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STAQ – Static Traffic Assignment with Queuing: Model properties 

and applications 

This paper describes the road traffic assignment model STAQ that was developed 

for situations where both static (STA) and dynamic (DTA) traffic assignment 

models are insufficient: strategic applications on large-scale congested networks. 

The paper demonstrates how the model overcomes shortcomings in STA and 

DTA modeling approaches in the strategic context by describing its concept, 

methodology and solution algorithm as well as by presenting model applications 

on (small) theoretical and (large) real-life networks. The STAQ model captures 

flow metering and spillback effects of bottlenecks like in DTA models, while its 

input and computational requirements are only slightly higher than those of STA 

models. It does so in a very tractable fashion, and acquires high-precision user 

equilibria (relative gap < 1E-04) on large scale networks. In light of its accuracy, 

robustness and accountability, the STAQ model is discussed as viable alternative 

to STA and DTA modeling approaches. 

Keywords: traffic assignment; strategic planning; large-scale; congested 

networks; model;  quasi-dynamic  



 

 

1 Introduction 

Since the late 1950’s strategic transport models are used to assess the long-term impact 

of transport policies and the design and management of transport systems. Since then, 

road traffic congestion has become a common and structural part of many transport 

systems around the world. However, strategic transport models differ strongly with 

respect to how such structural congestion and the effects thereof are accounted for 

within the model used in the traffic assignment (TA) step. The TA model uses the travel 

demand and network supply as input and usually solves a user equilibrium (UE) 

problem determining the routes that travelers choose as well as the resulting traffic state 

on the network (i.e. traffic conditions, including congestion). The TA model is often the 

most computational expensive component of the model system because an iterative 

approach is required to solve the UE problem. Given the above, we argue that there is a 

need for computationally efficient TA models in strategic transport models for large-

scale1 transport systems with structural congestion.  

From the combined perspectives of policy makers and TA model users, the 

authors argue that apart from computational efficiency and the ability to accurately 

capture the effects of structural congestion, TA models should also be based on input 

data that can be forecasted with sufficient certainty for (distant) future years, and should 

produce accurate, robust and accountable model results for all vehicle classes and for 

both urban roads and motorways upon assessing policy, design and management 

                                                

1
 As a rough reference, we consider a network to be large-scale when it contains more than 1 

million used OD pairs. This is typically the case with networks containing 3000 or more 

centroids. Note that the size in this context need not be directly related to the size of the 

study area; a fine grained network of a relatively small area with lots of socio-economic 

activity can also be qualified as large. 



 

 

measures for transport systems. These desired properties for TA models are in line with 

(Bliemer et al. 2013; Flügel et al. 2014; Flötteröd 2015)2 and are defined below.  

The ability to capture congestion effects pertains to how bottlenecks lead to flow 

metering and spillback as well as how it affects route choice. Robustness and 

accountability are desired properties, because when comparing model outputs of 

different scenarios (e.g. sets of policy measures), we aim to single-out differences only 

caused by or related to the different scenario inputs.  Hence, differences caused by 

random variables (e.g. due to stochastic processes in the model) or because the model 

output does not (sufficiently) represent a stable system state3 should be negligible or 

non-existent. Accountability also means that it should be possible to pinpoint and size 

the contribution of each of the different model components in terms of scenario outputs. 

This requires model components that can be isolated and that are mathematically 

tractable (i.e.: all calculations can be verified given the theory behind it). Finally, 

computational efficiency, low input requirements and applicability allow for fast 

calibration and application of the model on any network. These desired properties for 

TA models within large-scale strategic transport models are summarized in Table 1 for 

later reference. 

<<insert table 1 here>> 
                                                

2 The referred papers also mention extendibility (the extent to which the model is prepared for 

future modes) and consistency with microscopic models as desired properties. However, 

we argue that these are no distinctive features for strategic TA models, since extendibility 

is primarily determined by the adopted demand model, while theoretical consistency with 

microscopic TA models is always possible at some level of aggregation.  
3 Even when the exact stable state never occurs on any given day in reality (because of e.g. 

differences in perception and lack of information among travelers), for planning purposes 

it is important that the model outcomes are not influenced by these effects: they must 

remain comparable. 



 

 

A quick-scan of strategic transport model systems of large urban areas in 

Western Europe shows that in general two types of traffic assignment models are being 

used. Most strategic transport model systems use traditional static traffic assignment 

(STA) models (e.g. Paris, Berlin, Amsterdam, Lisbon, Vienna, Copenhagen, Rotterdam, 

The Hague). These models are computationally efficient, have low input requirements 

and are robust, tractable and accountable. However, they are not sufficiently accurate 

(and thus applicable) in congested conditions, because they do not capture flow 

metering and spillback effects due to congestion (Flötteröd 2015). To the best of the 

authors’ knowledge, there are three (quasi dynamic) traffic assignment models in use in 

strategic transport model systems that, to some extent, capture flow metering and 

spillback effects: QBLOK (Bakker, Mijjer, and Hofman 1994) used solely in the Dutch 

national models system, Saturn (Van Vliet, Hall, and Willumsen 1980) used in e.g. 

London Highway Assignment Models, and the blocking back assignment in PTV 

VISUM (Bundschuh, Vortisch, and Van Vuuren 2006) used in e.g. the UK west 

midlands PRISM model and Flemish strategic traffic models. Although they provide 

more accuracy than traditional STA models, all three models suffer from a solid 

theoretical basis, as they are merely presented as algorithms, while the underlying 

mathematical problem formulation and assumptions are not specified. This leads to poor 

accountability and makes calibration of parameters using observed data cumbersome 

and model-specific. Furthermore, queues and delays predicted by these models are not 

consistent with (simplified) kinematic wave theory (Lighthill and Whitham 1955; 

Richards 1956 or Newell 1993), causing poor mathematical tractability.  

Over the last decades, there has been much emphasis on development of 

dynamic traffic assignment (DTA) models and their application in the operational (and 

sometimes tactical) context. However, as suggested by (TRB 2011; Szeto and Lo 2006; 



 

 

Peeta and Ziliaskopoulos 2001) DTA models lack the convergence properties that are 

needed for applications within the strategic context. This means that the robustness and 

accountability of these models is insufficient to be used in strategic transport model 

systems. Indeed, researchers and practitioners state that a duality gap value (DG, the 

metric most used to measure the level of disequilibrium) of 1E-04 or lower is needed in 

strategic context (Boyce, Ralevic-Dekic, and Bar-Gera 2004; Han et al. 2015; 

Brederode, Heijnickx, and Koopal 2016; Caliper 2010), whereas, to the best of the 

authors’ knowledge, no DTA algorithms exist that can converge to this level on realistic 

congested networks of reasonable size. Furthermore, the existence of a time dimension 

within DTA models is a major contributor to their high computational cost and memory 

usage and therefore limited scalability. The time dimension also causes DTA models to 

require much more input data in comparison with STA models, because demand-

matrices (or demand models that can deliver these), traffic counts and route choice 

parameters (may) become time dependent. This input data is often not available, 

especially for longer-term scenarios (i.e. 5-20 years into the future). A quick-scan of 

DTA models in the strategic context (especially in the US) confirms that these model 

applications are all relative small-scale (<1300 centroids) and most do not converge 

well4. 

Based on these considerations, we first of all argue that traditional STA models 

are insufficiently accurate to be applied on strategic transport model systems with 

structural congestion, whereas the accountability and robustness of existing quasi-

                                                

4 e.g. Miami (284 centroids, DG 1E-02, Florida international university et al 2013), Sacramento 

(1279 centroids, DG 1E-01, TRB 2014), Sydney (1131 centroids, DG 5E-02, Duell et al 

2015), Ljubljana (323 centroids, DG 1E-02, PNZ 2009), Sundsvall (330 centroids, DG 1E-

04, Contenti 2013) 



 

 

dynamic assignment models is questionable, and their calibration cumbersome due to 

the lack of a solid theoretical basis. Second of all, we argue that DTA models are 

sufficiently accurate to describe congestion effects, but their low computational 

efficiency, high input requirements and poor robustness and accountability prohibit 

application in large-scale strategic models. To overcome these shortcomings, STAQ 

(Static Traffic Assignment with Queuing): an assignment model for road traffic within 

strategic transport models was developed as an alternative to the traditional STA model, 

providing more accuracy on congested networks without reducing robustness, 

applicability and accountability and without increasing input requirements, whilst 

keeping computational requirements to acceptable levels. This makes the model suitable 

for applications where both static and dynamic assignment models may fail, i.e. 

strategic applications on large-scale congested networks.  

STAQ consists of two submodels, both consisting of several components. For 

each component variations are possible which, combined, result in a large set of 

possible implementations of STAQ. We shall first describe the concept, methodology 

and implementation using STAQ in its most accurate5 (or ‘reference’) form. Thereafter, 

the role and performance of variations applied in this paper will be described (from 

section 2.5 onwards). All model variations represent simplifications, thus leading to 

lower accuracy, but at the same time benefitting from equal or higher tractability, 

accountability, robustness or efficiency, or equal or lower input requirements compared 

to the reference form.   

The mathematical problem formulation of STAQ, its theoretical advantages over 

STA and DTA models as well as earlier versions of its solution algorithm have been 

                                                

5 by the definition from Table 1 



 

 

described before by (Brederode, Bliemer, and Wismans 2010; Bliemer et al. 2012; 

Bliemer et al. 2013). Since the most recent publication, there have been a few minor 

methodological improvements, and various STAQ variants have successfully been 

tested and put to practice on several large-scale real-life strategic models6. Now that 

mathematical development and conceptual testing of the model is completed, this paper 

focuses on the key aspects of practical model applications. The main contributions of 

the paper are 1) to provide a complete and up-to-date description of the model concept, 

methodology and implementation, 2) to (explicitly) show how, and to what extent the 

model addresses the shortcomings of STA and DTA models in practice in the strategic 

context, and 3) to demonstrate the model performance in terms of the desired properties 

listed in Table 1, both for the reference model form and several model variations. The 

latter is done using (small) theoretical and (large) real-life model applications.  

The remainder of this paper is organized as follows. Section 2 describes the 

models concept and methodology, and Section 3 describes the algorithmic 

implementation of its reference form. Throughout both sections, where appropriate, we 

discuss how STAQ qualitatively overcomes the shortcomings of STA and DTA models 

and adheres to the desired properties. Then Section 4 demonstrates the model 

performance also quantitatively based on recent real-life model applications conducted 

in the past 5 years, and presents how different model variations affect the desired model 

properties. We end with discussion and conclusions in Section 5. 

 

                                                

6 Note that (Bliemer et al. 2014a) did test their assignment model on two large scale networks, 

but that paper only describes a single variation of STAQ that does not account for queue 

spillback nor junction modelling, and only the MSA averaging scheme is used.  



 

 

2 Concept and methodology of STAQ 

This section describes the concept underlying STAQ as well as its methodology and 

variations. STAQ is implemented in c++ and available and applied for policy makers as 

a part of OmniTRANS transport planning software since early 2015. Sections 2.1 till 

2.4 provide insight into how STAQ combines assumptions from static and dynamic 

assignment models to satisfy the desired properties for strategic transport model systems 

(Table 1) and form a prerequisite for the sections afterwards. Section 2.5 describes the 

STAQ variations used in this paper.  

 
2.1 General concept and properties 

STAQ achieves the desired properties in Table 1 by combining some (implicit) 

assumptions from STA models with some assumptions from DTA models. In order to 

include flow metering and spillback effects of congestion, its network loading submodel 

(section 2.3) respects strict capacity (maximum flow) and storage (maximum density) 

constraints respectively. Note that to add strict capacity constraints straightforwardly as 

mathematical constraints to the STA model formulation (e.g. Larsson and Patriksson 

1999), when added for all links yields an unrealistic (equilibrium) solution without 

congestion, because all links are forced into free flow regime. Furthermore, solving the 

model becomes much more tedious (Nie, Zhang, and Lee 2004). DTA models on the 

contrary simulate the full on-set and off-set of congestion due to the flow and density 

constraints, but calculate much more (dynamic information) than required in the 

strategic context at the cost of computational efficiency, convergence and scalability 

properties. STAQ resolves this trade-off by including strict capacity and storage 

constraints (as in DTA models), but excluding the time dimension by assuming 

stationary travel demand throughout the study period (as in STA models) and 

instantaneous propagation of unconstrained flow (as STA models assume for all flow). 



 

 

It does this in a way maintaining most of the robustness, accountability and low level of 

computational and input requirements from STA models. It uses a concave two-regime 

fundamental diagram for the relation between speed, flow and density on link level 

(section 2.3.1), and uses an explicit node model to describe merging, diverging and 

crossing flow interactions on node level (section 2.3.2). Additionally to the node model, 

to allow for application in the urban context, STAQ has a junction modeling 

component, taking into account capacity and delay effects on the level of turning 

movement caused by e.g. traffic rules, geometry and/or signal schemes on junctions 

(section 2.3.3) allowing for model application on both urban roads and motorways. 

Furthermore, STAQ  allows for multi-user-class assignment, where each vehicle class 

has its own route choice parameters, free flow speed and set of network restrictions 

making the model applicable for all vehicle classes.  

The specific assumptions in STAQ are beneficial for its purpose to overcome the 

shortcomings of STA and DTA models in the strategic context, but also have 

consequences for its usage and interpretation of its outcomes. First (contrary to STA 

and similar to DTA), its strict capacity constraints and explicit node model can lead to 

residual traffic: traffic that cannot reach its destination within the studied period. Second 

(similar to STA and contrary to DTA), its omission of a time dimension means that all 

model results (e.g. flows, travel times, densities) are averages over all travelers 

departing in the study period. Third (similar to STA and contrary to DTA), it forces the 

modeler to make an assumption on the network state before and after the study period, 

as there are no warm up or cool down periods to take care of this. On the one hand, just 

like static models implicitly assume, STAQ assumes an empty network before and zero 

demand after the study period. On the other hand, all travel time (and contributions to 

density and flow) of traffic that departed within the study period is accounted for in the 



 

 

average outputs, also when part of a trip takes place after the end of the study period 

(the latter cannot occur in STA models).  

 
2.2 Modelling framework  

The assignment model is split into two submodels: network loading, and routing. The 

network loading submodel uses route-specific travel demand to compute the resulting 

(route) travel times, whereas the routing submodel uses route travel times to compute 

the resulting travel demand per route. As shown in (Bliemer et al. 2012; Brederode, 

Bliemer, and Wismans 2010), the network loading submodel of STAQ can be seen as a 

static version of the generalized link transmission model of (Gentile 2010).  

Therefore, STAQ is categorized using the framework for macroscopic DTA models 

displayed in figure 1 (adapted from (Cascetta 2009)). Note that STAQ uses a route 

submodel that is common to macroscopic DTA models, but has a very different network 

loading submodel. Note that the unit of demand is the number of car equivalents (in 

case of single-user-class assignment) or the number of vehicles per user-class (in case of 

multi-user-class assignment).  

The remainder of this section describes the model components within both the 

network loading submodel (further elaborated in section 2.3) and the route submodel (as 

used in the case studies in section 2.4). Note that mathematical definitions of the 

different model components are omitted in this paper, as these have been described 

before in other publications (Bliemer et al. 2014a; Raadsen, Bliemer, and Bell 2016). 

Instead, we provide references to those publications, and here conceptually elaborate 

how the various components are combined within the model and its variations. The 

model variations that are used and/or tested in section 4 are described in section 2.5.  

<<insert figure 1 here>> 



 

 

2.3 Network loading submodel  

The network loading submodel of STAQ consists of two phases that both use the same 

node and junction model components, but use a different link model component as to 

the adopted fundamental diagram.  

First, the squeezing phase models the effect of the flow metering of bottlenecks 

using the path-based network loading model with strict capacity constraints as described 

in (Bliemer et al. 2014a). This model assumes a fundamental diagram with in the 

density-flow plane a concave free-flow branch and a linear horizontal congested branch 

in the link model (Figure 2, middle) implying vertical queues on nodes for which the 

node model calculates active capacity constraints. Note that the squeezing phase 

implicitly assumes instantaneous flow propagation for all flow that is not held up in 

queues just like STA models assume for all flow (in free flow and congested).  

Second, the queuing phase models the effect of the spillback and secondary 

effects of bottlenecks using the event-based generalized dynamic link transmission 

model described in (Raadsen, Bliemer, and Bell 2016), assuming stationary demand and 

initial in- and outflow rates and fixed turn-fractions derived from the turn flows 

calculated in the squeezing phase. This model assumes a concave free-flow branch and 

a linear downward-sloping congested branch in the link model (Figure 2, right) 

implying storage constraints, while the node model calculates the effects of changes of 

in- and outflow rates on adjacent links. Note that although no ‘normal’ time dimension 

exists, the queuing phase uses a time dimension internally (referred to as ‘queuing 

time’) to capture the amount of spatial interaction between all the different spillback and 

flow metering effects. A specific queuing time however, cannot be related to, or 

interpreted as, a specific moment in time because the queuing phase starts with the 

instantaneously propagated flow rates from the squeezing phase, and demand is 



 

 

assumed to be stationary. Only the (demand averaged) flow rates and travel times are 

consistent with the assumptions in STAQ and as such form the primary output.  

The most important reason for splitting the algorithm into two phases is to 

maintain scalability when calculating spillback and secondary effects of bottlenecks. 

Additional reasons are that the squeezing phase compensates for the lack of a pre-study-

period warm-up and that flow metering and spillback effects can be analyzed separately.  

2.3.1 Link model 

Figure 2 illustrates the density-flow relation of the fundamental diagrams of STAQ 

(middle and right) with the BPR-type travel-time functions that are typically used in 

STA models (left). In the figure, the free-flow branch of each diagram is blue and the 

congested branch is red. Note that the travel time functions in STA models have no 

capacity constraint. Hence their fundamental diagram does not contain a congested 

branch. Considering the fundamental diagram of STAQ– squeezing (middle): it has a 

free-flow branch very similar to that of the STA model, but it has a congested branch 

that satisfies the capacity constraint on maximum flow and as such accounts for flow 

metering. However, because there is no constraint on maximum density, vertical queues 

are implied (i.e. point queues with infinite density). The fundamental diagram of STAQ 

– queuing (right) has the same concave free-flow branch as STAQ – squeezing, and a 

congested branch that complies with both the capacity constraints on maximum flow 

(accounting for flow metering) and maximum density (accounting for spillback). The 

mathematical formulation of this Quadratic-Linear (QL) fundamental diagram can be 

found in (Bliemer et al. 2014b). 

<< insert figure 2 here>> 

2.3.2 Node model 

The node model seeks for a consistent solution in terms of flows transferred over the 



 

 

intersection, assuming individual flow maximization and accounting for all demand and 

supply constraints of the adjacent links. This means that the node model can transfer the 

effect of capacity restrictions on downstream links to upstream links and can transfer 

the effect of changes in demand on upstream links to downstream links. STAQ uses the 

node model proposed in (Tampère et al. 2011) and (Flötteröd and Rohde 2011) which 

complies to a set of generic requirements for first order macroscopic node models 

described in the first paper. Later, (Smits et al. 2015) generalize all feasible supply 

distribution schemes complying to the requirements of (Tampère et al. 2011) into a 

family of macroscopic node models, of which the model used in STAQ is a member.  

2.3.3 Junction model 

The junction model is an extension of the node model. It has two purposes in STAQ. 

Firstly, it accounts for the effect of limited supply due to conflict points on the junction 

itself (i.e. crossing flows), since the node model itself only accounts for flow restrictions 

due to merge and diverge interactions between flows leaving in-links and entering out-

links to the node. The junction model thus imposes further constraints onto the node 

model. Secondly, the junction model calculates travel-time delays due to passing the 

junction, caused by conflicts on turning-movement level depending on junction type 

(e.g. roundabout, prioritized or signalized). In the current implementation, the junction 

model uses the method described in (Bovy 1991) for roundabouts and the Highway 

Capacity Manual (TRB 2000) for other junction types7. The junction model first 

calculates effective turn capacities given the local demand, and then derives turn delays 

                                                

7 The junction modelling component is currently being updated to also include the US 

HCM2010, the German HBS2015 and other state of the art junction models as part of the 

research described in (Bezembinder, Wismans, and van Berkum 2015). 



 

 

using these capacities. These turn delays consist of deceleration and acceleration delays 

when approaching and leaving the node, and delays due to direct interference of other 

traffic or signaling on the node itself. Note that delays as a result of queuing are 

excluded from the junction model because its turn capacities are used in the node model 

that potentially triggers the link model to account for queuing. 

2.3.4 Travel-time calculator 

The travel-time calculator is used to derive travel times from the output as calculated by 

the link, node and junction models. The travel-time calculator has two functions. Firstly, 

it uses cumulative inflow and cumulative outflow curves created by the link model of 

each link to derive the link travel time (e.g. (Long, Gao, and Szeto 2011)). Note that in 

this way, the effects of queues and spillback as a result of demand and (internal) supply 

constraints imposed by the node and junction models are automatically accounted for. 

Secondly, it translates these link-based travel times into route-based travel times, and 

includes delays from the junction model. It calculates the travel time of a route from an 

origin to a destination; flow averaged over all car equivalents departing within the study 

period. It includes the travel time experienced after the study period by car (equivalents) 

that did not reach their destination within the study period. This is achieved by setting 

outflow from all centroids to zero after all demand is put on the network, and letting the 

queuing phase continue until all traffic has reached its destination.  

 
2.4 Route submodel 

The advantages of STAQ are derived more from its unique network loading submodel 

than its route submodel, and hence the latter is interchangeable. Nevertheless, for sake 

of completeness and clarity we describe the route submodel here briefly.  



 

 

2.4.1 Route set generator 

The route set generator creates routes based upon a digitized transport network. It uses 

the Dijkstra algorithm to find the shortest path between each origin-destination (OD) 

pair. By use of a repeated random sampling process on free flow link travel times using 

a gamma distribution known as the accelerated Monte Carlo method (Fiorenzo-Catalano 

2007), alternative routes are generated. Route filters are applied after the repeated 

random sampling process to reduce route overlap, remove irrelevant routes and restrict 

the size of the set of potential routes. 

2.4.2 Route choice model and convergence criterion 

The route choice model uses the generalized route costs (based on the network loading 

submodel) to compute route fractions for all route alternatives between an OD pair. 

Here we assume random utility maximization with perception errors, and hence use the 

multinomial logit (MNL) model to calculate route choice probabilities, such that route 

demand 𝑓! is defined by: 

exp( ) / exp( )
od

p od p od p odp P
f c c Dµ µ ′′∈
= − −∑ , 

(1) 

where 𝑐! is the route cost on route 𝑝, 𝐷!" is the travel demand for OD pair 𝑜𝑑 and  𝜇!" 

is the scale parameter describing the degree of travelers’ perception errors on route 

travel times (where perfect knowledge is assumed when 𝜇!" approaches infinity). Here 

(and in most real world applications) 𝜇!" is determined using a global scale parameter 𝜇 

normalized over ODpairs by 𝜇!" = 𝜇/min!∈!!" 𝑐!
!, where 𝑐!! is the free flow cost on 

route 𝑝. This normalization ensures that the relative effect of perception errors is the 

same on all OD pairs (regardless of their average route travel time).  

Together with the feedback loop in Figure 1 and an averaging scheme, this leads 

to flow assignment complying to the stochastic user equilibrium (SUE) . To check for 



 

 

convergence, we use the adapted relative duality gap as derived in (Bliemer et al. 2013) 

that accounts for perception errors and thus reaches zero upon convergence when using 

the MNL route choice model:  

1
( , )

( , )

( ln )
od

p p od p odo d p P

od odo d

f c f
G

D

µ ψ

ψ

−
∈

+ −
=
∑ ∑

∑
, 

(2) 

where 𝜓!" = min!∈!!"[𝑐! + 𝜇!"
!! ln 𝑓!] represents the minimum stochastic path cost.  

2.4.3 Route demand calculation and averaging scheme 

The route demand calculation component has two functions. Firstly, it computes the 

travel demand at route level, based on the OD-demand and route fractions. Secondly, it 

enforces and speeds up convergence by averaging route demands over iterations. STAQ 

uses the method of self-regulating averages (SRA) to average route demands over 

iterations. SRA complies to the convergence conditions derived by (Blum 1954) stating 

that the influence of priori iterations must decrease in every subsequent iteration. SRA 

is described in detail in (Liu, He, and He 2009) and tends to provide fast convergence 

with high precision. The concept of SRA is to let the influence of prior iterations 

decrease with either a larger or smaller step size depending on the difference in levels of 

disequilibrium (in terms of ‘excess’ vehicle hours) between the last and second-to-last 

iteration.  

 

2.5 STAQ variations 

As mentioned in section 1, model components can relatively easily be exchanged or 

adapted thereby creating STAQ variations. A variation is a STAQ model application in 

which one or more of the components described in subsections 2.3 and 2.4 are replaced 

or altered. Variations are applied to change the balance between accuracy and 



 

 

applicability on the one hand and input requirements, tractability, accountability, 

computational efficiency and convergence properties on the other hand. Below, the five 

variations that will be used in section 4 are described. Note that each variation can be 

applied in combination with other variations;  e.g. in section 4.3, three variations are 

used to construct the twelve different combinations listed in Table 3. Further note that 

more variations are feasible (and have been implemented), but are omitted here for 

reasons of relevance and brevity. 

The first variation mainly influences the balance between accuracy and 

convergence properties by omitting the queuing phase until equilibrium has been 

reached, and then apply it only in the last iteration to translate the equilibrated vertical 

(point) queues into horizontal (spatial) queues. When applying this variation, route 

choice is based on vertical queues, and effects of horizontal queues are only included in 

the final network traffic states (i.e. link flows, speeds and densities). This variation is 

tested in subsections 4.3 and 4.4. It is expected to improve convergence and thereby 

computational efficiency at the expense of accuracy and applicability, especially around 

heavy bottlenecks where in reality spillback would influence route choice. 

The next two variations also mainly influence the balance between accuracy and 

convergence properties and are related to the junction model. Firstly, flow restrictions 

due to junction modeling can be omitted, in which case only the turn delays are taken 

into account in the travel time calculator. Secondly, junction modeling can be omitted 

entirely, in which case no additional flow constraints are imposed on the node model 

nor are turn delays considered in the travel time calculator. Both variations are tested in 

subsections 4.3 and 4.4. 

The fourth variation is to increase model tractability at the expense of 

convergence properties by applying the MSA, instead of SRA, averaging scheme. 



 

 

Because MSA uses predefined fixed step sizes that are independent of results of 

previous iterations it is much easier to verify its outcomes. The effect on convergence 

properties (and thereby computational efficiency) is discussed in subsections 4.3 and 

4.4.  

The fifth variation is also to increase model tractability and relates to the form of 

the fundamental diagram. Instead of the QL diagram, the triangular fundamental 

diagram proposed by (Newell 1993) can be used. This diagram implies no delays in the 

free flow branch, which means that it is less accurate in these circumstances. The 

diagram is especially useful to demonstrate tractability, because a flow/density tuple can 

easily be calculated using simple geometric algebra as will be shown in subsection 4.1.  

 

3 Model implementation 

This section describes the implementation of STAQ in terms of input, algorithm and 

output. Recall from section 1 that all variations are simplifications of the reference 

form. This section thus describes the normative input requirements, most advanced 

algorithm and most accurate output of the model. In line with section 2, mathematical or 

pseudo-code representation of the model is omitted here, as these have been provided 

before in publications to which we shall refer.  

 
3.1 Model input  

STAQ needs less input than DTA models and only slightly more input than STA 

models. Therefore, we first describe model input required for STA models, and then 

describe the additional input required for STAQ.  

In STA models, the infrastructure (supply) is described by a (graph) network of 

the study area consisting of centroids, directed links and nodes. Centroids represent 

aggregated trip origins and destinations. Links represent road segments and have 



 

 

attributes pertaining to the free flow speed and the theoretical link capacity. Nodes 

represent merges, diverges and intersections. Only those nodes where junction modeling 

is applied have attributes, which pertain to the junction type, approach and exit lane 

configuration and dimensions and optionally the traffic light schema. Travel demand is 

assumed stationary during the study period and described for each origin-destination 

pair in a single OD matrix.   

Most STA models have (implicit or explicit) link-flow propagation functions 

that only describe a free-flow branch of the fundamental diagram. To construct the 

fundamental diagrams for each link (Figure 2), STAQ uses the free-flow speed and 

capacity like in a STA model to determine the slope and height of the free-flow branch. 

Additionally, STAQ requires the jam density per lane to determine the point of 

intersection of the congestion branch with the density axis, and requires the critical 

speed to determine the slope of the free-flow branch at capacity. Note that the critical 

speed can be derived from free-flow speeds from an existing STA network and jam 

density can be derived or assumed based on the average car length. Further note that 

STAQ does not need a link typing (as most STA models employ), since all link 

characteristics are derived from the (link specific) fundamental diagram. STAQ does 

not need any additional input on the travel demand. 

Although STAQ needs little extra input compared to STA models, its strict 

capacity constraints put emphasis on the required level of precision and accuracy of the 

input data. Firstly, the strict capacity constraints make it necessary to define the 

stationary demand matrix more explicitly: it should contain all the traffic that chooses to 

depart in the study period, no matter if it reaches its destination within that study period. 

This means that when using traffic counts to calibrate the OD matrix, flow metering and 

spillback effects of congestion should be somehow taken into account (something that is 



 

 

usually not accounted for in matrix estimation procedures for static traffic assignment 

models). Another consequence of this more explicit definition of travel demand is that 

the modeler will have to think about the translation from the ‘real’ time-varying travel 

demand to an ‘averaged’ or ‘peak’ travel demand for the study time period, depending 

on the desired outcomes (‘average’ or ‘peak’ flows and travel times). This means the 

study period length and the static travel demand level should be defined consistently. 

Note that this is also the case with STA models, but the lack of strict capacity 

constraints prevents manifestation of erroneous choices8. 

Secondly, (similar to any macroscopic DTA model) when using a variation with 

the queuing phase and junction modeling, the strict capacity constraints require 

junctions to be modelled integrally using a single node, and not as an ‘expanded node’ 

(i.e. a constellation of short links and nodes that jointly represent a junction). In STA 

models, the latter is sometimes done to maintain (digital) network consistency with 

environmental models. Although not correct, the error introduced in the STA context is 

relatively small, because only the (additive) turn delays from junction modeling are 

used to influence route choice within the model. Therefore, the induced error could be 

traded-off for network consistency. However, because STAQ also uses the turn 

capacities from junction modeling as strict capacity constraints in the network loading 

submodel, this trade-off can no longer be made. Because capacity is not additive, each 

path using the junction will only be affected by the first turn on the path that forms an 

active constraint. If this is a turn on a node originating from a ‘junction-link’ a queue 

                                                

8 Because of the lack of strict capacity constraints, no queuing occurs in STA models, which 

means that the relation between demand and (modelled) delay due to congestion is much 

less sensitive compared to models with strict capacity constraints, preventing 

manifestation of erroneous choices. 



 

 

will form on the junction-link, whereas in reality this would be prohibited (on signalized 

junctions), impossible (on junctions without mid verges) and/or would only occur when 

a queue formed downstream of the junction spills-back onto the junction. In the first 

two situations, a queue that in reality would form on the upstream links of the junction 

is modeled on the junction itself, potentially blocking other turns on the junction. 

Because junction-links are relatively short, spillback on these links occurs rapidly 

causing almost instant gridlock on the junction, whereas this would not happen in 

reality.  

The effects of the capacity constraints described above can be considered a pain, 

but they do increase the accuracy of the model substantially by adding flow metering 

and spillback effects. Furthermore, they force the definitions of travel demand, study 

period length and junctions to be defined explicitly and more precise, thereby increasing 

the model accountability. 

From the above, we conclude that with respect to the desired property of low 

input requirements, STAQ requires more input with a higher accuracy than STA 

models. However these requirements are very modest compared to those of DTA 

models, and most of the additional input can be derived and refined from STA model 

input. Hence, STAQ requires much less (accurate) input compared to DTA models.  

 

3.2 Algorithm description 

Below the algorithms underlying the STAQ network loading submodel (left part of 

Figure 1) are described using flow charts. A full mathematical description of the 

squeezing and queuing algorithms can be found in (Bliemer et al. 2014a; Raadsen, 

Bliemer, and Bell 2016) respectively.  



 

 

The squeezing phase (Figure 3) primarily detects the locations and severity of 

active bottlenecks in the network, given the demand for all routes from the route 

submodel. It calculates a consistent set of reduction factors on turning movement 

(‘turn’) level that express the fraction of flow that can traverse the turn, given the 

capacities of the turn itself (as defined by the junction model), the capacity of its 

downstream link (as defined in the link attributes of the network) and all the reduction 

factors upstream from the turn (on routes that use the considered turn). The algorithm 

initializes reduction factors at a value of 1 (so no reduction) on all turns, and continues 

iterating9 until on all turns the difference between the flow of the previous and current 

iteration is small enough. At this stage the final link (in)flows and turn flows are known, 

and (not shown in flowchart) vertical queues (on turn and node level) and link and route 

travel times can be derived using the final reduction factors and the route demand. Note 

that (Bliemer et al. 2014a) have proven that the squeezing phase converges to a unique 

fixed point under very mild assumptions. 

<<insert figure 3 here>> 

The queuing phase (Figure 4) adds spillback and secondary interaction effects 

between queues on the network. It tracks shockwaves through space using link 

discretization as in the link transmission model (LTM, (Yperman 2007)), but does so in 

continuous time (using events) starting at the beginning of the study period. The 

queuing phase initializes by storing splitting rates derived from the turn flows from the 

squeezing phase and by translating the reduction factors from the squeezing phase into 

trigger events containing the flow rate upstream and downstream from the shockwave it 

                                                

9 Note that these are iterations within the network loading submodel (inner loop), not to be 

confused with iterations between the network loading and route submodel (outer loop).  



 

 

represents. Then, the algorithm loop starts by running the link model for each trigger 

event. The link model updates the cumulative in- or outflow curve of the considered 

link and uses these to apply simplified kinematic wave theory (Newell 1993) to 

calculate the release event time: the expected arrival time of the resulting shockwave at 

the other end of the link. After all trigger events are handled, the release events are 

placed on the event list that is then sorted ascending by time. Then, the first event is 

selected and its event time is validated. Validation is needed, because whilst the selected 

event was on the event list, other events on the same link may have updated its 

cumulative in- and/or outflow curve. If it is valid, time is set to the event time and the 

node model of the corresponding link end is run, given the updated in- or outflow rate 

from the event and the splitting rates stored during initialization. This generates new 

trigger events at links adjacent to the node, which closes the loop. If it is invalid, the 

event time is either updated (when other events have sped up or slowed down the 

shockwave) or the event is deleted (when other events have reversed the direction of the 

shockwave). 

<<insert figure 4 here>> 

The assumption of zero demand after the study period (section 2.1) is 

implemented by artificial trigger events at time T carrying zero flow on all upstream 

ends of links connecting origins to the network (not shown in flowchart). The algorithm 

stops when there are no more scheduled events on the event list, which means that the 

network is empty.  

Note that the number of events in the queuing phase can become quite large in 

large networks, mainly due to forward moving shockwaves that spread out according to 

the turn fractions causing the change of flow rate between upstream and downstream 

end of the shockwave to approach zero quite quickly. To reduce the computational 



 

 

burden at the cost of model precision, the queuing phase can be configured to skip 

processing trigger events for which the difference between the updated flow rates from 

the node model are smaller than some threshold value epsilon. (Raadsen, Bliemer, and 

Bell 2016) discuss the effect of different epsilon values and conclude that a value of 5.0 

veh/h provides a good trade-off between computation speed and precision. Throughout 

this paper we use a far more conservative value of 1.0 veh/h, for which negligible 

effects are reported in the same paper. Note that because the queuing phase is an event 

based algorithm, it only does calculations when and where needed. This makes the 

algorithm much faster compared to regular LTM implementations that evaluate all links 

in the network for each time step.  

 
3.3 Model output  

The primary output of STAQ consists of average flows, speeds and densities on link- 

and turn-level. All primary output is derived from the cumulative in- and outflow curves 

that are created in the queuing phase in a way that is consistent with simplified 

kinematic wave theory (Newell 1993) and the assumptions of STAQ as described in 

section 2.1. This is illustrated using the example of cumulative flow curves for a link 

displayed in Figure 5 in which the dents in the cumulative flow curves correspond to the 

events in the queuing phase leading to an increase or decrease in the in- or outflow rate. 

This figure exhibits four phenomena directly related to the assumptions from section 

2.1.  

Firstly, the assumption of instantaneous propagation of unconstrained flow 

means that the initial inflow rate (the angle of the cumulative inflow curve at queuing 

time 0) is equal to the route flow per link from the squeezing phase (as defined in Figure 

3). It also means that this flow rate has already (instantaneously) propagated itself 



 

 

throughout the entire link, which results in an initial cumulative inflow value equal to 

the inflow rate times the free flow travel time on the link. 

Secondly, due to the strict capacity constraints, the initial outflow rate (the angle 

of the initial cumulative outflow curve) may be lower than the initial inflow rate due to 

a vertical queue at the downstream side of the link, which means that it is equal to the 

route flow per link from the squeezing phase multiplied by the reduction factor of this 

link.  

Thirdly, due to the strict storage constraints, density (the difference between 

cumulative in- and outflow at any point in queuing time) can never be larger than jam 

density, and the actual densities and changes in flow rates through queuing time are 

consistent with simplified kinematic wave theory (Newell 1993). 

Fourthly, the assumption of stationary travel demand during a single time period 

implies that the assignment is finished when on all links, the cumulative outflow curve 

has reached the unconstrained travel demand for the respective link (i.e. the total 

demand using this link according to the estimated demand matrix during the study 

period duration and route choice model). Considering Figure 5, the cumulative inflow 

curve shows that only after t1 all travel demand has entered the link. Because t1 > T, 

demand for this link is being held up by active bottlenecks upstream or due to spillback 

of the link itself (indeed the cumulative inflow curve shows periods where the inflow 

rate is decreased). Similarly, the last vehicle leaves the link at t2, which includes the 

delay of all active bottlenecks upstream, delay due to spillback caused by the considered 

link but also any congestion on the link itself that does not lead to spillback.  

<<insert figure 5 here>> 

Note that the squeezing and queuing phases both yield flows and speeds, where 

the output of the squeezing phase is predominantly used internally in STAQ, while the 



 

 

output of the queuing phase forms the primary model output. Further note that output of 

both phases is consistent with the route choice model, and that the squeezing phase does 

not yield densities because there exists no (internal) time dimension in this phase.  

STAQ output consists firstly of vertical queues on turn-level and node-level, as 

calculated by the squeezing phase. These queues are defined as the number of car-

equivalents that depart within the study period and have not yet exited the queue at the 

end of the study period. Secondly, the junction model yields effective turn capacities 

and turn delays on turn-level. And thirdly, the route choice model yields all common 

output on the route-level consisting of route fractions and costs.  

 
4 Demonstration of model properties using case study examples 

In this section the properties of STAQ are demonstrated using several model 

applications, and discussed with respect to the desired properties from Table 1. In 

sections 4.1 till 4.4 we subsequently discuss: tractability, accuracy in congested 

conditions and accountability, robustness, and computational efficiency. The sixth 

desired property regarding input requirements is already discussed in section 3.1. The 

seventh desired property regarding applicability is already briefly mentioned in section 

2.1, but also plays a role in sections 4.2.2 and 4.3. 

 
4.1 Tractability 

Recall from section 0 that we have defined tractability as the extent to which the 

calculations in each of the components can be verified using the methodology 

underlying the component or submodel. In this subsection, we demonstrate the 

tractability of STAQ using the illustrative network displayed in Figure 6, by showing 

that all calculations can be done and understood using only the law of flow conservation 

and the shape of the fundamental diagram as underlying methods. For the reader to 

more easily verify the calculations, in this section the triangular fundamental diagram of 



 

 

Newell is used as a variation on the quadratic-linear (QL) fundamental diagram used by 

STAQ. Because only the shape of the fundamental diagram (one of the two inputs for 

demonstrating tractability) of the model variant is different to the reference form, 

conclusions drawn in this section will also hold for the reference form itself and thus for 

all variations (since these are simplifications of the reference form). 

In the illustrative network, all links are unidirectional and have a length of 2 

kilometers and a free flow speed of 100 km/h. Capacities per link are displayed in the 

middle part of the figure, jam density is set to 180 veh/lane. There is only one OD-pair 

that has its origin top left and destination top right carrying a stationary travel demand 

of 8000 veh/h. Four routes exist in this network, shown in the right part of the figure.  

 <<insert figure 6 here>> 
 

First we show the mathematical tractability of the multinomial route choice 

model. Assuming µ=1/0.14 and given the free-flow travel-times derived from link 

lengths, µod≈89.28. Then applying equation (1) yields most vehicles (5867) choosing the 

shortest route 1, fewer vehicles choose routes 2 and 3 (984 vehicles each) and the 

longest route 3 is used the least (165 vehicles).  

Given these route demands, the squeezing phase (Figure 3) detects that there are 

potential bottlenecks at the turning movements towards link 9 (demand: 6851 

(5867+984), capacity: 3000), link 12 (demand: 6851, capacity: 2500) and link 3 

(demand: 8000, capacity: 2000). For the sake of briefness, we only consider the first 

potential bottleneck here: the diverge upstream from link 9. Without going into details 

of the node model, one can apply the law of conservation of vehicles here to see that 

3851 vehicles will be left in the vertical queue not able to enter link 9 yielding a 

reduction factor of 0.44 for all vehicles leaving link 4. Because of this queue at link 4 

another 646 vehicles on route 3 and 4 towards link 10 are also caught in the same 



 

 

vertical queue, due to the conservation of turning fractions (one of the properties of the 

node model described in 2.3.2). Further iterations of the squeezing phase yield flows 

and vertical queues displayed in the left part of Figure 7, where one can verify that for 

each node, the summation of flow on its incoming links is equal to the summation of 

flow on its outgoing links plus the vertical queue on the node, proving tractability of the 

squeezing phase.  

Given the flows and vertical queues, the queuing phase (Figure 4) starts out with 

three initial backward shockwaves. Shock 1 starts from the downstream end of link 12, 

shock 2 starts from the downstream end of link 9 and shock 3 starts from the 

downstream end of link 4. The conservation law implies that that shockwave speed is 

equal to the difference in flows divided by the difference in density in front and behind 

the shockwave. Using this and the link lengths, one can verify that shock 1 is the first to 

arrive to its upstream link end (after 446 seconds), whereas shockwave 3 arrives at its 

upstream link end after 576 seconds, and shockwave 2 arrives at the upstream end of 

link 9 after 792 seconds. From this moment onwards, links 4, 9 and 12 are spilling back, 

whereas the other links are in free flow state and derivative shocks are cycling through 

the two loops in the network. Shock 2 cycles through links 10 (forward), 11 (forward) 

and 9 (backward), whereas shock 1 cycles through links 12 (backward), 13 (forward) 

and 14 (forward). After one hour, inflow on all routes is set to 0, triggering a forward 

shockwave in link 4 that empties the network. Due to the heavy congestion (more than 

half of the demand is already being held up at the first bottleneck), it takes another 3 

hours before the last vehicle has left link 3. 

<<insert figure 7 here>> 

To demonstrate how the node and link models work together we analyze shock 1 

through time by looking at the cumulative in- and outflow curves of link 12 (Figure 8).  



 

 

(1) At time 0 the shockwave starts at the downstream end (the slope of the 

cumulative outflow curve is lower than the slope of the cumulative inflow curve 

at this time).  

(2) 446 seconds later (which is exactly the link length divided by the backward 

wave speed) the shockwave arrives at the upstream end (the slope of the 

cumulative inflow curve decreases), triggering an update of the node model at 

the upstream end. Because link 12 is now in spillback state, it can process less 

flow and thus has a lower effective capacity.  

(3) Because link 12 is the normative link, this means that the reduction factor on 

link 9 is decreased, which also causes less flow towards link 13 (due to the 

conservation of turning fractions) and less inflow into link 14 at time 518.  

(4) This leads to less demand from link 14 to link 3 at time 590, which causes the 

node model between these links to assign more flow from link 12 to link 3 and 

thus increasing outflow (the slope of the cumulative outflow curve slightly 

increases).  

(5) The increased outflow triggers a backward shockwave, and the events described 

in step 2 till 5 are repeated, but now starting with the opposite effect causing all 

words in italics to be replaced by their respective opposites. 

Note that each cycle of shockwave 1 corresponds to a downstream event followed by an 

upstream event on link 12. These events always occur 446 seconds apart (the time that a 

backward wave traverses the link), as can be derived from Figure 8. Due to the linear 

free flow branch of the fundamental diagram, the travel time for shockwaves to move 

forward through links 13 and 15 is also fixed at 144 seconds (as can be derived from 

Figure 8 by comparing durations between subsequent event times on the up- and 

downstream end of link 12). When using the QL fundamental diagram, or when other 



 

 

routes would influence this cycle, these time intervals would vary. Note that from t = 

2218 onwards, no more events occur on link 12. This means that the differences 

between updated flow rates from the node models due to the shockwave that is cycling 

through links 12, 13 and 14 have become smaller than the epsilon value of 1.0 veh/h. 

Indeed, the differences in flow rate (the slope of the cumulative in- and outflow curves) 

in Figure 8 before and after the last events where the epsilon is still greater than 1.0 

(upstream at t = 2218 and downstream at t = 1771) is already very small. The 

cumulative curves in Figure 8 also show that the last vehicle enters link 12 at t=14125 

and leaves the link at t = 14435.  

<<insert figure 8 here>> 

To demonstrate how the average cumulative outflow curve (the red dashed line in the 

example of Figure 5) is used to calculate the link outflows as displayed in the right part 

of Figure 7, we acknowledge that only routes 1 and 3 make use of link 12, yielding an 

unconstrained demand of 6851 vehicles for link 12. From the cumulative outflow curve, 

we can see that the 6851th  vehicle leaves the link at time 14435, which means that the 

average outflow per hour is equal to 6851/14435 * 3600 = 1709 veh/h, which 

corresponds to the outflow rate displayed on link 12 in the right part of Figure 7.  

In this section we have demonstrated that given a network, all calculations within the 

route submodel and the network loading submodel and the interaction between these 

components can be verified using only the specification of the route choice model, the 

law of flow conservation and the shape of the fundamental diagram. Such a level of 

tractability is matched by STA models (using a shortest path algorithm, some link delay 

function and an averaging scheme), and in theory also by non-heuristic DTA models 

(e.g.: CTM, LTM). However, in practice, DTA models cannot easily be traced in this 

way, mainly because they use time discretization requiring all time steps to be traced 



 

 

individually and sequentially requiring very large amount of calculations, even on small 

networks. Furthermore, time discretization implies discretization errors that make 

outcomes of these models dependent on the level of precision of their implementation. 

From this we conclude that STAQ satisfies the desired property of tractability both in 

theory and practice (whereas only some DTA models do in theory).  

 

4.2 Accuracy in congested conditions and accountability 

In section 0, we defined model accuracy in congested conditions as the accuracy of flow 

metering and spillback effects as well as route choice effects due to congested 

conditions. In the same section, we defined accountability as the extent to which 

different sub models can be isolated. To assess both properties, we first isolate the flow 

metering and spillback effects by comparing congestion patterns (location and severity 

of queues) on a corridor network without route choice with observed congestion 

patterns and patterns from STA and DTA models (section 4.2.1). Thereafter, we add 

route choice effects by looking at congestion patterns and route choice effects in a case 

study on an urban network with route choice (section 4.2.2). This way, we isolate how 

the different model components capture the different mechanisms that occur in the 

transportation network, thus demonstrating the accountability of STAQ. Finally, in 

section 4.2.3 we show the impact of the model accuracy on the societal value of the 

measures taken in the same urban network as used in 4.2.2. 

4.2.1 Accuracy of network loading submodel on A12 Gouda – Den Haag 

In the following analysis, loop detector data of the A12 morning peak on a 

representative workday in 2006 are used to compare observed congestion patterns and 

travel times with model outputs from STAQ. For reference we also compare these with 

model outputs from an STA model and a second-order macroscopic DTA model 



 

 

(MaDAM, (Raadsen et al. 2010)). We stress here that the DTA model is of second 

order, meaning that anticipation (deceleration) and relaxation (acceleration) effects are 

accounted for in this model. Figure 9 shows the A12 corridor network in which there 

are no route choice alternatives. Also, given that all network nodes are simple on-ramps 

and off-ramps, no junctions exist in this network. Hence, application on this network 

focuses on the link and node model within the network loading submodel. The OD-

matrix has been calibrated on the observed demand just downstream from knooppunt 

Gouwe (on the motorway) and on all on-ramps indicated in Figure 9.  

The congestion patterns are displayed in Figure 9, showing three active 

bottlenecks: 1) spillback from the traffic lights around Centrum Zuid, 2) the weaving 

section between Prins ClausPlein and off-ramp Voorburg and 3) the merge from on-

ramp Zevenhuizen. Furthermore, the entire stretch of road between Zevenhuizen and 

Prins Clausplein is congested due to spillback from bottleneck 2, meaning that any 

potential bottlenecks along this stretch of road cannot clearly be identified from the 

data.   

The first bottleneck (centrum Zuid) is not reproduced by any of the assignment 

models because spillback from outside the network is not modeled.  

The second bottleneck (Voorburg) is identified by both STAQ and the DTA 

model. However, both models identify the merge from Prins ClausPlein as the only 

problem, whereas in reality the weaving section between Prins ClausPlein and 

Voorburg also causes problems that are not being picked up by STAQ nor the DTA 

model. The STA model wrongly identifies multiple links downstream from the true 

bottleneck as a bottleneck, because there is no flow metering in this model.  

The third bottleneck (Zevenhuizen) is identified by the DTA model, causing a 

flow metering effect that results in a free-flow section between Zoetermeer and 



 

 

Zoetermeer Centrum that is not present in the observed data. STAQ does not detect the 

bottleneck at Zevenhuizen, although the capacity between Zevenhuizen and Bleiswijk 

and the demand from Knooppunt Gouwe and on-ramp Zevenhuizen is exactly the same. 

This must mean that the second order effects due to traffic merging from on-ramp 

Zevenhuizen lowers the effective capacity causing this bottleneck in reality and the 

DTA model. The omission of this bottleneck by STAQ causes  activation of a 

downstream bottleneck at Zoetermeer Centrum. The STA model gives some delay at the 

link downstream from the bottleneck, although capacity has not been reached; meaning 

that the definition of the BPR function causes this link to be identified as a bottleneck.  

Based on this comparison, we conclude that STAQ, contrary to the STA model, 

successfully detects and models primary bottlenecks, but may overlook bottlenecks that 

are activated due to second-order and lane-distribution effects. These conclusions hold 

on any network, since they are a direct result of properties of the network loading 

submodel.  

Although second-order and lane-distribution effects cannot be directly modelled 

using a first order network loading submodel such as STAQ10, they could be added to 

the assignment model by decreasing the link capacities on weaving sections and merges 

following guides like the US Highway capacity manual (TRB 2000) or the Dutch CIA 

(Rijkswaterstaat 2015). This could be done before the assignment, using merging and 

weaving proportions from the OD matrix assuming free-flow route choice, or 

incorporated within the assignment model using the actual proportions from the 

                                                

10 Note that some second order DTA models (e.g. METANET) contain a correction term for 

merging sections 



 

 

previous iteration. Note that this problem will mainly occur on motorways, because 

bottlenecks on urban roads typically occur at intersections.  

<<insert figure 9 here>> 

4.2.2 Accuracy and accountability of assignment model on case Den Bosch 

In this section, the accuracy of STAQ compared to STA models is further analyzed 

using a bottleneck location close to the city of Den Bosch in the Netherlands. During 

the AM peak period the bottleneck manifests itself on the A59 motorway from Den 

Bosch towards Oss around the off-ramp Rosmalen (indicated by the black circle in the 

left part of Figure 10). In the reference situation, the STAQ results (right side of Figure 

10) show a vertical queue between the off and on-ramp and a second, much smaller, 

vertical queue at the end of the off-ramp, together causing a queue spilling back all the 

way onto motorway intersection Empel (the upper left of the network cut out area 

displayed in the figures), whereas the static results only exhibit minor speed drops 

directly on the bottleneck links.  

<<insert figure 10 here>> 

For sake of analyses, we consider a network variant in which the capacity of the 

intersection at the end of the southern off-ramp is increased and an extra lane between 

the southern off- and on-ramp is added, leading to the assignment results displayed in 

Figure 11. 

 <<insert figure 11 here>> 

These assignment results lead to the following findings (demonstrating accuracy) and 

mechanisms (demonstrating accountability) for which the STA and STAQ model results 

are similar: 



 

 

(1) The two bottlenecks around the off-ramp are effectively removed as a result of 

the capacity increase. In STAQ this finding is a result of the removal of an 

active supply constraint in the node model of the node connecting the motorway 

and the southern off-ramp and the removal of supply constraints of the junction 

model of the node at the end of the southern off-ramp.  

(2) As a result of 1, the on-ramp itself and all arterial roads towards it are used more 

(i.e. higher flows). In STAQ this finding is a result of decreased travel times on 

turning movements over, and links around, the nodes mentioned in bullet 1, 

which cause the route submodel to increase route-fractions of routes using the 

on-ramp and adjacent arterial roads. 

(3) The southbound traffic crossing the A59 returns from alternative routes to the 

arterial that uses the intersection with the considered off-ramp (indicated by the 

increased southbound flow on the arterial from the original bottleneck location). 

The mechanism causing this is thus the same as in finding 2.  

Findings that the STA model results omit, but the STAQ model results do correctly 

show, thereby demonstrating its better accuracy under congested conditions, are: 

(4) On the A59, the queue spilling back from the considered bottleneck towards the 

northwest is much shorter because the squeezing phase predicts the bottleneck to 

be much smaller and further downstream, which causes the shockwaves 

calculated in the queuing phase to travel at a lower speed and over a longer 

distance towards the northwest. Furthermore, due to increased flow from this 

direction (calculated by the route choice model), a new bottleneck is activated at 

the merge of the motorway intersection Hintham (just west of the original 

bottleneck location).  



 

 

(5) On the A59, downstream from the removed bottleneck, the existing bottlenecks 

intensify, and a new small bottleneck activates at the next off-ramp. This is 

caused by the increase of the reduction factor at the original bottleneck location 

as calculated by the squeezing phase in combination with the increase of flow 

due to the route choice model reacting to lower travel times for eastbound traffic 

on the motorway.  

Comparing the STA and STAQ results we conclude that only effects on the links and 

nodes where measures were taken and some of the route choice effects of the network 

variant are captured by the STA model, whereas STAQ also captures the effects up- and 

downstream from the removed bottleneck. This leads to the conclusion that the addition 

of flow metering and spillback effects strongly improves the accuracy and realism under 

congested conditions. This conclusion holds on any network, because it is a direct result 

of properties of the network loading submodel. Furthermore, we have shown that the 

STAQ results can be related to (combinations) of model components, demonstrating its 

accountability. With respect to accountability we conclude that STAQ includes effects 

of route choice, flow metering and spillback; whereas STA models only include route 

choice effects. And furthermore, accountability of STAQ is still on a level that makes 

the results explainable on a level comparable to that of STA models. Also, this section 

has shown that STAQ is applicable on networks containing both urban roads and 

motorways.  

4.2.3 Accuracy and its impact on the predicted societal value of the measures of case 
Den Bosch 

To demonstrate that the differences between the assignment methods may also 

(substantially) change the outcomes of a (social) cost benefit analysis, we compare the 

effect of the network variant in terms of vehicle loss hours per road type for both STA 



 

 

and STAQ assignment results (Table 2). Note that these results are only for illustrative 

purposes, since no calibration has been performed on either model.  

<<insert table 2 here>> 

Analysis of this table leads to the following findings: 

(1) Although route choice does vary among the two networks and assignment 

methods (see analysis above), the usage per road type in veh*km is 

(approximately) the same.  

(2) In the STA model most delay occurs on the non-motorways, whereas in STAQ  

most delay occurs on the motorways. Given the usage and location of 

bottlenecks (both are concentrated on the motorways in this network) STAQ 

results are more consistent with the model input, than results from the STA 

model are.  

(3) Both assignment models yield a reduction in vehicle loss hours as a result of the 

measures taken in the network variant. However, when using STAQ, the 

reduction is more than twice as large compared to the STA model output (a 

reduction of 134 vehicle loss hours in the STAQ assignment versus a reduction 

of 64 vehicle loss hours in the STA model).  

For illustrative purposes, the annual societal value of the travel time savings during the 

morning peak hour induced by the network variant is calculated. Following 

(Kouwenhoven et al. 2014) we assume an average value of time of €9,- per hour and an 

average reliability ratio of 0.6. Furthermore, we assume that per year 260 of these 

average morning peak hours occur. This means that the societal value of the network 

variant would approximately be €240.000,-  according to the STA model output and 

€500.000,- according to the STAQ output, an increase of 108%. These findings show 

that choosing an assignment method that accounts for flow metering and spillback 



 

 

effects has substantial effects on the outcomes of a cost benefit analysis for study areas 

with structural congestion.  

 

4.3 Robustness  

As defined in section 0, we consider a model to be robust when there are no random 

variables in the model and when it converges to a defined and meaningful stable state. 

From section 3.2, we know that the model does not contain random variables or 

stochastic processes. Therefore, in this section we will only look at the convergence of 

STAQ towards Wardrops’ conditions of user equilibrium (Wardrop 1952) (which we 

consider a meaningful stable state indeed11) using the adapted relative duality gap as 

described in 2.4.2.  

Key components within STAQ are chosen or defined to maximize convergence 

properties. In the route submodel, the stochastic user equilibrium is chosen as the route 

choice paradigm which means that in each iteration traffic is distributed over all routes 

(instead of choosing one route in the deterministic user equilibrium), leading to better 

convergence properties on the route level (Bliemer et al. 2013). In the network loading 

submodel, the node model complies with the two invariance principles described in 

(Lebacque and Khoshyaran 2013) ensuring that its outcomes are stable under constant 

link boundary conditions (a numerical example of how this ensures stability is given in 

                                                

11 Note that uniqueness of the solution is only guaranteed when the TA model uses an (implicit) 

cost function that is strictly increasing (theorem 1.8 in (Nagurney	
  1993)). Just like DTA 

models, the strict capacity constraints within STAQ cause a violation of this requirement. 

However, empirical tests show that STAQ approximates the same equilibria in terms of link 

flows, no matter the start solution.  



 

 

(Tampère et al. 2011)). Furthermore, the link model contains no discretization over 

space or time. This means that its solutions are exact, avoiding any discretization errors 

as shown in a numerical example in (Raadsen, Bliemer, and Bell 2016).  

In the remainder of this section, the convergence of STAQ is assessed using 

several congested networks taken from strategic transport model systems that normally 

use an STA model. Largely neglecting the required level of precision and accuracy of 

the input data for STAQ (described in section 3.1), the travel demand matrices used 

where taken directly from the original transport models systems, whereas the networks 

where only refined slightly on locations where effective capacities where incorrect 

(these errors did never manifest itself in the STA model due to the lack of strict capacity 

constraints). For each model, a hundred iterations where run for all twelve combinations 

of the STAQ variations that are known to have substantial influence on the convergence 

(Table 3). These twelve combinations are built up from two variations regarding the 

averaging scheme (MSA or SRA), three variations regarding junction modelling (no 

junction modelling (‘NoJM’); take only calculated turn delays into account (‘Delays’); 

take both calculated turn delays and turn flow restrictions into account (‘JM’)), and two 

variations regarding spillback effects (see section 2.5 for variation definitions).  

<<insert table 3 here>> 

An overview of the strategic transport model systems tested is given in Table 4. The 

models are all strategic, but range from relatively coarse motorway oriented models 

(Leuven, NRM-West and NVM), to more fine-grained regional models (BBMB, 

Vlaams Brabant) and urban models (Breda, Haaglanden). Besides Leuven, all models 

classify as large-scale by the definition from section 0. Note that the digitized networks 

of Vlaams Brabant, NVM and NRM-West do not contain modelled junctions (no 

junction definitions set), and therefore, only combinations 1, 4, 7 and 10 where run for 



 

 

these models.  

<<insert table 4 here>> 

For each model, the appendix contains a graph that shows the relation between the 

calculation time12 and the adapted relative duality gap for each of the STAQ variations 

tested. Besides showing the trade-off between computational time and convergence, the 

total computational time needed to do 100 iterations can also be derived from the graphs 

in the appendixError! Reference source not found. by looking on the vertical axis at 

the point where the curve stops. 

Recall from section 0 that the adaptive relative duality gap should be lower than 

1E-04 for the assignment mode to produce outcomes that are suitable to be used in the 

strategic context. From the graphs in the appendix we conclude that that almost all runs 

without spillback converge sufficiently within 100 iterations when using the SRA 

averaging scheme. Models Vlaams Brabant and NVM are the only exceptions, however 

their duality gap curves do suggest that they would reach 1E-04 when some more 

iterations would have been conducted. Both models show a lot of bottlenecks and a high 

percentage of routes affected by them (77% and 91% of all routes respectively; see also 

Table 5). Further investigation shows that the networks of model Vlaams Brabant and 

NVM are relatively coarse in relation to its density in urban areas, which can be seen 

when looking at the number of centroids and especially the number of links in relation 

to the number of inhabitants in the study area. This causes (artificial) problems on 

locations where centroids representing large and densely populated areas are connected 

to the network with only a limited number of connectors. This happens especially in the 

                                                

12 All runs conducted on a Core I7-950 3.07 Ghz machine with 24 GBytes of memory running 

Windows 7 



 

 

city of Brussels in model Vlaams Brabant, and in the larger cities in NVM. This causes 

the high number of blocking nodes and large proportions of routes being affected. In 

turn, this causes high sensitivity of route cost to changes in route demand and thus poor 

convergence properties.  Refining the network around these areas would very likely lead 

to much better convergence properties.  

When using MSA, only the BBMB model converges sufficiently within the first 

100 iterations (but only just), all models consistently show a well-known property of 

MSA: its convergence slows down considerably with higher iteration numbers, which 

happens long before convergence has been reached. Note that, although far from 

sufficiently converged, in the initial 10 to 15 iterations, MSA generally outperforms 

SRA. However, after these initial iterations, broadly when MSA approaches duality gap 

values between 1E-03 and 1E-02, the convergence properties of runs using SRA are 

clearly much better; leading to better convergence using far less calculation time.  

We now consider the effect of junction modelling on models that have junctions 

defined in the network and for model variations that have proven to converge without 

junction modelling (i.e.: variations without spillback and using SRA). The graphs in the 

appendix show that enabling junction modelling, but neglecting its flow restrictions 

(thus only adding delays from junction modelling to the route cost) deteriorates high 

precision convergence properties, but does not prevent any model for reaching the 

required convergence rate, nor does it increase required calculation times significantly. 

Applying full junction modelling however does break convergence for Leuven, Breda 

and Haaglanden. Although the duality gap curve of Leuven suggests that it would reach 

1E-04 when some more iterations would have been conducted. Further investigation 

showed that on the Breda network, a single junction that flip flops from under- to 

oversaturation causes the oscillations in duality gap values around 1E-04 that can be 



 

 

seen in its graph. Similar observations were made on the Haaglanden network, although 

in this model, not a single, but several (clustered) junctions showed oscillating under- 

and oversaturation. These observations suggests that methods similar to diagonalization 

(Dafermos 1980) might resolve this problem; e.g. smoothing or less frequent updating 

of the flow restrictions from junction modelling. 

The appendix also shows that on all models except Leuven, model variations 

with spillback do not converge sufficiently within 100 iterations: the duality gap keeps 

oscillating and never drops below 1E-04. Spillback effects are thus the most important 

cause for non-convergence, which makes sense when realizing that spillback is likely to 

cause the cost of routes that use link(s) affected by this spillback to become diagonally 

non-dominant (i.e.: the demand for such a route itself is no longer the main contributor 

to its cost; instead demand on other routes is), whereas the route choice model and 

averaging scheme do not anticipate for this. Note that the one run with spillback that 

does converge to below 1E-04 is a variation with SRA and without junction modelling 

on model Leuven. Further investigation shows that the Leuven model has relatively low 

demand (thus violating the requirement of an accurate definition of stationary demand 

as stated in section 3.1) due to demand matrix calibration conducted in a static context 

using observations in congested conditions thus causing spillback effects to only 

limitedly occur. 

The findings described above suggest that the model variation #8 (SRA-Delays-

NoSpillb) in Table 3 has the best accuracy whilst still converging sufficiently on all 

tested models. In some cases/models, full junction modelling (variation #9) can be used 

without losing sufficient convergence. Also, this section has shown that STAQ is 

applicable on networks ranging from fine grained urban to coarse motorway networks. 

 



 

 

4.4 Computational efficiency 

In section 0 we defined computational efficiency as the extent to which run times and 

memory requirements are acceptable for calibration and application of large scale 

models. Although no formal criteria exist, a general guideline is that it should be 

possible to run an assignment for all modes and for all modelled periods in a strategic 

transport model overnight. Assuming that a single car assignment takes up around 25% 

of the total computational effort, this means that any assignment should not take longer 

than three to four hours. With respect to memory consumption we assume that it should 

be possible to run the assignment on a regular high-end desktop computer with 16 

Gigabytes of RAM. In the remainder of this section we look at calculation times and 

memory usage for the STAQ model variation #8 (SRA-Delays-NoSpillb) on the models 

in Table 4 as it was selected as the most balanced model variation combination in 

section 4.3. 

Since in the considered model variation combination, the queuing phase is only 

performed in the last iteration, calculation time per iteration is roughly equal to the 

calculation time for the squeezing phase. Given the mathematical problem solved by the 

squeezing phase (Bliemer et al. 2014a), calculation time to run the network loading 

submodel is mainly proportional to the following variables (column names of variables 

included in Table 5 in parenthesis): the number of routes (#routes), the number of active 

bottleneck locations (#blocking nodes) and their usage (% of routes blocked), the 

severity of active bottleneck locations (e.g.: local demand to capacity ratio per active 

bottleneck location) and the strength of the relationships between those active 

bottleneck locations (e.g.: the number of shared routes per active bottleneck location). 

Note that the severity and strength of relationships per bottleneck location are omitted 

from Table 5 since they are hard to capture in a single indicator. 



 

 

<<insert table 5 here>> 

Looking at the calculation time per iteration, we see indeed that it is roughly 

proportional to the variables mentioned above yielding calculation times varying from 

0.03 ms to 0.12 ms per route per iteration for the models tested, which translates to 

about 30 seconds to 2 minutes per iteration for every million routes. From Table 5 

however, no relationship between the number of iterations required and other run 

properties can be identified, whereas total calculation time is roughly13 proportional to 

the number of iterations between route and network loading submodel required for 

convergence (#Iterations) since the route submodel forms a loop around the network 

loading submodel (Figure 1).  

To explain why no relationship is found between the required iterations and 

other run properties in Table 5, we look again at the adapted duality gap graphs in the 

appendix. In these graphs, some models and model variation combinations show 

strongly oscillating curves (e.g. combinations #8 and #9 of BBMB (after 30 minutes of 

calculation time) and combination #9 on both the models of Breda (after 2 hours of 

calculation time) and Haaglanden (after 1 hour of calculation time), which slows down 

and/or prevents further convergence. Analysis of the adapted duality gap values per OD 

for these models (leaving out the summation over OD pairs in equation (2)) confirms 

that the least converging OD pair contributes the most to poor gap values. Using this 

knowledge, the cause of the oscillations could be traced to a limited set of OD pairs and 

even to a limited set of bottleneck locations. These bottleneck locations proved to be 

switching between an active and inactive state over (sets of) iterations. Often, by 

                                                

13  This holds only roughly, since later iterations contain fewer active bottlenecks, yielding less 

calculation time required for the network loading submodel. 



 

 

removing only one of such bottlenecks in the network, the duality gap graph could drop 

substantially (factors of 10 to 1000’s at equal calculation times). This extends the 

finding in 4.3 that not only single (clusters) of flip flopping junctions can cause 

oscillating duality gap values, but that it can also occur on bottleneck nodes not being 

modelled as a junction. Although identified, this phenomenon may substantially delay 

or even prevent reaching the required level of convergence and it also prevents 

formulation of a relationship between the run properties and expected total calculation 

time in Table 5.  

To analyse the computational efficiency of the different model components, the 

share of calculation time per model component for model variation #8 for six of the 

tested models is displayed in Figure 12. This figure shows that the network loading 

submodel (link, node, junction modals and travel time calculator) take up most (54%-

64%) of the calculation time. This share is much lower than the share of the network 

loading submodels within DTA models, demonstrating the high computational 

efficiency of the network loading submodel of STAQ. This also indicates, that efforts to 

further improve computational efficiency might need to be put into the route choice 

model. This component now claims a relative large proportion of calculation time 

(between 32% and 41%), which will only increase when using more advance route 

choice models than the relatively simple MNL route choice model used here.  

<<insert figure 12 here>> 

Comparing the total calculation times of the different models with the upper bound of 

three to four hours, we see that all models except for Vlaams Brabant and NVM exhibit 

acceptable calculation times. Although not further investigated, probably, the 

coarseness of these networks in relation to their density described in section 4.3 is likely 

to be the cause for its poor convergence.  



 

 

With respect to memory usage, Table 5 indicates that that it is also proportional 

to the number of routes. On average, the peak memory usage per route is around 3 

Kilobytes, which roughly translates to around 3 Gigabytes needed for every million 

routes, which means that the largest model tested here (NVM with more than 4 million 

routes) requires 9.4 Gigabytes of RAM, thereby easily meeting the requirement of 

maximum 16 Gigabytes of RAM.  

 

5 Conclusions and Discussion 

In this paper, we have provided a complete description of the concept and 

implementation of the assignment model STAQ and several variations, along with 

insight into how the model addresses the shortcomings of STA and DTA models in the 

strategic context for large congested networks. In line with literature we have defined 

seven desired properties for strategic transport models for large congested networks, 

and have shown the performance of STAQ and its variants for each of these seven 

properties in comparison with STA and DTA models.  

 

5.1 Main conclusions 
 

The different mechanisms that occur in a transportation network when applying 

STAQ can all be isolated and verified using only the law of flow conservation and the 

shape of the fundamental diagram as underlying methods, proving that tractability and 

accountability of STAQ is comparable to that of STA models and amply exceed that of 

DTA models. 

With respect to the accuracy under congested conditions, we conclude that, 

contrary to STA models, STAQ successfully detects and models flow metering and 

spillback effects of primary bottlenecks, with the limitation that STAQ may overlook 



 

 

bottlenecks that are activated due to second-order and lane-distribution effects. STAQ 

allows for assignment of different vehicle classes and the junction modelling component 

allows application on both urban roads as well as motorways.  

Furthermore, we conclude that when evaluating network scenarios, STA models 

only capture effects on links and nodes where network changes occur and include some 

of the route choice effects, whereas STAQ also captures the effects up- and downstream 

from network changes. It was shown that the addition of these effects causes large 

differences in terms of vehicle loss hours and thus societal benefits of these types of 

policy measures. This clearly demonstrates that the addition of flow metering and 

spillback effects strongly improves the accuracy and realism under congested conditions 

and that choosing an assignment method that accounts for these effects will have 

substantial effects on the outcomes of a cost benefit analysis for study areas with 

structural congestion.  

Based on analysis of twelve different model variations on seven large scale 

strategic transport models of largely congested regions we conclude that STAQ with 

spillback in the last iteration, full junction modelling and the self-regulating averaging 

scheme proved to be the optimal variation, providing sufficient realism and 

convergence (duality gap values below 1E-04) within well acceptable calculation times  

for five of the seven models tested (ranging from 23 minutes up to 3 hours to achieve 

equilibrium on a regular desktop pc). A limitation of this model variant is that spillback 

effects are not included in the route choice behavior. Adding these effects is possible, 

but at the expense of convergence. The network of the models Vlaams Brabant and 

NVM prove to be too coarse in relation to its density, creating artificial congestion 

locations causing high sensitivity of route cost to changes in route demand and thus 



 

 

poor convergence properties.  Refining the network in densely populated areas would 

very likely lead to better convergence properties for both models.  

Input requirements of STAQ are much lower than those of DTA and only 

slightly higher than those of STA models. Although STAQ needs little extra input 

compared to STA models, its strict capacity constraints put emphasis on the required 

level of precision and accuracy of the input data. Most importantly, the definition of the 

study period and the level of stationary demand in the matrices should be consistent, 

flow metering and spillback effects in observed data should be taken into account while 

calibrating the OD matrices, and the hard capacity constraints in STAQ require more 

accurate capacity values on links and junctions to be coded as a single node. Based on 

the above, we conclude that STAQ is a viable alternative to the traditional STA model, 

providing more accuracy on congested networks without reducing robustness and 

accountability and without increasing input requirements, whilst keeping computational 

requirements to acceptable levels (as opposed to DTA models). This makes the model 

suitable for applications where both STA and DTA models may fail: strategic 

applications on large-scale congested networks. 

 
5.2 Recommendations and further research 

Based on this research, several improvements in the way STAQ and its variations are 

being applied are proposed. Most importantly, the development of a STAQ based 

matrix estimation method that takes flow metering and spillback effects on observed 

data into account. A first attempt for such a method is described and applied in 

(Brederode, Pel, and Hoogendoorn 2014; Brederode, Hofman, and van Grol 2017) 

respectively. When in place, model systems can properly be calibrated using STAQ 

which enables more thorough validation of the assignment model comparing its 

outcomes with observed flows, congestion patterns and travel times for a large urban 



 

 

region. Furthermore, when thoroughly validated, the societal value of the model should 

be determined by comparing a full cost benefit analysis of one or more existing projects 

using an STA model and STAQ.  

As described in section 4.3, there is still room for improvement on the speed and 

level of convergence of the model, especially for model variations with full spillback 

enabled. Several research directions are worth mentioning here. Firstly, the parameters 

that control the step sizes used within the self-regulating averaging scheme (section 

2.4.3) should be calibrated (now the default values from (Liu, He, and He 2009) are 

used). Secondly, in section 4.4 we have already briefly mentioned that the causes for 

poor convergence can be traced down towards (sets of) bottleneck locations which is in 

line with findings in (Levin et al. 2015) for DTA models. This provides a starting point 

for various possible algorithmic enhancements that try to decrease the changes in 

demand per iteration for these locations by e.g. constraining changes in demand on OD 

pairs using sensitive bottlenecks through the route choice model and/or averaging 

scheme (note that some of these enhancements where already tested as described in 

Brederode et al., 2016). From this same starting point, it might be possible to develop a 

method to calculate a rough estimate of the expected convergence properties of a model 

given its network and level of OD demand.  

As pointed out in section 4.4, the calculation time per model component indicate 

that the network loading submodel of STAQ is relatively fast, such that efforts to further 

improve computational efficiency of STAQ are better put into other model components, 

primarily the route choice model. 

From experiences with applications of STAQ conducted over the last five years, 

some other recommendations that where not described earlier in this paper are given 

below.  



 

 

With respect to route set generation, currently, routes for STAQ are pre-

generated, using the accelerated Monte Carlo method (Fiorenzo-Catalano 2007). 

Alternatively, some (static or dynamic) assignment procedure or external data can be 

used. Updating the route set every iteration, based on the travel times of the latest 

iteration, would prevent omission of routes that are only attractive under congested 

circumstances, but this will lead to substantially higher computational costs. Variations 

such as only updating the route set every nth iteration, or generating routes using a 

network with costs based on some earlier assignment could also be interesting research 

directions.  

With respect to the route choice model, the paired combinatorial logit model 

(PCL, Pravinvongvuth and Chen 2005) is implemented as a STAQ variation. PCL adds 

support for route overlap and therefore allows inclusion of more relevant routes and 

thus is expected to improve convergence. To be able to test this hypothesis an 

adaptation of the duality gap for PCL (as has been done for MNL in equation 2) needs 

to be derived. 

With respect to the node model, (Smits et al. 2015) describe the actual 

behavioral meaning of the distribution schemes that are known in literature and 

proposes two new distribution schemes. From this work and a behavioral point of view 

the equal delay at outlink scheme is probably more realistic on most nodes in urban 

areas than the capacity proportional distribution scheme that is currently used in the 

node model. However, empirical data to compare and validate the different schemes is 

lacking and the solution method for this scheme involves solving a fixed point problem 

and is therefore much more computationally expensive. Therefore finding and 

implementing a better distribution scheme for the node model is left for future research.  



 

 

Finally, a recommendation with respect to the concept of STAQ. In its current 

form, STAQ effectively adds strict capacity constraints to STA models. However it still 

assumes stationary demand during a single time period. This means that the ‘true’ 

demand should always be averaged or aggregated in some way over the time period. To 

reduce averaging errors, an extension to STAQ that allows for multiple time periods 

would be needed. This would close the gap with DTA models further, however at the 

same time most likely will introduce new problems, such as more input requirements, 

poor convergence properties and longer calculation times. If these can be accepted or 

overcome, it would require for residual traffic to be transferred from one period to the 

next period. Such a mechanism would also solve another problem: residual traffic due 

to trip durations longer than the duration of the single time period, which can occur 

when dealing with large networks and/or short time periods.   
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Appendix: duality gap vs calculation time for all tested models and runs 

In this appendix, the empirical relation between calculation time (on a Core I7-950 3.07 

Ghz machine with 24 GBytes of memory) and convergence is displayed for all 7 models 

(Table 4) and all 12 model variations per model (Table 3). Each graph shows the runs 

on one model, and each curve in a graph represents a specific model run, its color and 

shape indicate the combination of model components tested as displayed in the legend. 

The reds represent runs using the MSA averaging scheme, the greens represent runs 

using the SRA averaging scheme. Dashed curves represent runs where spillback is 

enabled, and continuous curves represent runs without spillback. The three different 

shades of both reds and greens represent the three different options for junction 

modelling. 

<<insert figure 13 here>>  



 

 

Tables 

Table 1: desired properties and criteria for traffic assignment models within large-scale 

strategic transport models 

  

Property Definition 

Tractability The extent to which calculations in each model component can be verified using the 

theory behind the component or submodel 

Accuracy under 

congested conditions 

The extent to which flow metering, spillback and route choice effects caused by 

congestion are included in the model 

Accountability The extent to which different model components can be isolated and verified 

Robustness (1) The extent to which the model is free from random variables that affect its 

outcomes 

Robustness (2) The extent to which the model converges to a defined and meaningful stable state 

Computational 

efficiency 

The extent to which run times and memory requirements are acceptable for 

calibration and application of large scale models 

Input requirements The extent to which input requirements are available with acceptable uncertainty 

for distant future scenarios 

Applicability	
   The	
  extent	
  to	
  which	
  the	
  model	
  is	
  applicable	
  for	
  all	
  vehicle	
  classes	
  and	
  for	
  both	
  

urban	
  roads	
  and	
  motorways 



 

 

 

Roadtype 

Usage [veh*km] Experienced delay [vehicle loss hours] 
Both cases Reference Network variant Difference 

Both assignments Static STAQ Static STAQ Static STAQ 

Motorways ~57% 334 1130 314 1052 -20 -79 
Non-motorways  ~43% 1761 339 1717 283 -44 -55 

Total 100% 2095 1469 2031 1335 -64 -134 

Table 2: vehicle loss hours for reference and network variant for both static and STAQ 

assignment 

  



 

 

 

1 MSA-NoJM-NoSpillb 4 MSA-NoJM-Spillb 7 SRA-NoJM-NoSpillb 10 SRA-NoJM-Spillb 

2 MSA-Delays-NoSpillb 5 MSA-Delays-

Spillb 

8 SRA-Delays-NoSpillb 11 SRA-Delays-

Spillb 

3 MSA-JM-NoSpillb 6 MSA-JM-Spillb 9 SRA-JM-NoSpillb 12 SRA-JM-Spillb 

Table 3: numbering of the twelve combinations of model variations tested 

  



 

 

 

Model Major cities in study area model type Links nodes junctions centroids 

Leuven Leuven (BE) motorway 2698 1833 587 430 

NRM-West 
Amsterdam, Rotterdam, The 

Hague, Utrecht (NL) 
motorway 86783 56739 0 3392 

BBMB 
Eindhoven, Tilburg, Breda, 

Den Bosch, Helmond (NL) 
regional 142336 106780 15979 3321 

Breda Breda (NL) urban 147253 107984 16241 6043 

Haaglanden The Hague (NL) urban 140277 94159 3539 5845 

Vlaams Brabant Brussels, Leuven (BE) regional 34239 23241 0 2999 

NVM all of the Netherlands (NL) motorway 159920 65272 0 6102 

Table 4: properties of models tested, models sorted by size measured in number of 

routes 

  



 

 

 

Run properties Calculation time Mem usage 

Model Peak 
period #routes #Itera

-tions 
#blocking 

nodes 
% of routes 

blocked 
total 

[hh:mm:ss] 
per iter 
[mm:ss] 

per route 
per iter [ms] 

total 
[Mb] 

per route 
[Kb] 

Leuven PM 74697 49 74 21% 0:01:50 0:02 0.03 404 5.41 
NRM-West AM 1241762 31 863 56% 0:37:19 1:12 0.06 2935 2.36 
BBMB AM 1272227 14 470 27% 0:22:53 1:38 0.08 2245 1.76 
Breda PM 2069672 46 940 53% 3:02:58 3:59 0.12 6470 3.13 
Haaglanden PM 2854246 18 255 32% 1:36:56 5:23 0.11 7631 2.67 
Vlaams 
Brabant PM 3109173 >100 1354 77% 7:35:37 4:33 0.09 7181 2.31 

NVM AM 4057235 >100 8390 91% 13:43:16 8:14 0.12 9418 2.32 

Table 5: calculation times and peak memory usage of model variation combination #8 

for all tested models 

 

 

  



 

 

Figure captions 

• Figure 1: STAQ modeling framework (adapted from Cascetta, 2009) 

• Figure 2: Fundamental diagrams: used in static (left), used in STAQ – squeezing 

(middle), used in STAQ – queuing (right) 

• Figure 3: flowchart of squeezing phase 

• Figure 4: flowchart of queuing phase  

• Figure 5: example of cumulative flow curves of a link as calculated in the 

queuing phase 

• Figure 6: network with link numbers (left), link capacities (middle) and free 

flow travel times per route (right) of toy network  

• Figure 7: results of iteration 1; inflows (bandwidths / black font) and vertical 

queues (pie charts / blue font) from squeezing phase (left); outflows 

(bandwidths) and relative speeds (colours, see legend) from queuing phase 

(right)  

• Figure 8: cumulative in- and outflow curves for link 12. Dots represent events in 

the queuing phase 

• Figure 9: comparison of observed and modelled congestion patterns on the A12 

motorway between Gouda and Den Haag 

• Figure 10: assignment results for reference scenario; static (left, black circle 

indicates bottleneck location) vs STAQ (right). Bandwidth colours: modelled 

speed as ratio of free flow speed; Bandwidth widths: modelled flow; Blue circles 

in STAQ results (right): vertical queues (radius indicates queue size) 

• Figure 11: assignment results of the network variant; static (left) vs STAQ 

(right) 

• Figure 12: calculation time shares per model component 



 

 

• Figure 13: empirical relation between calculation time and convergence for all 9 

models and all 12 model variations 


