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The Enskog theory for transport coefficients of simple fluids
with continuous potentials
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The Enskog theory for the self-diffusion coefficient for fluids with continuous potentials, such as the
Lennard-Jones, is developed. Starting from the Green–Kubo formula~rather than the conventional
kinetic equation! and introducing the similar assumptions upon which the Boltzmann equation is
based, we derived a general expression for the memory kernel and the self-diffusion coefficient. The
numerical analysis is implemented for the Lennard-Jones fluid. The time-dependent memory kernel
is calculated and compared with the latest molecular dynamics simulations. Excellent agreement is
obtained at the low density. The self-diffusion coefficient is evaluated for various temperatures and
densities. The ratio of the Enskog self-diffusion coefficient to the simulation value is plotted against
density. Significant difference of this density dependence from that for the hard-sphere fluid is
observed. In particular, the well-known maximum observed~in the diffusion versus density plot! for
the hard sphere fluid is found to be completely absent in the Lennard-Jones fluid. Our results reduce
to the conventional Chapman–Enskog expression in the low density limit and can be applicable to
the systems with singular potentials such as the hard sphere. ©2001 American Institute of Physics.
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I. INTRODUCTION

Since its introduction in 1922, the Enskog theory for t
hard-sphere fluid is known to be a very good approximat
to describe the transport phenomena in the dense fluids~see
Ref. 1 and references therein for details!. Although it is a
simple and empirical generalization of the Boltzmann eq
tion, its usefulness is beyond dispute. For example, the s
viscosity calculated from the Chapman–Enskog the
which is a scheme to calculate the transport coefficients f
the Boltzmann equation, is 40 times smaller in the de
liquid region than the simulation value, whereas the va
evaluated using the Enskog theory is only 2 times as sma
most.2,3 The Enskog approximation is not only practical
useful in the dense gas region, but it also plays an impor
role in theoretical attempts to bridge the gap between
theory and the simulation values in the liquid region. As t
density increases, each collision of atoms is not indepen
anymore and the so-called ring collisions become import
The most well-known scheme to take these dynamically c
related collisions into account is the mode-coupling the
~MCT!.4–6 Most of the input functions necessary to the MC
scheme such as the density correlation function are usu
evaluated using the Enskog theory for the hard-sphere fl

Actually, the following assumptions upon which the E
skog theory is based are quite simple, though none of the
completely understood.1 ~1! Each collision is completely in-
dependent and all multiple collisions except for the bina

a!Electronic mail: K.Miyazaki@iri.tudelft.nl
b!Electronic mail: bbagchi@sscu.iisc.ernet.in
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collision are neglected.~2! The frequency of the binary col
lision is increased by an amount which is proportional to
probability for one atom to find its neighbors.~3! Each col-
lision process should be instantaneous.

The Enskog theory, however, is fully developed
present only for the hard-sphere fluid and in the present fo
cannot be applied to more realistic continuous potentials
is not possible to generalize Enskog’s argument to trea
continuous potential in a straightforward manner because
collisions are not instantaneous for the continuous poten
and, therefore assumption~3! is not valid. However, consid-
ering the usefulness of the Enskog theory for the hard-sph
fluid, it is quite tempting to develop a similar theory fo
continuous potentials. The Enskog-type theory for the flu
with the continuous potentials should also be useful to c
culate the time-dependent memory kernels whose integra
over time provides the transport coefficients. For the ha
sphere fluid, the memory kernel is always ad function in
time under the Enskog approximation because of the ins
taneous nature of the binary collisions. For fluids with co
tinuous potentials, however, it should decay within nonz
time. The Enskog-type theory should prove to be a very go
approximation to describe the short-time behavior of
memory kernel because the binary collisions are domin
dynamical processes at short times. This fact is very imp
tant to evaluate the transport coefficient in the high den
region under the MCT scheme where the knowledge of
short-time dynamics is indispensable. The short-time dyna
ics is important also in many dynamical processes in liqui
such as vibrational energy relaxation, barrier cross
dynamics.7 Unfortunately, the short-time dynamics depen
6 © 2001 American Institute of Physics
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critically on the details of the intermolecular potential. S
far, ad hocfitting functions such as the Gaussian approxim
tion have been used.6,8 While the Gaussian approximation
satisfactory at very high densities, it fails miserably at lo
and intermediate densities. Enskog-type theory is expecte
provide a much better understanding of the dynamics w
out anyad hocparameter.

There have already been several attempts to develop
Enskog theory for the continuous potentials. Leegwater9 was
perhaps the first to develop an Enskog-type kinetic theor
analyze the velocity autocorrelation function for an atom
Lennard-Jones fluid. His result reduces to the Chapm
Enskog result in the low density limit but does not satisfy t
initial value of the memory kernel for the denser regio
Later Pathaket al. developed the Enskog-type theory for th
Lennard-Jones fluid starting from the Green–Kubo form
and calculated the velocity correlation function and the s
diffusion coefficient,10 the longitudinal current correlation
function,11 and the transverse current correlation function12

They argued that the quantities which they calculated are
time correlation functionsrather than thememory kernels
and, therefore, the expressions they derived are no more
an approximation of the Enskog theory. Furthermore,
transport coefficients which should be obtained by integ
ing the memory kernels over time are not easy to calcu
by their method. The relationship of their methods with t
conventional Chapman–Enskog theory in the low den
limit were left unclear.

In this paper, we develop a concise method to implem
the Enskog theory for the memory kernel and the s
diffusion coefficient of simple fluids with continuous pote
tials. Here we shall focus only on the Lennard-Jones po
tial. We start with the Green–Kubo formula and use t
above-mentioned assumptions~1! and ~2! to derive general
expressions for the memory kernel and the self-diffusion
efficient. It is shown that the present theory satisfies all th
prerequisite conditions for the theory.~i! It gives the correct
initial value for the memory kernel.~ii ! The transport coef-
ficient reduces to that for the Chapman–Enskog theory in
low density limit. ~iii ! For hard-sphere fluid, it gives th
well-known Enskog result. Using the expression derived,
evaluate the memory kernel and compare its time dep
dence with the simulation data. The self-diffusion coefficie
is easily calculated by integrating the memory kernel o
time. We give systematic comparison with the simulati
results and also with the results for the hard-sphere fluid.
density dependence of the ratio of the self-diffusion coe
cient evaluated from the molecular dynamics simulation
that derived from the Enskog theory is plotted. For the ha
sphere fluid, it is known that the simulation result becom
larger than the Enskog value at the intermediate density
gion. This is attributed to the presence of the ‘‘backflow
effect which is also the origin of the so-called long-tim
tail.2,3 One may expect that this could also be true for flu
with other potentials since this backflow effect is due to
long-ranged correlated collisions which should be insensi
to the microscopic nature of the binary collisions. We sh
that, at least quantitatively, the backflow effect is negligib
for the Lennard-Jones fluid.
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This paper is organized as follows. In Sec. II, the form
lation is elucidated. The relation to the Chapman–Ensk
theory is also discussed here. In Sec. III, the time-depend
memory kernel is calculated for the Lennard-Jones poten
The comparison with simulation results available is given
closed formula to calculate the self-diffusion coefficient
given in Sec. IV. The comparison with the simulation resu
are systematically given here. Section V is devoted to c
clusions.

II. GENERAL FORMULATION

Consider an atom in a simple fluid which interacts w
other identical atoms with a pairwise potentialf(r ). The
motion of an atom in a gas or a liquid is often described
terms of the velocity autocorrelation function,c(t)
5^v(t)"v(0)&, wherev(t) is the velocity of the atom at time
t and ^¯& is the equilibrium ensemble average. Its tim
evolution is well described by a generalized Langev
equation.4 If one takes Laplace transform in time, this equ
tion is written as

@mz1z~z!#c̃~z!5c~ t50!, ~1!

wherem is the mass of the atom,c̃(z) denotes the Laplace
transformation ofc(t), andz(z) is the frequency-dependen
friction coefficient or the memory kernel. The memory ke
nel is given by the Green–Kubo formula as4

z~z!5
1

3kBT E
0

`

dt e2zt^F~ t !"F~0!&. ~2!

Here F(t) is the force between the solute and surround
solvents at a timet, kB is the Boltzmann constant, andT is
the absolute temperature. Note that the integrand in Eq.~2! is
not the usual force–force time correlation function. The tim
evolution ofF(t) is not driven by the usual Liouville opera
tor but given by

F~ t ![exp@ iQLNt#F~0!, ~3!

whereiL N is the Liouville operator for theN-particle system
andQ512P andP is a projection operator defined byP*
5^* vx&vx /^vx

2&. This equation can be established by usi
the Mori–Zwanzig projection-operator method.4,13,14 The
self-diffusion coefficientD is related to the friction coeffi-
cient z via the Einstein relation as

D5
kBT

z
, ~4!

wherez[z(z50) is the friction coefficient in the stationar
limit. Equation~2! can be rewritten in terms of the two pa
ticle phase-space distribution function

f 2~1,2![d~12q1!(
i 52

N

d~22qi !,

where 15(r1 ,p1) and qi5(Ri ,Pi) ( i 51,2,...,N) are the
phase-space coordinates and the actual coordinates o
particles, respectively. Using this distribution function,F(t)
may be rewritten as
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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F~ t !52E d1 d2 eiQLNt f 2~1,2!¹1f~r 12!, ~5!

wherer 125ur12r2u. Equation~2! can be rewritten, using this
expression, as

z~z!5
1

3VkBT (
a5x,y,z

E d1 d2 d3 d4
]f~r 12!

]r 1a

3G~1,2;3,4;z!
]f~r 34!

]r 3a
, ~6!
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where V is the volume of the system andG(1,2;3,4;z)
5V^$(z2 iQLN)21f 2(1,2)% f 2(3,4)& is the four points
propagator which describes the time evolution of a parti
interacting with other particles.6,8 This representation
makes it easy to understand how the binary collis
approximation comes to play a role. Mazenko15 showed
that the equation forG(1,2;3,4;z) can be expressed withou
invoking the projected Liouville operatoriQLN by
introducing the phase-space correlation functions a
is given by
@z1 iL 2~1,2!#G~1,2;3,4;z!1E d18 d28 d38 C̃~1,2;38!C̃21~38;18!iL 2I~18,28!G~18,28;3,4;z!

1E d18$ iL 2I~1,18!1 iL 2I~2,18!%FC~1,2,18;3,4;z!2E d28 d38 C~1,2,18;28;z!C̃21~28;38!C~38;3,4;z!G5G̃~1,2;3,4!,

~7!
e

y
ary

g

where

iL 2~1,2!5
p1

m
"¹11

p2

m
"¹22

]f~r 12!

]r1
"S ]

]p1
2

]

]p2
D ,

~8!

iL 2I~1,2!52
]f~r 12!

]r1
"S ]

]p1
2

]

]p2
D

are the Liouville operator for the two-body system and
interaction part, respectively. In this expressio
C(1,2,...;18,28,...;z) is the phase-space correlation fun
tion. For example,C(1,2,3;18,28;z) is defined byV^$(z
1 iL N)21f 3(1,2,3)% f 2(18,28)&, where

f 3~1,2,3!5d~12q1!(
iÞ j

N

d~22qi !d~32qj !

is the three-particle phase-space distribution function. T
other correlation functions are defined in the similar mann
The quantities with a tilde represent initial-time values
them andC̃21’s are their inverse. One can see that all but
first term on the left-hand side of Eq.~7! involve more than
three particle interactions. Therefore, under the binary co
sion approximation~on which the idea of the Boltzman
equation is based!, we may disregard all these terms. The
fore, the friction coefficient under the binary collision a
proximation, which we shall refer to aszE(z), can be written
as

zE~z!5
1

3VkBT (
a5x,y,z

E d1 d2 d3 d4
]f~r 12!

]r 1a

3@z1 iL 2~1,2!#21G̃~1,2;3,4!
]f~r 34!

]r 3a
. ~9!

Furthermore, one may use the following identity:
,

e
r.
f
e

i-

-

E d3 d4 G̃~1,2;3,4!
]f~r 34!

]r 3a

52rkBT f0~p1! f 0~p2!
]g~r 12!

]r 1a
, ~10!

where f 0(p)5(2pmkBT)23/2exp@2p2/2mkBT# is the Max-
well distribution function,r is the number density of the
system, andg(r ) is the radial distribution function. Then, w
may simplify the expression as

zE~z!52
r

3V (
a5x,y,z

E d1 d2
]f~r 12!

]r 1a

3@z1 iL 2~1,2!#21f 0~p1! f 0~p2!
]g~r 12!

]r 1a

52
r

3V (
a5x,y,z

E d1 d2 f 0~p1! f 0~p2!
]g~r 12!

]r 1a

3@z2 iL 2~1,2!#21
]f~r 12!

]r 1a
. ~11!

Note that, in Eq.~11!, the time evolution operator acts onl
on the bare potential term. As one is calculating the bin
contribution to the friction,g(r ) is not involved with the
time evolution.g(r ) controls an initial configuration for a
pair of atoms before a collision. Afterg(r ) decides the initial
configuration, the time evolution of the pair~or the force
acting on it! would be driven by the two-particle Liouville
operator.

This equation can be further simplified by introducin
the center-of-mass and relative coordinates;
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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r5r12r2 , R5 1
2 ~r11r2!,

~12!
p5 1

2 ~p12p2!, P5p11p2 .

The Liouville operator in this representation can be writt
as

iL 2~1,2!5
P

2m
"

]

]R
1

2p

m
"

]

]r
2

]f~r !

]r
"

]

]p

[
P

2m
"

]

]R
1 iL ~r ,p!. ~13!

Using this representation, Eq.~11! can be written as

zE~z!52
r

3V (
a5x,y,z

E dPE dpE dR

3E dr f 0
tot~P! f 0

red~p!
]g~r !

]r a
@z2 iL ~r ,p!#21

]f~r !

]r a
,

~14!

where f 0
tot(P)5(4pmkBT)23/2exp@2P2/4mkBT# and f 0

red(p)
5(pmkBT)23/2exp@2p2/mkBT#. Integrating overP and R,
we arrive at

zE~z!52
r

3 (
a5x,y,z

E dpE dr f 0
red~p!

]g~r !

]r a

3@z2 iL ~r ,p!#21
]f~r !

]r a
. ~15!

Or in the real time representation, we have

zE~ t !52
r

3 (
a5x,y,z

E dpE dr f 0
red~p!

]g~r !

]r a

3exp@ iL ~r ,p!t#
]f~r !

]r a
. ~16!

Equations~15! and ~16! are the Enskog expressions for th
frequency- and time-dependent memory kernels, resp
tively, and are the primary results of this paper.

Pathaket al.10 presented the same expressions as th
equations but they argued that these equations are just fo
force time correlation functions andno more than an ap-
proximation to the ‘‘exact’’ Enskog theory. As is clear from
our derivation, this is not the time force–force correlati
but the memory kernel itself. The irreversible nature of t
memory kernel came in when the binary operator was in
duced. This procedure corresponds to the truncation of
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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Bogolyubov–Born–Green–Kirkwood–Yvon hierarchy up
the lowest level.1 And Eq. ~11! clearly shows that the veloc
ity distributions of the two particles before the binary col
sion are independent~the molecular chaos assumption!.

From Eqs.~15! and ~16!, we may prove the following
three important properties well known in the kinetic theo
of fluids.

~i! Equation~16! gives the exact initial value for arbi
trary density.

zE~ t50!52
r

3 (
a5x,y,z

E dpE dr f 0
red~p!

]g~r !

]r a

]f~r !

]r a

5
r

3 E dr g~r !¹2f~r !, ~17!

which is the well-known expression for the Einstein fr
quency. This was first shown by Pathaket al.10

~ii ! Equation ~15! has been derived from the Green
Kubo formula. This expression in the stationary limit (z
50) looks very different from the collision integral derive
from Chapman–Enskog theory which is familiar in the te
books of the kinetic theory.16–18 We show now that it is
indeed equivalent to the result from the conventional the
in the low density limit. In this limit, the radial distribution
function is given byg(r ).e2f(r )/kBT and the memory kerne
@we now refer to aszB(z)# of Eq. ~15! is written as

zB~z!5
r

3kBT (
a5x,y,z

E dpE dr f 0
red~p!e2f(r )/kBT

]f~r !

]r a

3@z2 iL ~r ,p!#21
]f~r !

]r a
. ~18!

Using the following identities,

2
]f~r !

]r a
5 iL I~r ,p!pa ,

iL I

1

z2 iL
5211~z2 iL 0!

1

z2 iL
,

where

iL 0~r ,p!5
2p

m
"

]

]r
, iL I~r ,p!52

]f~r !

]r
"

]

]p

are the kinetic and the potential part of the Liouville ope
tor, respectively, Eq.~18! can be rewritten after several pa
tial integrations as
zB~z!5
r

3kBT (
a5x,y,z

E dpE dr paiL I~r ,p! f 0
red~p!e2f(r )/kBT@z2 iL ~r ,p!#21

]f~r !

]r a

5
r

3kBT (
a5x,y,z

E dpE dr pa$z2 iL 0~r ,p!% f 0
red~p!e2f(r )/kBT@z2 iL ~r ,p!#21

]f~r !

]r a

52
r

3kBT (
a5x,y,z

E dpE dr pa$z2 iL 0~r ,p!% f 0
red~p!e2f(r )/kBTE

0

`

dt e2zt
dpa~ t !

dt
, ~19!
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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where pa(t)5eiL (r ,p)tpa . One can integrate Eq.~19! over
time for the stationary limit,zB5zB(z50), as

zB5
r

3kBT E dpE dr iL 0~r ,p! f 0
red~p!e2f(r )/kBT

3$p"p~ t5`!2p2%. ~20!

In the integration overr , we shall use the cylindrical coordi
nate and we choose the axial direction along the directio
the momentum,

zB5
r

3kBT E dpE
2`

`

dhE
0

`

b dbE
0

2p

du
2p

m

]

]h

3 f 0
red~p!e2f(r )/kBT$p"p~ t5`!2p2%

5
16p2r

3mkBT E
0

`

dpE
0

`

b db p5f 0
red~p!$cosx~p,h5`,b!

2cosx~p,h52`,b!%, ~21!

wherex(p,h,b) is the deflection angle of the binary coll
sion for the particle which initially had the momentump
along theh direction and was at the position (h,b) in the
cylindrical coordinate. In the derivation we have used
momentum conservation att50 andt5`, at which the par-
ticles are far apart from the collision center. Since the fi
term in the integrand represents the motion of the part
which initially lies ath5` and goes apart from the collisio
center, we havex(p,h5`,b)50. On the other hand, th
second term is a function of bothp and b. Representing
x(p,h52`,b) asx(p,b). Equation~21! is reduced to

zB5
8

3
rs2AmpkBTV (1,1)* ~T! ~22!

with the collision integral given by

V (1,1)* ~T![
2

s2~mkBT!3 E
0

`

dpE
0

`

b db p5e2p2/mkBT

3$12cosx~b,p!%. ~23!

The deflection anglex(b,p) is given by solving the equation
of motion for this two-particle system1 as

x~b,p!5p22bE
r min

`

dr
1

r 2A12
mf~r !

p2
2

b2

r 2

. ~24!

Equation~23! is exactly the expression for the collision in
tegral well known for several decades.

~iii ! The Enskog value for the friction for the hard
sphere fluid is known to be given by

zE,HS5
8

3
rs2g~s!AmpkBT, ~25!

wheres is the radius of the sphere. It is straightforward
show that our expression reduces to this result. First,
introduce a functiony(r ) defined byg(r )5y(r )e2f(r )/kBT.
y(r ) is a continuous and smooth function.5 Using the fact
that e2f(r )/kBT is the Heaviside function, Eq.~15! can be
written as
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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zE,HS~z!52
r

3 E dpE dr f 0
red~p!$y8~r !e2f(r )/kBT

1g~s!d~r 2s!%@z2 iL ~r ,p!#21
df~r !

dr
. ~26!

We neglect the first term in the parentheses of Eq.~26!,
assuming that the contribution from the slow varyingy8(r )
is smaller than that from the sharply peaked delta functi
Therefore, we may write Eq.~26! as

zE,HS~z!52
rg~s!

3 (
a5x,y,z

E dpE dr f 0
red~p!

3H ]

]r a
e2f(r )/kBTJ @z2 iL ~r ,p!#21

]f~r !

]r a
. ~27!

Except for the factor ofg(s), this is the same as Eq.~18!
which we showed to be equivalent to the Chapman–Ens
expression in the previous paragraph. For the hard-sp
fluid, this is known to be given by 8rs2AmpkBT/3 for z
50 and we immediately arrive at Eq.~25!.

III. THE MEMORY KERNEL

In this section, we present numerical calculations of
time-dependent Enskog memory kernel, Eq.~16!. Hereafter,
we shall focus only on the Lennard-Jones potential defi
by

f~r !54eH S s

r D 12

2S s

r D 6J , ~28!

wheree and s are the standard Lennard-Jones paramet
Basically, one may evaluate the memory kernel provided t
the positions of all possible trajectories of the two partic
system are known. This can be done easily by solving
equation of motion. We evaluate the positions (r (t),u(t)) at
time t in the polar coordinates for a given initial conditio
(p,r ,u), where we choose the direction of the velocity pa
allel to the polar axis. The problem can be reduced to
one-dimensional problem of the motion in the effective p
tential given byfeff(r)5f(r)1p2b2/mr2, whereb[r sinu is
the impact parameter which represents the perpendicular
tance between the collision center and the initial position19

The solution of the equation of motion is given by

t5E r (t)

dr f ~r !, u~ t !5
2bp

m E r (t)

dr
f ~r !

r 2 , ~29!

where f (r )51/A4$E2feff(r)%/m. r (t) for arbitrary t is
evaluated by solving the first equation of Eq.~29!. u(t) can
be evaluated from the second equation usingr (t) evaluated
from the first. The constants of integration can be cho
such that they satisfy the initial condition. For the Lenna
Jones potential, the motion in this effective potential m
have three turning points at most, depending on the ini
conditions. Radius of turning points are given by the zeros
E2feff(r)50, whereE is the total energy of the two particl
system. Note that if the initial radius is smaller than t
largest turning point, some trajectories form the bounded
jectories. We incorporated all possible trajectories in orde
evaluate Eq.~16!. g(r ) was calculated using the Percus
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Yevick closure with the Ornstein–Zernike relation5,16 for
r* ,0.45, wherer* 5rs3 is the dimensionless density. Fo
higher density, computer simulations were used.SMSA

approximation20 was also used to check the result. The res
for r* 50.1,0.45, and 0.85 atT* 51.5 is given in Fig. 1
along with the molecular dynamics simulation given

FIG. 1. zE(t)/zE(0) for T* 51.5, wheret* 5t/Ams2/e. ~a! for r* 50.1,
~b! for r* 50.45, ~c! for r* 50.85. The open circles are the molecul
dynamics simulation results given by Yamguchiet al. ~Ref. 21!.
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
lt

Yamaguchiet al.21 Here T* 5kBT/e is the dimensionless
temperature. The results are normalized by their initial v
ues. We have also checked that the initial values for vari
densities agree well with the simulation results.22 The agree-
ment with the simulation result is excellent forr* 50.1. One
observes that the initial fast decay is followed by a negat
tail. This negative dip is due to the attractive part of t
potential; most of the initial positions are lying in the attra
tive part of the potential and a half of the initial velocity
the inward to the collision center and another half is go
outward. The particle going inward toward the collision ce
ter hits the very steep repulsive part of the potential wh
changes the sign of the force~from that at the initial time!,
whereas the force for the particle going outward will rema
positive but it is much smaller in magnitude. For higher de
sities, the agreement is poor, as expected. The simula
results show that the depth of negative dip gets smaller as
density increases, whereas the present Enskog results
the opposite trend. The larger Enskog negative tail at hig
densities originates from the increase in the probability of
particle sitting around the first peak ofg(r ) which leads to a
bigger chance for the particle to hit the repulsive wall.

The above-mentioned observation may be rationalized
follows. One possible reason is that the effect of the cor
lated collisions effect~or the mode-coupling effect! is very
sensitive to the shape of potential. The first pronounced
fect of the correlated collisions for the hard-sphere fluid
the density increases is the backflow effect due to the tra
verse current mode2,3,23,24which leads to the so-called long
time-tail. This tail is always negative. As the density reach
the liquid region, the positive tail due to the density fluctu
tion mode overcomes the backflow effect.25 The monotonic
decrease of amplitudes observed in the simulation for
Lennard-Jones fluid might indicate that the backflow effec
too small to enhance the negative tail and the density fl
tuations always play a more dominant role for this syste
To confirm the presence of the backflow effect, one need
calculate the memory kernel for longer time where both
binary and density mode contributions disappear and o
the current mode survives.

Another possible explanation of the vanishing negat
tail might be the presence of multiple collisions. The col
sions in the continuous potentials are not simultaneous
the third or fourth particles can influence the binary collisio
This might encourage the particle trapped in the attrac
dip of the Lennard-Jones potential to escape from it a
therefore, reduce the amplitude of the negative dip. This
fect cannot be taken into account either in the Enskog the
or in the mode-coupling theory in which only the binary a
the ring collision terms are taken into account. We sh
come back to this point in Sec. IV where the argument on
contribution of the different modes to the self-diffusion c
efficient is given.

IV. ENSKOG THEORY FOR DE

In this section, we derive expressions of the friction c
efficient and the self-diffusion coefficient by integrating th
memory kernel over time. The steady state value ofzE can
be obtained by settingz50 in Eq. ~15! as
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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zE5
r

3 (
a5x,y,z

E
0

`

dtE dpE dr f 0
red~p!

]g~r !

]r a

dpa~ t !

dt

5
r

3 (
a5x,y,z

E dpE dr f 0
red~p!

]g~r !

]r a
$pa~ t5`!2pa%.

~30!

We may again use the cylindrical coordinate forr
5(h,b,u) and choose the direction of theh axis parallel to
p. b is the impact parameter. Since the system considere
isotropic, we have

zE5
r

3 (
a5x,y,z

E dpE
2`

`

dhE
0

`

b dbE
0

2p

du f 0
red~p!

3H p̂a

]g~r !

]h
1ê1,a

]g~r !

]b
1ê2,a

1

b

]g~r !

]u J
3$pa~ t5`!2pa%,

5
r

3 E dpE
2`

`

dhE
0

`

bdbE
0

2p

du f 0
red~p!

3F]g~r !

]h
$p̂"p~ t5`!2p%1

]g~r !

]b
ê1"p~ t5`!G ,

~31!

wherep̂ is the unit vector of the momentum, andê1 ,ê2 are
the two unit vectors perpendicular top̂, and r 5Ah21b2 is
the distance from the collision center. Depending on the
tial momenta and positions, some trajectories do not go a
from the collision center but they form stable orbital traje
tories. Curtis26 discussed the effect of such bounded traj
tories on the friction coefficient in the low density limit fo
the Lennard-Jones~LJ! fluid. He concluded that at suffi
ciently high temperature~aboveT* .1.0!, this effect is very
small. Therefore, we shall disregard these bounded traje
ries in our calculations. For unbounded trajectories, we
write p̂"p(t5`)5p` cosx(p,b,h) and ê1"p(t5`)
5p` sinx(p,b,h), wherex(p,b,h) is the deflection angle an
p` is the intensity of the momentum att5` and given from
the energy conservation byp`5Ap21mf(r ). Thus, we ar-
rive at the following expression forzE ,

zE5
8

3
rs2AmpkBTV (1,1)* ~T! ~32!

with the Enskog collision integralV (1,1)* (T) given by

V (1,1)* ~T!5
1

~mkBTs!2 E
0

`

dpE
0

`

r 2 drE
0

p/2

sinu du p`p2

3e2p2/mkBT
dg~r !

dr
$cos@x~p,h,b!2u#

2cos@x~p,2h,b!1u#%, ~33!

whereh5r cosu and b5r sinu. The deflection anglex(p,
6h,b) can be evaluated from the solution of the equation
motion, Eq.~29!, with the initial condition (p,r ,u) for the
momentum and position, respectively. Since we consider
unbounded trajectories only,r (t5`)5` for t5`. The
lower boundary of the second equation of Eq.~29! is given
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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by the turning point,r min , the point where the radial compo
nent of the momentum of the particle vanishes, ordr(t)/dt
50. This is equivalent to evaluate the zero ofE2feff(r)
50. The integration constants are determined in such a
that they satisfy the initial conditions. The expression
deflection angle is different depending on whether the p
ticle is moving toward or away from the collision center a
is given explicitly by

x~p,b,h!55
2pb

m E
r min

`

dr
f ~r !

r 2 1umin1u ~h,0!

2pb

m E
r

`

dr
f ~r !

r 2 1u ~h>0!,

~34!

whereumin is the angle at the turning point and is given b

umin5
2pb

m E
r min

r

dr
f ~r !

r 2 . ~35!

We calculate these integrals for all possible initial conditio
and insert them back in to Eq.~32! and integrate it numeri-
cally to get the friction coefficient. The Gaussian-quadrat
method has been used to implement the multidimensio
integration.

The self-diffusion coefficient is calculated from the Ei
stein relationDE5kBT/zE . In Fig. 2, we plot the density
dependence ofDE /DB for the reduced temperatureT*
51.5, 2.0, and 6.0. Corresponding simulation values
also shown. The molecular dynamics simulation forT*
51.5 was done by Yamaguchiet al.,21 for T* 52.0 by
Kincaid et al.,27 and forT* 56.0 by the present authors, re

FIG. 2. DE /DB for several temperatures.r* 5rs3 is the dimensionless
number density. Lines are from the present theory and dots from the
lecular dynamics simulation. The solid line and closed circles~Ref. 21! are
for T* 51.5, the dashed line and open circles~Ref. 27! are forT* 52.0, and
the dotted line and open triangles are forT* 56.0. The hard-sphere Ensko
value and simulation result~Ref. 3! are given by the dot-dashed line an
closed squares, respectively.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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spectively. For reference, we also show the simulation3 and
the Enskog result for the hard-sphere fluid. We also chec
the results previously given by Pathaket al.10 with ours and
found that there are considerable differences between
two. They evaluated the self-diffusion coefficient by direc
integrating the memory kernel fromt50 to `. Furthermore,
they evaluated the trajectories of two particles directly so
ing the equations of motion which becomes less reliable
long times.

In Fig. 3, we show a comparison between our calculat
and that of Pathaket al. at T* 56.0. Also in Fig. 3 we show
the simulation results of Heyes28 and of us. We have carrie
out molecular dynamics simulations of 500 LJ particles
the NVE ensemble. The reduced time step 0.0005t (t
5Ams2/e) is used for most of the density range. Howev
we have used much smaller time steps and performed lo
simulation runs at very low densities. After 105 equilibration
steps, simulations have been performed for another 105 steps
during which the positions and velocities have been sto
for subsequent analysis. For each state point three such
have been carried out and the results reported here are
averages over all three runs. It is clear that the resul
Pathaket al. has wrong density dependence at low dens
where the Enskog theory should be accurate. We found s
lar deviations from Pathaket al.’s results at low temperature
~not shown! also.

An important point to note is that the deviation of th
Enskog values from the Boltzmann values are alw
smaller for the Lennard-Jones fluid than those for the ha
sphere fluid. The density dependence of both simulations
the Enskog theory for the Lennard-Jones fluid are qua
tively the same; the smaller slope for the low density reg
followed by the steeper decrease in the denser region. As
temperature increases, the slope in the low density

FIG. 3. Comparison ofDE /DB at T* 56.0 for our theory and simulation
with Pathaket al.’s theory and Heyes’ simulation. The solid line is from th
present theory and the closed circles are from our molecular dynamics s
lation. The dashed line is Pathak’s theory~Ref. 10! and the open triangles
are Heyes’ molecular dynamics simulation~Ref. 28!.
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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steeper while the opposite trend is observed in the high d
sity region. These tendencies are absent for the hard-sp
fluid. One may rationalize these results as follows. It
known that g(r ) of the Lennard-Jones fluid is influence
mostly by the attractive part of the potential in the sm
density region. As far as the structure in liquid is dominat
by the attractive force,g(r ) is insensitive to the density. Th
tendencies are enhanced as the temperature gets lower.
explains the weak dependence ofDE /DB on the density at
low temperatures, as shown in Fig. 3. On the other hand
the density increases, the repulsive part starts playing a m
important role ing(r ). In the repulsion dominated region
the structure becomes more hard-sphere like as the temp
ture goes down. For the larger temperatures, the potenti
effectively ‘‘softened’’ and the excluded volume effect b
comes less, which leads to less sensitivity ofg(r ) on the
density. This explains the larger density slope for the low
temperature.

In Fig. 4, we plot the ratio of the self-diffusion coeffi
cient to its Enskog value,D/DE , for several temperatures
The hard-sphere result is also plotted. The Enskog the
gives values closer to the simulation results than
Chapman–Enskog theory at all densities. Figure 4 shows
role of the correlated~and multiple! collisions for the
Lennard-Jones potential. The agreement becomes bette
the temperature becomes larger. This means that the bi
collisions are predominant at the higher temperatures. In
hard-sphere fluid, one sees an increase ofD/DE in the inter-
mediate density followed by the rapid decrease in the h
density region. This behavior can be semiquantitatively
scribed by the formula proposed based on the mode-coup
theory;8,15,24,29

u-
FIG. 4. D/DE for several temperatures. The closed circles are forT* 51.5
~Ref. 21!, the open circles forT* 52.0 ~Ref. 27!, and the open triangles fo
T* 56.0. The simulation result for hard-sphere fluid~Ref. 3! is given by
closed squares.
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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D5
DE

11Rr
1Rt , ~36!

whereRr andRt are the contributions from the coupling o
the solute motion to the density and the transverse cur
fluctuations, respectively. In their various original expre
sions, there are minor differences and extra contributi
from other collective modes but they are not essential. In
low density limit, bothRr and Rt are negligible but as the
density increases, the transverse current termRt starts to in-
crease first to give a positive contribution to diffusion. It
due to the backflow effect where the long-time and lon
ranged transverse current fluctuations make a vortex-sh
flow around the atom which enhances diffusion. The
crease at even higher density is attributed to the rapid
crease of the density mode contribution,Rr . The increase in
Rr indicates the emergence of cage effect on diffusion.

For the Lennard-Jones fluid, however, we do not obse
any increase inD/DE in the intermediate density. Instead
decreases monotonically as the density increases. The
crease in the high density region can be explained by
same ‘‘caging’’ scenario as for the hard-sphere fluid. On
other hand, the absence of the increase inD/DE at the inter-
mediate density indicates the absence of any signific
backflow effect, which is indeed surprising. The backflo
originates from the coupling of solute’s motion with th
long-range hydrodynamic fluctuations. Thus, it is expected
be insensitive to the details of intermolecular potential.

There could be two obvious explanations for this sen
tivity. The first scenario is that the transverse current fluct
tion is indeed very sensitive to the shape of the intermole
lar potential.Rt for the Lennard-Jones fluid might be small
than that for the hard-sphere fluid, whereas other contr
tions,DE andRr , remain quantitatively similar for both po
tentials. The second scenario is thatRt is not much different
for both fluids but DE /(11Rr) is much bigger in the
Lennard-Jones than in the hard-sphere fluid. If the first s
nario is true, one will observe a much smaller long-time t
in the simulation of the memory kernel of the Lennard-Jon
fluid. The time window of the simulations shown in Fig. 1
not long enough to check the presence of the long-time ta
One needs to simulate a much longer time region to cho
between these two explanations.

There could be an additional scenario which is a
more subtle. This involves multiple collisions in fluids fo
continuous potentials. For the hard-sphere potential, the
lision is instantaneous and well defined. The possibility
three or more particles to meet at one time is very small
thus can be simply neglected. Therefore, the deviation fr
the Enskog values can be attributed to the correlated c
sions. For the continuous potentials, however, the defini
of a binary collision becomes more ambiguous as the den
increases since a third particle could always be there nea
This multiple collision effect due to three or more particles
not included in Eq.~36!. We have little knowledge on how to
incorporate this effect into the scheme of the mode-coup
theory and how this affects the transport coefficients.
present none of the three scenarios mentioned previously
oaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP licen
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be excluded from the argument given to explain the den
dependence of the shape of the memory kernels in Sec.

V. CONCLUSIONS

In this paper, we have generalized the Enskog theory
the self-diffusion coefficient and the corresponding mem
kernel to fluids with continuous potentials. Our starting po
is the Green–Kubo formula based on the Mori–Zwan
projection-operator method. The expression derived in S
II can be used for fluids with arbitrary potentials. Advantag
of our expression over previous works are that one can re
the Green–Kubo formula to the well-known Chapman
Enskog expression in a straightforward manner in the l
density limit and there is no need to solve the equation
motion for a long time in order to get the self-diffusion c
efficient. We evaluated both the time-dependent mem
kernel and the self-diffusion coefficient for the Lennar
Jones fluid. Agreement of the calculated memory kernel w
the simulation result is excellent at low density. As the de
sity increases, the negative tail in the simulation becom
smaller monotonically, whereas the Enskog theory predi
exactly the opposite tendency. The self-diffusion coefficie
evaluated from our theory was compared with t
Chapman–Enskog theory and also with simulation value s
tematically for various densities and temperatures. It w
found that the Enskog theory gives very good agreement
the Lennard–Jones fluid. For all the temperatures conside
the deviations are within 10% up tor* 50.5. We also found
that the Enskog theory is a good approximation for t
higher temperature. The density dependence ofD/DE for the
Lennard-Jones fluid is entirely different from that of th
hard-sphere fluid. For the Lennard-Jones fluid, there is
increase ofD/DE in the intermediate density region which
significant ~amounting to as much as 20%! for the hard-
sphere fluid. Instead, it exhibits a monotonic decrease. E
at very high temperature,T* 56.0, where one might expec
much less influence of the attractive part of the potential a
therefore, the potential is effectively closer to the hard-c
repulsion, we could not see any evidence of the posit
backflow effect. This result might indicate that the effects
correlated and multiple collision to the transport coefficie
are very sensitive to the shape of potentials.

The above-mentioned facts may change the conventio
mode-coupling scenario which has been accepted as the
first-principle theory to predict the transport phenome
even if semiquantitatively. The mode-coupling theory
based on the assumption that the dynamical processes in
ids can be separated into fast binary collisions and long c
related processes. For Lennard-Jones fluid, the concep
binary collision itself gets more ambiguous as the dens
increases. Third or more particles in the neighborhood mi
change the nature of the collision very much. Thus, o
might need to include the effects of multiple collisions f
continuous potentials.

In the small density region, the effect of the bound
trajectories~where the particle is trapped by the attracti
part of the potential! is not very important aboveT* .1.0.26

But for larger densities, this cannot be true and the lo
thermal activation processes which lead to the break-up
se or copyright; see http://jcp.aip.org/about/rights_and_permissions
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the bounded trajectories might play a big role. Incorporat
of such processes into the mode-coupling theory has no
been tried.

The high frequency response of a liquid is required
the theoretical analyses of many chemical processes suc
vibrational energy relaxation~VER! and barrier crossing
dynamics.7 In these cases, one often requires respons
frequencies exceeding 100 cm21. The friction at such high
frequencies is expected to be dominated by the binary c
sions of the type considered here. Thus, the results obta
here could be useful in the studies of VER and barrier cro
ing dynamics.

In this paper, we have focused only on the Lenna
Jones fluid. The results for other continuous potentials w
be considered elsewhere.30

Similar progress could be made for other transport co
ficients such as the shear viscosity which should be of m
practical importance because here we expect the Ens
theory is far more reliable than the Chapman–Enskog the
~judging from the hard-sphere fluid!. Finally, our results
should be combined with the mode-coupling type theo
The calculation in these directions is in progress.31
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