . . . , n − 3}, are constructed as

φΩ (i)

( j1, j2)(x) =

{(
f (i)
Ω (i),( j1, j2)

◦
(
r(i)

)−1
)

(x) if x ∈ Ω (i),

0 otherwise,

with

f (i)
Ω (i),( j1, j2)

(ξ 1, ξ 2) = N p,s
( j1, j2)(ξ

1, ξ 2).

Edge functions. For each interface curve Σ (i), i ∈ I◦

Σ , locally parameterised in standard form, the edge
unctions φΣ (i)

( j1, j2), j1 ∈ {3 − j2, . . . , n j2 − 4 + j2}, j2 = 0, 1, are defined as

φΣ (i)

( j1, j2)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

f (i1)
Σ (i),( j1, j2)

◦
(
r(i1)

)−1
)

(x) if x ∈ Ω (i1),(
f (i2)
Σ (i),( j1, j2)

◦
(
r(i2)

)−1
)

(x) if x ∈ Ω (i2),

0 otherwise,

ith

f (i1)
Σ (i),( j1,0)

(ξ 1, ξ 2) = N p,s+1
j1

(ξ 2)M p,s
0 (ξ 1) − β (i,i1)(ξ 2)

(
N p,s+1

j1

)′

(ξ 2)M p,s
1 (ξ 1),

f (i2)
Σ (i),( j1,0)

(ξ 1, ξ 2) = N p,s+1
j1

(ξ 1)M p,s
0 (ξ 2) − β (i,i2)(ξ 1)

(
N p,s+1

j1

)′

(ξ 1)M p,s
1 (ξ 2),

(A.1)

nd

f (i1)
Σ (i),( j1,1)

(ξ 1, ξ 2) = α(i,i1)(ξ 2)N p−1,s
j1

(ξ 1),

f (i2)
Σ (i),( j1,1)

(ξ 1, ξ 2) = −α(i,i2)(ξ 1)N p−1,s
j1

(ξ 2).
(A.2)

n case of a boundary curve Σ (i), i ∈ IΓΣ , locally given in standard form, the edge functions φΣ (i)

( j1, j2), j1 ∈

3 − j2, . . . , n j2 − 4 + j2}, j2 = 0, 1, are equal to

φΣ (i)

( j1, j2)(x) =

⎧⎨⎩
(

f (i1)
Σ (i),( j1, j2)

◦
(
r(i1)

)−1
)

(x) if x ∈ Ω (i1),

0 otherwise,

ith the functions f (i1)
Σ (i),( j1,0)

and f (i1)
Σ (i),( j1,1)

as given in (A.1) and (A.2), respectively.

ertex functions. Let x(i), i ∈ Iχ , be a vertex with patch valence νi locally given in standard form. We denote
by r(i2ℓ)

P , ℓ = 1, . . . , νi , the patch parameterisations r(i2ℓ) restricted to the first two coordinates. For each interface
curve Σ (iℓ), we define the vector functions

t(iℓ)(ξ ) = ∂2r(iℓ−1)
P (0, ξ ) = ∂1r(iℓ+1)

P (ξ, 0)

and

d(iℓ)(ξ ) =
1

α
(iℓ,iℓ−1)(ξ )

(
∂1r(iℓ−1)

P (0, ξ ) + β (iℓ,iℓ−1)(ξ )∂2r(iℓ−1)
P (0, ξ )

)
= −

1
(
∂2r(iℓ+1)(ξ, 0) + β (iℓ,iℓ+1)(ξ )∂1r(iℓ+1)(ξ, 0)

)
,

α
(iℓ,iℓ+1)(ξ ) P P
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and in analogous manner for the possible boundary curves Σ (i1) and Σ (i2νi +1). The vertex functions φx(i)

( j1, j2),
j1, j2 = 0, 1, 2, j1 + j2 ≤ 2, are defined as

φx(i)

( j1, j2)(x) =

⎧⎨⎩
(
σ j1+ j2 f (iℓ)

x(i),( j1, j2)
◦

(
r(iℓ)

)−1
)

(x) if x ∈ Ω (iℓ), ℓ = 2, 4, . . . , 2νi ,

0 otherwise,

with the uniform scaling factor σ =

(
h

p νi

∑νi
ℓ=1 ∥∇r(i2ℓ)

P (0, 0)∥
)−1

. The functions f (iℓ)
x(i),j, j = ( j1, j2), j1, j2 = 0, 1, 2,

j1 + j2 ≤ 2, are given as

f (iℓ)
x(i),j(ξ

1, ξ 2) = g(iℓ−1,iℓ)
x(i),j (ξ 1, ξ 2) + g(iℓ+1,iℓ)

x(i),j (ξ 1, ξ 2) − g(iℓ)
x(i),j(ξ

1, ξ 2)

ith the single functions

g(iℓ+1,iℓ)
x(i),j (ξ 1, ξ 2) =

2∑
ω=0

d (iℓ+1,iℓ)
j,(0,ω)

(
M p,s+1

ω (ξ 2)M p,s
0 (ξ 1) − β (iℓ+1,iℓ)(ξ 2)(M p,s+1

ω )′(ξ 2)M p,s
1 (ξ 1)

)
+

1∑
ω=0

d (iℓ+1,iℓ)
j,(1,ω) α(iℓ+1,iℓ)(ξ 2)M p−1,s

ω (ξ 2)M p,s
1 (ξ 1),

g(iℓ−1,iℓ)
x(i),j (ξ 1, ξ 2) =

2∑
ω=0

d (iℓ−1,iℓ)
j,(0,ω)

(
M p,s+1

ω (ξ 1)M p,s
0 (ξ 2) − β (iℓ−1,iℓ)(ξ 1)(M p,s+1

ω )′(ξ 1)M p,s
1 (ξ 2)

)
−

1∑
ω=0

d (iℓ−1,iℓ)
j,(1,ω) α(iℓ−1,iℓ)(ξ 1)M p−1,s

ω (ξ 1)M p,s
1 (ξ 2),

and

g(iℓ)
x(i),j(ξ

1, ξ 2) =

1∑
ω1=0

1∑
ω2

d (iℓ)
j,(ω1,ω2) M

p,s
ω1

(ξ 1)M p,s
ω2

(ξ 2),

ossessing the coefficients

d (im ,iℓ)
j,(0,0) = δ0 j1δ0 j2 , d (im ,iℓ)

j,(0,1) = bδ
j t(im )(0), d (im ,iℓ)

j,(0,2) = (t(im )(0))T H δ
j t(im )(0) + bδ

j (t(im ))′(0),

d (im ,iℓ)
j,(1,0) = bδ

j d(im )(0), d (im ,iℓ)
j,(1,1) = (t(im )(0))T H δ

j d(im )(0) + bδ
j (d(im ))′(0),

or m = ℓ − 1, ℓ + 1, and

d (iℓ)
j,(0,0) = δ0 j1δ0 j2 , d (iℓ)

j,(1,0) = bδ
j t(iℓ−1)(0), d (iℓ)

j,(0,1) = bδ
j t(iℓ+1)(0),

d (iℓ)
j,(1,1) = (t(iℓ−1)(0))T H δ

j t(iℓ+1)(0) + bδ
j ∂1∂2r(iℓ)

P (0, 0),

ith the row vectors bδ
j =

[
δ1 j1δ0 j2 δ0 j1δ1 j2

]
, and with the matrices

H δ
j =

[
δ2 j1δ0 j2 δ1 j1δ1 j2
δ1 j1δ1 j2 δ0 j1δ2 j2 .

]
,

here δ j1 j2 is the Kronecker delta.

.3. Implementation details

Due to r(i)
∈ (Sp,s

h )3, i ∈ IΩ , each patch parameterisation r(i) possesses a spline representation of the form

r(i)(ξ 1, ξ 2) =

n−1∑ n−1∑
c(i)

( j1, j2) N
p,s
( j1, j2)(ξ

1, ξ 2) = (Np,s(ξ 1))T C(i) Np,s(ξ 2),

j1=0 j2=0
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with the column vector of B-splines Np,s
= [N p,s

j ] j=0,...,n−1, and the coefficient matrix C(i)
= [c(i)

( j1, j2)] j1, j2=0,...,n−1,
with the single coefficients c(i)

( j1, j2) ∈ R3. Similarly, for each function φ ∈ A, the associated spline functions
φ ◦ r(i)

∈ S
p,s
h , i ∈ IΩ , can be represented as

(
φ ◦ r(i)) (ξ 1, ξ 2) =

n−1∑
j1=0

n−1∑
j2=0

d (i)
( j1, j2) N

p,s
( j1, j2)(ξ

1, ξ 2) = (Np,s(ξ 1))T D(i) Np,s(ξ 2), (A.3)

ith the coefficient matrix D(i)
= [d (i)

( j1, j2)] j1, j2=0,...,n−1, and the single coefficients d (i)
( j1, j2) ∈ R. Knowing the

pline representations (A.3) for the basis functions of A, we can compute their Bernstein Bézier representations
y means of the so-called Bézier extraction. This further allow us to implement and integrate the basis functions
n isogeometric analysis software such as G+Smo [58] or GeoPDEs [59]. Recall that all basis functions are locally
upported which means more precisely that in case of a patch function φΩ (i)

( j1, j2) just for the patch Ω (i), in case of
n edge function φΣ (i)

( j1, j2) just for the one patch or the two patches containing the edge Σ (i), and in case of a vertex
unction φx(i)

( j1, j2) just for the patches containing the vertex x(i), the coefficients in (A.3) can be non-zero. Below, we
ill briefly explain how to compute these non-zero coefficients for the single basis functions.
In case of a patch function φΩ (i)

( j1, j2), the spline representations (A.3) are directly obtained, since just one coefficient,
amely d (ℓ)

( j1, j2) = 1 for ℓ = i , is unequal to zero by definition. In case of an edge function φΣ (i)

( j1, j2) or of a vertex
unction φx(i)

( j1, j2), the spline representations (A.3) can be computed by means of the following steps:

• At first, we locally (re)parameterise (if needed) the initial patch parameterisations r(iℓ) containing the edge Σ (i)

or the vertex x(i) into standard form, cf. Appendix A.1. This can be achieved by multiplying the coefficient
matrix C(iℓ) of each such patch parameterisation r(iℓ) by a suitable transformation matrix T (iℓ) from the right
side, which will accordingly reverse and swap the parametric directions of the patch parameterisations to
get the local (re)parameterisation as shown in Fig. A.16. In case of a vertex function φx(i)

( j1, j2), we additionally
multiply each of the three-dimensional coordinates of the transformed coefficient matrix C(iℓ) T (iℓ) by the same
suitable rotation matrix from the right side such that the normal vectors of the resulting patch parameterisations
at the vertex x(i) are parallel to the x3-axis.

• Secondly, we use the obtained patch parameterisations in standard form to construct the edge function φΣ (i)

( j1, j2)

or the vertex function φx(i)

( j1, j2) as described in Appendix A.2.
• Thirdly, we compute for each obtained spline function f (iℓ)

Σ (i),( j1, j2)
= φΣ (i)

( j1, j2) ◦ r(iℓ) or f (iℓ)
x(i),( j1, j2)

= φx(i)

( j1, j2) ◦ r(iℓ)

the corresponding spline representation (A.3), e.g., by means of an interpolation problem.
• Finally, we multiply the coefficient matrix D(iℓ) of each of the resulting spline representations (A.3) of an edge

or vertex function from the right side by the inverse of the associated transform matrix T (iℓ), used in the first
step, to get the final and desired representation (A.3). This will accordingly reverse and swap the parametric
directions of the spline functions of an edge or vertex functions in such a way that their parametric directions
will coincide again with the ones of the initial patch parameterisations.
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