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Resolving chiral transitions in one-dimensional Rydberg arrays with quantum
Kibble-Zurek mechanism and finite-time scaling

Jose Soto Garcia® and Natalia Chepiga
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

® (Received 11 March 2024; revised 25 July 2024; accepted 22 August 2024; published 9 September 2024)

The experimental realization of the quantum Kibble-Zurek mechanism in arrays of trapped Rydberg atoms has
brought the problem of commensurate-incommensurate transition back into the focus of active research. Relying
on equilibrium simulations of finite intervals, direct chiral transitions at the boundary of the period-3 and period-
4 phases have been predicted. Here, we study how these chiral transitions can be diagnosed experimentally
with critical dynamics. We demonstrate that chiral transitions can be distinguished from the floating phases by
comparing Kibble-Zurek dynamics on arrays with different numbers of atoms. Furthermore, by sweeping in the
opposite direction and keeping track of the order parameter, we identify the location of conformal points. Finally,
combining forward and backward sweeps, we extract all critical exponents characterizing the transition.

DOI: 10.1103/PhysRevB.110.125113

I. INTRODUCTION

Understanding the nature of quantum phase transitions
(QPTs) in strongly correlated low-dimensional systems is one
of the biggest challenges in modern condensed matter physics
[1,2]. The development of conformal field theory (CFT) [3,4]
has led to the discovery of many fascinating critical phe-
nomena with dynamical critical exponent z = 1. The latter
implies, in particular, a quantum-classical correspondence,
which opens a way to study QPT with models of classical
statistical mechanics.

The construction of advanced entanglement-based numer-
ical techniques such as tensor network algorithms [5-8] and
recent progress in quantum simulating platforms have further
stimulated the discovery of exotic critical phenomena, putting
a focus onto quantum versions of phase transitions. The study
of phase transitions beyond CFT, although extremely chal-
lenging, has been attracting a lot of attention in the past
decades. One of the most intriguing and debated problem is
a possibility of a direct chiral transition out of crystalline
period-3 phase predicted by Huse and Fisher [9] in the context
of adsorbed monolayers [10—-14].

Recent experiments on Rydberg atoms have shed new light
onto this originally classical problem, but now in the context
of one-dimensional (1D) quantum chains [15-24]. In these ex-
periments, Rydberg atoms are trapped with optical tweezers at
a well-controlled inter-atomic distance. Competition between
the laser detuning, favoring atoms to be in Rydberg states, and
strong van der Waals repulsions between them leads to a rich
phase diagram dominated by lobes with integer periodicities
p=2,3,4,...

Although quantum-classical correspondence does not hold
for nonconformal criticality, many features of the transitions
with z # 1 are qualitatively similar [9,17,18,20,25]. In par-
ticular, using Huse and Fisher’s original criteria for chiral
transitions and numerical simulations with state-of-the-art
density matrix renormalization group algorithm [5-7], it has
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been shown that in Rydberg arrays, the transition out of p = 3
phase changes its nature multiple times [17-19,26]. At the
point where chiral perturbations vanish, the transition is con-
formal in the three-state Potts universality class; away from
this point but not too far from it the transition is direct in
the Huse-Fisher universality class; further away the transition
is a two-step process via conformal Kosterlitz-Thouless [27]
and nonconformal Pokrovsky-Talapov [28] transitions, with a
floating phase between the two. Quite surprisingly, numerical
simulations revealed that the boundary of the p = 4 phase
undergoes a similar zoo of QPTs with a conformal Ashkin-
Teller point, followed by the p = 4 chiral transition, and then
by the floating phase [18,20].

Intervals of chiral transitions predicted numerically explain
the experimental data obtained with Rydberg atoms. However,
the numerical methods used to diagnose phase transitions
differ greatly from the experimental techniques. Numerical
simulations mainly rely on equilibrium physics and extracted
critical exponents v of the correlation length, B of the in-
commensurate wave vector, and o of the specific heat. At
the same time, the experiments are performed out of equi-
librium, employing quantum Kibble-Zurek (KZ) mechanism
[15,29,30], which tracks the number of domain walls (kinks)
formed upon sweeping through a phase transition as a function
of sweep rate. This paper aims to fill the gap between the the-
oretical predictions for chiral transitions and experimentally
accessible measurements to diagnose them.

II. KIBBLE-ZUREK MECHANISM

The KZ mechanism describes the generation of topological
defects during the constant-rate drive of a system through a
second-order phase transition [31]. The concept, introduced
by Kibble to explain galaxy formation in the nascent uni-
verse [32], was brought to condensed matter by Zurek [33]
and recently has been extended to QPTs [29,30,34]. In the
critical region, the correlation length & ~ |g — g.|™" and the

©2024 American Physical Society
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relaxation time 7 ~ |g — g.|™"* diverge with the distance to
the transition |g — g.|. Sweeping through the transition in
a nonadiabatic fashion with a given sweep rate s creates a
certain density of kinks (domain walls) ny, that, in turn, de-
termines the final correlation length £ measured deep in the
ordered phase. According to the KZ mechanism, the scaling
of both quantities is universal and governed by the critical
exponent u = v/(1 4 vz):

ng ~EN ~ I 1))

III. FINITE-TIME SCALING

Finite-time scaling (FTS) is the temporal analog of the
finite-size scaling performed in the critical region when the
system size L used in numerical (or quantum) simulations is
smaller than the actual correlation length. FTS allows access-
ing the scaling of macroscopic quantities in the nonadiabatic
region. For Rydberg arrays, such analysis has been performed
only for the correlation length [15].

Inspired by the results for the chiral clock model [35], we
perform FTS by sweeping from the ordered to the disordered
phase—in the direction opposite to the conventional Kibble-
Zurek drive. If the KZ mechanism tracks the formation of
domain walls in the ordered phase, then the backward sweep-
ing captures the inertia of the order parameter—the faster one
sweeps through the transitions, the deeper in the disordered
phase is the point gy where the order parameter vanishes
[36-38]:

lgo(s) — g o< 57 2)

At the critical point, the remaining order parameter O, scales
with the sweep rate as [36—38]

O.c(s) o P (3)

These complete the set of independent critical exponents,
allowing to extract u, v, 8, and z and derive other critical
exponents using the hyperscaling relation 2 — o = v(1 + 2).

IV. BLOCKADE MODEL

An array of Rydberg atoms can be described by the Hamil-
tonian of interacting hard-core bosons:

H:%Z(di-l—df)—AZni—i-Z‘/,-jninj, (4)
1 1 <Jj
where 2 is the Rabi frequency bringing an atom to the Ry-
dberg state, A is laser detuning, and V;; oc 1/ r% is a van der
‘Waals interaction.
Owing to an extremely strong repulsion at short distances,
we can write down an effective Hamiltonian with r-site block-

ade:

Q
H = Z —E(d; +d;) — Ani +Venini 1 (5a)

ni(n; — 1) = niniy1 = -+ = ninjy, = 0. (5b)

All operators in Eq. (5a) are acting in the constrained
Hilbert space defined by Eq. (5b), which implies that two
atoms cannot be excited within a certain distance r. The next-
to-blockade interaction is encoded in the third term and the
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FIG. 1. Scaling of the density of kinks n; with the sweep rate
s through (a) the direct transition and (b) the floating phase. Arrows
show systematic finite-size effects that can be used to resolve the two
critical regimes. The gray line is a linear fit in a log-log scale.

rest of the decaying interaction tail is set to zero. Various
blockade ranges give access to different slices of the phase
diagram [20]: we will use r = 1 blockade to probe chiral
transition out of period-3 phase and » = 2 for the period-4
case. The advantage of the blockade model is three-fold:
(i) it provides a good approximation to the van der Waals
potential [17,18,20]; (ii) tensor networks with explicitly im-
plemented blockade have significantly lower computational
costs [16,20]; (iii) for these models, the location and extent
of chiral transitions are known with a high accuracy [17,20].

Numerical simulations were performed with the time-
evolving block decimation algorithm (TEBD) with time
step 8¢ =0.1 and maximal bond dimension D = 400
(see Appendix A for further technical details).

V. FLOATING PHASE VERSUS DIRECT TRANSITION

Our first goal is to resolve the direct chiral transition from
the intermediate critical phase. Upon approaching the float-
ing phase from the disordered one, the correlation length
& diverges stretch-exponentially due to Kosterlitz-Thouless
transition [27], leading to the effective exponent veg — 00,
and consequently p. — 1. Interestingly, this value is much
larger than the one for the three-state Potts (u = 5/11) or
Ashkin-Teller (0.4 < p < 0.5) transitions. But we rely on the
fact that this scaling is only approached asymptotically and
otherwise is affected by significant finite-size effects [39,40].

In Fig. 1(a), we present the scaling of the density of kinks
formed by sweeping through the direct transitions for various
system sizes. For a given size L, there is a certain range of
sweep rates s where the scaling in log-log plot is linear,
in agreement with KZ mechanism. However, the curves turn
down for small s, where the system dynamics approaches the
adiabatic regime for a given L. This is similar to when one
underestimates a correlation length when it is comparable to
or exceeds the chain length. The window of the universal KZ
scaling can be increased by increasing the length L. In other
words, comparing the density of kinks at low sweep rates for
several system sizes, we see that it grows with L.

Across the floating phase, the finite-size effect is very dif-
ferent, as presented in Fig. 1(b): The larger the system size,
the closer to the asymptotic limit, and therefore the steeper
the scaling is. Focusing again on low sweep rates, we see a
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FIG. 2. Critical exponent p extracted with the Kibble-Zurek
mechanism along various cuts through the transitions (a) into the
period-3 phase with » = 1 blockade and (b) into the period-4 phase
with r = 2 blockade. The vertical dashed line indicates the location
of the conformal point. The shaded region states for the floating
phase. In this area, the Kibble-Zurek mechanism is not defined, and
our results should be taken only as per. At the conformal points
(dashed lines), the extracted values of p agree with theory predic-
tions within 1%. Error bars reflect errors from the fit but do not show
errors due to entanglement cutoff.

systematic and fast decrease in kinks density with L. However,
the limitation of measurable density of kinks for very small
system size L is still in place, as can be clearly seen for
L =52.

To summarize, for a set of sufficiently large system sizes,
the density of kinks grows with the system size towards the
universal KZ scaling when the system is driven through a
direct transition and n; decays significantly when sweeping
through the floating phase.

VI. CONFORMAL VERSUS CHIRAL TRANSITIONS
WITH KZ MECHANISM

We have defined a protocol to distinguish the direct tran-
sition from the floating phase. Now let us see if with critical
dynamics we could identify when the transition is conformal.
For this purpose, we systematically extract the KZ critical
exponent (o across various cuts into period-3 and period-4
phases. Our numerical results are summarized in Fig. 2. For
the model with r = 1 blockade, there is only one conformal
critical point, and its location is known exactly [26]. For the
model with r = 2 blockade, the location of the conformal
point has been obtained numerically by tracking the commen-
surate line where chiral perturbations vanish [20].

For both transitions into period-3 and period-4 phases, the
KZ critical exponent p measured for a set of consecutive
cuts has a dome shape, taking maximal values at the cuts
that go through the conformal points. Numerically obtained
values u =~ 0.458 for the three-state Potts and u =~ 0.442 for
the Ashkin-Teller point (with v ~ 0.78 [20]) agree within 1%
with the CFT predictions. Away from conformal points, u
shows a slow decay. The domelike shape we observe here is
in excellent agreement with the experimental results [15], and
has been overlooked in the previous numerical simulations of
dynamics hidden by large numerical errors [15].

By looking at Fig. 2 with marked conformal points, it is
easy to associate them with maxima of u. However, if the
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FIG. 3. Example of the finite-time scaling out of period-3 phase.
(a) Order parameter as a function of the sweep rate after the re-
scaling indicated at each axis. The inset shows the same curves
before the re-scaling. (b) Location of the point A, where the order
parameter vanishes as a function of sweep rate. Inset: Scaling of the
order parameter O at the critical point A, as a function of sweep rate
s. Orange lines are fits with Egs. (2) and (3).

location of these points were unknown (as is often the case
in experiments), then the problem would be quite challenging
since the domes are relatively flat. As a solution, we propose
performing a backward sweep.

VII. SWEEPING FROM THE ORDERED
TO THE DISORDERED PHASE

Sweeping from the ordered to the disordered phase—in
the direction opposite to the KZ mechanism—allows us to
study a relaxation of the order. The faster is the sweeping rate
the longer it takes for the order parameter to disappear after
crossing the transition, as illustrated by the inset of Fig. 3(a).
We extract the ratio /v by fitting the location where the
order parameter vanishes with Eq. (2), as shown in Fig. 3(b).
Furthermore, we extract Su/v in the inset by fitting the order
parameter at the critical point with Eq. (3).

Combining the results from the two fits, we extract the
critical exponent 8 along various cuts from period-3 and
period-4 phases. The results are summarized in Figs. 4(a)
and 4(b) correspondingly. Similar to the Kibble-Zurek criti-
cal exponent u, we find that S takes its maximal values at
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FIG. 4. Critical exponent 8 measured with finite-time scaling of
the order parameter while sweeping from the ordered (a) period-3
and (b) period-4 phases to the disordered one. In both cases, the
conformal points (dashed lines) correspond to the pronounced peaks
in B. Shaded regions indicate the floating phases.
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the conformal points. However, the sharp peaks in B allow
identifying the location of the critical point with significantly
smaller uncertainty.

It is important to keep in mind that the critical exponent g
is well understood only for the two conformal points. At the
three-state Potts point, it takes the universal value g = 1/9.
Our numerical result 8 ~ 0.112 agrees within ~2% with this
value. As long as the transition to the disordered phase is
direct and the order parameter goes to zero at the transition,
the exponent B can be formally defined. However, its value is
unknown and might be affected by the domain wall tension
[9]. Indeed, what we observe is that 8 is not universal and
varies along the chiral transition, decaying away from the
conformal point. This fully agrees with previous numerical
results on the chiral clock model where the exponent 8 for
chiral transitions has been extracted [35].

Ashkin-Teller critical theory defines the family of univer-
sality classes with the exponents 11—2 <B < % and % <v«l
satisfying d = B/v = 1/8 [41]. Our numerical result g ~
0.1073 belongs to the corresponding interval. Equilibrium
simulations have reported an Ashkin-Teller point with v ~
0.78 [20], implying B =~ 0.098. This value agrees with our
out-of-equilibrium result within 10%. Similar to the period-3
case, we see that the value of B is not universal along the
p = 4 chiral transition.

VIII. COMBINATION OF FORWARD
AND BACKWARDS SWEEPING

Combination of forward and backwards sweeping opens a
way to extract all critical exponents, including the dynamical
critical exponent z presented in Figs. 5(a) and 5(c): at the two
conformal points our numerical results match the CFT value
z = 1; away from these points z increases, in agreement with
previous studies [15,20]. We also extract the critical exponent
a. Unlike other critical exponents, o does not change signif-
icantly along the chiral transitions. This agrees with the idea
that along chiral transitions, « keeps the value it takes at the
conformal point [42—44].

IX. RESULTS FOR THE RYDBERG MODEL
WITH 1/r® INTERACTION

We have verified whether our results on the blockade
model can be extrapolated to the Rydberg model with the 1/r°
van der Waals interaction.

By sweeping from the disordered to the period-3 phase
we extract the critical exponent p for various cuts along the
transition. The results are summarized in Fig. 6(a). The point
where the critical exponent w takes the maximal value is
in good agreement with previously identified location of the
three-state Potts point. Interestingly, above the Potts point, 1
decays very slowly, in agreement with an extended interval of
the chiral transition. However, although the qualitative shape
of Fig. 6(a) is similar to the one of Fig. 2(a), the values of u
seem to be above the theoretical ones, with a discrepancy of
5% for w on the Potts point respect to the CFT prediction pu =~
0.454.

We believe, this discrepancy is due to the small system
sizes and fast sweep rates used in the simulations due to
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FIG. 5. Dynamical critical exponent z and specific heat critical
exponent o computed across various cuts across transitions to the
(a), (b) period-3 and (c), (d) period-4 phases. (a), (c) Our results
agree with z = 1 at the two conformal points (dashed lines) and sug-
gest that z > 1 when the transitions are chiral. (b), (d) Numerically
extracted values of « are in good agreement with CFT predictions
o = 1/3 for three-state Potts and o = 0.44 for the Ashkin-Teller
point with v & 0.78. We show the results for small (blue) and large
(red) system sizes; when L used in KZ and in finite-time scaling are
different, the former is indicated in brackets. Shaded regions state for
the floating phases.

numerical constraints. We expect that bigger system sizes and
smaller sweep rates will allow a more accurate extraction of
the critical exponents and to distinguish the floating phase
from the chiral transition.

Sweeping on the opposite direction, from the period-3 to
the disordered phase, we perform a finite-time scaling and
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FIG. 6. Critical exponents (a) u, (b) 8, and (c) z computed across
various cuts for the period-3 Rydberg model with 1/r% interaction
using KZ, FTS, and combining both techniques, respectively. When
combining KZ with FTS, the system size for KZ is in brackets. Both
© and B have a dome shape that peaks at the conformal three-state
Potts point. This peak is more pronounced for 8, and agrees with
theory prediction 8 = 1/9 for the three-state Potts point within 5%.
z has a minimum z = 1 at the conformal point, which agrees with a
conformal transition. Numerical results for pu agree within 5% with
CFT predictions u ~ 0.454 for the three-state Potts point.
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extract the critical exponent 8 by keeping track of the order
parameter. Figure 6(b) depicts 8 for various cuts along the
transition. Similar to the blockade model, we see a sharp peak
in B around the conformal point. At the three-state Potts point,
the extracted value of § agrees with the theory prediction
B = 1/9 withing 5%.

Combining the results from KZ and FTS we extract the
critical exponent z. Figure 6(c) shows z for various cuts along
the transition. As it happened in the blockade model, z has
a minimum at the conformal point and increases with the
chiral perturbation. The calculated value of z in the predicted
Potts pointis z = 1.01 £ 0.05, in agreement with a conformal
transition.

X. DISCUSSION

In the present manuscript, we have shown how quantum
phase transitions can be fully characterized by combining
Kibble-Zurek dynamics with finite-time scaling of the or-
der parameter. We demonstrated that the appearance of the
intermediate floating phase can be identified by compar-
ing Kibble-Zurek dynamics in Rydberg arrays with different
numbers of atoms. Our approach relies on the standard
Kibble-Zurek protocol and, by contrast to previous proposals,
does not require measurements of the correlation length, in-
commensurate wave-vector [20] or structure factor [45] near
or inside the critical region.

We have also shown that by sweeping from the ordered
to disordered phase and keeping track of the order param-
eter, the location of the conformal points can be accurately
identified with the critical exponent 8. Although this method
requires several runs terminating at different distances to the
transitions, the ordered phases are less sensitive to noise, and
the sampling might require only a few runs. To prepare a
high-quality ordered state and to ensure an identical starting
point for all samples, one can use a recently developed light-
shift method [46]. Interestingly enough, when the location of
the transitions is known, the KZ dynamics can be combined
with measurements of the remaining order at the transition to
extract the scaling dimension of the corresponding operator.

Our predictions for blockade models remain valid for the
model Eq. (4) with van der Waals interaction. Performing a
finite-time scaling of the period-3 order we observe a sharp
peak in B that agrees with previously identified location of
the conformal point [18]. At the same point, the KZ exponent
w takes its maximum. The interval of the p = 4 chiral transi-
tion in this model is very narrow [18], making it extremely
challenging for dynamical studies. However, the protocols
developed here are generic and can be applied to multicom-
ponent systems, where the extent of the chiral transition can
be controlled [47]. A similar qualitative effect of the chiral
perturbation on the value of the critical exponents w, 8 and v
has been previously reported in the chiral Potts [38] and chiral
clock [48] models.

All these cases suggest that chiral transitions might form
a weak universality class with critical exponents controlled
by chiral perturbations. At the same time, when chiral pertur-
bations become too strong, the chiral transitions are known
to be unstable, and the floating phase opens. Taking a closer
look to the critical exponent 8 presented in Fig. 4 we noticed

that the value of this critical exponent at the point where
the chiral transition terminates is roughly the same on both
sides of the conformal points. Given the numerical errors in
our data and the uncertainty in the location of the Lifshitz
points, we cannot exclude a simple coincidence. However, the
possibility that chiral transition terminates once beta drops to
a certain universal value deserves a detailed and systematic
investigation. We hope that our results will stimulate further
theoretical exploration of the universal properties of these
exotic transitions.
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APPENDIX A: BLOCKADE MODELS

1. Implementation details

This Appendix explains how Rydberg blockade can be
encoded into one-dimensional (1D) tensor network. Note that
various blockade ranges give access to different slices of the
phase diagram, as explained in Ref. [20]. In this paper, we are
focusing on transitions out of period-3 and period-4 phases.
The tip of the period-3 phase, where the conformal three-state
Potts critical point and two intervals of chiral transitions are
realized, can be addressed with the » = 1 blockade model
[17,18,26]. The tip of the period-4 phase, encompassing the
Ashkin-Teller conformal point and two intervals of the p = 4
chiral transition, can be addressed with the » = 2 [20].

To fully profit from the reduced Hilbert space, a new
basis was taken, wherein each element of the new basis is
composed of a pair of adjacent local basis elements, where
the last element of each tensor overlaps with the first site
on the following tensor. In other words, we span the local
physical degrees of freedom of each individual tensor over
two consecutive atoms. Using the occupation of the atom
shared between two nearest tensors as a quantum label of the
auxiliary bond that connects them, we can bring the network
into a block-diagonal form. The latter drastically reduces the
computational complexity. Figure 7 illustrates how the r = 1
blockade basis is constructed.

The bulk Hamiltonian in the new |A;) basis is

Q.
h; = —3(51:'17;'4-1 +Hc.) — AGi + Va§GiPit1- (AD)

The term El,'l;prl + H.c. represents the first term in Eq. (5a)
of the main text. This term flips an atom between ground
and Rydberg states. It comprises three local sites, with
@lhi) = |hy), and b|h) = |h3), and O otherwise. The oper-
ators ¢; and p; are local density operators for the left and
right sites in each pair, returning nonzero values only for
G |h3) = |h3) and p|h2) = |hy) correspondingly. As a result,
the next-nearest-neighbor interaction V,n;n;,, transforms into
a nearest-neighbor interaction V,§; p;+1. To match the original
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@ ©

1 @

FIG. 7. Mapping of the » = 1 blockade model onto a model
preserving the block diagonal structure of tensors. (a) Local Hilbert
space |/;) of the original model. (b) New local Hilbert space spanned
over two consecutive sites. (c) Fusion graph for the recursive con-
struction of the environment (both, left and right): starting with
empty site (0), another empty site can always be added, ending up
with label (0). Additionally, an occupied site can be added, leading to
the label (1). On the other side, starting with label (1), only an empty
site can be added, which results in label (0). (d) Example of the label
assignment in MPS representation on two consecutive tensors written
for the selected state.

Hamiltonian of Eq. (5), this effective model must be carefully
adapted close to the boundary.

The explicit implementation of » = 2 blockade is concep-
tually very similar, as depicted in Fig. 8. We span the local
degrees of freedom over three consecutive atoms and use the
quantum state of the two atoms shared by nearest tensors
as quantum labels for their common auxiliary leg. The bulk
Hamiltonian has the form:

Q.
h; = —E(Elibméwz +Hec.) — AGi + V3Gipir1.  (A2)

In this case, the term Zzil5,~+15i+2 + H.c. represents the first
term in Eq. (5a) of the main text, which flips an atom between
ground and Rydberg states. The only nonzero elements are
@lhi) = |hy), b|hi) = |h3) and & |hy) = |hs). The terms §; and
pi represent the density of the local sites i and i + 2 corre-
spondingly, with only a single nonzero entree § |h4) = |hy)
and p;|hy) = |h). The interaction V3n;n;, 3 transforms into

|hg> |h/2>

( ) (00)< )
(10) on

FIG. 8. Mapping of the r =2 blockade model onto a model
preserving the block diagonal structure of tensors. (a) Local Hilbert
space of the original model |/;). (b) New local Hilbert space spanned
over three consecutive sites. (c) Fusion graph for the recursive con-
struction of the left environment (for the right environment, the
direction of arrows should be reverted). (d) Example of the label
assignment in MPS representation on two consecutive tensors written
for the selected state.

a nearest-neighbor interaction V,>§;p;+1 under the new basis.
Similarly to the r = 1 case, this Hamiltonian has to be adapted
close to the edges to capture the boundary terms.

2. Ground-state calculations

The initial state defined at time r = 0 is a ground state at
a given point in the phase diagram sufficiently far from the
transition. This point is located either in the disordered phase
(corresponding to the starting point for the Kibble-Zurek
mechanism) or in the ordered period-3 or period-4 phases
(the starting points for the backward sweeps for the finite-time
scaling of the order parameter).

The ground state was determined with imaginary time-
evolving block decimation (TEBD) for the two blockade
models. We used second-order Trotter decomposition. Maxi-
mal bond dimension was kept at D = 300, and singular values
below x > 10~° were truncated. Convergence criteria were
based on the order parameter, with calculations considered
converged when the relative variation of the order parameter
was smaller than 107°.

Deep inside the ordered phase, the correlation length is
very small, and the energy cost of the domain wall formation
is relatively cheap. Therefore, there are many low-lying ex-
cited states above the ground states. When the system is close
to the classical limit, and the entanglement is low, the TEBD
is often stuck at such states with multiple domain walls. To
circumvent this issue, we take as a starting guess a classical
state (with D = 1) that resembles the expected pattern of
occupied and empty sites and then perform four sweeps to
converge for a given quantum point inside the ordered phase.

3. Simulation of dynamics

Simulations of dynamics in the blockade model were per-
formed using a second-order TEBD. For the r = 1 blockade, a
two-site Trotterization was applied, while for the r = 2 block-
ade, a three-site Trotterization was used. The time step was
maintained at 8¢ = 0.1, and the maximum bond dimension
and singular value cutoff were set to D = 300 and y > 107°
correspondingly.

Figure 9 shows convergence with respect to bond dimen-
sion for Kibble-Zurek(KZ) dynamics across transitions of
various types. In Figs. 9(a) and 9(b), we present the extracted
density of kinks formed across the three-state Potts and for the
Ashkin-Teller point correspondingly as a function of sweep
rates for bond dimension ranging from D = 50 to D = 300.
It is clear from the figure that the finite-bond dimension
effect is stronger for the Ashkin-Teller point, but in both
cases, the results for the two largest bond dimensions are
indistinguishable.

Figure 9(c) shows the density of kinks formed while
crossing the p = 3 chiral transition. Figure 9(d) shows the
convergence of the extracted density of kinks for a given
sweep rate s as a function of bond dimension D.

APPENDIX B: KINK OPERATORS

Kinks can be counted in two different ways. One way is
counting the number of domain walls. Figure 10 depicts the
types of domain walls that can appear in period-3 as described
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FIG. 9. Density of kinks as a function of sweep rate in a
log-log scale for various maximal bond dimensions D measured
after crossing (a) the three-state Potts transition, (b) the Ashkin-Teller
transition, and (c) the chiral transition. (d) Density of kinks formed
across the chiral transition for a given sweep rate as a function of
bond dimension D.

in Ref. [9]. An alternative method for counting kinks is using
an operator that counts the absence of an ordered state. This
no-order operator would be (1 — oo — co® — 0%0) in the
period-3 case, and quantifies a kink every time the periodicity
of the phase is not followed. These two methods of counting
kinks are not always equivalent. For instance, the first method
would count one kink in the state *oo*ecoe, while the second
method would count two kinks. Additionally, the first method
would not count any kink in the state *oooooe, since the type of
domain of the chain does not change, while the second method
would count three kinks.

In Fig. 11, we compare the KZ scaling using the two
above-mentioned counting methods. Figure 11(a) compares
two different cuts through the Potts point for a r = 1 blockade,
while Fig. 11(b) compares two final distances from the AT
point in the » = 2 blockade model. In all cases, blue squares

A B CcC A B CcC A B
L [0l0] | [0

A B CcC A B C A B C
000000000

A B CcC A B A B cC A B
[ _0/0] [elole] 0@

A B CcC A B C A B cC A B C
0000000 e00e

FIG. 10. Types of domain walls in the period 3 phase. There are

three types of domains, depending on the label A, B, or C on top of
the black dot.

Heavy
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s
(b)
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&
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p= 0.
L= 0.470 }dl
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FIG. 11. KZ scaling for the density kinks measured as domain
walls (orange triangles and red circles) or with a no-order operator
(blue squares and green pentagons) for (a) two different cuts through
the Potts point for the r =1 blockade model and (b) two final
distances from the AT points for the » = 2 blockade model.

and green pentagons represent the density of kinks measured
with the no-order operator while orange triangles and red
circles represent the density of domain walls as described in
Fig. 10.

For the r = 1 blockade model, data points representing the
density of domain walls for the two different cuts and the
density kinks using the no-order operator for cut 2 overlap
and are close to the theoretical value u = 0.454. In contrast,
data points representing the density of kinks for the no-order
operator are off and far from 0.454. However, for r = 2 the
opposite situation occurs. Data points representing the den-
sity of kinks measured with the no-order operator for the
two different final distances d1 (short) and d2 (long) and the

(@) Chiral (b) KT
0.017000 0.0301
° ®e ® s=004
0.016975 | ® 0.029 |
0.016950 |
° 0.028 °
0.016925
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0.016900
0.026 1 °
0.016875
0.025 1 ®
0.016850 :
0.016825 | ® ® 5=0064 11 54 °

200 300 400 500 600 700

L

0

200 400 600 800 1000 1200

L

FIG. 12. Finite-size effect of the density of kinks formed by
sweeping from the disordered phase to the period-3 phase across
(a) the direct chiral transition and (b) the intermediate floating phase
separated from the disordered phase by the Kosterlitz-Thouless (KT)
transition. The value of sweep rate s is indicated at each panel.
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FIG. 13. Finite-size effect of the density of kinks formed by
sweeping from the disordered phase to the period-4 phase across (a),
(b) the direct chiral transition and (c), (d) the intermediate floating
phase separated from a disordered phase by the Kosterlitz-Thouless
(KT) transition. The trajectories for panels (a), (b) and for panels
(c), (d) are identical.

density of domain walls for d2 overlap and are close to the
theoretical value u = 0.44, while the density of domain walls
for dl is off and far from 0.44. Similar effects were found
for different cuts and final distances from the critical point,
where convergence always occurred faster for the density
of domain walls in the r = 1 blockade and for the density
of kinks calculated with the no-order operator for the r = 2
blockade.

We believe that the discrepancy between the two methods
comes from the rare appearance of unlikely events—the state
*oo*ooe is forbidden by the blockade, while the state *coocooe
is energetically more costly than any other type of domain
walls sketched in Fig. 10. However, sweeping along certain
trajectories, for example, those along which incommensu-
rability is nonmonotonous [17,20] the probability of these
events might increase. In our research we compared different
trajectories, different start and end points and pick ups the
kink operators that is the most robust: domain wall operators
for period-3 and no-order operator for period-4.

APPENDIX C: FINITE-SIZE EFFECTS
IN KIBBLE-ZUREK MECHANISM

In the main text, we argue that in the Kibble-Zurek mech-
anism, the intermediate floating phase can be distinguished
from the direct transition by tracking the finite-size effects
in the density of kinks formed by sweeping through the
criticality. Figure 12 shows the density of kinks as a func-
tion of the system size for the two cuts presented in Fig. 1
of the main text. Figure 12(a) depicts a cut through the
chiral transition. Through this cut, the density of kinks in-
creases with the system size L. Figure 12(b) shows the cut
through the floating phase, which is mainly governed by the

O L=301
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o
@]
o
132 : : : : : : ,
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
s
(b)
1.000{ B O L=301
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__0.9501
n
& 0.9251
]
g 0.9001 O
. o
0.8751 o)
a
0.8501 o
0.825 1~ T T T T T T T (,)
0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
s

FIG. 14. Comparison of the system size effect in the finite-time
scaling for (a) a direct transition and (b) an intermediate floating
phase for two different system sizes. In both figures, the difference is
visible only for very small sweep rates.

Kosterlitz-Thouless (KT) transition between the disordered
and the floating phases. In contrast to the direct transi-
tion, the density of kinks systematically decreases with the
system size.

The Kibble-Zurek mechanism across the transitions into
the period-4 phase with a r = 2 blockade model shows quali-
tatively similar finite-size effects as in the period-3 case. The
results for period-4 are summarized in Fig. 13.

APPENDIX D: ORDER PARAMETER

In this Appendix, we define the order parameter associated
with the gaped period-3 and period-4 phases with broken
translation symmetry. As an order parameter, we use the local
amplitude of the local density that we average over the whole
finite-size chain. Explicitly, for the period-3 case, we use

L-2
1
0=— ;maxi(mi — il I = nigal), (D)

and for the period-4,

L-3

0= —— > maxi(ni = il Iy = nisal, 1 = nigs))-

i=1

D2)
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FIG. 15. Correlation length critical exponent v (a), (c) and scal-
ing dimension of the order parameter d = B/v (b), (d) extracted
by combining the Kibble-Zurek mechanism with finite-time scaling
across the transition (a), (b) into period-3 and (c), (d) into period-4
phases.

APPENDIX E: FINITE-SIZE EFFECT
IN THE FINITE-TIME SCALING

Figure 14 compares the finite-time scaling (FTS) for two
different system sizes. For both system sizes, direct tran-
sition [see Fig. 14(a)] and sweep through a floating phase
[see Fig. 14(b)], we observe an almost perfect overlap except
for the slowest sweep rates.

APPENDIX F: DERIVED CRITICAL EXPONENTS

In this Appendix, we present additional results of the crit-
ical exponents that can be derived from the Kibble-Zurek
mechanism and the finite-time scaling of the order parameter.
In particular, we show the correlation length critical exponent
V across various cuts into the period-3 [see Fig. 15(a)] and into
the period-4 [see Fig. 15(c)] phases. In both cases, the critical
exponent v of the chiral transition stays within ~5-6% of the
value at the corresponding conformal point. Our results for
the period-3 case [see Fig. 15(a)] agree with the results on
the chiral clock model reporting the decrease of v away from
the Potts point [35]. Curiously enough, for the period-4 case,
we see that on one side of the transition, v might increase.
It would be interesting to clarify the behavior of v with a
more accurate systematic estimate of v across the period-4
transition.

In addition, we extract the scaling dimension d = /v of
the operator that defines the order parameter. These results are
summarized in Figs. 15(b) and 15(d).

APPENDIX G: RYDBERG MODEL
WITH 1/r8 INTERACTION

1. Technical details

For the two-site density matrix renormalization group cal-
culations [5,6], the decaying 1/ r® van der Waals interaction

® AJ/V=1,u~ 0503
AJV =0.5, u ~ 0.508
6x10721 @ AJV =0.1,pu~0.506
4x1072
< 3x1072
2x1072
1074 1073 1072

S

FIG. 16. Scaling of the density of kinks n; with the sweep rate for
a disordered to period p = 2 phase transition in the Rydberg model
at different critical values of detuning A.. The transition belongs to
the Ising universality class characterized by a Kibble-Zurek exponent
u = 0.5. The extracted value of w is in excellent agreement with
theoretical predictions.

was expressed as a sum of 11 exponentials [7,49]; i.e., 1 /r® =
Zil:ll ciAl. The coefficients ¢; and exponents A; were deter-
mined by minimizing the cost function defined as

L 11

ZI%—ZW-
i=1

r=1

(GD)

This optimization process followed the method described in
Ref. [49]. Convergence was declared when variations in the
energy per site were AE < 1078,

To match the ordered phase and boundary conditions, the
system sizes were chosen in the form L = Np + 1, where N
is an integer, and p is the periodicity of the ordered phase.

2. Simulation of dynamics

For the Rydberg model with 1/7® van der Waals interac-
tions, time evolution was simulated using the time-dependent
variational principle (TDVP) [50,51]. The long-range inter-
actions were approximated using a sum of 7 exponentials;
the maximum error in this approximation was ~107'°, with
a cost function ~1.3x 107", Different 8¢ for various sweep
rates and critical points were tested during 24 h simulations.
The values of ¢ that gave the fastest simulations were taken
for surrounding sweep rates and critical points. Truncation
criteria were maintained at x > 107, and the maximum bond
dimension was set to D = 400.

3. Ising transition

We benchmark our method with Ising transition [15,24]
into period-2 phase for which there are theory predictions for
all critical exponents (v = 1,z =1, u = 0.5).

Figure 16 shows scaling of the density of kinks and ex-
tracted Kibble-Zurek critical exponent p for three different
cuts across the Ising transition—the agreement is always
within 2%.
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