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Abstract

Computer networks are an integral part of our society and functioning without them is difficult, as com-
puters rely on this connection for their data or shared computing power. While this connectivity is often
beneficial, it has downsides as well. A malicious actor can try to break into a network remotely, which
organisations try to prevent by monitoring their networks in order to detect such an attacker. Monitoring
can be done, for example, by searching for Indicators of Compromise (loC) within the network traffic.
These 1oC can take the form of a single attribute, such as an IP address, or a combination of multiple
attributes, such as an IP address, a protocol and a domain name. If during this search 1oC match
with the network data, a malicious actor might be present in the network. An in-house solution is not
feasible for all organisations as this would result in more financial overhead, thus a managed Security
Operations Center (mSOC) can be contracted. Often, such an mSOC has access to all network data
in order to match their loC. However, this may be undesirable for organisations that want to keep their
sensitive network data as private as possible. Therefore, sharing relevant data only when a match has
been found is preferable. Additionally, an mSOC has reasons to want to keep their 1oC private as well,
as they invest resources into gathering these IoC and sharing them would pose a risk to their business
model. In this work we aim to match IoC, consisting of a variable number of attributes, with network data
in order to retrieve data associated with matches while preserving the confidentiality of the unmatched
data of both the mSOC and the organisation. While there exist privacy-preserving solutions that can
aid in parts of this problem, no solution yet exists, to the best of our knowledge, that efficiently solves
the problem entirely with our constraints on confidentiality.

To this end, we propose two privacy-preserving protocols that enable exact matching of variable multi-
attribute IoC and network data. For both protocols, we analyse the theoretical complexity and test
proofs of concept in order to highlight their strengths and weaknesses.
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Introduction

If you want to view a store’s inventory, you visit their website. If you want to apply for a job, you
send the organisation an email. If you want to play a game, you download the software. What these
services have in common is that they use the Internet, a computer network, to enable communication
and connections between different users of this network. The Internet is an overarching computer
network that connects many smaller networks, such as that of an organisation. The mentioned services
allow an external user to interact with the network of an organisation. It is of vital importance that only
certain parts of these internal networks can be accessed from the Internet in order to protect sensitive
information. While in the past much of an organisation’s infrastructure would be on-premise, meaning
it is exclusively accessible using the organisation’s internal network, nowadays the cloud is often used
as an alternative [19]. As a consequence, organisations are more dependent on the Internet and
their connection to it, as much of their data storage and computation is done in the cloud. These
dependencies cause the Internet to be essential to the proper functioning of such organisations, as
well as a potential risk.

While a connected world enables access to worldwide information for consumers and organisations, it
can be used by malicious actors as well. This connectivity enables these actors to infiltrate the network
of an organisation, to which they should not have access, without physical access to the premises. A
malicious actor could even be on the other side of the planet, which impedes investigations by national
law enforcement agencies [17]. A common approach for infiltration is to try to abuse a vulnerability,
such as a lack of input sanitisation, which can be abused by giving malicious input, in the internet-
facing infrastructure of a potential victim [35]. These approaches to break into a network often have
certain indicators that can be used to detect attempts, successful or not. As an example, if the user
input for the username field of a login page contains an SQL query, this indicates an infiltration attempt.

Using the access gained via a network, an actor has a plethora of options [48], such as: exfiltrate
sensitive data from internal systems; disrupt the network by shutting down computers or encrypting its
contents; remain hidden in order to spy or disrupt at a later moment. The impact of such attacks can be
disastrous. For example, in 2015, Ukraine’s power grid was hacked, which caused power outages for
multiple hours [1]. The impact of this cyber attack was felt locally. Nevertheless, it is not unimaginable
that such an attack may have global consequences. A more recent accident that illustrates this is
the faulty update of Crowdstrike in the summer of 2024, which paralysed digital systems used for
businesses around the globe. Planes were grounded and healthcare information was inaccessible as
millions of computers were affected [20]. While this incident was not caused by a malicious actor, such
an actor could have a similar impact given the right circumstances.

1.1. Security Operations Center

Fortunately, organisations can take measures to become more resilient to cyber attacks. They can,
as an example, monitor their network traffic by duplicating it and sending it to a Security Operations
Center (SOC) that attempts to find malicious activity in the data. This is illustrated in Figure 1.1, where



1.1. Security Operations Center 2
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Figure 1.1: Example of how a SOC would fit in a network

all network packets that arrive at the Company Router are copied and sent to the SOC as well as the
original recipient. This process does not disrupt the flow of the network packets. The tasks of a SOC
relevant to network monitoring can be categorised as detection of malicious activity and threat hunting.
Detection is determining whether a certain part of the data is possibly malicious using Indicators of
Compromise (IoC). If an loC matches with network data, this data is presented to the SOC in an alert.
Then, the SOC verifies whether the detected data is indeed malicious or not, after which appropriate
measures are taken. Threat hunting is digging through network data to determine what can function
as loC. These IoC are subsequently used for better detection and thus need to be of high quality.

loC can be composed of anything present in a network packet that can differentiate between a malicious
actor and a benign actor. In general, loC are composed of one or more attributes, where an loC matches
if all of its attributes match. For example, a group of hackers may repeatedly attempt to access a
network in the same manner by connecting with a specific port using a specific TCP/IP protocol. The
two attributes of this 1oC are the port and the protocol. While reusing a method may seem careless, one
should realise that malicious actors have invested in such methods. As the costs of reusing a method
are insignificant compared to the costs of devising a new method, these actors likely reuse methods
in order to increase their profit. If such a method is rarely used by benign actors, it can be used to
search for these malicious actors without causing regular false positive alerts at the SOC. A low false
positive rate is important as a large number of false positives would ask more time of the SOC analysts
and would affect their vigilance, called alert fatigue [40]. Searching for IoC in network data can be
assisted with Intrusion Detection Systems, such as Snort [43] or Suricata [44]. These systems attempt
to inspect all packets in real-time. One major performance improvement is obtained by designating
certain attributes of the 1oC as “important”. This designation is referred to as fast patterns. In this case
“‘important” means that these attributes most uniquely identify the malicious activity that the loC tries to
detect. Due to these considerations, carefully constructing 1oC is time-consuming and costly.

SOCs can be divided into two categories: managed SOCs (mSOC), an external party that monitors the
infrastructure of many organisations as a service, and in-house SOCs, which only monitor the infrastruc-
ture of the organisation they are a part of. Privacy and confidentiality issues surrounding the detection
of malicious activity in network data are predominantly relevant for mSOCs, as with an in-house SOC
the data does not leave the organisation. Contracting an mSOC is interesting for organisations for
various reasons, such as better scalability and lower costs [34, 47].
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Figure 1.2: Example of how loC are matched with network data

1.2. Privacy Preserving Matching of IoC

In most setups, an mSOC has access to all network data of an organisation that employs the services
of the mSOC. This access is required as the 1oC need to be compared to all network packets in order to
find matches. While in normal circumstances this data is primarily accessed by an Intrusion Detection
System, in principle all data is accessible to the mSOC and its technical employees. In practice, this
accessibility is useful, for instance, for searching for context that is not directly linked to an alert but still
relevant for an indication of the threat or for threat hunting. However, downsides to this access also
exists. For example, a SOC analyst can see all network traffic of every employee of the organisation.
While this data is often encrypted, URLs are not (entirely) encrypted, still giving the SOC analyst insight
into the browsing behaviour of an employee. If you always start the day at work by browsing the news
and checking your mail, the mSOC can observe this. In theory, the SOC can access metadata about
everything anyone does within the network of an organisation. In cases where the network data is not
encrypted, the mSOC can access even more private data.

Not all organisations may be concerned if a trusted mSOC accesses their data. The risk of a malicious
actor on the network can outweigh the privacy loss of the employees, especially if the mSOC is bound
by contract to only investigate data when relevant. However, organisations may have reasons to be
more cautious about sharing access to their network data. For example, the organisation may have
sensitive data, such as trade secrets, or they do not wish to trade privacy for security. ldeally, the
organisation would share only the minimum amount of data needed to determine whether a malicious
actor is in the network or not. In other words, they would only share data when it matches with an
loC, while all unmatched data remains private. This would result in a situation where the mSOC cannot
observe the employee browsing the news, but can investigate the suspicious connection with a phishing
website. On the other hand, an mSOC has reason to keep their loC private. Due to the investments
in these loC, they are a significant part of the business model of the mSOC. While sharing all loC with
organisations may preserve more of the privacy of the organisation, this is a risk for the mSOC. Ideally,
the mSOC would only share loC when an organisation’s network data matches, keeping the unmatched
loC private.

Figure 1.2 illustrates a simplified version of our problem. The organisation has network data with an
associated payload, which is the context the SOC would need in order to analyse the network data
matched on an IoC. The SOC has IoC where an attribute, a column in the figure, can contain “x” as
an indication of a wildcard. The loC does not take this attribute into consideration. In other words, per
loC the attributes that are considered for a match can differ. Any matches found are then sent to the
SOC. In this case, only one entry in the organisation’s network data matches on all attributes of an 1oC
and is sent to the SOC for investigation. Neither the SOC nor the organisation should learn any other

information about the other party’s data.

State-of-the-art research that provides solutions to similar problems is found in multiple fields within
privacy enhancing technologies. Set intersection with privacy guarantees, known as Private Set In-
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tersection (PSI), is a specialised form of Multiparty Computation that has been studied extensively in
the last decade [33]. General PSI allows the participating parties to determine the intersection of their
sets without learning any other information of another party outside of this intersection [30, 38]. In ad-
dition, different variants of PSI have been constructed. For example, Labeled PSI [12, 15] allows for
the private transfer of data associated with the intersection and Threshold PSI [23] allows for finding
an intersection with the additional constraint that the size of the intersection should exceed the thresh-
old. Besides PSI, various solutions to similar problems have been proposed. For instance, Private
Database Queries [7, 45] can be seen as a special case of PSI where one of the two parties has a set
with only a single entry. Lastly, specifically on the problem of finding privacy preserving protocols for
an Intrusion Detection System, Encrypted Packet Inspection has been proposed [9, 16, 42]. Encrypted
Packet Inspection protocols offer an alternative for an Intrusion Detection System that can be used in
real-time, while giving better privacy guarantees than a plaintext Intrusion Detection System.

1.3. Research Questions

In this work, we aim to match loC, consisting of a variable number of attributes, with network data in
order to retrieve data associated with these matches while preserving the privacy of the unmatched
data of both the mSOC and the organisation. Important in this setting is that if X and Y denote the
organisation’s and the mSOC’s dataset respectively, then | X| > |Y|. State-of-the-art methods for
retrieving associated data[11, 15] do not efficiently support matching on multiple attributes. The state-of-
the-art method for matching on combinations of attributes [25] requires the structure of the combinations
to be known to both parties and scales linearly with the number of combinations, which is equal to
scaling exponentially with the number of attributes if all combinations are allowed. However, none of
the current solutions solve our problem entirely and no complete solution yet exists, to the best of our
knowledge, that efficiently solves our problem, considering the privacy constraints described above.
Therefore, we present the following research questions:

1. How can a variable number of attributes per loC efficiently be matched with network data, pre-
serving privacy when only a proper subset of attributes match?

2. How can network data, associated with matched loC, be privately and efficiently transferred to a
SOC?

While we focus on the problem in a SOC setting, we note that this problem also applies to other settings,
such as querying a database where unique identifiers are not present or not known by the querent. A
querent would then be able to use multiple identifiers, such as the combination of a name and an
address, to retrieve relevant entries of the database.

1.4. Contributions

To address the gap as defined by our research questions, we propose two different protocols for a
challenge that has not yet been extensively researched. We summarise our contributions as follows:

1. We combine different techniques and protocols in order to propose two protocols that provide a
solution to our challenge. These protocols each use a different approach to the problem, which
results in varying outcomes in terms of, e.g., efficiency.

2. We analyse our proposed protocols on both the complexity and actual runtimes using proofs of
concept, which we have made publicly available. We highlight the strengths and weaknesses of
our protocols.

3. Using our results, we provide a baseline for future research on this challenge. For future research,
we identify possible directions of such research.

1.5. Outline

This thesis is structured as follows. Chapter 2 introduces relevant primitives and other preliminaries.
Chapter 3 provides an overview of the existing work related to our research questions. In Chapter 4,
we specify two protocols to answer our research questions. Chapter 5 provides the analysis of the two
proposed protocols. Lastly, in Chapter 6, we discuss our findings and identify possible future research
directions.



Preliminaries

In this Chapter, we provide the context necessary to understand current state-of-the-art works and the
improvements we propose. We elaborate on possible methods for representing a set, cryptographic
primitives used in PSI and the security models used in research to show under which assumptions a
protocol is secure.

2.1. Set Representations

Set representations are used to make queries more efficient. A straightforward approach is the bitset,
where each element is represented by a bit. Namely, if an element is in the set, its bit is set to 1 and
vice versa. While this results in a bitstring with no loss of information, it scales directly with the size of
the Universe of the set. A consequence is that even a small set is encoded in a disproportionately large
bitstring, given that the Universe U is significantly larger than the size of the set. For example, a set of
100 IPv4 addresses would result in a bitstring with a length of 232 as U of IPv4 addresses is 232. In this
section, we review existing set representations used for, among other applications, PSI. However, while
some set representation methods may seem to add some kind of privacy due to hashing the elements,
this is not the case, since anyone with knowledge of the Universe can query all possible elements to
reconstruct the original set with high probability. In the context of PSI, these methods should never be
used without cryptographic primitives to ensure the privacy of the sets.

2.1.1. Bloom Filter

A Bloom Filter is one such set representation. The Bloom Filter was created by Burton Bloom [6] as a
probabilistic data structure designed for fast set membership queries and low space requirements. The
basic idea is to map each element with % different uniform hash functions to a series of m binary bins,
setting the value of the mapped bin to 1. Then, the Bloom Filter can be queried to determine whether
the queried element is in the set or not. If all k£ bins of the queried element are 1, this element is in the
original set with high probability. As the hash functions are deterministic and since a bin flipped to 1
can never become 0 again, false negatives are impossible. However, removing an item from the Bloom
Filter is impossible and false positives are possible. The False Positive Rate (FPR) is adjustable by
choosing k£ and m. More specific, the FPR errory, where N is the set size, is as follows:

errory = (1 — exp(#))k. (2.1)

As this formula suggests, using a Bloom Filter can be counterproductive if the desired FPR can only be
achieved by choosing m such that m > U as using a bitset would result in a smaller and more accurate
set representation.

Bloom Filters are sometimes used in Private Set Intersection protocols to obtain a concise represen-
tation of a set. Given two or more Bloom Filters, the intersection can be obtained by computing the
bitwise AND of the two Bloom Filters, if the size m is equal for both Bloom Filters. However, the Bloom
Filter itself does not provide privacy, as anyone with knowledge of the hash functions and the Universe

5
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of the elements can reconstruct the original set. Therefore, in PSI, Bloom Filters are combined with Ho-
momorphic Encryption in order to compute the bitwise AND of the bins without sharing an unencrypted
Bloom Filter.

2.1.2. Cuckoo Hashing

Cuckoo Hashing is another method of representing a set using hashing. First proposed by Pagh and
Rodler [36], this method uses two hash functions (H; and H-) to hash elements to bins in the table.
When an element z is inserted into the table, Cuckoo Hashing first attempts to insert = at H;(x). If
this bin is already occupied, the element at H, () is displaced and z is inserted. The old element y of
H,(z) is now inserted into bin Hy(y). If this operation displaces an element, this process of displacing
elements is repeated until a condition is met. Such a condition could be that all displaced elements are
inserted into another bin, a predetermined amount of tries is reached or a loop is detected. If the Cuckoo
Hashing table does not have enough bins, it is possible that an element cannot be inserted anywhere.
This problem can be solved by re-choosing hash functions until all elements fit or by increasing the
number of bins. Querying the Cuckoo Hashing table is straightforward. For querying element «, the
querent only has to check bins H;(a) and Hy(a). As a bin houses the actual element, it is possible to
remove elements from a Cuckoo Hashing table.

Different implementations may slightly alter the Cuckoo Hashing method to better accommodate spe-
cific scenarios. For example, a stash can be added, which holds displaced elements that could not be
reinserted. More hash functions can be added to give elements more possible bins and thus a lower
chance of being unable to insert the elements.

2.1.3. Polynomial Roots

The final set representation method we will highlight is by using polynomial roots. This method differs
from the previous two methods in that it does not use bins to assign elements to. Instead, it calculates
a polynomial of which the roots are the elements. Using V' as the set and v € V' as elements in the set,
the polynomial can be determined with the following formula:

F(z) =[] (@ —w). (2.2)

veV

To find the intersection of two polynomials F'(x) and G(x), one can simply compute F(z) — G(x) and
find the roots of the resulting polynomial. These roots are the matching elements with high probability.
By encrypting the coefficients of polynomials F and G using homomorphic encryption, this method can
be used for PSI.

A variant or generalisation of this set representation method is interpolating a polynomial over multiple
points. Whereas the polynomial roots method encodes a set by interpolating a polynomial over the
points (v,0) Yv € V, a general approach can encode key-value pairs into a polynomial where the
points for the interpolation are (a,v) V(a,v) € (A,V) where A is a set of keys or attributes paired with
the set of values V. When subtracting two of these polynomials, the resulting polynomial has roots for
all keys in the intersection. That is to say, for key-value pairs that match, the polynomial evaluates to
F(a) — G(a) =v—v=0.

2.2. Primitives

PSI protocols are often built on either Oblivious Transfer (OT) or Homomorphic Encryption (HE). In this
section, we give an explanation of these cryptographic primitives and of primitives derived from these
primitives.

2.2.1. Oblivious Transfer

The basic objective of OT is that a receiver can obtain one message out of two or more messages
from a sender without sharing which message the receiver requests nor which other messages the
sender holds. For example, 1-out-of-2 OT works as follows. Given Alice’s messages {mg, m;} and
Bob’s choice bit b, Bob should learn only m,; and nothing about m;_;, and Alice should learn nothing
about which message Bob received. An extension on OT, called OT extension (OTe) [4, 26], can be
used to transfer many messages obliviously without executing as many instances of OT. In PSI, OT
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can be used to facilitate the private computation of the intersection, making sure the elements not in
the intersection remain hidden to the receiver, while the sender does not learn which elements are in
the intersection.

2.2.2. Oblivious Pseudorandom Functions

Freedman et al. [21] introduce Oblivious Pseudorandom Functions (OPRFs) for the challenge of Key-
word Search, where an OPRF can be used to make sure Bob does not learn any of Alice’s unmatched
records by making these random from Bob’s perspective. An OPRF works as follows. Alice and Bob
agree on an OPRF F'. Alice samples a secret key k. Now for all of Bob’s elements, Alice and Bob
engage in the OPRF protocol, where Bob learns Fj,(z) Vz € X and Alice does not learn Bob’s z’s.
Bob does not learn k& nor Fi.(y) Yy ¢ X. To implement such a function, OT is often used, but other
methods, such as using elliptic curves, are possible as well.

2.2.3. Homomorphic Encryption
Homomorphic Encryption is a form of encryption for which certain computations on ciphertexts result in
a valid ciphertext. The resulting ciphertext is the encrypted result of the same or a different operation
on the original plaintexts. Formally, HE can be defined as follows. Given plaintexts m; and ms and
an operation + in the plaintext space, there exists an operation * in the ciphertext space for which the
following holds:

Dec(Enc(mq) x Enc(ms)) = mq + mo. (2.3)

The number of different operations that can be performed on the ciphertexts determines the type of HE.
Variants of Homomorphic Encryption are Partially Homomorphic Encryption, Somewhat Homomorphic
Encryption, Levelled Homomorphic Encryption and Fully Homomorphic Encryption. Partially HE allows
for operations on ciphertexts that correspond to either addition or multiplication in the plaintext space;
Somewhat HE can evaluate some circuits, consisting of both additions and multiplications, in the cipher-
text space. However, Somewhat HE does not have to be able to evaluate any specific circuits. Levelled
HE takes another input which determines the maximum depth of the circuits the scheme can evaluate.
Levelled HE can evaluate all circuits with a depth of at most this maximum. The main difference be-
tween Levelled HE and Somewhat HE is that Somewhat HE can handle circuits with increased depth
if the parameters are chosen accordingly, usually increasing the ciphertext size. Levelled HE, on the
other hand, takes a separate parameter for the depth, which does not influence the ciphertext size [3].
For both Somewhat and Levelled HE, each operation introduces noise. Once the noise becomes too
large, the ciphertext cannot be correctly decrypted. This noise budget is what determines the maximum
depth of the circuits. Fully HE is the most powerful variant as it allows for all circuits of operations of any
type on the ciphertexts. However, Fully HE currently requires expensive bootstrapping after a certain
number of operations to reduce the noise introduced by each operation.



Related Work

In this Chapter, we look at existing methods that attempt to tackle problems similar to ours, i.e. privately
matching network data with 1oC. For this, we primarily look at Private Set Intersection. However, other
approaches will be considered as well.

3.1. Encrypted Packet Inspection

While the primary focus for finding a solution to our problem will be in the area of Private Set Intersection,
Encrypted Packet Inspection attains similar results and is thus of some interest as well. Encrypted
Packet Inspection was introduced by Sherry et al. with BlindBox [42], a Deep Packet Inspection system
that attempts to tackle the problem that firewalls as middlebox often face nowadays: how to inspect
network packets that are encrypted without compromising the privacy of the user. For this, BlindBox [42]
leverages Searchable Encryption, which allows the firewall to search for 1oC in network packets and
to recover the plain text, using a trapdoor in the encryption, only if a match is found. Searching for
IoC is achieved as follows: per packet, the client, i.e. the party whose network data is monitored by
BlindBox, sends a tokenised version of the packet, where the tokens have a fixed length; if a token
matches one or more IoC, the packet can be decrypted. In order to match on loC of different lengths,
tokens can be combined to form the IoC, as long as the length of the IoC is not smaller than the length
of the tokens. For example, matching on the word “hacker” with a token size of 3 means the following
tokens need to match: “hac”, “ack”, “cke” and “ker”. However, this tokenisation may leak information
about the substrings if these substrings occur in other strings, e.g. “ack” the word “acknowledge”.

Over the years, different papers have proposed new methods that add some aspect of Deep Packet
Inspection to Encrypted Packet Inspection or improve either the privacy or efficiency of Encrypted
Packet Inspection. Canard et al. [9] improve on BlindBox by reducing the performance costs and by
limiting the information available to the firewall, specifically the third-party sourced patterns it is trying
to match. Desmoulins et al. [16] introduced flexible pattern sizes and the possibility to match regular
expressions, which negatively affects the performance. In this method, a client can issue the trapdoors
used for matching, giving them more control over what lIoC are allowed to match on the network data
at the cost of the effectiveness of the firewall.

Overall, Encrypted Packet Inspection is promising for applications such as firewalls. However, the
existing Encrypted Packet Inspection protocols require network packets to be encrypted with trapdoors,
which means the encryption for all network traffic is altered. This might be acceptable for uses such
as firewalls as these are already in the middle of the network traffic. A SOC, however, generally only
duplicates the network traffic to their servers without noticeable interference to the traffic. Therefore, itis
a significant hurdle for companies that want to employ a SOC without altering a lot of their infrastructure.

3.2. Private Database Queries

A field of research more adjacent to PSI is Private Database Queries (PDQ). Simplified, PDQ is PSI
where one party has a set with a single entry with one important difference: PDQ generally returns all

8
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occurrences of the query, whereas PSI generally only returns whether there is a match or not. Returning
all occurrences is desirable for our problem as loC can occur in more than one network conversation.
Therefore, a SOC would want to investigate, and thus receive, all matched network conversations.
While these protocols often do not translate directly or efficiently to a setting where both sets are larger
than one, they give insight into novel approaches of specific types of PDQ that may be applied to PSI
as well.

Boneh et al. [7] propose a protocol for database queries with more than one attribute, specifically con-
junctive queries, where records match only if all attributes match. The authors accomplish this func-
tionality within reasonable time frames by using a polynomial representation of the query and dataset,
where the resulting polynomial has the matching indexes as its roots. For example, if attribute A occurs
in the database entries with index {71, 4, 5}, Bin {2, 3, 4} and Cin {1, 4, 6}, AA B A C results in index 4.
Boneh et al. [7] mention that with these indexes the associated database entries can be fetched using
Private Information Retrieval.

Tan et al. [45] propose a protocol which allows for the use of order comparisons. They achieve this
by first encoding set elements to a vector of field elements followed by bitwise (order) comparisons
of the query with the field elements in the vector of field elements. In short, this means all entries of
the database are individually compared to the query. While private order comparisons are desirable
for the SOC setting, e.g. for matching on conversations consisting of more than 500 MB to detect
data exfiltration, the needed time and space complexity in order to apply this to the SOC setting is too
high. Based on the results in [45] it would take multiple days for a set Y of 100 elements and set X of
1.000.000 elements.

3.3. Private Set Intersection

PSl is a field of Privacy Enhancing Technologies where the objective is to privately compare two or
more sets and receive the intersection without learning anything about the elements outside of the
intersection. In the last decades, this field has improved significantly which has been accompanied
by a plethora of papers. Therefore, we will select papers for this related work section based on their
importance and applicability to our problem. Generally, PSI refers to the two different sets as the sender
and the receiver, where the receiver is the party that learns the intersection.

Pinkas et al. [37] propose in their paper a novel protocol and optimisations of existing protocols using
OTe. The novel protocol proposed uses OTe, specifically 1-out-of-n OTe, to execute a type of PDQ,
namely private equality tests, for each element in the set of the receiver. In order to reduce the amount
of private equality tests, the authors use Cuckoo Hashing, which significantly reduces the communi-
cation costs. In practice, the sender and receiver perform multiple OTs so that the receiver learns a
randomised representation of an element in their own set using the bits of this element as choice bits
similar to an OPRF. Subsequently, the sender sends the randomised representation of their element
to the receiver. If the receiver determines that these two values are the same, the element is in the
intersection with a high probability.

Kolesnikov et al. [29] propose a novel type of OPRF to use for PSI protocols. This OPRF, named a
Batched, related-key OPRF or BaRK-OPRF due to a large number of OPRF instances with related
keys, removes the dependence of the PSI protocol on the bit-length of set elements. This dependence
is removed by replacing the error-correcting code of [37] with a pseudorandom code and constructing
the OPRF such that each instance scales with the length of the pseudorandom code instead of the
bit-length of the element. A pseudorandom code differs from a hash function as for the former it should
be hard to find near collisions. Using the independence of the bit-length of the elements, Kolesnikov et
al. improve protocols relying on OT, such as that of Pinkas et al. [37]. Specifically, they substitute the
OT instances with instances of their BaRK-OPRF.

Chen et al. [11] propose a PSI protocol based on HE. The authors aim to construct a protocol that
allows receivers with small sets and little computing power to efficiently perform PSI with a server with
a significantly larger set. They achieve a communication complexity linear in the set size of the smaller
set. By utilising Levelled HE, the authors reduce the computational cost.

In [38] Pinkas et al. build upon the PSI protocol based on OTe in [37] with added efficiency for the



3.3. Private Set Intersection 10

unbalanced setting and scalability in set size. Using a smaller error correcting code, their protocol
retains its dependence on the bit-length of the set elements. However, the total amount of bits of
communication per OT is generally lower than that in [29] namely o — logon where o is the bit-length of
an element and n is the set size. Additionally, the authors propose improvements to circuit-based PSI
by leveraging OT and permutation-based hashing. Circuit-based PSI is a more general-purpose type
of PSI allowing the parties to compute a function over the intersection.

In[39], Pinkas et al. introduce a novel way to hash set elements with probe-and-XOR of strings (PaXoS),
which is generalised as an Oblivious Key-Value Store (OKVS) in later work. PaXoS leverages Cuckoo
Hashing where binary strings can be stored and retrieved by XORing items stored in the Cuckoo Hash-
ing table. Whereas Cuckoo Hashing stores a value to the location of one of its hashes, PaXoS stores
a value at all locations associated with the value by the hash functions such that XORing these values
results in the original value. The authors propose a PSI protocol based on PaXoS and OT. This protocol
uses the XOR homomorphic properties of PaXoS to enable both parties to compute the same decoded
value if the element they decode exists in both sets. Then, the sender hashes these decoded values
for their elements and sends them to the receiver who checks for equalities.

Rughuraman and Rindal [41] improve on the OKVS data structure derived from PaXoS achieving low
communication complexity. Since its introduction in [39], this data structure has become a new preva-
lent building block for PSI [33]. The main improvements to OKVS by the authors are transforming a
matrix based on the keys to reduced row-echelon form and clustering non-zero values in a row. This
results in efficient encoding and decoding operations for the OKVS. Using subfield Vector Oblivious
Linear Evaluation PSl is constructed from the OKVS.

3.3.1. Labelled PSI

As general PSI has become more popular among research and practice, more subcategories have
been coined in order to tackle more specific problems. One of these new subcategories is Labelled
PSI (LPSI), where the receiver also receives labels associated with the set elements, instead of just the
intersection. This new category was introduced by Chen et al. [12], who based it on Private Information
Retrieval by keywords (PIR) introduced by Chor et al. [13]. In short, PIR can be seen as a specialised
form of PDQ, analogous to LPSI as a form of specialised PSI.

Chen et al. [12] propose two initial approaches for LPSI for the unbalanced PSI setting using Fully
HE, which are secure against a malicious sender. They first propose an approach compatible with
the protocol proposed in [11], which uses polynomial interpolation in order to get the label if there is a
match and a random element in the finite field I otherwise. The second proposed protocol improves
the online computation of the former by using an OPRF pre-processing phase. First, the labels are
encrypted using the OPRF values associated with the set elements. Subsequently, these encrypted
labels can be sent to the receiver. If an element of the receiver is in the intersection, they can decrypt
the associated label. This approach relies on the one-to-one relation of the elements and the labels.
For multiple attributes, each combination would result in a unique encryption of the label in order to
preserve confidentiality for partial matches.

Cong et al. [15] improve on the PSI protocol of [12]. By always using OPRF values instead of the
elements themselves, instead of as an optional optimisation as in [12], Cong et al. remove the need
for the costly extension field arithmetic. This improvement, however, has the consequence that the
“labelled” part of [12] is not usable for this protocol. Cong et al. cope with this by extending the OPRF
output to use one part to represent the element and one part to function as a key for a symmetrically
encrypted label.

3.3.2. Fuzzy PSI

Another upcoming subcategory in PSl is Fuzzy PSI. For Fuzzy PSI the goal is to find matches that are
not necessarily equal but can be “close” as well. Defining closeness and minimising the amount of
extra set elements needed to cover these “close” elements is the main focus of these PSI protocols.

Chakraborti et al. [10] introduce a method that attempts to minimise the amount of elements added
to the set for Fuzzy PSI with Hamming distance or Minkowski distance of first order. The Hamming
distance is often used to determine the distance between two strings of equal length by counting the
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number of positions at which the bits or characters are different. The Minkowski distance of first order
is often used to determine the distance between two integers and is calculated by computing |a — b|
for integers a and b. Fuzzy PSI with Hamming distances can be useful for applications such as private
biometrics, e.g. facial recognition, and Fuzzy PSI with Minkowski distance for applications such as
verifying whether an IP address is in a range known to be malicious. Especially the latter is useful for
the problem in this thesis. To attain this more efficient set expansion, Chakraborti et al. [10] propose
to only add the prefixes of the elements that are needed to cover the range to set A. For example,
for the range (a — d,a + d) where a = 7 and d = 2 the inefficient solution would result in the (binary)
set 0101,0110,0111, 1000, 1001, whereas the solution presented in [10] would result in the (binary) set
0101, 011%, 100« where * is a wildcard. The downside is that set B requires a small expansion as well,
as it should cover the possible prefixes, which depends on the distance d. However, these expansions
are significantly less than the expansion linear with distance d in the inefficient solution.

Garimella et al. [22] attempt to tackle this expansion of the sets, by exploiting a publicly known structure
in the input sets. In short, if A is the original set and A* is the augmented set with all elements close to
a Va € A, then the objective is to make a PSI protocol that scales with the set size of A instead of the
set size of A*. The proposed protocol utilises functional secret sharing and aims to find the intersection
of set A and set B where (a,b) € A x B are within the distance threshold ¢ of each other. This type of
fuzzy matching is accomplished by using an OKVS that stores functional secret sharing shares linked
to a grid cell encompassing the desired range. However, this protocol assumes that these cells are
disjoint, which is an assumption that may not hold in practice.

Uzun et al. [46] propose a Fuzzy Labelled PSI protocol in order to privately compare biometric data
for, for example, facial recognition. They base the fuzzy part of their protocol on t-out-of-T matching,
which is also known as Threshold PSI, where ¢ is the threshold. Specifically, their protocol generates
subsamples of the biometric query, which returns a secret share of the label if it matches with a sub-
sample of the dataset of the server. The secret shares can then be combined to reconstruct the label
if the querent obtains at least ¢ shares. The threshold ¢ is set by the server.

3.3.3. Private Matching for Compute

Private Matching for Compute is a subcategory of Private Set Operations, which is the overarching cat-
egory for subcategories such as Private Set Intersection and Private Set Union. However, it introduces
a solution that does not aim to solve a more specific problem necessarily. Rather, it attempts to give
more flexibility to Private Set Operations as the output of Private Matching for Compute can be used
for other types of Multiparty Computation without compromising the confidentiality of this initial output.

Buddhavarapu et al. [8] contribute to this subcategory with specific interest for Private Set Unions. How-
ever, the protocol presented is compatible with PSI as well. The authors aim to get Private Matching
for Compute functionalities for sets with multiple attributes and non-unique attributes. For this they in-
troduce Universal Identifiers that aim to reduce many-to-many connections to one-to-one connections.
Additionally, the parties learn a mapping in order to get their respective set element with a given univer-
sal identifier. These Universal Identifiers can then be used as the input for further private computations.

Han et al. [25] propose a protocol with a similar objective to that of [8]. However, Han et al. [25] introduce
an ordered-threshold-one matcher, which matches two elements if they have at least one matching
feature. Features are valid combinations of attributes that identify an element. Which combinations
are valid is determined by the participating parties beforehand. In practice, this means that the set is
expanded, limited by the amount of valid combinations. The intersection is then calculated by using
circuit-based PSI, which outputs the intersection in the form of secret shares.



Multi-Attribute Private Set
Intersection

In this Chapter, we present our two protocols for Multi-Attribute Private Set Intersection. These proto-
cols each have their own approach of tackling this novel challenge using different existing ideas and
protocols, combined with ideas on how to enable and optimise this kind of set intersection. The first
protocol focuses on inverted indexes in order to obtain a list of the matching indexes, which can then
be used to retrieve the associated data. The second protocol transforms the set of the server into a
new set with all possible combinations of attributes allowing for the usage of LPSI to get the matching
records and the associated data. For both protocols, the intersection contains the decryption key of the
associated data of matching records. In the remainder of this thesis, we will refer to the SOC as the
Receiver and to the organisation as the Sender. The objective of the protocols is to obliviously transfer
the matching associated data from the Sender to the Receiver. Both protocols are secure as long as
both parties do not deviate from the protocol, i.e. in the Semi-Honest security model.

4.1. Inverted Index

The first protocol is a modified version of a protocol proposed by Boneh et al. in the fifth chapter of
their paper [7] to which we will refer as 2PPDQ (Two Party Private Database Queries). They describe
2PPDQ as a two-party version of their main protocol. However, as 2PPDQ was not the focus of their
paper, it was not subjected to experiments and, to the best of our knowledge, was not implemented.
Table 4.1 contains symbols and definitions we use for the remainder of this thesis. In Table 4.2, we
showcase an improved version of 2PPDQ. We will refer to this improved version as Inverted Index.

4.1.1. 2PPDQ

First, we give an overview of 2PPDQ [7]. Boneh et al. propose two variants of their protocol, where
the main difference is that the second variant, the fully-private variant, provides privacy for the at-
tributes used and the first, the semi-private variant, does not. Privacy for the attributes means that
the Sender does not learn which subset of the possible attributes A’ are in the query. For example,
if A’ = {sIP,dIP,Protocol} and an IoC consists of only an sIP, the Sender knows that the 10C only
contains an slIP for the semi-private variant. Using the fully-private variant, the Sender does not learn
which attributes in A’ are used in the loC.

Semi-Private 2PPDQ

The semi-private variant is defined as follows, where mentions of steps refer to the steps in Figure
4.2. The Sender first transforms each record in their dataset into a polynomial D(j) where D(a) = v
(step 3). Then, the Sender computes the polynomials A(i) and combines both sets of polynomials
such that: D(i,j) = >, c(x) Ar(2) - Dr(j) (step 4). Now, the Receiver transforms their query into Q(;)
where Q(a) = v,¥(a,v) € y and sends Enc(Q(j)) to the Sender (steps 9, 10, 11). The Receiver sends
the attributes in the query o’ = {as,...,q),} to the Sender. The Sender computes the intersection
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Table 4.1: Symbols and definitions

Symbol Definition
Both Protocols
X The set of the Sender
Y The set of the Receiver
| X The size of set X

~

Mo e Ry
<

Results of the protocol

Encryption key of a symmetric scheme

A single record in X

A single record in Y’

Attribute-value pairs in z or y, the values are the entries of the sets
The attributes in X (i.e. the column headers)

The attributes used in the intersection

The plaintext space, a finite field

Inverse Index

LSS e o =
Frevww

SN <DU
<

Record numbers r € [1,]|X]]

Cluster size

Number of Clusters

Cluster number b € [1, B|

Secret key used in either the OPRF or the HE scheme

Public key used in the HE scheme

Lagrange polynomial where \,.(i) evaluates to 1 only when i = r
Polynomial variable in the range [1, | X|]

Polynomial variable with values a € A’

Record polynomial for record r

Database polynomial for cluster b

Vector of attributes

Random scalar

The order of the bivariate database polynomial for each cluster
The largest order of the univariate record polynomials per cluster
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Table 4.2: Inverted Index Protocol, improvements compared to Boneh et al. [7] in red

Step | Receiver Shared Sender
(Y, skyg) (A" C A, 8, pkug) (X, skoprr)

Communication

1 B[]
2 v’ = ()PRFS'ATUPRF(U)SVU e X
3 D, (j) = (Dy(a) =v"),¥(a,v") €
4 Db(imj):Zr€11>\r(i)'Dr(j)
v’:OPRF‘SkopRF(v),VUGY
5
6 (T.U,|X1)
7 Vg = ZaeA’ Pa
(1 a a2 mod U (IT mod U)
8 V?} = EnCPkHE (Vb)
9 Qy(j) = (Qy(a) =v"),Y(a,0v) €y
10 Q;, = Encpk‘HE (Qu(ﬂ))
11 S
12 Ry?)(laj):Db(i7]) ;(])
13 Ryb(i):P'Ryb(iaJ)'Vé
14 (Ry, (1))

15 R;b (Z) = DecskHE (Ryb (Z))

16 | Intersection, < Eval(R (7))

polynomial A(i,j) = D(4,7) — Q(4) (step 12). If an (a, v)-pair in record r is equal to a pair in the query,
A(r,a) will result in zero.

Subsequently, the Sender computes A4;(i) = A(i,a;),Vt € [|a'|] (step 14). Lastly, the Sender uses a
technique by Kissner and Song [28] to blind all polynomials A, by computing the cross product of the re-
sulting polynomials and a random polynomial S(¢) of “appropriate degrees”™: R(i) = Zteua/u Se(1) A (7).
The resulting polynomial R(7) is sent to the Receiver, who can decrypt it and find the roots in order to
learn which indexes match the query and nothing else (steps 14, 15, 16).

Fully-Private 2PPDQ

The fully-private variant slightly differs from the semi-private variant. The Sender first transforms their
dataset into D(i, j) in the same manner (steps 3, 4). The Receiver transforms their query into Q(j)
(steps 9, 10). However, the Receiver then computes a vector v as an encryption of the attributes o’ as
follows: v =%, 10 P~ (1, ar, az, ..., a'tA/‘_l) where p is a random scalar in IF (steps 7, 8). The Receiver
sends both Q(j) and v to the Sender (step 11). Now, the Sender computes A,.(j) = D(r,j) — Q(j) for
each record (step 12). Then, the Sender computes the inner product of each polynomial A,.(j) with
the attribute vector v in order to evaluate the polynomial (step 13). By summing all of the results of the
inner product, the Sender obtains the encrypted result of Zte[\a’ﬂ A, (a;) and sends it to the Receiver.
The Receiver can decrypt the | X | results and learns the indexes of the intersection by verifying which
results decrypt to zero. All results for indexes not in the intersection will decrypt to randomness.

41.2. OPRF

For the semi-private variant of 2PPDQ [7], which leaks the attributes of the query, Boneh et al. use a
technique by Kissner and Song [28] to compute the resulting polynomial R(j) by computing the cross
product of the polynomial A(j) and a random polynomial S(j). This blinding ensures the resulting
polynomial does not reveal any information other than the intersection. A side effect of using this
method of blinding the result is that each polynomial coefficient has to be encrypted individually as
opposed to batching multiple coefficients into a single ciphertext. The ciphertexts encrypting single
coefficients are needed because calculating the cross product is not feasible with a batched ciphertext
as this would result in the same number of ciphertexts as without batching, namely | X| - U ciphertexts.
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For the fully-private variant, Boneh et al. propose an approach which evaluates all D,.(5) individually
before sending the results to the Receiver, resulting in | X | ciphertexts.

The first improvement we propose is using an OPRF to replace the entries of both sets with a pseudo-
random value in I that only the Sender can calculate, similar to the approach by Chen et al. [12]. Using
an OPREF is similar to hashing, which Boneh et al. [7] propose to use for input values not in F. Only if
the Universe of the input values is in I, 2PPDQ can omit hashing the input values, thus avoiding the
possibility of a collision between two input values. As seen in Table 4.2, adding an OPRF results in
extra communication as the Receiver and the Sender interactively calculate the new entry values for
the Receiver (step 5). The Sender can independently, thus offline, calculate the OPRF values of their
own entry values (step 2). The Receiver does not know the OPRF values of values that are not in their
set Y. The usage of an OPRF to randomise the entries together with the randomisation introduced by
the other steps of the fully-private 2PPDQ protocol causes the blinding of the result polynomial with
the technique by Kissner and Song [28] to be redundant. The OPRF ensures the entries not in the
intersection are random for the Receiver, who then cannot learn anything other than the intersection.
By removing the need to calculate the cross product of polynomials, it is now possible to use batching to
encrypt multiple coefficients into a single ciphertext. This significantly reduces the communication costs
as fewer ciphertexts need to be sent. To give an example, using the HE scheme BFV [18] the number
of coefficients in a single ciphertext can easily be 8192 or larger. As a result, the number of required
ciphertexts is equal to the number of coefficients divided by the number of slots in the ciphertext. The
computation costs are lowered as well, since additions and multiplications on the polynomials can be
done at once instead of per coefficient.

4.1.3. Clustering

Another bottleneck of 2PPDQ is that for large sets finding the interpolating polynomials A, of the record
numbers is inefficient. Using Lagrange interpolation to find the coefficients of )., together with an
optimisation based on the fact that the points on which ), is based are all but one equal to (7, 0), results
in a complexity of O(| X|?) per polynomial, thus O(| X |?) for the entire dataset.

An intuitive improvement would be to divide the dataset in multiple clusters of a certain size 3 (step
1). This division reduces the number of polynomials and the order of these polynomials to 5 and 5 — 1
respectively as opposed to |X| and |X| — 1. We can reuse the same polynomials for each cluster as
long as the Receiver knows the order in which the resulting polynomials are sent. Then, the Receiver
can add a multiple of 8 to the root of the resulting polynomial in order to get the correct index. A
side effect is that each cluster has to be encrypted individually, which can be mitigated by choosing
the parameters of the HE scheme such that the cluster size times the number of used attributes is
approximately equal to, but not larger than, the batch size v, i.e. 5-|A’| <~. As long as this boundary
is upheld, there exists a complexity trade-off in the size of 5. For a larger 3, we need fewer ciphertexts,
but larger polynomials. Larger polynomials lead to more computation for both the evaluation of these
polynomials as well as the interpolation of these polynomials, where the latter is part of the offline
preprocessing phase. Fewer ciphertexts result in less online computation, for both the evaluation and
the decryption of ciphertexts, and less communication. While the larger polynomials scale linearly with
3, the ciphertexts scale incrementally as it is % rounded up.

Lastly, using clusters and an OPRF affects the vector v. Where in 2PPDQ the Receiver could simply
compute each required power of a € a’ and let the Sender reuse the encrypted powers, we cannot do
the same due to the usage of batching. Instead, if the Sender sends for each cluster both the order T’
of the entire cluster polynomial and the highest order U of j, the Receiver can compute a single vector
with a repeating pattern of the powers (step 7).

4.1.4. Associated Data

Akin to 2PPDQ), our improved protocol solely provides the matching indexes as output. Our challenge,
however, is to retrieve the associated data as well. Boneh et al. [7] propose that PIR can be used for
this purpose. While PIR would provide an answer, it generally does not guarantee the confidentiality
of the Sender’s dataset nor does it allow for more than one query at a time. As LPSI can be seen as
a form of multi-query PIR, while also providing confidentiality for the Sender’s dataset, we opt to use
LPSI instead. A drawback of current LPSI is that the protocols do not scale well with the label size.
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Table 4.3: Inverted Index combined with LPSI

Step | Receiver Shared Sender
Y) (X)
Communication
1 Y:II(X,Y)
2 X ={rk}
3 X = Enc(X)
R:LPSI(X,Y)
4
5 X
6 Dec(X,,k.) VreR

In order to limit the label size, the Receiver constructs a new set consisting of the output of the Inverted
Index protocol, the matched indexes. The Sender encrypts all the rows of their dataset with unique
keys using a symmetric encryption scheme, resulting in | X| encryption keys and encryptions. We call
the encrypted dataset X. Then, the Sender constructs a new set consisting of the indexes of X, each
with a label containing the encryption key associated with the index. These labels are constant in
size. Using these new sets the Sender and the Receiver engage in any LPSI protocol in which the
Sender outputs nothing and the Receiver outputs the matching elements and their associated label.
The matching elements are equal to the matching indexes. The Sender sends X to the Receiver in
parallel to the LPSI protocol. Now the Receiver can decrypt only the rows of X where the index is in
the multi-attribute intersection X NY. As the Receiver knows which key encrypts which index, they do
not have to attempt to decrypt each ciphertext.

4.15. Inverted Index Protocol

Table 4.3 defines the complete protocol, which we refer to as IIPSI (Inverted Index PSI). First, the
Sender and the Receiver engage in the Inverse Index protocol of which the resulting matched indexes
are the new set of the Receiver. The Sender then computes a new set X consisting of the indexes of
the original set X as well as an encryption of X where each record is encrypted using a unique key, i.e.
X. These keys are the labels of the new set X. Subsequently, the Sender and the Receiver engage in
an LPSI protocol using their new sets as input. Finally, the Receiver can decrypt all records in X that
match with the 1oC using the keys obtained in the LPSI protocol.

For Inverted Index false positives are possible. After all, if a polynomial evaluates to randomness for
a record that does not match, this randomness can be zero, thus indicating a match. However, false
negatives are not possible as the resulting polynomials cannot evaluate to randomness for a matching
record, but will always evaluate to zero. Likewise, LPSI generally allows for false positives, but no false
negatives. False positives leak information to the SOC, but do not cause extra work as the SOC can
match the 10C in plaintext to the output of the protocol in order to make sure only actual matches are
analysed by the SOC employees.

4.2. Attribute Combination

As a second protocol, we propose to use a combination of LPSI and a modified version of the method
used by Han et al. [25] to encode a set of quasi-identifiers, attributes in our case, into features. Since
the method by Han et al. transforms the original multi-column set into a, albeit larger, single-column
set, we can use this to enable typical LPSI to handle the multi-column sets in our challenge. For our
second research question of retrieving the associated data, we use an altered version of our solution
presented in Section 4.1.4. We will refer to the entire protocol as Attribute Combination PSI (ACPSI).

Han et al. [25] propose a method for encoding a multi-attribute set into a set of features. These features
are combinations of the different attributes. Han et al. define a set of valid combinations that can identify
a record and compute these features by concatenating the attributes in a valid combination. Now, two
parties, each with a dataset, can use this transformation to obtain these features. Using the features
the parties can perform, for example, a “join” operation on the two datasets, where certain entries that
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Table 4.4: Attribute Combination for the Sender (ACs)

Combination
180
180|210
180|TCP
180|210|TCP
210
210|TCP
Index | sIP | dIP | Prot TCP

1 180 | 210 | TCP 170

2 170 | 220 | HTTP 170|220

3 180 | 220 | TCP 170|HTTP
170|220|HTTP
220
220[HTTP
HTTP
180]220
180]|220|TCP
220|TCP
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Table 4.5: Attribute Combination for the Receiver (ACR)

Index | sIP | dIP | Prot Combination
1 180 TCP 180]|TCP
2 240 [240]
3 170 | 220 | HTTP 170]220|HTTP

match can be joined.

4.2.1. Transformation of Sets

First, we have to transform our sets into a form suitable for LPSI. While Han et al. [25] use the same
transformation for both sets, we cannot do the same as our objective is to match an entire 1oC and not
a subset of an loC. Additionally, the Sender cannot simply use a subset of the possible combinations as
this would require the Receiver to send which combinations are possible, thus leaking some information
about the loC. For this reason, we propose two similar approaches to transform the data, which together
accomplish what we wish to achieve. The Sender and the Receiver can still decide to only use a subset
of the possible attributes in X if the Receiver deems it an acceptable risk or if omitting some attributes
does not give the Sender more information. Choosing a subset of the attributes can be beneficial as
the Sender then computes fewer combinations.

Transforming the Sender

Table 4.4 illustrates our approach for transforming the multi-column set of the Sender into a single-
column set with label. In the example, we have an original set with a size of 3 and 3 attributes. The
augmented set contains the combinations of the attributes of the original set, where “|” denotes con-
catenation, and an encryption key as label. Concretely, the Sender’s set is transformed from

X = {’UO, ...,’U|I|} Ve e X (41)

into
X/ = {{UQ},{U0|U1},...7{U0|U1|...|U|m‘}} V.’I?EX, (42)

where duplicate combinations are omitted. The encryption keys are chosen such that each key encrypts
one or multiple rows of the original set. If a combination occurs in more than one row, the associated
key will decrypt all those rows. In this example, key a encrypts index 1, key b index 2, key ¢ index 3,
key d indexes 1 and 3 and key e indexes 2 and 3. By using the same key for combinations that are
associated with the same records, we can reduce the number of data we encrypt, and thus the size of
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Table 4.6: Attribute Combination Protocol

Step | Receiver Shared Sender
) (A" C A) (X)
Communication
1 Y' = ACg(Y, A") X' =ACs(X, A
2 X = Enc(X)
3 X
4 R=LPSI(X'Y')
5 | Dec(X,r) VreR

the encrypted database that has to be sent to the Receiver, compared to using a unique key for each
combination.

Transforming the Receiver

Table 4.5 shows our approach for transforming the multi-column set of the Receiver into a single-column
set. We are not interested in all possible combinations of the Receiver’s set as each row represents
an loC of which individual attributes are of no interest. Therefore, we transform the Receiver’s set

Y = {vo,..,vy} YyeVY (4.3)

into
Y' = {vo|...luy} Vyev. (4.4)

Note that y can contain empty values as long as at least one v; is not empty for i € |y|.

4.2.2. Attribute Combination Protocol

Using these methods of transforming our datasets, we define the resulting protocol as illustrated in
Table 4.6. First, both sets are transformed into a single-column form. This transformation incidentally
makes the protocol more flexible for the Sender. If any unwanted combination would exist, the Sender
can simply remove it from the augmented set, making sure the Receiver cannot match on the unwanted
combination. Unwanted combinations may occur, for example, when the combination is too general
and thus not likely a valid loC, e.g., “Port==53". Subsequently, the set of the Sender is encrypted using
the encryptions keys generated during the execution of ACs as seen in Table 4.4. This encrypted set
is then sent to the Receiver. Steps 2 and 3 are not dependent on any subsequent steps. Therefore, it
can be done in parallel to the next steps. Next, the LPSI protocol is executed with X’ and Y’ as input.
The result is sent to the Receiver only. Lastly, the Receiver attempts to decrypt every record using the
keys they received. Only the records that match at least one of the Receiver’s IoC can be successfully
decrypted.



Analysis

In this Chapter, we will analyse the protocols described in Chapter 4. Firstly, we will give an analysis of
the theoretical complexity of the proposed protocols and compare them to existing work when possible.
Secondly, we will give an analysis based on implementations of the protocols where we analyse the
computation in runtime and the communication in MB. We did not implement an LPSI protocol ourselves
and will thus use a state-of-the-art protocol by Cong et al. [15] and their implementation APS/ [14]. For
both the complexity and the results in our implementation, we use APS/ as the LPSI mentioned in our
protocol description. We stress that our protocol works with any LPSI protocol, as long as the LPSI
protocol allows for label sizes equal to the size of the symmetric encryption keys, and is not dependent
on APSI specifically.

5.1. Complexity Analysis

We evaluate the communication complexity and computation complexity for both protocols. Table 5.1
denotes the extra symbols used in this analysis in addition to the symboils in 4.1.

5.1.1. Communication Complexity

For IIPSI, we first consider only the Inverted Index part and 2PPDQ. Subsequently, we provide the
communication complexity analysis of the entire Inverted Index PSI protocol when combined with APSI.
Lastly, we illustrate how Attribute Combination affects the communication complexity of APSI.

Inverted Index

The communication complexity of the Inverted Index protocol consists of two significant parts: the
ciphertexts and the OPRF. The parameters shared with the Receiver by the Sender, (T, U, | X|), scale
with B.

The number of times the OPRF is executed and thus the communication complexity of the OPRF phase
depends on the size of the Receiver’s set Y and on the number of attributes per loC in Y. The number
of attributes can differ per loC. Therefore, we can only give an upper bound for the communication
complexity. The computation complexity for the OPRF is the same as its communication complexity

Table 5.1: Extra symbols and definitions for the complexity analysis

Symbol Definition

S Number of slots in the Somewhat HE scheme, the polynomial modulus de-
gree

B %' rounded up, number of clusters

c ‘ATI' /rounded up, number of ciphertexts per query

D % rounded up, number of ciphertexts per cluster

19
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O(]Y] - |A’]). The remainder of the communication complexity depends on the number of ciphertexts
sent to the Receiver or to the Sender. For each query, the Sender receives the number of ciphertexts
necessary to encrypt the query, equal to C. This results in a communication complexity of O(|Y'| - C).
Each query consists of a single ciphertext, assuming |A’| is not larger than S. Lastly, the Sender sends
back the resulting polynomials. The number of ciphertexts sent back is bounded by B - D. For each
query, the Sender sends B ciphertexts, assuming that g - |A’| is not larger than S. This results in a
communication complexity of O(|Y'| - B - D).

The final communication complexity of the Inverted Index protocol is the summation of the three above:
O(Y|-|A'| +|Y|-C+|Y|-B-D) = o(|Y| (A +C+B- D)). (5.1)

With the above assumptions on the parameter choice, C' and D are 1 and the complexity is:
O(IYl- (|4 + B)) = O(|X]). (5.2)

Generally, the most significant variable is B since it scales linearly with the Sender’s set size | X| and
|X| > Y| > |4

2PPDQ

For 2PPDQ, we consider only the fully-private version for the complexity analysis. The only communi-
cation for this protocol is sending the query ciphertexts to the Sender and the result ciphertexts to the
Receiver. However, remember that 2PPDQ encrypts each coefficient individually. For a single query,
2PPDQ sends at most |A’| ciphertexts, thus O(]Y'|-]A’|). For the results, the fully-private version sends
one ciphertext per record in X, thus O(|Y| - | X|). The final communication complexity for 2PPDQ is:

O(IYl- (14 + 1X1)) — O(|x]), (5.3)
as again, | X| is the most significant variable.

IIPSI

From the paper by Cong et al. [15] we learn that the communication complexity of APS/is O((log log | X|)?).
In addition, we send an encrypted X to the Receiver which has a complexity of O(|X|). Therefore, the
combined communication complexity of 1IPSI is:

O(|Y|- (|4’ + C + B D) + (loglog | X|)* + |X|) = O(1X| +|X|), (5.4)

The encrypted dataset is the most significant part of the communication complexity. However, as this
dataset can be sent to the Receiver independently of the rest of the protocol, we do not remove the
communication complexity of the protocol itself. In this case, both the protocol and the sending of the
encrypted dataset have a complexity of O(|X|).

Attribute Combination

The communication complexity of our Attribute Combination protocol is somewhat complex. While the
main components are the communication complexity of APS/ and the encrypted dataset X, for both X
needs to be replaced by X’, where X’ denotes the transformed set X using the Attribute Combination
protocol. We note that | X’| is bounded by the equation | X| - (2/4'l — 1), where the second term is the
number of possible combinations, given that the number of attributes is equal to |A’|. However, the
real number of combinations is largely dependent on how many unique values in each column of the
Sender’s dataset exist. If the values are mostly unique, | X’| will approach |X| - (2/4'I — 1), but if many
values per column are equal or from a relatively small subset | X’| will be closer to | X|. In general, the
following holds: | X| < |X'| < |X|- (241 —1).

The size of the encrypted dataset, however, is based on the number of unique keys and how many
records each key encrypts, which is dependent on the number of unique combinations of records as-
sociated with the attribute combinations. Recall that in Table 4.4 five unique keys were needed for
|X’| = 17 and these keys encrypted a total of seven records. Contrary to the size of | X’|, if the values
of the columns are largely unique, the size of the encrypted dataset is lower. At the same time, if the
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values of the records are largely equal to other records, the size of the encrypted dataset is lower as
well. To get the theoretical maximum size of the encrypted dataset, X’ should contain a large number of
combinations that are as much as possible associated with a unique set of records. Intuitively, the upper
bound of the encrypted dataset would consist of (I¥1) keys encrypting 1 record, (I3!) keys encrypting

2 records, up until (|¥]) = 1 key encrypting |X| records, summed to 3, (('}1) -4) = |x| - 21~
encrypted records. However, all combinations of records can only exist with a large enough |A’|. Each
record can only be a part of 2l4’l 1 combinations of records. If each record is in the maximum number
of unique combinations of records, each record can be encrypted at maximum 2|41 — 1 times. The up-
per bound of the size of the encrypted dataset is thus at most |X| - (214l — 1). Therefore, the following

holds with E as the number of encrypted records in the encrypted dataset: | X| < E < (|X]- (214'1—1)).

Where the original communication complexity of APS/ is O((loglog | X|)?), our protocol alters this to:
O((1oglog(|X] - (2141 = 1)))* + X[ - (21 = 1)) = O((log log(|X]))* + |X]). (5.5)

The encrypted dataset, as in IIPSI, can be sent to the Receiver independently of the rest of the protocol
and is thus again noted separately in the complexity.

5.1.2. Computation Complexity

For the computation complexity we follow the same structure as for the communication complexity. First,
we give the complexity of the Inverted Index part of IIPSI. Then the complexity of 2PPDQ. Followed by
the complexity of the complete 1IPSI protocol. Lastly, the computation complexity of the Attribute Com-
bination protocol. We will give the complexity based on how many ciphertext-ciphertext multiplications
are computed, but we will mention other significant computational bottlenecks as well.

Inverted Index
The computation complexity of the Inverted Index protocol is, similar to its communication complexity,
dependent on the number of clusters B and the number of ciphertexts per cluster D. Per query, the
Sender has to compute D - B ciphertext-ciphertext multiplications. Therefore, the total computation
complexity is:

O(lY|-D-B) = O(|X]). (5.6)

Two other significant parts of the computation are computing the interpolation polynomials over the
record numbers with a complexity of O(33) and computing the final result by evaluating the resulting
polynomial. Using Horner’s method, evaluating a polynomial has a complexity of O(n?) where n is the
order of the polynomial.

2PPDQ

For 2PPDQ the computation complexity is similar to that of the Inverted Index protocol, but requires
more ciphertext-ciphertext multiplications. As the coefficients are encrypted individually, each query
requires | X |- |A’| multiplications for the computation of the record polynomial multiplied by the attribute
vector. Resulting in a total computation complexity of:

O(IY]-1X] - 14") = O(|X]). (5.7)

ITPSI

From the paper by Cong et al. [15] we learn that the computation complexity of APS! is O(\/|X]).
Therefore, the total computation complexity of our IIPSI protocol is:

O(|Y|-D~B+M>—>O(|X|+\/m>. (5.8)

Attribute Combination
The computation complexity for the Attribute Combination protocol is once more largely identical to
APSI. As our set size expands from |X| to | X| - (2!4'l — 1) resulting in a complexity of:

o(\/1x]- @41 —1)). (5.9)
( )
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Table 5.2: Complexity Comparisons; | X| is the Sender’s set size, Z = 214’1 — 1 is the number of combinations of attributes

Protocol Communication Computation

I O(1X]) O(1X])

2PPDQ  O(|X|) O(|X])

1IPSI o(X|+ X)) (0] |X+\/|X>

ACPSI O((loglog(|X|- 2))?> +1X|-2) O[+/|X] -Z)

Another significant part of the computation are the decryption attempts using the results of the inter-
section. Unlike IIPSI, in the Attribute Combination protocol the Receiver does not know which records
are encrypted using the keys in the intersection. Therefore, the Receiver has to attempt to decrypt all
encrypted records, leading to a complexity of O(\X| . (2"“" —-1)- I) decryptions, where I is the size of
the intersection.

5.1.3. Comparison

Table 5.2 contains an overview of the complexities constructed in this section. Most variables can be
left out in the complexity as, in general, we assume |X| > |Y| and | X| > | 4’| to be true. To reiterate,
in our use case realistic values for | X|, |Y| and |A’| are 105, 10? and 10 respectively.

Our Inverted Index compared to 2PPDQ shows that both scale linearly with the large set size | X|
for both communication and computation. However, Inverted Index has a better performance in both
communication and computation due to the lower scalars for | X|.

When comparing the communication complexity of [IPSI to ACPSI, we note that a significant part of both
complexities is similar, because the same LPSI protocol and a similar approach to sending associated
data are used. Given a large enough | 4’|, ACPSI will have a higher communication complexity than
IIPSI. However, if we are interested in answering solely our first research question, thus without the
associated data, ACPSI will have a lower communication complexity as the double logarithmic term
does not reach the size of IIPSI’'s |Y| - (|A'| + B - D) — O(]X]) for a large enough | X|.

The computation complexity of 1IPSI is linear in | X|. However, while ACPSI is sublinear in | X]|, it is
exponential in |A’|. Therefore, for a larger number of attributes, 1IPSI will have to compute relatively
fewer ciphertext-ciphertext multiplications.

5.2. Implementation

We chose to implement a proof of concept of both the protocols in C++ and using Microsoft SEAL [32]
for the homomorphic encryption. As the implementation of APSI by Cong et al. [15] uses C++ and
SEAL as well, we argue the results are more suitable to compare the runtime of the protocols than if
we used another programming language or HE library. BFV [18], which SEAL offers as one of its HE
schemes, is used as it allows for some multiplications and is suitable for integers. For implementing the
OPREF, we took inspiration from the OPRF used in APS/, which uses an elliptic curve. The Sender has
a secret key k, the Receiver an item y. First, the Receiver hashes their item to an elliptic curve point
@ and multiplies it with a random scalar r to get the point T' = rQ, which is sent to the Sender. Then,
the Sender multiplies T" with the key £ to obtain U = kT and sends the point back to the Receiver,
who then computes »~'U = r~'krQ to obtain kQ. As elliptic curve, we use ristretto255 [24], which
provides Curve25519 [5] as a prime order group instead of a curve with co-factor 8. We use the Ristretto
variant of Curve25519 as implemented by libsodium [27], a library for cryptographic operations in C.
Our implementation can be found on GitHub (https://github. com/Rutger30/MAPSI). This repository
contains the code we wrote ourselves, a readme with instructions on how to install the dependencies
and bash scripts to run the tests.

Our tests are run on a Virtual Machine using VMWare, which has 26GB of RAM allocated. The actual
hardware consists of an Intel Core i7-11700KF CPU @ 3.6GHz and 32GB of RAM. All tests are run
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Table 5.3: Parameters used for the experiments

Protocol | Inverted Index LPSI [15]
Plaintext Modulus 230 222
Coefficient Modulus 174 218

Poly Modulus Degree | 8192 8192
Cluster Size 1000 -

using a single core, except for the APSI parts, which use two cores as the Sender and the Receiver are
executed separately. While this may speed up the execution of APSI marginally, the most significant
part of the runtime depends only on the Sender, thus on a single core. All tests are run five times and
the figures we use show the mean of these five runs.

We tested both protocols on a subset of the NetFlow dataset NetFlow v3 by Luay et al. [31]. Using a
real NetFlow dataset rather than randomly generated data leads to results more representative for real-
world scenarios. NetFlow is a method used to collect and analyse network data, which is used by SOCs
as well to match IoC on. However, as mentioned in the complexity analysis, the actual computation
and communication costs of the protocols depend to a great extent on how unique the values of the
attributes are. As random data usually contains more unique values, the costs may vary significantly.
Similarly, when tested on existing datasets, differences in costs can be explained by the number of
unique values in the datasets.

Table 5.3 contains the parameters we used in our experiments. We use AES-256 as the symmetric
encryption scheme for encrypting the associated data, which means our labels for the LPSI are 32
bytes. For Inverted Index, we use a cluster size of 8 = 1000 unless specified otherwise. This g results
in % clusters and ciphertexts for the Sender’s set. The used coefficient modulus 174 of the BFV
scheme results in a security level of at least 128 bits [2]. For both APS/ executions in our protocols, we
use the parameter set 16M-4096-32 [14] made by Cong et al. [15]. For this parameter set, the Sender
set size should be 16 million elements or lower and the Receiver set size 4096 elements or lower. The
label size can be 32 bytes or lower. For IIPSI, the Receiver set size can be larger than 4096 based on
the number of matches. In this case, the Receiver can make multiple queries of size 4096 or lower to
query the Sender’s dataset, which only increases the relatively short online time of APS/ and not the

costly offline time.

The polynomial modulus degree used is the same as we use in our Inverted Index protocol, namely
8192. This number is equal to the number of plaintexts that can be batched into one ciphertext. Higher
polynomial modulus degrees result in more costly homomorphic multiplications. The plaintext modulus
differs: Inverted Index uses 23° while APS/ uses 222. We opted for a larger plaintext modulus to reduce
the false positive rate of IIPSI. However, as the noise budget decreases and the noise generation
increases for a larger plaintext modulus, the plaintext modulus cannot be too large. For Inverted Index,
each ciphertext only has one homomorphic multiplication, thus we can use the larger plaintext modulus
without introducing too much noise.

While the parameter choice can limit the False Positive Rate (FPR), both methods can vyield false
positives. Inverted Index has a FPR of ‘Fil per evaluation of the resulting polynomial as provided by
Boneh et al. [7]. This FPR is the probability the resulting polynomial erroneously evaluates to zero.
With our parameters, this results in a FPR of 2739 per record. Under the assumption that evaluations
of the resulting polynomial are uniformly random, the FPR per loC would be 1 — (1 — 2730)IXI_ APSI
does not give a general FPR, but with the used parameters it is 2753-26 per element in the Receivers
set, as found in the log files of the protocol. Analogous to Inverted Index, APSI does not produce any
false negatives.

For 100 loC and 1 million network data entries, this results in an FPR for 1IPSI of 1—(1—2)!% = 8.9-1072,

where z = 1 — (1 —2-30)10° for the Inverted Index part and subsequently an FPR of 1 — (1 — 2-53-26)| Rl
for the APSI part, where |R| is the size of the initial intersection or in other words, the number of matched
records. The latter is bounded by |R| < |X| and is thus at most 1 — (1 — 2-53:26)10° — 9 3. 19~11,
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For 100 loC and 1 million network data entries, the FPR for ACPSIis 1 — (1 —2753:26)100 = 9.3. 1015,
Therefore, for our used parameters, the FPR for the protocols differ greatly with a factor of 10°. This
difference means that IIPSI will have significantly more false positives than ACPSI on average.

All Figures in the following subsections are based on the numerical data in Tables A.1 and A.2 in
Appendix A. While the figures give accurate impressions of the results, the numerical data is valuable
for exact comparisons.

5.2.1. Computation Comparison

We divide the computation into two categories: offline and online, where the former describes the pre-
processing time and the latter describes the time starting at the first interaction per part of the protocol.
In [IPSI the preprocessing time of the APSI/ part is counted as offline, even though it takes place after
the first interaction in the Inverse Index protocol, as the parties will not interact for a relatively long
time during this second preprocessing phase. Recall that the protocols are run with a single thread.
Therefore, the following results give an indication of the efficiency of the protocols in practice, but the
exact runtimes may differ.

In Figures 5.1 to 5.3 we compare the runtime for both protocols with three, six and eight attributes. The
bars represent, from left to right, IIPSI offline, ACPSI offline, IIPSI online, ACPSI online, IIPSI total time
and ACPSI total time. We use a log scale for the time to make sure all bars are meaningful and visible.
In order to compare the three figures with each other, we configured the plots so that the y-axis has the
same range for all three figures.

First, we consider Figure 5.1 comparing the runtimes with three attributes. For IIPS| we observe that
the online time scales less favourably with the Sender set size than the offline time, although both scale
with the Sender set size in some capacity. The growing offline time for larger Sender set sizes can be
explained by the extra records that need to be interpolated. These extra records, and thus clusters
and ciphertexts, explain the growing online time as well. The ciphertext-ciphertext multiplications grow
linearly with the Sender set size and the Receiver has to evaluate more polynomials in order to get the
indexes of the intersection.

For ACPSI, we notice that the online time scales significantly less with the Sender set size compared
to the offline time. The explosive growth in the offline time can be explained by the augmented set
size of the Sender which grows with a scalar of, in this case, at most 22 — 1 = 7. However, the larger
the original set size, the smaller the increase of the offline time relatively. We notice that this trend
correlates with the augmented set size of the Sender, which becomes approximately four times the
original set size for | X| = 5k in the Figure and decreases to approximately two times the original set
size for | X| = 1000k as seen in Figure 5.5 and Table A.2. We speculate that the scalar decreases for
larger sets as the attributes contain fewer unique values since network data from a single source will
hold similar data over time. As an example, if one reloads a webpage, the network traffic will be similar
to the initial request for that webpage. Comparing IIPSI to ACPSI with 3 attributes, we notice that while
the online time of ACPSI is better in all cases, the total time of IIPSI and ACPSI approaches each other
for larger set sizes. For the two largest set sizes we tested, the total time taken by IIPSI is lower than
that of ACPSI.

In Figures 5.2 and 5.3, comparing the runtimes with six and eight attributes, we first notice that in both
Figures IIPSI does not differ significantly from [IPSl in Figure 5.1. Therefore, we conclude that the same
analysis as for with three attributes holds and that IIPSI is not significantly dependent on the number
of attributes. The conclusion that the computation costs of IIPSI are not significantly dependent on the
number of attributes is supported by Figure 5.4, which shows only small differences in computation time
for the different number of attributes. For ACPSI, however, we observe that the offline time grows even
more explosively, which is in line with our expectations as the Sender’s set size grows with a larger
scalar: at maximum 2 — 1 = 63 for six attributes and at maximum 28 — 1 = 255 for eight attributes.
The online time shows the same trend as with three attributes, namely that if the augmented set size
grows, the online time grows with a fraction. Results for set size 250 - 10° and upwards are missing
for six attributes and set size 50 - 103 and upwards are missing for eight attributes as we did not have
enough RAM in our test setup. However, the augmented set sizes can be seen in Figure 5.5.

When comparing 1IPSI and ACPSI across all numbers of attributes, we observe that for the total time
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Figure 5.1: Computation results for both protocols with 3 attributes, time in seconds (in log scale) and Sender set size | X]|,

Receiver set size |Y| is 94
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Figure 5.2: Computation results for both protocols with 6 attributes, time in seconds (in log scale) and Sender set size | X|,
Receiver set size |Y| is 100

ACPSI is more efficient when the number of attributes is low or when the original set size is small. For
larger sets and more attributes, IIPSI is more efficient as it does not scale significantly with the number
of attributes. However, the online time for ACPSI is lower across all tests, which can be a major factor
in deciding whether a protocol is desirable or not as both parties need to be active and online for the
duration of the online time.

5.2.2. Communication Comparison

To test the communication, we kept track of the amount of MB sent to the Sender or to the Receiver
in order to get results independent of the network setting, like WAN or LAN. The communication time
depends on the number of MBs and the throughput of the network. In Figures 5.6 to 5.8 we compare
the communication for both protocols with three, six and eight attributes. The graphs represent, from
left to right, the communication for sending the encrypted dataset, the communication for the protocols
and the total communication. The total communication is equal to the encrypted dataset and protocol
communication bars combined, but we chose to plot the bars separately as the encrypted dataset is the
most significant part of the communication for nearly all Sender set sizes. Separating the costs more
clearly conveys the added costs for answering our second research question, sending the associated
data. We use a log scale for the time to make sure all bars are meaningful and visible. In order to
compare the three figures with each other, we configured the plots so that the y-axis has the same
range for all three figures.

First, we observe that the encrypted dataset of ACPSI is larger than that of IIPSI for all Sender set
sizes, which is supported by the complexity mentioned in Table 5.2. This table shows that the encrypted
dataset of IIPSI is bounded by |X| and that of ACPSI by |X| - (2/4l —1). As the lower bound of both
is | X|, IPSI will never have a larger encrypted dataset. The rest of the communication costs follow a



5.2. Implementation 26

8§ Attributes

Offline Time Online Time Total Time
4 ] 4 ] 4 ]
10 = S| 10 = IPSI 10 = IPsI
mmm ACPSI mmm ACPSI . ACPSI
3 1074 3 1074 3 1074
c c c
S ] S
[¥] [¥] [¥)
O @ [
a a &
E’ 10% § E 102 4§ _2 107 4
£ £ £
u o o
£ E £
F 101 4 = 101 4 = 1p1 4
10° - 10° - 10° -
5k 10k 50k 100k 250k 500k 1000k 5k 10k 50k 100k 250k 500k 1000k 5k 10k 50k 100k 250k 500k 1000k
Set size (number of records) Set size (number of records) Set size (number of records)

Figure 5.3: Computation results for both protocols with 8 attributes, time in seconds (in log scale) and Sender set size | X|,
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different pattern. In Figure 5.6, we notice that the costs for ACPSI with three attributes are lower for
all set sizes of 50k or larger compared to IIPSI with three attributes. In Figures 5.7 and 5.8, we see
that for both six and eight attributes follow the same trend. For the smaller Sender set sizes (< 50k)
the costs of IIPSI are lower than that of ACPSI. If we compare these findings to the complexities in
Table 5.2, this trend can be explained by the double logarithmic term (loglog | X|)2. For a small | X]|,
this term differs relatively more from the term (loglog(|X| - (214l — 1)))2 at which point IIPSI’s other
term Y| - (JA'| + B - D) results in a smaller increase of communication costs than the difference of
the two double logarithmic terms. For the total communication costs, we observe that the costs of
ACPSI are always higher than the costs of IIPSI, which can be another factor, besides the runtime, in
deciding what approach is the best for a specific use case. Lastly, similar to the computation costs, we
observe that IIPSI does not differ significantly across the different numbers of attributes, which reflects
the communication complexity that states that the dependence on the number of attributes is relatively
small given |X| > |A’|. The conclusion that the communication costs of IIPSI are not significantly
dependent on the number of attributes is supported by Table A.1, which shows only small differences
in communication costs for the different number of attributes.

5.2.3. Cluster Size

Finally, we compare different cluster sizes 5 for the Inverted Index protocol. Intuitively, one would
assume that a larger cluster size would result in more offline computation costs, less online computation
costs and less communication costs. After all, the costs for interpolating the cluster indexes scale with
the cluster size cubed ;3% and the online computation and communication costs primarily scale with
the number of ciphertexts, which decreases as long as |A’| - 5 < S holds. However, in Figure 5.9
we observe that while the cluster interpolation and the communication costs follow our intuition, the
online costs decrease from cluster size 250 to 750, but increase for the larger cluster sizes. While the
ciphertext-ciphertext multiplications decrease for larger cluster sizes, thus leading to less computation
costs for the Sender, the Receiver has to evaluate larger resulting polynomials in order to get the final
results, which ultimately leads to an increase in the online computation time, despite the lower number
of ciphertexts.

Lastly, for the cluster interpolation in the left graph of Figure 5.9 we notice that it does not follow the
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expected curve of 32. This may be explained by the fact that the polynomials obtained by interpolating
the cluster indexes are reused for each cluster. However, if § is not a divisor of | X|, another polynomial
with an order equal to | X| mod § has to be calculated, leading to higher computation costs for cluster
sizes 750, 1500 and 1750.

5.2.4. Correctness

In our experiments, a single false positive occurred, in one of the runs of [IPSI with set size 1M and 8
attributes. As the FPR of IIPSI is low and that of ACPSI negligible, these results are not unexpected.
However, during initial experiments to determine realistic parameters, we noticed that when multiple
false positives occur for IIPSI, these false positives were sometimes related to each other. For example,
if IPSI resulted in 10 false positives, 8 out of 10 false positives had the same source port number and
destination IP address. Both attributes were in the set of attributes used for the intersection. However,
these combinations of port numbers and destination IP addresses did not exist in the set of 10C. We
speculate that these false positives may occur when OPRF values within an attribute collide. If such
a collision causes all of the attributes of an loC to match on the respective attributes in some records,
all records with these attributes will result in a match. For loC with more attributes, more collisions are
needed to produce such a false positive. As a network dataset may contain many records with partially
matching attributes, these false positives can result in the leakage of many unmatched records. How
many unmatched records may be leaked this way depends largely on the number of attributes in the
loC, where an loC with only one attribute may result in the most false positives, and on how many
subsets of attributes are shared among the records. Even one collision in the values of an attribute can
result in multiple false positives if the records already partially matched with the affected IoC.

These additional false positives are introduced by the usage of an OPRF to randomise the values.
2PPDQ by Boneh et al [7] does not suffer these collision based false positives if the values are elements
of the finite field F. For values not within the range of the finite field F, Boneh et al. propose to hash
the values to IF, thereby introducing the collision-based false positives for 2PPDQ as well.

While the probability for a collision of the OPRF output for a given loC value is ﬁ, given a uniform
OPREF, the actual FPR caused by these collisions is difficult to determine. Depending on the network
data and the loC, a single collision could cause many false positives and many collisions could cause
none. For example, if the OPRF value of a single-attribute 10C collides with an attribute that occurs
x times in the network data, the single collision will cause z false positives. However, for a collided
OPREF value of a multi-attribute loC, where the other attributes of the 1oC do not fully match or collide

with any entries in the network data, the collision causes no false positives. The probability for at least
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one collision can be calculated using the birthday problem, which results in:

!

P(Collision) =1 — ——————,
( )= o

(5.10)
where § is the number of unique values in a certain attribute. We observe that the probability of at least
one collision grows with an increasing number of unique values. On the other hand, the maximum
number of false positives caused by a single collision decreases with an increasing number of unique
values as each unique value occurs less often, given a constant set size. Therefore, while these
collisions may occur relatively frequently, the impact on the FPR of IIPSI is marginal, yet significant.
Estimating a general FPR is non-trivial as it largely depends on the network data and IoC. However, as

in our tests only 1 false positive has occurred, we conclude that IIPSI is usable in realistic scenarios
without incurring a large number of false positives.



Discussion and Future Work

In our current geopolitical situation, security in the cyber domain becomes increasingly important. SOCs
play an important role for this type of security. However, in the current form the privacy and confidential-
ity of network data of organisations is not guaranteed. In this thesis, we propose a novel step towards
more privacy and confidentiality in network monitoring by assuring that, with high probability, only net-
work data with indicators of maliciousness are shared with the SOC. In this Chapter, we will discuss
the results and limitations of our proposed protocols and whether our research questions are answered.
Subsequently, we propose possible future directions for research related to our challenges.

6.1. Discussion
First, we restate our research questions:

1. How can a variable number of attributes per loC efficiently be matched with network data, pre-
serving privacy when only a proper subset of attributes match?

2. How can network data, associated with matched loC, be privately and efficiently transferred to a
SOC?

Both our proposed protocols provide an answer to the first research question, with the main difference
being the efficiency and FPR. As analysed in Chapter 5, IIPSI has relatively high online computation
costs and relatively low communication costs. The main benefit of 1IPSI is that the costs do not scale
significantly when the number of attributes is increased. On the other hand, ACPSI retains significantly
lower online computation costs. If the FPR should be minimised, ACPSI is better suited. [IPSI grants
the Receiver/SOC full freedom over their choice of loC, while with ACPSI, the Sender/organisation
can choose to make the protocol ignore some possible l1oC by omitting combinations. Assuming the
encryption scheme chosen to encrypt the dataset is secure, the protocols preserve the privacy of all
unmatched network data, except for any false positives. We conclude that, depending on the above
considerations, both protocols can be an efficient solution to our first research question.

For our second research question, both protocols use a similar approach. While both protocols provide
an answer to the second research question, the actual result for ACPSI is significantly less efficient
than that for 1IPSI due to the larger encrypted dataset for the former. Additionally, both protocols send
all data, relying on symmetric encryption for the privacy and confidentiality of the unmatched data.

In general, our protocols provide mSOCs and organisation a privacy preserving alternative to network
monitoring. While our protocols are significantly slower than the real-time network monitoring offered
by software such as Snort [43], they can provide a solution to organisations that do not wish to share
all network data, but only the matched network data, if it is acceptable the l1oC are matched within, for
example, an hour.

31
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6.2. Limitations

A limitation of our analysis is that all tests are run just once, causing the results to possibly vary more
than they should. Additionally, our hardware was not sufficiently powerful, resulting in missing data
and possibly slower runtimes if the RAM was effectively full and resorted to extensive paging. This
issue is more likely to affect ACPSI due to the explosive set growth, which is a limitation of ACPSI itself.
Furthermore, we did not implement parallelisation into our protocols, which means the results, while
accurate, are not per se representative for real world applications where the protocols would be run on
multiple threads.

Limitations on our protocols are as follows. For IIPSI, the organisation has no guarantees that the 1oC
used by the SOC are sensible, that is to say that the IoC are not fabricated in such a way that they will
likely match on as many records as possible. While the impact can be somewhat mitigated by limiting
the number of queries done on the dataset, the organisation still has to trust the SOC not to abuse
the confidentiality of their IoC. As mentioned, this limitation is somewhat mitigated by ACPSI as the
organisation can leave out combinations that are non-sensible according to the organisation, although
this mitigation may impede the effectiveness of the SOC. Another limitation of IIPSI is that the possible
OPREF caollisions for the attribute values may have a large impact on the number of false positives.

Our protocols allow for solely exact matching. However, 10C often contain other types of matching as
well. For example, matching on a group of similar domain names may use a regular expression and
matching on the number of outgoing bytes requires order comparisons (<, <, >, >). Additionally, our
protocols send all network data instead of only the associated data, resulting in more communication
costs. Lastly, where plaintext Intrusion Detection Systems can be used in real-time, our protocols are
not suited for such an approach. However, if the network data can be processed by our protocols every
few hours and this delay in detection is not critical to the security of the organisation’s network, our
protocols may be a useful private alternative.

Lastly, the lion’s share of computation is done at the Sender, which is the organisation, while the mSOC
offers the network monitoring as a service. This distribution of the computation might limit the usability
of our protocols, as an organisation is likely not keen on sacrificing significant computational power for
a service they buy. An mSOC could attempt to limit the impact of this distribution of computation by
providing hardware at the premises of the organisation. However, this solution increases the costs for
mSOC. Therefore, if this distribution of computation is an issue in a certain scenario, it impacts the
usability of our proposed protocols.

6.3. Future Work

Future work can be divided into two options, improving the computation costs, communication costs
or FPR of our protocols or improving the functionalities in regards to the l1oC matching. Obvious im-
provements to our protocols are solutions to the weaknesses of both protocols. For IIPSI, a direction
could be to reduce the FPR or decrease the online computation costs. For ACPSI, on the other hand,
reducing the explosive set expansion due to the many combinations would reduce the overall costs of
the protocol. For both protocols, sending the entire encrypted dataset is a significant cost. Thus, future
work could focus on a new method in which only the matched records are sent, instead of the keys for
the matched records and the entire encrypted dataset.

As for the functionalities of our protocols, one could attempt to combine Fuzzy PSI [10, 22, 46] with
our protocols in order to be able to match on IP ranges or simple regular expressions. Especially for
matching on IP ranges, the fixed structure of these ranges could be exploited. As each IP range notes
the number of relevant bits out of the total 32 bits of an IPv4 address, these relevant bits can be used
as a prefix as proposed by Chakraborti et al. [10]. However, this approach would further increase the
Sender’s set size.

6.4. Conclusion

Privacy and data confidentiality are growing concerns for individuals and organisations alike. Security
is often used to diminish the importance of privacy and data confidentiality. For example, outsourcing
network monitoring to managed SOCs is a common business decision. We propose solutions to this
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supposed contradiction in the setting of managed SOCs. We note that our solutions can be applied
in other settings as well. For example, if the Sender has a set containing personal data of customers
and the Receiver wants to learn which customers of the Sender live in a certain country or have the
combination of a certain age and name [7, 25]. This research is a step towards a safer and more secure
society with a significantly lower impact on the privacy of individuals and organisations alike.



(1]

(2]
3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]

References

Cybersecurity & Infrastructure Security Agency. Cyber-Attack Against Ukrainian Critical Infras-
tructure. URL: https://www.cisa.gov/news-events/ics-alerts/ir-alert-h-16-056-01
(visited on 03/13/2025).

Martin Albrecht et al. Homomorphic Encryption Security Standard. Tech. rep. Toronto, Canada:
HomomorphicEncryption.org, Nov. 2018.

Frederik Armknecht et al. A Guide to Fully Homomorphic Encryption. Cryptology ePrint Archive,
Paper 2015/1192. 2015. URL: https://eprint.iacr.org/2015/1192.

Gilad Asharov et al. “More Efficient Oblivious Transfer Extensions”. en. In: Journal of Cryptology
30.3 (July 2017), pp. 805-858. ISSN: 1432-1378. DOI: 10.1007/s00145-016-9236-6. URL:
https://doi.org/10.1007/s00145-016-9236-6.

Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”. In: Public Key Cryptography-
PKC 2006: 9th International Conference on Theory and Practice in Public-Key Cryptography,
New York, NY, USA, April 24-26, 2006. Proceedings 9. Springer. 2006, pp. 207—-228.

Burton H. Bloom. “Space/time trade-offs in hash coding with allowable errors”. In. Commun. ACM
13.7 (July 1970), pp. 422-426. ISSN: 0001-0782. DOI: 10.1145/362686.362692. URL: https:
//doi.org/10.1145/362686.362692.

Dan Boneh et al. Private Database Queries Using Somewhat Homomorphic Encryption. Publica-
tion info: Published elsewhere. Full version of ACNS 2013 paper. 2013. URL: https://eprint.
iacr.org/2013/422.

Prasad Buddhavarapu et al. Multi-key Private Matching for Compute. Publication info: Preprint.
MINOR revision. 2021. URL: https://eprint.iacr.org/2021/770.

Sébastien Canard et al. “BlindIDS: Market-Compliant and Privacy-Friendly Intrusion Detection
System over Encrypted Traffic”. In: Proceedings of the 2017 ACM on Asia Conference on Com-
puter and Communications Security. ASIA CCS ’17. New York, NY, USA: Association for Com-
puting Machinery, Apr. 2017, pp. 561-574. ISBN: 978-1-4503-4944-4. DOI: 10.1145/3052973.
3053013. URL: https://doi.org/10.1145/3052973.3053013.

Anrin Chakraborti, Giulia Fanti, and Michael K Reiter. “{Distance-Aware} Private Set Intersection”.
In: 32nd USENIX Security Symposium (USENIX Security 23). 2023, pp. 319-336.

Hao Chen, Kim Laine, and Peter Rindal. “Fast Private Set Intersection from Homomorphic En-
cryption”. en. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. Dallas Texas USA: ACM, Oct. 2017, pp. 1243—1255. ISBN: 978-1-4503-4946-8.
DOI: 10.1145/3133956.3134061. URL: https://dl.acm.org/doi/10.1145/3133956.3134061.

Hao Chen et al. “Labeled PSI from Fully Homomorphic Encryption with Malicious Security”. en. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
Toronto Canada: ACM, Oct. 2018, pp. 1223—1237. ISBN: 978-1-4503-5693-0. DOI: 10. 1145/
3243734.3243836. URL: https://dl.acm.org/doi/10.1145/3243734.3243836.

Benny Chor, Niv Gilboa, and Moni Naor. Private Information Retrieval by Keywords. Cryptology
ePrint Archive, Paper 1998/003. 1998. URL: https://eprint.iacr.org/1998/003.

Kelong Cong et al. APSI. URL: https://github.com/microsoft/APSI (visited on 06/15/2025).

Kelong Cong et al. “Labeled PSI from Homomorphic Encryption with Reduced Computation and
Communication”. en. In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. Virtual Event Republic of Korea: ACM, Nov. 2021, pp. 1135-1150.
ISBN: 978-1-4503-8454-4. DOI: 10.1145/3460120.3484760. URL: https://dl.acm.org/doi/
10.1145/3460120.3484760.

34


https://www.cisa.gov/news-events/ics-alerts/ir-alert-h-16-056-01
https://eprint.iacr.org/2015/1192
https://doi.org/10.1007/s00145-016-9236-6
https://doi.org/10.1007/s00145-016-9236-6
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://eprint.iacr.org/2013/422
https://eprint.iacr.org/2013/422
https://eprint.iacr.org/2021/770
https://doi.org/10.1145/3052973.3053013
https://doi.org/10.1145/3052973.3053013
https://doi.org/10.1145/3052973.3053013
https://doi.org/10.1145/3133956.3134061
https://dl.acm.org/doi/10.1145/3133956.3134061
https://doi.org/10.1145/3243734.3243836
https://doi.org/10.1145/3243734.3243836
https://dl.acm.org/doi/10.1145/3243734.3243836
https://eprint.iacr.org/1998/003
https://github.com/microsoft/APSI
https://doi.org/10.1145/3460120.3484760
https://dl.acm.org/doi/10.1145/3460120.3484760
https://dl.acm.org/doi/10.1145/3460120.3484760

References 35

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]
(28]

[29]

[30]

[31]

[32]

Nicolas Desmoulins et al. Pattern Matching on Encrypted Streams. Publication info: A major
revision of an IACR publication in ASIACRYPT 2018. 2017. URL: https://eprint.iacr.org/
2017/148.

Eurojust and Europol. Common Challenges in Cybercrime. 2024. URL: https://www.europol.e
uropa.eu/publications-events/publications/common-challenges-in-cybercrime (visited

on 03/13/2025).

Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic encryption”. In:
Cryptology ePrint Archive (2012). URL: https://eprint.iacr.org/2012/144.

Tobias Fiebig et al. “Heads in the Clouds? Measuring Universities’ Migration to Public Clouds: Im-
plications for Privacy & Academic Freedom”. In: Proceedings on privacy enhancing technologies
symposium. Vol. 2023. Issue: 2. 2023, pp. 117-150. URL: https://doi.org/10.56553/popets-
2023-0044.

G. Fraser. CrowdStrike: What was the impact of the global IT outage. URL: https://www.bbc.
com/news/articles/cr54m92ermgo (visited on 03/13/2025).

Michael J. Freedman et al. “Keyword Search and Oblivious Pseudorandom Functions”. In: Lec-
ture Notes in Computer Science. ISSN: 0302-9743, 1611-3349. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 303—-324. ISBN: 978-3-540-24573-5 978-3-540-30576-7. DOI: 10.
1007/978-3-540-30576-7_17. URL: http://link.springer.com/10.1007/978-3-540-30576-
T_17.

Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-Aware Private Set Intersection,
With Applications to Fuzzy Matching. Publication info: A minor revision of an IACR publication in
CRYPTO 2022. 2022. URL: https://eprint.iacr.org/2022/1011.

Chelsea Guan, Zekeriya Erkin, and Gosia Migut. “A Comparative Study of Threshold Multiparty
Private Set Intersection Protocols”. MA thesis. TU Delft, 2024.

Mike Hamburg et al. Why Ristretto? URL: https://ristretto.group/why_ristretto.html
(visited on 06/24/2025).

Kyoohyung Han, Seongkwang Kim, and Yongha Son. “Private Computation on Common Fuzzy
Records”. In: Proceedings on Privacy Enhancing Technologies (2025). URL: https://doi.org/
10.56553/popets-2025-0031.

Yuval Ishai et al. “Extending Oblivious Transfers Efficiently”. In: Lecture Notes in Computer Sci-

ence.I1SSN: 0302-9743, 1611-3349. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 145—
161. ISBN: 978-3-540-40674-7 978-3-540-45146-4. DOI: 10.1007/978-3-540-45146-4_9. URL:

http://link.springer.com/10.1007/978-3-540-45146-4_9.

jedisct1. libsodium. URL: https://github.com/jedisctl/libsodium (visited on 06/14/2025).

Lea Kissner and Dawn Song. “Privacy-Preserving Set Operations”. In: Lecture Notes in Computer
Science. ISSN: 0302-9743, 1611-3349. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 241-257. ISBN: 978-3-540-28114-6 978-3-540-31870-5. DOI: 10.1007/11535218_15. URL:
http://link.springer.com/10.1007/11535218_15.

Vladimir Kolesnikov et al. “Efficient Batched Oblivious PRF with Applications to Private Set Inter-
section”. en. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communi-
cations Security. Vienna Austria: ACM, Oct. 2016, pp. 818-829. ISBN: 978-1-4503-4139-4. DOI:
10.1145/2976749.2978381. URL: https://dl.acm.org/doi/10.1145/2976749.2978381.

Vladimir Kolesnikov et al. “Practical Multi-party Private Set Intersection from Symmetric-Key
Techniques”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security. CCS ’17. New York, NY, USA: Association for Computing Machinery, Oct.
2017, pp. 1257-1272. ISBN: 978-1-4503-4946-8. DOI: 10.1145/3133956.3134065. URL: https:
//dl.acm.org/doi/10.1145/3133956.3134065

Majed Luay et al. Temporal Analysis of NetFlow Datasets for Network Intrusion Detection Sys-
tems. 2025. arXiv: 2503.04404 [cs.LG]. URL: https://arxiv.org/abs/2503.04404.

Microsoft. Microsoft SEAL. URL: https://github. com/microsoft/SEAL/ (visited on 06/02/2025).


https://eprint.iacr.org/2017/148
https://eprint.iacr.org/2017/148
https://www.europol.europa.eu/publications-events/publications/common-challenges-in-cybercrime
https://www.europol.europa.eu/publications-events/publications/common-challenges-in-cybercrime
https://eprint.iacr.org/2012/144
https://doi.org/10.56553/popets-2023-0044
https://doi.org/10.56553/popets-2023-0044
https://www.bbc.com/news/articles/cr54m92ermgo
https://www.bbc.com/news/articles/cr54m92ermgo
https://doi.org/10.1007/978-3-540-30576-7_17
https://doi.org/10.1007/978-3-540-30576-7_17
http://link.springer.com/10.1007/978-3-540-30576-7_17
http://link.springer.com/10.1007/978-3-540-30576-7_17
https://eprint.iacr.org/2022/1011
https://ristretto.group/why_ristretto.html
https://doi.org/10.56553/popets-2025-0031
https://doi.org/10.56553/popets-2025-0031
https://doi.org/10.1007/978-3-540-45146-4_9
http://link.springer.com/10.1007/978-3-540-45146-4_9
https://github.com/jedisct1/libsodium
https://doi.org/10.1007/11535218_15
http://link.springer.com/10.1007/11535218_15
https://doi.org/10.1145/2976749.2978381
https://dl.acm.org/doi/10.1145/2976749.2978381
https://doi.org/10.1145/3133956.3134065
https://dl.acm.org/doi/10.1145/3133956.3134065
https://dl.acm.org/doi/10.1145/3133956.3134065
https://arxiv.org/abs/2503.04404
https://arxiv.org/abs/2503.04404
https://github.com/microsoft/SEAL/

References 36

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Daniel Morales, Isaac Agudo, and Javier Lopez. “Private set intersection: A systematic literature
review”. In: Computer Science Review 49 (Aug. 2023), p. 100567. ISSN: 1574-0137. DOI: 10.
1016/ j . cosrev.2023.100567. URL: https://www.sciencedirect.com/science/article/
pii/S1574013723000345.

Cyber Security News. Building a SOC: Should You Go In-House or Outsource? 2024. URL: h

ttps://www.linkedin.com/pulse/building-soc-should-you-go-in-house-outsource-
cybersecurity-news-xealc (visited on 03/13/2025).

OWASP. OWASP Top Ten. URL: https: //owasp . org/www-project-top-ten/ (visited on
03/13/2025).

Rasmus Pagh and Flemming Friche Rodler. “Cuckoo hashing”. In: Journal of Algorithms 51.2
(May 2004), pp. 122-144. ISSN: 0196-6774. DOI: 10. 1016/ j . jalgor . 2003 . 12 . 002. URL:
https://www.sciencedirect.com/science/article/pii/S0196677403001925.

Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster Private Set Intersection based
on OT Extension. Publication info: Published elsewhere. Major revision. USENIX Security Sym-
posium 2014. 2014. URL: https://eprint.iacr.org/2014/447.

Benny Pinkas, Thomas Schneider, and Michael Zohner. “Scalable Private Set Intersection Based
on OT Extension”. en. In: ACM Transactions on Privacy and Security 21.2 (May 2018), pp. 1-35.
ISSN: 2471-2566, 2471-2574. DOI: 10.1145/3154794. URL: https://dl.acm.org/doi/10.
1145/3154794.

Benny Pinkas et al. PSI from PaXoS: Fast, Malicious Private Set Intersection. Publication info:
Preprint. MINOR revision. 2020. URL: https://eprint.iacr.org/2020/193.

Proofpoint. What Is Alert Fatigue? 2024. URL: https: //www . proofpoint . com/us/threat -
reference/alert-fatigue (visited on 03/13/2025).

Srinivasan Raghuraman and Peter Rindal. “Blazing Fast PSI from Improved OKVS and Subfield
VOLE". In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security. Los Angeles CA USA: ACM, Nov. 2022, pp. 2505-2517. DOI: 10.1145/3548606.
3560658. URL: https://dl.acm.org/doi/10.1145/3548606.3560658.

Justine Sherry et al. “BlindBox: Deep Packet Inspection over Encrypted Traffic”. en. In: Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data Communication. London
United Kingdom: ACM, Aug. 2015, pp. 213—-226. ISBN: 978-1-4503-3542-3. DOI: 10 . 1145/
2785956.2787502. URL: https://dl.acm.org/doi/10.1145/2785956.2787502.

Snort. URL: https://www.snort.org/ (visited on 03/25/2025).
Suricata. URL: https://suricata.io/ (visited on 03/25/2025).

Benjamin Hong Meng Tan et al. “Efficient Private Comparison Queries Over Encrypted Databases
Using Fully Homomorphic Encryption With Finite Fields”. In: IEEE Transactions on Dependable
and Secure Computing 18.6 (Nov. 2021). Conference Name: IEEE Transactions on Dependable
and Secure Computing, pp. 2861-2874. ISSN: 1941-0018. DOI: 10.1109/TDSC.2020.2967740.
URL: https://ieeexplore.ieee.org/document/8962262/7arnumber=8962262.

Erkam Uzun et al. “Fuzzy labeled private set intersection with applications to private {Real-Time}
biometric search”. In: 30th USENIX Security Symposium (USENIX Security 21). 2021, pp. 911—
928. URL: https://www.usenix.org/conference/usenixsecurity21/presentation/uzun.

H. Wiederhoeft. SOC Strategy: When to Keep It In-house & When to Outsource. 2024. URL:
https://www.alertlogic.com/blog/in-house-or-outsourced-what-a-security-operatio
ns-center-means-to-your-organization-d54/ (visited on 03/13/2025).

Tarun Yadav and Arvind Mallari Rao. “Technical Aspects of Cyber Kill Chain”. en. In: Security in
Computing and Communications. Ed. by Jemal H. Abawajy et al. Cham: Springer International
Publishing, 2015, pp. 438-452. ISBN: 978-3-319-22915-7. DOI: 10.1007/978-3-319-22915~
7_40.


https://doi.org/10.1016/j.cosrev.2023.100567
https://doi.org/10.1016/j.cosrev.2023.100567
https://www.sciencedirect.com/science/article/pii/S1574013723000345
https://www.sciencedirect.com/science/article/pii/S1574013723000345
https://www.linkedin.com/pulse/building-soc-should-you-go-in-house-outsource-cybersecurity-news-xealc
https://www.linkedin.com/pulse/building-soc-should-you-go-in-house-outsource-cybersecurity-news-xealc
https://www.linkedin.com/pulse/building-soc-should-you-go-in-house-outsource-cybersecurity-news-xealc
https://owasp.org/www-project-top-ten/
https://doi.org/10.1016/j.jalgor.2003.12.002
https://www.sciencedirect.com/science/article/pii/S0196677403001925
https://eprint.iacr.org/2014/447
https://doi.org/10.1145/3154794
https://dl.acm.org/doi/10.1145/3154794
https://dl.acm.org/doi/10.1145/3154794
https://eprint.iacr.org/2020/193
https://www.proofpoint.com/us/threat-reference/alert-fatigue
https://www.proofpoint.com/us/threat-reference/alert-fatigue
https://doi.org/10.1145/3548606.3560658
https://doi.org/10.1145/3548606.3560658
https://dl.acm.org/doi/10.1145/3548606.3560658
https://doi.org/10.1145/2785956.2787502
https://doi.org/10.1145/2785956.2787502
https://dl.acm.org/doi/10.1145/2785956.2787502
https://www.snort.org/
https://suricata.io/
https://doi.org/10.1109/TDSC.2020.2967740
https://ieeexplore.ieee.org/document/8962262/?arnumber=8962262
https://www.usenix.org/conference/usenixsecurity21/presentation/uzun
https://www.alertlogic.com/blog/in-house-or-outsourced-what-a-security-operations-center-means-to-your-organization-d54/
https://www.alertlogic.com/blog/in-house-or-outsourced-what-a-security-operations-center-means-to-your-organization-d54/
https://doi.org/10.1007/978-3-319-22915-7_40
https://doi.org/10.1007/978-3-319-22915-7_40

Execution Times and Communication
Costs

Table A.1: Results for IIPSI, where | X| is the set size of the Sender and |Y'| the set size of the Receiver, Comm stands for
communication costs. The table shows the means and standard deviations of the computation times and communications,

where each mean is based on 5 runs of the protocol.

Attr. | |Y| | X] Computation Time (s) Total Comm
Offline Online Total (MB)

94 5k 35.81 +£0.58 19.61 £0.11 55.42 +0.62 8.86 £0.21
94 10k 37.13£0.34 36.12+£0.16 73.25£0.49 10.52 £ 0.26
94 50k 53.84 £ 0.37 169.41 +2.49 223.25 + 2.26 24.36 £ 0.33

3 94 100k 78.12 £ 1.31 3349+ 3.2 413.03 £ 3.47 40.48 £ 0.0
94 250k 194.5 £5.32 826.88 £ 0.57 1021.38 £ 5.4 87.25+ 0.0
94 500k 586.35 + 26.47 1657.81 £5.97 2244.15 £ 30.29 174.48 £ 0.0
94 1000k | 2034.07 £28.82 33188+ 7.06 5352.87+25.93 | 349.33 £0.84
100 5k 36.91 +0.23 20.86 £0.16 57.76 £ 0.39 8.77£0.0
100 10k 40.12+0.3 38.5£0.29 78.63 £ 0.58 10.44 £0.21
100 50k 67.4+£0.29 179.13 £0.32 246.53 £0.35 24.31 +£0.39

6 100 100k 104.95 + 1.05 356.26 £ 0.62 461.22 +1.26 40.58 £ 0.0
100 250k 265.97 + 2.52 883.46 + 3.05 1149.43 + 2.16 87.51 £0.0
100 500k 717.3 £11.62 1763.4 4+ 3.12 2480.7 £ 12.17 165.71 + 0.0
100 1000k | 2269.75 +£116.45 3519.36 £9.21 5789.11 +114.72 | 322.31 £ 0.42
100 5k 37.72 + 0.66 20.82 £ 0.36 58.54 +1.03 8.98 +0.42
100 10k 41.67 +0.53 38.58 £0.89 80.25 £+ 1.41 10.34 £ 0.0
100 50k 76.72 £ 1.98 178.35 +£0.85 255.07 £ 2.63 24.42 +£0.47

8 100 100k 122.91 £ 1.09 352.93£0.64 475.84 £1.59 40.58 £ 0.0
100 250k 308.4 £ 7.97 877.43 £3.92 1185.83 £ 11.82 87.561+0.0
100 500k 811.42 £+ 18.48 1751.69 £7.81 2563.11 £+ 12.16 165.71 £ 0.0
100 1000k | 2404.63 £ 58.75 3500.29 +12.4  5904.92 £ 53.53 322.31 £0.26
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Table A.2: Results for ACPSI, where | X| is the set size of the Sender and |Y'| the set size of the Receiver, Comm stands for
communication costs. The table shows the means and standard deviations of the computation times and communications,
where each mean is based on 5 runs of the protocol.

Attr. | |Y| | X| Computation Time (s) Total Comm
Original Augment | Offline Online Total (MB)

94 5k 21.6k 3.57+0.57 2.89 +0.24 6.46 + 0.79 12.77 + 0.42
94 10k 41.53k 7.19+0.34 3.06 £0.21 10.25 + 0.42 19.4 £0.39
94 50k 181.69k 65.2 £+ 3.02 4.38+0.29  69.58 +3.06 73.01 £ 0.0

3 94 100k 333.59k 194.65 4+ 4.92 5.124+0.42 199.77 £ 4.77 145.82 £ 0.0
94 250k 716.99k 936.58 + 55.1 6.63 £ 0.43 943.21 £ 55.33 382.72 £ 0.21
94 500k 1242.21k 2786.7 £ 147.6 8.91 +0.38 2795.61 £ 147.82 804.62 £ 0.21
94 1000k 2087.58k 7634.52 £ 722.06 12.54 +0.42 7647.05 4+ 722.24 1693.53 £ 0.51
100 5k 191.1k 60.3 +4.02 4.28 £0.19 64.58 +4.19 28.01 £0.0
100 10k 370.74k 229.21 +£5.93 5.12+£0.24 234.32+6.1 48.76 £ 0.0
100 50k 1696.21k 5123.67 4+ 334.03 10.76 £ 0.33 5134.43 4+ 334.13 238.74 + 0.42

6 100 100k 3213.53k 13007.83 £ 818.53 18.48 £0.97 13026.31 + 818.63 | 505.88 0.0
100 250k 7243.18k | - - - -
100 500k 1299291k | - - - -
100 1000k 22643.83k | - - - -
100 5k 778.01k 1076.76 £+ 43.37 6.81+£0.35  1083.57 +43.64 48.96 £ 0.0
100 10k 1510.81k | 3874.03 £330.52  10.25+0.5  3884.28 £330.52 | 93.39 £0.39
100 50k 6973.13k | - - - -

8 100 100k 13301.95k | - - - -
100 250k 30403.48k | - - - -
100 500k 55299.55k | - - - -
100 1000k 97888.74k | - - - -
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