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The Enskog theory for the self-diffusion coefficient for fluids with continuous potentials, such as the
Lennard-Jones, is developed. Starting from the Green—Kubo forfraitzer than the conventional
kinetic equatioi and introducing the similar assumptions upon which the Boltzmann equation is
based, we derived a general expression for the memory kernel and the self-diffusion coefficient. The
numerical analysis is implemented for the Lennard-Jones fluid. The time-dependent memory kernel
is calculated and compared with the latest molecular dynamics simulations. Excellent agreement is
obtained at the low density. The self-diffusion coefficient is evaluated for various temperatures and
densities. The ratio of the Enskog self-diffusion coefficient to the simulation value is plotted against
density. Significant difference of this density dependence from that for the hard-sphere fluid is
observed. In particular, the well-known maximum obseriiedhe diffusion versus density plofor

the hard sphere fluid is found to be completely absent in the Lennard-Jones fluid. Our results reduce
to the conventional Chapman—Enskog expression in the low density limit and can be applicable to
the systems with singular potentials such as the hard spher@00@ American Institute of Physics.
[DOI: 10.1063/1.1355978

I. INTRODUCTION collision are neglected2) The frequency of the binary col-
lision is increased by an amount which is proportional to the
Since its introduction in 1922, the Enskog theory for theprobability for one atom to find its neighbor@®) Each col-
hard-sphere fluid is known to be a very good approximatiorision process should be instantaneous.
to describe the transport phenomena in the dense fls&ks The Enskog theory, however, is fully developed at
Ref. 1 and references therein for detpildlthough it is a  present only for the hard-sphere fluid and in the present form
simple and empirical generalization of the Boltzmann equacannot be applied to more realistic continuous potentials. It
tion, its usefulness is beyond dispute. For example, the she@ not possible to generalize Enskog’s argument to treat a
viscosity calculated from the Chapman—Enskog theorycontinuous potential in a straightforward manner because the
which is a scheme to calculate the transport coefficients frongollisions are not instantaneous for the continuous potentials
the Boltzmann equation, is 40 times smaller in the densend, therefore assumptid@B) is not valid. However, consid-
liquid region than the simulation value, whereas the valueering the usefulness of the Enskog theory for the hard-sphere
evaluated using the Enskog theory is only 2 times as small gfuid, it is quite tempting to develop a similar theory for
most?® The Enskog approximation is not only practically continuous potentials. The Enskog-type theory for the fluids
useful in the dense gas region, but it also plays an importanwith the continuous potentials should also be useful to cal-
role in theoretical attempts to bridge the gap between theulate the time-dependent memory kernels whose integration
theory and the simulation values in the liquid region. As theover time provides the transport coefficients. For the hard-
density increases, each collision of atoms is not independesphere fluid, the memory kernel is alwayssdunction in
anymore and the so-called ring collisions become importantime under the Enskog approximation because of the instan-
The most well-known scheme to take these dynamically cortaneous nature of the binary collisions. For fluids with con-
related collisions into account is the mode-coupling theorytinuous potentials, however, it should decay within nonzero
(MCT).*~®Most of the input functions necessary to the MCT time. The Enskog-type theory should prove to be a very good
scheme such as the density correlation function are usuallgpproximation to describe the short-time behavior of the
evaluated using the Enskog theory for the hard-sphere fluidnemory kernel because the binary collisions are dominant
Actually, the following assumptions upon which the En- dynamical processes at short times. This fact is very impor-
skog theory is based are quite simple, though none of them igint to evaluate the transport coefficient in the high density
completely understooti(1) Each collision is completely in-  region under the MCT scheme where the knowledge of the
dependent and all multiple collisions except for the binaryshort-time dynamics is indispensable. The short-time dynam-
ics is important also in many dynamical processes in liquids,
3Electronic mail: K.Miyazaki@iri.tudelft.nl such as vibrational energy relaxation, barrier crossing
PElectronic mail: bbagchi@sscu.iisc.emet.in dynamics’ Unfortunately, the short-time dynamics depends
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critically on the details of the intermolecular potential. So This paper is organized as follows. In Sec. I, the formu-

far, ad hocfitting functions such as the Gaussian approxima-ation is elucidated. The relation to the Chapman—Enskog

tion have been usétf While the Gaussian approximation is theory is also discussed here. In Sec. lIl, the time-dependent

satisfactory at very high densities, it fails miserably at lowmemory kernel is calculated for the Lennard-Jones potential.

and intermediate densities. Enskog-type theory is expected fbhe comparison with simulation results available is given. A

provide a much better understanding of the dynamics with€losed formula to calculate the self-diffusion coefficient is

out anyad hocparameter. given in Sec. IV. The comparison with the simulation results
There have already been several attempts to develop tlae systematically given here. Section V is devoted to con-

Enskog theory for the continuous potentials. LeegwWaters  clusions.

perhaps the first to develop an Enskog-type kinetic theory to

analyze the velocity autocorrelation function for an atom in

Lennard-Jone§ fluid. His res_ult.re.duces to the Chgpmann_ GENERAL FORMULATION

Enskog result in the low density limit but does not satisfy the

initial value of the memory kernel for the denser region. Consider an atom in a simple fluid which interacts with

Later Pathalet al. developed the Enskog-type theory for the other identical atoms with a pairwise potentia(r). The

Lennard-Jones fluid starting from the Green—Kubo formulamotion of an atom in a gas or a liquid is often described in

and calculated the velocity correlation function and the selfterms of the velocity autocorrelation functiony(t)

diffusion coefficient® the longitudinal current correlation =(v(t)-v(0)), wherev(t) is the velocity of the atom at time

function and the transverse current correlation funcfidn. t and (---) is the equilibrium ensemble average. Its time

They argued that the quantities which they calculated are thevolution is well described by a generalized Langevin

time correlation functiongather than thenemory kernels equation® If one takes Laplace transform in time, this equa-

and, therefore, the expressions they derived are no more thaion is written as

an approximation of the Enskog theory. Furthermore, the ~

transport coefficients which should be obtained by integrat-  LMZ+ {(2)1¥(2) = #(t=0), @)

ing the memory kernels over time are not easy to calculatg,nerem is the mass of the atong(z) denotes the Laplace

by their method. The relationship of their methods with theyansformation of(t), and{(z) is the frequency-dependent
conventional Chapman—Enskog theory in the low densityiction coefficient or the memory kernel. The memory ker-

limit were left unclear. . _ nel is given by the Green—Kubo formula‘as
In this paper, we develop a concise method to implement .
the Enskog theory for the memory kernel and the self- _ f‘”d — 7t
= t F(t)-F(0)). 2
diffusion coefficient of simple fluids with continuous poten- {2 3kgT Jo e *(F(1)-F(0)) @

tials. Here we shall focus only on the Lennard-Jones poten- . .
tial. We start with the Green—Kubo formula and use tthere F(t) is the force between the solute and surrounding

. . . solvents at a time, kg is the Boltzmann constant, afdis
above-mentioned assumptioffs and (2) to derive general . .
: A the absolute temperature. Note that the integrand ifZEds
expressions for the memory kernel and the self-diffusion co- B . . . .
- ; o not the usual force—force time correlation function. The time
efficient. It is shown that the present theory satisfies all three : . . S
- . . . evolution of F(t) is not driven by the usual Liouville opera-
prerequisite conditions for the theony) It gives the correct tor but given b
initial value for the memory kernelii) The transport coef- 9 y
ficient reduces to that for the Chapman—Enskog theory in the  F(t)=exdi QL\t]F(0), (©)
Iovxh iensnthm:z. (i) Fclxtr Sa_rd—st%here flwd,_ I gw(_as (tjhe whereil y is the Liouville operator for thé&-particle system
wel-known £nskog resuft. Using the expression derved, We,qo—1-p andPis a projection operator defined I
Svaluate. Lhi me.:molry.kergel a_r;ﬂ corTfp;;fe Its time fge.pené<*vx>vxl<v)2(>. This equation can be established by using
_ence_;/wt tl e|5|m(;J gtlo_n ata. ese o u5|onkcoe I'C'en he Mori-Zwanzig projection-operator methdtf'* The
'S eas\ll\)l/ cacu ated by mtegratmg .t N mgr;:org/ e.rnel OVelself-diffusion coefficientD is related to the friction coeffi-
time. We give systematic comparison with the simu at'oncientgvia the Einstein relation as
results and also with the results for the hard-sphere fluid. The
density dependence of the ratio of the self-diffusion coeffi- B kB_T
cient evaluated from the molecular dynamics simulation to N

that derived from the Enskog theory is plotted. For the hard- PP - L .
sphere fluid, it is known that the simulation result become where{={(z=0) is the friction coefficient in the stationary

larger than the Enskog value at the intermediate density rj'-m't' Equation(2) can be rewritten in terms of the two par-

gion. This is attributed to the presence of the “backflow” ticle phase-space distribution function

effect which is also the origin of the so-called long-time N

tail.2® One may expect that this could also be true for fluids ~ f2(1,2=38(1—q,) >, 8(2—q;),

with other potentials since this backflow effect is due to the =2

long-ranged correlated collisions which should be insensitivevhere 1=(r,,p;) and g;=(R;,P;) (i=1,2,..,N) are the

to the microscopic nature of the binary collisions. We showphase-space coordinates and the actual coordinates of the
that, at least quantitatively, the backflow effect is negligibleparticles, respectively. Using this distribution functid{t)

for the Lennard-Jones fluid. may be rewritten as

4
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) where V is the volume of the system an@(1,2;3,47)
F(t)Z—f d1d2e'9NF5(1,2)V1(r ), B =v({(z—i10Ly) " H(1,2)}f5(3,4) is the four points
propagator which describes the time evolution of a particle
interacting with other particle®® This representation
makes it easy to understand how the binary collision

wherer 1,=|r;—r5|. Equation(2) can be rewritten, using this
expression, as

1 D d1d2.d3 da Ip(r1p) approximation comes to play a role. Mazefkshowed
(2= 3VKgT oXy.2 1y that the equation fo6(1,2;3,47) can be expressed without
invoking the projected Liouville operatoriQLy by
X G(1,2:3,47) ‘9¢(r34), (6) ?ntr(_)ducing the phase-space correlation functions and
I 34 is given by

[z+iL2(1,2)]G(1,2;3,4z)+J d1’' d2’' d3' T(1,2;3)C L(3";1)iL,(1',2')G(1',2':3,42)

+f dl’{iLz,(l,l’)+iLz,(2,1’)}[C(1,2,1’;3,4;2)—f d2’' d3' C(1,2,1;2";2)C1(2";3")C(3";3,4;2) |=G(1,2;3,4,

(7)
[
h

where f d3d4G(1,2;3,4 0(§§r34)
Liaa- R, B, 20 (20 "
|L2(1,2)_ m V1+ m V2 arl apl apz pkBTfo(pl)fo(pz) g( 12) (10)

®) '

i dp(rqp) d
|L2|(1,2) - arl ([?_pl_a_pZ)

wherefy(p) = (27mkgT) ~*2exd —p2mkgT] is the Max-
are the Liouville operator for the two-body system and itswell distribution function,p is the number density of the
interaction  part, respectively. In this expression,system, andg(r) is the radial distribution function. Then, we
C(1,2,..;1',2',...;z) is the phase-space correlation func- may simplify the expression as
tion. For example,C(1,2,3;1,2';z) is defined byV({(z
+ily)  13(1,2,3)f,(1',2)), where

" =L 3 [d1g2?
1‘3(1,2,3)=5(1—q1)§j 8(2—q;)8(3—q;) V a=Xy,z e
1 g( 12)
is the three-particle phase-space distribution function. The X[z+iL2(1,2] “fo(p1) fo(p2)
other correlation functions are defined in the similar manner. ( )
e oo ey 37,5, raetumatao) T
. a=X,y,z

first term on the left-hand side of E¢{) involve more than 96(r 1)
three particle interactions. Therefore, under the binary colli- X[z—iL2(1,2)]’1—l, (11)
sion approximation(on which the idea of the Boltzmann EP"

equation is basgdwe may disregard all these terms. There-
fore, the friction coefficient under the binary collision ap-
proximation, which we shall refer to d@&(z), can be written  Note that, in Eq(11), the time evolution operator acts only

as on the bare potential term. As one is calculating the binary
contribution to the friction,g(r) is not involved with the
1 dP(r 1) time evolution.g(r) controls an initial configuration for a
{e(2)= 3VkBT a=Xy.2 f d1d2d3d4 O 10 pair of atoms before a collision. Aftgy(r) decides the initial
configuration, the time evolution of the paior the force
M [Z4+iL,(1,2] 18(1,2:3. 5¢(f34). ©) acting on i} would be driven by the two-particle Liouville
a3, operator.
This equation can be further simplified by introducing
Furthermore, one may use the following identity: the center-of-mass and relative coordinates;
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r=ri—ry, R=3(ry+ry),
(12

p=3(pP1—P2), P=pi+p;.

The Liouville operator in this representation can be written

as

2
iLy(12= A L L

2m R ' m ar I dp

P L 13
= S L), 13

Using this representation, E¢L1) can be written as

S [apfap[ o
AV X,Y,Z

1%
XJ dr (P 5p) =

(e(2)=

ap(r)
ar, '

(14)
where f§'(P)=(4mmigT)~¥?exd —P74misT] and f54{p)
= (mmkgT) ~32exd —p?/mksT]. Integrating overP and R,
we arrive at

eo--5 3 [opfart;

X[z—iL(r,p)] ? ¢r(r) (15)

D il (rp)]

Or in the real time representation, we have

a:x,y,zfdpf dr f§ 9< )

Geh=—3 2
¢< )
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Bogolyubov—Born—Green—Kirkwood—Yvon hierarchy up to
the lowest level. And Eq.(11) clearly shows that the veloc-
ity distributions of the two particles before the binary colli-
sion are independerithe molecular chaos assumptjion

From Egs.(15 and (16), we may prove the following
three important properties well known in the kinetic theory
of fluids.

(i) Equation(16) gives the exact initial value for arbi-
trary density.

p req, . 99(r) d(r)
gE(t:o>=—§a§,y'ZJdpJ ar ) S 2

:ngr g(r)V2e(r), 17

which is the well-known expression for the Einstein fre-
quency. This was first shown by Pathekal X°

(i) Equation(15) has been derived from the Green—
Kubo formula. This expression in the stationary limi (
=0) looks very different from the collision integral derived
from Chapman—Enskog theory which is familiar in the text-
books of the kinetic theor}f~'® We show now that it is
indeed equivalent to the result from the conventional theory
in the low density limit. In this limit, the radial distribution
function is given byg(r)=e~ #("’keT and the memory kernel
[we now refer to agg(z)] of Eq. (15) is written as

re skt 9P(1)
{s(2)= 3kBTa§yz J dpf dr ¥ p)e= ¥ )/kBTTa
><[Z—iL(r,p)]*l%(r). (18)

Using the following identities,

_9(r) _
o,

. 16
(19 Li(r,p)pg.

o

Equations(15) and (16) are the Enskog expressions for the
frequency- and time-dependent memory Kkernels, respec- .
tively, and are the primary results of this paper. L z—iL
Pathaket al1° presented the same expressions as these
equations but they argued that these equations are just forcd'€®
force time correlation functions ando more than an ap-
proximation to the “exact” Enskog theonAs is clear from
our derivation, this is not the time force—force correlation
but the memory kernel itself. The irreversible nature of theare the kinetic and the potential part of the Liouville opera-
memory kernel came in when the binary operator was introtor, respectively, Eq(18) can be rewritten after several par-
duced. This procedure corresponds to the truncation of thgal integrations as

) 1
:_1+(Z_|L0)ﬁ!

ao(r) o9
o ap

iLo(r,p)=—

o iLirp=-

aep(r)
ar,

2= ger 3 [ dp [ arpuiti e pe Oz iL (P

=X,¥,z

p
=—— > |d fd Az—iL
3kBTa=x,y,zf p| drpa{z—iLo
dp,(t)

_ P _ req ) g~ #(1/k TJ'Oo —zt
3kBTa§sz'dpf dr p{z—iLo(r.p)}Edp)e B 0dte et (19)

dp(r)

rp}gdpre ke z—iL (r,p)]t —

o
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where p,(t)=€e'-("Pp_. One can integrate Eq19) over

P , _
time for the stationary limit{g={g(z=0), as ZE,Hs(Z):—gf dpf dr {54 p){y’ (r)e” #/keT
__P_ - re — $(r)/kgT deb(r
te 3kBTJdpJ driLo(rpf§ipre e +g(a)é(r—o)}[z—iL(r,p)]‘l%. (26
X {p-p(t=22)—p?}. (200 \We neglect the first term in the parentheses of Exf),

In the integration over, we shall use the cylindrical coordi- assuming that the contribution from the slow varyindr)
nate and we choose the axial direction along the direction o6 smaller than that from the sharply peaked delta function.

the momentum, Therefore, we may write Eq26) as
2m p9(o) j f
-~ - =— dp | drfg
lo=7 TJdpf dhf bde d0 {ens(2) 3 a;ﬂ p cp)
Ik
x 54 p)e ?VkeT{p-p(t=20) —p?} X %e_db(r)/kBT][Z iL(r,p)]* ¢r(f) (27)
1672p = o “ “«
= 3mkgT fo dpfo b db P54 p){cosx(p,h="0,b) Except for the factor ofy(o), this is the same as E¢L9)
which we showed to be equivalent to the Chapman—Enskog
—cosy(p,h=—,b)}, (21)  expression in the previous paragraph. For the hard-sphere

fluid, this is known to be given by @r?JmmkgT/3 for z

where x(p,h,b) is the deflection angle of the binary colli- =0 and we immediately arrive at E(5).

sion for the particle which initially had the momentum
alolng Fheh d|rec_t|on and was at _the. positio,) in the Ill. THE MEMORY KERNEL
cylindrical coordinate. In the derivation we have used the
momentum conservation &t 0 andt=o, at which the par- In this section, we present numerical calculations of the
ticles are far apart from the collision center. Since the firstime-dependent Enskog memory kernel, Ef). Hereafter,
term in the integrand represents the motion of the particleve shall focus only on the Lennard-Jones potential defined
which initially lies ath=c0 and goes apart from the collision by

center, we havey(p,h=,b)=0. On the other hand, the o\12 [ o\6
second term is a function of both and b. Representing ¢(r)=4e( —) —(— J (28
x(p,h=—=,b) asy(p,b). Equation(21) is reduced to r r
8 where e and o are the standard Lennard-Jones parameters.
gB:§p021/kaBTQ(1'1)* (T) (22) Basically, one may evaluate the memory kernel provided that
the positions of all possible trajectories of the two particle
with the collision integral given by system are known. This can be done easily by solving the
5 . . equation of motion. We evaluate the positiomét}, 6(t)) at
(L)% T\ = —p?/mkgT time t in the polar coordinates for a given initial condition
@ (M o (mkgT f dpJO bdb pe (p.r,0), where we choose the direction of the velocity par-

B allel to the polar axis. The problem can be reduced to the
X {1~ cosx(b,p)}- 23 one-dimensional problem of the motion in the effective po-
The deflection anglg(b,p) is given by solving the equation tential given bydeu(r)=&(r)+p’b?mr?, whereb=r siné is

of motion for this two-particle systehas the impact parameter which represents the perpendicular dis-
tance between the collision center and the initial positfon.
x(b,p)=m—2b - dr 1 _ (24) The solution of the equation of motion is given by
- 2\/ m(r) b2 © _2p 10, 10)
1o 0 17 t=f drf(r), 6t f , (29)

Equation(23) is exactly the expression for the collision in- where f(r)=1/s [4{E— ¢e(r)}m. r(t) for arbitrary t is
tegral well known for several decades. evaluated by solving the first equation of Eg9). 6(t) can

(i) The Enskog value for the friction for the hard- pe evaluated from the second equation usifty evaluated
sphere fluid is known to be given by from the first. The constants of integration can be chosen

8 such that they satisfy the initial condition. For the Lennard-
gE'HS=§pozg(0') vmakgT, (25  Jones potential, the motion in this effective potential may

have three turning points at most, depending on the initial
where o is the radius of the sphere. It is straightforward to conditions. Radius of turning points are given by the zeros of
show that our expression reduces to this result. First, w& — ¢.4(r)=0, whereE is the total energy of the two particle
introduce a functiory(r) defined byg(r)=y(r)e ?/ kT, system. Note that if the initial radius is smaller than the
y(r) is a continuous and smooth functidrsing the fact largest turning point, some trajectories form the bounded tra-
that e #("V’keT js the Heaviside function, Eq15) can be jectories. We incorporated all possible trajectories in order to
written as evaluate Eq.16). g(r) was calculated using the Percus—
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FIG. 1. £g(t)/Zg(0) for T*=1.5, wheret* =t/\mg?/e. (a) for p*=0.1,

(b) for p*=0.45, (c) for p*=0.85. The open circles are the molecular

dynamics simulation results given by Yamguetial. (Ref. 21).

Yevick closure with the Ornstein—Zernike relattdfi for

p* <0.45, wherep* = po® is the dimensionless density. For

higher density, computer simulations were usesa
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Yamaguchiet al?! Here T* =kgT/e is the dimensionless
temperature. The results are normalized by their initial val-
ues. We have also checked that the initial values for various
densities agree well with the simulation resiGftdhe agree-
ment with the simulation result is excellent fof =0.1. One
observes that the initial fast decay is followed by a negative
tail. This negative dip is due to the attractive part of the
potential; most of the initial positions are lying in the attrac-
tive part of the potential and a half of the initial velocity is
the inward to the collision center and another half is going
outward. The particle going inward toward the collision cen-
ter hits the very steep repulsive part of the potential which
changes the sign of the for¢&gom that at the initial timg
whereas the force for the particle going outward will remain
positive but it is much smaller in magnitude. For higher den-
sities, the agreement is poor, as expected. The simulation
results show that the depth of negative dip gets smaller as the
density increases, whereas the present Enskog results show
the opposite trend. The larger Enskog negative tail at higher
densities originates from the increase in the probability of the
particle sitting around the first peak gfr) which leads to a
bigger chance for the particle to hit the repulsive wall.

The above-mentioned observation may be rationalized as
follows. One possible reason is that the effect of the corre-
lated collisions effector the mode-coupling effecis very
sensitive to the shape of potential. The first pronounced ef-
fect of the correlated collisions for the hard-sphere fluid as
the density increases is the backflow effect due to the trans-
verse current modé*?>?*which leads to the so-called long-
time-tail. This tail is always negative. As the density reaches
the liquid region, the positive tail due to the density fluctua-
tion mode overcomes the backflow effétfThe monotonic
decrease of amplitudes observed in the simulation for the
Lennard-Jones fluid might indicate that the backflow effect is
too small to enhance the negative tail and the density fluc-
tuations always play a more dominant role for this system.
To confirm the presence of the backflow effect, one needs to
calculate the memory kernel for longer time where both the
binary and density mode contributions disappear and only
the current mode survives.

Another possible explanation of the vanishing negative
tail might be the presence of multiple collisions. The colli-
sions in the continuous potentials are not simultaneous and
the third or fourth particles can influence the binary collision.
This might encourage the particle trapped in the attractive
dip of the Lennard-Jones potential to escape from it and,
therefore, reduce the amplitude of the negative dip. This ef-
fect cannot be taken into account either in the Enskog theory
or in the mode-coupling theory in which only the binary and
the ring collision terms are taken into account. We shall
come back to this point in Sec. IV where the argument on the
contribution of the different modes to the self-diffusion co-
efficient is given.

IV. ENSKOG THEORY FOR Dg

In this section, we derive expressions of the friction co-

approximatioR’ was also used to check the result. The resultefficient and the self-diffusion coefficient by integrating the

for p*=0.1,0.45, and 0.85 at*=1.5 is given in Fig. 1

memory kernel over time. The steady state valugotan

along with the molecular dynamics simulation given by be obtained by setting=0 in Eg. (15) as
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b [ e 29(0) dp,(0)
=5 3 [ o] ap ar e 20

a=x,y,z dt

w|D

d
> fdpf dr f54p) g(r){pa(tw)—pa}-

a=Xx,y,z ar,

(30)
We may again use the cylindrical coordinate for
=(h,b,8) and choose the direction of theaxis parallel to
p. b is the impact parameter. Since the system considered is

[aa]
isotropic, we have Qm o .
p © © 2 A 0.3 L4 T‘ =1.5 \h\~ ™ *
== d f dhf bdbf dofg T : S ®
te 3a:§,y,z f P)_.. 0 0 5P 024 ——— © T=20 l“.\
_ag(r) ag(r) . 1dg(r) 01 T & T80
Pa oh €10 7b +92,a5 70 | —-—-- m Hard-Sphere
0.0 LA L LA LN R BELA NI BN B
— _ 0.0 01 0.2 03 04 05 06 07 08 09
X{pa(t_oo) pa}! %
o o 2 p
=21 dp| dh| bdb| defiEtp)
3 —w% 0 0 0 FIG. 2. D¢ /Dg for several temperatureg* =po® is the dimensionless

number density. Lines are from the present theory and dots from the mo-
g(r) - ag(r) - lecular dynamics simulation. The solid line and closed cir¢Ref. 21) are
X| ——{p-p(t=)—p}+ e -p(t=o)|, for T* =1.5, the dashed line and open circi&f. 27 are forT* =2.0, and
oh b the dotted line and open triangles are 16r=6.0. The hard-sphere Enskog
(31) value and simulation resu(Ref. 3 are given by the dot-dashed line and
closed squares, respectively.

wherep is the unit vector of the momentum, aig,é, are

the two unit vectors perpendicular iy andr = hZ+b? is

the distance from the collision center. Depending on the ini- . . . .

tial momenta and positions, some trajectories do not go apafty € tuming pointr y,, the point where the radial compo-
from the collision center but they form stable orbital trajec-nent of _thg momgntum of the particle vanishesdoft)/dt
tories. Curti® discussed the effect of such bounded trajec-— 0. Th's. IS equ_|valent to evaluate the Z€ro F?f_ Pei(")
tories on the friction coefficient in the low density limit for =0. The mtegratlon cgn_gtants arg_determlned n such away
the Lennard-Jone$Ld) fluid. He concluded that at suffi- that thgy satlsfy.the. initial condltlorjs. The expression for
ciently high temperaturéaboveT* > 1.0), this effect is very c.iefle.ctlon ?”g'e 's different depending on yvhether the par-
small. Therefore, we shall disregard these bounded trajecté'—de_ IS movm_g_toward or away from the collision center and
ries in our calculations. For unbounded trajectories, we cafp 9'Ven explicitly by

write  p-p(t==)=p.cosx(pbh) and e-p(t==) 2pb (= f(r)
= .. sinx(p,b,h), wherey(p,b,h) is the deflection angle and m rmindr 2 +Omint 6 (h<0)
p.. is the intensity of the momentum &t and given from x(p,b,h)= opb (= f
the energy conservation I, = \p?+me(r). Thus, we ar- ij dr(_r2)+ 6 (h=0),
rive at the following expression fafg, m Jr r
8 (34)
§E=§P02vkaBTQ(l’l)*(T) (82 whered,, is the angle at the turning point and is given by
' ision i (L1 i 2pb (r f(r)
with the Enskog collision integrdl (T) given by min=—— fr drr—z- (35)

1 0 © w2 min
(1,1)* - 2 i 2 . . o .
o (M (mkgTo)? fo dpfo ' drfo Sin6 do p..p We calculate these integrals for all possible initial conditions
and insert them back in to E¢32) and integrate it numeri-

dg(r) cally to get the friction coefficient. The Gaussian-quadrature

—p2mkgT _ ytog . q

xe dr {codx(p.h.b) =] method has been used to implement the multidimensional
integration.

—cog x(p,—h,b)+ 4]}, (33 The self-diffusion coefficient is calculated from the Ein-
whereh=r cosf andb=r sinf. The deflection anglg(p, stein relationDg=kgT/{g. In Fig. 2, we plot the density
+h,b) can be evaluated from the solution of the equation ofdependence oDg/Dg for the reduced temperaturé*

motion, Eq.(29), with the initial condition ¢,r,6) for the =1.5, 2.0, and 6.0. Corresponding simulation values are
momentum and position, respectively. Since we consider thalso shown. The molecular dynamics simulation bt
unbounded trajectories only,(t=x)=c for t=c. The =15 was done by Yamaguctetal,?! for T*=2.0 by

lower boundary of the second equation of E2Q) is given  Kincaid et al,?” and forT* =6.0 by the present authors, re-
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FIG. 3. Comparison 0D /Dg at T* =6.0 for our theory and simulation P *

with Pathaket al’s theory and Heyes’ simulation. The solid line is from the
present theory and the closed circles are from our molecular dynamics sim
lation. The dashed line is Pathak’s thegRef. 10 and the open triangles
are Heyes’ molecular dynamics simulati@iRef. 28.

EiG. 4. D/Dg for several temperatures. The closed circles arelfor 1.5
(Ref. 21), the open circles fof* =2.0 (Ref. 27, and the open triangles for
T*=6.0. The simulation result for hard-sphere fl§iRef. 3 is given by
closed squares.

spectively. For reference, we also show the simuldtamd
the Enskog result for the hard-sphere fluid. We also checked
the results previously given by Pathakal® with ours and  steeper while the opposite trend is observed in the high den-
found that there are considerable differences between thsity region. These tendencies are absent for the hard-sphere
two. They evaluated the self-diffusion coefficient by directly fluid. One may rationalize these results as follows. It is
integrating the memory kernel frois=0 to . Furthermore, known thatg(r) of the Lennard-Jones fluid is influenced
they evaluated the trajectories of two particles directly solv-mostly by the attractive part of the potential in the small
ing the equations of motion which becomes less reliable atiensity region. As far as the structure in liquid is dominated
long times. by the attractive forceg(r) is insensitive to the density. The

In Fig. 3, we show a comparison between our calculatiortendencies are enhanced as the temperature gets lower. This
and that of Pathakt al. at T* =6.0. Also in Fig. 3 we show explains the weak dependence®f/Dg on the density at
the simulation results of Hey&sand of us. We have carried low temperatures, as shown in Fig. 3. On the other hand, as
out molecular dynamics simulations of 500 LJ particles inthe density increases, the repulsive part starts playing a more
the NVE ensemble. The reduced time step 0.000%r  important role ing(r). In the repulsion dominated region,
=Jmd?/€) is used for most of the density range. However, the structure becomes more hard-sphere like as the tempera-
we have used much smaller time steps and performed longéure goes down. For the larger temperatures, the potential is
simulation runs at very low densities. After®16quilibration  effectively “softened” and the excluded volume effect be-
steps, simulations have been performed for anothestdps comes less, which leads to less sensitivityggf) on the
during which the positions and velocities have been storedensity. This explains the larger density slope for the lower
for subsequent analysis. For each state point three such rutemperature.
have been carried out and the results reported here are the In Fig. 4, we plot the ratio of the self-diffusion coeffi-
averages over all three runs. It is clear that the result o€ient to its Enskog valueD/Dg, for several temperatures.
Pathaket al. has wrong density dependence at low densityThe hard-sphere result is also plotted. The Enskog theory
where the Enskog theory should be accurate. We found simiives values closer to the simulation results than the
lar deviations from Pathadt al’s results at low temperatures Chapman—Enskog theory at all densities. Figure 4 shows the
(not shown also. role of the correlated(and multiple collisions for the

An important point to note is that the deviation of the Lennard-Jones potential. The agreement becomes better as
Enskog values from the Boltzmann values are alwayshe temperature becomes larger. This means that the binary
smaller for the Lennard-Jones fluid than those for the hardeollisions are predominant at the higher temperatures. In the
sphere fluid. The density dependence of both simulations anldard-sphere fluid, one sees an increasB ¢ in the inter-
the Enskog theory for the Lennard-Jones fluid are qualitamediate density followed by the rapid decrease in the high
tively the same; the smaller slope for the low density regiondensity region. This behavior can be semiquantitatively de-
followed by the steeper decrease in the denser region. As theeribed by the formula proposed based on the mode-coupling

temperature increases, the slope in the low density getheory®152429
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£ be excluded from the argument given to explain the density
D= 1+R. +Ry, (36) dependence of the shape of the memory kernels in Sec. Ill.
P
V. CONCLUSIONS

whereR, andR; are the contributions from the coupling of In this paper, we have generalized the Enskog theory for
the solute motion to the density and the transverse currerihe self-diffusion coefficient and the corresponding memory
fluctuations, respectively. In their various original expres-kernel to fluids with continuous potentials. Our starting point
sions, there are minor differences and extra contributiongs the Green—Kubo formula based on the Mori—Zwanzig
from other collective modes but they are not essential. In th@rojection-operator method. The expression derived in Sec.
low density limit, bothR, and R, are negligible but as the Il can be used for fluids with arbitrary potentials. Advantages
density increases, the transverse current teyratarts to in-  of our expression over previous works are that one can relate
crease first to give a positive contribution to diffusion. It is the Green—Kubo formula to the well-known Chapman-
due to the backflow effect where the long-time and long-Enskog expression in a straightforward manner in the low
ranged transverse current fluctuations make a vortex-shapeknsity limit and there is no need to solve the equation of
flow around the atom which enhances diffusion. The deimotion for a long time in order to get the self-diffusion co-
crease at even higher density is attributed to the rapid inefficient. We evaluated both the time-dependent memory
crease of the density mode contributi),. The increase in kernel and the self-diffusion coefficient for the Lennard-
R, indicates the emergence of cage effect on diffusion.  Jones fluid. Agreement of the calculated memory kernel with
For the Lennard-Jones fluid, however, we do not observéhe simulation result is excellent at low density. As the den-
any increase iD/D¢ in the intermediate density. Instead it sity increases, the negative tail in the simulation becomes
decreases monotonically as the density increases. The demaller monotonically, whereas the Enskog theory predicts
crease in the high density region can be explained by thexactly the opposite tendency. The self-diffusion coefficient
same “caging” scenario as for the hard-sphere fluid. On theevaluated from our theory was compared with the
other hand, the absence of the increasB iDg at the inter- Chapman—Enskog theory and also with simulation value sys-
mediate density indicates the absence of any significartematically for various densities and temperatures. It was
backflow effect, which is indeed surprising. The backflowfound that the Enskog theory gives very good agreement for
originates from the coupling of solute’s motion with the the Lennard—Jones fluid. For all the temperatures considered,
long-range hydrodynamic fluctuations. Thus, it is expected tdhe deviations are within 10% up & =0.5. We also found
be insensitive to the details of intermolecular potential. that the Enskog theory is a good approximation for the
There could be two obvious explanations for this sensihigher temperature. The density dependende/@ g for the
tivity. The first scenario is that the transverse current fluctuatennard-Jones fluid is entirely different from that of the
tion is indeed very sensitive to the shape of the intermolecuhard-sphere fluid. For the Lennard-Jones fluid, there is no
lar potential R; for the Lennard-Jones fluid might be smaller increase oD/Dg in the intermediate density region which is
than that for the hard-sphere fluid, whereas other contribusignificant (amounting to as much as 20%or the hard-
tions,Dg andR,,, remain quantitatively similar for both po- sphere fluid. Instead, it exhibits a monotonic decrease. Even
tentials. The second scenario is tixtis not much different  at very high temperatur&,* =6.0, where one might expect
for both fluids butDg/(1+R,) is much bigger in the much less influence of the attractive part of the potential and,
Lennard-Jones than in the hard-sphere fluid. If the first scetherefore, the potential is effectively closer to the hard-core
nario is true, one will observe a much smaller long-time tailrepulsion, we could not see any evidence of the positive
in the simulation of the memory kernel of the Lennard-Jonedackflow effect. This result might indicate that the effects of
fluid. The time window of the simulations shown in Fig. 1 is correlated and multiple collision to the transport coefficients
not long enough to check the presence of the long-time tailsare very sensitive to the shape of potentials.
One needs to simulate a much longer time region to choose The above-mentioned facts may change the conventional
between these two explanations. mode-coupling scenario which has been accepted as the only
There could be an additional scenario which is a bitfirst-principle theory to predict the transport phenomena,
more subtle. This involves multiple collisions in fluids for even if semiquantitatively. The mode-coupling theory is
continuous potentials. For the hard-sphere potential, the cobased on the assumption that the dynamical processes in flu-
lision is instantaneous and well defined. The possibility forids can be separated into fast binary collisions and long cor-
three or more particles to meet at one time is very small andelated processes. For Lennard-Jones fluid, the concept of
thus can be simply neglected. Therefore, the deviation fronbinary collision itself gets more ambiguous as the density
the Enskog values can be attributed to the correlated collincreases. Third or more particles in the neighborhood might
sions. For the continuous potentials, however, the definitiothange the nature of the collision very much. Thus, one
of a binary collision becomes more ambiguous as the densitsnight need to include the effects of multiple collisions for
increases since a third particle could always be there nearbgontinuous potentials.
This multiple collision effect due to three or more particles is In the small density region, the effect of the bounded
not included in Eq(36). We have little knowledge on how to trajectories(where the particle is trapped by the attractive
incorporate this effect into the scheme of the mode-couplingart of the potentialis not very important abov&* >1.0.28
theory and how this affects the transport coefficients. AtBut for larger densities, this cannot be true and the local
present none of the three scenarios mentioned previously cahermal activation processes which lead to the break-up of
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