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1. Beschouw een rij van onafhankelijke gelijk verdeelde stochasten Xy, ..... X, met
P(X, =0) =P(X, = 1) = 1 en een rij reéele getallen &, ..., & met & +.. .+ &2 =
Dan kan men bewijzen dat

P> Xl <1) >4
k=1

Deze ondergrens is een aanzienlijke verbetering van cen resultaat van Ben-Tal, Ne-
mirovski en Roos en is inmiddels opgenomen in [1]. Computer simulaties doen ver-
moeden dat bovenstaande kans altijd groter of gelijk is aan cen half.

{1] A. Ben-Tal, A. Nemirovski, C. Roos, Robust solutions of uncertain quadratic
and conic-quadratic problems, (2001), work in progress.

2. Een rij x = (x;), is gelijk verdeeld in het eenheids interval, als

1 n
im — Tiguo 2k
S, 7 2 (o)

bestaat en gelijk is aan b — a voor alle 0 < a < b < 1. Laat H,(z) de hoogte van
de binaire zoekboom zijn gegenereerd door de cerste n elementen zy,...,x, van een
gelijk verdeelde rij z = (z4)x in [0, 1]. Dan geldt dat H,(x) = o(n) als n — oo.
Vergelijk dit met het volgende resultaat van Devroye en Goudjil [2] over Weyl rijen
o = (zx) = ({ak})2,, waar o irrationaal is cn {ak} staat voor ok modulo 1.
Laat (hy,) een monotone rij van reéele getallen zijn dic willekeurig langzaam naar
0 convergeren. Dan bestaat er cen o met de eigenschap dat H,(x,) > nh, voor
oneindig veel n.

(2] L. Devroye en A. Goudjil, A study of random Weyl trees, Random Structures
Algorithms 12(3) (1998), 271 -295.

[3] F.M. Dekking en P. van der Wal, Uniform distribution modulo 1 and binary
search trees, (2000), submitted.

3. Voor alle ¢ € (1,2] kan men een gelijk verdeelde rij x(c) in het eenheids interval
construeren met de eigenschap dat

H,(2(c)) = %J

voor alle n groot genoeg.



4. Laat p.(M) de kritische waarde zijn voor fractale percolatie in dimensie d, waarbij

ieder d-dimensionaal blok wordt opgedeeld in M sub-blokken. Dan kan men bewijzen
dat p.(M) > p(M?) > p.(M3) > ... voor alle M > 2. Vermoedelijk geldt zelfs

Pc(2) 2 pe(3) 2 pe(4) = ...

. Beschouw een M-systeem (A, M, o, u), waarbij A een eindig alfabet is, o een substi-

tutie met afhankelijkheid tussen de nakomelingen, M de substitutie lengte en u een
tweezijdig oneindig startwoord. Neem aan dat o N-onafhankelijk is, dat wil zeggen,
als twee sub-woorden verder dan N posities uit elkaar liggen, dan worden ze on-
afhankelijk gesubstitueerd. Voor preciese definities, zie [4]. Dan kan een vertakkend
cellulair automaat (A, M, N,&,%) en een homomorfisme 7 : A* — A* worden gecon-
strueerd met de eigenschap dat de rijen (0™ (u)), en (n(8"(@))), dezelfde verdeling
hebben. Een constructie de andere kant uit is ook mogelijk.

[4] J. Peyriere, Processus de naissance avec interaction des voisins, évolution de
graphes, Ann. Inst. Fourier (Grenoble) 31(4) (1981), 187-218.

. Zij p een Bernoulli maat op {0,1}", laat & = (x});, een element van {0, 1}" zijn en

definieer

@)= (51" )

In [5] merken Petersen en Schmidt op dat als A een eigenwaarde is van de Pascal-
adische transformatie, dan geldt dat A = ™%, waarbij

peE={0<6<1:e™"= 1 voor u bijna alle z}.

Het volgende kan bewezen worden: als E meetbaar is, dan m(E) = 0, waarbij m de
Lebesgue maat is.

Schets van het bewijs: Laat R = {ry,72,...} een aftelling zijn van de rationale getallen
in [0,1). Met elementaire eigenschappen van de Pascal driehoek kan bewezen worden
dat {8 +r} ¢ E voor alle § € F en v € R. Definieer E, = {{# +rc} : 6 € E}
voor k = 1,2,... De verzamelingen Ej, zijn disjunct en als we veronderstellen dat £
meetbaar is, dan is ook E} meetbaar voor alle k. Aangezien

[ve]

1=m((0,1)) 2 m({J Ex) = Zm(Ek)

k=1 k=1
en omdat m(Ey) = m(E) voor alle k, volgt dat m(E) = 0.

[56] K. Petersen en K. Schmidt, Symmetric Gibbs measures, Trans. Amer. Math.
Soc. 349 (1997), 2775-2811.
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Chapter 1

Introduction

Although we shall touch on quite complicated phenomena in this thesis, like tur-
bulence in a fluid and the propagation of gene information through generations,
we start from a simple mathematical object: that of substitutions on words. A
word is a sequence of symbols, for instance, 0’s and 1’s. An example of a substi-
tution on words is the Fibonacci substitution that replaces 0's by 01 and 1's by
0. If we apply this substitution on the word 0101 we obtain the word 010010. We
get a sequence of words by repeatedly applying the substitution on the outcome
of the previous substitution. Starting with a 0, we obtain the sequence 0, 01,
010, 01001, 01001010, 0100101001001 and so on. The lengths of these words, i.e.,
1,2,3,5,8,13,..., yield the famous Fibonacci numbers.

Substitutions can also be applied to sets in the plane. In Figure 1.1, a sequence
of sets (Cy,C1,...) is obtained by replacing triangles by three smaller triangles.
The limit set C is known as the Sierpinski gasket and is an example of a fractal
set. The gasket consists of three scaled and shifted copies of itself. To be precise,

C = fi(C) U £o(C) U f5(C),

where fl(C) - 2(C+(—1’0))3 fQ(C) = %(C+(170)) and fd(C) = 51(0-"(0: \/—5))
The set of functions {fi, fs, fs} is called an iterated function system (IFS) and
the Sierpinski gasket is the attractor of the IFS. Figure 1.2 shows the attractor
of another IFS, called the Heighway dragon. The boundary of the dragon looks
very complex. A measure for the complexity of sets is Hausdorff dimension.
The Hausdorff dimensions of the Sierpinski gasket and of the boundary of the
Heighway dragon can be calculated and are equal to log(3)/log(2) = 1.5849.. .,
respectively 2log A/log2 = 1.5236..., where X is the largest real zero of A3 —
A -2

Often, real life phenomena are better described by random substitutions. Con-
sider for example the two trees in Figure 1.3. The left tree is generated by a
deterministic substitution and the right one by a random substitution. Although
you would not expect to see either one of them ever in a forest, the random tree
looks more like a real tree than the deterministic one.
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Figure 1.1: First six stages of the Sierpinski gasket.

Figure 1.2: The Heighway dragon.

Figure 1.3: A deterministic and a random tree.
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Figure 1.4: A realisation of the sets Kj,. .., Ky of fractal percolation for p = 0.75.

In the early seventies, Mandelbrot proposed the following random substitution
model for the phenomenon of turbulence [17]. Let p be a parameter between 0 and
1 and let K, be the unit square and color it black. Divide K| into nine sub-squares
and for each of the nine sub-squares, color it black with probability p and color
it white with probability 1 —p, independently of the eight other sub-squares. Let
K be the set consisting of all black sub-squares. Similarly, we obtain the set K,
from K; by dividing all black sub-squares in K into 9 sub-sub-squares, coloring
them black with probability p and white with probability 1 — p. Repeating this
procedure arbitrarily often, we obtain a sequence Ky, K}, . .. of random sets. This
model for obtaining random sets is commonly referred to as fractal percolation
or Mandelbrot percolation. Figure 1.4 shows a realisation of the sets K, ..., Kg
for p = 0.75. Fractal percolation can be generalized in a straightforward way to
dimension d where every d-dimensional block is subdivided into M¢ sub-blocks.
The sequence (K,,) is monotone decreasing and therefore converges to a limit set
K ="y K,. With a branching process argument one can easily show that K
is the empty set if pM? < 1 and that K is non-empty with positive probability if
pM? > 1. Whereas K is a random set, its Hausdorff dimension is not so random,
in fact, if K is non-empty, then its dimension is almost surely constant and equal
to log(pM?)/log M. In Chapter 2 and 3, we will explore fractal percolation in
greater detail and give more examples of random substitutions and fractal sets.

Fractal percolation is not a very realistic model for turbulence. Siebesma
et al. suggested that a model allowing for neighbour interaction would describe
turbulence more accurately [27]. An example of such a model is majority fractal
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Figure 1.5: A realisation of the sets Kj,..., K5 of majority fractal percolation
for p = 0.15.
percolation. Divide each level n square I into 9 level n + 1 squares Jy,..., Jo.

But now, the probability that a sub-square J; will be colored black will not only
depend on the color of I, but also on the color of the squares surrounding I. To
be precise, the probability that J; is colored black is 1 — (1 — p)V, where N is the
number of black squares among I and its 8 neighbours. In Figure 1.5, a realisation
of the first six sets of majority fractal percolation is plotted for p = 0.15.

Fractal percolation and majority fractal percolation are examples of branching
cellular automata (BCA), studied in Chapter 4. We associate sequences of sets
Ky, K1, ... to a BCA that are generated by random substitutions with neighbour
interaction. In this general framework, the sets Ky, Ki,... do not necessarily
converge and we will present sufficient conditions for convergence. The proofs
concerning extinction and dimension of the limit set of fractal percolation heav-
ily rely on the fact that there is no neighbour interaction. We develop other
techniques to prove that if a sequence Ky, K1, ... associated with a BCA con-
verges to a limit set K, then K is empty if A < 1 and is non-empty with positive
probability if A > 1, where X is an eigenvalue of a certain offspring matrix. More-
over, if the limit set is non-empty, then the Hausdorff dimension is a constant
and equal to log A/ log M. We will show that the (topological) boundary of the
limit set of a BCA is again the limit set of a BCA.

Recently, there has been an interest in attractors of iterated function systems
and their boundaries for use in image compression and wavelet theory. For a
class of nicely behaving IFS’s, i.e., those satisfying the strong open set condition,



and for specific examples of not so nicely behaved IFS’s, the attractors and their
boundaries have been extensively studied. In Chapter 5, we study a subclass of
the recurrent iterated function systems, a generalization of ordinary IFS’s where
the attractor is a vector of sets satisfying a system of self-similarity equations.
Although this subclass, the M-tecurrent iterated function systems (M-RIFS),
does not contain all ordinary IFS’s, it does contain IFS’s that do not satisfy
the strong open set condition. We show that M-RIFS and deterministic BCA’s
are equivalent in the following sense. Starting with the attractor (Cy,...,C,)
of an M-RIFS, we construct a BCA with limit set K such that Cy = K, and,
starting with a deterministic BCA with limit set K, we construct an M-RIFS
with attractor (Cy, ..., C,) such that K = Cy. Using the results from Chapter 4
concerning the dimension and the boundary of the limit set of a BCA, it follows
that the boundary of a component of the attractor of an M-RIFS is again a
component of the attractor of an M-RIFS and we can calculate its Hausdorff
dimension.

In Chapter 6 we will investigate connectivity properties of the limit set K
of fractal percolation. In dimension two, we say that the limit set percolates if
K contains a connected component that intersects both the left and the right
side of the unit square. Let #(p) denote the probability that K percolates
for parameter p and subdivision into M? sub-squares. Then it is obvious that
03(0) = 0 and 6p(1) = 1, but what about the values of p in between 0 and 1?7
Using a coupling method, it can be shown that 83(p) is increasing in p. Define
the critical value p.(M) by

pe(M) = inf{p : Op(p) > 0}.

The exact value of p.(M) is up to now unknown, but several bounds have
been given. The first ones to establish non-triviality of the critical value were

Chayes, Chayes and Durrett [4], who proved that p.(M) > 1/ VM for M > 2
and p.(M) < p*(M) for M > 3, where p*(M) is the infimum over p for which

z = (pz)M” + (pz)™ (1 —pz) has a root in the half open interval (0, 1]. Dekking
and Meester [5] reinterpreted the Chayes, Chayes and Durrett proof for the upper
bound in terms of multi-valued substitutions and improved the upper bound to
pe(3) < 0.991. Recently, White [30] established p.(2) > 0.810 by a sophisticated
lattice construction. In Chapter 6, we will gencralize the methods of Chayes,
Chayes and Durrett, Dekking and Meester and White to a method for finding
both upper and lower bounds for the critical value. We prove that p.(3) < 0.965
and describe techniques to obtain even sharper bounds. In addition, we explain
how our method can be applied in the context of the passing of genes in a family
tree.
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Chapter 2

A Variety of Substitutions

2.1  Substitutions on Words

Let A be a finite set and let A* denote the free semi-group generated by A, denot-
ing the identity element by e. We adopt the terminology of word combinatorics,
so we call A an alphabet, we refer to its elements as letters, to A* as the set of
finite words, to the group operation as concatenation and to the identity element
€ as the empty word. Let A* denote the set of words of length k, i.e., obtained
by concatenating k letters from the alphabet A. By default, we will index the
letters of a word w € A* by the set {0,...,k— 1}, s0 w = wg... wx_;.

Definition 2.1 A substitution o is a homomorphism on A*. If for alla € A
the words a(a) have length M, then the substitution is said to be of constant

length and M is called the substitution length. It is a non-erasing substitution if
o(a) # ¢ for alla € A.

Since ¢ is a homomorphism, it is completely determined by its image on the
letters. By o™ we denote the n-fold iterate of 0. By convention, ¢° is the identity
map.

Example 2.1 (Cantor Substitution) Consider the substitution ¢ on {0, 1}
that substitutes a 0 by 000 and a 1 by 101. Then o is of constant length 3 and
is called the Cantor substitution.

Let AZ denote the set of all bi-infinite words, i.e., sequences ... u_jupu; . .. of
letters in A. There is a straightforward way to extend a non-erasing substitution
o to a map on A%, For finite words u = ug...u; and 0 < k <1 and for bi-infinite
words 4 = ... u_qugty ... € A% and k € Z define

length of o(ug ... ugy) k>1
Luk)=¢ 0 k=0
—length of o(ug ... u_y) k< -1

9



10 CHAPTER 2. A VARIETY OF SUBSTITUTIONS

Define the image o(u) of a bi-infinite word u by

(0(w)Luw) - - - (0(W) Ly k+1)-1 = 0(ur).

If the substitution is of constant length M, then L,(k) = kM for k € Z.

2.1.1 Offspring

For a substitution ¢ and a word u we define the letter (a(u)); to be a first
generation descendant, also called a child, of the letter u; if (o(u)); is a letter
of the word that has been substituted for ug, i.e., if L,(k) <1 < L,(k+1) -1
We recursively define (¢™(u)); to be an n'! generation descendant of the letter uy
if (6™(u)); is a child of an (n — 1)*® generation descendant of u;. The set of all
n'" generation descendants of a letter is called its n'" generation offspring. If o
is a substitution of constant length M, then the n'® generation offspring of uy is
easily traced to be the set of letters

{(o™(w))raan, - - -5 (U"("))(k+1)Mn—1}-

2.2 Random substitutions

Let (ok)ren be a sequence of independent identically distributed random maps
from A to A*. Define a random map o on A* by o(e) =c and foru =wup...ux €
A* define

o(u) = ao(ug) - - . or{ur).

The random map ¢ on A* is called a random substitution. Analogous to the
deterministic case, a non-erasing random substitution can be extended to a ran-
dom map on A% We define the n-fold iterate o™ to be the composition of n
independent copies of the substitution o.

Example 2.2 (Fractal Percolation) Let A = {0,1}, let p be a parameter be-
tween 0 and 1 and choose a substitution length M > 2. Consider a random
substitution ¢ with o(0) = 0™ and such that (a(1))y, ..., {o(1))a—, are indepen-
dent Bernoulli(p) random variables. This substitution is commonly referred to
as fractal percolation.

2.3 Substitutions with Neighbour Dependence

Let N be a non-negative integer, referred to as the interaction length, and let o
be a map from A?¥*1 to A*. We will extend o to a map on A* by defining for
uU=1ugy...u € A*
{ o(up...usn)...0(Up—an ... ux) ifk>2N

€

o(u) = fk<2N—1
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This extended map is called a substitution with neighbour dependence. In fact,
o is the projection of a substitution on (AZN*1)*. To see this, define a map
C A (A2N+1)* by

) _ (Uo...UgN)...(uk_gN...uk) lfk‘22N
C(“f’“"‘*)_{e if k<2N -1

and define a substitution 7 on (A2V*1)* by

(g - . uzy) = C(o(ug . . . uan))-

Then o = ¢~'7¢. Similarly to the case without neighbour dependence, o can be
extended to a substitution on A% if it is non-crasing.

2.3.1 Types

Consider a substitution ¢ with substitution length M > 2 and interaction length
N and let v be a word in A%+, It is casily shown by induction that the length
of o™(v) is at least 2k + M™ for all n, if and only if k is at least BT A set
T = A?R*1 {5 said to be a set of types for ¢ if B > [%1 For k > 2R and
v =1p...vx we define the type of a letter v; with R < i < k — R to be the word
Vi—r...Vitr in T. Note that the type of a letter v; completely determines the
types of all descendants of v;. If M > N + 1, then T = A**3 is a set of types
for o, since [ 4] = [N + 5] < [N+ M1 =N +1.

To emphasize that types are neighbourhoods of letters, we will always index
types t € T = A?F+! by the set {—R,..., R} instead of {0,...,2R}, so t =
t_g...tr. Likewise, the indices of 0™ (¢) will be such that the leftmost descendant
of the letter ¢, has index 0. Using this index convention, the n'® generation
offspring of #y consists of the letters

(@™o, - -, (0" () pan -1

2.4 Random Substitutions with Neighbour De-
pendence

Let (0%)ren be a sequence of independent and identically distributed random
maps from A2N*! to A*. Define a random map on A* by defining for v =
Ug... Uy € A*

0'(’[1,) _ UN(Uo...UQN)...Uk_N(uk_gN...'u,k) if & Z 2N
e itk <2N -1

The random map ¢ on A* is called a random substitution with neighbour de-
pendence. Analogous to the case without neighbour dependence, a non-erasing
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random substitution with neighbour dependence can be extended to a random
map on A% We define the n-fold iterate 0™ to be the composition of n indepen-
dent copies of the substitution o.

Consider a random substitution with substitution length M > 2 and interac-
tion length N and let T' = A%"*1 be a set of types for o, i.e., R > [{4%]. Then
the type of a letter completely determines the (joint) distribution of the types of
its offspring.

Example 2.3 (Majority Fractal Percolation) There are many ways to in-
troduce neighbour dependence in fractal percolation (Example 2.2) and we will
describe one of them. Choose a parameter 0 < p < 1 and let ¢ be a random sub-
stitution on the alphabet A = {0,1} with substitution length M and interaction
length N. We will assume that both 0’s and 1's are substituted by M indepen-
dent Bernoulli random variables. For words u = ugy... uoy and 0 < k< M —1
define P((o(u))r = 1) = 1 — (1 — p)"®™), where n(u) is the number of 1’s in w.
This defines the neighbour dependent substitution ¢ to which we will refer as
majority fractal percolation.

2.5 Multi-valued Substitutions

Let A* be the set of all finite subsets of A* and consider two binary operations
on A*:

Vuw
Vvw

{u:ueVorueW}  (union)
{vw:v €V and w € W} (concatenation).

A multi-valued substitution is a homomorphism on A* respecting unions and
concatenations. Since A* is generated by the singletons, i.e., the sets containing
one letter, a multi-valued substitution ® is completely determined by the images
(®(i))ica of the singletons.

2.6 M-systems

As a general framework for a number of constructions by Mandelbrot, Peyriére
introduced the notion of M-systems (see [22], [23], [24] and [25]). An M-system
is a substitution that allows offspring interaction. Whereas Peyriére constructed
a very general setup for M-systems acting on graphs, we will restrict ourselves to
defining M-systems on words.

Forall u = ug ... u; € A%, let o¢(u), ..., 0x(u) be a sequence of random words
and define a random map on A* by o(¢) = ¢ and o(u) = go(u)...o(u). The
random map o is called an M-system if for all u = ug...uz and 0 < i < j < k,
the words o(u; ... u;) and o;(u)...o;(u) are identically distributed.
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Figure 2.1: Four stages of a realisation of the stochastic river described in Exam-
ple 2.4.

Example 2.4 (Stochastic River) A typical construction that can be described
by an M-system is the stochastic river. Start with a level 0 triangle Tj, label one
edge to be the entrance and another to be the the exit edge. After subdivision
of Ty into four similar level 1 triangles, we arbitrarily choose one of the two level
1 edges that lie on the entrance edge to be an entrance and we do the same for
the exit edge. There is a natural river flowing from the level 1 entrance to the
level 1 exit, crossing one or three triangles. Edges of a triangle that are crossed
by the river to enter a triangle are labelled entrance and edges crossed to exit
are labelled exit. The process is now repeated on the level 1 triangles that are
crossed by the river. We have plotted the first three and the eighth stage of a
realisation of the stochastic river in Figure 2.1.

Depending on the orientation of a triangle and the direction in which it is
crossed, we will label segments of the river by a or b as is indicated in Figure 2.2.
A river is represented by the word formed by the consecutive labels. For example,
the paths of the first three stages of the river in Figure 2.1 are represented by
the words a, bba and bbaabba. In the construction described above, letters are
substituted by one or three letter words. Note that substitutions of neighbouring
letters are dependent. The corresponding M-system o can be described as follows.
Let A = {a,b} be the alphabet, let ®(a) = {a, bba, aaa, abb} be the set of words
that can be substituted for an a and ®(b) = {b, aab, bbb,baa} the words that
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Figure 2.2: Labeling of segments of the stochastic river described in Example 2.4.

can be substituted for a b. For letters ug,...,ux € A and words wy,...,w;
with w; € ®(u;) we denote P(ag(ug...ux) = we,...,0k(Ug... ux) = wg) by
Dug...ux (Wo, - - - , wi). Define :
puo(wo) = Zl
L if wgisaor **band w; is b or a*
Duouy (Wo, wn) = % if wy is bor * *x @ and w; is a or bx
0 else,

where a * can be replaced by any letter from the alphabet and define

k-1
Dug...ui (w07 ce - ,'Ulk) = 4k—l Hpuiu.~+1 (wi’ wi+1)-
i=0
One can be check that for u = uy ... u; the sequences of random words
oo(u), . ..,0k(u) determine an M-system o that describes the stochastic river.
The stochastic river can also be described by a neighbour dependent ran-
dom substitution ¢’ with interaction length 1. Since this type of substitution is
not really designed to deal with offspring interaction, its construction is rather
elaborate and involves an 11 letter alphabet A’. We will therefore not give the
distribution of ¢’ explicitly, but stick to a loose description.
By straightforward calculations and using that letters at least one position
apart are substituted independently, we can also write the distribution
Dug...ux (Wo, - - - , wg) for k even as

I o) T] Blos(u) = wiloi1(w) = wi_y, 0101 (w) = wipa).

i even i odd



2.7. ITERATED FUNCTION SYSTEMS 15

This implies that we can break up the substitution in two stages: first we substi-
tute the letters at the even positions independently and then we substitute each
letter at an odd position, conditioned on what has been substituted for its two
neighbours. On an even position 2i we will therefore place a pair consisting of
a letter uy; from {a,b} and a word uniformly chosen from ®(us;) which will be
substituted for uy; in the next stage of the substitution. At the odd positions
we just place the letters uyg;, ;. To avoid substitution problems at the begin and
end of a word, we place infinitely many 0’s in front and behind the word and
consider the substitution on bi-infinite words. The 11 letter alphabet A’ will
hence be {a,b,0} U {a} x ®(a) U {b} x ®(b). The substitution ¢’ replaces each
letter by a 1 or 3 letter word. A letter at an even position is replaced by a 1 or
3 letter word from which the first and the last letter are pairs and a letter at an
odd position is replaced by a word from which the first and last letter are single
letters. Hence, at any stage of the substitution, the letters at even positions are
pairs and at odd positions are single letters. A pair is substituted independently
of its neighbours and a single letter from {a, b} is substituted in accordance with
its two neighbours. A 0 is of course always substituted by a 0. If for example the
first 4 stages of the stochastic river are

a

bba

bbaa bba

bbb aab abb abb bbaa a

then the first 3 stages of the corresponding river in the BCA coding are

(a, bba)
(b,b) b(a,bba)
(b, bbb} b (a, abb) a (b,b) b (a, a),

where we omitted the 0’s. If these substitutions are executed with the right prob-
abilities, then the resulting substitution ¢’ is a neighbour dependent substitution
with interaction length 1.

2.7 Iterated Function Systems

A lot of fractal sets can be conveniently described by means of iterated function
systems (see e.g. [9]). An iterated function system (IFS) is a set {f1,..., fm}
of maps on for example R¢. It is often assumed that the maps fi,..., fm are
contractions on R? with respect to the Euclidean distance 4, i.e., all f; are maps
on R? and there are constants ¢; < 1 such that §(f;(z), fi(y)) < ¢;é(z,y) for all
z,y € RY. In this case it can be shown that there is a unique set C* in Hy,
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Figure 2.3: Six stages of the iterated function system described in Example 2.5.

the set of all non-empty compact sets in R?, such that C* = |JI, £;(C*), where
£i(C*) denotes the set {f;(z) : z € C*}. This set C* is called the attractor or the
invariant set of the IFS. Because of the implicit definition, the set C* is often not
easy tractable. However, for any non-empty compact set C, the attractor C* can
be approximated by sets f*(C), where f(C) = U, fi(C) and f™ denotes the
n-fold iterate of f. As a consequence of the contraction mapping theorem (see for
example [9]), the sets f*(C) converge to C* in Hausdorff metric for all starting
sets C' € Hy. The function f can be viewed as a substitution, not on words, but
on non-empty compact sets C in R?, since it replaces each point z € C by the

set {fi(z),..., fm(z)}.

Example 2.5 (Julia Set) Counsider an iterated function system {f;, fo}, where
fi(z) = Vz+ 1 and f5(2) = —v/z + 1 are maps on C. Note that these maps are
not contractions on C. However, the sets f*({1}) do converge to an invariant set
J which is called the Julia set for the map z — z* — 1. In Figure 2.3 we plotted
ff({1}) forn=0,1,2,3,4 and 12.

2.8 Substitutions on Higher Dimensional Words

In dimension two and higher, the definition of a substitution gets a little bit more
tricky. We will focus on the 2-dimensional case and leave the d-dimensional case
to the reader. Two dimensional words are blocks of letters from an alphabet A.
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Define A*! to be the set of all words

dg; ... Qg

agp .- Qg

with a;; € A and define A* = Ulc,lzo AR where AM = {e}ifkorlis O and ¢
denotes the empty word. We define horizontal concatenation oy : |J,,,, A% x
A A by

agr ... ay b ... buu ap ... ag by .. by

apo  -.-  Gro boo ... Gmo ago .- ko bog ... bmo

and vertical concatenation oy : |, ,,, A% x AB™ — A* by

bom ... bim
gy ... QA bgm N bkm
. . _ bOO L ka
oy . =
ao; N /791
Qoo --- Qgo boo fee ka
Qoo -.- Qo

Instead of v oy w we will also write vw and instead of v oy w we will write
i Unfortunately, horizontal and vertical concatenation are not binary opera-

tions on A*, so A* does not have a semi-group structure as in the 1-dimensional
case. However, every word in A* can be obtained by horizontally and vertically
concatenating letters from A. For example,

Qo1 Q11 a2
Qoo G190 Qa20

(@0 ©H 610 OH a20) ov (o1 O @11 OH G21)

(aoo oy (101) on (alo Oy all) Oy (a‘zo oy a21).

We define a 2-dimensional substitution to be a map o : A* — A* that respects

horizontal and vertical concatenations, i.e., o(vw) = o(v)o(w) and of 15 ) =

o(w)
o(v)
of the letters a € A, since A* is generated by the letters a € A. Note that the
definition of a 2-dimensional substitution implies that the blocks o(a) all have
the same size.

. A 2-dimensional substitution is completely defined by the images o(a)
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Chapter 3

From Substitutions to Fractals

3.1 Sets in R? Associated with Substitutions

In this section, we associate sets in R? to substitutions on d-dimensional words.
For reasons of notational convenience, we restrict ourselves to 1-dimensional sub-
stitutions and leave it to the reader to generalize the definitions to higher di-
mensions. The sets and substitutions in the examples and figures will be 2-
dimensional.

Consider a substitution ¢ with substitution length M > 2 and a word u € A*.
For every letter a € A we define a sequence of sets Kq(a), Ki(a), ... as follows.
Let

Jn(a) = {i: (0" (u)): = a}

and define

I"n(a): U In(j)v

J€JIn(a)

where I,(j) = M, (j + 1)M "] is the j*® level n M-adic interval. Observe
that the sets K,(a) are compact and contained in the interval [0, k].

If we consider the extended substitution on a bi-infinite word u € AZ, the
construction above does not necessarily produce compact sets anymore. In order
to obtain compact uniformly bounded sets, we assume that the alphabet contains
a special symbol 0 such that ¢(0) = 0™, where 0™ denotes the M-letter word
consisting of only 0’s. Assume also that u is a starting word, i.e., u contains only
finitely many non-zero letters. If u; is the left most non-zero letter and u, the
right most, then all sets K, (a) with a # 0 will be contained in [l,7].

Example 3.1 (Sierpinski carpet) Let o be the 2-dimensional analoguc of the

19
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Figure 3.1: Sets Kj,..., K, of the 2 dimensional Sierpinski carpet (see Exam-
ple 3.1).

Cantor substitution (Example 2.1) given by

000 111
0—- 000 1-101
000 111

For notational convenience, we will often denote the associated sets K,(1) by
K,. Starting the substitution with the letter 1, we plotted the associated sets
Ki,..., K, in Figure 3.1. The sets K,, are decreasing and we call the limit set
K =2, K, the 2 dimensional Sierpinski carpet.

Example 3.2 (Fractal Percolation) Let ¢ be the 2 dimensional analogue of
fractal percolation with parameter p and substitution length M described in
Example 2.2, i.e., a 0 is substituted by an M x M block of 0’s and a 1 is substituted
by an M x M block of independent Bernoulli(p) random variables. Starting
the substitution with the letter 1, we plotted the sets K;,..., K5 and Ky of a
realisation of fractal percolation with M = 2 and p = 0.75 in Figure 3.2, where
K, denotes K,(1). Since a 0 is substituted by only 0’s, the sets K, are decreasing
in n.

For substitutions with neighbour dependence we will generalize the construc-
tion. Let o be a substitution with substitution length M and interaction length
N. Assume that 0 € A and that ¢(02¥*!) = 0™ and let u € A% be a starting
word. Let T be a set of types for o, and let 0 denote the type consisting of only
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o, D g

o )

Figure 3.2: Sets K,...,Ks and Ky of a realisation of fractal percolation with
M =2 and p = 0.75 (see Example 3.2).

zeros. Define for sets S C T
Jo(S) = {i : the type of (¢"(u)}); is an element of S}

and define

Ku8)= |J L0)

J€In(S)

where I,(j) is the j** level n M-adic interval. Note that if 0 ¢ S, then the sets
K,,(S) are compact and uniformly bounded. For a € A, we will denote by K,(a)
the set K,(S,), where S, = {t € T : o = a} is the set of types for which the
middle letter is an a.

Example 3.3 (Ink Model) The following model is a very simplistic way to
describe the spreading of a black ink drop on a white piece of paper. Let A =
{0,1} where a 1 represents a square filled with ink and consider the following
2 dimensional neighbour dependent substitution ¢ on AZ*Z with substitution
length 2 and interaction length 1. Let u € A%*Z be the starting word of the
substitution consisting of a 1 at position (0,0) and (s elsewhere. For a letter vy
in a word v € A%Z*Z we call its north neighbour Ug+1 and its east neighbour vy,
the uncles of its upper right child o(v)2k11.2:41. In the same spirit we define two
uncles for each of the other three children. Now the substitution is such that a
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T ¥ ¥

v ® %

Figure 3.3: Sets K, ..., K of a realisation of the ink model of Example 3.3 with
p=0.5.

child of a letter 1 is always 1 and a child of a 0 is 1 independently of its brothers
with probability 1 — (1 — p)™, where m is the number of its uncles that are 1.
In Figure 3.3 we plotted the sets K7, ..., K¢ of a realisation of the ink model for
p = 0.5, where K,, denotes K, (1). In this model the sets K, are increasing and
each K, is a connected set.

For the ink model, the set T = A%*5 is a set of types. Recall that we index a
type t € T symmetrically, so

t g 3 ... ta_a

Let S C T be the set of types for which at least 1 and at most 8 of the middle 9
letters are 1, so

S={teT:1< Y t;<8}

—-1<i,5<1

In Figure 3.4 we plotted the sets K;(S),..., Ks(S) of the same realisation of
the ink model as we used for Figure 3.3. From these two figures, one gets the
impression that the sets K, converge to a limit set K, that the sets K,(S)
converge to a limit set K(S) and that K(S) is the boundary of K. In section 4.5
this impression is proved to be right.
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-

Figure 3.4: Sets K1(S), ..., Kg(S) of the same realisation as in Figure 3.3 of the
ink model (Example 3.3), where S C T = A%*% is the set of all types for which
at least 1 and at most 8 of the middle 9 letters are 1.

Example 3.4 (Majority Fractal Percolation) Let o be the 2 dimensional
analogue of neighbour dependent fractal percolation with parameter p, substitu-
tion length M and interaction length N described in Example 2.3. As a starting
word for the substitution, we take the word in {0, 1}%*Z consisting of a 1 at po-
sition (0,0) and 0’s elsewhere. Again, we abbreviate the associated sets Kn(1)
by K,. In Figure 3.5 we plotted the sets Ky, ..., K; of a realisation of majority
fractal percolation with M =2, N =1 and p = 0.15. Note that the sets are not
decreasing anymore, since a 0 is not necessarily substituted by only 0’s.

3.2 Convergence

The Hausdorfl metric my is a metric on the set of non-empty compact sets in R
defined by

mH(K(),Kl) = iIlf{€ >0: KQ C Kf,Kl C I(S},
where K§ denotes the set of points that have (Euclidean) distance less than ¢ to

a point in Kj.
On the set of compact sets that are contained in the interval [I,r] with I <r
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. {. I.-
- il
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Figure 3.5: Sets Ky, ..., K4 and Kj of a realisation of majority fractal percolation,
where M =2, N =1 and p = 0.15 (see Example 3.4).

(including the empty set) we consider a similar metric m, defined by

my(Ko, K1) if Ko, K1 #0
m(Ko,Kl) = 0 if K():Kl —_-0
r—1 else.

To this metric we will also refer as the Hausdorff metric and we will also denote
it by my.

For a fixed substitution and starting word, sequences of associated sets will
always be uniformly bounded. If we make statements about their convergence,
this will always be with respect to Hausdorff metric.

The following lemma implies convergence of the sets Ky, Kj, ... in the Exam-
ples 3.1, 3.2 and 3.3. The proof is straightforward and left to the reader.

Lemma 3.1 Let Ko, K,... be a decreasing sequence or a bounded increasing
sequence of compact sets in RY. Then Ky, K1, ... converges with respect to Haus-
dorff metric.

We order Cy, the set of compact sets that are contained in the interval [I, 7], by
the standard ordering C. The supremum of a set X C C} is the smallest element
(with respect to C) in Cy that is larger than all elements of X and the infimum
is the largest element that is smaller than all elements of X. The liminfy and
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limsupy of a sequence Ky, K, ... are defined by

liminfyK,, = lim inf(K,, K,i1,...)

n—00

{z : B:(z) N K,, # B eventually for all ¢ > 0}

Il

and

limsupyK,, = lim sup(K,, K,41,...)

TT—H00

= {z:B.(z) N K, # 0 infinitely often for all & > 0},
where B.(x) denotes the e-ball around z.

Lemma 3.2 Let (K,), be a bounded sequence of compact sets in RE. Then
liminfy K, and limsupy K, are compact. The sequence (K.,), converges in Haus-
dorff metric, if and only if lminfy K, = limsupy K,.

Proof The sets liminfy K, and limsupy K, are bounded, since the sets K, are
uniformly bounded. To prove that for example lim infy K, is compact, it suffices
to show that if a sequence (z,), with z, € liminfy K, converges, then its limit
z is also an element of liminfgK,. To see this, fix ¢ > 0. Then there is an
ng such that x, € B,j(x) for all n > ny. Since z, € liminfykK,, it follows
that Be/2(z) N K, # @ eventually and hence B.(z) N K, # @ eventually. Hence
z € liminfy K,.

For the left to right implication in the second part of the lemma, assume
that liminfy K, # limsupyK,. Then there is an = € limsupyK, and € > 0
such that B.(z) N K,, = @ infinitely often. Since z € limsupy K, we can find
sequences my < my < ... and ng < ny < ... such that B.(z) N K,,, = @ and
B.js(x) N Ky, # 0. Since my(Kp,, Ky,) > /2 for all k, the sequence (K,) does
not converge in Hausdorff metric.

For the right to left implication, assume that (K,) does not converge. Then
there are ¢ > 0 and sequences mg < m; < ... and ng < ny < ... such that
K., )¢_ K; . This implies that there is a sequence (zk) such that z, € Ky,
and B.(zy) N K, = @. Since the sets K, are uniformly bounded, there is an
= and a subsequence (z;,) of (zi) such that x;, € B.js(x) for all k. Hence
B.jo(z) N K, # 0 and B,jo(x) N K, = 0 for all k, and therefore z € limsupy K,
and z ¢ liminfy K. O

Let I < r be integers and let J = (J,).>0 be a sequence of sets with J, C
{IM™,. .. ,rM™—1} and let the sequence (K,)n>o be defined by K,, = UjeJn L.(3).
For m > 0 and k € Z define

Zo(my k) = [{J € Jmrn s kM™ < § < (k+1)M"™ — 1},

where | - | denotes cardinality.
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Lemma 3.3 One has

o0

lim supy K, = n U L (k)

m=0 {k:Z,(m.k)>0 i.0.}

and

liminfy K, D ﬁ U L. (k).

m=0 [k:Z,(m,k}>0 eventually}

Proof Let x € limsupyK,,. Then B.(z) N K,, # @ infinitely often for all £ > 0.
This implies that we can find a sequence kg, ky, ... such that:

1. Iy(ko) 2 Ii(ky) D ...
2. z € I,(ky,) for all m
3. Zn.(m, ky) > 0 for infinitely many n.

Since (Vor_g Im(km) = =, we have that = € (g Uz, (np)>0i0 Im(k). Let
T € (o Uz, (miy»0i0) Im(k), fix € > 0 and let m be such that M~™ < e.
Then there is a k such that I,(k) C B.(z) and Z,(m, k) > 0 for infinitely many
m. Hence B.(z) N K,, # @ for infinitely many n and z € limsupgK,. The proof
that iminfu Ky 2 Mg Uik:z,(m.k)>0 eventually) Im(K) is similar. O

Example 3.5 (Converging Sets) Let 0 < p < 1 be a parameter and con-
sider the 2 dimensional substitution ¢ with substitution length 2 and interaction
length 1 on the alphabet {—1,0,1}. For w € A%*3 define (o(w))x to be —wy;
if | 3" w;;| < 9 and else to be an independent random variable which is wy; with
probability p and —w»; with probability 1 — p. From Theorem 4.2 it follows that
for p > 0 and for all bi-infinite starting words u, the sequences (K,(—1)), and
(K.(1)), converge. In Figure 3.6 and 3.7 we plotted realisations of the sets
Ko(1), ..., K(1) for p= 0.9 and p = 0.1, started with the word consisting of a 1
at position (0, 0), surrounded by 8 —1’s and 0’s elsewhere.

Example 3.6 (Non-converging Sets) Let A = {—1,0,1} and let o be a 1-
dimensional neighbour dependent substitution given by o(ay, a,az) = b1by, where

{ 0 if a; = 0
b; =
—a else.

If the starting word u is equal to ... 000...,...0(—1)10...or...01(—1)0.. ., then
the sequences (K,(—1)), and (K,(1)), converge. For all other starting words,
the sequences do not converge.
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Figure 3.6: Sets Ko, ..., K7 of a realisation of the substitution described in Ex-
ample 3.5 for p =0.1.

3.3 Hausdorff Dimension

Let K CRY, d > 0 and let (U;)i»o be a sequence of sets U; C R?. For § > 0, we
say that (U;)i>o is a 6-cover of K if K C | Jioy U; and |U;| < 6 for all i, where |U]
denotes the diameter of the set U;. Let

Hy(K) = inf(z |Ui)™ : (Us)ixo is a d-cover of K)
i—1

and define the a-dimensional Hausdorff measure of K by
HYK) = lim 1§ (K).
§—0

The graph of H*(K) as a function of a does not look very interesting. There is
a point o* such that H¥(K) = oo if & < «* and H*(K) = 0 if « > a*. The
discontinuity point o* is called the Hausdorff dimension of K and is denoted
dimy(K). To show that this definition of dimension corresponds to the intuitive
idea of dimension, we list some properties of the Hausdorff dimension. For K C
R¢ the Hausdorff dimension satisfies:

o 0 < dimg(K) < d

e if K is countable, then dimy(K) =0
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Figure 3.7: Sets K, ..., K7 of a realisation of the substitution described in Ex-
ample 3.5 for p = 0.9.

e if K is open, then dimy(K) =d
o if Ko, Ky,... CR?, then dimy (2, K) = sup,, dimg(K;,)
e if K is a smooth k-dimensional manifold, then dimp(K) = k

o if f:R? — R? is bi-Lipschitz, then dimy(f(K)) = dimy(K). A function f
is bi-Lipschitz, if there are ¢;,c; > 0 such that c1|z — y| < |f(z) — f(y)| <
ol — y| for all z,y € RY.

3.3.1 Fractal Percolation

Let o be 1-dimensional fractal percolation (Example 2.2) with parameter p and
substitution length M and let Ky, K,, ... denote its associated sets as in Exam-
ple 3.2. From Lemma 3.1 it follows that the sets converge in Hausdorff metric to
K = (N2, K; almost surely. In this section we will prove that if the limit set K is
non-empty, then its Hausdorff dimension is constant almost surely and equal to
log(pM)/log M. We will subsequently proof that dimg K is constant on K # 0,
that dimyK < log(pM)/log M and that P,(dimy(K) > log(pM)/log M) > 0
for p > 7. Since P,(K #0) =0 for p < Hl, these three ingredients establish the
claim.

Lemma 3.4 On {K # 0}, dimyK is constant P,-almost surely.
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Proof Let Z, denote the number of 1's in ¢™(1). By self similarity of K, we
have that P, (H*(K) = 0) = Gz, (P,(H*(K) = 0)), where Gz, (s) = E,(s%!) is the
probability generating function of Z,. It is a classical result from branching theory
that the only roots of G in the interval [0, 1] are 1 and P,(Z,, = 0 eventually).
Since {K = 0} = {Z,, = 0 eventually} is contained in {H*(K) = 0}, we have
either H*(K) = 0 almost surely or {H*(K) = 0} = {K = 0} almost surcly. So
either H*(K) = 0 on {K # 0} or H*(K) > 0 on {K # 0}. Since H*(K) is
decreasing in a, there is a constant o* such that on {K # 0}, H*(K) > 0 if
a < o and H*(K) =0 if & > o*. By definition, a* = dimygK on {K # @} and
so dimy K is a constant. O

Lemma 3.5 We have that dimy K < log(pM)/log M, P,-almost surely.

Proof Since the n'® level M-adic squares contained in K, cover the limit set
K, it follows that H*(K) < M*Z,, where Z, is the number of 1’s in ¢”(1).
For £ > 0 we have

P,(H(K)>¢) < P,(M™Z,>¢)
EIM_HQ]Ep(Zn)

%ana(pM)n,

A A

where we used the Markov inequality to obtain the second inequality. Since this
last expression tends to 0 as n tends to infinity for a > log(pM)/log M, it follows
that dimg K < log(pM)/log M. O

For the proof of the last lemma ,we need the following lemma due to Russell
Lyons ([16], p. 933), which gives a lower bound for the Hausdorff dimension of a
non-random set B in [0, 1].

Lemma 3.6 Let B be a subset of [0,1]. If P,(K N B # @) > 0, then dimygB >
—logp/log M.

Proof Let K*(B) be the M-adic a dimensional Hausdorfl measure of B, i.e.,
the analogue of H*(B) obtained by only considering covers of B that consist of
M-adic intervals. It can be shown that dimgB = inf{a : K*(B) = 0} = sup{a:
K*(B) > 0}. Let (I;); be a cover of B consisting of M-adic squares. Then

P ENB#0) < B(KN|JL#0)
=0

> B(KNI #0)

i=0

S IEY,
i=0

IA

IA
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since for any n'® level M-adic interval I,
P,(KNI#0) <P,(ICK,)=p"=|I[ek.

If we take @ = —logp/ log M, then K*(B) > P,(K N B # 0) and if P,(K N B #
@) > 0, this implies that dimyB > a. a

Lemma 3.7 Let p > 4;. Then P,(dimy(K) > log(pM)/log M) > 0.

Proof Denote the underlying probability space of fractal percolation by (2, F, B,).
By Lemma 3.6 we have for p > 0

log p )
log M
= P,(w:P3(0: K(w)NK(®) #0) > 0)

> [ Bo(o: K@) K@) £0) dBy(w)
Q

P, (dimg(K) > —

= /ﬂ . Likwnk @z} (w, @) dP, x P;
P, x P;((w,@) : K(w) N K(@) #0),

where we used Fubini’s theorem for the third step. Using induction it is not hard
to prove that P, x P3(K,(w) N Ku(@) # 0) = Pps( K, # 0) for all n, and taking
limits we obtain

oo
P, (dimg(K) > —b‘;—g—f}) > Ppy(Ku # 0).

Since Ppz (K, # 0) > 0 whenever pp > ]14—, the lemma follows if we let p | ;—1}7. a

3.4 Connectivity

For z,y € R¢ we write ¢ < y if 2; < y; for 1 < i < d. For z < y we define
the d-dimensional rectangle R(x,y) by R(z,y) = {z : ¢ < z < y}. We say that
a set K C R? percolates through R(z,y) if there is a connected component in
K N R(z,y) that intersects the plane {z : z; =z} and the plane {z : z; =y, }.
If K percolates through the unit cube, we simply say that K percolates.

Let A = {0,1} and let u € A¥**¥ be a d-dimensional word. We say that u
percolates if there is a sequence of d-dimensional indices z!,...,2™ € {0,...,k—
1} with 21 = 0, 27" =k — L and 30, |of — 2| = 1 for 1 <i < m — 1 such
that us =1forall 1 <i<m.

Consider two dimensional fractal percolation with substitution length A and
parameter p (see Example 3.2), let ¢ be the associated substitution and Ky, K1, . . .
the associated sets. Define the percolation function f4(p) to be

0r(p) = P, (K percolates),
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where K = (" K, is the limit set of the sequence (Ky),. It can be shown that
0r(p) = P,(c™(1) percolates for all n). The critical value p.(M) is defined to be
inf{p : 6p(p) > 0}. From a coupling argument. it follows that 8y (p) is increasing
in p and therefore p.(M) = sup{fum(p) = 0}. There has been a lot of research on
the behavior of the function 8,; and the value of p.(M) and we will discuss some
of the results {(see for example [10] and [5]).

The function #y(p) is right continuous and at the critical value it is discon-
tinuous. The critical value is non-trivial, i.c., it is not equal to 0 or 1. The
exact value of p.(M) is yet unknown for all M > 2, but many authors have given
bounds for it.

A quite trivial lower bound can be obtained by comparing fractal percolation
with a branching process. Let Z, be the number of 1's in ¢"(1). Then it can
be checked that Z, is an ordinary branching process with E(Z;) = pM?. The
process dies out if p < X‘}f and therefore pC(Af) > T}_Z—

The first authors to give an upper bound were Chayes, Chayes and Durrett [4].
We will briefly review this upper bound, where we restrict ourselves to the case
M = 3. The idea behind the CCD proof that p.(3) < 0.993 is basically the
following. Associate to each realisation of (6™(1))52, a tree, where the letters in
0"(1) that are equal to 1 are the level n nodes in the tree and ¢°(1) is the root.
A letter (o™*1(1));; is a child of (6™(1))y in the tree if (o™*!(1));; is one of the
letters in the 3 x 3 block that has been substituted for the letter {(¢™(1))x. The key
observation is that if the associated tree contains a full 8-ary tree rooted at a°(1),
then the words o™(1) percolate for all n. Denote the probability that this event
occurs by 7(p) and let 7, (p) denote the probability that o(1) is the root of a of an
8-ary tree of depth at least n. One can casily show that the m,(p) converge to 7(p).
Observe that ¢°(1) is the root of an 8-ary tree of depth at least n + 1 if and only
if at least 8 of its children are the root of an 8-ary tree of depth at least n. This
implies that the ,(p) satisfy the recursion m,,1(p) = (pma(p))® + 9(pma(p))(1 —
pm,(p)) and hence w(p) is the largest root of z = (pz)°® + 9(pz)®(1 — px) in the
interval [0, 1]. Using standard analysis one can show that for p > 0.993 this root
is larger than 0 and therefore 3(0.993) > 7(0.993) > 0 and thus p.(3) < 0.993.

The CCD proof can be easily generalized to obtain upper bounds on p.(M)
for M > 3, but it breaks down for M = 2. However, by a coupling argument one
can show that p,(2) <1 - (1 - .\/1)—,_.(4—))4 which is strictly smaller than one.
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Chapter 4

Branching Cellular Automata

4.1 Introduction

In this chapter we study generalisations of a family of random sets introduced
by Benoit Mandelbrot in [17]. Mandelbrot coined the name canonical curdling
for these sets, but they are commonly known as fractal percolation. Let p be a
number with 0 < p < 1 and [0, 1]% be the unit cube in R¢. We furthermore choose
an integer base M > 2. Random sets Ko = [0,1]¢, Ky, ..., K, are generated by a
recursive construction. The set Kj is a union of M? subcubes with side lengths
M. Generate K, by retaining each of these subcubes with probability p, or
discarding it with probability 1 — p, independently of each other. In general K,
is a union of M-adic cubes of order n, i.e., with side lengths M ™", and K, is
obtained by retaining or discarding each of the order n + 1 M-adic subcubes of
these cubes with probability p respectively 1 — p, independently of each other,
and of all the previous choices. The limit set K = NS, K, is a fractal set with
a.s. Hausdorff dimension log(pM?)/logM, conditioned on being non-empty (see
Section 3.3.1, but also [4], {13], and [11]).

Mandelbrot introduced fractal percolation as an alternative model for turbu-
lence in a fluid in a critique of Kolmogorov’s model. However fractal percolation
is not more than a metaphor for turbulence. In the paper [27] the authors argue
that physically there is dependence on the activity in neighbouring regions in
turbulence, and that therefore the independent evolution of the M-adic cubes
would be an important deficiency of Mandelbrot’s model. They then propose
neighbour interaction to obtain a model which admittedly is still phenomenolog-
ical. Moreover, they merely study one specific example in the one dimensional
case d = 1. In this chapter we develop a general theory of fractal percolation
with neighbour interaction. To assess the success of such a model in the goal of
modeling turbulence from a phenomenological point of view, we invite the reader
to compare ordinary fractal percolation in Figure 4.1 with an example involving
neighbour interaction in Figure 4.2. We mention that the interest in fractal per-
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colation goes beyond an attempt to model turbulence. Recently, Yuval Peres has
revealed a surprising relationship between fractal percolation (for specific values
of p) and the path of Brownian motion [21].

The fractal percolation process can conveniently be defined on the space of M-
adic trees, but allowing interaction with the neighbours destroys the tree property.
We have chosen to construct these random sets by way of the iteration of random
substitutions. We shall call the corresponding process a branching cellular au-
tomaton. (See [24] for another approach.) This will be done in Section 4.2, where
we furthermore indicate the importance of multi-type branching processes (with
dependent offspring) for the analysis of branching cellular automata (BCA’s). In
Section 4.3 we consider the question of extinction of these multi-type branching
processes. Since the sets (K,,) will not necessarily be decreasing anymore in our
general model, the question of convergence (in the Hausdorff metric) of the (K,)
arises. This problem is considered in Section 4.4, where sufficient conditions are
given for (K,) to converge. In Section 4.8 we determine the almost sure Hausdorff
dimension of the limit set K, using Lyons’ percolation method ( [16]). In order to
do this we need the notion of a product of two BCA’s which is introduced in Sec-
tion 4.7. For many BCA's the set K has a non-empty interior, and therefore K
is not a fractal set (see e.g. the example analyzed in [3]). However, K will often
have a fractal boundary. To determine the Hausdorff dimension of this boundary,
it is therefore very useful that we show in Section 4.5 (see Theorem 4.3) that the
boundary itself is again a limit set of a BCA.

4.2 Branching Cellular Automata

Let A be a finite set, acting as our alphabet and let o be a random neighbour
dependent substitution on A% with substitution length M and interaction length
N. For a definition of a random neighbour dependent substitution we refer the
reader to Section 2.4. Define a Branching Cellular Automaton (BCA) as the
quintuple (A, M, N,o,u), where u € A% serves as the starting word for the ran-
dom substitution o. Assuming that M > N + 1, the set T = A?N*3 is a set of
types for o (see Section 2.3.1). As described in Section 3.1, for S C T a sequence
of sets (K,(S)), is associated to a BCA. We briefly review how these sets are
obtained. Define for sets S C T

Jo(S) = {i : the type of (¢™(u)); is an element of S}
and define

K= | L),

J€Jn(S)

where I,,(j) is the j* level n M-adic interval.




4.2. BRANCHING CELLULAR AUTOMATA 35

We assume that A contains a special symbol 0 such that o(0?¥*+!) = oM.
Under this assumption, the sets K,(S) are uniformly bounded for all S C T\{0},
where 0 = 02Y+3 is the type consisting of only 0’s.

For ease of notation, the definitions and results presented in this chapter are
for 1-dimensional BCA’s, but they can be easily extended to higher dimensions
(see also Section 2.8). For the figures in this chapter we use 2-dimensional BCA'’s.

4.2.1 Mean-offspring Matrix

Recall that types t € T and words o™(t) are indexed such that the leftmost
descendant in the n'" generation has index 0 (see Section 2.3.1). For # € T and
S C T define
Ju(t,S) = {0<k<M"—1: the type of (6(t)) is an element of S}
Z,(t,8) = Card(J,(t,9))

Kt = | LG

JEIn(8,5)
The mean-offspring matrizc M = (mg;)ser is defined by
ms; = expected number of children with type ¢,

generated by a parent of type s
= E(Zl (3, t)),

where Z;(s,t) is short for Z;(s, {t}). Define M(n) = (mss(n))ster by ms(n) =
E(Z.(s,1)).
Lemma 4.1 Forn=1,2,...
M(n) = M™.

In the proof of this lemma we use the following random variables. Fix n and

define for s,v,t € T and k =1,...,Z,(s,v)
{k(s,v,t) = number of children with type t, generated by
the k'® type—v letter in (0™(s))o,- - -, (6™ (u))mn_1,

To make the {x(s,v,t)’s random variables on the whole probability space, we de-
fine (x(s,v,t) for k = Z,(s,v)+1,..., M™ as independent copies of Z;(v,t). Note

that ¢i(s,u,1),...,C un(s,v,t) are 1dentlcally distributed, that each (k(s v, t) is
independent of Z (s,v) and that

Zn(sv)

Znya(s,t) = Z Z (s, v, ).

veT k=1

However, the variables (;(s,v,t),...,(un(s,v,t) do not need to be independent.
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Proof (of Lemma 4.1) The proof is by induction. We have

mgu(n+1) = E(Z,41(s,t))
Zn(sw)

= E(Z Z Ck(svv’t))

veT k=1
Zn(sw)

= D E( Y Gisut)

veT k=1

= E(Z,.(s,v)) my:
>

veT

= Z Mgy (M) Mgy

veT

4.3 Extinction

In this section we study the random variables Z,(t,C), where C C T is a com-
municating class.

Definition 4.1 (Communicating class) Let M = (mst)s ter be a non-negative
matriz. For s,t € T, we write s > t if (M")s > 0 for some r > 0. We say that
types s and t communicate if s - t andt — s. The communicating class C(t)
consists of all types in T that communicate with t.

Denote the restriction of the matrix M to the communicating class C' by
M = (mgs)sec and denote the Perron-Frobenius eigenvalue of M¢ by Ac.

Note that if ¢t € C, then the events {Z,(t,C) > 01i.0.} and {Z,(¢,C) >
0 for all n} are the same events P-almost surely, where i.0. is short for infinitely

often.
Theorem 4.1 Lett € C, with C a communicating class of types.
(i) If \c < 1, then
P(Z,(t,C) =0 eventually) = 1.
(i1) If A\c > 1, then
P(Z,.(t,C) > 0 infinitely often) > 0.

Moreover, for all ¢ > 0 there are ¢; = c¢1(g) > 0 and ¢ = c3(e) > 0 such
that

Pley A& £ Z,(t,C) < c2 AR for allm| Z,(t,C) >0 4.0.) > 1 —¢.
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If A\ =0, then P(Z,(t,C) =0 for n =1,2,...) = 1, so assume in the follow-
ing that A¢ > 0. Furthermore, we assume from now on that our BCA is such,
that if Ac = 1, then P(Z,(¢,C) = 0 eventually) = 1 for t € C.

Write C as C = {ty,...,t,}, where r is the cardinality of C. In the remaining
part of this section we fix t € C and assume that ¢ = t,. Furthermore, let
Myj =y, and write Mc as M¢ = (m5)1<ij<-. Let v be a row vector such
that its transpose, denoted by v, is a right eigenvector of M corresponding to
Ac, with all entries strictly positive. Define an r-dimensional row-vector Z, =
(Za(1),.., Za(r)) by

Zn(":) = Zn(tv ti)
= number of type t; letters in (6™(¢))g. .. (6"(#))arn_1-

Note that Z,(t,C) = Z,(1) + ...+ Z,(r). Let (v¢), denote the first entry of the
vector v¢ and let (v¢)ay denote the smallest entry.

Lemma 4.2 We have

Ve yn
E(Z,(t,C)) < LL(UC)(l) AL

In the sequel we will write v for ve and A for Aq.

Proof (Lemma 4.2) Let e; denote the r—dimensional row vector with a 1 at
the first entry and 0’s elsewhere. Then for all n

E(Z,(t,C))

IA

L E(Z,v")

U(l)

= Le Mz by Lemma 4.1

Y(1)
(41 )\n
v(1)

For n =0,1,... define

F. = the o-algebra generated by o°, ..., 0"

Lemma 4.3 Assume A > 1. Then the sequence

(55).c0

is a uniformly integrable martingale with respect to (F,)n>0-
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Fix n > 0 and define for 4,5 =1,...,rand k= 1,...,M"
(1, 3) = C(t, ti, t).
Hence, for k= 1,...,Z,(3)

¢x(2,7) = number of children with type t;, generated by
the k' type-t; letter in (6"(t))o, - - -, (6™ (t)) mn—1.

Note that P-a.s.

Proof (Lemma 4.3) The fact that the sequence (43%),s, 15 a martingale is
proved in the same way as in the case that (Z,)n>0 is a multi-type Galton-Watson
branching process. To establish uniform integrability, it suffices to show that the
sequence (Var(Zl','f—l))n>0 is uniformly bounded. We have

_—

i)

r r Zn

Var(Z,v') = Var( U; Ck(i,j))
j=1  i=1 k=1
r v Zali) r r Zn(i)
= BT Y Y i) -ECuY Y 66)
j=1 =1 k=1 j=1 =1 k=1
T r Zn(i)
= E v; (63, 5) — E(G(3,)))
J=1 el k=t
+3 03 Zu) E(G5) Zv,zxmz (EGG.D)

Jj=1 =1

since the (;(i,j),...,Cun(i,7) are identically distributed and each one is inde-
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pendent of Z,(i).

Var(Z,.,v)) = IE(ZUJ (G, 9) — B(G(4,5)))

X
L
-
I

+A(Z' - IE(Z”’UI))>2
r r Zn(i)

= IE( v; Z (k i,7) (Ck(t,J))))z + A Var(Z,v").

j= i=1 k=1

—

The last equality follows by writing out the square. To see that the cross-term
cancels, condition on Z,,. We will derive an upper bound for the first term in the
last expression.

r r Zn(i) 2
4y = E(Y v (Gu(ir9) — E(G (i, 5))) )
j=1 =1 k=1
roor Zn(i)
< ZZ(TUj)2E< (G (i, 5) — E(Ge (G, ]))))

=1 j=1 k=1
The inequality follows by applying (Z; 2<ry” =1 a:] twice. Condition on
Z,(i) = m to obtain

r T M™ m

An

Il IA

M- I

- 107

2 2
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since if |k —I] > 2, the k** and the I*} type t; letter in 0™(u) are at least 2 places
apart, which implies that the types of the children of the k*" type ¢; letter and
the types of the children of the I'" type t; letter are independent. Bring two
summations inside the expectation and apply the inequality 2zy < % + 32 to
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obtain

An

IA

3 S E(5 360 d) ~ B0, 30)7) BiZui) = m)
k=1

i=1 j=1 m=0

Z Z 5(7"0]')2 ]E(Zn (Z)) Va'r(Cl(i7 .7))

i=1 j=1

E(Zu(t,0)) (3 5(r0;)* max (Var(Gi(5, ) ).

IA

By Lemma 4.2, we can bound E(Z,(t,C)) by v_:})‘n‘ Writing

¢ = 52 —Zm) max (Var(Gi(i, 1)),

we have found that A, < ¢A", and therefore
Var(Z,41v') < cA™ + A? Var(Z,v').

This recursive inequality implies that

; n A —1
Var(Z,1v') < cX ST
Hence, for A > 1
Zn+1’U’ 1
Var( /\n+1 ) < Cm
and so our martingale sequence is uniformly integrable. [

Proof (Theorem 4.1) The first part of the theorem is easy to prove. For all
n=20,1,..., writing A = A¢ and v = v¢

P(Z.(t,C) > 0) < E(Z,(tC))
U1 \n
—L X

V(1)

IA

by Lemma 4.2. If we assume that A < 1, then P(Z,(¢,C) > 0) tends to 0 as
n — oco. This implies that

P(Z,(t,C) > 0 for all n) =
For the second part where A > 1, we use the fact that the sequence

Zv
(X")nZO = (,\_:)"ZO
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is a uniformly integrable martingale sequence. This implies that the X, converge
to a limit X with 0 < E(X) = E(X;) = v; < oo. Hence,

P(there is a ¢; > 0 such that Z,v" > ¢; A" for all n) > 0
and
P(there is a ¢y such that Z,v" < A" for all n) = 1.
We will show that
P(3¢; > 0 such that Z,v' > ;A" for all n) >0
implies
P(3c; > 0 such that Z,v' > ;A" ¥n | Z,,(t,C) > 0¥m) = L.

To see this, define for cach ¢; € C and n > 0 an r—dimensional row-vector
Y, (@) = (Ya(i,1),...,Y,(i,r)) by

Ya(i,5) = Za(ti, t;).
Note that since ¢t = ¢;, we have Z,, = Y,(1). Define
pi = P(3e; > 0 such that Y,(i)v' > ¢ A" Vn)
p = min{p;: 1 <i<r}
Note that p > 0. For all m,
P(3c; > 0 such that Z,v' > A" Vn |F,) > p
almost surely on {Z,,(¢,C) > 0}. So on {Z,,(t,C) > 0 for all m} we have
P(3c; > 0 such that Z,v' > A" Vn |F,) > p
for all m almost surely. By Lévy's 0-1 law,
P(3ey > 0: Zpv' 2 e\ Vn | Fr) = Lz >0 zowpann v} a.s.

Hence, on {Z,(t,C) > 0 for all m} we have 1(ac,50: Z,v'>eian vnp = 1 a.s., which
means that

P(3c; > 0 such that Z,v' > ;A" Vn | Z,,(t,C) > 0 ¥m) = 1.
We conclude that
P(3ey, ¢ > 0 such that A" < Z,0' < A" Vn | Z,(t,C) > 0V¥m) =1
and since v’ has all entries positive
P3¢y, c2 > 0 such that ;A" < Z,(¢,C) < A" Vn | Z,,(t,C) > 0V¥m) = 1.
The second part of the theorem follows from this. O

The last part of the proof is very similar to the technique to show that a
branching process (X,,) with P(X; = 1) < 1 satisfies

P(lim X, =0 or o0) = 1.

n—o0
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4.4 Convergence

Consider a BCA (A, M, N, 0, ) and recall that for S C T\ {0} the sets K,(S) are
uniformly bounded (see Section 3.1). In this section we study convergence of the
sets K,,(S) with respect to Hausdorff metric (see Section 3.2). In the first part of
Theorem 4.2 we will give sufficient conditions for sets K,(¢, S) to converge almost
surely. From this part of the theorem one can immediately conclude that the sets
K, (t,C) converge to a limit set K(t,C) for any t € T and communicating class
C C T. The second part of Theorem 4.2 states that limsupyK,(¢,S) is equal
to the union of sets K(t,C) over a collection of communicating classes. From
Theorem 4.2 we derive Corollary 4.1 concerning convergence of the sets K,(S5).

Recall from Section 3.2 that for a sequence (K,),, of uniformly bounded closed
sets

liminfgK,, = {z:B.(z)NK, # 0 eventually for all € > 0}
liminfyK, = {z:B.(z) N K, # 0 infinitely often for all ¢ > 0},

where B (z) denotes the e-ball around z. In Lemma 3.2 it was proved that the
sequence (K,)n converges, if and only if lim infy K,, = lim supy Kp.

Definition 4.2 (Period) Let t be a type in a communicating class C. Define
the period d(t) of t as the greatest common divisor of integers r > 1 for which
(M")se > 0. It can be shown that the periods of allt € C are the same. The
period of C is defined as the common value d for the periods of the types in C. If
d > 1, then C is called periodic and if d = 1, then C is called aperiodic.

Definition 4.3 (Cyclic classes and extended cyclic classes) Let C be a com-
municating class of T' with period d. Ift is a type in C, then the cyclic class H(t)
consists of all types s in C that can be reached from t in a multiple of d steps,
i.e. (M), >0 for somen =0,1,.... By Hy,...,Hy_1 we denote the d cyclic
classes of C. We assume that the numbering of the classes is such that if s € H;
and Mg > 0, thent € Hi11)moda-

If t is a type in C, then the extended cyclic class H(t) consists of all types in T
that can be reached from t in a multiple of d steps. By Hy, ..., Hy_, we denote
the d extended cyclic classes of C.

Denoting the Perron—Frobenius eigenvalue of a communicating class C by Ag,
definefort€e Tand SCT

C = {C:C is a communicating class for which Ac > 1}
C(t,S) {C €C: there are ¢’ € C and t" € S such that t - ¢ — t"}
C(S) = {C:CeC((tS) and t is the type
of a letter in the starting word u}.
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Theorem 4.2 Lett € T and S C T. If for each commaunicating class C € C(t,S)
HNS#0 for0<i<d-1,

where d s the period of C, and Hy, ..., Hy_1 are the extended cyclic classes of
C, then (K,(t,S))nzo converges to K(t,S), P-almost surely. Moreover,

lim supy K,(t,5) = U K(t,C),

CeC(t,5)
P-almost surely.

We first make some comments on the previous result. The first part of The-
orem 4.2 implies that the sequence (K,(t,C)),»o converges for all t € T and for
all communicating classes C. If t € C and A¢ < 1, then the sequence converges
to the empty set with probability 1, by Theorem 4.1. If ¢t € C and A¢ > 1, then
the sequence converges with probability one, and it converges to a non-empty set
with positive probability. If t € C and A¢ = M, i.e., the communicating class C
is closed, then the sequence converges with probability one to the unit cube.

For the proof of Theorem 4.2 we need the following lemma’s. Let t € T,
SCT,m>0and 0 <k < M™— 1. Define for n > 0

Ju(t,S,m k) = {i: kM" <i<(k+1)M",
the type of (¢™*"(t)); is an element of S}

and define Z,(t, S, m, k) = |J,,(¢, S, m, k)|. Note that Z,(¢,S) = Z,(¢,S,0,0).
Lemma 4.4 Lett € T and S CT. The event

{Z.(t,S8) >0 i.0}
s contained in

U U (Z(t,C,m,k) > 0 for ali n},

mk CeC(t,S)

P-almost surely.

Proof Fixw € {Z,(t,S) > 01i0.}. We can find a sequence of integers (km)m>o
such that

D) Io(ko) 2 L(ky) 2 ...

if) for all m > 0 we have Z,(t, S, m, k)(w) > 0 for infinitely many n.
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We can find a subsequence (km,); of (km)m and a type s € T such that for all
1=0,1,... we have that Zy(t, s, m;, km,)(w) = 1. Hence Zy(t, s, mg, km, ){w) = 1,
Zn(t, 8, Mg, kmy)(w) > 0 for infinitely many n and Zy(t, S, mg, kpmp )(w) > 0 for
some n > 0. It follows that

{Za(t,8) > 010} C |J|J{%(t,s,m, k) =1,Z,(t,5,m,k) > 00,
m,k s€T
Zo(t, S, m, k) > 0 for some n}.

This implies by Theorem 4.1 that P-a.s.
{Z,(t,S) > 01i0.}
- U U U{Zo(t,s,m, k) =1,Z,(t,s,m, k) > 0i.0.}

mk CEeC(t,5) s€C

c U U {&t,cmk) =1,2,tC mk) >0io.}
m,k CeC(t,S)

= U U {Z.(t,C,m, k) > 0 for all n}.
m,k CeC(t,S)

a

Let C be a communicating class with period d and let Hy,...,Hy_; be the
cyclic classes of C.

Lemma 4.5 Let t € Hy and assume that HyNS # 0. The event
{Z,a(t, Hy) > 0 for all n}

15 contained in
{Zna(t, S) > 0 eventually}

P-almost surely.

Proof By contradiction, assume that P(Z,4(t, Hy) > 0 for all n, Z,4(t,5) =
0i.0.) > 0. By Theorem 4.1, for all € > 0 there is a ¢ > 0 such that

0 < P(Z.4(t, Hp) > 0 for all mn, Z,4(t,S) =01i.0.)
< P(Zna(t, Hy) > c A for all n, Z,4(t,S) =01i.0.) +e.

This implies that we can find v € Hy, w € S, !l € N and ¢’ > 0 such that
(M) >0
and

P(E, i.0.) > 0,
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where
E, = {Zna(t,v) > ¢ 2%, Znnya(t, w) = 0}.
Define
p= 1M Y.
Then
P(Z(v,w) > 0) > %]E(Zld(v,w))
_ ﬁ(Mu)w
= p.
Fix n and define for all K = 1,..., Z,4(¢,v)
&(t,v,w) = number of type w descendants in o"+Y4(¢), generated by

the £ type v letter in (6™4(t))o, . .., ("*(t)) ppna_y.
If P(Zpa(t,v) > ¢ A2 > 0, we have

P(E,) = P(Zu(t,v) > A, Zntd(t, w) =0)
P(Zninyalt,w) = 0 | Zna(t,v) > ¢ Ag?)
Zng (t,0)
it Z &t v,w) =0 | Zpa(t,v) > AH)
k=1
[/ A
< P( Y Laka(t,v,w) =0).

k=1

IA

IA

Note that if k& # [, the (3k — 2)'" and the (3] — 2)™" type v letter in o™%(t) are
at least 2 places apart, which implies that the two letters generate the types of
their offspring independently. Therefore,

P(E,) < P& (tv,w) =03
S <l—p)%cl)‘1c;'d.
By the Borel-Cantelli lemma P(E,, i.0.) = 0, which is a contradiction. 0O

Lemma 4.6 Lett €T, SCT and C € C(t,S). Then

{Za(t,C) > 0 4.0} C {Za(t,S) > 0 i.0},
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P-almost surely. If in addition
HNS#0 for0<i<d-1,
where d is the period of C, and Hy,...,Hy, are the extended cyclic classes of
C, then
{Z.(t,C) >0 1i0.} C{Z.(tS) >0 eventually},

P-almost surely.
Proof By Lemma 4.4, the event {Z,(¢,C) > 0 i.0.} is contained in
U U U {Zs(t,s,m, k) =1, Z,(t,C',m, k) > 0 for all n}.

mk C'eC(t,C) seC’
Fix m, k, C' and let Hy,..., H}_, be the cyclic classes of C' and assume that
s € H}. Then {Zo(t,s,m,k) = 1,Z,(t,C’,m,k) > 0 for all n} is contained in
NEGH Zna1i(t, H,m, k) > 0 for all n}. Since C" € C(t,C) and C € C(t,5), it
follows that C' € C(t, S).
To prove the first inclusion of the lemma, let i be such that H!N.S # @. Then
by Lemma 4.5

{Zpa4it, H,m,k) > 0 for all n} C {Znz4i(t, S, m, k) > 0 eventually}
C {Z.(t,S,m,k) >0io0.}.

Hence

{Za(t,C) > 010} C | J{Za(t,S,m,k) >0i0}
m,k

= {Z,(t,S)>01i0.}.

To prove the second inclusion, assume that H;NS # @ foralli=0,...,d—1.
It is not difficult to see that this implies that H/!NS # @ foralli =0,...,d" —1.
Then by Lemma 4.5
d'—1
ﬂ {Zpa4i(t, H,m,k) > 0 for all n}
i=0

d'-1
- n {Znar4i(t, S,m, k) > 0 for all n}
i=0
= {Z.(t,S,m, k) > 0 eventually}.
Hence

{Z.(t,C) > 010.} C U{Zn(t, S, m, k) > 0 eventually}
mk

{Z,.(t,S) > 0 eventually}.

N
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Proof (Theorem 4.2) By Lemma 3.3 we have that

oo

lim supy K (t, S) = ﬂ U I, (k).

m=0 {k:Z,(1,S,m,k)>01.0.}

Under the conditions stated in the first part of the theorem, we have P-almost
surely by Lemma 4.4 and Lemma 4.6 that

{Z.(t.8) > 010.} = {Z,(t,S) > 0 eventually}.
As a consequence, also
{Z,(t,S,m, k) > 01i0.} ={Z,(t S, m k) > 0 eventually}

forall m >0and 0 < k < M™ — 1. Hence by Lemma 3.3

oo

M U (k)

m=0 {k:Zn(t,8,m.k)>0 eventually}
liminfy K, (¢, S).

lim supy K, (¢, 5)

N

For the second part of the theorem, it follows from Lemma 4.4 and Lemma 4.6
that

{Za(t,S,m, k) >0i0} = |J {Zu(t,C,m,k)>01i0}
Cec(t,S)

foralm >0and 0 < k < M™ — 1. Hence

lim supy K, (¢, §) = limsupy U K,(t,C).
CeC(1,S)

Since the sets Upee(r,s) Kn(t, C) converge by the first part of the theorem, onc
has lim supy K, (t, ) = Ugeeq,s) K (8 C). O

Corollary 4.1 Let S C T\{0}. If for each communicating class C' € C(S)
HNS#0 for0<i<d-1,

where d is the period of C, and Hy, ..., Hy_, are the extended cyclic classes of
C, then (K,(S))u>0 converges to K(S), P-almost surely. Moreover,

lim supy K,.(S) = U K(C),
Ccec(S)

P-almost surely.
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Proof If we define K,(S,k) = K,(S) N [k, k + 1], then K,.(S) = U, Ka(S, k).
Let t denote the type of letter u; in u. Since C(t,S) C C(S), we have by Theo-
rem 4.2 that (K,(t,S)) converges to K(¢,S) under the conditions stated above.
This implies that (K,(S,k)) converges to K(S,k) and hence (K,(S)) converges
to K(S) = U, K(S,k). From the second part of Theorem 4.2 it follows that
limsupyKn(t, S) = Ugecq,s) K (¢, C) which is equal to Uceces) K(¢,C). This
implies that limsupyKn(S, k) = Ugeersy K(C, k) and hence limsupyK,(S) =
lim supy Uy, Kn(S, k) = U Ugec(s) K(C k) = Ugees) K (C). a

4.5 The boundary of a BCA

Consider 2 BCA (A, M, N,0,u) with set of types T = A?N+3 and let S = T\ {0}.
By Corollary 4.1, the sequence (K,(S)). converges to a limitset K(S). In this
section we study the boundary 0K (S) of the limit set K(.S). Under the assump-
tion that our BCA is 'non-lattice’ (see definition 4.4), we prove that 8K (S) is
equal to the limit set K(JS), where S = {t € T : t — 0,t # 0}. As a corol-
lary we obtain that K(0S) is also the boundary of the limit set K(S'), where
S' = {t € T : ty # 0}. Although the results are stated in terms of 1-dimensional
BCA’s, they can be generalized to higher dimensions in a straightforward manner.

Definition 4.4 We call « BCA ’non-lattice’ (with respect to the set of types T),
if for all n > 0 the probability is 0 that the types s and t of two neighbouring
letters in 0™(u) are such that s =0 andt € S\@S = {t € T : t -» 0}.

Example 4.1 An example of a BCA that is lattice (not non-lattice) is the fol-
lowing. Let A = {0,1}, M =2, N =1, o(v) = 11 for all v # 000 and u is the
word with a 1 at position 0 and 0’s elsewhere. Let T = A® be the set of types.
Then the deterministic limit set K(S) is equal to the interval [-2,3]. Observe
that 35S = 0 and hence the type of the letter us is an element of S\8S. Since the
type of uy is 0, this BCA is lattice.

If we would have chosen the set of types to be AN+5 instead of A?M*+3, any
BCA is non-lattice. In fact, if s and ¢ are the (2N +5)- types of two neighbouring
letters in any word v € A%, then the probability is 0 that s = 02¥N*5 and ¢ € {t' €
ANFS ! s 02N5} To see this, let v € AZ be such that the (2N + 5)-type
of vg is 0*N*3, ie., v_y_3...Un12 = 0?¥*®. Consider the leftmost child (o(v))a
of v;. Since (0(v))m-@m-1)---(c(v)pm+em—1) = 0*¥~! and since 4M — 1 >
QM +2(N+1)—1>4+2(N+1)—1 = 2N +5, it follows that the (2N +5)-type
of the leftmost child of v; is 0*¥*+3. Therefore the (2N + 5)-type of v; cannot be
an element of {t € A*N*5 : ¢ —» (?N*+5}_ Since the same holds for v_;, the other
neighbour of vg, the BCA is non-lattice with respect to T = A2N+5,

Assuming that our BCA is non-lattice, we have the following theorem.
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Theorem 4.3 Let S =T\{0} and S ={t €T :t — 0,t #0}. Then dK(S) =
K(3S) almost surely.

Let | < r be integers such that letters uy, in the starting word u have type 0 for
kE<landk > r. For S C T, define sets K,,(S) by K,(S) = K,(S)N[],r]. Observe
that K,,(S) = K,(S) for S € T\{0} and that K, (S)UK,(0) = [I,r] if S = T\{0}.
Since {0} is a closed communicating class, it follows from Theorem 4.2 that
(K,(0)), increases to a limit set K(0) and that K (0 = Ucecw) K(C). We will
denote the interior of a set X C R by int(X) and its closure by cl(X).

Lemma 4.7 Let S = T\{0}. Then almost surely
1. cl(int(K(0))) = K(0)
2. int(K(S)) n K(0) = 0.
Proof In this and the following proofs, all statements are almost sure.
1. This follows from letting n tend to infinity in
K, (0) = cl(int(K,(0))) C cl(int(K(0))) C K(0).

Here we used that (K,(0)),»o increases to K(0), since {0} is a closed com-
municating class.

2. This follows since (K,,(S))n>0 is an decreasing sequence and for all n

cl(int(K,(0))) = Ka(0)
int(K,(0)) Nint(KL(S)) = .

a

Proof (Theorem 4.3) We will first proof that K(8S) C 8K(S). Since 84S C
S, we have that K(9S) C K(S). From Theorem 4.2 it follows that K(8S) =
Ucecs) K(C). Since €(0S) € C(0), we have K(0S) C Ugee K(C) = K(0).
Hence

K(8S) C K(S)nK(0)
= (89K(S)N K(0)) U (int(K(S)) N K(D))
C 0K(S),

since int(K(S)) N K(0) = @ by Lemma 4.7, part 2.
To prove that 9K (S) C K(85), assume by contradiction that with positive
probability there is an « € K (S) such that = ¢ K(8S). Since K(S)U K(0) =
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[,r] and K(8S) is closed, we can find with positive probability rational y € (I, 7]
and rational € > 0 such that

B.(y)nK(S) # 0
B.(y)nK(0) # 0
Bx(y) NK(3S) = 0

This last event is a union over rational y and ¢ and hence we can find non-random
z and 1 > 0 such that with positive probability

By(z) N K(S)
B,(z) N K(0)

0
0
Bu(z)NK@BS) = 0

[ NI S

Since (K,,(S)),. and (K,(8S)), are decreasing sequences and (K,(0)),, is increas-
ing, there is an ny such that with positive probability

By(2) N Kno(S) # 0
By(2) N Kpo(0) # 0
By(z) N K, (0S) = 0.
This obviously implies that there are neighbouring ng-adic intervals I and J such
that with positive probability I C K, (S\8S) and J C K, (0). This however,
contradicts the non-lattice assumption. O

The following lemma implies that the boundary of K(S'), where ' = {t €
T : tp # 0}, is also equal to K(9S).

Lemma 4.8 Let S = T\{0} and S’ = {t € T : to # 0}. Then (K.(S))n
converges to a limit set K(S') almost surely and K(S') = K(S).

Proof Since S’ C S, we have that K,(S') C K,(S) for all n. If we let g, =
M™(N + 1), then K,(S) C K& (S'), where K:~(S’) is the set of points within
an ¢,-distance of K,(S’). Since (K,(S5)), converges to K(S) by Corollary 4.1,
also K,,(S’) converges to K(S). O

4.6 Examples
Example 4.2 In this example we present a BCA with interaction length N

that corresponds to fractal percolation in dimension 2 with parameter p (see
Example 2.2 and 3.2). Consider the BCA (A, M, N,o,u), with A = {0,1} and u
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2
Bty ﬁ%‘ﬂ 11
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b:g a?'?..l-rni . &u‘i
T

Figure 4.1: A realisation of Ky of ordinary fractal percolation (Example 4.2) with
parameter p = 0.75 and M = 2.

is the 2-dimensional word with ugs = 1 and 0’s elsewhere. For v € ACGN+Dx2N+1)

write

U—N,N e 'UN,N
v =
U—N,—N e 'UN,—N
and
(@@)onm-1 ... (o(v))m-1,m-1
o(v) = : :
(a(v))oo e (V) m-10

The probability distribution P, of o is such that all letters (o(v));; are 0 if vo = 0
and they are independent Bernoulli(p) random variables if v = 1. Let C C
T=ANBbhe C={seT:syp=1}and write K, = K,(C). Since C is a
communicating class, (K,), converges [P, almost surely by Theorem 4.2.

Example 4.3 Consider the 2-dimensional BCA (4, M, N, o, u), where A = {0, 1},
© is the 2-dimensional word with ugy = 1 and 0’s elsewhere and let ¢ be majority
fractal percolation (see Example 2.3 and 3.4). Again, T = AGN+U*C@N+1) js the
set of types and let S CT be S ={s €T :syp =1}. In this example, S is not a
communicating class for N > 1, but

C={seT:sj=1forsomedjec{—(N+1),...,N+1}}
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Figure 4.2: A realisation of Ky of majority fractal percolation, where M = 2,
N =1 and p = 0.15 (see Example 4.3).

is. In fact, § C C and C(S) = {C'}. Since C is aperiodic, we have by Theorem 4.2
that K1(S), K2(S),... almost surely converge to K(S) = K(C).

Example 4.4 Consider the 2-dimensional BCA (A, M, N, 0, u), where A = {0,1},
M =2 N =1 and u is the all 0’s word except for ugy = 1. Let o be the
neighbour dependent substitution from the ink model with parameter p (see Ex-
ample 3.3). For this example, it suffices to take T' = A%< as set of types instead
of A%*5, since one is still able to determine the distribution of the types of the
offspring, based on the type of the parent. Let S = {s € T : sp = 1} and
0S8 ={s €T :s—> 0,s # 0} and write K, = K,(S). Note that S is equal
to the set {s € T : sgp = 0,s # 0}. The BCA is non-lattice, since if v; and v,
are neighbouring letters in v € AZ*% and the type of v is 0, then the type of v,
is either 0 or an element of 8S. By Theorem 4.3 and Lemma 4.8, we have that
0K (S) = K(0S) almost surely.
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Figure 4.3: A realisation of Ky(S) of the BCA in Example 4.4 with p =3.

Figure 4.4: Ky(0S) of the same realisation as in Figure 4.3.
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4.7 Product BCA

Let B = (A, M, N,0,u) and B’ = (A', M, N,0’,u’) be two BCA’s with the same
substitution length M and interaction length N. Denote the probability measure
associated with B by P and the probability measure associated with B’ by . We
are going to define a product BCA B= (A, M, N, é,4) with associated probability
measure [P as follows.

Let A= Ax A" For k> 0and v = v;...v € AF with v; = (v}l),v,(?)), we
denote the word vﬁl) o v,(cl) € A* by v and vfz) . .v,(f) € (A% by v@. Define a
neighbour dependent substitution & on the alphabet A by

P(6(v) = w) = P(c(v®) = w®) P (o' (v®) = w®)

for v € A2Vt and w € AM.

Let i be the starting word defined by 4 = u and @4® = «'. Then the
BCA B = (A, M, N,6,4) is called the product BCA of B and B'. Each random
variable and quantity concerning B, respectively the product BCA B will have a
!, respectively a " attached to it.

Let t € T, ¢ € T" and define t € T by {0 = ¢, {® = ¢'. Furthermore, let
SCT,S CT andlet § C T be defined by

S={seT:sWess?es

Then we have the following rather obvious lemma, its proof being left to the
reader. .

Lemma 4.9 Lett, ¢, f and S, S', S be as defined above. Then

P(K,(f,8) = 0) =P x P (K.(t,S) N K. (¢',5') = 0).

4.8 Dimension

Consider a 1-dimensional BCA B = (A, M, N, 0, u) with set of types T = A2V+3,
Let C C T be a communicating class with Perron-Frobenius eigenvalue A > 1
and let t € C. By Theorem 4.2, the sets K, (t,C) converge to K(¢,C) almost
surely. For ease of notation, we denote K,(t,C) by K, and Z,(t,C) by Z,.
Define the event 'non-extinction’ as {Z, > 0 infinitely often}. By Theorem 4.1,
non-extinction has positive probability. In this section we show that conditioned
on non-extinction, the Hausdorff dimension of the limit set K equals log A/ log M
almost surely. The setup of the proof resembles the proof of the dimension result
for fractal percolation, as described in Section 3.3.1 Once more, all results in this
section extend easily to the higher dimensional case (including Lemma 4.11 by
Lyons).
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Lemma 4.10 Conditioned on non—extinction, dimyK is a constant P-a.s.
Proof Write

D
d

dimy (K (¢, C))
sup{z: (D < x) < 1}.

Fix € > 0 and let p(g) = P(D > d — ¢}. Let F, be the o-algebra generated by

ol ..., . Then for all n,

]P(D >d - 8|fn) > p(E)
on {Z,(t,t) > 0} almost surely. Hence for infinitely many »
P(D > d - ¢|F,) 2 ple)

on {Z,(t,t) > 0i.0.} almost surely. Since {Z,(¢,C) > 01.0.} C {Z.(t,t) > 0i0.}
by Lemma 4.6 and since P(D > d — ¢|F,,) converges to 1{p»q-) almost surely
by Lévy’s 0-1 law, one has that D > d — ¢ on {Z,({,C) > 0 i.0.} almost surely.
If we let € tend to 0, it follows that dimyK (¢, C') = d almost surely, conditioned
on non-extinction. O

In this section we will denote by B = (A', M, N,¢’,u') ordinary fractal
percolation with parameter p (see Example 4.2). So A’ = {0,1} and v/ =
..010... € (A’)Z. All quantities and random variables concerning fractal per-
colation will be written with a prime. We will write K, for K, (t',C"), wherc
t=0...010..06T"and C" = {s € T : 50 = 1}.
In the proof of Theorem 4.4, we will use Lemma 3.6. For ease of reference,
we will state it here once more.

Lemma 4.11 Let B be a set in [0,1]. IfB(BNK' # @) > 0, then dimyB >
— s

Consider the product BCA (A, M, N, &, 1) of our initial BCA B with fractal
percolatlon B’ with parameter p. So A = Ax A" = A x {0,1} and &V = u,
@® = /. All quantities and random variables concerning the product BCA will
be written with a hat. We will write K,, = K,,(At C where { is such that ) =t
{® = ¢ and C is the communicating class in T whlch contains £.

Although € does not need to be equal to the set S={se T:5WeC,s®e
C"}, the sets K, K"(t ¢) and K,(£,S) are equal for all n. To see this, observe
that ¢ C S and that £ — s for each s € S. This implies that if s is a type in
S\C, then  -» s.

Let M, = (11tst) 4 s D the mean offspring matrix of the product BCA.
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Lemma 4.12 If we denote the Perron-Frobenius eigenvalue of Mp restricted to
C by Ay, then

)‘P:pA)

where X = A¢ is the Perron—Frobenius eigenvalue of M restricted to the commu-
nicating class C.

For the proof we need the following lemma due to Furstenberg (cf. [20]).

Lemma 4.13 (Furstenberg) Let A = (a;;)1<ij<n be a non-negative, irreducible
n X n-matriz and let B = (bij)1<i j<- be a non-negative, irreducible r x r-matriz,
where 1 <r <n. Let I,..., I, be a partition of the indez set {1,...,n}, where
all sets I are non-empty. Assume that for A, B and {I : k = 1,...,r} the
following relation holds. For all 1 <i,7 < r we have

fOT‘ alll € I Zalk = b,‘j.

kel;
Then the Perron-Frobenius eigenvalues of the matrices A and B are the same.

Proof Let A4 and Ap be the Perron—Frobenius eigenvalues of A and B and
let v4 and vp be associated left eigenvectors with all entries strictly positive.
Furthermore, let w; be a right eigenvector associated with Ap having all entries
strictly positive. Define

R = (rij)1<izn, 1<j<r

by

1 ifiel
Ti=Y 0 else.

Then AR = RB. Define x € R" as ¢ = v4R. Since {I,,...,1,} is a partition, all
entries of z are strictly positive. Then
zB = ’UARB = ’UAAR - )\A’UAR = /\A.T,

and therefore A4 is an eigenvalue of B.
Furthermore, we have

Aagwp = zBwl = Aprwy.

Since both x and wg have all entries strictly positive, we conclude that A, = Ag.
O
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Proof (of Lemma 4.12) Consider the partition {I},ec of C, where
I,={ve C o) = s}

Then we claim that for all s,t € C and for all v € I,

E Mo = P Mgt

wel,
To see this define for i € T, SC T and S’ C T
J(£,8,8) = {0<k<M—1: the type v of (/)
has v € § and @ € §'}.
So we have
J(£,8,8) =08, TYnJ({ET,8).
Recall that fort e Tand SCT
Ji(t,S) = {0<k<M-1: the type of (¢(¢)), is an element of S}.
Writing Z(s,t) for Zy(s, {t}) and J{s,t) for Ji(s, {t}), we have for all v € I,

o = Y By (Z(v,0))

wely wel;

= B,(Z(v, L))
= Ep(zlj(v,z,c')(k))
k=0

-1

= By (Lj(0,e.0 (K) Lo 70y (K))
-0
-1
= E(1 jp 4 (k) B, (1@ 00 (K))

=0
= pE(Z(s,1))
= PMs.

ES

Z o

kol

57

By Lemma 4.13, the Perron—Frobenius eigenvalues of Mp restricted to € and

p M restricted to C are the same. Therefore, ;\p =pA

Lemma 4.14 Ifp >}, then
PxP,(KNK #0)>0.

O
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Proof By Lemma 4.9 we have

PR, =0) — P(R,(,C)=0)
~ P(N,({.8)=0)
(

(

Il

P x P (K, (t,C)N K, (t',C") = 0)
P x P, (K, N K, = 0)

for all n = 0,1,.... Since {K, =0} | {K = 0} and similarly {K, N K, = 0} |
{K N K’ =B}, we have

P,(K =0) =P x P,(KNK'=0).

If p > 1, then the Perron-Frobenius eigenvalue A, = pA is strictly larger than 1.
So by Theorem 4.1,

P(K#0)=PxP,(KNK'#0)>0.
O

Our main theorem specifies the Hausdorff dimension of the limit set K of our
BCA.

Theorem 4.4 Let K = K(t,C) be a set generated by a BCA witht € C and C
a communicating class with Ac > 1. Conditioned on non-extinction, we have

Proof The easy part of the proof is showing that dimy K < T})—‘;gj\% a.s. Fixe > 0.
By Theorem 4.1 we can find a constant ¢ such that

P(Z, <cM\foralln)>1—e.
Hence

P(K, can be covered with less than ¢ A"
n'P-level M-adic intervals, for all n) > 1 —e.

This implies that
P(H™*(K) < 00) > 1 —¢,

where o = l‘—gg% and H*(K) is the a-dimensional Hausdorff measure of K. Since

this holds for all £, we conclude that dimy K < 1:)—“5—’} a.s.



4.8. DIMENSION 59

To prove the converse, dimy K > l(‘)‘;—gh—’,\, a.s., we will use the previous lemma’s.
Let e > 0and p = p(e) = §+6. By Lemma 4.14 we have Px P, (KNK' # §) > 0.

This implies by Fubini’s theorem that the set
B={w: P (Kw)NK #0) >0}

has positive P measure.

By Lemma 4.11, dimg X > —ﬁgﬁ with positive probability. Since conditioned
on non-extinction dimg K is a constant a.s. (Lemma 4.10), we have in this case
that dimpK > —%‘;&% as. If we let € — 0, then p(e) — Xl and so we have
dimg K > I%‘ELM a.s., conditioned on non-extinction. O
Example 4.5 Consider fractal percolation with parameter p in dimension 2 (Ex-
ample 4.2). Recall that K, := K,(t,C), where

C={S€T:$00:1}

and t is the type with a 1 in the middle and 0’s elsewhere. By Lemma 4.13, the
largest eigenvalue of M, is equal to p M2. Hence by Theorem 4.4, we have that
conditioned on non-extinction

logp
log M

dimgK =2+

Example 4.6 Consider the BCA described in Example 4.4, parametrised by p.
Recall that T = A%**® and

S = {SET:SOO=1}
9S = {seT:s50=0,s+#0}.

Note that 95 is a communicating class and that K(S) and K (9S5) are non-empty
almost surely. As a result of Theorem 4.4 we obtain that

dimpgK(S) = 2

1
dimg 0K (S) = 125 1);5,

where }, is the Perron-Frobenius eigenvalue associated with 05.
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Chapter 5

Iterated Function Systems

5.1 Introduction

Recently, several authors have studied the geometry of self-similar tiles, in par-
ticular the nature of their (topological) boundaries (6], [7], [15], [28], [29], [12]).
Typically these authors consider compact sets ' in R which satisfy the self-
similarity equation

ey = J +ad (5.1)

deD

for some expanding similarity ! and some finite set D of points in RY. Moreover,
it is assumed that [ preserves a lattice R and that D C R. Finally a tiling
condition is added, namely that the interiors of C + d and C + € do not intersect
for d # e € D. One would not call C a tile if it has empty interior. A sufficient
condition for C to have non-empty interior and to satisfy the tiling condition is
that D is a digit set, i.e., a complete residue system for R/I(R).

Under this digit set condition, Duvall, Keesling and Vince ([7]) and Strichartz
and Wang ([28]) show how to obtain the boundary dC of C as a union of compact

sets C,. .., C, which satisfy the more general version of equation (5.1)
=Y U ©i+d 1<i<r (5.2)
j=tdeDy;

for some finite sets D;; C R, and where the tiling condition is generalized to
requiring that the interiors of the sets C; + d and Ci + e do not intersect for
d € Dij, e € Dy, and 1 < 4,5,k < r (except of course when j = k and d = e).
The goal of the present work is to construct and to characterize the bound-
aries of self-similar sets C satisfying equation (5.1) and more generally of sets
Cy,...,C, satisfying equation (5.2), without the tiling condition. Our approach
is to generate the boundary by iterates of a d-dimensional substitution. An ad-
vantage of this approach is that the iterates always converge to the boundary of
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62 CHAPTER 5. ITERATED FUNCTION SYSTEMS

the tile, since the d-dimensional substitutions can distinguish in some sense be-
tween boundary points and interior points of the limiting set (cf. Theorem 5.4).
This shows that the ‘well-behavedness’ condition on the boundary which Duvall
et al. ([7]) require in their analysis, is in some sense superfluous (cf. their Remark
on p. 10).

Let (Ci,...,C,) be a vector of non-empty compact sets in R¢ that satisfy
equations (5.2), where we only assume that U;:1 D;; is non-empty for each i.
For reasons of simplicity, we will assume that [ is just an integer scaling, i.e.,
I(z) = Mz, where M > 2 is an integer, and that the sets D;; are subsets of Z8.
However, the results in this chapter can be generalized to the case where [ is an
expansive similarity preserving a lattice R and D;; C R. We will call the pair
(M, (D;j)1<i,j<r) an M-recurrent IFS.

To analyze this M-recurrent IFS, we introduce another way to generate com-
pact sets in R%, by means of (deterministic) branching cellular automata (BCA),
which can also be viewed as d-dimensional substitutions. Stochastic BCA’s were
already explored in Chapter 4. A finite set T is associated with each BCA, a
set which we will refer to as the set of types. For any subset S of T, a se-
quence (K,(S))as0 of closed and uniformly bounded subsets of R? is defined.
In Chapter 4 results were given concerning convergence of the sets (Ky(S))n>o
to a limit set K(S) (w.r.t Hausdorff metric) and the Hausdorff dimension of
K(S). The boundary 8K (S) of K(S) was shown to be the limit set of a sequence
(K(885))nx0, for specific subsets S and S of T'. In this chapter we re-formulate
these results for deterministic BCA'’s.

We prove an equivalence result for M-recurrent IFS’s and BCA’s. Consider
an M-recurrent IFS with attractor (Cy,...,C,) and fix a set C' = C; for some
1 < ¢ < r. Then we can find a BCA with set of types T and aset S C T
such that the associated sets (K, (S))n>o converge to C. On the other hand,
consider a BCA with set of types T and let S C T be such that the associated
sets (K, (S))n>0 converge to a non-empty limit set K(S). Then we can find an
M-recurrent IFS with attractor (Co,Ct, ..., Cr) such that Cy = K(S).

Our main results follow from the results about BCA’s and the relation between
recurrent IFS’s and BCA’s. Let C be a component of the attractor (Cy,...,C})
of an M-recurrent IFS. Then we can find another M-recurrent IFS with attractor
(By, By, .. -, By), such that the boundary of C is equal to By. In addition, we can
calculate the Hausdorff dimension of C' and of its boundary.

5.2 An Introductory Example

Consider a 2-dimensional tile C' defined by

20 =C+D=J(C+ad),

deD
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Figure 5.1: From top left to bottom right the approzimating sets C©, ... C®) of
the tile C generated by the 2-recurrent IFS in Section 5.2.

where 2C = {2z : ¢ € C}, and
D= {(_1’ _1)7 (07 O)a (13 0)7 (Ov 1)}

Since D is a digit set for the lattice Z2, the dimension of the boundary of ' can
be calculated using the contact matrix as described in [7] and [28]. However, with
this example we will demonstrate the use of branching cellular automata.

We approximate the tile C' as follows. Let C© = {(0,0)} and recursively
define sets C, C® .. by

1
2n+1

C(n-}-l) — C(n) + D.

Then C is the HausdorfF limit of the sequence C® CW ... (cf. Figure 5.1).
These approximating sets can also be obtained by means of a branching cel-

lular automaton, i.e., a 2-dimensional substitution with neighbour dependence.
Let A = {0,1} be our alphabet and define a map o : A3*3 — A?*? by

*2_}00 *ox L 01
00 00
*x ¥k *k ok Xk
SINTRRSENT
11 11
¥ k%
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Here a * stands for either 0 or 1. We extend o to a substitution v = o(v) = w
with v, w € A®*Z in the obvious way (see Section 2.3). So for example
o(vy;) = Waigjl Waitrzier 10 if v;; =1 and vi41541 =0
3 Wy  W2it12) 11 Y it
We take as starting word for the substitution the word u, which has a 1 at position
(0,0) and 0's elsewhere:

£

I
oo o
Lo m o
oo o

Define sets Ky, K3, ... in the plane by
1,,. . n

= 2_,,{(21]) : (U (u))ij = 1}7

where 0" is the n-fold iterate of o. It is easy to check that the substitution o is

constructed in such a way, that C™ = K, for all n.
Define the type of a letter v;; in a word v € A%*Z to be the word

K

Vij+1  Vit1541
Uij Vit1,j
0

and let T = A**2 be the set of all possible types. Let S = T\{ 0

the ‘boundary’ 95 of S by

g }- We define

11
o5=5\{} 1 }
and we define sets Ky(99), K1(8S),... by
K, (8S) = 21—n{(z,]) : the type of (6™(u));; is an element of 3S}.

It turns out that the sets K,(9S) converge to a set K(8S) (Theorem 5.1),
which is the boundary of the tile C' (Theorem 5.4). In Figure 5.2 we plotted
Ky(8S),...,Ks(dS).

Note that the type of a letter v;; in a word v € A®*Z determines the types
of the letters in o(v) that have been substituted for v;;, i.e., of the four letters
(a(v))2i2j (0(v))2i+1,255 (0(V))2i 2541 and (0(v))2ir1,2j4+1-

Let s be a type in T and let v € AZ*Z be such that the type of vg is 5. Define
the offspring matrix M = (ms)ser by

mg = Card({(i,5) : 4,4 € {0,1}, the type of (a(v));; is t}).
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Figure 5.2: From top left to bottom right the sets Ko(0S),. .., Ks(0S) approxi-
mating the boundary OC of the tile C from Section 5.2.

In this example, M is a 16 x 16 matrix. Let Mys denote the matrix M
restricted to S {which is a 14 x 14 irreducible matrix), and let Ays denote the
largest eigenvalue of Mys. If we denote the boundary of C by OC, then by
Theorem 5.3 we can cxpress the dimension of 8C in terms of Aag:

log Ass

dimygdC = dimy K (9S) = log 2

A simple computation shows that Aps = 3, hence the dimension of the boundary
of C equals log 3/ log 2.

5.3 Recurrent Iterated Function Systems

Let m,r > 1 be integers and fi, ..., fr be contractions on R?. For 1 <i,j < rlet
Qi; be a subset of {1,...,m} such that | J;_, @Q:; is non-empty for each ¢. Then
the pair

((fi)1<hem, (Qiji<ij<r)

is called a recurrent iterated function system.
Let H be the set of compact subsets of R? and let H, be H without the empty
set. On the space H", define g by

g(Al,.‘.,Ar)z(U U ..U U £l A7)
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In [1] it is shown that, restricted to M, g has a unique fixed point (Cy,...,C,),
ie.,

g(Cl>'--aCr) = (C],...,C,.),
and (Cy,...,C,) is an attractor in M, i.e., for all (4,,...,4,) € H}

ILm gn(1417 .. .,Ar) = (Cl,.. . ,Cr),

where the limit is with respect to the Hausdorff metric.
We shall always approximate the C; by sets C,(") given by

(C, ) = (0%, (0))  forn >0,

where 0¢ denotes the origin in R?.

Consider the following special case of a recurrent IFS. For 1 < 4,5 < r, let
D;; be finite subsets of Z?, such that for each i, Uj-1 Di; is non-empty. Let
m = Card(U,; j<, Di;), and let b : {1,...,m} = U, ;<. Dij be a bijection.
Define contractions fi, ..., fm by

fi(x) = M~ (z + b(k)),
where M > 2 is an integer and define
Qi; = {k : b(k) € D;;}
to obtain the recurrent IFS (( fe), (Q;]-)). The pair
(M, (Dihi<ij<r)

will be called an M-recurrent IFS.
For an M-recurrent IFS, the fixed point equations can be written as

r r r
¢ =JUnC=UUM'c+ern=1J U MC+e),
=1 kEQ.’j j=1 kEQ.‘j 7=1 BED,‘J‘
for 1 < ¢ < r, which is equivalent to
MC; = J(C; + Dy),
Jj=1

where C; + D;; is short for {z+y : x € C},y € D;;}. By convention, C;+ D;; = §
when C; or D;; is empty.
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To obtain a refinement of the sets C™) (for an example see Figure 5.3 in
Section 5.8), define sets C™(j) for 1 < i,j < r and n > 0 by

(€ ),....c"W) = g"({0,0,.....,0)
(CP@),....,cM @) = g*(0,{0%},0,...,0)

(C(r),....CO ) = ¢*(0,..... 0, {04}).

It is easily proved by induction that for n > 0

c®=JcMG),  1<i<r

=1
For an M-recurrent IFS, the sets Ci(")( j) satisfy a nice recursion relation.

Lemma 5.1 Fori,j € {1,...,7} endn=0,1,... we have

e = (k) + M=0+DD,,).

h=1

Proof The proof will be by induction. For n = 0 both sides of the equation
equal M~'D;;. Assume that the lemma is proved for n — 1. Then, using the
induction hypothesis in the third step,

c™VG) = U U #E™0)

1=1keQy

UM (C ) + Da)
=1

I

r

= Ym (U (CTV(h) + M~ Dyj) + Du)
I=1 h=1

- U( M1 (Cl(n—l)(h) + Dil) 5 M—(n+1)Dhj)
1

h=1 I=

1
-

(C,-(")(h) + M—<"-+1)Dhj) .

=
||
—
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5.4 Results for Deterministic BCA’s

For notational convenience, the definitions in this section are for dimension 1, but
they can be easily extended to higher dimensions. Consider a deterministic BCA
(A,M,N,o,u), ie., Ais a finite alphabet, M > 2 and N > 0 are integers, o is a
deterministic neighbour dependent substitution and » € AZ serves as the starting
word of the substitution. For a definition of a deterministic neighbour dependent
substitution, we refer the reader to Section 2.3. We assume that A contains a
special element 0, that o(0?V+!) = 0™ and that u consists of only finitely many
non-zero letters. Let T' = A2f*1 be the set of types, where R = 1 + [{44]. This
choice of R ensures that the BCA is non-lattice with respect to T (see Section 4.5).
Fix a set S C T which does not contain the type 0, the type consisting of only
0’s. In this chapter we will define the-associated sets K,(S) as a union of points,
rather than a union of M-adic intervals. Define for n > 0

K,(S) = M™keZ: type of (6"(u)); is an element of S}.

Since u contains only finitely many non-zero’s and o(0?N+!) = 0M, the sets
K,(S) are closed and uniformly bounded. The offspring matrix M = (ms)s et
is defined by

mg = Card(J(s, t)),
where
J(s,t) = {0<k<M-—1: the type of (¢(s)) is t}.
For S C T define

S2 = {teT: thereis an s € S such that t — s}
S< = {teT: thereisan s € S such that s — t}.

The following two results concerning the convergence of the sequence (K,(S))nz0
follow from Theorem 4.2.

Theorem 5.1 Let S be a subset of T. If S = SZ, § = S< or S is a communi-
cating class, then (K,(S))a>0 converges.

A communicating class U C T is called non-trivial if for all s € C there is an
n 2> 1 such that m[, > 0. Define for t e Tand SCT
U = {UCT:U is anon-trivial communicating class}
U, S) {UelU: therearet’ € U and t" € S such that t = ¢’ —¢" }
U(S) {UCT:UeUft,S), wheretis the
type of a letter in the starting word u}.



5.5. FROM M-RECURRENT IFS TO BCA 69

Theorem 5.2 Assume that (K, (S))n>o converges to K(S). Then
K©S)= |J KWO).
Ueld(S)

Fix a set S C T such that (K,(S))n»0 converges. For a communicating class
U CU(S) let Ay denote the Perron-Frobenius eigenvalue of U. If U(S) = @, then
K(S)=0. HU(S) # 0, define

As = max Ag.
UEl(S)

The following theorem concerning the dimension of the limit set K(S) follows
from Theorem 4.4,

Theorem 5.3 IfU(S) # 0, then

log /\S

The following result shows how to obtain the boundary of the limit set of a
BCA by simply considering the appropriate subset of types. See Theorem 4.3 for
a proof.

Theorem 5.4 Let S = {t € T :t # 0} and let 8S = {t € T : t # 0,t — 0}.
Then

IK(S) = K(85),
where OK(S) denotes the boundary of K(S).

5.5 From M-Recurrent IFS to BCA

We consider the attractor (Cy,...,C,) of a d-dimensional M-recurrent IF'S
(M, (Dij)1<ij<r), L., (Cy,...,C;) is the unique non-empty solution of

MC,'—-—U(CJ'“{"D,‘J'), 1SLS’I‘

j=1

Fix an ig € {1,...,7} and write C for C;,. In this section , we will construct
a BCA B with alphabet A the set of all subsets of {1,...,r}, with designated
element @, and with set of types T such that C' = K(S), where § = {teT:t+#
0}. Here, @ denotes the type in T' with all entries equal to §.

For x = (xy,...,7q) € Z¢, define

2 mod M = (z; mod M, ...,z4 mod M).
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Construction 5.1 Define a BCA as follows. Let the alphabet A be the set of all
subsets of {1,...,7} and let @ be the designated element. Choose the substitution
length to be M. Define D = |, ;<, Di;- Let the interaction length N be the
smallest integer ! which satisfies

e—emodM C M{—I,... 1}, for alle € D.

We will define a substitution ¢ in the following way. Let v be a word in the set
ARN+D>.x(@N+) indexed by {—N, ..., N}¢. Define for 1 <i,j <r

G; = {z€{-N,...,N}¥:ieu},
H; = LTJ(MGi + Dy;).
i=1
The word o(v) in AM*--*M ‘indexed by {0,..., M — 1}¢, is then defined by
(o) ={i€e{l,...,r} 1z € H;}, z€{0,...,.M -1}
Let the starting word « be defined by ugs = {io} and u, = @ for z # 0¢. Denote
the constructed BCA (A4, M, N, o,u) by B.

Theorem 5.5 Let B be the BCA constructed in Construction 5.1 and denote its
set of types by T. Then B is a BCA with alphabet A the set of all subsets of
{1,...,7} and with designated element § such that C = K(S), where S = {t €
T:t#0}.

The theorem will be proved in two steps. First we show that K(S) = K(3),
where
S={teT tu+#0},
toa denoting the central letter of type ¢t. Then we prove that C = K (S’)

Lemma 5.2 The sequences (Ku(S))nzo and (Kn(S))nso converge to the same
limit set.

For v € A¥, ¢ € Z* and r € N define 87(v) to be the (2r+1) x ... x (2r +1)
sub-word of v centered around v,.

Proof (cf. Lemma 4.8) By Theorem 5.1, (K, (S))n>0 converges to K(S). Since
S C 8, we have for all n > 0 that K,(S) C K,(S). If M"zisa point in K,(S),
then (0"(u)), has a type s in S. Since s # 0, we can find a y € B&(6™(u)) such
that (o™(u)), # 0. So M~y € K,(S) and ||z — y|| < v@ R. Therefore,

Ko(S) C Kn(S) + {z e R : ||z|| < VARM ™}

It follows from the definition of the Hausdorff metric that (Kn(S))n>o converges
to K(S). a
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Definefor 1 <j<r
Sj={t€TZj€tod}.
Then S = |J;_, S; and K.(S) = U}, Ku(S;) for n=0,1,. ...
Lemma 5.3 Let n >0 and 1 < j <r. Then
Kn1(S) = | (Ku(Si) + M-V Dy) .
i=1

Proof To prove that | J;_, (Kn(Si) + ]\I‘("H)DU) is contained in K,41(S;), let
M~z be an element of K,(S;) + J\[“("‘“)DU for some 1 < i < r. Write

r=My+e with y € M"K,(S;) and e € D;;.
Let
= (z — z mod M)

and note that, since x mod M = My + e mod M = ¢ mod M,

by our construction of N. Define v in the set

y—2 L(x —e) ~ & (¢ — x mod M)
= 4(z modM —e)
= (e modM —e)
N}

and thus y — z € {—N,..
A(2N+1)x...x(2N+l) by

v = B lo"(w)
and index v by {—N,..., N} Since y € M"K,(S;), we have
P€ (0" (1))y = vy—s.
Hence
y—z2e€G={ac{~N,...,N}¥:icu,}

and so, since x mod M = M(y —2) + e

z mod M € H; = | J(MG), + Dy)).
h=1

Therefore, indexing a(v) by {0,..., M —1}¢

j€{h:xmodM € Hp} = (0(v))z moans = ("' (u))s



72 CHAPTER 5. ITERATED FUNCTION SYSTEMS

and so z € Kyp41(S5;).

To prove that K,.1(S;) is contained in Ji_; (Kn(Si) + M~"*1)D;;), let the
point M~("*Vz be an element of K, ,1(S;). Again, let

z = (2 — x mod M)
and define v € AGN+DXx..x2N+1) by
v = By(o"(u)).
Then we have, indexing v by {—N,...,N}¢ and o(v) by {0,..., M — 1}¢
J€ (@™ (W) = (6(v))s moar = {i : x mod M € H;},

hence x mod M € Hj, where

HjZU(MGi+Dij) and Gi = {a € {~N,...,N}*:i € va}.

=1

Hence we can find i € {1,...,7},a € {~N,...,N}¢ with i € v, and e € D;; such
that

zmod M = Ma +e.
So, defining y = 2z + a, we can write
c=Mz+zmodM =Mz:+M(y—z)+e=My+e,
where y € M"K,(S;), since i € v, = vy_, = (0™(u))y, and e € D;;. Hence

Mg e | (Ka(Si) + M~Dy)

i=1

O

Proof (of Theorem 5.5) We will actually prove that C™ = K, (S), where
C™ is the n'* approximation of C. Combined with Lemma 5.2 this yields the
statement of the theorem. Recall that C™ = U;=1 C™(4) (by Lemma 5.1) and
that K,,(S) = -, Kn(S;). We will prove by induction that for all 1 < j < r
and n > 0 C™(j) = K,(S;)-

o Recall that the starting word u is such that uge = {ip} and u, = @ for all
x # 0% € 7%, Hence

COG) = {0%}
cOG) = 0

KO(Sio)7
Ko(S;) for j # io.

Il
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e Assume that forall 1 < j < r we have C™(j) = K, (S;). fwefix1 <j <,
then

c () = (J (€@ + M- "IDy)
=1

U (Ka(S:) + M~0Dy)
=1

= Kun(S)),

where the first equality follows from Lemma 5.1, the seccond equality from
the induction hypothesis, and the third from Lemma 5.3.

O

5.6 From BCA to M-Recurrent IFS

Consider a BCA (A, M, N,o,u) with set of types T and offspring matrix M =
(mgt)suer- Let S be a subset of T with 0 ¢ S such that the sequence (K,(S))n>0
converges to a non-empty limit set K'(S). In this section, we will construct an
M-recurrent IFS I(S) with attractor (Cy,...,C,), such that K(S) = Cy. The
recurrent IFS I(S) will not be constructed from S directly, but from the subset
S of T defined by

S§={teT: thereis an s € S such that m* > 0 for infinitely many k},
where mk, = (M*),,.
Lemma 5.4 Let S be a subset of T. Then the following holds.

1. Foralls € S there is a t € § such that mg > 0.

2. Ifse€ 8§ andt €T are such thatt — s, thent € S.

Proof 1. If s € S, then there is an s’ € S such that m*, > 0 for infinitely
many k. Hence there is a t € T such that my > 0 and mf;! > 0 for

infinitely many k, which implies that t € §.

2. If s € 5, then there is an s’ € S such that m*, > 0 for infinitely many k. If
t — s, then there is an [ such that m!, > 0. Hence m!}* > 0 for infinitely
many k. Hence t € S.

O

Lemma 5.5 Let S be a subset of T not containing type 0. Then (Kn(S))nxo
converges to a limit set K(S). Moreover, if (Kn(S))n>o converges to a limit set
K(S), then K(S) = K(3).
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Proof By Lemma 5.4 part ii) it follows that S = SZ. Hence by Theorem 5.1, the
sequence (K, (5))n>0 converges. Assume that (K,(S))n>0 converges to a limit set
K (S). By Theorem 5.2, K(S) = Uyey(s) K(U). We claim that U(S) = U(S). If
U € U(S), then U is also an element of ¢(S), since 52 = S is obviously contained
in S2.

On the other hand, let U € U(S) be a non-trivial communicating class and let

s € U. Then m¥, > 0 for infinitely many k. Since s € S2, there is an I > 0 and

there is a t € S such that m!, > 0. Therefore m}{* > 0 for infinitely many k,

and so s € §' Since s € § = 52 for every s € U, it follows that U C 52. Hence
U(S) = U(S) and thus, applying Theorem 5.2 twice

K= |J Ku)= |J KW)=K(S).
Uel(S) Ueu(S)

]

Construction 5.2 Let S be a subset of T' with 0 ¢ S such that the sequence
(K, (S))n>0 converges to a non-empty limit set K(S). Write

S={s1,...,s},
where r is the cardinality of S. Define for s,t € T
J(s,t)={e€{0,...,M —1}*: the type of (o(w)). is t},

where w € AZ" is such that the type of wye is s. Define Doy = @, and let Dy, Do,
and D;; for 1 <4,j <1 be defined as follows:

D,'g = 0, D()j = {iL‘ (S Zd : the type of ((T(U))m is Sj}7 D,‘j = J(S,‘,Sj).
Since by Lemma 5.5 and Theorem 5.2
0£K©S)=K©S= |J KO),

veu(S)

we have that U(S) # @. Since by Lemma 5.4 part ii) §2 = 3, it follows that the
starting word u contains a letter of a type in S. Hence ngo D,; is non-empty
by Lemma 5.4 part i). Since 0 ¢ S, we have 0 ¢ S, so (J;_q Dy; is finite. The
sets U;=0 D;; are also non-empty for i = 1,...,r, again by Lemma 5.4 part i).
Denote the constructed M-recurrent IFS (M, (D;;)o<ii<r) by I(S).

Theorem 5.6 Let S be a subset of T with0 ¢ S such that the sequence (K,.(S))n>0
converges to a non-empty limit set K(S). Let 1(S) be the M-recurrent IFS con-
structed in Construction 5.2 and denote its attractor by (Cy,...,C,). Then
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Let S; = {s;} for 1 < j < r be the singleton subsets of S = {s1,...,s:}.
Then S = J;_, S; and K,(S) = U, Ku(S;) forn=0,1,....

Lemma 5.6 Letn >0 and 1 < j <r. Then

r

Knni(S;) = J (Ku(S) + M-T0D;).

i=1

Proof To prove that | J;_; (K.(S;) + M“("“)D,-j) is contained in K,,1(S;), let
M~z be an element of K,(S;) + M~ "D D,; for some 1 < i < r. Write

r=My+e with y € M"K,(S;) and e € D;;.

Soe€ {0,...,.M -1} and if w € AZ" is such that the type of wge is s;, then
the type of (g(w)). is s;. Since y € M"K,,(S;), we have that the type of (¢"(u)),
is s; and therefore the type of (6™ (u)) pmy+e is s;. Since ¢ = My + e, it follows
that A“.{_(TH-I){L' S Kn+1(s]').

To prove that K,41(S;) is contained in Ji_; (Ka(S;) + M~ Dy;), let the
point M~(**Vz be an element of K,11(S;). Let f = 2 mod M and z =;(z— f),
ie.

t=Mz+f with z € Z¢ and f € {0,..., M —1}%.

It follows from Lemma 5.4 part ii) that the type of (¢™{(u)), is s; for some 1 <
i < r. This implies that f € D;;. Hence

r

M—(n+1)l_ =M+ ]V[—('IH-l)f € U (Kn(Si) + A’I_(’H—I)D,‘j) i

i=1

O

Proof (of Theorem 5.6) We will actually prove that K, (S) = C™ for all n >
1, where C™ = C{™ is the n' approximation of Cy. Combined with Lemma 5.5
this yiclds the statement of the theorem. Recall that C™ = Ui=o Cc™(j) (by
Lemma 5.1) and that K,(S) = U, Kn(S;). We will prove by induction that for
alln > 1 C™(0) =0 and C™W(j) = K,(S;) forall 1 < j <r.

e We have

C®(0) = (C@) + M ™' Dyg) = C(0) + M Doy =0,

=0
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andfor 1 <j<r
C(l)(j) — U (C’(O)(i) + M—lpﬁ)
=0
= C90)+ M~'Dy;
= MYz €Z': the type of (o(u)), is s;}
Ki(S;)-

o Assume that for all 1 < j < r we have C™(0) =  and C™(j) = K,(S;).
Then

C("H)(O) - U (C(")(i) + M_("+1)Di0) =0,
i=0
and fwefix 1 <j<r

r

cG) = J(E™GE) + M- ™+Dy)
=0

|J (Ka(S:) + M~V D)
=1

= K.n(S)),

where the second and the third equality follow from the induction hypothe-
sis, and the fourth from Lemma 5.6.

O

5.7 The Boundary of an IFS is an IFS

Consider a d-dimensional M-recurrent IFS I = (M, (Dj;)1<ij<-) With attractor
(Cy,...,Cr). Fix an iy € {1,...,7} and write C for C;,. In this section we will
construct another M-recurrent IFS J with attractor (By, ..., B;) such that By is
the boundary of C. We will also determine the Hausdorff dimension of C' and its
boundary.

Let B be the BCA we obtain from [ by Construction 5.1. Then the alphabet
A of B is the set of all subsets of {1,...,7} and the designated element is 0.
Denoting the set of types by T, define

S={teT:t#0} and 8S={teT:t—0,t+#0}

Define J to be the M-recurrent IFS I{95), obtained from the BCA B and the set
dS by Construction 5.2.
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Theorem 5.7 Denote the attractor of J by (B, ..., Bi). Then
dC = By.

Proof By Theorem 5.5, C = K(S) and by Theorem 5.4, 0K(S) = K(85).
Since K (95) is non-empty, K(8S) = By by Theorem 5.6, and hence the theorem
follows. U

Recall that Ag is the maximum over the Perron-Frobenius eigenvalues of the
communicating classes in U(S).

Theorem 5.8 We have

) log Ag L log Ays

dimyC = Iﬁ’ and  dimgdC = 102§M .
Proof Since C = K(8) by Theorem 5.5, and 8C = 8K (S) = K(95) by Theo-
rem 5.4, the statement of the theorem follows directly from Theorem 5.3. O

We remark that we have determined the dimensions of the sets without re-
quiring the open set condition. However, it is not hard to sec that our class of
M-recurrent IFS’s satisfics the weak separation property from Lau and Ngai ([14],
see also [31]). See [26] for other work on overlapping IFS’s.

5.8 Examples

Example 5.1 In this example we present a 2-dimensional 2-recurrent IFS having
small sets D;;, which enables us to easily follow the evolution of the approximating
sets during the first five steps. Let the 2-recurrent IFS be defined by

Dy, = {(130)}1 Dy = {(_110)}’
Dy, = {(0, 1)}, Dy = {(0) "1)}-

Let (C1,C2) be the attractor, i.e. the vector satisfying
2C"l = (Cl + (1»0)) U (CZ + (_170))
2C: = (C1+(0,-1)) U(C2+(0,1)).

We choose iy = 1, i.e., ¢ = C;. See Figure 5.3 for C™ (1) and C™(2), for
n=20,...,5.

Example 5.2 In this example we consider a 2-dimensional 2-recurrent IFS such
that the attractor sets do not tile R?, in particular the open set condition is not
satisfied. Let the 2-recurrent IFS be defined by r = 2 and

Dy = {(Ov 0)}1 Dy = {("17 “l)v (—1,0), (0’ 1)’(170)}5
Dy = {(0»0)}v Dy = {(—170)a (0,—1)7 (170)’ (17 1)}



78 CHAPTER 5. ITERATED FUNCTION SYSTEMS
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Figure 5.3: From top left to bottom right the sets C(l) ,C{s) and C(IO) approz-
imating the first component Cy of the attractor genemted by the 2-recurrent IFS
in Ezample 5.1. The points of the sets C’(l)( 1),.. C'(s)(l) are marked by - and
the points of the sets C(l)( 2),.. (5)(2) are marked by x.

Let (Cy,C,) denote its attractor. In Figure 5.4 the first six approximating sets
for C) are shown. We will calculate the dimension of the boundary of C;. By
means of construction 5.1, we obtain a BCA with

A={0,{1},{2},{1,2}}, M =2, N =1,
and the starting word u € A% is such that u(g) = {1} and u, = @ for z # (0,0).

Hence R=1+ [{ __] =3and T = A™".
We will denote @, the type in T with all entries equal to @, by 07%7. If

S={teT:t#0™"} and 8S={teT:t—> 0" t+£0""},
then by Theorem 5.8,

log A

dimydC; = dimy K (8S) = Tog?’

where A = max(A\y : U € U(DS)).

_ Since Card(T) = 4*, we will first project the set of types on the smaller set
T = A?*2 which consists of only 256 elements. Let m be the projection

T —» T
sy ... taw
: ; CRVER{TWY

H
to,0) tao)

t_3-3y --. 13,-3)
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Let M = (my), e denote the offspring matrix and fix §,f € T. Then it can be
checked that

does not depend on s for all s € T with 7(s) = 3. Define a matrix M = (i) fet
by

Mg = E Mg,

tr(t)=i
where s € T is such that 7(s) = 5. Define a set Z C 85 by
Z={teT t— 0" n(t) # 072},

where 02*? is short for

0 0 2x2

00 € AP

Analogously to Lemma 5.2, one can prove that K(Z) = K(0S). Hence A =
max(Ay : U € U(Z)). Let

S={f€T:f¢@2X2} and 85':{{6 ~:f—>@2X2,t~#02“},

then since s — t for some s,t € T implies 7(s) — 7(t), we have that 85 = 7(Z).
We claim that A = A\. To see this, let s € T be a type such that U(s), the
communicating class containing s, is an element of U(Z). Let Ar(U(sy) be the
Perron-Frobenius cigenvalue of M restricted to 7(U(s)). Then by a lemma of
Furstenberg 4.13, Ay(s) = Ar(u(s))- Since 7(U(s)) C U(n(s)) € U(S), we have

AU(e) = AnU(s)) < AUin(s))

and hence A < X. If we consider a non-trivial communicating class U € ¢(85),
then we can find a communicating class U € U(Z) such that 7(U) = U. Again by
Furstenberg’s Lemma, Ay = Ay and hence A < A. We may conclude that A = A.

The reduced set of types T has only 256 states. Constructing and analyzing
M with a computer package yields the following. Let V' C T denote the set
of types appearing in the starting word u and define V = m(V). The set Vs
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Figure 5.4: From top left to bottom right the sets C(o), ..,01(5) approzimaling
the first component Cy of the attractor generated by the 2-recurrent IFS in Fz-
ample 5.2.

contains 110 elements and 5 non-trivial aperiodic classes U,,...,Us, where

o = {(D (0},

o, = {{12} {12}}

{1,2} {1,2}
- 2 1,2
Us = {}1}2} %1 2%}
O {1,2} {1,2}
U = {{1,2} {1} }

[~J5 = V= \ (01U02UU3U04).
We find that U(85) = {Us} and A = X = Ag, = 3.0491 . ... Hence
og A

1
dimydCy = §op = 1.6084...




Chapter 6

Random and Multi-valued
Substitutions

6.1 Introduction

In [17], Mandelbrot introduced fractal percolation as a model for turbulence. In
dimension 2 the model can be described as follows. Choose an integer M > 2 and
a parameter 0 < p < 1. On {0, 1}*, the set of all finite two dimensional words of
0’s and 1’s, let o be a random substitution which substitutes a 0 by an M x M
block of O’s and a 1 by an M x M block of independent random letters being 1
with probability p and 0 with probability 1 —p. Writing ™ for the composition of
n independent copies of o, we obtain a sequence of 2-dimensional random words
a(1),0%(1),.... See Figure 6.1 for a realisation of fractal percolation with M =3
and p =0.7.

We say that a two dimensional word percolates if there is a path of 1’s from
the left to the right side of the word. For example, the word

110011
011011
101010
001110
110000
610011

percolates. If we consider 8y (p) = P,(c™(1) percolates for all n) as a function
of the parameter p, then it can be shown that 6, is an increasing function with
0p:(0) = 0 and 63;(1) = 1. The critical value of fractal percolation p.(M) is
defined as

pe(M) =inf{0 < p <1:6(p) > 0}.

For all values of M > 2 the critical value is unknown, but various bounds
have been given. It is easy to see that for 2-dimensional fractal percolation the

81
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e

Figure 6.1: Fractal percolation with M = 3 and p = 0.7. From left to right
realisations of the words o!(1),...,0%(1), where 1’s have been replaced by black
squares and 0’s by white squares.

critical value is at least 3}z by observing that the sequence (Z,)%%,, where Z,
is the number of 1’s in ¢™(1), is an ordinary branching process. The first upper
bound and non-trivial lower bound are due to Chayes, Chayes and Durrett [4].
In their proof, they construct functions mp(p) and pp(p) such that mp(p) <
Op(p) for M > 2 and ppy(p) > Ou(p) for M > 3. The critical values of mp
and pp can be computed and since the critical value of 7y, is always larger
than p.(M) and the critical value of pjs always smaller, this leads to upper
and lower bounds for p.(M). They prove that p(M) > 4 for M > 2 and
that pc(Mz < p*(M) for M > 3, where p*(M) is the infimum over p for which
z = (pz)M" + (px)M*~1(1 —pz) has a root in the half open interval (0,1]. We refer
the reader to Section 3.4 for a brief outline of the method to obtain the upper
bound.

Dekking and Meester [5] reinterpreted the Chayes, Chayes and Durrett proof
for the upper bound in terms of multi-valued substitutions. A multi-valued sub-
stitution is a substitution on sets of words (see Section 6.2 of this chapter for
a definition). They construct multi-valued substitutions ®,, (see Example 6.2)
such that the function 73, can be written as mp(p) = Pp(0™(1) € ®"(1) for all n),
where ®(1) denotes ®({1}). Dekking and Meester observed that for any multi-
valued substitution ¢ on the alphabet {0, 1}, the probabilities 7,(p) = P, (06™(1) €
®"(1)) satisfy a recursion relation that can be written as 7,11(p) = m (pm.(p)).
To analyze these probabilities it therefore suffices to study the recursion map
Fy(z) = m(pz).

Since the paper by Chayes, Chayes and Durrett, various other bounds have
been published, obtained by different techniques: p.(3) < 0.991 [5], p.(3) > 0.634
and recently White proved p.(2) > 0.810 [30].

In this chapter we generalize the ideas of Dekking and Meester to obtain upper
and lower bounds on the critical value of fractal percolation using multi-valued
substitutions. For random substitutions ¢ and multi-valued substitutions & on
a general alphabet A we analyze probabilities P(¢™(z) € ®"(5)), 7,5 € A. These
probabilities can be used to give upper and lower bounds on p.(M).

Another context that can be translated in terms of random and multi-valued
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substitutions is the context of broadcasting on trees [8]. Consider an alphabet
A, a Markov matrix P and an M-ary tree. We uniformly pick a letter 7 from the
alphabet and place it at the root of the tree. This letter is transmitted to each of
the M children of the root. However, due to noise on the channel from the root
to a child, the letter switches from an ¢ to a j with probability F;;, independently
for each child. Similarly, the M letters received by the children of the root are
transmitted to their children, and so on. The reconstruction problem is to find
back the letter at the root with a probability bounded away from I_4l| if only the
letters at the nodes of the n'" generation of the tree are given, when n tends to
infinity. If this is possible than the reconstruction problem is said to be solvable.

For case of computation and robustness, biologists often prefer reconstructing
the letter at the root from the n'* generation by first reconstructing each letter
in the (n — 1)'" gencration based on its A children, then each letter in the
(n — 2)t® generation and so on, until the bit at the root is reconstructed. If it is
possible to solve the reconstruction problem using this recursive approach, then
the reconstruction problem is said to be recursively solvable.

In Section 6.3, we describe how to translate the recursive reconstruction prob-
lem in terms of random and multi-valued substitutions that can be analyzed with
the techniques presented in this chapter.

6.2 Random and Multi-valued Substitutions

For ease of notation, our definitions for random and multi-valued substitutions
will be for dimension 1, but they can be easily generalized to higher dimensions.

6.2.1 Random Substitutions

Let A be a finite set called the alphabet and denote by A* the set of all finite words
of letters in A. Let (o)ren be a sequence of independent identically distributed
random maps from A to A*. Define a random map ¢ on A* by

a(u) = oo(ug) ... or(ug)

for u = ug...ux € A*. The random map o on A* is called a random substitution.
We define the n-fold iterate ¢” to be the composition of n independent copies of
the substitution o.

In this chapter, we will only consider a special type of random substitutions.
Let M > 2 be an integer and P be a Markov matrix indexed by A x A4, i.e,, all
entries are non-negative and the rows sum up to 1. Let ¢ be a random substitution
such that for all i € A,

o(@) = (a(1))o- - (a(i)) M
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is a random word in AM and the (o(i)), are independent random letters in A
with Pp((0(i))x = J) = P;j for j € A.

For A = {0,1} and P = ( 1 ip 2 ) we have fractal percolation with
parameter p.

6.2.2 Multi-valued substitutions

Let A* be the set of all finite subsets of A* and consider two binary operations
on A*:

Vuw {u:ueVorueW} (union)
VW = {vw:veVandwe W}  (concatenation).

A multi-valued substitution is a homomorphism on A* respecting unions and
concatenations. Since A* is generated by the singletons, i.e., the sets containing
one letter, a multi-valued substitution ® is completely determined by the images
(®(3))ica of the singletons. In this chapter however, we will only consider multi-
valued substitutions for which (®(i));e4 is a partition of AM, where M is a given
substitution length. By ®" we denote the n-fold iterate of ®. It is easily shown
by induction that (®"(i));c4 is a partition of AM” for all n = 1,2,.... We will
often write ®(iy,...,4) instead of ®({iy,...,%}).

Example 6.1 Let M = 2, (0) = {00,01, 10} and ®(1) = {11}. Then

$(10,101) = ({10} U {101})

$(10) U ®(101)

®(1)®(0) U $(1)®(0)®(1)

= {1100,1101,1110,110011,110111,111011}.

Example 6.2 Dekking and Meester [5] reinterpreted the upper bound proof by
Chayes, Chayes and Durrett (see Section 3.4) in terms of a multi-valued substi-
tution as follows. Let o be fractal percolation with parameter p and M = 3 and
consider a multi-valued substitution ® given by

®0) = {we A>3 number of I'sin w <7}
®(1) = {we A>3 number of I'sin w > 8}.

It is not hard to see that ¢°(1) is the root of an 8-ary tree of depth at least n if
and only if o™(1) € ®"(1).
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6.3 Reconstruction Problem

The following problem is known as the reconstruction problem for noisy M-ary
trees [8]. Consider an alphabet A, a Markov matrix P indexed by A x A and
an M-ary tree. From the alphabet a letter X is uniformly chosen and placed at
the root of the tree. This letter is broadcast down the tree and at each channel
from parent to child the letter switches from an ¢ to a j with probability ;. The
reconstruction problem is to find back the letter at the root with a probability
bounded away from ﬁ if only the letters at the nodes of the n'" generation of
the tree are given, when n tends to infinity. If this is possible, the reconstruction
problem is said to be solvable.

Observe that the word formed by the n'" generation nodes of the tree can
be obtained by applying n independent copies of a random substitution ¢ to the
letter X at the root, where P((o(¢))y =j) = P fork=1,...,M and {,j € A.

It can be shown that the reconstruction problem is solvable if and only if for
some i, j € A the total variation distance between Pp(c™(i) € -) and Pp(a™(j) € -)
does not tend to 0, i.e., there are sets ¥, C AM" for n > 0 and i € A such that
Pp(o™(i} € ¥,) — Pp(c”(j) € ¥,)| - 0. In this case, we say that the sets ¥
solve the reconstruction problem.

For reasons of low complexity and robustness, in biology and computation
theory one often prefers a recursive strategy to reconstruct the bit at the root.
Let (®(i));c4 be a partition of the M-letter words AM. Given the word ¢™(X),
a letter in the (n — 1)** generation is reconstructed as an i if the word formed by
its M children is an element of ®(i). In the same way, the (n — 2)*® generation
is reconstructed and so on, until the letter at the root is reconstructed. If it is
possible to solve the reconstruction problem using this recursive approach, then
the reconstruction problem is said to be recursively solvable.

The recursive reconstruction problem can be easily translated in terms of
multi-valued substitutions. The sets ®(i) used to reconstruct the letter at the
root, define a multi-valued substitution ®. Observe that the letter at the root X is
reconstructed as an 4, if and only if 6™(X) € ®"(i). So the reconstruction problem
is recursively solvable if there is a multi-valued substitution and i, j,k € A such
that |Pp(a™(z) € ®*(k)) — Pp(c™(j) € ®*(k))| - 0 and in this case ® is said to
solve the recursive reconstruction problem.

In general, it is not known for which P the reconstruction problem is solvable
or recursively solvable.

Example 6.3 Popular multi-valued substitutions for A = {0,1} are major-
ity multi-valued substitutions, also called parsimony multi-valued substitutions,
which satisfy

®(0)
®(1)

{w e AM : number of 1I'sin w < M/2}
{we AM . number of U'sinw > M/2}.
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If M is odd, this substitution is unique.

Example 6.4 In [18] and [2] the case of binary symmetric channels is studied,
ie, A=1{0,1} and

NJI....

l-p p )
P(p) = 0<p<
w=-(';7.7,) o<
Bleher, Ruiz and Zagrebnov proved that the reconstruction problem is solvable
if and only if MA2(P) > 1, where X\y(P) is the smallest eigenvalue of P. Mossel
shows that the bit reconstruction problem is recursively solvable if and only if
P < p., where p, is defined by

oM - 1 . .
1 - W(MM Y7 if Miseven

De = MLy —1 . .
%_iﬁ(% 1) if M is odd.

Moreover, the multi-valued substitution ® solves the reconstruction problem for
all p < p., if and only if ® is a majority multi-valued substitution.

Example 6.5 A reconstruction problem is called count solvable if the letter at
the root X can be reconstructed with a probability bounded away from IT}P when
only the number of occurrences of each letter in o™(X) is given, as n tends to
infinity. In [19] it is proved that a reconstruction problem P is count solvable if
MM.(P) > 1 and is not count solvable if MA2(P) < 1, where \y(P) is the second
largest eigenvalue of P.

In [19] the case of binary asymmetric channels is studied, i.e., A = {0,1} and

_(1=po po 1
Po =12 M) ospsh

Mossel shows that the bit reconstruction problem is solvable if p; is sufficiently
small and MA(P) = M(py, — po) > 1. This result implies that there are recon-
struction problems that are solvable, but not count solvable. In fact, the proof
suggests that there are reconstruction problems that are recursively solvable, but
not count solvable. In Example 6.9 we provide an explicit example of such a
reconstruction problem.

6.4 The TOX Model

In this section we will construct a multi-valued substitution on a 6 letter alphabet
to estimate the percolation probability from below. We will only consider the two
dimensional case with M = 3, but the results extend easily to higher dimensions
and M > 3.
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Consider the following ways to connect the 4 sides north, east, south and west
of a square:

+ = all four edges are connected

+~ = FE, S and W are connected
N, F and W are connected

= N, E and S are connected
| 4 = N, S and W are connected
|

o = no edges are connected.

| Let A = {+,+,~,4, o} be the alphabet. We say that two sides of a word
| w € A™™ are connected, if they are connected in the graphical representation
| of w. For example, in the word

|

the sides £ and W are connected and E and S are connected. In the word
above, the dotted lines separate the letters and the letter o, referred to as the
zero letter, is denoted by a blank. Two sides in a word w € A™*™ are strongly
connected if there is a connected component in w that intersects both sides twice.
For example, in

E and W are strongly connected. Note that if for example N and S are strongly
connected and E and S are strongly connected, then also N and E are strongly
connected. Hence strongly connectedness is a transitive relation.
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Define the 2-dimensional multi-valued substitution ® with M = 3 by

®(+) = {we A>3 all edges are strongly connected}

®(+) = {w¢®(+): E, S and W are strongly connected}
®(+) = {wgd(+): N, E and W are strongly connected}
®(+) = {we¢ ®(+): N, E and S are strongly connected}
(1) = {wg®+): N, S and W are strongly connected}

B(o) = AVAN®(+,+,+, F,4).

Note that these sets indeed form a partition of A%%3,

We say that a word in w € A™*™ percolates if the east and the west side of w
are connected. By an inductive argument it is easy to see that for all n all words
in ®"(+,-, ) percolate.

Fix a parameter 0 < p < 1 and consider fractal percolation on the letters
o and +, i.e., the random substitution ¢ distributed according to the matrix
P = P(p) = (F;j)i jca, where

P ifi=j =+
P = 1-p fi=+j=o0
AR I | ifi#+j=o0
0 else.

Instead of Pp(,) we will write IP,.
We can easily estimate the percolation probability by

P,(o™(+) percolates for all n)
> P,(o"(+) € ®"(+,+,+) for all n).

We refer to A, o and ® as the TOX-model. In Section 6.7.1 we show that the
critical value of P,(o™(+) € ®"(+,r,+) for all n) is less than 0.965.

6.5 The TOXIC-model

A way to improve on the upper bound of the TOX-model is to further extend the

alphabet. The extended model, called the TOXIC-model, also provides a lower

bound. Again, we describe the M = 3 case, which can be generalized to M > 3

for the upper bound and M > 2 for the lower bound. In Section 6.7.2 we analyse

the TOXIC-model and show that this leads to p.(3) < 0.965 and p.(2) > 0.74.
We start by describing the TOXIC upper bound model. Let

— L S P -
A_{+7T7—') 7l_) y 9Ny Ty 7|v\yf7o}

be the alphabet. Again, we say that two sides of a word are connected if they are
connected in the graphical representation of the word, and that they are strongly
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connected if there is a connected component that intersects both sides twice. For
example, in

E and W are strongly connected. In the same spirit as for the TOX-model, we
define a multi-valued substitution ®,, by

O, (+) = {we A¥: all edges are strongly connected}

&, (r) = {w¢ P, (+): E, S and W are strongly connected}

@,(~) = {wéd,(+): N, Eand S, W are strongly connected}
®,(-) = {w¢P,(+,+,+): E and S are strongly connected}
®,(v) = {w¢g D,(+,+, F~): N and E are strongly connected}

‘Du(o) = A3X3\®u(+,1_,4 oy B S T, la\\;'/’)*

By induction one can show that all words in ®7(+, +, +, —) percolate. If g is fractal

percolation on the symbols {+, o}, we can estimate the percolation probability
by

P, (o™ (+) percolates for all n) > P,(0"(+) € ®p(+,+,+,—) for all n).

Since for all i € {+,+,4,~+, I} the sets ®"(¢) of the TOX-model are contained in
®2(i), this estimation will lead to a sharper upper bound. We refer to A, o and
®,, as the TOXIC upper bound model.

On the TOXIC alphabet, one can also construct a multi-valued substitution
that leads to a lower bound for p.(3). For a word w € A™*™  we say that two
sides 51,5: € {N, E,S,W?} are weakly connected if they are connected or if S}
is connected to a side which is weakly connected to S;. For example, in
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Figure 6.2: Lattices Ly,..., L, from the sequence Lg, L,, ...

N and S are weakly connected. Weakly connectedness is also a transitive relation.
Define a multi-valued substitution ®,; by replacing ’strongly connected’ by 'weakly
connected’ in the definition of ®, in the TOXIC upper bound model. It is not
hard to see that all words in ®}(+, F, %, ,~,7, |,~,%) do not percolate. Hence

P,(c™(+) percolates for all n)
< PBp(o™(+) € B} (+, T, +,—) for all n).

We refer to A, o and ®; as the TOXIC lower bound model.

Note that the TOXIC lower bound model can be easily extended to general
M > 2. The idea behind the construction of ®; originates from another technique
to obtain a lower bound on p.(M) using growing lattices. A variant of this
technique was used by White [30] to show that p.(2) > 0.81.

Let M = 2 and let Ly, L;,... be a sequence of lattices, where Ly = 0,
Ly,...,L4 as in Figure 6.2 and Lg, Lg, ... the obvious continuation of the se-
quence. Denote by K,, the graphical representation of 6™(+), scaled to fit in the
lattice L,,. Then of course

P,(o™(+) percolates for all n) < P,(K, U L, percolates for all n).
By an induction argument, it can be proved that o™(+) € ®}(+,+,+,—) if and

only if K, U L, percolates.

6.6 Some Analysis

6.6.1 A Recursion Formula

Let A be a finite alphabet and let M be the set of all Markov matrices indexed
by Ax A. Forn =1,2,... define a map II* : M — M by [I"(P) = (IT3}(P)): jea,
where

I3 (P) =Pp (o™(3) € 2™(j))-

The matrices II"(P) satisfy a recursion relation.
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Lemma 6.1 Forn=1,2,...
n~t'(p) = 0Y(PI*(P)).
Proof Fori,je€ A,
M (P) = Bp(o™'(i) € @"'(7)

= Y I Pt (P))

ved(j) k=1 I=1

M
= Y. [Irm@),,
ved(5) k=1
= Pprn(py (U(i) S ‘I)(j))
(Hl(PH"(P)))...

ij

If we define for matrices X € M
Fp(X) = II'(PX),
then it follows from Lemma 6.1 that
n"(P) = Fp(I)

for n = 1,2,..., where Fp denotes the n-fold iterate of Fp and I denotes the
identity matrix in M.

6.6.2 Increasing Multi-valued Substitutions

Let < be a partial ordering of the alphabet A. For words v,w € A™ we write
vwifv, Swy, ..., 0m 2wy Aset W C A™ is called increasing with respect
to < if v € W and v < w implies that w € W. From now on we will assume
that the multi-valued substitution @ is increasing, i.e., ®(J) is increasing for
all increasing sets J C A. This is equivalent to the requirement that the sets
U,»: @(j) are increasing for all i.

Example 6.6 If A= {0,1}, M odd and 0 < 1, then the parsimony multi-valued
substitution (Example 6.3) is increasing.
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Example 6.7 Consider the TOX-model presented in Section 6.4. If < is the
obvious partial ordering on 4, i.e.,

TN
\\/

then the multi-valued substitution of the TOX-model is increasing.

Example 6.8 Consider the TOX IC-model presented in Section 6.5. If < is the
obvious partial ordering on A, i.e.,

F X

_N // |
[e]
then the multi-valued substitutions ®, and ®; are increasing.
Define a cone S in RA*4 by
{X eR™: )" X;=0and ) X;; >0
JjeA jeJ
for all ¢ € A and increasing J C A}.
Lemma 6.2 Let X, X' € M be such that X' € X+S. Then Fp(X') € Fp(X)+S.
Proof Let X = (X;;),X' = (Xj;) € M be such that X' € X +S. Then
ZjeJ Xi; < ZjeJ Xj; for all i € A and increasing J C A. Fix ¢ € A and define
forje A
px(7) = X,
If V is an increasing subset of AM, then for 1 < k < M we have

iy X px *(V) = Z Z Zl‘ V)uxs (W) Xialy (vaw)

vEAF-1 ye AM—k a€A

Y Y A ou ) Y X,

vEAR—L we AM—k acV(v,w)
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where V(v,w) = {a : vaw € V} which is an increasing subset of A. Hence,

phe x MR (V) < Z Z P (V) pA R (w) Z X,

veAk L weAM—k a€V(v,w)
M—
= 5 x YY),

By induction it follows that u3f(V) < u¥. (V).
Let J be an increasing subset of A. Since PX,PX' e M, PX'e PX + S
and since ®(J) is an increasing subset of AM, we have that

D Fp(X))y = ppx(@(J)
JjeJ
< ppx(®(J))
D (Fo(X")s;
jeJ
Hence, F,(X') € F,(X) + S. O

Lemma 6.3 Let P and Y* be Markov matrices such that Fp(Y*) € Y* + S. If
F(I) e Y*+ S for some ny, then II*(P) e Y*+ S for all n > ny.

Notice that if I = FA(I) € Y*+ S, then it follows from the lemma above that
[I*(P) € Y* + S for all n.

Proof The lemma is proved by induction. Assume that [I"(P) € Y* + S for
n > ny. Then by Lemma 6.2, II"*}(P) € Fp(Y*)+S. Since Fp(Y*) € Y*+S and
since S is a cone, we have that Fp(Y*)+ S C Y*+ S and so [I"*(P) e Y* + S.
|

Example 6.9 Consider the reconstruction problem for asymmetric binary chan-
nels from Example 6.5, where A = {0,1} and

P= ( 1- Po Po ) .
1-;pm ;m
Let M = 16 and let the multi-valued substitution ¢ be defined by

$(0) = {w: numberof 1'sin w < 15}
®(1) = {w: number of I’s in w > 15}.
We will use the results of this section to prove that if py < 0.796 and p; > 0.998,

then @ solves the reconstruction problem. This is an example of a reconstruction
problem which is recursively solvable but not count solvable.
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If we define a partial ordering < by 0 < 1, then ® is an increasing multi-valued
substitution. Define the cone S; by

Sl = {(—(L‘Q IO)Z.’L‘Q,.’L‘]ZO}.

-1 I1

If we choose

. (1 0
Y= ( 0.003 0.997 )

then (Fp(Yy")),, > 0.9971 whenever p; > 0.998 and therefore Fp(Y7") € Y" + S,.
Since the identity matrix also is an element of Y7* + 5, it follows from Lemma 6.3
that I"(P) € Y;' + S for all n and hence II;(P) > 0.997 for all n.

If we define a partial ordering < by 1 < 0, then again ¢ is an increasing
multi-valued substitution. Define the cone S; by

—xy &
Sz = {(_1‘(1] Eg):l‘g,l'lSO}.

If we choose

. 0.58 0.42 !
i=( )

then (Fp(Yy)) o1 < 0.4197 whenever po < 0.796 and therefore Fp(Y5') € Y3' +.5,.

Since the identity matrix also is an element of Y5* + 5, it follows from Lemma 6.3 ‘

that II"(P) € Yy + S, for all n and hence IT§, (P) < 0.796 for all n. '
We may conclude that TI*(P) € (Y*+ S1) N (Y5 +S;) and hence ® solves the

reconstruction problem.

6.6.3 Decreasing Random Substitutions

Let o be a random substitution with associated Markov matrix P and let & be
an increasing multi-valued substitution. In this section, we will assume that o
is decreasing with respect to ®, i.e., we assume that P is such that Pp(o(i) €
Uj< ®()) =1 foralli € A

Lemma 6.4 For alli € A and increasing sets J C A, the events
{o"(i) € 2*(J)}

are decreasing in n, Pp-almost surely.
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Proof Supposeo”(i) € ®"(g) for some g ¢ J and write 6™(i) = u = ug ... upm_1
and o™*1(i) = v = vy...upn~+i_;. Since o is decreasing with respect to ®, we
have that

VAL -« - Vk+1)M -1 € U (b(h)

h=<ug
for 0 < k< M"—1. Let w=1wy...wpn_; be such that
UkM -+ Uk+1)M—1 € <I>(urk).

Then w < u and since J,«, ®"(h) is decreasing, it follows that w € [J,, ®"(h).
This implies that -

ve o o) =] e h.

h=g h=g
Hence o™1(i) = v ¢ ®"F1(J). g
Lemma 6.5 For alli,j € A,
{o"(?) € ®"(j) eventually} = {o™(i) € ®"(j) infinitely often}
Pp-almost surely.
Proof Fixing ¢,j € A, we have that {o"(i) € ®"(j) eventually} is equal to

{o™(4) € U ®"(h) eventually} 0 {o™(3) U ®"(h) infinitely often}®.

h>j h>j

Since {0"(¢) € Up,; "(h)}n is a decreasing sequence by Lemma 6.4, it follows
that

{o"(3) € U ®"(h) infinitely often} = {o"(3) € U ®"(h) eventually}

h>-j h~j

and hence {o™(i) € ®"(j) eventually} is equal to

{o"(i) € U ®"(h) eventually} N {o"(i U ®"(h) eventually}*,
hi-j h-j
which is equal to {o"(¢) € ®"(j) infinitely often}. O

Lemma 6.6 For alli € A and increasing sets J C A,

{o"(@) € ®"(J) for alln} = U{O’ € ®"(j) eventually}

jeJ

Pp-almost surely.
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Proof Since the sequence {0"(¢) € ®"(J)}, is decreasing by Lemma 6.4, we
have that
{o"(i) € ®"(J) for all n} = {o™(¢) € ®"(J) infinitely often}
= |J{o"(i) € ®"(;) infinitely often}.
jed
Applying Lemma 6.5, it follows that

{o"(%) € ®"(J) for all n} = U{a"(i) € ®"(j) eventually}.
jeJ

The following corollary follows directly from Lemma 6.5.

Corollary 6.1 The sequence of matrices (II"(P)), converges componentwise.
Moreover, the limit matriz I1°(P) = (II57(P))i jea satisfies

I (P) = Pp(0™(i) € 2"(j) eventually).

We say that the random substitution o is decreasing with respect to the partial
ordering < if P;; > 0 implies that ¢ > j for all 4,5 € A. Define the set L C M by

L={X e M: if X;; > 0 then i > j}.

Lemma 6.7 Let P € L and assume that i € U, ®(j) for alli € A. Then
*(P) € L for all n and the sequence (II*(P)), converges to II*°(P) € L. More-
over, if Y* € L is such that Fp(Y*) € Y* + S, then II*(P) e Y* + S.

Proof Since i* € |J,5; ®(j) for all i € A, it follows that II'(X) € L. Since
L is closed under multiplication, we have that PX € L and therefore Fp(X) =
IT'(PX) € L. As a consequence, II"(P) € L for all n, since II"(P) = FE(I) and
I € L. Notice that P € L and * € |J;«; ®(j) for all s € A implies that o is
decreasing with respect to ®. Hence by Corollary 6.1, the sequence (II*(P)),
converges and since L is a closed set, [1°(P) € L. The second part of the lemma
follows from Lemma 6.3 and the fact that 7 e Y*+ S for all Y* € LL. O

6.7 Calculating Bounds for the Critical Value

6.7.1 The TOX model

Consider the TOX model from Section 6.4 and equip the alphabet A with the
partial ordering < from Example 6.7. Recall that

Pp(a"(“") percolates for all n)
> PBy(o™(+) € P"(+) U ™(+) U d"(+) for all n).
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Since ¢ is decreasing with respect to ® and since {+, +, -} is an increasing subset
of A, we have by Lemma 6.6 that

P, (o™ (+) percolates for all n)
> P,(0"(+) € @"(+) eventually) + P,(c"(+) € ®"(~) eventually)
+P,(c™(+) € "(+) eventually)
= I, (P) + 1T, (P) + T (P),

where the last equality follows from Corollary 6.1 and P = P(p) is the matrix
associated with fractal percolation on the letters {o,+} with parameter p.

Since P € L and i**® € U< @(j) for all i € A, it follows from Lemma 6.7
that IT*(P) € L for all n. In fact, all matrices IT*(P) and T1°°(P) are elements of
the smaller set

K={XeP:X,o=1foralli#+and X4 =X =X, =X}

To see this, observe that the sets ®(+), ®(4), ®(+) can be obtained by rotating
the words from ®(+). Therefore we have for all X € K that F7(X) € K. Since
K is closed under multiplication and since P € K, it follows that Fp(X) =
Fi(PX) eKforall X € K. As a consequence, [I"(P) = Fp(I) € K for all n and
since K is closed, also 1™ € K.

Note that an element X of K is completely determined by X} and X4, in
other words, the map p : X — (X4, X14) is a bijection from K to K, where
we define

R={(z+,24) 21,24+ 20,1 -4z —z; >0}
Define
Fp(z,24) = p(Fp(p™ (2, 2))
and write F, for Fp. If we let
S ={(z+,z4) : 24 > 0,4z, + x4 >0},

then we have by Lemma 6.7 that if (y*,y%) € K is such that F,(y*,y}) €
(", y3)+S, then p(TI*°(P)) € (y*,y% )+S. Note that Fy(z,z4) = Fy(pz,,pxy).
Writing Fi(z +,z4) = (F (2, ,24), Fy(z,z4)) and 2o = 1 — 4z — x4, we
found with help of Matlab

Fo(xr,e4) = dzz_zi + 1013_1_1‘_210 + 313@20 + llﬂzizi + 30128 2% 2],
+12028 2! 22 + 928 2% + 151625 ¢t + 345428 2% 2 + 139328 22 22
+1222% 21 23 + 225 xd 4 1027824 2% + 190072t 2% 21 + 679621 23 22
+597z% 22 23 + 1428 2! 2? + 3622323 28 + 5224823 2% 2L + 1574845 2% 22
+136223 23 23 + 3623 22 2% 4 6452822 27 + 7022422 28 2 + 1775623 25 2%
+14862% 2% 23 + 4022 2% 2% + 520712 2® + 421480} 7 o + 8966 28 2
+698z} 2% 23 + 172l 2% 2% + 1416022 + 855028 21 + 152827 22 + 1062823

+2:c5rw%



98 CHAPTER 6. RANDOM AND MULTI-VALUED SUBSTITUTIONS

and
Fi(ze,zy) = 23 +362%2) + 9282l + 5642722 + 24827 2t 2l + 2027 22
4493625 22 + 270025 2% o + 29625 2! &2 + 2583425 2t + 1468825 23 2}
+15622% 22 22 + 80800zt 28 + 4209024 z% «L 4+ 3812242 22 + 14462223 28
+633282325 2} + 476023 2t a? + 13637222 27 + 4815222 28 2l + 306423 25 22
158494z} 2% + 1667221 @7 @} + 9342} 2822 + 809622 + 193028 21 + 10027 22.

If we let p = 0.965 and (y*_, 3% ) = (0.012,0.934), then
F,(y*,y%) = (0.011720...,0.935756...) € (y*,y%) + S.
This implies that p(IT°(P)) € (y*_,y4) + S and hence
o¥, (P)+ 0T _(P)+ 1. (P) > 2y% + v} = 0.958.

We may conclude that P,(o™(+) percolates for all n) > 0.958 and hence p.(3) <
0.965.

6.7.2 The TOXIC model

In the spirit of the previous section, it is possible to obtain p.(3) < 0.958 using
the TOXIC upper bound model. In this section we will prove that p.(2) >
0.74 using the TOXIC lower bound model. Analogous to the TOX model,
P,(o™(+) percolates for all n) < M1, (P) + O_(P) + P (P) + I$_(P). To
prove that the last expression is 0 for p = 0.74, we use the following lemma. We
will write F}, for Fp = Fp(,).

Lemma 6.8 If (Fj(I))+o0 > 1— ng—p% for some n, then TIY, (P) = 1.

Proof To prove this lemma, we study the iterations of F, on R4l via a
weight function p and the iterations of a function G, on R. Note that the iterates
F}(I) stay within the set

K = {XeM: X, =1forall i #+}.

For matrices X € K we will denote the entry X, by X;. Define sets J1,Jo C A
by Jl = { N W } and J2 = {—, I+, F,\\,Jr,-l-} = A\(J] U {0}). Define

p:K = R
X = Y X;+4> X
j€n jed
and
Gp:R = R

z > pz+ 24p°z?.
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We claim that p(F,(X)) < Gp(p(X)) for all X € K. To see this, note that
p(Fo(X)) = p(Fpx(I)) and that Gp(p(X)) = Gi(pp(X)) = Gi(p(PX)). Since
PX € K, we may replace PX by X, and it suffices to show that

p(Fx(I)) = Y Px(o(+) € ®(j)) +4) Px(o(+) € &(j))

jeh j€J2

< YN A X 42400 X +4) X))
Jj€N J€J2 JEN JEJ2

= Gi(p(X))

for all X € K. First we will prove that

33 Px(o(+) € 3(7) <183 X, +4 3 X))’

JEJ2 jeN jed2
and then that

Px(o(+) ¢ @(c)) = D Px(o(+) € 2(j)) + Y Px(o(+) € 2(5))

Jj€N j€Ja
< DD XA X460 X +4) X2
jeh1 jE€J2 jed1 JjEJ2

The first inequality follows from

D Px(o(+) € 2(j)) = Px(o(+) € ®(2))
je€Ja
Px (o(+) contains at least 2 non-zero letters)

B X,)
i#o

6(d_ X;+4) X;).

jen jed2

<
<

IA

with

O C oco

For the second inequality, observe that if o(+) ¢ ®(<}, then o(+) = 2
3 with

x € {~}UJpor, o(+) = 8 2 with x € {-} U Jy or, o(+) =
xc{-}UJryor a+) = 8 8 with x € {~} U J; or, ¢(+) contains at least 2
non-zero letters. From this observation it follows that

Px(o(+) ¢ 3()) < D> X;+4) X;+6(D)_X,)

j€h j€J2 j#£©

DX H4Y X600 X +4) X

J€JL JEJ2 JEN JEJ2

IA
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We have now established our claim that p(F,(X)) < Gp(p(X)) for all X € K.
With the claim we can prove that p(Fj'(X)) < Gp(p(X)) for every n and
since p is continuous,

p(II=(P))

p(Jim F(D))
Jim p(ER(E(1)))
lim G (p(F (D).

I

IA

Suppose that (F;*(I))+o0 > 1 — ;_6;}21' Then

p(FP(D)) = Y (Fr)+;+4 ) (Fr(D)+;
JjE€N jeJ2
< 4 (FMD)+;
J# 1—p

If

4(1 = (Fp(I))+o) < 24

An easy computation yields that lim, ., G5(z) =0 for all 0 < z < 21—4;5, which
implies that p(II*°(P)) = 0. Hence (I1°(P))+o, = 1. O

It can be checked that (Fy°(I))+o > 0.9997 for p = 0.74. Since 1 — g% =
0.9951..., it follows from Lemma 6.8 that I1¥,(P) = 1. As a consequence,
Py.74(0™(+) percolates for all n) = 0 and hence p.(2) > 0.74.

6.8 Further Improvements

A way to improve the bounds obtained by the TOXIC model is to increase the
size of the alphabet. In this section we will describe a way to do that. Unfortu-
nately, the computation of the recursion function Fp is so much harder for large
alphabets, that we cannot offer any numerical results.

The TOXIC alphabet can be seen as equivalence relations on the set {N, E, S,
W1}, the four sides of the unit square. If two sides S1,5; € {N,E,S,W} are
connected in the graphical representation of a letter, then the pair (S, .S2) is an
element of the corresponding equivalence relation. For example, the letter - is
represented by the equivalence relation {(N, N), (N, W), (E, E), (E, S),
(S,E),(S,S),(W,N),(W,W)}. Therefore, we can use the set of all equivalence
relations on {N, E, S, W} as an alphabet for the TOXIC-model.

More generally, we can divide each of the four sides N, E,S and W into k
subsides of equal length to obtain the set of sides {Ni,..., Ny, Ey,..., Ex,

S1y ey Sk, W, ..., Wi}, From now on, we will assume that & = 2, so that the
subdivision is
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Let A be the 4140 letter alphabet consisting of all equivalence relations on the
sides {Ny, Ny, E, E5, S1, S2, W1, Wa} equipped with the natural partial ordering
=<, l.e,a <bif a Cb. Each letter a € A has a natural graphical representation.
For example, the relation a = {{Ny, N1), (Na, Na), (Ny, E2), (E1, Ey), (B, No),
(EQ, EQ), (S], Sl), (Sg, 52), (52, "Vl), (‘1’1, Sg), (Wl, VVI), (W‘Yg, wz)} can be visual-
ized as

The maximal element of A, denoted *, in the partial ordering is A x A, and the
minimal element, denoted 0, is {(a,a) : a € A}. Let o be fractal percolation on
the letters {0, x} with substitution length M = 3 and parameter 0 < p < 1. For
a word u € A3*®, we say that two sides Z,, Z, € {N,, Ny, E\, Es, S, S3, Wy, Wa}
are connected in u, if they are connected in the graphical representation of w.
For example, in
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the sides N; and S, are connected. We say that sides Z; and Z; are strongly
connected, if there is a connected component in u that intersects both Z; and
Zy in at least 2 places. For general M that would be in at least [—Mzil] places.
Similar to the TOXIC case, two sides Z; and Z, are weakly connected if they
are connected or if Z; is connected to a side that is weakly connected to Zs.
Analogous to the TOXIC model, we use strongly and weakly connectedness to
define increasing multi-valued substitutions &, and ®;. If for example a is equal

to

then
d,(a) = {we A>3 : N, E;,W, are strongly connected in w
and w ¢ ®,(b) for any b > a}.
and
®(a) = {we A¥3: Ny, E,, W, are weakly connected in w
and w ¢ ®,(b) for any b > a}.

Let = be the set of letters a for which (Z;, Z;) € a, where Z; is E or E; and Z,
is Wi or Ws. Then

P, (c"(*) percolates for all n) < P,(c"(x) € ®7'(E) for all n)
and
P, (0" () percolates for all n) > P,(c"(*) € ®(Z) for all n).

Note that = is an increasing set and that ¢ is decreasing with respect to &
and ®,. Therefore, the probabilities P,(o" () € ®}(E) for all n) and P,(a"(x) €
®7(Z) for all n) can be analyzed with the techniques presented in this chapter.
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Samenvatting

Stochastische Substituties en Fractale Percolatie

Hoewel we in dit proefschrift hele ingewikkelde verschijnselen zullen beschouwen,
zoals turbulentie in vloeistoffen en het doorgeven van geninformatie tussen ver-
schillende generaties, zullen we beginnen met een cenvoudig wiskundig model:
substituties op woorden. Een woord is een rijtje symbolen, bijvoorbeeld nullen
en enen. Een voorbeeld van een substitutie op woorden is de Fibonacci sub-
stitutie, die O-len vervangt door 01 en l-en vervangt door een 0. Dus als we
deze substitutie op het woord 0101 krijgen we het woord 010010. We krijgen
een rij van woorden als we de substitutie herhaaldelijk toepassen op de unitkomst
van de vorige substitutie. Startend met een 0 verkrijgen we zo de rij 0, 01,
010, 01001, 01001010, 0100101001001 enzovoorts. De lengtes van deze woorden,
1,2,3,5,8,13,..., vormen de welbekende Fibonacci getallen.

Substituties kunnen ook worden toegepast op verzamelingen in het vlak. In
Figuur 1.1 wordt een rij verzamelingen (Cy, Cy, . . .) verkregen door driehoeken te
vervangen door drie kleinere driehoeken. De limietverzameling C' staat bekend
als de Sierpiniski driehoek en is een voorbeeld van een fractale verzameling. De
driehoek bestaat uit drie verschoven en geschaalde kopieén van zichzelf. Om
precies te zijn,

C = fA(C)U f2(C) U f3(C),

waar £1(C) = 3(C + (=1,0)), £o(C) = HC + (1,0)) en f3(C) = H(C + (0,V3)).
De functieverzameling {f1, fa, f3} wordt een geitereerd functiesysteem genoemd
(IFS) en de Sierpiriski driehoek is de attractor van de IFS. In Figuur 1.2 is de
attractor van een andere IFS afgebeeld, de zogenaamde Heighway draak. De
rand van de draak ziet er heel grillig en complex uit. Een wiskundige maat voor
complexiteit is de Hausdorff dimensie. De Hausdorff dimensies van de Sierpinski
driehoek en van de rand van de Heighway draak kunnen berekend worden en zijn
gelijk aan log(3)/log(2) = 1.5849.. ., respectievelijk 2log A/log2 = 1.5236.. .,
waar A de grootste reéele wortel is van A% — A2 — 2.

In de praktijk kunnen bepaalde verschijnselen vaak beter beschreven wor-
den met stochastische substituties. Vergelijk bijvoorbeeld de twee bomen in
Figuur 1.3. De linker boom is gegenereerd door een deterministische substitutic



en de rechter door een stochastische substitutie. Hoewel je niet verwacht om één
van beide in een echt bos te zien, lijkt de stochastische boom toch meer op een
echte boom dan de deterministische.

Begin jaren zeventig bedacht Mandelbrot het volgende stochastische substitu-
tie model om turbulentie te beschrijven [17]. Laat p een parameter zijn tussen 0 en
1 en laat Kj een zwart gekleurd eenheidsvierkant zijn. Verdeel Ky in negen sub-
vierkanten op de voor de hand liggende manier en kleur ieder sub-vierkant zwart
met kans p en wit met kans 1 —p, onafhankelijk van de andere acht sub-vierkanten.
Laat K de verzameling zijn die bestaat uit de zwarte sub-vierkanten. Op vergeli-
jkbare wijze verkrijgen we de verzameling K, door alle zwarte sub-vierkanten in
K op te delen in 9 sub-sub-vierkanten, ze zwart te kleuren met kans p en wit
met kans 1 — p. Als we deze procedure willekeurig vaak herhalen, dan krijgen we
een rij Ko, K1, ... van stochastische verzamelingen. Dit model om stochastische
verzamelingen te genereren staat bekend als fractale percolatie of Mandelbrot
percolatie. Figuur 1.4 toont een realisatie van de verzamelingen K7, ..., K voor
p = 0.75. Fractale percolatie kan op een voor de hand liggende manier worden
gegeneraliseerd naar dimensie d, waarbij ieder d-dimensionaal blok wordt on-
derverdeeld in M¢ sub-blokken. De rij (K,) is monotoon dalend en convergeert
daarom naar een limietverzameling K = (.2 K,. Met een vertakkingsproces
argument kan eenvoudig worden bewezen dat de limietverzameling leeg is als
pM? < 1 en dat K niet leeg is met positieve kans als pM?¢ > 1. Hoewel K
een stochastische verzameling is, is de Hausdorff dimensie van K helemaal niet
zo stochastisch, sterker nog, als K niet leeg is, dan is zijn dimensie constant
en gelijk aan log(pM?)/log M. In Hoofdstuk 2 en Hoofdstuk 3 gaan we dieper
in op eigenschappen van fractale percolatie en geven we meer voorbeelden van
stochastische substituties en fractale verzamelingen.

Fractale percolatie is niet een heel realistisch model voor turbulentie. Siebesma
et al. opperden dat een model met buurafhankelijkheid turbulentie beter zou
beschrijven [27]. Een voorbeeld van zo’n model is meerderheids fractale perco-
latie. Deel ieder niveau n vierkant [ in 9 sub-vierkanten Ji, ..., Jy. De kans dat
een sub-vierkant J; zwart wordt gekleurd hangt in dit model niet alleen af van
de kleur van 7, maar ook van de kleur van de vierkanten die I omgeven. Om
precies te zijn, de kans dat J; zwart wordt gekleurd is 1 — (1 — p)V, waar N het
aantal zwarte vierkanten is onder I en zijn 8 buren. In Figuur 1.5 is een realisatie
afgebeeld van de eerste zes verzamelingen van meerderheids fractale percolatie
voor p = 0.15.

Fractale percolatie en meerderheids fractale percolatie zijn voorbeelden van
vertakkende cellulaire automaten (BCA), die we in Hoofdstuk 4 zullen bestud-
eren. We associéren rijen verzamelingen Ky, K7, . .. met een BCA, die gegenereerd
zijn door een stochastische substitutie met buurafhankelijkheid. In deze algemene
opzet hoeven de verzamelingen K, K7, . .. niet noodzakelijkerwijs te convergeren
en we zullen voldoende voorwaarden voor convergentie geven. De bewijzen voor
het uitsterven en de dimensie van de limietverzameling van fractale percolatie



maken sterk gebruik van het ontbreken van buurafhankelijkheid. We ontwikke-
len technieken om te bewijzen dat als een rij Ky, K, ... geassocieerd met een
BCA convergeert naar een limietverzameling K, dan is K leeg als A < 1 en dan
is K niet leeg met positieve kans als A > 1, waar A een cigenwaarde van een zoge-
naamde nakomelingenmatrix is. Verder is de Hausdorff dimensie van K constant
en gelijk aan log A/ log M als K niet leeg is. We zullen ook laten zien dat de rand
van een limietverzameling van een BCA weer gelijk is aan de limictverzameling
van een BCA.

Recentelijk is er veel belangstelling voor attractoren van geitecrde functie sys-
temen en hun randen ontstaan vanwege hun toepasbaarheid in beeldcompressie
en wavelet theorie. Er is diepgaand onderzoek verricht naar de attractoren van
IFS’en die aan de sterke open verzameling voorwaarde voldoen en van specificke
voorbeelden van IFS’en die wat wilder van aard zijn. In Hoofdstuk 5 zullen we
een subklasse bestuderen van de wederkerende geitereerde functie systemen, een
generalisatie van gewone IFS’en waarvoor de attractor een vector is van verza-
melingen die aan een systeem van zelfgelijkvormigheids-vergelijkingen voldoen.
Hoewel deze subklasse, de klasse van M-wederkerende geitereerde functie sys-
temen (M-RIFS), niet alle gewone IFS’en bevat, bevat zij wel IFS’en die niet
aan de sterke open verzameling voorwaarde voldoen. We laten zien dat M-RIFS
en deterministische BCA’s equivalent zijn op de volgende wijze. Als we begin-
nen met een attractor (Cy,...,C,) van een M-RIFS, dan kunnen we een BCA
construeren met limietverzameling K z6, dat Cy = K, en beginnend met een
deterministische BCA met limietverzameling K, kunnen we een M-RIFS met
attractor (Cy,...,C,) construeren met de eigenschap dat K = Cy. Als we nu
de resultaten uit hoofdstuk 4 toepassen aangaande de dimensie en de rand van
limietverzamelingen van BCA’s, dan volgt dat de rand van een component van
de attractor van een M-RIFS weer gelijk is aan een component van de attractor
van een M-RIFS en bovendien kunnen we de Hausdorff dimensie van de rand
berekenen.

In Hoofdstuk 6 zullen we verbondenheidseigenschappen van de limietverza-
meling K van fractale percolatie onderzoeken. We zeggen dat de limietverzamel-
ing percoleert in dimensie twee als K een verbonden component bevat die zowel
de linker als de rechter zijde van het eenheidsvierkant doorsnijdt. Zij 6x(p) de
kans dat K percoleert voor parameter p en onderverdeling in M? sub-vierkanten.
Dan is het evident dat 63;(0) = 0 en 85¢(1) = 1, maar hoe zit het met de waarden
van p tussen 0 en 17 Met een koppelingstechniek kan eenvoudig worden bewezen
dat 6x7(p) stijgend is in p. Definieer de kritische waarde p.(M) door

pe(M) = inf{p : Or(p) > 0}.

De exacte waarde van p.(M) is tot op heden onbekend, maar er zijn verscheidene
onder- en bovengrenzen gegeven. Niet-trivialiteit van de kritische waarde werd als
eerste aangetoond door Chayes, Chayes en Durrett [4], die bewezen dat p.(M) >



1/v/M voor M > 2 en p(M) < p*(M) voor M > 3, waar p*(M) het infimum is
over p waarvoor z = (pz)M’ + (pz)™*~1(1 — px) een wortel heeft in het half open
interval (0,1]. Dekking en Meester [5] interpreteerden het bewijs van Chayes,
Chayes and Durrett in termen van meerwaardige substituties en verbeterden de
bovengrens tot p.(3) < 0.991. Kort geleden bewees White [30] dat p.(2) > 0.810
met behulp van een slim gekozen rooster. In Hoofdstuk 6 generaliseren we de
methoden van Chayes, Chayes en Durrett, Dekking en Meester en White tot een
methode om zowel boven- als ondergrenzen voor de kritische waarde te vinden.
We bewijzen dat p.(3) < 0.965 en we beschrijven technieken om nog scherpere
grenzen te krijgen. Bovendien leggen we uit hoe onze methode toepasbaar is in
de context van het doorgeven van genen in een generatieboom.
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