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ABSTRACT 
The interior layout of apartments is made in the early design stage of an architectural project when the decisions 
can significantly impact the building's performance. During the early design phase, the ability to impact an 
architectural project is the most important, and this phase serves as the foundation of subsequent design phases. 
Proper daylighting improves visual comfort and minimises the dependency on artificial lighting. Combining good 
natural (day)lighting with a greenery view substantially affects the health and well-being of the building 
occupants. Optimising the layout of apartments based on daylight and view in the early stage of the building is 
crucial to ensure visual comfort. In this regard, artificial intelligence presents the potential to provide valuable 
support for performance-based decision-making in interior zoning based on daylight and view. However, there is 
currently a lack of machine learning methods to support designers in making informed decisions regarding early 
interior design decisions that affect daylight and view quality. 
  
 The performance of daylight and view quality significantly impacts the overall quality of residential spaces. The 
EN17037 guideline ensures the quality of indoor spaces by providing specific requirements for residential spaces 
regarding the view and daylight quality. The national annexe of the UK for daylight in dwellings should be included 
to ensure that daylight requirements align with the specific purposes of different rooms in dwellings. Incorporating 
adequate daylight exposure and good views in residential spaces promotes a connection to the natural 
environment, contributing to overall satisfaction and a higher quality of life for occupants, and leads to lower 
energy consumption and a smaller carbon footprint in buildings. Significant design parameters that impact the 
performance of daylight and view in residential spaces include the building orientation, window fenestration and 
the interior layout arrangement, specifically the room type orientation. Optimising the layout for optimal use of 
daylight and views is crucial for creating well-designed residential spaces that promote well-being, energy 
efficiency, and sustainability. 
  
 A novel ML design process workflow has been proposed to integrate ML models seamlessly into the 
architectural design process. Designers upload their layout designs into a dedicated tool, where the layout designs 
are pre-processed for compatibility with the ML model. Subsequently, the ML model predicts daylight and view 
values, which are then translated into practical visual representations during an after-processing step. A 
multimodal machine learning model utilising a ResNet and fully connected network is the most effective for 
predicting daylight and view quality in residential spaces. An ML model is trained using one image feature and five 
numerical features to predict the median daylight illuminance on the 21st of March, July and December and the 
p80 for ground and sky view inside a room. The trained model achieved a test loss MSE of 0.0047 and a test MAE 
of 0.0440 for the prediction of the three daylight labels, a test loss MSE of 0.0057 and a test MAE of 0.0478 for the 
prediction of the two view labels. An optimisation step identifies the optimal apartment layout based on a layout 
evaluation method guided by EN17037 requirements. A multifaceted approach is suggested for evaluating and 
improving residential layouts for visual comfort, incorporating a novel assessment system that evaluates daylight, 
view, and room orientation quality in each room to assess the overall apartment layout's visual comfort 
comprehensively. Overall, this framework represents a significant advancement in integrating ML models into 
architectural workflows by systematically evaluating daylight, view quality, and room orientation, providing visual 
feedback, and offering optimisation suggestions that align with contemporary design standards and 
requirements. 
 
 

KEYWORDS: 
Residential apartments, daylight performance, view quality, multimodal learning, ResNet 
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INTRODUCTION 
 
This master's thesis explores the utilisation of a machine learning (ML) model in the design process of residential 
apartments. In order to comprehensively understand the various research domains, a literature study offers some 
background knowledge on the different domains. 
 
 The literature study discusses subjects such as visual comfort, machine learning techniques and state-of-the-art 
of the use of deep learning within the field. These topics lay the foundation for the subsequent design framework, 
ML model setup and ML model evaluation. 
  
Chapter 4 introduces a framework that enables using an ML model in the current design process of apartments. 
The design framework proposes a way to implement visual comfort predictions into the design loop of apartment 
layouts. Additionally, this chapter delves into a layout evaluation system that quantifies the visual comfort of 
apartment layouts. 
  
Following that, chapters 5 and 6 scrutinise the dataset "Swiss dwellings", which is used for the ML model. The data 
within the dataset is analysed and cleansed. The proposed labels are generated from the cleaned dataset, and a 
search for proper features is conducted, leading to the proposed features. 
  
Chapter 7 addresses the training of the proposed ML model and the performance of the trained ML models. 
Initially, three ML models, with and without pre-trained weights, are trained and compared. From this starting 
point, ablation studies are conducted to fine-tune the model. The best-performing model is further evaluated with 
specific examples from the dataset. 
  
Chapter 8 illustrates the usage of the proposed framework with a case study. With a case study, a detailed 
explanation of each stage of the framework is provided, including examples. Lastly, the case study showcases how 
designers can evaluate and analyse the performance of different design options, and the optimiser demonstrates 
the best layout design option. 
  
The thesis concludes with a discussion of the various aspects of the study, followed by an answer to the research 
questions and the provision of limitations and recommendations for future research. Overall, the study provides a 
thorough examination of the use of ML models for visual comfort performance evaluation in the design process of 
residential apartment layouts.  
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1.1 Background  
Daylight and view assessments have become crucial to sustainable building design in recent years. This is due to 
their significant impact on occupant well-being and energy savings (Figueiro et al., 2017). Sustainable design aims 
to reduce negative environmental impacts while enhancing occupant health and comfort. The use of natural light 
plays a vital role in achieving these goals, as it influences energy use (Aries et al., 2015; Reinhart, 2014). The 
connection between the outdoors and indoors through views and daylight provides numerous psychological and 
physiological benefits to people. Good natural lighting is now widely expected as a crucial requirement for 
residential and non-residential structures. Natural light not only enhances the visual appeal of a space, but it also 
serves the functional purpose of providing light for work or reading. The presence of daylight in a building improves 
energy efficiency by lowering reliance on electric lighting. Moreover, natural lighting creates a connection to the 
outside that electrical lighting cannot replicate (Corrodi et al., 2008). Effective daylighting can partially meet a 
building's heating needs during winter by harnessing solar heat. 
 The quality and amount of natural light within a building are influenced by two main factors (Littlefair et al., 
2022). The interior design of the space, including window dimensions and placement, room shape, and the colours 
used on internal surfaces, plays a crucial role. Additionally, the façade's fenestration can provide valuable 
information about orientation, weather changes, and the time of day (Nourkojouri et al., 2021). Secondly, the 
external environment's design plays a major role, particularly when tall obstructing buildings hinder adequate 
daylighting or block sunlight for extended periods of time. Thus, good visual comfort, categorised as sufficient 
access to daylight, glare control, and access to quality view, is essential for a sustainable and healthy project. 
However, despite the importance of providing good outside views, previous research mainly focused on 
daylighting effects and the outside view is rarely considered in fenestration (Ko et al., 2022). 
 Performance-based architecture is a design approach that considers building performance as a guiding 
criterion (Kolarevic, 2003). In this approach, designers gather building performance data to support decisions. They 
integrate the evaluation of engineering criteria into the early design phase and use simulated building 
performances to compare design options to make deliberate decisions. Performance-based design decisions 
based on visual comfort analyses are impacted by design decisions such as building form, fenestration, material 
properties, geological location, and local climate. However, daylight analysis is a repetitive, time-consuming, and 
challenging process when working with numerous design alternatives. Unfortunately, most designers do not 
integrate building performance analysis, such as daylight evaluation, during the early design process, despite the 
vital decisions made during this phase due to time constraints and the simulation's complexity. The process of 
daylight simulation calculation creates a divide between daylight performance evaluation and early design 
decision-making by being time consuming and laborious. While analysing view quality in spaces alongside 
daylight could be helpful in the early design phase. 
 Furthermore, including performance assessment from the start of a project reduces the effort and cost of 
changes. MacLeamy (2004) emphasises that the ability to impact the project decreases over time, with the first 
two phases being the most critical. As shown in Figure 1-1, early-stage decisions impact an architectural project 
most (MacLeamy, 2004). The first two phases serve as the foundation of subsequent design phases. In the 
preliminary phase, the designer defines the project's program, which outlines all the required rooms and spaces. 
The second phase is the schematic design phase, which precedes the design development phase. During the 
schematic design phase, one of the major decisions and first step is translating the program into an efficient 
building design. This involves creating a bubble diagram or space connections to shape the interior zoning 
arrangement. Designers consider key drivers of building performance, such as (day)light conditions, acoustical 
performance, and thermal conditions. McGregor et al. (2013) also stress that items with substantial impact should 
be studied early in a project. The curve of McGregor et al. (2013) emphasises the importance of studying design 
aspects with substantial impact early in a project, with daylight being the most critical factor in the curve, as shown 
in Figure 1-2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1-2: Design integration (adapted from: McGregor et al., 2013) Figure 1-1: MacLeamy Curve (adapted from: MacLeamy, 2004) 
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 Hasenmaile et al. (2019) conducted a study on the Swiss real-estate market, showing that floor plans are a 
neglected aspect that leads to quality-of-life issues. The floor plan is the fourth most crucial factor for evaluating a 
home, following rent, apartment size, and brightness.  (Hasenmaile et al., 2019). With technological advances, floor 
plans can now be analysed in detail, making it essential to include building performances in early design decisions. 
A well-planned floor plan can significantly enhance the quality of an apartment, and performance-based decisions 
can be made using simulations that enable quantitative measurement of layout quality. 
 While simulation-based methods accurately predict building performances, they hinder quick initial 
approximations during the early design phase. Simulation programs require a complex set of inputs unknown at 
the project's beginning, making it challenging to integrate performance-based data into the early phases 
(Nourkojouri et al., 2021). Therefore, a fast, accurate, and simple method to support decisions is desirable during 
the early design phase. 
 Artificial intelligence and machine learning are revolutionising many fields. By learning mathematical 
relationships between a dataset's indicators, machine learning methods can extract performance data without 
requiring time-consuming simulations or calculations (Nourkojouri et al., 2021). Machine learning-based 
algorithms can predict daylight performances based on correlated variables, enhancing the efficiency of building 
design decisions during the early stage.  Artificial intelligence could predict visual comfort aspects based on 
supervised learning from real-life designs with daylight and view performance simulations. This thesis investigates 
to which extent computer vision models can be trained to predict visual comfort aspects such as daylight 
performance and view quality within a given floor plan and to which extend this machine learning model can be 
incorporated withing the early design phase.  

1.2 Problem statement  
The interior layout of apartments is made in the early design stage of an architectural project when the decisions 
can significantly impact the building's performance. The quality of daylight and view is crucial to the well-being of 
occupants, making it an essential factor in building design. In this regard, artificial intelligence has the potential to 
provide valuable support for performance-based decision-making in interior zoning based on daylight and view. 
However, there is currently a lack of machine learning methods to support designers in making informed decisions 
regarding early interior design decisions that affect daylight and view quality. 

1.3 Research questions 
1.3.1 Main research question  
The objective of this study is to develop a tool that assists designers in making informed decisions based on 
daylight and view performance when designing floorplans for residential buildings. To achieve this goal, this 
research addresses the following research question:  

HOW CAN A MACHINE LEARNING PROCESS SUPPORT DESIGNERS WITH EVALUATING AND OPTIMISING 

RESIDENTIAL LAYOUTS FOR DAYLIGHT AND VIEW PERFORMANCE DURING THE EARLY DESIGN PHASE? 

1.3.2 Sub-research questions 
In order to answer the main research question, this research addresses the following sub-questions:  
 

1. What are the guideline requirements for daylight and view quality in residential spaces? 
 

2. How do daylight and view quality affect the overall quality of residential spaces? 
 

3. What design parameters impact the performance of daylight and view in residential spaces? 
 

4. What is the most appropriate machine learning model for predicting daylight and view quality in 

residential spaces? 
 

5. How can a machine learning model be incorporated into the layout design process to assist designers? 
 

6. What quantitative metrics can be utilised in the design process to evaluate and optimise residential 

layouts for visual comfort performance? 
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1.4 Objective & boundary conditions  
The purpose of this thesis is to assess the potential of artificial intelligence vision models to utilise a deep learning 
process to accelerate interior zoning design decisions. This research aims to develop a system that can present 
building performances of different design options to support designers in their decision-making. The main focus 
of this research is the intersection between two different building performances metrices, namely, daylight and 
view quality. The study will prove if combining the two performances metrices is possible with one machine 
learning method. This research focuses on the intersection between two building performances, daylight and view 
quality, and tests if one machine learning model can predict them. To simplify the study, three indicators for 
daylight and two view quality indicators will be used as a demonstrator. 
 By considering both performance factors in the same decision-making process, the methodology mimics real-
world scenarios where multicriteria assessment must find a balance between many domains. Although the two 
used performance indicators may not provide the most reliable results in accurately quantifying the daylight and 
view quality, the research focuses on the method that allows for the combination of two different domains for an 
evaluation and optimisation process during the predesign phase. Even though making performance-based 
judgments with only two indicators is uncommon, these demonstrators are intended to show how the 
methodology works. If the study proves successful, the method can be expanded to include a more overall 
performance assessment for daylight and view. This next step is primarily a computational time issue and might 
result in layouts with reliable performance outcomes. 
 The goal is to explore how AI can support designers in assessing daylight and view quality based on the EN17037 
guidelines in the early stages of an architectural design process rather than solely in post-design assessments. A 
dwelling dataset is utilised to showcase and test the proposed approach in supporting designers in assessing these 
two distinct performance indicators during the design process. 

1.5 Methodology  
This thesis utilises a mixed-methods study to answer research questions and achieve the main objectives. The 
methodology consists of three phases guiding the research: discovery, development, and evaluation. Figure 1-3 
provides a diagrammatic representation of the research outline, which is explained below. 

1.5.1 Discovery phase 
During the discovery phase, relevant literature is collected and analysed to understand the current state of 
research comprehensively. Key concepts, theories, and methodologies related to research questions are identified. 
The literature study uses various search, screening, and selection methods for publications related to daylight, view 
quality and AI. This study selects six keywords: natural (day)light, view quality, visual comfort, dwelling, residential 
floorplan, and machine learning (ML) process. These keywords are searched in databases such as Google Scholar, 
Scopus, Science Direct, and Web of Science. Titles and abstracts are screened to find relevant papers.  
 The literature research is divided into four parts to answer the sub-questions discussed in Chapter 1.3.2. The first 
part defines the requirements of residential spaces for daylight and view quality according to guidelines. The 
second part examines the influence of daylight and view quality on the interior layout of apartments and the 
influence that design parameters have on daylight and view quality. The third part reviews machine learning 
methods to predict and validate daylight and view quality. The review on AI will also ensure that getting more 
familiar with these tools and models. This review gives a direction for an applicable machine learning model and 
creates the basis for developing the machine learning process framework in which a layout validation method is 
used to quantify layouts based on daylight and view quality. 

1.5.2 Development phase  
During the development phase, the research study implemented, including developing a machine learning model 
and analysing and pre-processing the dataset for training. The dataset is analysed, and features and labels suitable 
for the machine learning task are defined. The Swiss Dwellings dataset is cleaned to create a data frame for training 
and evaluation of the machine learning model. The data framework will be divided into three parts: the training 
and test samples and a part that can be used for evaluations and case studies. The knowledge from the discovery 
phase and the input and output of the data frame will define the proper machine learning model that might alter 
slightly during the training process. Subsequently, the training samples are used to train the machine learning 
model. Different machine learning models are trained and compared. After an iterative process of fine-tuning the 
ML model, the model should be able to predict the daylight performance and the view quality within apartment 
spaces. The machine learning model will provide spaces' daylight and view performance, which designers can 
utilise during their decision-making process with the use of the designed ML process framework. 
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1.5.3 Evaluation phase  
During the evaluation phase, the machine learning model is thoroughly assessed to identify areas of strength and 
weakness and objectively pinpoint potential improvements. The evaluation involves testing the model with various 
samples to gain insight into the ML model's loss function. Furthermore, the ML model is evaluated with unseen 
sites to explore design parameters which may affect the performance of the ML model. To test the ML design 
process framework thoroughly, a case study is conducted. The evaluation findings are then reflected upon and 
summarized in the report, leading to a discussion and final conclusion of the main research question. Finally, the 
research limitations are discussed, and future research proposals are made.  

Figure 1-3: Research outline (Source: author) 
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Sunshine lifts the spirits – SLL, 2013 
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VISUAL COMFORT 
Windows can significantly enhance a comfortable and healthy indoor environment. Providing access to daylight 
and a view of the outside are the two most important functions of windows (Boyce, 2003). Occupants appreciate 
a window’s view for providing information about the outside world, and daylight is perceived as more comfortable 
and appealing than artificial lighting (Corrodi et al., 2008). Furthermore, by reducing the need for artificial lighting, 
daylight can lower the energy consumption of buildings. However, controlling daylight and view is a complex task 
requiring thoughtful consideration of multiple factors and a balance between competing objectives. To encourage 
building designers to assess adequate daylit spaces, the European Committee for Standardization (2018) created 
the standard norm EN17037. The standard norm EN17037 (2018) aims to ensure that all occupants can access 
adequate daylight levels and good views. The standard outlines a verification approach for assessing daylight in 
buildings and recommends four visual comfort criteria: indoor daylight provision, view-out, exposure to sunlight, 
and protection from glare. Each visual comfort area of assessment has three levels of recommendation. This thesis, 
focuses on the requirements for indoor daylight provision and view-out given by the EN17037.  
 This chapter covers some of the elements contributing to this challenge and describes the effects of daylight 
and view on human health and well-being. The first subchapter investigates the relationship between a building’s 
occupants’ comfort, productivity, and daylight quality and views. After that the sub-chapters cover the 
requirements, for daylight and view quality in buildings and the variables that impact them. 

2.1 Occupants’ well-being  
Many studies confirm that the quality of light affects individuals’ physical and psychological well-being. All these 
studies show that moderate sunlight exposure benefits human health. There are three ways that light can affect 
what individuals can accomplish and what they decide to do; through the visual system, via non-visual influences 
on physiology, and through perception (SLL, 2014). Everything that enters through our eyes influences our body 
and mind, affecting a person’s biological clock (sleep and wakefulness), heart rate, functional organs, and state of 
mind. Daylight and view substantially affect natural human functions and are central to our well-being (Edwards 
et al., 2002; Ko et al., 2022). Lighting affects circadian rhythms, human performance, alertness, health, and safety 
(Boyce, 2003; Mardaljevic et al., 2011). Circadian rhythm impacts sleep quality, energy, alertness, mood, cognitive 
performance, and other natural functions of people (Mardaljevic et al., 2011).  
 A core principle of sustainable building design is ensuring sufficient daylight by a controlled admission of 
natural light, direct sun, and skylight. Lighting has a profound effect on the way occupants experience time and 
space, both consciously and unconsciously. Satisfactory daylight results in a better mood, less tiredness, reduces 
eyestrain, higher cognitive performance, and long-term memory consolidation (Edwards et al., 2002). In 
comparison, lack of natural light causes depression, eating disorders, cancer, heart disease, and other illnesses 
(Anderson, 2003). Furthermore, many studies show a direct link between the quality of a space and daylight 
(Edwards et al., 2002). During the design of a room, the designer should consider a space’s variation of use during 
the different moments or days. The use of adequate daylight reduces the requirement for electric lighting, which 
reduces energy consumption and ultimately reduces the carbon impact of a building. 
 Considering the significant time humans spend indoors (Gifford, 1995; Klepeis et al., 2001), windows are an 
essential architectural element since they allow much-needed contact with the outdoors (Bell, 1973; Collins, 1976). 
A visual link to the environment is made possible by seeing the outdoors, which provides information on the local 
climate, changes in the weather, and the time of day (EN 17037, 2018; Heschong, 2021). Besides daylight, the view 
of the outdoors is also relevant to a person’s well-being (Kaplan, 2001; Ko et al., 2022). Views through the window 
convey information about diurnal and seasonal changes in outdoor content with the added visual interest of 
people, birds, and other fleeting activities, providing cognitive stimulus and relief from the more controlled indoor 
environment (Heschong, 2021). A good view positively affects residents and influences the sale or rent (Hasenmaile 
et al., 2019). The view quality is directly linked to the state of mind since the influence of the view from a window 
connects to positive effects on discomfort, stress, and emotion (Ko et al., 2022). Views of the outdoors can provide 
information that alleviates the exhaustion brought on by prolonged times spent indoors and provides the chance 
for the refreshment and relaxation that a change of scenery brings (EN 17037, 2018). The view through a window 
contributes to the daily acquisition of natural information, ensuring the essential relationship of humans with 
nature. However, views can significantly impact the privacy of buildings and residences, including both residents’ 
privacy and view-out quality. The converse to view-out is privacy, the ability to prevent people from seeing in 
(Tregenza & Wilson, 2011). Whereas view into a building can give information about its function, in the case of 
residential buildings the privacy of the occupants must take precedence (SLL, 2014). While a poorly constructed 
view can undermine privacy and cause discomfort, a well-crafted view can connect residents to the outside world. 
Collins (1976) expresses that a large window that provides a view-out of a building may need more privacy for its 
occupants. While Tregenza and Wilson (2011) mention that privacy requirements depend highly on culture, and 
the need for security typically implies maintaining awareness of specific external spaces. A window design involves 
a conflict of needs, as security and privacy frequently precede individual preferences for view. 
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View quality 
The role of windows in building design extends beyond simply providing natural light and ventilation. A view 
through a window enhances the experience of a building for all occupants (SLL, 2014). 'View' is what a person can 
see from a particular place, and the view from inside a building occurs through visual information transmitted 
through windows when (day)light reflects off outdoor environment surfaces (Tregenza & Wilson, 2011). Windows 
also serve as a medium for visual information, allowing occupants to connect with the surrounding environment 
and experience the therapeutic benefits of attractive or interesting views (SLL, 2014; Tregenza & Wilson, 2011). 
However, as Collins (1976) notes, the acceptability of a view is also influenced by its informational and dynamic 
qualities, as well as the size, shape, and location of the window providing the view. While extensive windows may 
provide the "best" view, they can also lead to issues such as energy waste, overheating, and glare. Thus, a balance 
between view and (day)light is necessary for building designs. 

2.1.1 View-out standard norm EN17037 
The assessment for a view-out is one of four visual comfort criteria in the standard norm EN17037, which 
recommends three levels (rated as minimum, medium or high) through vertical, inclined, and horizontal apertures 
(EN 17037, 2018). The standard's 'view-out' evaluation relies solely on the geometric properties of the building and 
its immediate environment. The verification procedures recommended by the standard primarily involve 
geometric measurements on 2D plan and section views, with different alternatives for verifying via photographs, 
applicable only for existing structures or through rendered images (EN 17037, 2018). The norm recommends three 
view-out levels by three performance level indicators: horizontal viewing angle, distance to the view obstructions, 
and the number of visible view layers, see Table 1. The overall view-out performance level corresponds to the 
indicator's lowest level score of the three performance indicators. 
 

Table 1: View-out recommended target values (EN 17037, 2018) 

View-out  
recommendation level Horizontal sight angle Outside distance of view View layers* 

Minimum ≥ 14° ≥ 6 m 1 
Medium ≥ 28° ≥ 20 m 2 

High ≥ 54° ≥ 50 m 3 
* The number of layers seen from ≥ 75% of the utilized area and at least the landscape layer is included  

 
 
The horizontal sight angle describes the amount of available view to a space by the width of the view opening as 
seen from an observer’s point of view. The recommended view widths are equal to or more than 14°, 28°, and 54°, 
respectively. The reference point for the view width is the farthest point of a utilized space; see Figure 2-1.  
 The outside distance of view describes the amount of visual information outside, the distance between the 
window’s interior surface and major obstructions in front of the opening preventing direct view and/or part of the 
sky from entering the space, see Figure 2-2. The recommended view distance is greater than or equal to 6, 20 and 
50 meters, respectively.  
 The view layers describe the quality of the view-out by considering the presence of distinct layers compromising 
a view. The three types of view-out layers are: a layer of ground, a layer of landscape (natural, architectural or 
horizon line), and a layer of sky, see Figure 2-2. The recommended levels are 1, 2, and 3 visible view layers. 
Additionally, the landscape layer must always be present in at least 75% of the utilized area. The reference point for 
view layers has no horizontal restrictions, as long as the point is inside the utilized area. However, the norm limits 
the point height sitting eye level (1.2 m) and standing eye level (1.7 m).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2-1: Assessment horizontal sight angle (adapted from: 
Kuhlenengel et al., 2019) 

Figure 2-2: Assessment of outside distance of view and view layers 
(adapted from: Kuhlenengel et al., 2019) 
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2.1.2 Other view assessment guidelines    
Building standards do not widely use three vertical layers to denote a view. However, some guidelines, that focus 
on human perception of views and their impact on well-being, describe view quality by layers. The United States 
Green Building Council's Leadership in Energy and Environmental Design (LEED) (2020) rating system includes 
requirements for view and daylight in its criteria for indoor environmental quality. One of the many objectives of 
the credit "Daylight and quality views" is to connect the building's residents with the outdoors. According to the 
LEED (2020), a view to the outside, referred to as a view of the sky or ground, must be present on at least a portion 
of the floor space.  
 The Building Research Established Environmental Assessment Method (BREEAM) gives credits for an adequate 
view when the landscape layer can be seen from a seated position (BREEM, 2021). BREEAM (2021) defines a 
adequate view as a view of landscape or buildings rather than only a view to sky. In the BREEAM guideline required 
opening size of a window is depending on the distance of a workspace to a window.   
 According to the Society of Light and Lighting (SLL)(2014), a window should provide a general picture of the 
surrounding scenery, and include the foreground and sky in the view. The guideline approaches the view-out 
quality of a room as a photograph, where the main surrounding scenery should be focussed in the middle of the 
view and the other view layers should form around it (SLL, 2014). They address that the foreground, classified as 
ground layer in the EN17037, is the area of interest in which occupants most often direct their glaze. Overall, the 
guideline in the Lighting Guide 10 of the SLL (2014) is nearly the same as in the norm EN17037. 

2.1.3 View layers 
Ko et al. (2022) describe a view qualification method (View Quality Index) that includes three primary indicators: 
view content, view access, and view clarity. View content is the sum of visual features from the window view, 
corresponding with view layers of EN17037. View Access measures the amount of view seen from the occupant’s 
position, similar to the indicator horizontal sight angle of EN17037. View Clarity assesses how clearly the view 
content appears in the window view when seen by an occupant, which the standard norm EN17037 does not 
include.  
 In their research, Kuhlenengel et al. (2019) showed that the number of view layers significantly positively affects 
students’ achievements in American classrooms. From their research, Kuhlenengel et al. (2019) discuss that the 
view metrics from the norm introduce some limitations. They address that a further distance to major obstructions 
leads to a more significant vertical view height, potentially leading to more layers within the view. Thus, the outside 
distance of view and view layers are inherently correlated. Kuhlenengel et al. (2019) also point out that outside 
distance of view is obsolete since view layers provide more information about the visual environment. They address 
that negative design aspects potentially affect the horizontal sight angle, such as increased window surface areas, 
which results in excessive sunlight penetration. Therefore, this thesis only covers the view-out performance 
indicator view layers.  
 
The number of layers indicates how varied the 
outside view is. The three view layers of EN17037 are 
in line with Collins' (1976) suggestion that windows 
provide information through three layers: the sky 
(upward), the cityscape (horizontal), and the ground 
(downward). The ground layer includes information 
of activities. The standard considers landscape as 
any urban object, natural object, or the horizon line. 
The landscape layer provides information about the 
outside conditions, especially location, time and 
weather. The norm EN17037 (2018) suggests a fish-
eye projection for complex window shapes or 
multiple openings to quantify the number of visible 
layers, as shown in Figure 2-3. A wide-angle 
projection technique called "fish-eye" mimics how 
people see their surroundings by capturing a large 
field of view.  
  

Figure 2-3: View layers in fisheye-view (adapted from: Brembilla 
et al., 2021) 
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Computationally assessing view layers 
The EN17037 guideline's method for assessing the number of view layers using the fish-eye projection is not 
designed for computational evaluation. The guideline provides no recommendations regarding specific numerical 
values, such as steradian measurements (the unit of solid angle), to determine the presence of a view layer. Instead, 
the guideline relies on manual evaluation approaches. An examiner must subjectively determine the existence or 
absence of a layer based on their visual evaluation of the fish-eye projection. The downside of this method is that 
it results in subjectivity and inconsistencies in the evaluation process. To elaborate, various examiners may 
interpret an identical fish-eye projection differently, resulting in differences in view layer assessment. 

In their study, Brembilla et al. (2021) researched the possibility of computationally assessing view-out, as 
described in the norm EN17037. They propose the concept of steradian thresholds to evaluate view layers 
computationally. Brembilla et al. (2021) argue that it is necessary to establish a predetermined visibility threshold 
(t) in terms of view layers measured in steradians to determine the visibility of a given layer accurately. They 
investigated different minimum visibility threshold (t) values across a grid of analysis points at 1.7 meters high to 
determine whether to count a layer as effectively part of a view, see Figure 2-4. However, Brembilla et al. (2021) do 
not provide a specific recommendation regarding the choice of threshold to quantify the number of layers in their 
study.  

2.1.4 View to nature 
Multiple studies show that nature views contribute to residents’ satisfaction and quality of life and can enhance 
working (Kaplan, 2001; Tregenza & Wilson, 2011). Tregenza & Wilson (2011) address that occupants prefer views 
encompassing a wide distance scale over those with limited extent. The view given by a window creates a 
connection to the outside environment, and Tregenza & Wilson (2011) emphasise that especially scenes containing 
water are preferred. However, the norm EN17037 (2018) promotes distant views regardless of their visual content. 
The SLL (2014) addresses that a view that consists of elements at some distance allows occupants to take visual 
breaks from their task by glazing into the distance, which relaxes the eye muscles of the occupants (SLL, 2014).  
 On the contrary, in their research, Kent and Schiavon (2020) found that the preferred distance of obstacles by 
occupants depends on the type of visual content. Occupants do not mind having the natural landscape layer close 
by, whereas occupants prefer urban features to be further away (Kent & Schiavon, 2020). The research of Sepúlveda 
et al. (2022) addresses that the relation of low view-out quality with high levels of urban obstructions, despite the 
presence of multiple layers in the view. Additionally, the SLL (2014) also mention that natural views are more 
beneficial than urban views. However, they also address that any view is better than none. Kent and Schiavon 
(2020) developed Observer Landscape Distance (OLD), a calculation method to quantify the distance of the view 
layer landscape from the occupant.   
  

Figure 2-4: Investigation of visibility thresholds (Adapted from: Brembilla et al., 2021) 
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2.2 Daylight quality 
Daylight is an important qualitative component of a room that provides several advantages for the occupants. 
Well-lit rooms provide a significant quantity of light indoors that vary with the time of day and season. Daylight is 
the controlled use of natural light by reflecting, scattering, admitting and/or blocking direct sunlight and diffusing 
light to achieve a desired lighting effect (Reinhart, 2014). Most daylight performance indicators determine the 
daylight availability in the interior with illuminance, which measures the amount of light received on a surface and 
is typically expressed in lux (lm/m2).  

2.2.1 Daylight evaluation metrics 
To evaluate the quality of light daylight performance metrics are used. There are two daylight calculation methods 
types: static and dynamic (Ayoub, 2019). The daylight factor (DF) is one of the most widely used static metrics that 
provide quick feedback on daylight in worst-case conditions. The daylight factor (DF) is a percentage that 
expresses the ratio between the indoor illuminance (Ei) on a working plane and the amount of unobstructed 
exterior illuminance (Eo) under overcast sky conditions (EN 17037, 2018; Giblett et al., 1970), as seen from (2.1). The 
main consideration in calculating the daylight factor is the sky component, whereas other considerations include 
internal and external reflection components, and the light losses in the daylight aperture (Hellinga, 2013). In the 
literature, an average daylight factor of 1% is defined as the minimal amount at which occupants will truly 
experience daylight, a daylight factor greater than 5% might cause glare problems, and a daylight factor greater 
than 10% could lead to heat concerns (Dietrich, 2006; Dubois, 2001). The daylight factor simulation is fast, but the 
results have poor reliability since this metric does not consider climate conditions or orientations (Dogan & Park, 
2019; Reinhart, 2014).  
 

𝐷𝐹 = ቀ
ா೔

ா೚
ቁ ∙ 100       (2.1) 

 
 Since the availability of natural light outside at a specific location and the properties of building spaces and 
surroundings influence the amount of daylight in a space, the evaluation of daylight performance should also 
consider the availability of daylight at a site. As an alternative to the daylight factor, climate-based daylight metrics 
are being developed, which investigates daylight access in a model under actual conditions specific to the site and 
building. Dynamic and climate-based metrics include climatic data (exterior diffuse illuminance), which 
incorporates the change in sky conditions at a specific geographical location into the metrics (Le-Thanh et al., 
2022). Two most commonly utilized climate-based daylight evaluation metrics are Daylight Autonomy (DA) and 
Useful Daylight Illuminance (UDI) (Nabil & Mardaljevic, 2005; Reinhart, 2014). 
 Daylight autonomy (DA) measures the percentage of occupancy hours throughout a year in which an occupant 
can perform a viewing task with only daylight (Hopkinson, 1963; IES, 2012). The daylight autonomy percentage 
shows how often the minimum illuminance threshold of, e.g., 500 lux is met or exceeded during occupied hours 
(Hellinga, 2013; IES, 2012).  
 The useful daylight illuminance (UDI) uses hourly sun and sky conditions from a location-specific weather 
dataset to measure the percentage of the occupied time that falls within a specific target range of illuminances 
(Le-Thanh et al., 2022; Nabil & Mardaljevic, 2005). The UDI metrics typically range from 100 to 3000 lux (Dogan & 
Park, 2019; Le-Thanh et al., 2022). 

2.2.2  Task-dependent illuminance level 

The required illuminance levels for a certain task depend on the visual acuity required for the task and, to a lesser 
extent, the specific characteristics of the immediate environment in which the task at hand takes place. Occupants 
cannot use lighting effectively when the illuminance is below 100 lux (SLL, 2014). Illuminance that exceeds the 
maximum of 3000 lux may cause glare or energy-wasting (Dogan & Park, 2019; Le-Thanh et al., 2022). The task 
illuminance requirements for both daylight and electric lighting are the same. However, Dogan and Park (2019) 
emphasize that the influence of glare in residential buildings is less significant since occupants have better control 
over their environment and can mitigate glare by modifying furniture layout. Furthermore, occupants can mitigate 
the oversupply of daylight and glare at façade level with simple measurements (Dogan & Park, 2019). Table 2 shows 
the recommend illuminance levels per task type and or setting from the SLL lighting guide 9 and 10.   

Table 2: Recommended illuminance levels per task and/or setting (SLL, 2013; SLL, 2014)   

Illuminance Task Residential room type 

100 lx Movement task and casual seeing without perception of 
detail 

Corridor, stairs, storage, lift lobbies, lounge, 
toilets, bedrooms 

150 lx - Bathrooms, study room, dining area 
200 lx No perception of detail required Kitchen, laundry rooms, office, entrance 
300lx Moderately easy task Recreation spaces 

500 lx Moderately difficult task, colour judgement required Desk area 
1000 lx Very difficult task, perception of small detail required - 
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2.2.3 Daylight provision standard norm EN17037  
In order to guarantee that people have access to sufficient natural light in their houses, the guideline EN 17037 
(2018) specifies a minimum daylight level for buildings. However, the standard does not adapt the minimal 
requirements depending on the building type or cultural context.  
 The guideline provides two standard calculation methods for daylight provision assessment in buildings. The 
first method is the daylight factor (DF) calculation. The second method is a spatial daylight autonomy (sDA) 
calculation that is more detailed since it computes for a typical year the hourly sky and sun conditions derived 
from the climate data of the site. The second method uses a simulation model that includes the building with the 
actual orientation, window area, obstructions and shading devices. Simulation models such as Radiance or Daysim 
simulate the daylight levels for different times and days of a representative year. The simulation considers the 
variations in weather and sunlight conditions throughout the year. 
 The EN 17037 (2018) standard states that a space with openings in the façade, is considered to provide adequate 
daylight if an illuminance level (ET) across 50% of the area and the minimum illuminance level (ETM) across 95% of 
the area is achieved. The specific regulations from EN 17037 (2018) for rooms with vertical openings is shown below 
in Table 3 on a reference plane 0.85 meters above the floor. For the target illuminance, the required illuminance 
needs to be reached over at least 50% of the space for at least half of the daylight hours.  
 

Table 3: Recommendations of daylight provision by daylight openings in vertical and inclined surface (EN 17037, 2022) 

Daylight provision 
recommendation level Target illuminance*  Min. target illuminance** Fraction of daylight hours 

Minimum 300 lx 100 lx 50% 
Medium 500 lx 300 lx 50% 

High 750 lx 500 lx 50% 
* For 50% of the space, ** For 95% of the space 

 

2.2.4 Other daylight assessment guidelines 
The British Standards Institution (BSI) (2019) added a national annexe for the UK to the EN17037 norm. The annexe 
is added to create achievable recommendations for different room types in dwellings. The UK committee 
comments that for dwellings the EN17037 recommendations are not always achievable because of i.e., significant 
external obstructions.  
 The BSI recommends the illuminance targets as given in Table 4. The annexe includes daylight targets 
recommendations for three different room types. The recommendations are lower than the minimum target 
illuminance given in the EN17037. For multiple use spaces, the BSI recommends the highest target illuminance of 
the room types in that space. The BSI (2019) stresses that they do not see an additional value on testing the 
minimum target illuminance (for 95% of the space) for dwellings, only recommendation for 50% of the space is 
given. The BSI (2019) notes that rooms that exclude an illuminance of 500 lux should be checked for overheating, 
since those rooms are likely to be at risk of overheating in summer.  
 

Table 4: Recommendations of target illuminance per room type in UK dwellings (BSI, 2019) 

Room type Target illuminance*  Fraction of daylight hours 
Bedroom 100 lx 50% 

Living room 150 lx 50% 
Kitchen 200 lx 50% 
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2.3 Influencing design aspects 
Design elements are essential in defining daylighting quality and view inside building spaces. The early stages of 
the design process allow affecting daylight availability and aesthetic relations with outside surroundings. Building 
orientation, room arrangement, and window placement all have a considerable influence on the distribution and 
intensity of daylight within interior spaces. Experts in the industry have extensive knowledge regarding design 
concepts and general rules of thumb for optimizing daylighting accessibility. However, transferring this 
knowledge into practical applications might be challenging for non-experts. Understanding the underlying 
concepts of how the sun's movement influences a building's illumination and the rules of thumb for daylight 
accessibility are required for making educated design decisions. 

2.3.1 Building orientation 
The orientation of the building and its windows is critical when assessing the amount of sunlight received and the 
views from within. The orientation of a building has a significant effect on how much sun a building receives during 
the day, Figure 2-5. While optimal orientation may not always be possible due to constraints such as street 
networks or nearby buildings, it is essential to consider orientation in order to reach the most effective approach 
(SLL, 2014). Obstructions, such as large buildings, can impact the amount and distribution of light that reaches 
windows and rooms. The degree of obstruction on the site should be considered to construct effective passive 
solar design that maximizes winter solar gains. The orientation of windows in relation to the sun, as well as the 
level of sunlight penetration, have a considerable impact on solar gain (SLL, 2014). 
 The degree of obstruction on the site should be considered to construct effective passive solar design that 
maximizes winter solar gains. The orientation of windows in relation to the sun, as well as the level of sunlight 
penetration, have a considerable impact on solar gain. For places that require sunlight, south-facing windows 
within 90 degrees of due south are suggested, whereas main window walls for passive solar heating should face 
within 30 degrees of due south (Littlefair et al., 2022). North and south-facing structures with a long east-west axis 
are easier to shade, whereas east or west-facing facades require more care because the sun is lower opposite the 
windows (Littlefair et al., 2022). In cold and moderate climates, sunlight is often appreciated in homes at practically 
any time of the day, providing there is enough thermal mass and natural ventilation to prevent overheating (SLL, 
2014). 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.2 Residential space layout design  
The presence of daylight in different areas is determined by their distinct purposes and needs. Some spaces value 
daylight, while others may need to reduce or eliminate it depending on their intended use. As a result, space design 
should be adapted to accommodate daylight in a way that is consistent with their intended activities (SLL, 2014). 
The significance of a view in a given location is determined by the occupancy pattern, the use of the space, the 
duration of the occupants' presence, as well as the furniture layout and whether people will be standing or seated 
(SLL, 2014). Littlefair et al. (2022) stresses that the most important factor that affects the duration of sunlight inside 
the building is the interior layout, and two key factors mainly affect this, orientation and overshadowing.  In 
addition Littlefair et al. (2022) stress that the amount of daylight that is required in a room depends on what the 
room usage. For instance, kitchens and living rooms need more daylight than bedrooms, thus  should be placed 
further away from obstructions (Littlefair et al., 2022). Littlefair et al. (2022) describe that at predesign phase of 
floorplan designs, the positions of windows may not have been decided, which makes the orientation of different 
room times more important. Additionally, Littlefair et al. (2022) suggest to assess the overall sun lighting potential 
on floor level of a dwelling by counting how many apartments have the main living room facing South, East or 
West. They stress that the aim should be to minimise the number of apartments having the main living room 
solely facing North, Northeast or Northwest, unless those living rooms have some compensation factor such as an 
appealing view to the outdoors. 
 As a result, the process of space planning and interior layout is critical in improving daylight design techniques. 
However, it is crucial to remember that when designing an interior layout for apartments, different individuals 
have different expectations of their living space (Hasenmaile et al., 2019). Thus, a person's lifestyle, gender, age, 
cultural background, social ethics and economic conditions reflect in a person's house and priorities when 
considering a home layout.  

Figure 2-5: Influence of building orientation on sun access (Source: author) 
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Following the sun 
The planning of the interior layout includes various design principles, such as aspect, prospect, orientation, privacy, 
circulation and grouping. The layout's orientation means the room arrangement with respect to the north 
direction. For occupants to perceive changes in weather and day in time in residential buildings, it is desirable to 
have a variation of daylight during the day. However, spaces should avoid drastic seasonal daylight changes 
(Dogan & Park, 2019). Several studies have discussed the placement of dwellings' rooms concerning the sun's path. 
Schwagenscheidt (1930), Pearson (1998), and Neufert et al. (2012) suggested domestic programs and room types 
for each cardinal direction for buildings on the Northern Hemisphere. All four studies based the optimal room 
placement on different objectives. Schwagenscheidt based the room placement mostly on the direct sun and 
optimising the usage of solar-heat gain. While Pearson based the roomplacement on natural lighting and Neufert 
et al. based the room placement on the timeframe a room is used.  
 In 1930 Schwagenscheidt conducted comparative sun studies to determine the “scientific” optimum 
arrangement of rooms according to the sun's course, see Figure 2-6. Schwagenscheidt (1930) established a 
correlation between cardinal directions and specific residential rooms. However, Schwagenscheidt never aimed 
for an inflexible application of a scheme for arrangement orientation. Schwagenscheidt included the minimum 
and maximum sun courses in the graphic to provide information about which rooms are lighted in the summer 
but not winter. Considering the intensity of sunshine and its effect on heating and cooling loads, the diagram 
suggests an east-west-oriented building for solar heat-control since mechanical cooling was not the standard 
then. 
 In 1998 Pearson addressed the variation in the amount and quality of light according to the needs of a space. 
Pearson (1998) made a diagram to express the importance of the room's location when designing with natural 
light, see Figure 2-7. Pearson’s  (1998) diagram aims for homes that become more ‘daylight healthy’ and less reliant 
on artificial lighting. Pearson (1998) stresses that bright light is essential in kitchens, offices and workrooms, so 
direct light should penetrate those spaces. 
 

 
 In 2012 Neufert et al. address the close link between a floor plan and the sun's movement, which connects to 
the space's orientation. Neufert et al. (2012) suggest that designers should place certain room types in a specific 
cardinal direction in such a way that natural light is most acvcessible during the frequently used timeframe of a 
space, see Figure 2-9. Additionally, they describe the periods of occupations of different residential room types and 
their placement for desired sunlight. Neufert et al. (2012) considered both access to direct light and diffuse 
northern-light.  
 In 2013 the SLL address geometric constraints for passive solar design on an open site. They mention that their 
recommendations are less relevant in closely built-up areas, where the winter sun is highly obstructed. The SLL 
(2013) suggest that heat-generating spaces should face towards North, together with corridors and intermittently 
used spaces such as bathrooms and storerooms. Additionally the SLL (2013) recommends to place bedrooms in 
such a way that sunlight can enter throughout the year.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2-7: Room arrangement for optimal natural light gain 
(Source: Pearson, 1998) 

Figure 2-6: Room arrangement for solar heat-control 
(Source: Schwagenscheidt, 1930)  
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Optimal room arrangements  
The previous four studies have similarities and differences, but all have their strength. From the comparison below, 
a new combined diagram is conducted for the Northern Hemisphere, see Figure 2-10. It is essential to mention 
that each location has a different sun path and a slightly different diagram based on the exact sun path at each 
latitude. 
 Neufert et al., Pearson and the SLL position the working room on the North side. In contrast, Schwagenscheidt 
placed non-functional rooms on the North side, including storage spaces and stairwells. Schwagenscheidt places 
the study room towards the Southwest side. Therefore, based on heating and cooling demand and lighting 
electricity demand, a study room or office space is best placed between the West to summer sunrise. Based on 
the four previous studies, room types where occupants do not spend much time, such as storage rooms, can 
benefit from the no-sun side, and circulation areas are best placed between summer sunset and Northeast. 
Outdoor spaces such as gardens, balconies and loggias are best placed during the sun hours. Schwagenscheidt, 
Neufert et al. place the bathroom on the East side, while the SLL places the bathroom around the North side. 
Therefore, positioning the bathroom between North and East.  
 According to the first two studies, the bedroom should face the morning sun. Early morning sunlight benefits 
interior spaces without becoming excessively warm (Corrodi et al., 2008). The morning sun is the most effective 
regulation of sleep patterns and helps occupants to wake up (Anderson, 2003; Dogan & Park, 2019). Dogan and 
Park (2019) express that a bedroom that receives abundant morning light in the summer months but remains 
completely dark during winter mornings can promote sleep grogginess or sleep disorders, as well as seasonal 
affective disorder. To optimize the occupant's exposure to natural light, designers should consider placing rooms 
where people spend less time awake on the North side and rooms where people spend most of their time on the 
South and Southwest side (Anderson, 2003). Meanwhile the last two previous mentioned studies place bedrooms 
around the Southeast side, ensuring sunlight throughout the year. Hence, positioning the bedroom between 
summer sunrise and the South, so occupants gain morning sun benefits in both summer and winter while waking 
up. 
 According to the four previous studies, the dining room is best placed between the kitchen and living room. 
Schwagenscheidt and Pearson position the kitchen and dining room around the East side, whereas Neuert et al. 
place the dining room on the South and the SLL places the dining room around Southeast. Littlefair et al. (2022) 
mention that living rooms mainly require sunlight, and occupants especially value sunlight in the afternoon. 
Littlefair et al. (2022) advise placing the living room towards the South or West and the kitchen towards the North 
or East. Furthermore, Littlefair et al. (2022) argue that sunlight is less crucial in bedrooms and kitchens, and 
occupants mostly prefer the morning sun over the afternoon sun in these rooms. Since most people spend their 
time in the living room, especially in the afternoon, the living room is best placed between the South and the 
summer sunset. The kitchen is best placed on the East side, between Northeast and Southeast. Based on the four 
previous studies, the dining room is best placed between East and Southwest. 
  

Figure 2-8: Room arrangement following usage timeframes (Source: 
Dogan & Park, 2019, adopted from: Neufert et al.2012) 

Figure 2-9: Sunlight availability (Source: SLL, 2013) 
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Figure 2-10: Optimal room orientation, Northen Hemisphere (Source: author) 
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2.3.3 Window size and positioning  
The shape, size, and position of windows influence how daylight distributes inside the interior space (Loe et al., 
1999), see Figure 2-11. The SLL (2014) recommends that during the conceptual design process, designers should not 
only discuss views but also consider potential obstructions, such as shading devices that may partially or totally 
hinder views. However, the benefits of high-level glazing should be evaluated against the possibility of increased 
sky glare, which may interfere with occupants' work (SLL, 2014). 
 Window area is an important consideration because it affects both the amount of daylight and heat gain and 
loss. The daylight and thermal conditions are frequently at disagreement, i.e., the larger the window area, the more 
daylight, but also the higher the heat loss and gain unless other features are added into the design to counteract 
these effects (SLL, 2014).  
 High windows are more effective at allowing natural light to enter, particularly into the deeper areas of a floor 
plan, because they are less obscured by other structures, trees, or the ground.  When compared to regular 
windows, taller windows can let in more light or be kept smaller to save energy. Nonetheless, some lower windows 
are often necessary to allow occupants to enjoy outdoor views.  
 When windows are limited to one wall only, deep in the room  the view is limited (SLL, 2014). Aside from 
aesthetics, the placement of windows on a building's facade can have a significant impact on the view, glare, and 
distribution of daylight (SLL, 2014). While window patterns are frequently believed to be part of the facade's rhythm, 
each window provides a unique perspective to the outdoors.  
 The positioning of windows within a wall is crucial for achieving the appropriate distribution of daylight in a 
space (SLL, 2014). Incorporating windows on multiple walls provides benefits such as increased daylight uniformity 
by increasing the no-sky line area in deprived locations (SLL, 2014). In addition, it decreases glare by increasing the 
luminance of surrounding surfaces while maintaining the brightness of the visible sky (SLL, 2014). Furthermore, 
many windows in naturally ventilated buildings boost ventilation rates on hot days, minimizing the influence of 
solar gain (SLL, 2014). 
 
 
 
 
 
 
 
  

Figure 2-11: Window patterns (SLL, 2014) 
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2.4 Conclusion 
Research has shown that the presence of daylight in indoor spaces directly affects indoor spaces' quality. Lighting 
significantly influences human well-being, affecting sleep, energy, mood, and cognitive performance. Besides, lack 
of natural light has negative health consequences, including depression and eating disorders. Incorporating 
enough daylight into a space reduces the need for electric lighting, leading to lower energy consumption and a 
smaller carbon footprint for buildings. Therefore, architects and designers must carefully consider the availability 
of natural light during the design process, considering its variability throughout different times and days. 
 Since people spend most of their time indoors, windows become a crucial architectural element that connects 
them with the outdoor environment. The quality of the view from a window directly impacts a person's mental 
state, reducing discomfort, stress, and negative emotions. Natural views, in particular, enhance the overall 
satisfaction of a space. 
 
 Guidelines like EN17037 ensure the quality of indoor spaces. The EN17037 guidelines specify requirements for 
residential spaces regarding the view and daylight quality. View quality is evaluated based on three key aspects: 
the horizontal sight angle, the distance to the outside view, and the number of view layers. It is worth noting that 
some studies have identified limitations in the view metrics outlined in the norm. The number of layers provides 
the most comprehensive information about the visual environment's quality. 
  Achieving a target illuminance level across at least 50% of the space determines the daylight quality of a space. 
The EN17037 guideline sets a minimal target illuminance level of 300 lux. However, a national annexe recognizes 
that this threshold is not always met in dwellings while the space still provides sufficient daylight for the room's 
intended use. Different spaces have varying daylight needs, with some requiring ample daylight and others 
necessitating controlled or reduced light based on their intended activities. Therefore, the additional levels 
outlined in the national annexe should be included in the quantification of daylight quality, so the requirements 
of different spaces adapt to accommodate daylight in alignment with the room's specific purposes. 
  
 Building orientation and window placement are critical factors influencing the sunlight and views received 
within a building. The size, shape, and position of windows significantly impact the distribution of daylight within 
interior spaces. Interior layout, particularly the orientation and potential overshadowing, is vital in optimizing the 
duration of sunlight penetration. An optimal room type orientation, such as bedrooms facing southeast, kitchens 
facing east, and living rooms facing southwest, enhances solar-heat control, natural lighting gain, and aligns with 
usage timeframes and sunlight availability. All of these factors contribute to overall well-designed residential 
spaces. In conclusion, careful consideration and integration of daylight and view and thoughtful architectural and 
interior design decisions are essential for creating indoor environments that promote well-being, energy efficiency, 
and sustainability. 
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NEURAL NETWORKS 
Machine learning algorithms can predict daylight performance by leveraging interrelated variables. Integrating 
artificial intelligence can enhance the efficacy of architectural decisions during the preliminary phases of a building 
design. The building industry most commonly uses neural networks when predicting visual comfort aspects of a 
building with machine learning.  
 The initial section of this chapter provides a short overview of machine learning. Following that, the chapter 
introduces the principles of neural networks and the current usage of neural networks to predict visual comfort 
aspects in the field. The subsequent section delves deeper into the principles of convolutional neural networks and 
the current applications in the field. Lastly, this chapter explores multimodal learning and the usage of multimodal 
learning in the field. 

3.1 Machine learning overview 
Artificial intelligence (AI) refers to the ability of 
machines to perform tasks that typically require 
human intelligence and require solutions that can 
learn from their own experience.  “AI is a collection 
of concepts, problems and methods for solving 
problems” (Elements of AI, n.d.). There are two types 
of AI: strong AI and weak AI. Artificial General 
Intelligence (AGI) and Artificial Super Intelligence 
are the two levels of a strong artificial intelligence 
system with consciousness and sentience. Artificial 
Narrow Intelligence is a weak AI, meaning systems 
designed to perform a single task. As a subset of 
Artificial Narrow Intelligence and a therefore weak 
AI, machine learning (ML) refers to computer 
models and algorithms used by machines to 
perform a particular operation (Roy, 2020). Deep 
learning is a machine learning method that 
incorporates learning from examples and is inspired 
by how the brain functions, namely the 
interconnection of neurons (Costa, 2019; Roy, 2020). 
Deep learning reproduces how the human brain 
functions. Deep learning performs tasks that 
humans frequently perform, and the computer 
model helps filter the input data through layers to 
predict and categorize information (Roy, 2020). The 
relationship between the three aspects is visualised 
in Figure 3-1. 

3.1.1 Machine learning 
Without explicit programming, machine learning enables computer systems to learn from data using algorithms 
to analyse and make predictions or decisions (Fedak, 2018; Han et al., 2012; Mitchell, 1997). Machine learning 
examines sample training data to build a mathematically correct model that illustrates complicated relationships 
between several independent inputs and target outputs. ML algorithms identify patterns in historical data, and 
the trained ML model follows these patterns to predict insightful conclusions in new data (Fedak, 2018). Most 
artificial intelligence techniques focus on creating specific algorithms to enhance modelling speed and result 
accuracy (Arbab et al., 2021). Additionally, if properly taught, these tools can decrease processing time by altering 
some building parameters throughout the design phase. Artificial intelligence techniques generally speed up 
optimization and raise the likelihood of discovering the optimum solution by reducing the search space (Su & Yan, 
2015). 

3.1.2 Machine learning concepts  
There are four primary divisions for categorizing different machine learning techniques: supervised learning, 
unsupervised learning, semi-supervised learning, and reinforcement learning (Bishop, 2006; Mohammed et al., 
2016). The different types of machine learning techniques are shown in Figure 3-2. Each machine learning 
approach has advantages and limitations that might play a significant role, depending on its learning capacity, the 
characteristics of the data, and the desired result (Bishop, 2006; Sarker, 2021). The common problem tasks of 
supervised and unsupervised learning are classification, regression and clustering (Han et al., 2012; Sarker, 2021). 
These problem types are not exclusive; sometimes, a problem might have a combination.  
  

Figure 3-1: Difference between AI, ML, and DL (Source: author) 
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 Based on a training dataset with numerous input-output pairs, supervised learning analyses a labelled dataset 
to construct a model that connects input variables to output variables (Han et al., 2012; Mohammed et al., 2016). 
Supervised learning is a task-driven approach used when a particular set of inputs leads to identifying a specific 
goal (Sarker, 2021). Classification and regression are the two main subfields of supervised learning (Mohammed et 
al., 2016; Sarker, 2021). Classification and regression are a type of supervised learning, see Figure 3-2. Classification 
problems aim to predict a discrete label or class for a given input data (Han et al., 2012; Muhammad & Yan, 2015). 
There are many classification algorithms, such as Naïve Bayes, K-nearest neighbours, support vector machine, 
decision-tree and neutral networks (Han et al., 2012). Regression problems aim to predict a continuous numeric 
value for a given input (Sarker, 2021). Regression models predict missing or unavailable numerical data values and 
identify the distribution trends based on available data (Han et al., 2012). Some familiar types are regression 
algorithms are linear, polynomial, lasso and ridge regression (Sarker, 2021). 
 Unsupervised learning exhibits a self-organization to identifies patterns and relationships in the input data to 
recognize target variables without output data, and thus without the need for humans (Han et al., 2012; 
Mohammed et al., 2016). Unsupervised learning is frequently used for exploratory purposes, finding important 
patterns and structures, groupings of data, and extracting generative characteristics (Sarker, 2021). The most 
common task within unsupervised learning is clustering. Clustering problems aim to group similar data points 
without using labelled data (Han et al., 2012). Objects are clustered based on the principle of maximizing the 
intraclass similarity and minimizing the interclass similarity (Han et al., 2012). Common clustering algorithms 
include k-means, hierarchical, and density-based clustering (Han et al., 2012). 
 Semi-supervised learning combines supervised and unsupervised learning, as it trains a model with labelled 
and unlabelled data (Han et al., 2012; Mohammed et al., 2016). Semi-supervised learning is valuable when many 
unlabelled data sets and few labelled data sets are available (Mohammed et al., 2016). A semi-supervised learning 
model aims to provide more accurate predictions than a model generated using only labelled data (Mohammed 
et al., 2016; Sarker, 2021).  

Reinforcement learning interacting with its environment and receiving feedback in the form of rewards or 
penalties (Bishop, 2006). The model learns to take actions that maximize its rewards over time (Mohammed et al., 
2016) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.3 Machine learning process 
The different steps of creating a machine learning model can vary depending on the specific task and type of ML 
algorithm. However generally the process can be broken down into seven steps: data collection, data preparation, 
data splitting, model selection, model training, model evaluation, and model refinement, see Figure 3-3. 
 Understanding the issue that needs to be resolved and identifying the required data are both part of the first 
step, data collection. It is crucial to gather relevant historical, experimental, observational, or simulation-derived 
data since the quality of the data directly influences the predictive model's accuracy (Ayoub, 2020). The following 
stage, data preparation, results in a data frame. Data preparation includes cleaning, organizing, and randomizing 
the data for the ML model. The functioning of the ML algorithm differs depending on the ranges of the data 
variables; hence standardization, scaling, and randomization of the data are necessary (Ayoub, 2020). Data splitting 

Figure 3-2: Types of machine learning techniques and problem types (Source: author) 
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separates the data frame into several subsets for model training once the data has been prepared (Ayoub, 2020). 
This stage divides the data frame into training, test, and validation samples. The next step is model selection, which 
entails picking the best machine learning (ML) method and model architecture for the task. Model training is the 
following phase, which involves using the training samples to train the model. An optimization algorithm adjusts 
the model's parameters to ensure that the model can make accurate predictions on the training data. The training 
process is iterative, which involves updating the model's parameters until the model performs to a satisfactory 
level. Then, during the model evaluation, test samples to determine how well the model performs on data that has 
not yet been seen and to identify any errors or potential improvement areas (Ayoub, 2020). An evaluation metric 
evaluates the model's performance (Ayoub, 2020). To enhance the model's performance on the task, the model 
refinement process comprises adjusting the hyperparameters, applying different architectures, or employing 
various training strategies (Ayoub, 2020). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variables 
A machine learning algorithm utilizes features and labels to generate predictions or decisions. Other terms for 
features and labels are predicators and response variables, independent and dependent variables, respectively.  
Features are input variables that are the data's characteristics pertinent to the issue at hand. Features identify the 
relationships between the input and the output. Features could be continuous, categorical, or binary in nature 
(Muhammad & Yan, 2015). Labels are variables that represent the values or predictions that the model generates 
as output (Muhammad & Yan, 2015). Labels evaluate the model's performance.  

Parameter types 
A machine learning model has two parameter types: model parameters and hyperparameters. While 
hyperparameters are predetermined before training, model parameters are learned from data. In order to reduce 
the cost function or loss function of the model, the optimization algorithm learns its parameters. The weights and 
biases of a neural network, the coefficients of a linear regression model, etc. are examples of model parameters. 
The practitioner sets the hyperparameters, which are the parameters that regulate the model's overall capability 
and behaviour. Hyperparameters include the learning rate, the number of hidden layers, the number of neurons 
per layer, the regularization strength, etc. Hyperparameters' ideal values are often discovered by trial and error, 
grid search, random search, or more sophisticated optimization approaches. 

3.1.4 Deep learning  
Deep learning is a branch of machine learning that entails developing deep neural networks, which in most cases 
are artificial neural networks (ANN) with several layers (Muhammad & Yan, 2015). These networks develop 
representations of the incoming data that become increasingly complex. A deep neural network can learn very 
complex, non-linear correlations between inputs and outputs as its layers extract data and representations at 
many levels of abstraction (Muhammad & Yan, 2015). Deep learning models are incredibly accurate at tasks like 
speech recognition, image identification, and natural language processing (Muhammad & Yan, 2015). Deep 
learning uses a lot of data to estimate complex functions when the inputs and outputs are far apart (Stevens et al., 
2020). 
 
  

Figure 3-3: Machine learning process (Source: author) 
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Figure 3-6: Activation functions (Source: author) 

3.2 Neural networks 
The core of deep learning algorithms are neural networks (NN) (Stevens et al., 2020). The term and structure of 
neural networks are derived from the biological neural networks in the brain (Stevens et al., 2020). Neural networks 
execute the time evolution of physical phenomena regulated by differential equations, construct lower 
dimensional representations, and learn non-linear relationships. Neural networks can be classified into several 
categories, each with unique characteristics and applications. The specific task and data will determine the type 
of neural network architecture to be used. The most common neural networks are Transformer, Autoencoder, 
Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs), Feedforward Neural Networks 
(RNNs), and Convolutional Neural Networks (CNNs).  
 The building blocks of neural networks are artificial neurons, or nodes. In 1958 Rosenblatt introduced 
perceptrons as a simplified model of a biological neuron (Bishop, 2006). A simplified notation of a perceptron 
model or step function is:  

 

𝑓(௫) = ൜
0, 𝑤 ∙ 𝑥 + 𝑏 < 0
1, 𝑤 ∙ 𝑥 + 𝑏 ≥ 0

       (3.1) 

 
where 𝑤 is the weight, 𝑥 is the input and 𝑏 is the bias. Weights are applied to the input data to indicate their relative 
importance. The summation function combines the inputs and their associated weights to determine their sum 
(Bishop, 2006). The sum is shifted left or right using bias. The weights determine the contribution of the input to 
the output (Mitchell, 1997).  
 A perceptron has 𝑛 binary inputs, 𝑥, that represents the incoming signal from the neighbouring neurons, and 
the output of the perceptron, 𝑓(௫), is a single binary value indicating if the perceptron is ‘fired’ (Yehoshua, 2023), see 
Figure 3-4. The perceptron node consists of a binary step activation function. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 Multilayer perceptrons (MLP) consists of perceptrons fully connected together into a network. A network 
consists of three levels: an input layer, one or more hidden layers, and an output layer (Bishop, 2006), see Figure 
3-5. When the network consists of two or more hidden layers, the network is an artificial neural network (ANN). A 
basic form of an ANN is a feed forward network where each neuron is connected to every neuron in the previous 
layer, and data moves in a single direction from input to output without looping back, see Figure 3-5.  
The node's output is transformed by an activation function, determining whether the neuron may be triggered. 
The output signal of a neuron, or set of neurons, is determined by the activation function of a neural network, a 
mathematical function applied to the output (Bishop, 2006). ANNs consists of nodes, or also called activation 
functions, that return an output typically between 0 and 1 or -1 and 1. An activation function adds non-linearity to a 
neuron network, which enables the neural network to learn more intricate and subtle correlations between the 
inputs and outputs (Bishop, 2006). Changing the node to a non-linear activation function allows for 
backpropagation and the stacking of multiple layers of neurons (Baheti, 2021). The most common used activation 
functions are sigmond, Tanh function, ReLU, Leaky ReLU and ELU (Baheti, 2021), see Figure 3-6. At each of the three 
levels of an ANN a different activation function is used. The hidden layer mostly uses a ReLU, and all layers within 
the hidden layer have the same activation function.     

Figure 3-4: Perceptron model (Source: author) Figure 3-5: Feed forward neural network structure (Source: author) 



39 | visual comfort l(AI)outs  literature review | Neural networks 

3.2.1 ANN for visual comfort in spaces 
Using machine learning (ML) methods to forecast daylight availability in varied contexts has recently gained more 
attention.  
This chapter overviews various studies conducted in the field and highlights several ML techniques that forecast 
daylight performance. The studies discussed in this chapter have various applications, from estimating the 
quantity of daylight in specific buildings to forecasting daylight availability in metropolitan settings.  
 Ayoub (2020) evaluated recent studies that used machine learning algorithms to forecast the daylighting of 
spaces and assessed features of the studied buildings, the employed algorithms, the types of problems, input and 
output parameters, , and the used error metrics in those studies. Ayoub (2020) noted that half of the experiments 
used the Artificial Neural Network (ANN) model. The remaining investigations used Multiple Linear Regression 
(MLR), Support Vector Machine (SVM), and Decision Tree models. In 2021, Arbab et al. (2021) concluded that ANNs 
were the most effective model for indoor illuminance determination after evaluating various ML models such as 
Linear regression, Support vector machines, decision tree, random forests and ANN.   
 In 2022 Ngarambe et al. made an overview of the current usage of machine learning tools for daylight design 
and control. Out of the 25 studies that used machine learning techniques to optimize daylight in the early building 
design phase, 20 studies generated data using simulation tools and 5 studies generated data with field 
measurements, simplified physical models or other less traditional systems (Ngarambe et al., 2022). Ngarambe et 
al. (2022) state that the most fundamental reason behind the use of simulation data is the possibility to consider 
various design schemes for longer time periods and the possibility to consider different building geometries, 
orientations, materials, and window geometries. The most used daylight simulation tools for data generation were 
Energy Plus, DIVA, and Daysim (Ngarambe et al., 2022). The model input parameters that are used in most studies 
can be classified to four main elements: outdoor climate conditions, building geometry, window properties, and 
time factors. The most used output parameters of the model can be classified in three main groups: daylight (e.g., 
DF, DA, sDA, UDI, etc.), glare (e.g., ASE, DGI, DGP, spatial Visual Discomfort (sVD)), and quality of view (view factor, 
view depth, view range, etc.) (Ngarambe et al., 2022). From the reviewed literature eighteen studies only used an 
ANN, showing that most studies mainly employed supervised ANN algorithms (Ngarambe et al., 2022). Ngarambe 
et al. (2022) conclude that the limitations of the current use of ML techniques to estimate daylight performances 
in the early building design phase mainly come from the constrains that come with the use of simulation tools to 
generate the used data. Furthermore, greater diversity in the use of algorithms, particularly hybrid models, should 
be promoted (Ngarambe et al., 2022). 
 Nourkojouri et al. (2021) proposed a machine learning model that predicts visual comfort parameters at the 
early phases of design using an Artificial Neural Network (ANN) algorithm. The study used a dataset with 2,880 
design options for a shoebox space with a one-side window, Figure 3-7. The design alternatives emerged from ten 
physical room features, including room and window fenestration, room orientation, shading state and interior 
surface reflectance. The study used eight labels in total, three daylight labels, two glare labels and three view 
quality labels. The dataset consisted solely out of simulation data conducted by Radiance for daylight and glare 
and geometrical calculations for view. The authors tested multiple architectures and the best performing 
architecture of the ANN consist of a single hidden layer with 40 neurons. In their study the regression problem 
reached an overall accuracy of 91.7%. However, the authors mention that their actual error might be problematic 
since it could cause the predicted value to fall above or below thresholds that are defined by building standards or 
certifications. For their space, parameters that affect the window to wall ratio and room dimensions are the most 
influential parameters.  
 In a different study, Le-thanh et al. (2022) created a machine learning framework to predict daylight 
performance classification building layouts. The dataset consisted of 400 layout options with in total 79,559 sensor 
points. The rooms layout options consisted of parametrically generated layout designs based on four squares, see 
Figure 3-8. The study used four labels for useful daylight illuminance ranges (UDI). The dataset consisted solely out 
of simulation data conducted by DIVA. The study tested multiple architectures and the results of this study showed 
an ANN architecture consisting of three hidden layers with 120 hidden nodes as the most suitable architecture. 
The most impactful input parameter was the position and size of windows on the ANN’s accuracy.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3-7: Shoebox space (Source: Nourkojouri et al. 2021) Figure 3-8: Space set-up (Source: Le-thanh et al. 2022) 
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3.3 Convolutional Neural Network 
A form of an ANN is a convolutional neural network (CNN), where each neuron is only connected to the 
neighbouring neurons from the previous layer. A CNN processes and analyse images and other types of 
multidimensional data (Géron, 2019), the matrix multiplication is replaced by a convolutional operation (Murphy, 
2022). The basic idea of a CNN is to divide the input into overlapping 2D image patches, and comparing each patch 
with a set of small weight matrices (Murphy, 2022). A CNN consist of an input layer, convolutional layer, pooling 
layer, and fully connected layers (Géron, 2019), see Figure 3-9. As the image gets progresses through the network 
the image gets smaller and smaller, while it also gets deeper and deeper thanks to convolutional layers (Géron, 
2019). 

The convolutional layer is the most important building block of a CNN that extract input features and through 
multiple convolutional layers outputs the corresponding feature map (Zhang et al., 2023). A convolutional layer 
contains a set of kernels, and an input image. A kernel is a small matrix with weights, and is smaller than the image. 
The feature detected by performing the convolution, the dot product of the input patch with the kernel (Murphy, 
2022), see Figure 3-10. The kernel systematically moves across the input image to detect a feature map anywhere 
in the image.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A pooling layer downsamples (i.e. shrinks) the 
image, this reduces the computational load, 
memory usage and the number of parameters 
(Géron, 2019). Reducing the number of parameters 
limits the risk of overfitting. Therefore, it not only 
retains the main feature, but also prevents 
overfitting (Zhang et al., 2023). Commonly used 
pooling layers are max pooling and average pooling 
(Murphy, 2022), Figure 3-11. Max pooling returns the 
maximum input value to the next layer and average 
pooling return the main of the input values.  
 The last element of a CNN is a fully connected 
layer. The fully connected layer learns non-linear 
combinations of high-level features and works the 
same as multilayer perceptrons (Saha, 2018). The 
model extracts and recombines the features maps, 
in such a way that complex features can be learned 
(Zhang et al., 2023).  

Figure 3-10:  Convolutional layer principle (Source: author) 

Figure 3-9: Typical CNN architecture (Source: author) 

Figure 3-11:  Pooling layer principle (Source: author) 
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3.3.1 Residual Network 
The depth of a network is critical to the performance of a model and deep networks often have the problem of 
degradation,  the training and test error rate increases as the number of layers increases (Zhang et al., 2023).  
 In 2015, He Kaiming introduced the concept called Residual Blocks in a new neural network architecture called 
ResNet to solve the problem of degradation and makes deep networks easier to optimize (Géron, 2019). He et al. 
(2015) used the ‘ImageNet 2012’ dataset to train their model. The data for the ImageNet dataset is collected from 
search engines and manually labelled by humans to one of the 1,000 object classes (ImageNet, 2021). The images 
of the ImageNet dataset consist of pictures taken in the real world varying from small to big objects. They 
presented several experiments on ImageNet to show the degradation problem and evaluate their method that 
now is known as ResNet, Figure 3-12. The trained model by He et al. (2015) is designed to process pictures to extract 
critical characteristics and patterns from the data.  
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 In situations where deep neural networks are needed, a ResNet proved to perform, for example for feature 
extraction, semantic segmentations, and for various Generative Adversarial Network architectures (Sharma, 2021). 
A ResNet uses ‘skip connections’ to connect activations of a layer to further layers by skipping layers in between. 
Thus, a residual connection provides another path for data to reach further parts of the neural network by skipping 
some layers, see Figure 3-13.  
 In the traditional feedforward network the input will simply go through the layers one by one, resulting in the 
output of layer 𝑖 + 𝑛 shown in Formula 3.2.2. In a residual block the identity mapping is applied on current input is 
the previous layer, resulting in 𝑥 , then it performs element wise addition resulting in the output for layer 𝑖 + 𝑛 
(Sharma, 2021).  

  Figure 3-13: Residual block (Adapted from: Sharma, 2021)  

Figure 3-12: ImageNet example images (K. He et al., 2015) 
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3.3.2 CNN for visual comfort in spaces 
The limitations of machine learning models that use ANNs lie in the dataset and building descriptions (Q. He et al., 
2021). The input variables are limited since the building geometries are simplified in most studies and described 
based on room width, length, height, elevation, and window position (Q. He et al., 2021). Thus, with the use of ANNs 
the free design space of an architect in the early-design phase is not well represented due to the constrains that 
numerical values give to datasets.  
 In contrast, He et al. (2021) used ResNet (CNN) and pix2pix (GAN) to predict the overall daylight performance 
metrics and visualize the illuminances, respectively, see Figure 3-14. The dataset consisted of 575 parametrically 
generated shoe-box rooms and 575 real-case room designs. An image representing geometrical information of 
the room is the input of the model and the output is the predicted daylight performance including mean lux, UDI 
and sDA. With their study He et al. (2021) show that the trained ResNet-50 model is able to predict daylight 
performance for general building forms instead of earlier shown show-box cases with forms controlled by specific 
parameters. Visualizing the results with the pix2pix model showed the efficiency and effectiveness in predicting 
the illuminance distribution (Q. He et al., 2021). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 He et al. (2021) trained two models, one for real case layouts and one for parametrically created layouts. Both 
models convered a low and stable error rate after 200 epochs. Figure 3-15 shows the real case training loss curve 
and the comparison between the predicted and ground truth values.  
 He et al. (2021) used the coefficient of determination (R2) and the mean square error (MSE) to measure the 
prediction performance of the model. For the mean lux prediction of the real case the model reached an MSE of 
0.010 on the training and 0.036 on the test set. The parametric box predictions for mean lux reached an MSE of 
0.020 on the training and 0.038 on the test set. 
 In their study He et al. (2021) mention that with the below 1 second time-cost, their model can fulfil real-time 
intuitive feedback for human designers to optimize the daylight performance. However, their model generalized 
on climates, building orientation, grid size, and façade, which are limitations that need further investigation before 
the model could be used for design cases.  
  

Figure 3-14: Input & output (Adapted from: Q. He et al. 2021) 

Figure 3-15: Real case training loss curve & mean lux prediction comparison (Source: Q. He et al. 2021) 
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Figure 3-16: Multimodal learning, fusion types (Source: author) 

3.4 Multimodal learning 
Multimodal models are capable of understanding and processing information from one or more streams of data 
(also known as modalities) (Bayoudh et al., 2022). Typically, modalities can include text, images, video, voice, sounds, 
and music (Poulinakis, 2022). A deep learning model can better understand its surroundings by combining several 
modalities, given that certain clues are only accessible in specific modalities (Poulinakis, 2022). Multimodal learning 
is widely applied within affectively computing, robotics, human-computer interaction and healthcare (Bayoudh et 
al., 2022).  
 Fusion is the task of combining data from two or more modalities in order perform a to prediction. There are 
three general approaches of multimodal data fusion: early fusion, late fusion and hybrid fusion (Poulinakis, 2022). 
Early fusion includes the integrating features immediately after feature extraction, see Figure 3-16.  

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

3.4.1 Relevant work  
Multimodal learning is not widely used within the field of the built environment. However, in 2022 Sheng et al. 
studied the application of deep multimodal learning for energy prediction in residential buildings, see Figure 3-17. 
In their study, Sheng et al. (2022) combined the structure of multilayer perceptron (MPL) and a CNN algorithm to 
input both textual and visual data. The visual data consisted of Google Street View images and the textual input 
consisted of building specifications that could not easily be determined by the appearance (Sheng et al., 2022). 
Sheng et al. (2022) mention that the multimodal deep learning network further decreased the prediction error 
over single network performances.  
 In a different field, Peña et al. (2020) used multimodal learning to showcase how gender and ethnicity biases 
can be harmful in recruitment tool. Peña et al. (2020) used a multimodal learning architecture composed by a 
ResNet50 and a fully connected network, see Figure 3-18. In their study Peña et al. (2020) showed that the usage 
of multimodal learning can prevent undesired effects of biases and therefore improve the fairness in the AI-based 
recruitment field.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 3-18: Multimodal learning architecture composed of ResNet-50 and a fully connected network (Source: Peña, 2020) 

Figure 3-17: Energy prediction feature maps (Source: Sheng et al., 2022) 
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3.5 Conclusion 
As discussed in the review of related research above, most studies on deep learning for assessing internal visual 
comfort have focused on daylight performance. While some work has been done on view quality, its applications 
have been limited. Artificial neural networks are commonly employed to evaluate visual comfort performance in a 
space by converting geometrical data into numerical values. However, during the early stages of architectural 
design, 2D drawings and rough estimates are common, making it difficult to translate them into numerical data. 
One study attempted to use a grayscale image incorporating all geometrical data for training a CNN to predict 
daylight performance. This approach is closer to real-world design situations but lacks additional numerical values, 
requiring a translation process. Combining both approaches can address the shortcomings of AI in assessing visual 
comfort performance during the early phases of architectural design. Multimodal learning, which uses different 
data types, can fill the research gap. Research indicates that combining ResNets and numerical data can enhance 
machine learning predictions. Therefore, a multimodal model combining ResNet and a fully connected network 
for using both image and numerical data shows the potential to predict visual comfort in indoor spaces, see Figure 
3-19. 
 
  

Figure 3-19: Proposed ML model for daylight and view prediction with a layout image and numerical features 
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ML DESIGN FRAMEWORK 
This chapter presents an exploration of the designed machine-learning process framework. The first part describes 
the framework for that enables the usage of a machine learning model in the layout design process. After that, a 
thorough description of the layout evaluation system is given that that quantifies the visual comfort of apartment 
layouts.  

4.1 Layout design framework 
To use ML prediction in a design process, the traditional design workflow has to change to make space for the 
support of an AI tool. Figure 4-1 shows the overall ML process framework for layout design tasks with the support 
of an AI. In total, four main steps can be recognised.  
 Firstly, the designer selects their apartment layout options and uploads them into the tool. In the background, 
the apartment layouts are pre-processed, for each room of the apartment, an image will be created. Secondly, the 
machine learning model will use the room images with additional numerical features to predict a daylight and a 
sky view value.  
 After the prediction, the results are post-processed. The daylight and view values are translated into colours on 
the apartment layout to make the results easily usable and understandable for designers. A ranking system will 
quantify the apartment's daylight and view quality and investigate room placement's orientation quality. The 
designer receives performance-based feedback on each layout and gets insight into the quality of each layout. In 
this way, the designer can easily quantify the different layout designs against each other. Additionally, an optimiser 
will show the best option for each of the three aspects and the overall best performance.  
 With this feedback, the designer can decide to create more design alternatives based on the best-performing 
layout designs. In this case, the loop starts over again, where the designer creates new layout options and receives 
direct feedback on each layout design's performance. When the designer is desired with the performance of the 
layout of the design, they can make a performance-based design decision for the layout design choice, after which 
the standard design workflow continues.  
 
  

Figure 4-1: ML design process framework for layout design tasks 
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4.2 Layout evaluation system 
In the ML framework post-processing, each apartment layout will be evaluated and quantified against a ranking 
system. The ranking system is done for daylight quality, view quality and the orientation quality of the apartment. 
Only living spaces such as bedrooms, living rooms, kitchens and dining rooms are considered to evaluate an 
apartment. Additionally, the placement of the outdoor space is considered to evaluate the orientation quality.  
 The evaluation of the performances is done one three different levels: room level, apartment lever per aspect 
and the overall apartment level. For room level, the requirements from the guideline are used for daylight and 
view quality. For the apartment level per aspect a 50% rule is used. Where 50% of the room in the apartment need 
to reach a certain level to reach a certain performance level for that apartment. The overall apartment performance 
is depending on the apartment performance per aspect and works with an average point system. The following 
chapter explains the layout evaluation system in detail.    

4.2.1 Daylight evaluation 
Based on the earlier discussed research into the daylight requirements, four daylight levels are given to define the 
daylight level of a room. The target illuminance needs to be reached over at least 50% of the space, which is in 
accordance with the median of each room. Additionally, the target illuminance needs to be reached during at least 
50% of the sunlight hours. For this research three daylight hours are used, the median of those three daylight hours 
is used to test for the target illuminance.  
 The minimum level that a room can reach depends on the room type of the living space. For a bedroom to 
reach the minimum level, a lower illuminance is needed over 50% of the space than for a living room. Table 5 shows 
the target illuminance that needs to be reached for 50% of the space to reach a certain daylight level in a room.  
 

Table 5: Room daylight level requirements 

Daylight level Target illuminance*  
Minimum bedroom/room: 100 lx, living room: 150 lx, kitchen: 200 lx 

Low 300 lx 
Medium 500 lx 

High 750 lx 
* For 50% of the space 

 
 To evaluate the overall daylight quality of an apartment, an additional ranking system with six labels is made 
based on the room daylight levels of Table 5. A room must reach the minimal threshold for a daylight level to meet 
the guideline requirements. Otherwise, the rooms will be labelled as insufficient. Table 6 shows the requirements 
for the living spaces of an apartment to reach a specific daylight label. All apartment daylight labels have a minimal 
requirement for the living space with the lowest daylight level. Additionally, labels D, C and B have a second 
requirement, which must be reached for at least 50% of the number of living spaces in that apartment. For 
example, an apartment with five living spaces needs at least three living spaces with daylight label ‘medium’, and 
the living space with the lowest daylight level cannot be lower than the ‘low’ daylight level to reach an overall 
daylight label of ‘C’.  
 

Table 6: Apartment daylight label requirements 

Daylight label 
Room with the lowest  

daylight level 
Daylight level for  

50% of the living spaces  
F Insufficient - 
E Minimum - 
D Minimum Low 
C Low Medium 
B Medium High 
A High - 

4.2.2 View layers evaluation  
Table 7 shows the requirements to evaluate the view quality of a room. As mentioned earlier, a layer is considered 
present if it reaches a 0.06 sr threshold, which is equal to a threshold of 0.477% of the total spherical view. To reach 
the minimum view level, the landscape layer must be present for at least 75% of the space.  
 

Table 7: Room view quality level requirements 

View level View layers present*  
Minimum Landscape layer 

Medium 2 layers, incl. landscape layer 
High All layers 

* For 75% of the space 
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 To evaluate the view quality of a full apartment, an additional raking system with five labels is made based on 
the room view levels of Table 7. A room must reach the minimum threshold for the view level to meet the guideline 
requirements for the room to be labelled with a sufficient label. Table 8 shows the requirements for the living 
spaces of an apartment to reach a particular view label. All apartment view labels have a minimal requirement for 
the living space with the lowest view level. Additionally, labels C and B have a second requirement, which must be 
reached for at least 50% of the number of living spaces in that apartment. For example, an apartment with six 
living spaces needs at least three living spaces with a view label ‘high’, and the living space with the lowest view 
level cannot be lower than the ‘medium’ view level to reach an overall daylight label of ‘B’. 
 

Table 8: Apartment view label requirements 

View label 
Room with the lowest  

view level 
View level for  

50% of the living spaces  
E Insufficient - 
D Minimum - 
C Minimum Medium 
B Medium High 
A High - 

 

4.2.3 Orientation evaluation  
As mentioned in Chapter 2.3.2, each room type has an optimal orientation based on energy consumption, the 
usage of the room during the day and the access to natural lighting. Based on the earlier mentioned optimal 
placement, a ranking system per room is created to evaluate the orientation quality of the room. For the indoor 
living spaces to reach the highest level, the room's orientation has to live in between the optimal orientation of the 
room type, as shown in Figure 2-10. For each lower level, one of the eight intercardinal directions is added to one 
or two sides of the orientation range, see Table 9. Figure 4-2 visually represents the orientation levels per room 
type with the corresponding orientation range.  
 For rooms with windows on multiple sides the main direction is determined and used for the orientation 
assessment. The main direction is the side on which the most window area is located. For example, a room with 
three sides has a window area distribution of 20% East, 10% Southeast and 70% West, the main direction of the 
room is in this case West.  
 

Table 9: Room orientation level requirements 

 Orientation range 
Room type Low Medium High 
Living room East to North Southeast to Northwest South to West 

Dinning Northeast to Northwest Northeast to West East to Southwest 
Kitchen Northwest to Southwest Northeast to Southwest Northeast to Southeast 

Bedroom North to West North to Southwest East to South 
Outdoor space Northeast to Northwest East to West Southeast to Southwest 

 
 
 To evaluate the orientation quality of a full apartment, an additional ranking system is created with five labels 
based on the room orientation levels of Table 9. For the orientation, there is no insufficient placement of rooms. 
Since there is no insufficient room level, no additional requirement is added for the room with the lowest 
orientation level. Thus, the apartment is only tested against one requirement for 50% of the number of spaces. 
Table 10 shows the requirements for the spaces of an apartment to reach a particular orientation label. In this case, 
the apartment is tested for the earlier mentioned living spaces and the outdoor space. For example, an apartment 
with four indoor living spaces and one outdoor space has to reach ‘medium’ level in at least three of the spaces to 
reach the overall orientation label ‘C’.  
 

Table 10: Apartment orientation label requirements 

View label 
Room with the lowest  

orientation level 
Orientation level for  
50% of the spaces*  

E Minimum - 
D Minimum Low 
C Minimum Medium 
B Minimum High 
A High - 

* Space types including: bedroom, living room, dinning, kitchen and outdoor spaces 
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Figure 4-2: Visualization of orientation levels with their orientation ranges 
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4.2.4 Overall apartment evaluation  
To quantify the overall apartment quality, a ranking system is created. The ranking system consists of six labels 
ranging from A to F. In the ranking system a penalty system is introduced; if the label or daylight or view reaches 
the lowest possible label, the apartment automatically reaches label F. The labels of the three categories are 
normalised from zero to one, see Table 11.  
 

Table 11: Category label normalisation to category points 

Category label 
Daylight 

𝑥ௗ௔௬ 
View 
𝑥௩௜௘௪ 

Orientation 
𝑥௢௥௜௘௡௧  

A 1 1 1 
B 0.8 0.75 0.8 
C 0.6 0.50 0.6 
D 0.4 0.25 0.4 
E 0.2 0 0.2 
F 0 - - 

 
 The penalty score ensures that all the overall labels above F ensure that an apartment meets the minimal 
requirements of the EN17037 guidelines. With the normalised category scores, an average equation is used to 
determine the overall category score: 
  

𝑦௢௩௘௥௔௟௟ =
௫೏ೌ೤ା௫ೡ೔೐ೢା௫೚ೝ೔೐೙೟

ଷ
∗ 𝑝𝑒𝑛       (4.1) 

 

𝑝𝑒𝑛 = ൜
1, 𝑖𝑓 𝑥ௗ௔௬ ≠ 0 𝑎𝑛𝑑 𝑥௩௜௘௪ ≠ 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (4.2) 

 
where 𝑥ௗ௔௬ , 𝑥௩௜௘௪  and 𝑥௢௥௜௘௡௧  are the normalised category labels of the room, and 𝑝𝑒𝑛  is the penalty score. The 
penalty is set to zero when the daylight or view category equals the lowest possible category. In addition, a more 
parametric way of determining the overall score is also realised. With the parametric equation, the designer 
influences which of the three aspects they want to focus on or whether or not to include one aspect in the overall 
raking of the apartment. The parametric formula for the overall category score is: 
 

𝑦௢௩௘௥௔௟௟,௣௔௥ =
൫௫೏ೌ೤∗௪೏ೌ೤൯ା(௫ೡ೔೐ೢ∗௪ೡ೔೐ೢ)ା(௫೚ೝ೔೐೙೟∗௪೚ೝ೔೐೙೟)

ଷ
∗ 𝑝𝑒𝑛    (4.3) 

 
where 𝑤ௗ௔௬ , 𝑤௩௜௘௪  and 𝑤௢௥௜௘௡௧  are the weights of each category that add up to one. The category label can be 
determined based on the category score, where the category label will correspond with the range of the category 
score, Table 12.  
 

Table 12: Category points with category label 

Overall category label A B C D E F 

Overall score 
𝑦௢௩௘௥௔௟௟ 

[1-0.86] [0.85-0.71] [0.70-0.56] [0.55-0.36] [0.35-0.01] [0] 
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4.3 Conclusion 
Integrating AI, particularly ML models, into traditional architectural design has been challenging. To address this, 
a new workflow has been proposed, including an additional step for integrating an ML model and assessing 
building performance indicators. The proposed approach involves designers uploading their layout designs into a 
dedicated tool, which preprocesses the design options into a format suitable for the ML model. The ML model uses 
this data to predict daylight and view values, followed by an after-processing step that evaluates the overall quality 
of rooms and apartments in terms of daylight and view quality. 
  To comprehensively assess layout quality, a new layout evaluation system has been introduced to quantify the 
visual comfort quality of entire apartments. This system systematically assesses daylight and view quality in each 
room, enabling the determination of the daylight and view quality of the entire apartment layout. Moreover, to 
optimise the layout design's visual comfort potential, an additional ranking system is introduced to evaluate the 
orientation of each room type in residential apartments. The orientation evaluation system systematically assesses 
room orientation quality for each room and subsequently evaluates overall layout quality based on these 
orientations. The three aspects of daylight, view, and room orientation are combined to provide an overall quality 
assessment of the layout.  
  The post-processing step translates the ML model's predictions and defined daylight and view qualities into a 
practical visual representation for designers to evaluate. An optimisation step is employed to identify the optimal 
apartment layout, guided by the requirements outlined in EN17037. During this optimisation process, designers 
can specify their focus for optimisation among the three aspects. This background optimisation step gives 
designers direct feedback on their design options, enabling them to investigate the performance indicators of 
different rooms and apartments. With the performance data and the insights from the optimiser, designers can 
make informed decisions that enhance the quality and performance of residential layouts as they progress 
through subsequent stages of the design process.  
 In summary, this proposed framework represents a significant advancement in the architectural design 
process, seamlessly integrating ML models into the workflow by guiding designers on performance indicators. By 
systematically assessing daylight, view quality, and room orientation and providing visual feedback and 
optimisation suggestions, this approach empowers designers to make informed decisions that enhance the 
quality and performance of residential layouts, aligning with modern design standards and requirements. 
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"SWISS DWELLINGS" DATASET 
The "Swiss dwellings" dataset forms the cornerstone of this research. This chapter outlines different parts of the 
dataset, highlighting the comprehensive scope and representativeness. A crucial aspect before using a dataset is 
data preprocessing. To ensure the dataset's integrity and reliability, missing and erroneous entries are detected, 
and the simulation results are validated. 
 The first two sections of this chapter provide information on the dataset's contents. The following sections 
provide a verification of the daylight and view simulation from the dataset. The fourth section focuses on 
identifying missing information within the dataset, as well as removing unusable data and outliers. This step 
involves ensuring that all necessary information is included for the labels and features of ML model training. The 
resulting cleaned dataset is used for subsequent research, including data analysis and ML model training. Lastly, 
the limitations of the 'Swiss dwellings' dataset are discussed along with recommendations for improving this 
dataset and future datasets. 

5.1 Dataset overview 
The dataset used for this study is "Swiss Dwellings v3.0.0: A large dataset of apartment models including 
aggregated geolocation-based simulation results covering viewshed, natural light, traffic noise, centrality and 
geometric analysis" (Standfest et al., 2022). Archilys compiled the dataset based on the company's commercial 
projects on digitization and building analysis. The dataset of this study consists of over 45,000 apartment samples 
in approximately 3,100 apartment buildings located within Switzerland. The dataset includes room-level 
geometries, typology, visual, acoustical, topological, and daylight characteristics. On the building level, the dataset 
includes location-specific characteristics and a 10-minute walkshed from each building. This study only focuses on 
the geometry, view and daylight characteristics. 
 The dataset contains information on the geometrical values of each room. For each room, an apartment, site, 
building, floor, plan, unit and area ID to place the room correctly. Figure 5-1 shows a visual representation of the 
different scales within the dataset. The geometry dataset provides each room's unit usage, entity type and subtype, 
entity height, elevation and polygon geometry. The 2D geometries consist of an apartment's areas, walls, railings, 
columns, windows, doors, and features (for example, sinks and bathtubs). Since the dataset consists of existing 
building plans of clients, Archilyse converted the geometries from geo-referenced to geometries that do not 
represent the real-world location of the buildings. 
 

Total dataset 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Site – 401  Building – 1017  

Floor – 4361  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Apartment – 
9de7676e03f0cb93d6055cd194dcf84c 

Room – 309107  

 Figure 5-1: Visual representation of room 309107 within the dataset geometry (Source: author) 
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5.2 Environmental simulation  
Besides the geometrical model, the simulation dataset provides data per room on the apartments' visual, acoustic, 
solar, layout, and connectivity-related characteristics. The total simulation dataset consists of 367 columns. The 
dataset provides the view and light simulation data using the room-wise aggregations' min, max, mean, std, 
median, p20, and p80. For instance, p20 describes the simulation value represents at least 20% of the positions in 
the room. The median describes the median simulation value of all the positions in the room, and the max 
describes the maximum simulation value of any position in the room. 

The view and daylight simulations used environmental data from "SwissTopo". SwissTopo consists of a digital 
detailed 3D building model that covers the whole of Switzerland and consists of over 70 million 3Dobjects 
(SwissTopo, n.d.). The 3D model represents every building, bridges, cable cars, forests, and individual trees, see 
Figure 5-2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2.1 Daylight simulations 
To help understand the impact of solar radiation, sun simulations are done on the object a grid from the analysed 
object for each room in the dataset. The goal of these simulations is to identify surfaces that have great solar 
potential. The amount of solar radiation defines the sun simulations on a grid from the analysed object. Included 
in the simulation is direct sun and scattered light. The simulations are performed for the 21st of March, 21st of June 
and the 21st of December. The simulation outcome is given for the room-wise aggregations min, max, mean, std, 
median, p20 and p80 in kilolux (klx). The simulation is performed for a spatially distributed grid in the interior 
floorplan at 0.1 m above the floor. The grid is a 25 cm hexagonal grid.  
  Archilyse uses their own software for the daylight simulations. The CIE Standard Clear Sky, polluted atmosphere, 
is used for the brightness of the sky. No materials are included and reflections are not considered. With these 
simulations the amount of direct sunlight from the sky is determined.  

5.2.2 View simulation 
The view simulations include calculations about the visual amount of buildings, greenery, water and mountains 
on a grid from the analyses object. The values are expressed as proportion of the total view of a sphere, which 
represents 4 π steradians (sr) and represent the amount a particular object category occupies in the spherical field 
of view. The simulation outcome is given for the room-wise aggregations min, max, mean, std, median, p20 and 
p80. Archilyse did simulations using their own software. The simulation were done by 3D rendering cubemaps, 
using Vulkan. The simulation is performed for a spatially distributed grid in the interior floorplan at standing eye-
height at 1.55 m above the floor. 
  

Figure 5-2: SwissTopo, a digital 3D model of Switzerland (Source: SwissTopo, n.d.) 
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5.3 Dataset verification  
The quality of a dataset determines the reliability of analytical results and plays an essential part in the credibility of 
any simulation-based analysis based on a model's prediction. This sub-chapter delves into the work of dataset 
verification for the simulated values of daylight and view to assess the quality of the dataset utilized in this study. 

5.3.1 Room selection  
Forty rooms are selected from the dataset for the verification process. A comprehensive set of criteria determined 
the selection process, assuring the representativeness and quality of the chosen rooms. The criteria included six 
categories: living spaces, windows on one side, absence of landscape view layer, minimum daylight and high sky 
view value, absence of site obstructions and diverse room orientations. The selected rooms included living spaces 
such as living rooms, bedrooms, kitchens and rooms. This restrain was chosen to maintain the relevance of the 
simulations within the context of the domestic environment. To simplify the simulation method, only rooms with 
windows on one side of the façade were selected. Since the environmental context of the buildings in the dataset 
is not given, only rooms without the landscape view layer were selected. This way, unknown obstacles, such as 
trees or buildings outside the building site, were ruled out. Exclusively, rooms with a landscape nature or urban 
view smaller than 0.1% were considered. A minimal daylight value was established as a criterion for room selection 
to ensure rooms with sufficient access to daylight. The minimum daylight value consisted of 50 lux for the 21st of 
March, June and December at 12 o'clock. Additionally, rooms with a sky layer more prominent than the view layer 
nature and urban were selected to ensure the presence of the view to the sky layer exclusively. The selected rooms 
were scrutinized to ensure the absence of significant obstructions from either the building itself or neighbouring 
buildings on the site. Lastly, the selection consists of rooms from each orientation to create a diverse set of rooms.  
 Applying these criteria ensured the chosen rooms' diversity and representativity, showcasing the entire 
dataset's integrity. In total 37 rooms are selected for the verification that all met the six criteria. For each cardinal 
direction four to five rooms are selected. Table 13 shows the ranges of the room characteristics. Appendix A shows 
an overview of how each room is located within their apartment layout. The rooms are all modelled in respect to a 
ground plane the rooms are elevated based on the elevation of the room. The rooms are modelled with the correct 
face types and boundary conditions of the room, see Figure 5-3. 
 

Table 13: Room characteristics ranges  

Room characteristic Range 
Room area 7.4 – 29 m2 

Total window area 1.9 – 6.4 m2 
Room elevation 0 – 20.3 m 

Room height 2.6 m 
Window to floor ratio 0.12 – 0.45 

Room depth ratio 1 – 3.7 

Orientations 
North, Northeast, East, Southeast, 

South, Southwest, West, Northwest 
 
 

Room East 3 
 

 
 
 
 
 
 
 

Room South 1 Room West 4 

 
 

  

Figure 5-3: Examples of room modelling 
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5.3.2 Daylight simulations set-up  
The daylight simulations conducted for this verification were executed using the Honeybee plugin, which uses 
Radiance (version 5.4a) and Dysim for daylight analysis. To provide an in-depth understanding of daylight 
dynamics, point-in-time simulations were performed on three days during the year: March 21st, June 21st, and 
December 21st , each at 12:00 locale time. The simulations used the standard CIE sky model, sunny sky with the sun, 
to ensure that the solar irradiance model corresponded with the lighting standards. A 25 by 25 cm grid was used, 
which corresponded with the grid size used for the simulations done in the dataset.  
 The weather information for the simulations was obtained from Geneva, Switzerland. Consequently, the exact 
location of the various rooms was standardised to a single location in Switzerland in the verification. It is critical to 
understand that access to sunshine is affected by the location of the building, as it influences climatic 
characteristics such as the amount of sunlight and the angle of sunlight. Switzerland's mountainous terrain can 
cause significant variations in local sunshine availability and climate. Unfortunately, the current dataset does not 
provide the exact location. Therefore, the verification's climate is normalised to one location, Genova. 
 Two different simulations were conducted. The first simulation aimed to fully replicate the conditions for the 
daylight simulation as given in the dataset. In this simulation, the two most crucial settings concluded the number 
of ambient bounces in combination with the material reflectance. The simulation ran with one ambient bounce 
and no material reflectance since the simulations in the dataset included the amount of direct sunlight and light 
from the sky without considering reflecting light. Because of this, both direct and sky light were considered with 
one bounce and the reflecting light is entirely absorbed by the materials. The second simulation followed the 
simulation parameters as given in the EN17037 guideline. The simulation parameters for both the daylight 
simulations are listed in Table 14.  
 

Table 14: Daylight simulation parameter settings  

Simulation parameter Simulation 1 - remake Simulation 2 - guideline 
CIE sky type Sunny with sun Sunny with sun 

Site location (latitude, longitude) Geneva (46.25, 6.13) Geneva (46.25, 6.13) 
Plane height [m] 0.1 0.85 

Grid size [m] 0.25x0.25 0.25x0.25 
Material reflectance (floor, ground, walls, ceiling) (0, 0, 0, 0) (0.2, 0.2, 0.5, 0.7) 

Window transmittance 0.91 0.67 
Ambient combination (ab, aa, ar, ad, as)  (1, 0.4, 32, 512, 256) (5, 0.4, 32, 512, 265) 

 

5.3.3 View simulations set-up  
The view simulations conducted for this verification were executed using the Ladybug (version 1.4.0) plugin for 
environmental analysis. Specifically, Ladybug's "View Percent" component was used to simulate the percentage 
of view to sky from an input geometry (the plane) compared to its surrounding context. This view evaluation 
approach determines the quality of a view from a specific indoor location. Two simulations ran to replicate the view 
simulation in the dataset as closely as possible.  
 The spherical view type was selected as it determines the sphere percentage unhindered by the contextual 
geometry for each point. This method gives equal weight to all portions of the sphere. We may conclude that the 
remaining unobstructed view only consists of a view of the sky, considering that the selected rooms do not have a 
substantial quantity of view of nature or urban present. A grid of 25 by 25 centimetres was adopted from the 
dataset simulations. A plane height of 1.55 meters was used throughout this simulation, corresponding to the 
provided value in the dataset. The EN17037 standard recommends plane heights of 1.2 or 1.7 meters. Given that the 
plane height used in this simulation lies in between the required range, changing the plane height will not change 
the outcomes too much. In the second simulation the plane height is set to 1.2 meters. The simulation parameters 
for the two sky view simulations are listed in Table 15. 
 

Table 15: View to sky simulation parameter settings  

Simulation parameter Simulation 1 - remake Simulation 2 - guideline 
View type Sky exposure Sky exposure 

Plane height [m] 0.1 1.2 
Grid size [m] 0.25x0.25 0.25x0.25 

Vector resolution 577 vectors 577 vectors 
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5.3.4 Simulation results 
Figure 5-4 shows the results of the daylight and view simulations for three rooms. The detailed results of the 
simulations are shown in Appendix A. At all the different directions a big difference between the remake simulation 
and the simulation according to the guidelines shows. Three first reasons for the big difference in illuminance can 
be found in the settings of the second simulation. Firstly, the second simulation includes internal reflections, 
leading to more light inside the room. Secondly, the glass properties are taken into account, a lower transmittance 
leads however to less light passing through the window. Lastly, the higher plane height receives more light. Overall 
these three main difference lead to higher daylight values causing the big difference between the two simulations. 
Looking at the two sky view simulations no big difference is shown, as expected since only the plane height is 
changed.  
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Figure 5-4: Dataset verification simulation results for 3 rooms 
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5.3.5 Simulation comparison 
For the results comparison the median of the rooms is used, in this way extreme values in the results are ruled out. 
Figure 5-5 shows the simulation results of the two different simulations in comparison with the values in the 
dataset. For the daylight values an interesting observation can be made that the simulation results from the 
guideline simulation come closer than the simulation values of the remake simulation and the guideline 
simulation values are always higher than the remake simulation values. Additionally, for higher values from the 
dataset the simulations show lower values, while for lower values in the dataset the simulations show higher 
values. Different sources of discrepancy can be found between the simulations that are done and the simulations 
of the dataset.  
 Firstly, a different grid structure is used, as the simulations in the dataset used a hexagon grid, while the 
verification simulations are done with a square grid. Additionally, an accurate environment is not modelled for the 
verification simulations, the environment and the building itself are not modelled. This could explain some 
differences between the results even though the rooms are carefully selected in such a way that obstructions are 
minimal. Kharvari (2020) mention that the sky model plays an vital role in the daylight calculations. This could 
explain a difference in the values since the dataset simulation are done with the CIE sky model ‘Standard Clear 
Sky, polluted atmosphere’, while in the simulations a ‘sunny with sun sky’ of Honeybee is used. Additionally, the 
weather file of Geneva is used for all rooms instead of the exact weather location file, which could also lead to 
changes in the solar irradiance and thus the illuminance levels. Lastly, an important reason why the remake 
simulation values differ is the ambient parameter combination that is unknown from the dataset simulations. 
 A clear correlation between the verification simulations and the dataset values is not observed. However, it is 
important to mention that for a machine learning model patterns are relevant, not the exact values. Hence, a 
similar trend would be expected when the dataset simulations will change in accordance with the guideline as 
the correlation between the two verification simulations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 5-5: Simulation results comparison with dataset values 
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5.4 Apartment & room selection 
Data cleaning is a pivotal step in data analysis to enhance the data's quality and usability. For the reliability and 
validity of the ML model, it is crucial to carefully select apartments and rooms that are appropriately defined and 
structured. Identifying and rectifying inconsistencies, errors, and missing information that could arise during data 
gathering is a critical element of data cleansing. The data cleaning process consisted of seven steps to select the 
proper apartments and rooms to be used for this research. The raw dataset comprised 45,175 apartment layouts, 
and the cleaned dataset comprised 42,022 apartment layouts. Firstly 119 duplicate rows are dropped, and all the 
features are removed from the dataset, which consisted of 317,930 rows. Table 16 shows a detailed overview of the 
data cleaning steps and the deducted number of apartments during the steps.  
 For the sake of this research from the dataset, only the following room types are selected: room, living room, 
kitchen, dining, bedroom, and studio. Since this research only covers the visual comfort aspects of indoor spaces, 
all the outdoor areas are removed from the dataset, for instance, balconies, loggias and winter gardens. 
Apartments with multiple stories are removed; those apartment layouts are outside the scope of this research. 
Secondly only the apartments that are inside the simulation dataset are selected. Apartments that have windows 
shared between rooms or apartments are removed and additionally apartments that had windows that were 
connected to a room are also removed. Next, rooms that have no daylight levels but have view to sky are removed. 
Rooms with nan values in the simulation value columns are removed, these are areas inside apartments such as 
voids or shafts. Lastly, apartments that consisted of outliers for the two machine learning labels for daylight or sky 
view are removed. Appendix D.Part II shows the code for the data preparation. 
 To have a useable dataset for the machine learning model a statistical approach is used to remove the outliers 
based on the mean and standard deviation. The outliers of the dataset are selected based on the median daylight 
value of March 21st, June 21st and December 21st at noon and the p80 view to ground and sky value. For each of the 
five performance aspects the outliers are individually selected based on three times the std. From this the 
apartments are selected that did not fall within any of the five outlier types. 

Table 16: Data cleaning detailed overview 

Description Apartments Area ids 
Total number with redundant room types 45,175 315,036 

Total number without redundant room types 43,192 98,228 
1 Multiple story apartments 1,735 25,724 
2 Apartments not in simulation dataset 3 8 
3 Apartments with shared windows 868 2,099 
4 Apartments with other geometrical difficulties 248 843 
5 Rooms without daylight with view to sky 27 55 
6 Rooms with nan label or featuture values 2,468 6,267 
7 Daylight and view outliers 4,821 10,677 

Total number of final apartments 34,757 78,278 

5.4.1 Shared windows and geometrical difficulties 
Within the dataset not all geometries of the apartments are drawn in the same way. There are apartments that 
have a window geometry that is shared between rooms, between areas or between apartments, see Figure 5-6. 
Apartments that include areas shared window geometries are removed from the dataset, since additional 
information about each window that belongs to an area is added into the ML model. Additionally, within the 
process of connecting windows to their area apartment layout with thick walls resulted in not connecting windows 
to their area. Manually connecting the windows with other geometrical difficulty such as thick walls would be 
possible, however for the sake of this research those apartments are eliminated from the dataset. Appendix D.Part 
I shows the code that was used to find missing information in the dataset and identify the shared windows and 
geometrical difficulties.   

Figure 5-6: Apartments with shared window geometry or geometrical difficulties (Source: author) 

Shared windows between 
apartments or rooms 

 

Shared windows between 
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5.4.2 Removing daylight and sky view outliers 
The last step included the removal of the outliers for the two machine learning labels median daylight values on 
the 21st of March, June and December and p80 values for view to the ground and view to sky. Outliers are data 
points in a dataset that vary considerably from the mean values. Eliminating outliers is critical for various reasons. 
Outliers can have a significant influence on model training, causing the model to be skewed or biased toward 
these extreme values. Which could result in inaccurate predictions and poor generalization. Additionally, outliers 
introduce noise into the model, which could lead to reducing the overall predictive value of the model. The outliers 
are selected one by one for each of the five labels based on the full dataset based on the three times standard 
deviation method. The dataset is then cleaned by removing apartments that include rooms that fall in one of the 
five outlier categories.  
 Figure 5-7 visualizes the labels normalized data, the first two boxplots show the data with the outliers and the 
lower two boxplots show the data after removing the outliers. The boxplots with the outliers show a large number 
of datapoints that depart greatly from the rest of the data. Looking at the data with the outliers, 95% of the data 
for the daylight label is located within the lowest 10% of the values and for the view label 95% of the data is located 
within the lowest 20% of the values. The boxplots with the outliers highlight the potential skewing effect that the 
data could have on the machine learning model.  
 Looking at the lower two boxplots containing the data after the removal of the outliers, there is a huge shift in 
the data distribution. The data without the outliers show a better representation of the data with a wider and more 
equal distribution. After the outlier removal, 95% of the data for the daylight label is contained within the lowest 
70% of the values and for the view label 95% of the data is located within the lowest 80% of the values. This data 
distribution guarantees a better concentration of the machine learning model on the patterns of a bult of the data.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-8 shows the distribution of the daylight and view to sky values with and without the outliers in two 
scatterplots. Removing the outliers made some adjustments in the ranges of the daylight and view values. The 
median daylight values for the 21st of March at noon with outliers range from 0 to 8,900 lux, while the values 
without the outliers range from 0 to 1,700 lux. The p80 view to sky values with the outliers range from 0 to 15.2% 
while the values without the outliers range from 0 to 5.5%.  

Figure 5-7: Boxplots of normalised ML labels with and without outliers 

Figure 5-8: Scatterplots of normalised ML labels with and without outliers 
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5.5 ‘Siwss dwellings’ dataset limitations 
While analysing the 'Swiss dwellings' dataset, three primary areas are detected where the dataset falls short. The 
dataset misses essential information for complete analysis and misses essential descriptions of the components 
in the dataset. Additionally, inconsistencies are discovered within the dataset. In the following part, each of the 
three areas is described. 

5.5.1 Missing information 
The first limitation of the dataset is missing information. Notably, the dataset in its current condition lacks critical 
features necessary for undertaking a thorough study of the dataset's simulation values concerning the rooms' 
characteristics. In the dataset, there is no difference between an inside door and a door that leads to a balcony. 
However, most often, doors that connect to a balcony contain glass, while inside doors that connect one indoor 
space to another do not. To get a complete understanding of how much glass a room contains, doors that are 
connected to outdoor spaces are changed from entity subtype 'DOOR' to 'OUTSIDE_DOOR'. Therefore, when 
addressing windows from now on, this is considered the entity subtypes' WINDOW' and 'OUTSIDE_DOOR'.  
 The absence of a clear relationship between windows and their corresponding rooms is a severe problem, 
limiting the capacity to correlate specific room parameters with matching simulation data. Therefore, the dataset 
must include information specifying which windows are connected to which room. Additionally, the data should 
include the window area per window and the total window area per room. This information gives a clear 
understanding of how much access a room has to the outdoors. Combining these two aspects allows a quick 
investigation of the total window area for each room, strengthening the dataset with essential information 
streams. In addition, window orientations should be included in the dataset to understand the influence of room 
orientation on simulation values fully. 

5.5.2 Missing description  
Another critical aspect of creating an ideal dataset is the addition of detailed explanations for all dataset 
components. The dataset currently needs more clarity in terms of column definitions and units of measurement, 
preventing complete understanding and application. Columns such as "height", for example, should be more 
specified. An additional note that includes the specific meaning of "height" is essential. For example, floor-to-floor 
height for rooms and total window height for windows. Similarly, "elevation" should be described as the height at 
which the top section of the floor is located and the height of the windowsill. Additionally, the dataset should clearly 
describe the geometric entities represented by polygons, whether the "window" category includes the frame and 
the glass or only the glass component.  
 To allow complete data interpretation, the dataset should clearly explain the simulation approach, indicating 
whether it matches a particular standard or takes a customised approach. For transparency and replicability, the 
dataset should include information on the boundary conditions used to produce the simulations, including 
simulation settings and boundary conditions. In this way, the simulations could be reconstructed using the 
provided description. Including these detailed descriptions is critical in converting a dataset with simulation values 
into a more useable resource for research and analysis. 

5.5.3 Inconsistency 
Another significant shortcoming of this dataset is inconsistency within the dataset. There are two main 
inconsistencies found within this dataset. Firstly, the placement of buildings on the site, with instances where 
different buildings located on one site are not regularly positioned relative to one another. Such variations could 
create confounding variables and complicate comparison studies, emphasising the importance of a uniform 
approach to building placement concerning sites in the dataset. Variations in how windows are drawn also stand 
out as a noteworthy inconsistency. As described in Chapter 5.4.1, in some situations, window geometries are shared 
between rooms or even between different apartments. 
 Lastly, the dataset contains inconsistency among the different files of the dataset. For example, the 
"entity_subtype" column in the "geometry" file should be in accordance with the "layout_area_type" column in the 
"simulations" file. However, the two different files have differences in the room type column when it comes to the 
usage of capital letters and the unique room types the two files contain, while the two columns describe the exact 
same data.   
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5.6 Optimal dataset recommendations 
To enhance the quality of the "Swiss Dwellings" dataset, some key modifications need to be made. These changes 
can be categorised into three categories: guideline simulations, performance analysis data, and overall 
consistency. These categories apply to all dwelling datasets in Europe that contain simulation and geometrical 
data.      
 Datasets including simulation data for buildings in Europe, should conduct the simulations in accordance with 
the European guidelines. In this way, not only can a building be checked on requirements that are accepted across 
Europe, but datasets that consist of data from different countries could be merged together. By comparable 
conducted simulations, a single ML model can be trained using these different datasets since the correlations 
between simulation results and geometrical data will be similar. 
     Additionally, the given geometrical information in the dataset should consist of information that is essential for 
the type of simulation data which the dataset includes. Giving the geometrical data for each room in accordance 
with the simulation types in the dataset allows for easy performance analysis and a more thorough data analysis 
of the dataset.  
     Lastly, if the dataset is split into different files, there should be an overall consistency across all files. Additionally, 
the way the different sites are geometrically drawn within the dataset should be consistent. 
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DATA ANALYSIS 
This chapter provides a detailed analysis of the dataset's information. The first section focuses on the overall 
daylight and view data of the dataset. The second part of the chapter delves into the foundational components of 
a machine learning process, the labels and feature selection. In the second section, each possible feature is 
compared against the labels to understand patterns, relationships and correlations. The importance of each 
feature is discussed,  leading to a final feature selection. Lastly, the distribution of the different visual comfort levels 
and labels within the dataset is analysed. 

6.1 Daylight data 
The dataset contains eighteen different daylight categories grouped within three days. For each day, the 
associated daylight hours are given, see Figure 6-1. The three days that are included in the dataset are the 21st of 
March, the 21st of June, and the 21st of December, also known as the equinoxes and solstices. On the 21st of March, 
the equinoxes, the sun is exactly above the equator, making the day and night of equal length. On the 21st of June 
and December, the solstices, the sun's path is the furthest away from the equator, making it the longest and 
shortest day of the year. Analysing the daylight for these three days provides a general understanding of the 
daylight quality throughout the year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.1.1 Daylight hours value distribution 
Figure 6-2 illustrates the distribution of daylight levels at frequent daylight hours for each day. For each of the days 
and hours, nearly 95% of the data has daylight levels below 1250 lux. Outliers are removed from the dataset for all 
three days at noon. The highest illuminance values are found on the 21st of March at 16:00, while the lowest 
illuminance values are found on the 21st of December at 16:00. The median values on the 21st of March are almost 
equal for the four hours, while there is a clear difference between the median values of the hours on the 21st of 
June and December. 
  

Figure 6-2: Daylight boxplot per day per hour 

Figure 6-1: Daylight categories dataset 



Data analysis  visual comfort l(AI)outs | 68  

6.2 View data 
In the dataset, various view categories are described that can be linked to the four view categories given by the 
EN17037, see Figure 6-3. The ground view category consists of the ground, railways and different street types such 
as tertiary streets, secondary streets, primary streets, and pedestrians. The sky layer contains the sky category from 
the dataset. The 'landscape nature' represents natural environment characteristics, such as parks, forests or 
waterfronts. Within the dataset, 'landscape nature' is depicted through three view types: greenery, mountains, and 
water. In contrast, the 'landscape urban' view category represents urban environmental characteristics such as city 
streets, surrounding buildings, plazas, and commercial areas. In the dataset, 'landscape urban' includes buildings 
that are not located on the site. An additional view category is included within the dataset, namely view site. The 
view site category contains buildings on the site itself, views of the same building and interior views such as walls, 
flooring and the ceiling from the room itself. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.2.1 View category value distribution 
The dataset's view values are expressed as a proportion of the entire view and represent the amount a particular 
object category occupies in the spherical field of view. A 4π steradian image is a 2-dimensional representation of 
a 3-dimensional sphere shaped like an oval or a circle. It captures the entirety of the sphere, allowing the observer 
to see in all directions, from front to back and from up to down. Steradian is the internationally recognised unit for 
measuring solid angles, and a sphere contains 4π Steradians.  
 Within the dataset, the view values are normalised. The view results in Steradian are divided by 4π, indicating 
a proportion of the total view. Figure 6-4 shows the distribution of the different view categories in a proportion of 
the full view. The view to urban landscape category contains the highest view values, and the view to sky category 
contains the lowest outliers. The median value of the view of a natural landscape is the lowest. 
 According to the research of Brembilla et al. (2021) a layer is present in a view if a certain Steradian threshold is 
reached. For example, if the threshold of 0.06 sr would be used to determine whether a layer is present or not, it 
corresponds to 0.477% of the total view. For the sake of this research, a threshold of 0.477% is used to determine 
whether or not a view layer is present for the subsequent parts of this research. 
  

Figure 6-3: View categories dataset 

Figure 6-4: Distribution view per category 
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6.3 Labels 
Labels represent the target variables that a machine learning model seeks to predict. For this research, three 
daylight labels and two view labels are selected. For the daylight labels, the 21st of March, June and December are 
chosen at 12:00, see Figure 6-5. For the daylight labels, the median value is chosen because the EN17037 guideline 
measures the target illuminance against 50% of the space.  
     For the view labels, view to ground and view to sky are chosen, see Figure 6-6. View to sky indicates an 
unobstructed visibility of the sky from within a space. For the view labels, the p80 (80th percentile) value is chosen 
because the EN17037 guideline measures the presence of a view layer against 75% of a space.  
     By selecting the median value for daylight and the p80 value for view, in the broader framework, the predicted 
daylight and view values can be tested against the EN17037 guideline to quantify the visual comfort quality of the 
space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 6-5: Label 1-3, daylight 21st of March, June, and December at 12:00 (Source: author) 

Figure 6-6: Labels 4 & 5, view to ground and view to sky (Source: author) 
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6.4 Features 
To capture the essential aspects influencing the two labels ‘daylight’ and ‘view to the sky’ a feature study has been 
conducted. The features for this study consist of one image feature along with numerical features. An image 
feature is proposed, which contains six features embedded in the image with room characteristics.  
 Additionally, potential numerical features are discovered that contain essential information influencing the 
labels that cannot be shown on the image. A detailed examination of each feature’s relationship with the two labels 
and their correlation is provided. Based on the feature importance and the provided analysis, the numerical 
features will be selected. 

Context visualization 
For each apartment, an image is created for each of the living spaces within the apartment, see Figure 6-7. Each 
image consists of six embedded features the image contains, which are the room depth ratio, room area, room 
orientation, window distribution, and site and environmental obstructions, see Figure 6-8 
 The area of the room is highlighted in yellow on the image. A boundary box of 15x15 meters is created from the 
centre of the room. The full context around the room that falls within the 15-meter bounding box is given in the 
image. In the images, the rest of the floor that falls within the boundary box is added in light grey to give an 
understanding of the obstructions from the building itself. The balconies or loggias on the floor are highlighted in 
grey since these geometries only partly block lighting. Additionally, the floors in the building that are higher than 
the current floor of the apartment are added in a darker grey to give an understanding of overhangs. 
 Since there is no information in the dataset about the actual environmental obstructions, a circle is used to 
express the presence of the view landscape layer. The circle's radius depends on how much of the landscape layer 
is present in the room. The environmental circle is divided into two parts: a green part to express how much of the 
total view of landscape consists of nature and a pink part to express how much of the view is urban view. A 
threshold of 0.477% is used to determine if the landscape layer is present. The threshold of 0.477% corresponds 
with one of the view thresholds in the earlier mentioned studies. The circle only appears on the image if this 
threshold is reached.   

Figure 6-7: Examples of image feature 
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Figure 6-8: Overview hidden image features 
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Room area 
The image feature shows information about the area of each room. The room area shows a slightly weak 
correlation between the daylight and view-to-sky availability. Figure 6-9 and Figure 6-10 show a subtle negative 
trend when the room area exceeds 20m2, above this threshold a slight decrease in both the daylight and view to 
sky availability occurs when the room area increases. However, it is important to note that the size of the room 
must be considered in combination with the total window area of a room. A larger room may provide more access 
to the window area. However, the room could also have a higher room depth ratio, negatively affecting the total 
illumination and access to sky views. Thus, examining the window-to-floor ratio over the room area is more 
valuable. Most rooms fall within a room area range of 0 to 20m2 and outliers can be found above a room area of 40 
m2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Room width to depth ratio 
From the image a general understanding can be found about the relation between the room width and room 
depth. The width-to-depth ratio of a room impacts the availability of daylight and the view of the sky within a room. 
Figure 6-11 and Figure 6-12 show the relationship between the depth of a room and the availability of daylight and 
a view of the sky. Both plots show a clear trend: the daylight and view-to-sky values decrease as the room's depth 
increases. When the depth ratio surpasses three, a notable shift occurs, where the negative slope of the correlation 
becomes notably steeper compared to the slope for the depth ratio under three. As a result, when the room depth 
ratio exceeds three, the influence of the room's depth becomes much more evident. Most rooms have a room 
depth ratio between one and three. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

Figure 6-11: Room width to depth ratio vs daylight Figure 6-12: Room width to depth ratio vs view to sky 

Figure 6-9: Room area vs daylight Figure 6-10: Room area vs view to sky 
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Window to floor ratio  
The window-to-floor ratio in a space significantly impacts the availability of daylight and the view of the sky. Figure 
6-13 and Figure 6-14 illustrates the relationship between the window-to-floor ratio and daylight and view-to-sky 
availability. A clear pattern emerges, showing that daylight and view availability improve as the window-to-floor 
ratio increases. On the other hand, a critical insight can be recognized by a definite hard end line at the bottom of 
the data points. This line emphasizes the need to preserve a minimum window-to-floor ratio to retain a certain 
amount of daylight and a view of the sky within a space. Looking at the data from the rooms with windows, the 
window-to-floorratio mostly ranges from zero to 0.5.  
 Rooms without any windows stand out in these scatterplots. Even though these rooms do not have any direct 
access to windows, they still have access to daylight and a sky view. Most of these rooms are areas within a room, 
for example, a kitchen area within a living room space. Even though those areas are not directly located at a 
window, the light still gets to that area. Rooms without windows do not reach high daylight and view-to-sky 
availability, corresponding with the hard-end line at the bottom data points. This can be explained by the fact that 
those areas often lay deeper into the building, and thus, daylight and view access is more challenging. 
 Since the image does not show the window area, the window-to-floor ratio can not be found in the image. 
Therefore, the window-to-floor ratio should be considered as a numerical feature of the machine learning model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Window distribution 
In the image, the window distribution is showcased. Not only illustrates the image where the windows are placed 
on a horizontal plane, but also whether a room has windows that face one or more directions. The window 
distribution influences daylight and view. The window distribution influences daylight since it gives information 
about how light is distributed in the room and from which side light can enter the room. The window distribution 
influences view because it gives information about from how many directions obstacles could be in from of the 
window. When windows are spread over multiple sides, this could lead to having a big obstruction on one side of 
the room but not the other side of the room. Figure 6-15 and Figure 6-16 show the correlation between the number 
of walls with windows. The scatterplots do not show a high correlation based on the number of sides with windows 
in a room and the daylight and view-to-sky availability. Based on this analysis, the feature ‘number walls with 
windows’ is not a strong feature. Most of the rooms have one, two or three facades with windows. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6-15: Window distribution vs daylight Figure 6-16: Window distribution vs view to sky 

Figure 6-13: Window to floor ratio vs daylight Figure 6-14: Window to floor ratio vs view to sky 
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Room orientation  
One embedded feature of the image is the orientation of the room. In the image, North is always facing upwards. 
The orientation influences daylight since the sun moves from East to West during the day on the Northern 
Hemisphere. This can also be seen in Figure 6-17, which showcases the daylight values of rooms with windows on 
one side of the room for different orientations on the 21st of March, the 21st of June and the 21st of December at 12:00. 
As expected, the lowest daylight values are found in rooms that face North, Northeast, West and Northwest for the 
sun position at 12:00.  

 
 
 The distribution of the windows across the different orientations can not easily be captured into one number 
and is, therefore, a strong image feature. However, in the image, the exact distribution of the windows can not be 
captured since the window area of each window can not be found in the image. Therefore, the main orientation 
of a room could be a possible numerical feature to go along side the image feature.  
     For each room, the main orientation is found, which is the orientation with the highest window area. Figure 6-18 
and Figure 6-19 illustrate the relation between the main orientation of the room and the daylight and view-to-sky 
accessibility. The dataset shows a nice representation of all the different main directions. No clear relation between 
the main orientation of a room and the daylight and view-to-sky availability can be found. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
  

Figure 6-18: Main room orientation vs daylight Figure 6-19: Main room orientation vs view to sky 

Figure 6-17: Daylight boxplot per orientation for one sided window rooms 
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Environmental obstructions 
In the image, a circle is placed in the middle of the room to express the obstructions by nature or urban context. 
This is done because the view to landscape layer impacts how much light enters a room and how much of a view 
is blocked. However, within the dataset, the environment of a building is not given as geometries because of the 
privacy of the building’s residences. When looking at the relation between view-to-nature and view-to-urban, the 
two categories of the landscape layer, a trade-off between the two views is observed. As one of the two landscape 
views increases, the other landscape view becomes more prominent, see Figure 6-23. The relation between view 
to landscape and the daylight and view to ground and sky availability does not show a strong correlation, see 
Figure 6-20, Figure 6-21 and Figure 6-22. However, it is important to mention that considering the surrounding 
environment and its obstructions is essential when analysing the daylight and view-to-sky availability.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Site obstruction 
In the image, three categories of site obstructions are 
shown, namely, outside areas, building geometries 
on the same floor, and building geometries on 
higher-placed floors. Outdoor spaces include 
balconies, loggias, winter gardens and terraces. A 
noticeable tendency emerges when looking at the 
scatterplots: a negative correlation, Figure 6-24. As 
the view-to-site value increases, the availability of 
daylight and view-to-sky inside the rooms decreases. 
Most rooms contain view-to-site values between 96% 
and 100%. 
  

Figure 6-20: View to landscape ratio vs daylight Figure 6-21: View to landscape vs view to sky 

Figure 6-23: View to nature vs. view to urban Figure 6-22: View to landscape vs view to ground 

Figure 6-24: site obstruction vs. daylight and view to sky 
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Elevation / floor height 
Another essential feature which is not shown in the image feature is the elevation of a room. Figure 6-25 and Figure 
6-26 show the relationship between elevation and the availability of daylight and view-to-sky within a space. The 
scatterplots show a weak positive correlation between elevation and daylight and view-to-sky availability. The 
elevation ranges from -10 to 60 meters, with the largest number of rooms being between 0 and 20 meters above 
ground level. Notably, trends appear in the data, with rooms positioned below ground level and above 40 meters 
above ground level, indicating lower values for both daylight and view the lower or higher the rooms are located. 
Additionally, two comparisons are made between view to ground and view to landscape with elevation. Figure 
6-27 shows an as expected negative correlation between view to ground and the elevation of a room. Figure 6-28 
shows an as expected positive correlation between view to landscape and the elevation of a room.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Room height  
Lastly, the image also does not show the height of a 
room. However, the height of a room influences the 
daylight and view-to-sky availability and thus should 
be considered. Figure 6-29 shows the relationship 
between the height of a room and the values of the 
two labels, showing a weak positive correlation. 
However, it is essential to note that not enough data 
points are located above 2.8 meters, which limits the 
ability to draw conclusions for this part of the graph. 
The dataset has a quite narrow height range, with 
most of the rooms having a room height ranging 
between 2.4 and 2.6 meters. 
 
  

Figure 6-25: Elevation ratio vs daylight Figure 6-26: Elevation ratio vs view to sky 

Figure 6-27: Elevation ratio vs view to ground Figure 6-28: Elevation ratio vs view to landscape 

Figure 6-29: Room height vs. daylight and view to sky 
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6.4.1 Feature distribution  
The distribution and importance of features play a crucial role in the performance of machine learning (ML) 
models. For a feature to be considered strong, it must be well-represented throughout the dataset, with few or no 
outliers, to ensure consistency and pattern recognition. Any outliers present can significantly impact the 
performance of an ML since outliers do not fit in the patterns that an ML model learns from. 
 Figure 6-30 illustrates the distribution of the analysed features. Two outstanding features that show a bad 
representation throughout the dataset are the window distribution and the room height. These two features show 
that 95% of the data is represented as one value in the dataset, meaning it would be a weak feature. However, the 
window distribution is fairly simplified for analysis purposes and represents the number of facades that a room has 
windows on, which means that the current dataset mainly represents rooms with windows on one side. The 
window-to-floor ratio and the main orientation are well-represented values in the dataset and show the least 
outliers among the features. The elevation feature shows many outliers on the higher side of the normalised values, 
meaning that rooms located on the higher floors of high buildings are underrepresented. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.4.2 Feature importance  
The importance of different features is analysed concerning daylight and view performance, utilising Random 
Forest Regression to examine the relationship between the features and labels. Random Forest Regression 
identifies the features that have the greatest impact on the outcome of the labels. Before training the Random 
Forrest Regression, the features are normalised. 
 Figure 6-31 shows the feature importance of the discussed features on each of the five labels. As expected from 
the feature distribution, the room height and the window distribution do not have a high impact on the labels. The 
window distribution is shown on the image feature and says something about the dataset, it indicates that either 
more rooms with windows on multiple sides need to be added to the dataset or the dataset should be cleansed 
from the window distribution outliers to ensure better ML model performance. Additionally, based on the feature 
distribution and feature importance, room height is a weak numerical feature.  
 The feature site obstruction is illustrated on the feature image and shows the highest influence on the labels. 
The site obstruction mainly describes the relationship between the interior obstructions and the windows. 
 
  

Figure 6-30: Feature distribution 

Figure 6-31: Feature importance 
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6.5 Visual comfort performance distribution 
Based on the layout evaluation system proposed in Chapter 4.2, the visual comfort performance quality of each 
room and apartment within the dataset can be found. In the optimal situation, the dataset used for the training 
should have a good representation of all performance levels and labels. In this sub-chapter, for each room in the 
dataset, the visual comfort performance levels are found. Subsequently, for each apartment in the dataset, the 
performance label is found. This sub-chapter analyses the distribution of the performance levels and labels in the 
dataset.  

6.5.1 Room performance levels 
Figure 6-32 illustrates the distribution of the performance levels of each room over the dataset. The performance 
levels for daylight, view and orientation are found as described in Chapter 4.2. The daylight and orientation 
performance levels are well represented in the dataset. Note that the orientation performance level does not have 
an insufficient class. The view performance levels show a poor distribution over the performance level classes, as 
most rooms have a high view performance level. Note that the view performance class low does not exist. 
 Looking closer into the daylight performance levels in combination with the simulation verification, which is 
done in Chapter 5.3, one interesting observation can be made. From the simulation verification, it is known that 
the daylight illuminance values in the dataset are lower than expected when conducting the simulation based on 
the EN17037 requirements. Based on this, the same dataset would have a different and more skewed distribution 
if the daylight simulations had been conducted as per the guideline. The expected distribution would consist of 
fewer rooms with insufficient and minimum daylight levels and more rooms with a high daylight performance 
level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

6.5.2 Performance levels relations 
As shown in Figure 5-8, a clear relation between the view performance and daylight performance can be found. 
Where a higher sky view percentage results in a higher daylight illuminance value. Knowing this, it would be 
expected to see the same trend when comparing the daylight performance levels of rooms with the view 
performance levels of rooms. Figure 6-33  shows the relation n between the daylight performance level and the 
view performance level of each room. One interesting observation that can be made is that the majority of the 
rooms have a high view performance level but a low daylight performance level, which can be explained by the 
fact that the view level distribution is skewed towards the higher performance level. Knowing this, it is surprising 
to observe that quite some rooms with an insufficient view level still achieve medium and high daylight 
performance levels. 
 As known, the orientation of a room influences the sunlight availability of a space and, therefore, the daylight 
performance level of a room. Figure 6-34 shows the relation between the daylight performance level and the 
orientation performance level of a room. However, the orientation level of a room is based on the room type and 
the optimal placement, which indirectly says something about the relation between room usage and the optimal 
lighting conditions of a room. So, it is quite interesting to see a positive relation between the two performance 
levels.  
  

Figure 6-32: Room performance levels distribution 
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6.5.3 Apartment performance labels 
The distribution of the apartment performance labels is illustrated in Figure 6-35. While the room performance 
levels for daylight and orientation showed a good distribution, the apartment labels for daylight and orientation 
are skewed towards the lower side of the labels. Knowing that the daylight values in the dataset are most probably 
lower than they should be, more apartments than needed score an insufficient label F. On the other hand, the view 
performance labels of the apartments show a good representation of the labels. Note that for view and orientation, 
there is no performance label F.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.5.4 Overall apartment performance labels 
To fully understand the overall visual comfort quality 
of an apartment, a label system is proposed in 
Chapter 4.2.4. Based on this evaluation system, an 
overall performance label of each apartment in the 
dataset is found. Figure 6-36 shows the distribution 
of the overall visual comfort apartment performance 
labels in the dataset.  
 One first observation is that the overall 
performance label F is overrepresented in the 
dataset. Note that this label is given based on the 
penalty score. Thus, all these apartments consist of 
at least one room that has insufficient daylight or 
view quality and does not reach the minimal 
EN17037 requirements. The distribution shows that 
the higher labels are underrepresented in this 
dataset. 
  

Figure 6-35: Performance labels distribution 

Figure 6-36: Performance labels distribution 

Figure 6-33: Daylight & view performance level relationship Figure 6-34: Daylight & orientation performance level relationship 



Data analysis  visual comfort l(AI)outs | 80  

Figure 6-37: Overview features in relation to labels 

6.6 Conclusion 
For the ML model, five labels are selected, consisting of 3 daylight labels and two view labels. For the daylight labels 
the median value of the room is selected, and for the view labels the p80 value of the room is selected, which is in 
accordance with values used in the EN17037 guideline to test a room across requirements. For the features of the 
ML model, one image is proposed along with numerical features. The image feature represents one room in the 
dataset and contains embedded features with information about the room size and orientation, window 
distribution and environmental and site obstructions. The feature distribution and feature importance, in 
combination with the feature analysis, reveal that the elevation and window-to-floor ratio show the most 
significant relation with the labels. Therefore, the additional numerical features of the ML model will be elevation 
and window-to-floor ratio. Figure 6-37 illustrates the relation between the selected features and the embedded 
features in the image feature with the labels. 
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Figure 7-1: Training set distribution of features and labels 

ML MODEL PERFORMANCE 
This chapter is divided into different sections, each essential for evaluating the machine learning model’s 
performance for the given task. Firstly, the used dataset split is presented. Then, a baseline model is created, which 
makes predictions with only the image feature. Subsequently, the proposed ML model set-up is discussed, and 
this model is trained three times while changing the ResNet from pre-trained to not pre-trained.  
 Based on the baseline model and the findings during the first three ML model trainings, ablation studies are 
executed. From the ablation studies, the best ML model architecture and hyperparameters are selected as the 
final model. The last section concludes with a more in-depth evaluation of the best-performing model set-up, 
providing a broader perspective on the model’s strengths and limitations.   

7.1 Data splitting 
For the training of the model, in total, fifty-five thousand rooms from almost fourteen thousand apartments are 
used, which is roughly 40% of the full dataset, see Table 17. To ensure that the full potential of the dataset is used 
within 40% of data usage, a randomiser is used to select the apartments for the training dataset. The randomiser 
ensured that all sites within the dataset were represented and that outliers of the dataset were selected. For the 
evaluation of the model, an additional prediction dataset is created with thirty tree sites consisting of standard 
apartment layouts and uncommon geometries. The prediction sites are excluded from the training dataset to 
ensure that the model has not seen the exact same apartment type during the training. 
 

Table 17: Insights of total, training and prediction dataset  

Dataset characteristics Total dataset Training dataset Predictions dataset 
Sites 1,287 1,254 33 

Buildings 2,551 2,522 75 
Apartments 34,757 13,905 538 

Rooms 138,922 55,632 2,321 
 

 The features and labels are normalised based on the total cleaned dataset. Figure 7-1 shows how the features 
and labels are distributed within the total dataset. From the label distribution, we can conclude that the 40% of 
the total dataset data is a good representation of the total dataset. The training dataset is split into three parts: the 
training set, the validation set that is used during the training and the test set that is used to evaluate the trained 
model. From the training dataset, 80% of the data is used for the training, including the training and validation set, 
and 20% is used for the testing. This split of the dataset is used to train all the following models.  
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7.2 Model 0 – baseline 
As per Chapter 3.5 a multimodal ML model would outperform a CNN model. To test whether or not a multimodal 
approach is suited for the problem at hand, first, a baseline model is created. In this case, the baseline model 
consists of ResNet50 model with the image feature as input, see Figure 7-2. After the image feature goes through 
the RestNet50, batch normalisation, leaky ReLu and global average pooling are applied before a fully connected 
network. Appendix E describes the detailed architecture of the baseline model and the training settings.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The baseline model forms the foundation for comparing the performance of all the further trained models. The 
ResNet50 does not use any pre-trained weights, and all layers of the ResNet50 model are trainable. During training, 
early stopping of ten epochs is used to prevent overtraining and the learning rate was set at 0.0001. The training 
of the model is stopped early at epoch 20. The results of training the baseline model are illustrated in Figure 7-3.  
 
The following findings can be found in the training results of the model:  

 During the initial training (epoch 1-5), the training and validation loss significantly reduced, indicating that 
the model learns quickly and adapts to the training data. The training and validation MAE consistently 
decreases, indicating the improvement of the model's accuracy.  

 A steady training progress can be recognised after epoch 5 when the training loss and MAE continue to 
decrease over time. 

 There are fluctuations in the validation loss after epoch 8, which continues until the end of the training.  
 After epoch 10, no improvements were made in the validation loss within the subsequent ten epochs, 

and the training was terminated at epoch 20. The 20th epoch has the following metrics: a training loss of 
0.0101, a validation loss of 0.0251, a training MAE of 0.0742 and a validation MAE of 0.1138. 

 In the test evaluation, the model achieved a test loss of 0.0226 and a test MAE of 0.1138. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 7-2: Overview baseline model architecture 

Figure 7-3: Model 0 training results 
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7.3 Pre-trained ImageNet model training  
 
The fundamental part of the ML model set-up is using the ResNet50 architecture, which is well-known for its depth 
and efficiency in image classification tasks. For this part, three models are trained, all using the same architecture 
but differ in the base ResNet50 model. The first two models are built using a transfer learning approach using the 
pre-trained weights of a ResNet50 model. Transfer learning is an ML approach which involves building a new ML 
model on top of a prior ML model (Bhavsar, 2019). Transfer learning transfers knowledge gained by an ML model 
while learning one task to another model to learn a task. In this case, the pre-trained model of He et al. (2015) for 
image recognition is used.  
 The first model remains untrainable, keeping the knowledge embodied in its pre-trained weights. The second 
model allows for further fine-tuning to fit the purpose of the task at hand. The third model’s strategy departs from 
the transfer learning approach. The third model contains an untrained ResNet50 architecture, staying free of any 
prior information. Comparing the results of these three separate models provides insight into the influence of a 
pre-trained ImageNet model for the task at hand. 
 

7.3.1 ML model architecture 
Figure 7-4 shows the main architecture parameters used in all the three models. A more detailed overview of the 
model’s architecture can be found in Appendix E. The only difference between the first and the second models is 
the de-freezing of the layers to make them trainable. A standard image size of 224x224 pixels is used, which was 
also used in the earlier-mentioned study. After the image feature maps are extracted from the ResNet, a first 
completely connected layer is added to converge the spatial information into a one-dimensional feature vector. 
After the first fully connected layer, the numerical features are concatenated with the feature extracted from the 
first fully connected layer. The concatenated layer is put through batch normalisation and a leaky ReLu. 
Subsequently, a second fully connected layer is added. The final output layer is a dense layer with five output units 
and a linear activation function. The Adam optimiser with a mean squared error (MSE) loss function and a mean 
absolute error (MAE) metric is used to construct the model. During training, early stopping of 25 epochs is used to 
prevent overtraining. All three models could train for a maximum of 200 epochs with a batch size of 64. The 
learning rate is set at 0.001.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 7-4: Overview ML architecture of models 1, 2 & 3 
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7.3.2 Model 1 – baseline ImageNet 
The first model for the training is the baseline ImageNet model. The model uses a ResNet50 model that is pre-
trained on ImageNet. The layers of this model are frozen, which means that the layers' weights will not be updated 
during the training. The training of the model is stopped early at epoch 188. Figure 7-5 shows the results of the first 
model training.  
 
The following findings can be found in the training of the model:  

 During the initial training (epoch 1-10), the training and validation loss significantly reduced, indicating that 
the model learns quickly and adapts to the training data. The training and validation MAE consistently 
decreases, indicating the improvement of the model's accuracy.  

 A steady training progress can be recognised after epoch 10 when the training loss and MAE decrease 
consistently. The model stabilises after epoch 25 concerning the training loss and MAE.  

 There are fluctuations in the validation MAE, which continues until the end of the training.  
 After epoch 163, no improvements were made in the validation loss within the next 25 epoch and the 

training was terminated at epoch 188. The 188th epoch has the following metrics: a training loss of 0.0136, 
a validation loss of 0.0127, a training MAE of 0.0833 and a validation MAE of 0.0794. 

 In the test evaluation, the model achieved a test loss of 0.0124 and a test MAE of 0.0793. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.3.3 Model 2 – trainable layers 
The second model for the training is the trainable model pre-trained with ImageNet. The model uses a ResNet50 
model that is pre-trained on ImageNet. All the layers of this model are trainable, meaning that the layers' weights 
can be updated during the training. At epoch 158, the training of the modelled stopped. Figure 7-6 shows the 
results of the second model training.  
 
The following findings can be found in the training of the model:  

 During the initial training (epochs 1-6), the model starts with a relatively high training loss and MAE but 
quickly converges. The training and validation loss reduced significantly, indicating that the model learns 
quickly and adapts to the training data. 

 The model stabilises and improves in terms of training loss and MAE during epochs 6-40. Signs of 
overfitting can be found from epoch 9 onwards. At this point, the training loss decreases steadily, while the 
validation loss increases. 

 The validation loss and MAE fluctuated during the whole training, showing signs of overfitting. Significant 
fluctuation can be found in epochs 9 and 34 in the validation loss.  

 After epoch 133, no improvements were made in the validation loss within the next 25 epoch and the 
training was terminated. The 158th epoch has the following metrics: a training loss of 0.0040, a validation 
loss of 0.0155, a training MAE of 0.0422 and a validation MAE of 0.0871. 

 In the test evaluation, the model achieved a test loss of 0.0080 and a test MAE of 0.0612. 
  

Figure 7-5: Model 1 training results 
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7.3.4 Model 3 – ResNet50 from scratch 
The third model for the training is the proposed multimodal model without transfer learning. The model uses a 
ResNet50 without pre-trained weights, meaning the layers' weights will be defined during the training. The 
training of the model is stopped early at epoch 103. Figure 7-7 shows the results of the third model training.  
 
The following findings can be found in the training of the model: 

 During the initial training (epoch 1-14), the training loss and MSE significantly reduced and consistently 
decreased, indicating that the model learns quickly and adapts to the training data. The validation loss and 
MAE decrease substantially but show some fluctuations.  

 The model stabilises and improves during epochs 14-60. 
 The model training MAE stabilise after epoch 60 while the training loss decreases.  
 The validation loss and MAE fluctuated during the whole training, showing signs of overfitting. Significant 

fluctuation can be found in epochs 14 and 24 in the validation loss.  
 After epoch 78, no improvements were made in the validation loss within the next 25 epoch and the model 

was terminated at epoch 103. The 103rd epoch has the following metrics: a training loss of 0.0052, a 
validation loss of 0.0594, a training MAE of 0.0496 and a validation MAE of 0.1951. 

 The model achieved a test loss of 0.0082 and a test MAE of 0.0612 in the test evaluation. 
 
 
  

Figure 7-6: Model 2 training results 

Figure 7-7: Model 3 training results 
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Figure 7-8: Trained models daylight prediction comparisons 

7.3.5 Evaluation of 3 trained models 
Twelve apartments are selected from the prediction dataset to evaluate the performance of each of the three 
models. The selected apartments are general apartments from different sites and comprise 55 rooms.  
 Appendix F.Part I shows the twelve apartments used for this evaluation. The evaluation is done in different 
steps. First, the predictions for daylight and view are compared against the three models. Based on this evaluation, 
outliers and trends are selected and zoomed into in the second part of the evaluation. Part II and Part III of 
Appendix F show predictions for randomly selected rooms for daylight on the 21st of March and view to the sky.  

Daylight predictions 
Figure 7-8 shows the daylight predictions of the three models compared to the ground truth. Based on the 
predictions, the following findings were made: 

 Model 1 has an MAE of 0.1168, model 2 has an MAE of 0.1122, and model 3 has an MAE of 0.1021.  
 Model 1 has an MSE of 0.0245, model 2 has an MSE of 0.0225, and model 3 has an MSE of 0.0201.  
 The distribution of the predictions for models 1 and 2, combined with the MAE and MSE, indicates that the 

model's predictions deviate from the ground truth and predict more significant average errors than model 
3. All three models have the same specific outliers for both underprediction and overprediction.  

 The predictions for the 21st of March are better for all three models compared to the other days. 
 Both models 1 and 2 have an almost horizontal regression line for the 21st of June and December. The 

almost flat line indicates that the models the predictions have no strong correlation with the ground truth.  
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View predictions 
Figure 7-9 shows the three models' view-to-ground and view-to-sky predictions compared to the ground truth. 
Based on the predictions, the following findings were made:  

 Model 1 has an MAE of 0.1465, model 2 has an MAE of 0.1556, and model 3 has an MAE of 0.1383.  
 Model 1 has an MSE of 0.0318, model 2 has an MSE of 0.0345 and model 3 has an MSE of 0.0286.  
 Based on the distribution of predictions for the three models, model 2 demonstrates less deviation from 

the ground truth and predicts minor average errors compared to models 1 and 2. 
 Model 3 performs better on average than the first and second models regarding the MAE and MSE. 
 All three models exhibit the same specific outliers for over- and under-prediction.  
 The predictions for the sky view are better for all three models compared to the predictions for view to 

ground. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Underprediction outliers 
Three outliers underpredicted in all models are recognised when looking at the predicting graphs for daylight and 
view. The underprediction outliers are yellow in Figure 7-8 for daylight and Figure 7-9 for view. Figure 7-10 shows 
the three outlier rooms for daylight and the five outliers for view.  
 The second room, 'room 915172, is an outlier for the daylight on the 21st of March and the 21st of June and is an 
outlier for the view to the ground prediction. This room is not a room but an area in a space. The room has indirect 
access to a window. Because of this, the room's geometry does not include a window, making the prediction 
harder.  
 All the three outliers for view to sky, room ‘294881’, ‘908021’ and ‘282549’, have a window that is obstructed in 
front of it. This indicates a balcony or gallery in front of the window, blocking the daylight and view accessibility.   
 The fourth room, 'room 294881, is an outlier for view-to-sky prediction. Reasons for the underprediction can be 
found in the geometry of the room. The room geometry consists of two separate rooms adjacent to each other. 
The uncommon shape of the room can be a reason for the underprediction. Additionally, the room is quite 
extensive and deep compared to the others.   
     A pretty outstanding observation can be made when considering all six outlier rooms. Almost all rooms have no 
environmental obstructions since no circle exists in the feature image of four of the six rooms. Additionally, the 
environmental circle in the other two rooms is comparatively small.    

Figure 7-9: Trained models view prediction comparisons 
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Overprediction outliers 
The analysis of the three models reveals that two rooms are consistently overpredicted for the daylight label, as 
shown in Figure 7-8. Additionally, the analysis, as shown in Figure 7-9, indicates three rooms that are overpredicted 
for sky view by all three models. Figure 7-11 shows the geometries of the four rooms that are underpredicted for 
daylight and sky view by all three models.  
 The first room, ‘room 989113’, is overpredicted for daylight on the 21st of March and the view of the sky. Looking 
closer into the rooms that are overpredicted for sky view, a similarity can be found in the fact that all these rooms 
do not have any direct obstruction from a higher floor or balcony.  
 ‘Room 1602284’ is an overpredicted outlier for predicting all three daylight days. Upon closer examination of the 
geometries of this room, it can be observed that it has a balcony space in front of the window and a quite present 
environmental obstruction circle.  
 Lastly, an interesting observation can be made by examining the similarities of the environmental circle in the 
image feature. All four rooms have the environmental circle present in the image feature. This is the opposite of 
the underpredicted rooms that mostly did not have the environmental circle present in the image feature. This 
similarity in design could explain why all three models overpredicted these rooms similarly.  
 
 
 
 
  

Figure 7-10: Underpredicted rooms for daylight and view predictions 
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Outlier daylight 21st March 

Room 915172 

Outlier daylight 21st March & 
21st June & view to ground 

Room 282549 

Outlier daylight 21st 
December & view to sky 

Outlier view to sky 

Room 294881 

Outlier view to sky 

Room 908021 

Outlier view to ground 

Room 915193 

Figure 7-11: Overpredicted rooms for daylight and view predictions 

Room 989113 

Outlier daylight 21st March & 
view to sky 

Room 1602284 

Outlier daylight 21st March & 
June & December 

Room 989116 

Outlier view to sky 

Room 1602239 

Outlier view to sky 
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Room performance level predictions 
Looking at the broader application of the predictions, the main focus in the framework is giving designers 
feedback on the visual comfort quality of a space. This is directly linked to the different daylight and view 
performance levels that are translated from the predicted values. Therefore, the model should be able to predict 
accurately enough so the room is classified with the corresponding performance level. 
 Figure 7-12 illustrates the confusion matrixes of the daylight performance levels for all three models. Looking 
closer into how well the models’ predictions are concerning the daylight performance levels of a space, it indicates 
that model 3 outperforms models 1 and 2. The earlier mentioned flat line of the daylight predictions by models 1 
and 2 can also be seen in the confusion matrix. An interesting observation can be made, as the confusion matrixes 
indicate that neither of the models can predict medium and high daylight performance levels correctly. 
 Figure 7-13 illustrates the confusion matrixes of the view performance levels of all three models. As earlier 
mentioned, the distribution of the view level classes is skewed towards the higher end, and this is also indicated in 
the confusion matrixes as most room’s ground truth is a high view label. Models 1 and 3 predict the room 
performance level quite well compared to the daylight performance levels, as less than 20% of the rooms are 
mispredicted. Notably, the degree of miscalculation in projecting the level of performance is never more than a 
single performance level away from the actual performance level. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison of three trained models 
The above findings provide valuable insights into these models' limitations and potential biases. One observation 
is that the view-to-sky prediction outperforms the prediction of all the other labels. The difference in the prediction 
quality between the daylight and view labels could indicate that the model needs to learn different things to 
predict daylight than when predicting for view. 
 Based on earlier observations made during the evaluation process, model 3 is the best overall performing 
model. Model 3 delivers the best predictions for the daylight and view labels. Furthermore, it does not generalise 
data erroneously for the latter. It can be deduced that this model exhibits the most potential out of all the models 
analysed. However, the objective of the ML model is to predict the daylight and view values accurately enough so 
that the predicted value will fall in the same guideline level as the ground truth. When looking closer into Figure 
7-12 and Figure 7-13, the observation can be made that, at this moment, neither of the models reaches this 
requirement. Thus, further model training is needed to ensure a more accurate prediction of the daylight and view 
values to meet the model's objective. 
  

Figure 7-12: Trained models daylight performance level confusion matrix 

Figure 7-13: Trained models daylight performance level confusion matrix 
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7.4 Model ablation studies 
 
Based on the earlier observation of the first three models’ training process, an ablation study is done to fine-tune 
the ML model. The ablation studies are done with model 3 as a starting point. Firstly, the model is split up into two 
different models, one for daylight prediction and one for view predictions. Based on the results, experiments are 
done by adjusting the architectural layers. Additionally, experiments are done by adjusting the fusing moment of 
the image feature and the numerical features and experiments on different ResNet base models are conducted. 
Lastly, based on the findings of these three experiments, the hyperparameters of the best model are adjusted to 
fine-tune the model. Figure 7-14 provides an overview of the ablation studies conducted in this sub-chapter. The 
ablation studies will lead to a final fine-tuned model, which will be the final model of this research. 
 
 
 
 
 
 
 
 
 
  

Figure 7-14: Overview ablation studies 
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7.4.1 Model splitting 
As described while comparing the first three trained models, splitting up the model could improve the accuracy 
of the model’s predictions. Table 18 shows the training results of splitting up the model into one model for daylight 
prediction and one model for view predictions. As of now, model A refers to the ML model trained for daylight 
predictions and model B for view predictions.  
 To start from the same baseline again, first, model 0 is split up into two models. Model 0 is only trained with the 
image feature as input. As shown in the table below, splitting up the model improves the performance of the 
model. The current baseline model for both metrics predictions has a test MSE of 0.0226. Splitting up the model 
improves the daylight predictions significantly, as the test MSE for daylight is reduced to 0.0183. This first 
experiment of splitting up the baseline model proves that creating two separate models results in more accurate 
predictions. As the first experiment showed promising results, the current model 3, now referred to as 3.1, is also 
split up into two parts. During the first training of this split-up model 3.1A, the model did not converge quickly 
enough. Therefore, a learning rate scheduler is added to the model, creating model 3.2. The learning schedule used 
during training gradually lowers the learning rate over time based on the number of iterations. The training of 
split-up model 3.2 resulted in promising performance. As the current model 3.1 reached a test MSE of 0.0082, the 
split-up model 3.2A for daylight prediction reached an MSE of 0.0057 and model 3.2B for view prediction reached 
an MSE of 0.0068. Thus, splitting up the model improved the accuracy of the model significantly. Both the daylight 
and view models showed a similar training process. 

Table 18: Model performance comparison, splitting up model 

 MSE MAE 
ML model Training Validation Test Training Validation Test 

Only image feature 
Model 0 0.0101 0.0251 0.0226 0.0742 0.1116 0.1138 

Model 0A(daylight) 0.0075 0.0623 0.0183 0.0635 0.2163 0.0968 
Model 0B(view) 0.0129 0.1725 0.0201 0.0865 0.3297 0.1030 

Model 3.1 
Model 3.1 0.0052 0.0594 0.0082 0.0496 0.1951 0.0612 

Model 3.1A(daylight) 0.0067 0.0840 0.0139 0.0536 0.2517 0.0705 
Model 3.2 

Model 3.2 0.0086 0.0206 0.0121 0.0639 0.0974 0.0720 
Model 3.2A(daylight) 0.0024 0.0058 0.0057 0.0332 0.0505 0.0503 

Model 3.2B(view) 0.0026 0.0066 0.0068 0.0357 0.0534 0.0533 

7.4.2 Architecture layers adjustments 
Three experiments on layer adjustments are conducted based on model 3.2A. Table 19 shows the results of training 
the models. The first experiment, Model 4.1A, changed the order of one layer in the architecture. In the fully 
connected network of the image feature, the dropout layer and the dense layer are switched around. This model 
did not outperform model 3.2A.  
 The second experiment on the architectural layer also focussed on the image feature part. During this 
experiment, the global average pooling layer is replaced by a convolutional layer and latten. Although this model’s 
architecture outperformed the first layer adjustment experiment, it did not outperform model 3.2A.  
 Lastly, an experiment to add more dense layers to the combined fully connected network is conducted. One 
extra dense layer and dropout are added at the end of the architecture. Furthermore, it is worth noting that the 
aforementioned architectural modification failed to surpass the performance of model 3.2A. 
 

Table 19: Model performance comparison, architectural layer ablation studies 

 MSE MAE 
ML model Training Validation Test Training Validation Test 

Model 3 
Model 3.2A(daylight) 0.0024 0.0058 0.0057 0.0332 0.0505 0.0503 

Model 4 
Model 4.1A(daylight) Swapped layer 0.0043 0.0116 0.0077 0.0471 0.0843 0.0627 
Model 4.2A(daylight) Replace global Avg. 0.0039 0.0062 0.0062 0.0434 0.543 0.539 
Model 4.3A(daylight) Added layers 0.0036 0.072 0.0071 0.0412 0.0584 0.0579 

7.4.3 Different fusion moment 
The current best model, model 3.2A, has a hybrid fusion moment. After the image feature goes through the 
ResNet50 layers, the output is connected to its own fully connected network. This fully connected layer is 
concatenated with the two numerical features input. Three experiments are conducted to investigate different 
fusing moments. Table 20 shows the outcome of these experiments. 
 The first experiment consisted of early fusion, where the output of the Resnet50 is directly concatenated with 
the numerical feature input. The second experiment consisted of late fusion, where the numerical features first go 
through a fully connected layer before concatenating with the fully connected network of the image feature. The 
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third experiment consisted of hybrid fusion, where the numerical features go through a fully connected network, 
and the output of the ResNet50 layers is concatenated with the fully connected network of the image features. All 
the aforementioned fusing modifications failed to surpass the performance of model 3.2A. 
 

Table 20: Model performance comparison, different fusing moment 

 MSE MAE 
ML model Training Validation Test Training Validation Test 

Model 3 
Model 3.2A(daylight) 0.0024 0.0058 0.0057 0.0332 0.0505 0.0503 

Model 5 
Model 5.1A(daylight) Early fusion 0.0058 0.0550 0.0154 0.0525 0.1924 0.0864 
Model 5.2A(daylight) Late fusion 0.0024 0.0064 0.0064 0.0325 0.0533 0.0531 
Model 5.3A(daylight) Hybrid fusion 0.0050 0.0508 0.0097 0.0502 0.1815 0.0710 

7.4.4 Different ResNet model  
The currently used ResNet50 is a relatively deep and complex model, which could be an overkill. Therefore, 
experiments are conducted to test if changing the ResNet model to a lighter or heavier model influences the 
model’s performance. The experiments are done on the basis of late fusing Model 5.2A, since this model showed 
potential in terms of the training MSE and MAE. Table 21 shows the results of the ResNet experiments.  
 The first experiment, model 7.1A, consists of a ResNet18 model, making the model significantly lighter and less 
complex. However, the test MSE of model 6.1A reaches as low as the test MSE of model 5.2A, model 6.1 plateaued 
way earlier than model 5.2A in terms of training MSE and MAE. The second experiment, model 7.2A, consists of a 
ResNet101 model, making the model significantly heavier and more complex. The results of model 7.2A indicate 
that this model has the weakest generalisation performance among the three models. All the ResNet 
modifications mentioned above failed to surpass the performance of model 5.2A. 
 

Table 21: Model performance comparison, different ResNet model 

 MSE MAE 
ML model Training Validation Test Training Validation Test 

Model 5.2 
Model 5.2A(daylight) Late fusion 0.0024 0.0064 0.0064 0.0325 0.0533 0.0531 

Model 6 
Model 6.1A(daylight) ResNet18 0.0036 0.0065 0.0065 0.0426 0.548 0.0549 
Model 6.2A(daylight) ResNet101 0.0067 0.0282 0.0156 0.0575 0.1180 0.0848 

7.4.5 Hyperparameter adjustments 
Based on the experiments on the architecture layers, fusing moment and ResNet model, model 3.2A is the best-
performing model. This model is used to conduct experiments on the hyperparameter adjustments.  
 In the first experiment, the batch size was reduced to 32, which could act as a regularization and could help the 
overfitting problem of the model. The second experiment consist of a high dropout rate, which increases the 
random dropouts of the neurons during training and could reduce overfitting, especially in complex models or 
noisy datasets. The third experiment consists of a low dropout rate, which means that only a fraction of the neurons 
are deactivated. A low dropout rate prevents over-regularization and encourages the model to learn more from 
the data. The fourth experiment consists of a high L2 regularization rate, which sets a significant penalty on large 
weight and could prevent overfitting. The fifth experiment is a low dropout and L2 regularization rate, which allows 
the model to capture more complex patterns. However, a low L2 regularization rate could lead to overfitting.  
 Among all the hyperparameter modifications, as mentioned earlier, the best modification is a lower dropout 
and L2 regularization rate as used in model 7.5A, as shown in Table 22. Model 7.5A outperforms models 3.2A on 
both the MSE and MAE. Therefore, model 7.5A is selected as the best-performing model and further evaluated.  
 

Table 22: Model performance comparison, hyperparameter adjustments 

 MSE MAE 
ML model Training Validation Test Training Validation Test 

Model 3.2 
Model 3.2A(daylight) 0.0024 0.0058 0.0057 0.0332 0.0505 0.0503 

Model 7 
Model 7.1A(daylight) Batch size 32 0.0031 0.0060 0.0059 0.0386 0.0520 0.0515 
Model 7.2A(daylight) High dropout rate 0.0062 0.0072 0.0072 0.0559 0.0611 0.0618  
Model 7.3A(daylight) Low dropout rate 0.0013 0.0058 0.0055 0.0235 0.0490 0.0484 
Model 7.4A(daylight) High L2 rate 0.0036 0.0068 0.0067 0.0417 0.0575 0.0571 
Model 7.5A(daylight) Low dropout, L2 rate 0.0008 0.0051 0.0047 0.0185 0.0451 0.0440 
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7.5 Evaluation best-performing model  
In order to assess the performance of the best-performing ML model in accurately learning correlations, two 
additional evaluations, in addition to the earlier conducted evaluation, are conducted, which ensures a thorough 
examination of the model's performance and its ability to recognize patterns and relationships within the data 
effectively. The earlier used 12 general apartments are again predicted with this model. Then, three standard 
apartment types are used for predictions, and the evaluation is done to see if the model is able to make similar 
predictions for the same room type. Lastly, three uncommon apartment geometries are used for predictions to 
see if the model can handle uncommon data.  
     The best-performing model, model 7.5A and model 7.5B, have the same architecture as shown in Figure 7-4, 
which means that the model uses an image feature and two numerical features to predict either the daylight 
performance or the view performance. The model uses a hybrid fusion method. After the image feature maps are 
extracted from the ResNet, a first completely connected layer is added to converge the spatial information into a 
one-dimensional feature vector. After the first fully connected layer, the numerical features are concatenated with 
the feature extracted from the first fully connected layer. Subsequently, a second fully connected layer is added. 
The final output layer is a dense layer with either two or three output units and a linear activation function. The 
hyperparameter of the model are fine-tuned resulting in a low dropout rate of 0.3 and a low L2 regularization rate 
of 0.0001. Appendix E gives a detailed overview of the model's architecture. The Python code of the final ML training 
is shown in Appendix D.Part III. 

7.5.1 Model training  
For the training of model 7.5, the Adam optimizer with a mean squared error (MSE) loss function and a mean 
absolute error (MAE) metric is used to construct the model. The model has a learning rate scheduler that starts at 
0.001 and gradually decreases over time. During training, early stopping of 25 epochs is used to prevent 
overtraining, and the model could train for a maximum of 200 epochs with a batch size of 64.  
 The training of the daylight model is stopped early at epoch 81, and the view model stopped early at epoch 82. 
Figure 7-15 shows the results of the third model training. The following findings can be found in the training of the 
model:  

 In initial training (epoch 1-10), both models start with a high initial training loss and MSE. However, both 
significantly reduced and consistently decreased, indicating that the model learns quickly and adapts to 
the training data. The validation loss and MAE decrease substantially but show fluctuations.  

 The model's training loss and MAE stabilise and improve during epochs 10-50, with occasional plateaus in 
learning. These plateaus are addressed by reducing the learning rate, leading to an improvement in 
validation loss within four epochs after the learning rate reduction. 

 The model validation loss and MAE stabilise after epoch 60 and start to plateau, while the training loss and 
MAE gradually decrease.  

 After no improvements in validation loss the daylight model was early terminated at epochs 81. The 81st 
epochs achieved a training loss of 0.0008 and a training MAE of 0.0185. The view model stopped early at 
epoch 82. The 82nd epochs achieved a training loss of 0.0012 and a training MAE of 0.0236. 

 The daylight model achieved a test loss of 0.0047 and a test MAE of 0.0440 in the test evaluation. The view 
model achieved a test loss of 0.0057 and a test MAE of 0.0478 in the test evaluation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 7-15: Model 7.5A & model 7.5B training results 
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7.5.2 General apartments  
As mentioned above, twelve apartments are selected from the prediction dataset to evaluate the performance of 
the model on general apartments. Appendix F.Part I shows the twelve selected apartments. 
 Figure 7-16 illustrates the daylight predictions against the ground truth of model 3.2A. The predictions for the 
21st of March are notably more accurate than those for June and December. The model underpredicts the values 
for the 21st of June and, the predictions for the 21st of December are quite generalised as the regression line does 
not show a substantial incline. Figure 7-17 illustrates the predictions by model 3.2B for the view values. The sky view 
predictions are way more accurate than the ground view predictions but show some outliers.  
 As this ML model will be implemented into the broader framework, the model must be able to predict the 
performance levels of a room correctly. Figure 7-18 illustrates the confusion matrixes of the daylight and view 
performance levels when translating the predictions of the best model to performance levels. Looking closer into 
how well the model’s predictions are concerning the daylight performance levels of a space, a slight positive 
correlation is shown in the confusion matrix. One notable improvement is shown, as the model can now make 
slightly higher predictions and at least one medium daylight performance level was predicted. Looking into the 
prediction accuracy in terms of the view performance levels, Figure 7-18 indicates a quite good prediction. 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 7-18: Best model performance levels prediction 12 general apartments 

Figure 7-16: Best-model daylight predictions 

Figure 7-17: Best-model view predictions 
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7.5.3 Standard apartment types 
Figure 7-19 shows the three standard apartment types used for this evaluation. The first standard apartment type 
comprises a living room, a connected kitchen, and three bedrooms. This first standard apartment type is oriented 
towards the Northeast and Southwest. The second standard apartment type is oriented towards the South and 
consists of two bedrooms, and a connected living room and kitchen space. The third standard apartment type 
comprises two bedrooms and a separate kitchen and living room. The apartment type is oriented towards the 
Southeast and Northwest. To evaluate the performance of the model, the first standard apartment type was 
predicted sixteen times, the second apartment type twelve times, and the third apartment type was predicted 
eight times by the best model. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Performance level prediction 
Figure 7-20 illustrates the confusion matrixes of the daylight and view performance levels predicted by the best 
model. Looking closer into how well the model’s predictions are concerning the daylight performance levels of a 
space, it indicates that the model does not well predicts the daylight performance levels compared with the twelve 
general apartments. Additionally, in terms of the daylight performance levels, the model is underpredicting. The 
view prediction performance in terms of performance level is not good enough, as roughly 10% of the spaces have 
an incorrect view level.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Daylight predictions 
Figure 7-21 shows the daylight predictions made by the best model for the three standard apartment types 
mentioned. As expected, the daylight predictions for the 21st of March are more accurate than for the 21st of June 
and December. As expected, the model predicts the same room within the same range, indicating a positive linear 
correlation, especially for the second and third standard apartment types. However, there are some exceptions.  
 Firstly, standard apartment type one stands out more, as the daylight predictions per room type are more 
scattered. The predictions among different room types for standard apartment type one are more scattered than 
the other standard apartment types, which could be explained by the fact that the spaces of type one are less 
often a perfect square. Additionally, the kitchen (yellow) of standard type one seems to be harder to predict. This 
is in accordance with the earlier outlier analysis, where spaces that are areas within a space are mostly 
underpredicted. Nonetheless, the different rooms are still predicted within a clear group, suggesting that the 
model learned correlations between different room types to predict the daylight label.  

Figure 7-20: Best model performance levels prediction 3 standard apartment types 

Figure 7-19: Standard apartment types 

Standard apartment type 1 (16x) Standard apartment type 2 (12x) Standard apartment type 3 (8x) 
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View predictions 
Figure 7-22 shows the predictions made for the view labels for the three standard apartment types by the best 
model. All the different rooms of the standard apartment types are not always grouped together, indicating that 
the model did not learn correlations between a standard room type and view predictions. Especially looking into 
the sky view predictions, the predictions per room type are scattered around. For the ground view, the different 
room type predictions are grouped together, indicating that the predictions for each room per standard 
apartment type are comparable for the view-to-ground. Therefore, we can conclude that the model does not 
perform well for the view prediction of standard apartment types.   
  

Figure 7-21: Standard apartments daylight predictions per room type 
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7.5.4 Uncommon geometries 
In order to evaluate the model’s performance, three uncommon geometry sites are selected for further evaluation, 
see Figure 7-23. The first uncommon site comprises apartments with sticking-out triangle shapes and windows on 
multiple facades. The second site consisted of apartments with angled edges and internal obstructions. From 
uncommon site 2, thirteen apartments are selected for the prediction that all are oriented towards North and 
South. The third uncommon site had apartments with windows that laid back and a partly curved façade. Four 
apartments were selected from the third site for prediction purposes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 7-22: Standard apartments view predictions per room type 

Figure 7-23: Uncommon geometry site types 

Uncommon site type 1 (10x) Uncommon site type 2 (13x) Uncommon site type 3 (4x) 
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Performance level prediction 
The confusion matrixes of the daylight and view performance levels predicted by the best model are illustrated in 
Figure 7-24. Upon closer examination of the model's predictions for the daylight performance levels of a space, it 
is evident that the model performs relatively well in predicting the daylight and view levels compared to other 
evaluations. Generally, the model mispredicts up to two performance levels. However, the model tends to 
underpredict the daylight performance levels. Additionally, the view prediction performance in terms of 
performance level shows a clear positive regression. The model predicts reasonably well in terms of view, as only a 
fraction of the rooms is mispredicted with a maximum of one view performance class. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

View predictions 
Figure 7-26 show the view predictions by the best model for the three uncommon sites. Notably, the view-to-
ground predictions for all three sites are underpredicted. Nonetheless, regarding ground view predictions of 
uncommon site 3, the results are relatively impressive compared to the other two sites. This is because site three 
predominantly comprises low view-to-ground values. The model excels in forecasting sky view labels for 
uncommon sites despite the presence of outlier predictions in all three sites. Notably, uncommon sites 1 and 3 
appear to be well-predicted, with the regression line almost approaching a 45-degree angle. 
 
 
 
 
 
 
 
  

Figure 7-24: Best model performance levels prediction 3 uncommon sites 

Figure 7-25: Uncommon sites sky view predictions 
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Daylight predictions 
Figure 7-26 illustrates the best model's daylight prediction for the selected apartments in three uncommon sites. 
The daylight values for uncommon sites 1 and 2 are what we would expect, with the best-predicted value occurring 
on the 21st of March. Overall, the model tends to underpredict the daylight values for sites 1 and 2. Uncommon site 
3, on the other hand, stands out from this trend with highly accurate predictions. In fact, on the 21st of March, the 
model overpredicts, which contrasts earlier daylight prediction evaluations. The predictions for the third 
uncommon site are more scattered compared to the first and second sites. 
 
. 
 
 
 
  

Figure 7-26: Uncommon sites daylight predictions 
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7.6 Conclusion 
In this chapter, several experiments have been conducted to fine-tune the proposed ML model. From the 
experiments, it becomes evident that using a pre-trained ResNet50 model does not outperform training the same 
model from scratch. An experiment showed that the use of multimodal learning outperforms an ML model, which 
only learns from an image feature. Splitting the model into two distinct ML models, each trained to predict a single 
metric, proved to be an effective strategy. Ablation studies indicated that a late fusion model exhibits potential, 
and lower regularisation rates improve the performance of the ML model.  
      The optimal model identified in this study is model 7.5, which consists of a multimodal learning approach. 
Specifically, the model learns from one image feature and two numerical features, utilising hybrid fusion to 
concatenate the different feature types. The model architecture comprises a ResNet50 followed by a dense layer 
for the image feature. After concatenating the numerical features, another dense layer is added. The architecture 
uses low regularisation rates for dropout and L2 regularisation. The Adam optimiser with a mean squared error 
(MSE) loss function and a mean absolute error (MAE) metric is used to construct the model. During training, a 
learning rate scheduler and early stopping are applied. The model was trained with batch size 64.  
     After training the model, the best model achieved a training loss of 0.0008 and a training MAE of 0.0185 for the 
daylight metric, a training loss of 0.0012, and a training MAE of 0.0236 for the view metric. In the test evaluation, 
the model achieved a test loss of 0.0047 and a test MAE of 0.0440 for daylight predictions and a test loss of 0.0057 
and a test MAE of 0.0478 for view predictions.  
     Nevertheless, while evaluating the best-trained model, it was evident that the current model does not meet the 
performance requirements. Therefore, further refinements are necessary to improve the ML model. The model 
underpredicts all the daylight labels on the 21st of June and December, as well as the view-to-ground label. Notably, 
the view-to-sky label is the best-predicted label across all evaluations. Regarding performance level accuracy, the 
model's predictions result in mispredictions of up to two daylight performance levels and up to one performance 
level for view. 
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CASE STUDY 
To demonstrate the ML design process framework, a comprehensive case study has been conducted. The case 
study walks through every step of the ML design process framework, which showcases the usability of the 
framework for designers. The goal of the case study is to test if the ML framework is useable during the design 
process in the predesign phase. 

8.1 Design problem 
The design task at hand consists of the design of a layout for an apartment building located in Switzerland. The 
building consists of a conjunction of two squares that together form one building, see Figure 8-1. Each square 
contains three apartments per floor, with a central circulation space in the middle. The building balconies on one 
side of the building, either on the east side, as illustrated in Figure 8 1, or on the West side of the building. The 
design task centres around an apartment located at the intersection of the two squares, resulting in an apartment 
with obstructions from the building itself, see Figure 8-2.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 The layout design for the apartment must meet specific requirements. The 73 m2 apartment should include 
three bedrooms, a living room, and a kitchen. The living room and kitchen can be combined into one space or 
consist of two separate rooms. Similarly, the bathroom and toilet can be a single room or two separate spaces. 
Table 23 shows the detailed requirements of the apartment. 
 

Table 23: Apartment requirements case study  

Characteristic Requirement 
Total m2 apartment 73 m2 

Balcony included Yes, on East of West side 
Nr of rooms 4 or 5 rooms 

Living room & kitchen ±25 m2 
Bedroom 2x ±13 m2 & 1x ±10 m2 

Bathroom & toilet ±5 m2 
 
  

Figure 8-1: Case study building Figure 8-2: Case study apartment boundary 
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8.2 Step 1 – pre-processing 

8.2.1 Creating layout designs 
For the case study, six alternative design layouts are created, see Figure 8-3. Designs 1, 3 and 5 have a balcony 
located on the East side of the building, while the other three designs have a balcony on the West side of the 
building. Designs 1 and 5 have the bedrooms grouped together, while the other designs have the bedrooms more 
spread out over different orientations. In designs 1, 3, 4 and 6, the kitchen faces South, while the kitchens faces 
towards East in designs 2 and towards West in design 5. The living room faces South in designs 2, 3, 4 and 6, while 
the living room faces East in design 1 and West in design 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 8-3: Layout design options for case study 

Design option 1 Design option 2 

Design option 3 Design option 4 

Design option 5 Design option 6 
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Figure 8-4: Image feature creation for case study design 1 

8.2.2 Pre-processing designs 
 
The first step is the pre-processing of the apartment layouts. Currently, this step is done based on a Rhino file with 
polylines. To begin, the designer must connect the Rhino file to the provided Grasshopper script and select the 
polylines of the designs. Then, using a Grasshopper Python component, the necessary data frame is created based 
on the polylines and additional information. Within the Grasshopper script, the designer must fill in the room type 
for each polyline and provide information on the room's elevation, height, and window height. The resulting CSV 
file is saved to a designated folder. Appendix G.Part I shows the Grasshopper script that connects to the Rhino 
design file and creates the CSV file. 
 The next step involves uploading the CSV file into the Python script that generates image features and 
numerical labels for each room. Within the framework, this step requires the most time, with sixteen seconds 
required to create all the image features for the six designs. Figure 8-4 shows the created image features for the 
design of one apartment. In this case, for design 1, a total of five images are created. Additionally, for each room, 
the elevation and the window-to-floor ratio are found and stored as a numerical feature in the Python script. The 
window-to-floor ratio is determined per room based on the designed windows, the given window height and the 
room size.   
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8.3 Step 2 – ML predictions 
The next step involves the background prediction of daylight and view values using the trained model, which takes 
both image and numerical features as input. This process takes approximately one second per apartment design, 
resulting in a total prediction time of under ten seconds for all six layout designs combined. It is important to note 
that the predicted labels are normalized values and must be unnormalized before they can be used in the 
subsequent steps. Table 24 displays the ML model's numerical output predictions for the median daylight on 
March 21st, p80 sky view,  and unnormalized values. 
 

Table 24: ML predictions for daylight on March 21st and sky view, case study design 1 

Design nr. Area ID Room name 
Daylight Mar 

normalised 
Daylight Mar  

[lx] 
Sky view 

normalised 
Sky view  

[%] 
1 100 Bedroom1 0.1337 226 0.2313 1.26 
1 101 Bedroom2 0.1631 596 0.5462 2.97 
1 102 Bedroom3 0.1036 365 0.2858 1.55 
1 105 Kitchen 0.0779 302 0.1867 1.01 
1 107 Livingroom 0.1159 303 0.0888 0.48 

8.4 Step 3 – processing 
Once the five labels have been predicted, the next step is to present the results in a way that is easy for designers 
to understand. This involves processing the predictions and overlaying them onto the layout design image. For 
each apartment design, twelve overviews of the results are generated, see Figure 8-5. Three levels of detail are 
shown for both the daylight and view predictions. Figure 8-6 illustrates the three levels of detail for one design 
option.  
 The first level of detail displays the absolute predicted value from the ML model. As discussed in Chapter 4.2, 
the daylight and view predictions are tested against the EN17037 guideline to determine the performance level of 
each room. Similarly, the performance of the placement of rooms is determined based on their main orientation. 
Each orientation of the room with the corresponding room type is tested against the layout evaluation method to 
determine the orientation performance levels. 
 The last level of detail is the overall performance of the apartment for each of the three aspects. The metric 
performance levels are tested per the layout evaluation system with the performance levels of each room. To 
provide an overall understanding of the apartment's quality, one overall performance label is given based on the 
three considered aspects: daylight, view and orientation. 
 
  

Figure 8-5: Overview processed predictions per detail level 
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8.4.1 Layout 1 – daylight detail levels 
When zooming further into the first layout design, three levels of daylight quality can be accessed, see Figure 8-6. 
The first and most detailed level is the insight into the daylight illuminance values, providing insight into the 
predicted values for the median daylight of the room on March 21st at noon. The second level of detail showcases 
the daylight level of each room concerning the predicted daylight values. The daylight performance levels per 
room are derived from the median of the three daylight labels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 The third level is the overall daylight label of the apartment. In this case, the apartment has four rooms with a 
minimum daylight level and one room with a low daylight level, as indicated in Table 25. The overall daylight level 
of the first design is E since 50% of the living spaces only meet the minimum performance level. 
 

Table 25: Daylight performance level values and performance label, design 1 

Room name 
Daylight median of 

3 values [lx] 
Daylight  

level 
Overall daylight 

label 
Bedroom1 130 Minimum 

E 
Bedroom2 310 Low 
Bedroom3 202 Minimum 

Kitchen 170 Minimum 
Livingroom 171 Minimum 

 

8.4.2 Layout 1 – view layers detail levels 
When looking into the view quality of the room, three levels of detail can be accessed, see Figure 8-7. The first and 
most detailed level provides insight into the view percentage for both view-to-ground and view-to-sky. This detail 
level showcases the predicted values for the p80 view percentage of the room. The second level of detail highlights 
the view performance level of each room in relation to the predicted view values and the known information about 
the presence of the view-to-landscape layer. 
  

Figure 8-6: Daylight prediction results on different detail levels, design 1 

Figure 8-7: View prediction results on different detail levels, design 1 
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 The third level is the overall view performance label of the apartment. In this case, the apartment only contains 
living spaces with a high view performance level, as indicated in Table 26. The overall view quality label of the first 
design is A since all the living spaces have a high view performance level. 
 

Table 26: View performance level values and performance label, design 1 

Room name 
Ground view  

[%] 
Sky view  

[%] 
Landscape 
layer visible 

Nr visible 
layers 

View layers 
level 

Overall view 
layer level 

Bedroom1 0.96 1.26 Yes 3 3 

A 
Bedroom2 1.55 2.97 Yes 3 3 
Bedroom3 1.08 1.55 Yes 3 3 

Kitchen 0.70 1.01 Yes 3 3 
Livingroom 0.81 0.48 Yes 3 3 

 

8.4.3 Layout 1 – orientation detail levels 
Regarding the orientation evaluation of the apartment design, two detail levels are provided, as illustrated in 
Figure 8-8. The first level aligns with the second level of detail in the daylight and view performance categories. 
The primary orientation of a room determines the orientation performance level. The corresponding orientation 
performance level per room is showcased in the layout design. The first level aligns with the second level of detail 
in the daylight and view performance categories. The primary orientation of a room and the room type determines 
the orientation performance level. The corresponding orientation performance level per room is showcased in the 
layout design. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The second detail level is the overall orientation performance label of the apartment design. In this instance, 
the apartment has six spaces to test against in total since the apartment consists of five living spaces and one 
outdoor space. The apartment has four spaces with a minimum orientation level and two with a low orientation 
level, as indicated in Table 27. This results in an orientation label of E for the apartment design since four of the six 
spaces have a minimal orientation level. 
 

Table 27: View performance level values and performance label, design 1 

Room name 
Room  

orientation 
Orientation 

level 
Overall daylight 

label 
Bedroom1 West Minimum 

E 

Bedroom2 West Minimum 
Bedroom3 West Minimum 

Kitchen South Low 
Livingroom East Minimum 

Outdoor space East Low 
 
 
 
  

Figure 8-8: Orientation performance results on different detail levels, design 1 
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8.5 Step 4 – optimizer 
The visual comfort optimiser determines the top-performing apartment based on its overall visual comfort quality. 
Using the performance labels with the layout evaluation system, the overall visual comfort of each apartment can 
be classified. Design 1, for example, received an E performance label for daylight performance, an A performance 
label for view performance, and another E performance label for orientation performance. This results in the 
following overall performance label calculation for design 1: 
 

𝑦௢௩௘௥௔௟௟ =
௫೏ೌ೤ା௫ೡ೔೐ೢା௫೚ೝ೔೐೙೟

ଷ
∗ 𝑝𝑒𝑛      (8.1) 

 

𝑦௢௩௘௥௔௟௟,ௗ௘௦௜௚௡ଶ =
଴.ଶାଵା଴.ଶ

ଷ
∗ 1 = 0.47      (8.2) 

 
 For the first design option, the daylight and view levels in the rooms meet the minimum requirement, so the 
penalty function is set to one. This, combined with the points for each performance label of the three metrics, gives 
an overall performance label of D for design 1. Table 28 provides a breakdown of the performance labels for the 
three aspects and the overall performance labels for the various layout design options. 
 Based on the overall performance label of each apartment, the optimiser determines the best-performing 
design. Figure 8-9 illustrates how the optimiser works, for example, with designs 3, 4, and 6. Out of the six provided 
design options, design 6 performs the best in terms of three visual comfort metrics. 
 

Table 28: Overall performance labels per design option  

Layout design nr 
Daylight  

label 
View  
label 

Orientation 
label 

Overall  
label 

Layout 1 E A E D 
0.2 1 0.2 0.47 

Layout 2 E A D D 
0.2 1 0.4 0.53 

Layout 3 
F C D F 
0 0.5 0.4 0 

Layout 4 
D B D D 

0.4 0.75 0.4 0.52 

Layout 5 
F E D F 
0 0.25 0.4 0 

Layout 6 
D A D C 

0.4 1 0.4 0.6 
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Figure 8-9: Optimiser example with design 3, 4 and 6 
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8.6 Step 5 – design analysis & selection 
After the background process is completed, the designer is provided with direct feedback regarding the 
performance of each design, which facilitates comparisons between designs. Figure 8-10 compares the different 
room-wise daylight performance levels for all six layout designs.  
 Based on the performance comparison and overall apartment score for each design, the designer is able to 
make a performance-based decision. It is worth noting that two of the proposed designs do not reach the 
minimum requirements for daylight performance as per the EN17037 guideline and, therefore, could easily be 
excluded for further evaluation by the designer. 
 The feedback provided to the designer by the ML post-processor can be used in different ways. One option is 
for the designer to utilise the best-performing layout designs to create alternative designs based on the 
performance indicators if the designer is unsatisfied with the current layout designs. In this scenario, the loop of 
the ML design process framework is started once again from the beginning. The designer has to provide different 
layout options, from which an ML model makes predictions after the pre-processing step. After the ML predictions, 
the post-processing and optimiser will supply the designer with the tools for design evaluation once again.  
     Alternatively, suppose the designer is content with a layout design. In that case, the designer can select the 
optimal layout option based on the design problem and performance indicators, allowing the design process to 
progress to the next stage. According to the evaluation conducted by the designer and their expertise in the 
broader design task at hand, design 4 could be more suitable even though the overall best-performing apartment 
layout design is layout design 6. The primary difference between the performance of layout designs 4 and 6 is the 
level of view performance. However, design 4 reaches medium and high view performance levels in all rooms, 
which may suffice for the task at hand. It is crucial to mention that the ML design process framework, including 
the performance labels of the three metrics, is designed to support the designer. As the designs should be 
evaluated in the broader design context, the optimiser is not implemented in the framework to make decisions 
on behalf of the designer but provides a tool for the designer to make performance-based decisions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 8-10: Daylight performance levels for the different layout design options 
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8.7 Conclusion 
The ML design framework was put to the test with a task to create a layout for a three-bedroom apartment with a 
living room and kitchen. To test the framework, six different layout options were created, each with varying balcony 
placement and room types.  
 With a Grasshopper component, a connection between the design process and the ML process is established. 
With the created CVS file from the Grasshopper component, the pre-processing step created the image and 
numerical features for each room. The best-performing ML model was used to predict daylight and view values for 
each of the six designs. Post-processing involved unnormalising the ML predictions and determining performance 
levels and labels using a layout evaluation system. Additionally, the visualisation step of the post-processing 
provides designers with hands-on tools to evaluate and compare different design options. The optimiser highlights 
the best-performing design based on overall visual comfort performance. 
     In the final step of the ML design process, the designer can make performance-based decisions based on the 
support from the ML model. In this step, the designer can decide on different further steps. Either the designer is 
satisfied and chooses the best option for the design task at hand, or the designer is not satisfied and produces new 
design options based on the provided feedback. In the ML design process framework, the ML predictions and 
optimiser provide tools for designers to make performance-based decisions without deciding for them. As the 
designs should be evaluated in the broader design context, the optimiser does not decide for the designer. 
However, the optimiser helps identify good design options and further support the designer in making 
performance-based decisions. 
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CONCLUSION 
This final chapter concludes the methodology followed within the research to implement a machine learning 
process in the early stages of residential layout design to support designers. The chapter discusses the results of 
the different parts of the research, consisting of the dataset verification and analysis, machine learning evaluation 
and the ML process framework, respectively. Subsequently, conclusions are drawn from the results and discussion, 
and the research questions are answered. Lastly, the unforeseen limitations are expressed, and final 
recommendations are presented for any work on future work within the topic. 

9.1 Discussion 
This research addresses a framework to support designers during the early floorplan design process based on 
three performance indicators based on predictions from an ML model. In order to discuss the individual aspects, 
the discussion is broken into three subsections: the dataset quality, the performance of the ML model and the 
design process framework. 

Dataset quality 
The quality of the dataset utilised in the ML models played a vital role in the model's performance and evaluation 
of the model's predictive capabilities. A poorly constructed dataset can significantly hinder a model's ability to 
make precise predictions. The model's outcome could also be biased if the dataset contains inaccurate or biased 
information. Moreover, the methods should align with the guidelines used to classify the predictions when using 
a dataset with simulation results. Otherwise, the model's outcome may not align with the guidelines or be 
comparable with the needed requirements for performance evaluations. Therefore, it is crucial to ensure the 
dataset's quality and adherence to applicable guidelines to improve the reliability and usefulness of machine 
learning models across various applications. However, the used dataset used in this research did not follow the 
standard procedures of the EN17037 guidelines. This makes it hard to compare the outcome of the ML model with 
the requirements for the daylight and view quality assessment given by the EN17037 guideline. 

ML model performance 
In this research, the training direction of the ML model mainly deviated from the work of He et al., they used an 
image to predict daylight performance with a ResNet50 model. He et al. achieved a training loss MSE of 0.010 and 
a test loss MSE of 0.036 when predicting the mean illuminance with their real-case dataset. The best trained model 
in this research achieved a training loss MSE of 0.0012 and test loss MSE of 0.0057 for the two view labels. When 
only looking into the performance of the daylight median value prediction, the best-performing model in our study 
achieved a training loss MSE of 0.0008 and test loss MSE of 0.0047. This comparison highlights that the best trained 
model in this research failed to exhibit the superior predictive performance of the test loss MSE of 0.0036 from He 
et al. However, best trained model outperform the model of He et al. in terms of the training loss of the daylight 
model, this indicates that with further finetuning the model could be able to improve its accuracy and outperform 
the model of He et al. These findings emphasise the improved predictive capabilities of our model, especially in 
the context of daylight illuminance prediction. 
 Upon closer examination of the performance metrics, it is apparent that predicting daylight is more 
complicated than predicting view. The models consistently underpredict the three daylight days, resulting in 
feedback that skews the performance levels towards lower classes in the broader ML design process framework. 
This aligns with the simulation method of both metrics, where daylight simulation requires more input, 
computational power, and time. Looking closer into the view metrics, predicting view-to-ground values proves 
more challenging than predicting sky view. The evaluation shows that the sky view predictions sometimes reach 
an accuracy close to the desired 45-degree regression line, while the ground view values are repeatedly 
underpredicted. 
 
 The research delved into the impact of training an ML model using solely image features versus a combination 
of image and numerical features. Both the model that predicts five labels at once and the split-up models showed 
significant improvement when the numerical features were incorporated into the ML model. For example, model 
0A, predicting only daylight values based on an image feature, achieved a test loss MSE of 0.0183. In contrast, model 
3.2A, predicting only daylight values based on both an image feature and numerical features, achieved a test loss 
MSE of 0.0058. These findings emphasise that training an ML model with both an image feature and numerical 
features improved the predictive capabilities of a model significantly. However, model 0 was not fine-tuned, and 
early stopping was applied after ten epochs, as opposed to twenty-five epochs for model 3.2, which could account 
for the inferior performance of model 0. 
 Additionally, the research delved into the impact of using a pre-trained model for the ResNet50 model. The 
success of machine learning models that use pre-trained weights heavily relies on the compatibility between the 
pre-trained data and the task at hand. Pretrained models may not perform as well when applied to tasks that differ 
significantly from their training data. In this case, a pre-trained ResNet is used as a base model for the first two ML 
models that were trained with ImageNet, a dataset consisting of natural images. Using this pre-trained model for 
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tasks that involve specialised or non-natural images may result in suboptimal performance. This could explain why 
the first two models were not performing that well and especially the second model did not stabilise during 
training. This indicates that using a pre-trained model that did not align with the task at hand was not beneficial.  
 
 During this research, several ablation studies were conducted regarding the architecture of the ML model. The 
ablation studies encompassed the splitting up of the model, testing different architectures, fusing moments, 
ResNet base models, and hyperparameter adjustments. The results of the ablation studies revealed a more 
accurate ML model, and the findings indicate a direction towards further investigation for better model 
improvement. The following section discusses the different experiments and proposes a final improvement 
direction.  
 The results of the experiments indicated that splitting up the model significantly improved its performance. 
Splitting up the multimodal ML model 3.2 resulted in a test loss MSE reducing from 0.0082 to a test loss MSE of 
0.0057 for daylight and a test loss MSE of 0.0068 for view. This observation aligns with the difference in learning 
tasks when comparing the patterns that need to be learned for daylight predictions with those for view 
predictions. Nonetheless, it is worth mentioning that for future investigation, splitting up the ML model requires a 
critical eye since it substantially elevates the computational demands of the ML model training. Therefore, a 
finetuned model should be checked to determine whether the finetuned model architecture would perform as 
well on one ML model for predicting both performance metrics. 
 Upon closer examination of the experiments conducted on the different architecture layers and fusing 
moments, one experiment stood out. The late fusion experiment of model 5.2A achieved a lower training MAE of 
0.0325 than the training MAE of 0.0332 of model 3.2A. Additionally, in terms of validation loss MSE, model 5.2A 
converged earlier, achieving a test loss MSE of 0.0064, while model 3.2A achieved a test loss MSE of 0.0057. These 
observations suggest that the late fusion model was able to learn more during training but did not outperform in 
terms of test performance. However, this indicates that late fusing model 5.2A shows potential, but further 
architecture layer and hyperparameter adjustments are necessary to make the model perform better.  
 The hyperparameter adjustments demonstrated interesting results and provided a clear direction for future 
investigation. Lowering the batch size to 32 or increasing the dropout or L2 regularization rate did not improve the 
training. However, lowering the dropout rate significantly improved the test loss MSE from 0.0057 to 0.0055 and 
the test MAE from 0.0503 to 0,0484. Lowering both the dropout rate and L2 regularization rate resulted in an 
improved test loss MSE of 0.0047 and test MAE of 0.0440.  
 Based on all these observations, the future direction of training the ML model should focus on investigating 
late fusion further. Additionally, a fine balance between a lower dropout rate and L2 regularization should be 
further examined to optimize the hyperparameters for better model performance. 
 
 In contrast to He et al.'s research, this study employed a coloured image feature, which could drastically 
influence the ML model's performance. To comprehensively assess this impact, it is advisable to examine variations 
of colour usage in the image features. In addition to examining the variance in colour, it is critical to investigate all 
the elements present in the image. This approach could result in an optimal image feature that is customized to 
the specific objective at hand. 
 Lastly, the cleansing of the dataset played a crucial role in this procedure. The dataset cleaning played an 
essential role in this study because the study utilized an available dataset that contained a substantial amount of 
extraneous information. It was essential to explore the dataset's full potential and eliminate subpar data. 
Nevertheless, it is imperative to consider the data cleansing process since it is plausible that valuable information 
may have been inadvertently discarded or that the data may have been altered unfavourably, resulting in 
unintended outcomes. Therefore, the data cleaning of the dataset might have affected the model's performance. 

ML design process framework  
When analysing the usability of the created framework for assessing the overall apartment quality, it is essential 
to critically evaluate how this method distributes the data among the classes. One crucial factor to consider is 
whether all labels tend to cluster in either the lowest or highest class, this would indicate that the created layout 
assessment framework is ineffective. The success of the layout assessment framework depends on its ability to 
effectively distribute data across all classes, as an imbalanced distribution can skew results and make the 
assessment less informative. Therefore, it is crucial to carefully examine the data distribution within the framework 
to determine its effectiveness and relevance. 
 Based on the current dataset, it appears that the performance level view from EN17037 is skewed towards the 
high-performance class. This is likely due to the mountainous terrain in Switzerland, which falls under the 
landscape view class, as well as the prevalence of greenery in rural areas. Since Switzerland consists of more rural 
areas with plenty of greenery instead of densely populated urban environments, this could explain the high 
presence of all three layers in numerous rooms.  
 As for the performance level daylight, the dataset shows a good distribution. However, it should be noted that 
the daylight values are lower than if they had followed the EN17037 guideline, resulting in more rooms with 
insufficient performance levels. This is reflected in the skewed distribution towards the lower side for daylight 
performance labels per apartment per the proposed layout evaluation system. Nevertheless, it is important to note 
that this does not necessarily indicate that the given class distribution method by the layout evaluation system 
needs correction, as the dataset itself contains lower daylight values than expected.  
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9.2 Conclusion 
This research aims to answer the question: "How can a machine learning process support designers with 
evaluating and optimising residential layouts for daylight and view performance during the early design phase?". 
To conclude the main research question, the part below presents the findings on the raised sub-questions. 

What are the guideline requirements for daylight and view quality in residential spaces? 

The EN17037 guideline ensures the quality of indoor spaces by providing specific requirements for residential 
spaces regarding the view and daylight quality. To ensure adequate daylight quality, the guidelines set a minimum 
target illuminance level of 300 lux across at least 50% of the space. However, it is important to note that the UK 
national annexe recognises that this threshold may not always be achievable in dwellings while the spaces 
themselves still provide sufficient daylight for the intended use. Therefore, the UK national annexe introduces 
additional levels that should be considered to ensure that daylight requirements align with the specific purposes 
of different rooms. As for view quality, the EN17037 guidelines evaluate it based on three key aspects: the horizontal 
sight angle, the distance to the outside view, and the number of view layers providing comprehensive criteria to 
assess the quality of the visual environment. 

How do daylight and view quality affect the overall quality of residential spaces? 

The performance of daylight and view quality significantly impacts the overall quality of residential spaces. 
Adequate daylight exposure has been linked to several aspects of human well-being, including improved sleep 
patterns, increased energy levels, enhanced mood, and better cognitive performance. Furthermore, a good view 
from a window can reduce discomfort, stress, and negative emotions, contributing to overall mental well-being. 
Properly utilising natural daylight reduces the need for artificial lighting, leading to lower energy consumption and 
a smaller carbon footprint for buildings, enhancing energy efficiency and reducing energy costs for residents. 
Moreover, incorporating daylight and views in residential spaces promotes a connection to the natural 
environment, contributing to overall satisfaction and a higher quality of life for occupants. 

What design parameters impact the performance of daylight and view in residential spaces? 

Several design parameters significantly impact the performance of daylight and view in residential spaces. The 
building orientation is crucial, as it determines the amount and duration of sunlight and views received within 
interior spaces. Window size, shape, and placement are also critical, as they influence the distribution of daylight 
within interior spaces. Well-placed and appropriately sized windows can maximise natural light penetration and 
enhance view quality. Additionally, interior layout plays a vital role, as the arrangement of rooms and furniture can 
affect the accessibility and enjoyment of views and daylight. Proper orientation of room types can optimise solar 
heat-control natural lighting gain and align with usage timeframes and sunlight availability. Optimising the layout 
for optimal use of daylight and views is crucial for creating well-designed residential spaces that promote well-
being, energy efficiency, and sustainability. 

What is the most appropriate machine learning model for predicting daylight and view quality in residential 
spaces? 

A multimodal machine learning model utilising a ResNet and fully connected network is the most effective for 
predicting daylight and view quality in residential spaces. While previous research has primarily focused on 
artificial neural networks for assessing daylight performance, they struggle with translating rough sketches and 
2D drawings into numerical data during the early stages of architectural design. One study used a grayscale image 
with geometrical data to train a Convolutional Neural Network (CNN) to predict daylight performance, aligning 
more closely with real-world design scenarios. However, it lacks additional numerical values, necessitating a 
translation process. The proposed multimodal model overcomes these challenges by combining image and 
numerical data, demonstrating its potential for predicting visual comfort in indoor spaces and filling the research 
gap in assessing view quality during the early phases of architectural design. 

How can a machine learning model be incorporated into the layout design process to assist designers? 

A novel workflow has been developed to integrate ML models seamlessly into the architectural design process. 
Designers upload their layout designs into a dedicated tool, where the layout designs are pre-processed for 
compatibility with the ML model. Subsequently, the ML model predicts daylight and view values, which are then 
translated into practical visual representations during a post-processing step. Based on a layout assessment 
method guided by EN17037 requirements, an optimisation step identifies the optimal apartment layout. At the 
same time, it gives designers the space to specify their optimisation focus. This approach gives designers direct 
feedback on different layout options, enabling informed decisions that enhance residential layout quality and 
performance throughout the design process. Overall, this framework represents a significant advancement in 
integrating ML models into architectural workflows by systematically evaluating daylight, view quality, and room 
orientation, providing visual feedback, and offering optimisation suggestions that align with contemporary design 
standards and requirements. 
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What quantitative metrics can be utilised in the design process to evaluate and optimise residential layouts for 
daylight view performance? 

A multifaceted approach is proposed to assess and optimise residential layouts for visual comfort, which includes 
a novel layout evaluation system that systematically evaluates daylight, view and orientation quality in each room. 
Furthermore, the layout assessment provides a comprehensive understanding of the entire apartment layout's 
visual comfort quality. An orientation evaluation system is introduced to assess room orientations, which is critical 
for optimising visual comfort potential in residential apartments. This orientation assessment is integrated with 
daylight and view quality evaluations, resulting in a holistic assessment of layout quality that considers the 
interplay of these three critical factors: daylight, view, and room orientation. 

How can a machine learning process support designers with evaluating and optimising residential layouts for 
daylight and view performance during the early design phase? 

Based on the findings of the sub-research questions, the main research question can now be addressed. In order 
to effectively incorporate an ML model for daylight and view predictions into the early phase layout design process, 
an additional background process is required. This process comprises three main components: pre-processing, 
predictions, and post-processing. Post-processing is particularly crucial, as it enables the implementation of the 
ML predictions into the design process by displaying the predictions on the layout designs.  
 To support designers in evaluating and optimising layout designs regarding daylight and view performance, a 
layout evaluation system based on guidelines should be integrated into the framework to measure the quality of 
the designs objectively. The integrated layout evaluation system provides a thorough assessment of the visual 
comfort quality of an entire apartment layout design, enabling designers to evaluate the provided design options. 
Furthermore, the layout evaluation system allows for the utilisation of an optimiser to achieve the optimal design 
solution regarding the visual comfort performance of an apartment layout. 
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9.3 Limitations 
The research that was carried out could have been more extensive due to several factors. Three main limitations 
can be recognised in this study, namely the limitations of the utilised dataset, the limitations of the training process 
of the ML model and the limitations of the evaluation framework. 

Dataset  
Firstly, the "Swiss dwellings" dataset brought about several restrictions. The dataset utilised did not contain 
simulation results that were in accordance with European standards. Therefore, the proposed layout evaluation 
system does not correspond to the dataset simulation outcomes. The layout evaluation system tests each 
apartment against the given EN17037 guideline requirements, which are based on simulation results following the 
required method.  

Due to the limitations of the dataset, several key design aspects were not incorporated into the research. For 
instance, due to privacy reasons, the actual environmental obstructions of the different sites were not included in 
the dataset but were encoded into the various view categories. In this research, the encoded environmental 
obstructions were used to incorporate the environmental obstructions; however, optimally, the placement of the 
different obstructions should be incorporated into the image feature. 

ML training process 
The main objective of this research was to evaluate the possibility of utilising an AI tool in the predesign process, 
which limited the research of training the ML model. Furthermore, due to time limitations, intensive training of 
the ML models and fine-tuning hyperparameters could not be extensively researched. This includes different ML 
model setups, fine-tuning the layer density, using different regularisation methods, and investigating other 
hyperparameter combinations.  
     Due to time constraints, a set of features was decided from the start of the model training. However, an 
opportunity lies here to research the optimal image feature by evaluating which aspects to include in the image 
and which features perform better as numerical features. The choice of numerical features could be further 
investigated by testing out more or less numerical features and different combinations of numerical features.  
     Additionally, during the training of the ML model, only 40% of the complete dataset was utilised due to the 
available computation power and time constraints, which limited the investigation in the use of the complete 
dataset to improve the ML model's performance. 

Evaluation framework 
In terms of the layout evaluation system, time constraints resulted in only five labels being predicted by the 
machine learning model. Consequently, this leads to an incomplete daylight and view analysis to evaluate the 
quality of an apartment based on the EN17037 guideline. Moreover, the layout evaluation system provides a 
general overview of apartment performance indicators, but a more comprehensive evaluation method requires 
further investigation. Thus, it is essential to conduct more extensive research to address these limitations and 
improve the study's findings. 
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9.4 Future development 
Integrating an ML model into an architecture predesign process presents promising possibilities for assisting 
designers in making performance-based judgements for residential layout designs based on daylight and view 
quality. Several areas of future development arise in this field. This chapter describes five future development 
directions, including ML model optimisation, feature exploration, dataset relevance, and translations, including 
more building physics performance indicators and the broader application of the ML process framework.   

ML model optimisation  
Research could be carried out to investigate which ML architectures yield the highest performance for predicting 
daylight and view values based on room-wise layout designs. Additionally, a more thorough review of the impact 
of fine-tuning the ML model could be carried out to evaluate which hyperparameters could improve the 
performance of the ML model.  

Feature exploration  
Environmental characteristics, layout geometry, and contextual data could all be investigated as valuable 
elements to add to the ML model. Research could also determine the best layout of image features, evaluating the 
usage of colour coding on the image. Additionally, the differentiation between image and numerical features and 
selecting the best option for each feature could be explored. Another opportunity lies in further investigating 
outliers of the predictions and addressing these outliers differently on the image feature. For example, one of the 
earlier discussed outlier room types is an area that is located in a bigger space, such as a kitchen in a living room. 
Colour coding such a space with indirect access to windows differently from traditional room types could improve 
the performance of the ML model.  
 Another research direction is investigating the effect of environmental obstacles on image features. The 
research should be carried out with a dataset that includes environmental context placement, so the image 
feature includes the actual placement of trees and neighbouring buildings. This research will result in a better 
representation of how designers work during the predesign process.  

Dataset relevance and translations 
Research could be done to investigate the use of different datasets. Different dataset types could be investigated, 
such as datasets, including offices or public buildings. With this, the layout evaluation system must be reevaluated 
to adjust to the dataset. Additionally, methods could be explored to transform existing datasets with simulations 
that do not follow guideline principles to dataset formats aligning with the simulation assessment of guidelines. 
With this research, the existing datasets could be utilised in the ML process framework. Furthermore, research 
should be done toward merging different datasets with buildings in different countries for a more diverse dataset, 
which allows the application of the ML model to more situations.  

Additional building physics performance indicators  
To incorporate the ML process framework to a multi-performance assessment, the scope of the performance 
indicators has to be broadened. Research has to be done to encompass additional building physics aspects such 
as thermal comfort, acoustics and energy performance.  
 Alternatively, the model could also be extended to predicting different daylight labels on different days and 
times of the year, and the model could be broadened by including different view category labels. This way, a more 
comprehensive analysis of the entire layout performance could be done. Besides the daylight and view 
performance metrics, other performance indicators could be added to the ML design process framework.  

Broader framework application 
The application of the ML process framework could be broadened by implementing the framework on different 
scales. The current framework goes until the apartment level scale. However, opportunities lie in adjusting the 
framework to an entire floor and, subsequently, an entire building. With this implementation, the internal layout 
of individual apartments will be optimised, and the division of apartments on floors and the best placements of 
different apartment types on a floor will be addressed. In addition to predicting daylight and view values, the ML 
model could generate new layout alternatives optimised for daylight and view qualities. This would result in a 
process where the designer does not only receive direct feedback on the performance of a layout design but also 
receives alternative design options to move on within the design process.  
 Furthermore, investigating implementing more design decisions into the framework could broaden the 
framework application. For example, adding design decisions that are not easily translated into numerical values. 
However, to implement such design performances, an investigation towards a suitable quantification method is 
needed to quantify those design aspects and utilise an optimiser. The integration of ML models into the 
architectural predesign process has the potential to revolutionise the field and provide designers with data-driven 
insights that can enhance the performance of their designs.  
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REFLECTION 
The goal of this master’s thesis was to explore the applicability of an ML process within an architectural design 
process. The resulting ML process framework came from researching the available dataset and testing how it could 
be used in a design process. Through this process, I developed my own ML process framework and evaluation 
system to support designers in the early design phases when making performance-based decisions. The final goal 
was to take the first step to apply an ML tool into the predesign phase while testing the visual comfort performance 
indicators against guidelines. This chapter covers a reflection on the master thesis process in two parts: the 
graduation process and the social impact of the master thesis.  
 
 

GRADUATION PROCESS 
How is your graduation topic positioned in the master track building technology? 
The Building Technology Master track is part of the Master Architecture, Urbanism and Building Sciences (MSc 
AUBS). It covers topics that cover the bridge between architectural design and engineering and focuses on 
innovation within these two fields. The master tracks consist of five chairs that relate to different parts of the 
environment design field. The master’s program has an interdisciplinary focus with freedom for students to explore 
other directions and topics within the Building Technology field. Building Technology focuses on multidisciplinary 
problems that require innovative solutions by integrating design and technical disciplines.  
 This thesis, “visual comfort l(AI)outs”, relates to two chairs within Building Technology. Firstly, the Design 
Informatics direction focuses on generating a machine learning tool to find the interior layout parameters that 
affect the daylight and view and to find the optimal layouts based on this. Secondly, Climate Design is integrated 
to create visually comfortable residential layouts. Combining the two fields allows me to explore a design topic 
through fundamental and new arising topics within the built environment. Additionally, connecting these two 
fields broadens the possibilities of optimising everyday design tasks through Artificial Intelligence. With this 
workflow, AI can contribute to efficiently assisting designers and engineers in the early decision-making stage of 
residential layout exploration. 
 
How are research and design related? 
The complicated relationship between research and design has been essential to this graduation process. Where 
I tried to push the decision-making process during a design towards based on knowledge within the field and 
earlier done research. The moment when the performance indicator evaluation happens in a design process is a 
critical difference between a typical design approach and my study’s approach. Traditional design processes often 
analyse the performance indications at the end of the design process, leading to decisions that are only possible 
within the limited boundaries left at the project’s later stages. With this design framework, the performance 
indicators are tested at the beginning stage of a design when the boundary conditions are still wide and open. 
This method encourages creativity and imaginative problem-solving, allowing for more flexible solutions to 
unanticipated challenges. 
 The research observed that the orientation of rooms is only sometimes chosen wisely within the existing 
dwelling dataset, potentially leading to more energy consumption and less comfortable living spaces for 
occupants. My framework integrates research findings for optimal room orientations into the design process. By 
recognising opportunities for improving visual comfort from the start of a project, the design process is led toward 
better performance from the beginning of the project. 
 
What value did your approach and methodology bring to your thesis?  
The method used for this research has several strengths and weaknesses. Weaknesses can be recognised by the 
model training’s trial-and-error approach, which came together with my limited expertise in the machine learning 
domain. Strengths can be found in the scientific method in analysing the data and the helicopter view approach 
while creating the framework.  
 A weakness in the used method is that training an ML learning model is a trial-and-error process, resulting in a 
time-consuming task to fine-tune and train the models. Additionally, using deep learning models results in 
untransparent correlations that the model discovers during the training but are not accessible to understand fully. 
Because of this, the trial-and-error method is needed to train a model and reflect on the effect of the adjusted 
parameter. Additionally, my lack of in-depth knowledge and experience in machine learning hindered my ability 
to understand and address arising challenges during the model training fully.  
  The thorough examination of data and the ability to spot opportunities within the data while methodically 
removing noise are distinguishing strengths of the research technique used in this study. This careful data analysis 
methodology ensured that the research findings were robust and highly valuable. The investigation obtained vital 
information that might have remained concealed by closely going through the data. Another strength is the 
approach to examining the implementation of an ML model within the broader context of the built environment 
from a helicopter perspective. This overall perspective enabled a thorough evaluation of the ML model’s 
effectiveness in real-world circumstances. Instead of focusing primarily on technical elements, the study included 
how the model may be realistically incorporated into architectural design. 
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What moral or ethical issues did you encounter during the process? 
Ethical issues were critical in developing the research approach throughout the machine learning process. The 
dataset includes human-generated and human-selected data, inevitably leading to biases within the ML model. 
To achieve fair and equal outcomes, it was critical to address these biases before training the model. 
 Furthermore, the dataset's anonymity provided a difficulty, reducing the amount of information accessible for 
the study. Notably, the dataset did not include real environmental obstacles of the structures and natural objects, 
which was done to protect residents' privacy. To overcome this issue, I proposed an approach that uses simulation 
results to replicate real-world environmental obstructions, allowing the expression of potential obstacles while 
maintaining privacy. These ethical issues emphasised the importance of a balanced strategy that protects privacy 
while pursuing complete and fair research results. 
 
 

SOCIAL IMPACT 
To what extent are the results applicable in practice? 
The framework created as part of this research has potential for practical applications. The framework makes 
machine learning more accessible to professionals within the architectural field by streamlining its incorporation 
into the architectural design process. The framework's processing element generates a user-friendly structure for 
designers, and its simplicity of use suggests that architects might quickly adopt it as a tool to optimise building 
layouts for visual comfort during the early phases of a design. 
 
To what extent is the projected innovative? 
In the current built environment industry, collaboration between designers and AI for design guidance still needs 
to be improved. My framework makes a step further towards closing this gap. Applying my design framework can 
encourage designers to interact with AI and utilise its potential to improve design results. 
 
How does the project contribute to sustainable development? 
The ISO-15392 (2019) describes that standard sustainability involves three mutually interrelated aspects: 
environmental, economic, and social. This study can potentially contribute to sustainable development by directly 
or indirectly touching all three elements. Improving the daylight quality of a room tackles the environmental 
aspect indirectly. Applying the ML framework to design apartment layouts optimised for daylight and view quality 
can reduce energy consumption in buildings since good daylight performance results in lower electricity demand, 
which increases the sustainability of a building. 
 This research touches on all three aspects of sustainable design: people, planet, and profit. This research takes 
a crucial step toward decreasing our environmental impact by having the potential to reduce energy consumption 
in buildings. Additionally, incorporating excellent visual comfort and scenic views into apartment designs 
increases property prices, which benefits both property developers and homeowners. 
 Improved visual comfort in houses can significantly enhance inhabitants' well-being and general health, 
eventually leading to a higher quality of life. This aspect places the people at the heart of the building while 
designing for them. Daylight can have a significant impact on the social well-being of residents. Adequate natural 
light increases the comfort of the space and can improve mood, reduce stress, and promote the overall health and 
productivity of occupants. Natural lighting and view to the exterior can also create a sense of connection to the 
outdoors and promote a sense of community within a building. Furthermore, a lack of natural lighting can make 
a space feel cramped and uninviting and contribute to feelings of isolation and depression. Architects must 
consider the social impact of daylight and view when designing apartment buildings, mainly since people spend 
most of their time indoors. 
 
How does the project affect architecture/the built environment? 
This framework could lead to a completely different way of working for architects because they could get direct 
feedback on their layout design concerning visual comfort. In this way, designers can consider building 
performances from the beginning of the design process so that design choices will be made differently. 
Additionally, facilitating designers with a tool tackles the economic aspect because the designers will have fewer 
repetitive tasks. Designers can focus on the more creative tasks of a design when they have fewer repetitive tasks. 
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View

apartment_id site_id area_id elevation orientation
window

_area
room_de
pth_ratio

window_f
loor_ratio

21Mar1200
Median [lx]

21Jun1200
Median [lx]

21Jun1200
Median [lx]

Sky
Median 

1 N1 36596017ad4f7941c88a12faf0ac4903 389 307394 2.9 ['North'] 2.438 1.578 0.229  365                311                 337                 0.499
2 N2 418e0d40fba39f6c903bfdec1fc00864 389 311254 0 ['North'] 5.977 1.517 0.454  876                774                 796                 1.009
3 N3 9bc6a41f2c75b49490bd92f27b89ee48 389 307386 0 ['North'] 5.973 1.545 0.431  857                741                 797                 1.053
4 N4 1221e19a4071debc572c5b202343ef07 138 336910 2.9 ['North'] 1.999 1.463 0.269  106                73                   91                   0.129
5 N5 dbcfc984be44586b1c7ee1ec96d2d490 2248 713845 20.3 ['North'] 1.942 1.006 0.115  67                   66                   54                   0.003
6 NE1 ec40208c41d93fda40471fe821a2697e 4237 1061451 5.8 ['North-East'] 2.099 1.455 0.143  242                241                 207                 0.378
8 NE3 67a2f16595f8a10946ea807f9cfee39e 4237 1064238 5.8 ['North-East'] 2.119 1.456 0.144  232                238                 197                 0.329
9 NE4 6f2eb53992ccd6b335cadd1d651be818 1288 579291 0 ['North-East'] 2.34 1.385 0.168  325                371                 241                 0.291

10 NE5 98f768aefe735fc739fbfba6d1f3ca42 1288 578607 2.9 ['North-East'] 2.446 1.523 0.176  465                482                 375                 0.742
11 E1 19eda56a7dd7f2bbf244a0710bbd2c71 10187 1368686 2.9 ['East'] 3.502 1.861 0.156  188                209                 139                 0.003
12 E2 5084f3672df4a8da0f439e66ce2e2e90 999 402743 0 ['East'] 4.437 1.276 0.283  58                   70                   45                   0.003
13 E3 63dc1eb055ecb6834ff9de2b80e336ef 999 401330 5.8 ['East'] 4.402 1.242 0.281  56                   70                   41                   0.003
14 E4 15f5c22552e6261f65f05062f457488f 2161 703084 5.8 ['East'] 2.336 1.863 0.206  415                486                 288                 0.330
15 E5 15f5c22552e6261f65f05062f457488f 2161 703070 5.8 ['East'] 2.047 1.099 0.205  537                550                 521                 0.485
16 SE1 afd9e340a59c45239e0470e3e3f6de08 11277 1489797 8.7 ['South-East'] 3.598 1.238 0.241  715                738                 512                 0.321
17 SE2 afd9e340a59c45239e0470e3e3f6de08 11277 1489796 8.7 ['South-East'] 2.764 1.781 0.261  783                758                 552                 0.417
18 SE3 b98741cfe61fe7191145f340db8e42d3 392 560921 0 ['South-East'] 3.18 1.809 0.191  430                364                 316                 0.072
19 SE4 b98741cfe61fe7191145f340db8e42d3 392 919955 0 ['South-East'] 3.129 1.647 0.237  509                377                 494                 0.486
20 SE5 34590ca7b3f9983eb70fea4cd0d7d171 172 636557 8.7 ['South-East'] 3.386 1.248 0.24  1,073             1,022              768                 1.059
21 S1 09703b6dbeaecc9da7b3d080fba05a1d 392 560664 2.9 ['South'] 3.19 1.447 0.185  339                175                 544                 0.586
22 S2 0721b690a830e964935602b2dda748f2 456 408517 17.4 ['South'] 2.565 1.796 0.182  324                162                 520                 0.742
23 S3 342969c590fa3fe1a669f7bd55567f52 456 587445 14.5 ['South'] 2.328 1.838 0.168  289                147                 465                 0.616
25 S5 93238d3f5b1af4d2d38b12e5e80fbfb0 1069 708741 14.5 ['South'] 6.384 3.742 0.219  336                209                 285                 0.298
26 SW1 09703b6dbeaecc9da7b3d080fba05a1d 392 560660 2.9 ['South-West'] 4.646 1.084 0.261  834                440                 1,007              1.131
27 SW2 789afb678d65e82b8673cd6c31c8911a 456 408554 17.4 ['South-West'] 2.375 2.022 0.204  500                255                 498                 0.937
29 SW4 cdc2ab489daebfcb10b9435f4a14b629 1288 577913 2.9 ['South-West'] 2.446 1.523 0.176  432                287                 372                 0.624
30 SW5 9968b0f4250e2e065684b7def4313545 3850 976686 8.7 ['South-West'] 3.704 1.172 0.242  433                227                 354                 0.003
31 W1 df7f78f9d2cc8419c2326d3fb0173839 2161 703547 8.7 ['West'] 2.315 1.561 0.173  307                181                 273                 0.245
32 W2 df7f78f9d2cc8419c2326d3fb0173839 2161 703552 8.7 ['West'] 2.783 1.258 0.167  337                214                 298                 0.329
33 W3 df7f78f9d2cc8419c2326d3fb0173839 2161 703543 8.7 ['West'] 2.315 1.781 0.197  296                198                 247                 0.299
34 W4 689807445b68cafcd3f7217e52ec316b 2161 703467 8.7 ['West'] 2.775 1.465 0.165  309                193                 264                 0.257
35 W5 84b6c134ad9d47d9021d7aac3bed0d0a 138 337266 0 ['West'] 2.309 1.818 0.267  411                292                 336                 0.396
36 NW1 8e8929d2e5a2159384167854ba0b9a04 172 637130 5.8 ['North-West'] 3.463 1.39 0.304  445                338                 358                 0.367
37 NW2 8e8929d2e5a2159384167854ba0b9a04 172 637180 5.8 ['North-West'] 3.206 1.234 0.238  412                299                 332                 0.293
38 NW3 8e8929d2e5a2159384167854ba0b9a04 172 637155 5.8 ['North-West'] 2.161 1.726 0.235  287                225                 227                 0.241
39 NW4 1efb344729d812792e49f8e491ea408f 172 1547845 8.7 ['North-West'] 3.591 1.255 0.249  659                462                 562                 1.129
40 NW5 5e71168800a7543eb1e22fd626b7cc8e 788 570039 0 ['North-West'] 2.596 1.213 0.273  166                134                 146                 0.322

room_nr

Dataset values
Daylight

View

apartment_id site_id area_id elevation orientation
window

_area
room_de
pth_ratio

window_f
loor_ratio

21Mar1200
Median [lx]

21Jun1200
Median [lx]

21Jun1200
Median [lx]

Sky
Median 

1 N1 36596017ad4f7941c88a12faf0ac4903 389 307394 2.9 ['North'] 2.438 1.578 0.229  365                311                 337                 0.499
2 N2 418e0d40fba39f6c903bfdec1fc00864 389 311254 0 ['North'] 5.977 1.517 0.454  876                774                 796                 1.009
3 N3 9bc6a41f2c75b49490bd92f27b89ee48 389 307386 0 ['North'] 5.973 1.545 0.431  857                741                 797                 1.053
4 N4 1221e19a4071debc572c5b202343ef07 138 336910 2.9 ['North'] 1.999 1.463 0.269  106                73                    91                    0.129
5 N5 dbcfc984be44586b1c7ee1ec96d2d490 2248 713845 20.3 ['North'] 1.942 1.006 0.115  67                   66                    54                    0.003
6 NE1 ec40208c41d93fda40471fe821a2697e 4237 1061451 5.8 ['North-East'] 2.099 1.455 0.143  242                241                 207                 0.378
8 NE3 67a2f16595f8a10946ea807f9cfee39e 4237 1064238 5.8 ['North-East'] 2.119 1.456 0.144  232                238                 197                 0.329
9 NE4 6f2eb53992ccd6b335cadd1d651be818 1288 579291 0 ['North-East'] 2.34 1.385 0.168  325                371                 241                 0.291

10 NE5 98f768aefe735fc739fbfba6d1f3ca42 1288 578607 2.9 ['North-East'] 2.446 1.523 0.176  465                482                 375                 0.742
11 E1 19eda56a7dd7f2bbf244a0710bbd2c71 10187 1368686 2.9 ['East'] 3.502 1.861 0.156  188                209                 139                 0.003
12 E2 5084f3672df4a8da0f439e66ce2e2e90 999 402743 0 ['East'] 4.437 1.276 0.283  58                   70                    45                    0.003
13 E3 63dc1eb055ecb6834ff9de2b80e336ef 999 401330 5.8 ['East'] 4.402 1.242 0.281  56                   70                    41                    0.003
14 E4 15f5c22552e6261f65f05062f457488f 2161 703084 5.8 ['East'] 2.336 1.863 0.206  415                486                 288                 0.330
15 E5 15f5c22552e6261f65f05062f457488f 2161 703070 5.8 ['East'] 2.047 1.099 0.205  537                550                 521                 0.485
16 SE1 afd9e340a59c45239e0470e3e3f6de08 11277 1489797 8.7 ['South-East'] 3.598 1.238 0.241  715                738                 512                 0.321
17 SE2 afd9e340a59c45239e0470e3e3f6de08 11277 1489796 8.7 ['South-East'] 2.764 1.781 0.261  783                758                 552                 0.417
18 SE3 b98741cfe61fe7191145f340db8e42d3 392 560921 0 ['South-East'] 3.18 1.809 0.191  430                364                 316                 0.072
19 SE4 b98741cfe61fe7191145f340db8e42d3 392 919955 0 ['South-East'] 3.129 1.647 0.237  509                377                 494                 0.486
20 SE5 34590ca7b3f9983eb70fea4cd0d7d171 172 636557 8.7 ['South-East'] 3.386 1.248 0.24  1,073             1,022              768                 1.059
21 S1 09703b6dbeaecc9da7b3d080fba05a1d 392 560664 2.9 ['South'] 3.19 1.447 0.185  339                175                 544                 0.586
22 S2 0721b690a830e964935602b2dda748f2 456 408517 17.4 ['South'] 2.565 1.796 0.182  324                162                 520                 0.742
23 S3 342969c590fa3fe1a669f7bd55567f52 456 587445 14.5 ['South'] 2.328 1.838 0.168  289                147                 465                 0.616
25 S5 93238d3f5b1af4d2d38b12e5e80fbfb0 1069 708741 14.5 ['South'] 6.384 3.742 0.219  336                209                 285                 0.298
26 SW1 09703b6dbeaecc9da7b3d080fba05a1d 392 560660 2.9 ['South-West'] 4.646 1.084 0.261  834                440                 1,007              1.131
27 SW2 789afb678d65e82b8673cd6c31c8911a 456 408554 17.4 ['South-West'] 2.375 2.022 0.204  500                255                 498                 0.937
29 SW4 cdc2ab489daebfcb10b9435f4a14b629 1288 577913 2.9 ['South-West'] 2.446 1.523 0.176  432                287                 372                 0.624
30 SW5 9968b0f4250e2e065684b7def4313545 3850 976686 8.7 ['South-West'] 3.704 1.172 0.242  433                227                 354                 0.003
31 W1 df7f78f9d2cc8419c2326d3fb0173839 2161 703547 8.7 ['West'] 2.315 1.561 0.173  307                181                 273                 0.245
32 W2 df7f78f9d2cc8419c2326d3fb0173839 2161 703552 8.7 ['West'] 2.783 1.258 0.167  337                214                 298                 0.329
33 W3 df7f78f9d2cc8419c2326d3fb0173839 2161 703543 8.7 ['West'] 2.315 1.781 0.197  296                198                 247                 0.299
34 W4 689807445b68cafcd3f7217e52ec316b 2161 703467 8.7 ['West'] 2.775 1.465 0.165  309                193                 264                 0.257
35 W5 84b6c134ad9d47d9021d7aac3bed0d0a 138 337266 0 ['West'] 2.309 1.818 0.267  411                292                 336                 0.396
36 NW1 8e8929d2e5a2159384167854ba0b9a04 172 637130 5.8 ['North-West'] 3.463 1.39 0.304  445                338                 358                 0.367
37 NW2 8e8929d2e5a2159384167854ba0b9a04 172 637180 5.8 ['North-West'] 3.206 1.234 0.238  412                299                 332                 0.293
38 NW3 8e8929d2e5a2159384167854ba0b9a04 172 637155 5.8 ['North-West'] 2.161 1.726 0.235  287                225                 227                 0.241
39 NW4 1efb344729d812792e49f8e491ea408f 172 1547845 8.7 ['North-West'] 3.591 1.255 0.249  659                462                 562                 1.129
40 NW5 5e71168800a7543eb1e22fd626b7cc8e 788 570039 0 ['North-West'] 2.596 1.213 0.273  166                134                 146                 0.322

room_nr

Dataset values
Daylight
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View
21Mar1200
Median [lx]

21Jun1200
Median [lx]

21Jun1200
Median [lx]

Sky
Median [%]

21Mar1200
Median [lx]

21Jun1200
Median [lx]

21Jun1200
Median [lx]

21Mar1200
Median [%]

21Jun1200
Median [%]

21Jun1200
Median [%]

Of three 
days

Per orientation 
of three days Sky

SkyView_
mean

78                   103                 83                   2.231 287                208             254                 79% 67% 75% 74% 1.731       347%
271                279                 241                 6.695 605                495             555                 69% 64% 70% 68% 5.686       564%
177                209                 165                 8.008 680                532             632                 79% 72% 79% 77% 6.955       660%
141                139                 125                 3.742 35                  66               34                   33% 91% 37% 54% 3.612       2792%

58                   52                   52                   1.040 9                    14               2                     13% 22% 5% 13% 1.037       34642%
66                   75                   52                   1.716 176                166             155                 73% 69% 75% 72% 1.337       354%
65                   77                   51                   1.723 167                161             146                 72% 68% 74% 71% 1.394       423%
74                   74                   51                   1.386 251                297             190                 77% 80% 79% 79% 1.095       376%
92                   101                 64                   1.555 373                381             311                 80% 79% 83% 81% 0.812       109%
69                   80                   54                   1.733 119                129             85                   63% 62% 61% 62% 1.730       57851%

128                112                 98                   3.783 70                  42               53                   120% 60% 117% 99% 3.780       126442%
111                135                 85                   3.931 55                  65               44                   98% 93% 107% 99% 3.928       131398%
101                109                 73                   2.070 314                377             215                 76% 78% 75% 76% 1.740       528%

86                   74                   62                   2.575 451                476             459                 84% 86% 88% 86% 2.090       431%
248                176                 173                 2.327 467                562             339                 65% 76% 66% 69% 2.006       625%
200                166                 179                 2.491 583                592             373                 74% 78% 68% 73% 2.074       497%
227                186                 159                 1.733 203                178             157                 47% 49% 50% 49% 1.661       2310%
316                227                 222                 2.922 193                150             272                 38% 40% 55% 44% 2.436       501%
350                257                 273                 3.077 723                765             495                 67% 75% 64% 69% 2.018       191%
310                189                 501                 2.070 29                  14               43                   9% 8% 8% 8% 1.483       253%
253                185                 545                 2.238 71                  23               25                   22% 14% 5% 14% 1.497       202%
318                151                 434                 2.060 29                  4                 31                   10% 2% 7% 6% 1.444       235%
339                284                 172                 3.446 3                    75               113                 1% 36% 40% 25% 3.148       1056%
400                331                 614                 3.783 434                109             393                 52% 25% 39% 39% 2.653       235%
335                197                 283                 9.808 165                58               215                 33% 23% 43% 33% 8.871       947%
133                100                 128                 1.555 299                187             244                 69% 65% 66% 67% 0.930       149%
155                164                 144                 3.268 278                63               210                 64% 28% 59% 50% 3.265       109302%
126                115                 100                 1.892 181                66               173                 59% 37% 63% 53% 1.647       672%
114                107                 99                   2.070 223                107             199                 66% 50% 67% 61% 1.741       529%

70                   87                   67                   2.060 226                111             180                 76% 56% 73% 68% 1.761       589%
62                   77                   59                   1.733 247                116             205                 80% 60% 78% 73% 1.475       573%
86                   94                   83                   2.575 325                198             253                 79% 68% 75% 74% 2.179       551%

152                157                 129                 3.605 293                181             229                 66% 54% 64% 61% 3.238       882%
127                151                 114                 3.087 285                148             218                 69% 50% 66% 61% 2.794       953%

87                   99                   82                   2.575 200                126             145                 70% 56% 64% 63% 2.334       970%
126                138                 106                 4.120 533                324             456                 81% 70% 81% 77% 2.991       265%

93                   92                   83                   3.090 73                  42               63                   44% 32% 43% 39% 2.769       861%

View

57%

76%

85%

61%

61%

difference lux
Daylight

difference %Daylight Average
1 bounce values

13%

47%

66%

View
21Mar1200
Median [lx]

21Jun1200
Median [lx]

21Jun1200
Median [lx]

Sky
Median [%]

21Mar1200
Median [lx]

21Jun1200
Median [lx]

21Jun1200
Median [lx]

21Mar1200
Median [%]

21Jun1200
Median [%]

21Jun1200
Median [%]

Of three 
days

Per orientation 
of three days Sky

SkyView_
mean

343                386                 134                 3.106 22                  75               203                 6% 24% 60% 30% 2.606      522%
682                835                 366                 8.912 194                61               430                 22% 8% 54% 28% 7.903      783%
619                833                 285                 10.189 238                92               512                 28% 12% 64% 35% 9.136      867%
408                629                 245                 4.845 302                556             154                 285% 762% 169% 405% 4.715      3644%
127                199                 79                    1.545 60                  133             25                   89% 202% 46% 112% 1.542      51536%
237                237                 125                 2.428 5                    4                 82                   2% 2% 40% 15% 2.050      542%
170                250                 130                 2.549 62                  12               67                   27% 5% 34% 22% 2.219      674%
220                194                 135                 2.060 105                177             106                 32% 48% 44% 41% 1.769      607%
279                306                 123                 2.307 186                176             252                 40% 36% 67% 48% 1.565      211%
263                260                 117                 2.575 75                  51               22                   40% 24% 16% 27% 2.572      86032%
372                459                 221                 5.097 314                389             176                 541% 556% 391% 496% 5.094      170400%
372                550                 246                 5.260 316                480             205                 564% 686% 501% 584% 5.257      175882%
169                351                 111                 3.082 246                135             177                 59% 28% 62% 50% 2.752      835%
264                272                 135                 3.660 273                278             386                 51% 51% 74% 59% 3.175      655%
811                563                 707                 3.189 96                  175             195                 13% 24% 38% 25% 2.868      894%
853                427                 722                 3.389 70                  331             170                 9% 44% 31% 28% 2.972      713%
449                442                 465                 2.575 19                  78               149                 5% 21% 47% 24% 2.503      3482%
845                487                 953                 3.986 336                110             459                 66% 29% 93% 63% 3.500      720%
880                744                 631                 4.067 193                278             137                 18% 27% 18% 21% 3.008      284%
765                458                 823                 3.064 426                283             279                 126% 161% 51% 113% 2.477      423%
605                596                 808                 3.227 281                434             288                 87% 268% 55% 137% 2.485      335%
756                603                 708                 2.712 467                456             243                 161% 310% 52% 175% 2.096      340%

1,022             770                 1,079              4.670 686                561             794                 204% 268% 279% 250% 4.372      1466%
815                778                 1,196              5.131 19                  338             189                 2% 77% 19% 33% 4.001      354%
577                500                 753                 12.908 77                  245             255                 15% 96% 51% 54% 11.971    1278%
416                318                 235                 2.307 16                  31               137                 4% 11% 37% 17% 1.682      269%
668                539                 413                 4.498 235                312             59                   54% 137% 17% 69% 4.495      150453%
298                236                 185                 2.712 9                    55               88                   3% 30% 32% 22% 2.467      1007%
322                286                 205                 3.064 15                  72               93                   5% 33% 31% 23% 2.735      832%
255                323                 190                 2.840 41                  125             57                   14% 63% 23% 33% 2.541      850%
247                370                 171                 2.575 62                  177             93                   20% 92% 35% 49% 2.318      900%
355                368                 189                 3.972 56                  76               147                 14% 26% 44% 28% 3.577      904%
346                501                 239                 4.833 99                  163             119                 22% 48% 33% 35% 4.466      1217%
301                470                 244                 4.083 111                171             88                   27% 57% 27% 37% 3.790      1292%
345                321                 177                 3.389 58                  96               50                   20% 43% 22% 28% 3.149      1308%
469                523                 300                 5.467 190                61               262                 29% 13% 47% 30% 4.338      384%
263                435                 182                 4.067 97                  301             36                   58% 225% 24% 103% 3.746      1165%

Multibounce values Daylight View
Daylight difference lux difference % Average

31%

46%

122%

31%

243%

32%

169%

43%
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Appendix D. Python codes feature extraction  
This appendix includes all the Python codes used for this research. The main path of the created GitHub page is: 
 
https://github.com/lottekat/VisualComfortLayouts/blob/14ace23d7ca7c1d2cd73b74b6667fa7b7d9ac2fa/README.
md  
 
 
 
 

Part I. Code feature extraction 
This code include connecting windows to rooms & finding the window and orientation area per room. The code 
can be found at the following GitHub page:  
 
https://github.com/lottekat/VisualComfortLayouts/tree/14ace23d7ca7c1d2cd73b74b6667fa7b7d9ac2fa/01_Featur
eExtraction  
 
 
 
 
 
 

Part II. Code data preparation  
This code includes the cleaning of the ‘Swiss dwellings’ dataset and creating all the needed features and labels. 
The code can be found at the following GitHub page:  
 
https://github.com/lottekat/VisualComfortLayouts/tree/14ace23d7ca7c1d2cd73b74b6667fa7b7d9ac2fa/02_DataPr
eperation  
 
 
 
 
 
 

Part III. Code ML training  
This code includes the code for the best ML model training, model 7.5A and 7.5B. The code can be found at the 
following GitHub page:  
 
https://github.com/lottekat/VisualComfortLayouts/tree/14ace23d7ca7c1d2cd73b74b6667fa7b7d9ac2fa/03_MLtrai
ning  
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Appendix E. Detailed model architecture 
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Appendix F. 12 general apartments ML evaluation    
Part I. Overview selected apartments with their site and building ID 

  

Apartment 10
Site 3958, building 6192

Apartment 11
Site 11726, building 18299

Apartment 12
Site 11726, building 18299

Apartment 1
Site 66, building 112

Apartment 2
Site 401, building 1010

Apartment 3
Site 401, building 1017

Apartment 4
Site 789, building 1727

Apartment 5
Site 789, building 1729

Apartment 6
Site 1067, building 2189

Apartment 7
Site 1105, building 2245

Apartment 8
Site 2161, building 3012

Apartment 9
Site 3641, building 5604
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Part II. Comparison of 3 models daylight predictions on 21st of March at 12:00 
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Part III. Comparison of 3 models sky view predictions 
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Appendix G. Case study prediction code 
Part I. Case study Grasshopper script 
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Part III. Comparison of 3 models sky view predictions 
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Appendix G. Case study prediction code 
Part I. Case study Grasshopper script 
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Part II. Code ML predictions   
This code includes a automated version of the ML design framework. The code comes together with a Rhino 
Grasshopper script.  
 
https://github.com/lottekat/VisualComfortLayouts/tree/14ace23d7ca7c1d2cd73b74b6667fa7b7d9ac2fa/04_Casest
udyPredictions  


