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Abstract

A better understanding in the biological clock is important to help reduce stress on shift
workers. Moreover, in the field of medication it will allow for more effective treatments
as certain types of medication are more effective when applied at certain moments in the
24-hour cycle.

The mammalian biological clock is controlled by a tiny area in the brain called the
suprachiasmatic nucleus (SCN). The neurons in the SCN are able to synchronize their
clock gene expression to each other through coupling. However, it is unclear how different
types of coupling affect the synchronizing property of the SCN. This research explores
how two types of coupling, namely gap junction coupling and neuromodulator diffusion
shape the synchronous behaviour of a network of SCN neurons.

Since data collection in the biological system is challenging, this research is done using
a modeling approach. A mathematical single SCN neuron model was analyzed and scaled
to a network representation. The individual neuron models in this network were coupled
using gap junction and neuromodulator models.

In this research, it was found that gap junction coupling is a precise and strictly local
form of coupling. However, in a network there is a maximum number of neurons that
can be synchronized, assuming that the number of gap junctions per neuron is limited.
Therefore, it was concluded that in large SCN networks gap junction coupling is not able
to completely synchronize the network.

Neuromodulator coupling is imprecise, slow and global. It can effectively synchronize
large phase errors, however, as phase errors become small, neuromodulator coupling loses
much of its synchronizing ability. Therefore, it can only synchronize the daily pattern
and cannot synchronize on the level of action potentials. Furthermore, it was shown that
neuromodulator diffusion can synchronize SCN networks of arbitrary size.

As a final conclusion, the combination between gap junctions and neuromodulator
diffusion is able to synchronize a network completely, perfectly, and rapidly. The neu-
romodulator component ensures complete synchronization while the gap junctions guar-
antee perfect synchronization (in the absence of noise). Furthermore, the combination
ensures effective synchronization for both small and large phase errors. Therefore, the
combination of these two types of coupling is vital in the establishment of network with
versatile synchronization properties.
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Chapter 1

Introduction

Every cell in the human body oscillates on a near 24-hour cycle. This oscillation is
controlled by the circadian clock. This is a complex biochemical system that allows
organisms to predict and adjust to one of the biggest environmental changes on earth:
the day/night cycle. At the heart of this system lays the suprachiasmatic nucleus (SCN),
located at the base of the hypothalamus. The SCN not only ensures that all cells in
the human body oscillate in synchrony with respect to each other, but also that this
oscillation is entrained to the external light/dark cycle; it acts as a master clock for all
body processes [2].

The SCN is a neural network of about 20,000 cells. The nucleus consists of two almond
shaped parts that are located on opposite sides of the third ventricle. The left and right
part that form the SCN are similar. The SCN is situated just above the optic chiasm
(hence the name), and receives input from the retina. Photosensitive ganglion cells in
the retina send information about the external light intensity to the SCN cells, to which
the neurons synchronize.

Every single SCN neuron has an intrinsic cycle with an approximate 24 hour period.
This period is established by a genetic feedback loop involving several genes. Individual
cells are coupled electrically by so called gap junctions and chemically by neuromodulator
diffusion. Through this coupling the activity of individual neurons is constantly delayed
or advanced, leading to a synchronized genetic feedback loop.

1.1 Problem statement

Some states of the genetic feedback loop can be measured. At the Leiden University
Medical Center a biomarker was attached to one of the genes in the feedback loop such
that the expression of this gene becomes observable. The resulting Figure 1.1 shows the
expression of a clock gene in a slice of SCN tissue. Approximately 140 cell containing
regions are measured over a time span of 150 hours. It can be seen that the phase of the
cycles is (to some extend) uniform, indicating the occurrence of synchronization.

Figure 1.1 raises the question how the neurons synchronize the internal genetic feed-
back loop. Because of the internal nature of the feedback loop, the neurons cannot
directly communicate this state to other neurons. Instead, communication happens at
the electrochemical level via synaptic interactions (gap junctions and chemical synapses)
and neuromodulator diffusion. The objective of this research is to investigate how gap
junction coupling and neuromodulator coupling shape synchrony in the genetic feedback
loop in a network of SCN neurons. The following research question was formulated:
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Figure 1.1: Gene expression of about 140 cell containing regions

“How do gap junction and neuromodulator coupling synchronize the gene expression of
a network of SCN neurons?”

Since it is challenging to answer this question in totality, six sub questions were formu-
lated. These sub questions are:

1. Can two SCN neurons synchronize when they are only coupled by gap junction
coupling?

2. Can two SCN neurons synchronize when coupled only by neuromodulator coupling?

3. Does the combination of neuromodulator coupling and gap junction coupling en-
hance synchronization between two SCN neurons?

4. Can a network of SCN neurons synchronize when coupled only by gap junction
coupling?

5. Can a network of SCN neurons synchronize when coupled only by neuromodulator
coupling?

6. Does the combination of neuromodulator coupling and gap junction coupling en-
hance synchronization in a network of SCN neurons?

The sub questions separate the research question by type of coupling and network
size. The first two sub questions focus on the emergence of synchronization in the most
basic setting: a network of just two neurons with only one type of coupling. The third sub
question combines both types of coupling in a basic two neuron network. The fourth and
fifth sub question both consider one type of coupling but in an extended network. The
sixth sub question aims to combine both coupling mechanisms in an extended network
setting.

This research is focused on a network of SCN neurons without an external light input.
Therefore, only synchronization between the intrinsic cycles of neurons are considered
without any external influences. Besides, all neurons in the SCN network are considered
to be identical.

This research will be conducted using a modeling approach. This is done because
biological data collection techniques are limited. Most of the neuron states are simply
not measurable (unlike the data from Figure 1.1). For instance, it is very challenging to
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measure the individual coupling mechanisms. Therefore, we turn to single cell models,
coupling models, and network models.

The research results are meant to guide the direction of biological research and provide
insights in how the biological clock might work. As the methods of this research are purely
mathematical, the aim is not to make definite claims about the biological model of the
SCN.

1.2 Relevance

Understanding synchrony in the human clock is important. In the field of medication it
will allow for more effective treatments. Certain types of medication are more effective
when applied at certain moments in the 24-hour cycle. For instance, tumor cells can be
affected by chemotherapy more effectively during the most active part of the sleep/wake
cycle [3].

Better insight in the biological clock can also help reduce stress on shift workers.
Some professions in places like hospitals, power plants or emergency services demand
from people to work in shifts that are not synchronized to the natural light/dark cycle.
People are more likely to make mistakes when working in these shifts [4]. For safety
reasons, it is therefore important to investigate the circadian rhythm and find ways to
make shift work less error-prone.

1.3 Structure

The organization of this report is as follows. In Chapter 2 a biological model of the SCN
is discussed. This is done to familiarize the reader with the biological processes at play.
It will help understand the mathematical (single cell, coupling, and network) models
introduced later. In case the reader is already acquainted with the firing of neurons and
the circadian genetic feedback loop, feel free to skip Chapter 2.

In Chapter 3 the Diekman2013 model is discussed. This is the mathematical single
SCN neuron model that is used for this research. The goal of this chapter is to get
the reader acquainted with the model and to highlight some of its special features. Be-
sides the Diekman model the so-called switch model is introduced here. This model is a
representation of the Diekman2013 model on the circadian time scale.

With Chapters 2 and 3 complete sufficient insights are gained to start discussing the
sub question. This is done in Chapters 4 and 5.

The case of two coupled neurons is discussed in Chapter 4. This case is highly valuable
as it allows us to analyze the behaviour of two neurons without any network effects. The
stability region of the synchronized state as well as other non-synchronized states are
discussed. Insights from this chapter are used to answer the first three sub questions.

In Chapter 5, the two neuron network is scaled to a network of arbitrary size. This
will be done by analyzing the network parameters of several plausible networks. Insights
from this chapter are used to answer the last three sub questions.

Thereafter, in Chapter 6 a general conclusion is provided. In this chapter the main
research question will be answered. Also, some recommendations for further research are
given.






Chapter 2

Biological model

A biological representation of the suprachiamatic nucleus is provided in this chapter. The
goal is to present a brief and up-to-date view of the workings of the SCN. This is done by
describing a single SCN neuron, the coupling between neurons, and the network structure.
A more comprehensive description can be found in the corresponding literature study [5].

In order to build a mathematical model, an adequate understanding in the biological
system it represents is essential. This is especially the case for the mathematical SCN
models since researchers in this field go to great lengths to create biologically plausible
models with physiologically meaningful states. Therefore, in order for us to understand
the mathematical models of the SCN, adequate insights in the biological representation
of the SCN is required.

The outline of the chapter is as follows. First, the biological processes that play at
single cell level are discussed in section 2.1. Then, the interaction between neurons is
described in section 2.2. Finally, in section 2.3, the network in which the neurons couple
is discussed.

2.1 Single Cell

The SCN is comprised of neurons which are electrically excitable cells that can process
and transmit information through electrical and chemical signals. The neurons themselves
consist of dendrites, a soma and an axon. The cell body, or soma, is the core of the cell
and contains most of the organeclles and the nucleus. The cell body is the part where
genes are located and proteins are built. The cell body is surrounded by dendrites and
an axon which receive and transmit electrical signals [6]. Figure 2.1 provides a graphical
representation of a neuron.

A single SCN neuron can be represented by two different systems: the electrical and
molecular system. The molecular system creates the cell intrinsic circadian oscillation
and the electrical system is able to communicate this rhythm to the other neuron. In the
following subsections both parts are discussed.

2.1.1 Electrical part

A neuron is enclosed by a cell membrane, which separates the inside of the cell from its
outside. The region directly inside of the cell membrane is called the cytosol while the
region outside of the cell is known as the extracellular space. The cytosol and extracellular
space differ in ion concentrations. This causes an electro-chemical potential across the
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Figure 2.1: Anatomy of a neuron https://qbi.uq.edu.au/brain/brain-anatomy/axons-
cable-transmission-neurons

membrane. Most of the time the potential is kept polarized near a constant -70 millivolt,
which is called the resting membrane potential.

The neuron is able to stay polarized because the ions cannot diffuse through the lipid
membrane. However, there are gates in the membrane called ion channels through which
diffusion according to the electro-chemical gradient is possible. When the membrane
depolarizes across a certain threshold, gates in the membrane open allowing positively
charged sodium ions to rush in. These channels are known as voltage gated ion channels
since the membrane voltage determines whether they open or not. This is in contrast to
ligand gated channels, for which a particular particle is needed to trigger the opening of
the gates.

Due to the intake of positively charged sodium ions the cell depolarizes further re-
sulting in the opening of the potassium gates. This allows positively charged potassium
ions to flow out of the cell according to the diffusion gradient. The leading role of the
sodium gates and the delay of the potassium gates results in a short period of extreme
depolarization. This is known as an action potential, which acts like a wave that travels
down the axon to the synapses [6]. Upon the arrival of the action potential at the synapse
the presynaptic membrane releases neurotransmitters that open the ligand gated sodium
channels on the postsynaptic membrane [7]. If enough neurotransmitter is released the
action potential propagates to the next neuron. After the event the sodium-potassium
pump restores the original equilibrium by transporting sodium out of the cell and potas-
sium into the cell. In this way the neuron restores for the next action potential. This
cycle of firing an action potential and recovering has a period in the order of milliseconds.

To summarize, different ion concentration in the cytosol and extracellular space result
in an electro-chemical gradient. This gradient allows a neuron to shoot electrical pulses
called action potentials. These fast pulses can be transmitted to other neurons.

2.1.2 Molecular clock

Apart from the electrical activity of a neuron the molecular clock is of great importance.
The neurons have an intrinsic rhythm of approximately 24 hours, which is established by
a genetic feedback loop comprised of several genes that are rhythmically expressed [8].
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Before discussing the circadian feedback loop the general process of genetic feedback
is described. In a neuron, a string of genetic code (DNA) is copied to a string of mRNA
in a process called transcription [9]. Unlike the DNA, mRNA is able to travel out of
the nucleus to the endoplasmic reticulum where proteins are synthesized according to
the genetic information carried by the mRNA. The step of protein synthesis is called
translation [9]. The proteins can enhance or block transcription of genes that code for
themselves or other proteins. In the case of positive feedback the protein is called a
transcription factor for a certain gene. In case the protein blocks the transcription it
is called a repressor. In the previously described process several genes and proteins can
interact in a so called transcriptional translational feedback loop (TTFL).

Let us now have a look at the circadian TTFL more specifically. The most important
genes involved in generating the circadian rhythm are Period (Per), Cryptochrome (Cry),
Clock, Bmall and Rev-Erba. However, nearly a thousand genes that affect the amplitude
of the rhythm and about one hundred that influence the period have been identified [10].
In the following a brief explanation will be provided about how the formerly introduced
circadian genes interact [11, 2, 8, 12, 13]. In this report genes are written with a single
capital letter and their protein products are written with all capital letters.

The Clock gene is more or less expressed continuously. It is transcribed and its mRNA
is translated such that the CLOCK protein forms. It binds with BMAL1 protein to form
a compound protein, a heterodimer. These BMAL1/CLOCK heterodimers are transcrip-
tion factors for the Per and Cry genes which means that the heterodimer enhances the
transcription of Per and Cry. Subsequently, mRNA concentration of the Per and Cry
genes rises. The Per and Cry mRNA travels out of the nucleus to form PER and CRY
proteins.

The PER and CRY protein form a complex that binds with the BMAL1/CLOCK
heterodimers which disables the BMAL1/CLOCK from enhancing Per and Cry tran-
scription.  Without BMAL1/CLOCK enhancing the transcription of the Per and Cry
gene the production of Per and Cry mRNA drops. Subsequently the PER and CRY
protein gradually decay over time leading the decay in complexes. The cycle starts over
again.

BMALL levels are also oscillatory. The BMAL1/CLOCK heterodimers also act as a
transcription factor on the Rev-erba gene. The REV-ERBa protein binds to the promotor
region of the Bmall gene and inhibits the transcription of the Bmall gene. Subsequently
translation of Bmall drops followed by a drop in BMALI protein concentration. REV-
ERBa protein consequently drops and the cycle starts over again. In this way the REV-
ERBa concentration follows Per and Cry concentrations. Figure 2.2 gives a schematic
representation of the feedback loop.

To summarize, clock genes and their products interact in a feedback loop. This
feedback loop results in a oscillation of approximately 24 hours. Therefore the molecular
process is considered to be very slow compared to the electrical part.

2.1.3 Interaction between electrical and molecular clock

There is a coupling between the electrical and molecular part of a neuron. The molecular
part is coupled to the electrical part via mRNA and protein concentrations which appear
to alter the permeability of the membrane [14, 15]. For example, the K channels are
believed to block with high concentrations of Per [16]. Subsequently, the electrical activ-
ity is coupled to the molecular part via Ca%" ion concentrations. During action potential
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Figure 2.2: Schematic representation of the circadian transcriptional translational feed-
back loop [1]

firing ions cross the membrane. The Ca?* net influx is enhanced by a depolarized mem-
brane potential. High concentrations of Ca?t enhance the transcription of the Period
gene.

In this section (2.1) it was shown that a neuron has an electrical part and a molecular
part. The electrical part, which acts on the time scale of milliseconds is very fast while
the molecular part, which acts on the time scale of hours is slow. The two parts are
coupled to represent a single neuron.

2.2 Interaction between neurons

So far only a single neuron was discussed. However, the SCN is a network of coupled
neurons. Therefore, the ways in which two neurons couple needs to be discussed.

At the cell membrane a neuron can interact with other neurons (and its environment).
This is done through electric and chemical signals. Most notable are gap junctions and
neuromodulator diffusion. Both will be discussed in the following sections.

2.2.1 Gap junction

A gap junction is a channel connecting two neurons which allows ions and small molecules
to diffuse from one cell to the other. It allows for nearly instantaneous pulse transmission
in neighboring SCN neurons [17]. The importance of gap junctions in establishing a stable
circadian rhythm is demonstrated by mice lacking the connexin36 protein that forms gap
junctions. These mice have distorted circadian behavioural and electrical rhythms [18].
Morecover, these mice also showed a rhythm with lower amplitude and a delayed onset of
activity.



2.2.2 Neuromodulators

Another important form of coupling is coupling by neuromodulator diffusion. Neuromod-
ulators are “drifting” particles that can alter the state of a neuron. After secretion (by
some neurons), neuromodulators diffuse through the extracellular space. When arriving
at receptors on a cell membrane they alter the state of a neuron in many different ways.
Neuromodulators can alter the permeability of the membrane of an observing neuron or
influence the cell’s TTFL through secondary messengers. There are many different neuro-
modulators, but only vasoactive intestinal peptide (VIP) is discussed here as it is believed
to be the most important neuromodulator in synchronizing the SCN [12]. VIP alters the
TTFL by raising the cAMP concentration which in turn enhances the transcription of
the Period gene. VIP secretion again is rhythmically expressed with the Period gene.

Note that there is arguably another important coupling mechanism: synaptic cou-
pling. This type of coupling is believed to act on the fast electrical system in a small-
world like network, which is a nearest neighbour network with random links across the
network (see corresponding Literature study [5]). Though important, synaptic coupling
is not considered in this research since its characteristics are believed to lay in between
those of gap junctions and neuromodulators. It can couple both electrically and chem-
ically with the fast time scale characteristic of gap junctions but with the more global
network characteristic of neuromodulator diffusion.

2.2.3 Conclusion

At the cell membrane two neurons can interact. This is done electrically, through gap
junctions and chemically, through neuromodulator diffusion. The electrical coupling is
fast (milliseconds) while neuromodulator coupling is very slow (hours). Gap junctions
couple locally while neuromodulator coupling spans the entire network.

2.3 Network structure

With adequate understanding in how two neurons couple a network of coupled neurons
can be evaluated. In constructing a reliable rhythm the network plays a key role.

One of the most important attributes of the network is the ability to synchronize
the neurons. Without this phase synchronization the average SCN output is (nearly)
constant since the phases of individual cells are uniformly spread over the 24-hour period.
This behaviour has been observed in dispersed cell cultures [13]. Here, the neurons are
uncoupled and no network oscillation was observed. Therefore, synchrony is needed to
create a rhythmic SCN output.

Moreover, it has been shown that while phases of individual neurons can be as far
apart as 2.5 hours the resulting average output is reliable and close to 24 hours [19]. This
demonstrates the normalizing property of the network. By averaging over many neurons
the SCN output is reliable even though the individual cells are not.

Not only can the phases of individual cells be far apart, but also the period of a single
neuron is not constant. The revolution of a single cell might take 23 hours one cycle but
25 hours the next cycle. The period of total SCN output, being the average of many
cells is far more reliable. This way the cumulative ability of the network also ensures a
reliable period [19].



(a) Local coupling in a distributed network (b) Global coupling in an all-to-all network.

The robustness properties demonstrate the importance of the network. However,
mapping the network structure is challenging. Even if one were to know exactly which
neuron couples to which neuron than still the strength of every specific link would be
unknown. Moreover, the network changes over time with new connections being made at
any moment (synaptic plasticity) [20].

However, the basic network structures at which interaction takes place is known.
Gap junctions couple in an undirected distributed network, an example of which can be
seen in Figure 2.3a. Neuromodulator diffusion coupling creates an all-to-all network (or

some-to-all depending on receptor mismatch), an example of which is shown in Figure
2.3b.

2.4 Conclusion

The goal of this chapter was to familiarize the reader with the biological model of the
SCN. In order to do so, a single neuron, coupling between two neurons, and the network
were discussed.

The single neuron can be partitioned in a fast electrical and a slow molecular part.
Both parts interact via the membrane permeability and the calcium ion concentration.
Two neurons couple electrically and chemically through two important coupling mecha-
nisms: gap junction coupling and neuromodulator diffusion. Gap junction couple locally,
electrically and fast while neuromodulator diffusion couples globally, chemically, and
slowly.

The network is crucial in creating a reliable oscillating output. The precise network
is not well understood. However, it is believed that gap junction couple in a distributed
network while neuromodulator coupling couples in an all-to-all network.
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Chapter 3

Single Diekman neuron

Since data collection in the biological system is very challenging, a mathematical model
of the SCN is used for this research. One of these is the Diekman model which is highly
suitable for this research due to its biological plausibility and simplicity. This chapter
provides an analysis of the single Dickman neuron. The goal of this analysis is to find
out what causes an oscillating output, how to separate timescales, and creating models
for each timescale.

Firstly, an overview of the model is given in section 3.1. The different parts of the
model are discussed and the different states are introduced. Secondly, the time scale
separation principle is introduced in section 3.2. Using the time scale separation principle
the model is split in a fast and a slow system. The fast electrical subsystem is analyzed
in section 3.3 while the slow molecular subsystem is treated in section 3.4. Next, the
interaction between the time scales is discussed in section 3.5. Finally, an alternative
model for the slow dynamics is derived in section 3.6.

3.1 Overview of the model

As discussed in Chapter 2 there are two cell processes, namely the electrical and genetic
(or molecular) of interest when describing the circadian rhythm of an SCN neuron. The
Diekman model describes exactly those processes by combining a Hodgkin-Huxley-like
electrical model [21] with a Goodwin-like molecular model [22]. For readers not familiar
with the model a brief introduction is provided here while a more extensive analysis
follows in sections 3.3 and 3.4.

The Diekman model has 13 states of which 10 represent electrical variables and 3
represent molecular variables [23]. The states are listed in Table A.1. The full model
can be found in Appendix A. The electrical model describes the potential across a mem-
brane (x;) using Ohm’s law with nonlinear resistances. The resistances are determined
by gating variables x5 to xg which represents the fraction of membrane channels that are
open or closed. In addition, the Diekman model also describes two calcium concentration
states (zg and x19). The first of these states represents the concentration near the cell
membrane while the later represents the concentration in the cytosol. The molecular
model describes the transcription and translation of a single gene in mRNA (1), its cor-
responding protein (z12), and activated protein (z13). The electrical part manipulates the
molecular part through the calcium concentration (x19). The molecular part influences
the electrical part by altering the permeability of the membrane through the activated
protein concentration (z13). Note that this is conform with our biological representation
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Figure 3.1: Schematic representation of the interaction between the electrical (El) and
molecular (Mol) subsystems. The electrical subsystem can subsequently be split in a part
describing the membrane states (MV) and the calcium states (Ca).

Table 3.1: State numbers to names

State number Symbol Unit Description

1 Vm mV  Mebrane voltage

Ty m - a Na gating variable

x3 h - a Na gating variable

Ty n - K gating variable

x5 rL - Ca?* long lasting gating variable

Tg rNonLL - a Ca?" not long lasting gating variable

7 fNonL. - a Ca®" not long lasting gating variable

T s - Ca?"-dependent potassium gating variable
Tg Ca_s mM  Ca?* concentration near the cell membrane
10 Ca_c mM  Ca?" concentration in the rest of the cytosol
11 mRNA mM mRNA concentration of a general clock gene
T19 P mM  Protein concentration

13 p* mM  Phosphorilated protein concentration

given in Chapter 2. Figure 3.1 shows a graphical representation of the interaction in the
model in which the molecular subsystem affects the membrane states (MV) which alter
the calcium concentration. In turn the calcium states affects the molecular subsystem.

To summarize, the Diekman model consists of an electrical and a molecular part. The
two subsystems influence each other through states x1¢ and 3. In the following section
the electrical and molecular subsystem are split using the time scale separation principle.
This will allow for a more effective analysis.

3.2 Time scale separation principle

Recall from Chapter 2 that the molecular system is very slow with a period of approx-
imately 24 hours while the firing of action potentials is a very fast process on the time
scale of milliseconds. This double time scale property has also been incorporated in the
Diekman model. However, the double time scale makes analysis both analytical and nu-
merical challenging. For a more effective analysis the Diekman model is split into two
parts: the fast dynamics and the slow dynamics. This is known as time scale separation.
The goal of this section is to understand the concept of time scale separation and why
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it is useful for the Diekman model. In order to do so, first, an example demonstrating
both time scales is provided. Thereafter, the time scale separation principle is discussed
mathematically.

3.2.1 Example of the dual time scale property

In order to demonstrate the dual time scale property of a Diekman neuron a simulation
was conducted. A single Diekman neuron was implemented in MATLAB and the state
trajectories were estimated (for initial conditions near the periodic orbit). Figure 3.2A
shows the evolution of the x; state (the membrane voltage) over a period of 10 hours,
corresponding to the active phase of a neuron (day time). At the beginning of the
simulation the membrane is said to be hyperpolarized. The membrane is at rest at
approximately —67mV. As time increases (during day time) the membrane potential of
a neuron slowly rises to a point at which the neuron starts firing action potential. This
can be observed between hour 2 and hour 4 in the simulation. The average membrane
potential increases further and between hour 5 and hour 6 in the simulation the neuron
is at a highly-depolarized constant state. Thereafter, the neuron returns towards the
hyperpolarized state by going back through the spiking phase.

During these 10 hours a very slow cycle can be observed. For clarity, the slow cycle
is isolated (by increasing the stepsize of the MATLAB iteration) and plotted in Figure
3.2C. The cycle has a period of approximately 24 hours of which Figure 3.2C shows 10
hours containing one peak. In the report, the slow 24-hour time scale is referred to as
the circadian time scale. On this slow cycle seen in Figure 3.2A very fast oscillations can
be observed between hours 2-4 and hours 7-8. When zooming in on these oscillation, to
the order of milliseconds, Figure 3.2B emerges in which the firing of action potentials
can be seen. In the report this time scale is referred to as the millisecond time scale. To
conclude, the oscillation of the membrane potential consists of a slow oscillation, with
very fast oscillations on top. This is what is meant by the double time scale.

One can imagine that analysis of the system on both time scales is challenging both
numerically and analytically. Numerically, a single cycle with the double time scale is
rather difficult to estimate using bifurcation software (such as MATCONT and AUTO).
Analytically, the double time scale makes analysis needlessly complicated. Therefore the
system is split into a fast and a slow system using the so-called time scale separation
principle.

3.2.2 Separating the time scales

The goal of this section is to derive a method for splitting the time scales. This is done by
applying the time scale separation principle to a general fast slow system. Thereafter, a
more intuitive description is provided which demonstrates the applicability of the principle
on the Diekman model.

Consider a system with fast variable x and a slow variable y:

3.1
y=cg(x,y), with0<e<<1 (3.1)

Here € is a time constant representing the fast/slow ratio of the system. Since € is near
zero the y dynamics (in (3.1)) are very slow relative to the = dynamics.
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Figure 3.2: (A) Membrane oscillations during peak of circadian day showing both oscil-
lations on the slow circadian time scale as on the fast millisecond time scale. The result
is a slow oscillation with very fast oscillations on top. (B) Zoomed in on oscillations on
the millisecond time scale. (C) Single oscillation of the slow time scale.

Let us first evaluate the system on the fast time scale. This is encompassed by taking
the limit of € to zero for Equation (3.1) such that:

limy =0 (3.2)
e—0

The solution of (3.2) is a constant. Therefore, on the fast manifold the slow system can be
represented as a constant while the system (3.1) can be represented on the fast manifold
as:

i = f(r,c),
i (3.3)

where ¢ represents the solution of ¢ = 0.

Now the fast system is evaluated on the slow time scale. The dynamics of the fast
system on the slow time scale can be represented as the average of the fast system. In this
representation the method of averaging [24] is useful. Consider the fast system oscillating
in time ¢ with period T then the average of x is defined as:

#t) = /O (t)dt (3.4)

where Z represents the average of z. Therefore on the slow time scale the system of (3.1)
can be represented as:

1"
x:?'/o x(t)dt (3.5)
Y =eg(Z,y)
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Figure 3.3: Time scale separation in block scheme.

The usefulness of the time scale separation principle for the Diekman model can be
understood intuitively. The molecular model hardly changes on the timescale of seconds
or even milliseconds. Therefore, the molecular states can be assumed constant when
analyzing the electrical model on the millisecond time scale. On the other hand, a single
action potential is too fast for the molecular subsystem to track. Therefore, a single
action potential is not relevant for the molecular model on the circadian time scale.
However, it is the sum (or average) of these small oscillations that affects the molecular
state. Therefore, the average of the electrical output will be considered when analyzing
the molecular clock. Figure 3.3 shows the idea in a block scheme.

To summarize, in order to allow for effective analysis the Diekman model is to be split
into a fast and a slow system. This can be done by providing the fast electrical Diekman
model with a constant molecular input (x3) and providing the molecular Diekman model
with the average of the electrical signal (z0).

3.3 Electrical subsystem

This section aims to provide an in-depth analysis of the electrical part of the Diekman
model using the time scale separation principle. First, some of the differential equations
that result in oscillations seen in Figure 3.2 are discussed. Thereafter, the time scale
separation principle is used to split the fast and slow systems. Subsequently, the electrical
subsystem is analyzed using a numerical bifurcation analysis.

3.3.1 Differential equations of the Diekman electrical subsys-
tem

Recall that, as discussed in Chapter 2, the different ion concentrations on either side
of the membrane result in an electro-chemical gradient. Ions flow in and out of the cell
through special channels in the membrane according to the gradient. The Diekman model
represents this system as the electrical circuit, shown in Figure 3.4. Here the membrane
is modeled as a capacitor, the electro(chemical) potentials as voltage sources, and the
channels as nonlinear conductances (inverse resistance).

The dynamics of the circuit shown in Figure 3.4 can be caught in differential equations.
Using the capacitor equation one can derive the first differential equation of the Diekman

model:
AV, B o1,

dt Cm

This is an equation describing the membrane potential depending on the capacitance
parameter C,, and the net current across the membrane. The Diekman electrical model

(3.6)
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Figure 3.4: Electrical circuit of the electrical Diekman model

describes 7 different currents through the membrane:

Z I = Ing + Ik + Icar + Icanont + Ikca + Ikieak + INateak (3.7)

Currents Ixc, and Igeqr take the 13 molecular state as an input (to the electrical
subsystem). Through this input the molecular subsystem is able to affect the electrical
subsystem.

The currents of Equation 3.7 are calculated using Ohm’s law. One of these currents
is given here as an example (the rest can be found in Appendix A).

Ina(T1,72,73) = GnaTsw3(71 — Enag) (3.8)

Here Iy, represents the sodium current across the membrane. The (x; — Ey,) factor
represents the potential while gy,z3x3 represents the conductance (inverse resistance).
The states x5 and x3 represent the gating variables which take values between zero to one
depending on z; (and initial conditions). When x5 or x3 is zero all channels are closed
resulting in Iy, = 0 while if x5 and x3 take the value of one all channels are open and
the maximum conductivity of gy, is reached resulting in Iy, = gne(21 — Ena)-

Similar to equation 3.8 states x4 to state xg are used to calculate the other ion currents.
The ion currents alter the ion concentrations in the cell. Out of all ion concentrations
only the Ca?" concentration are of interest as high Ca?" concentrations enhance the
production of the Period gene (Chapter 2). The currents can be used to calculate the
concentrations of calcium such that state xq is described by

t10 = —k10(Icar + Icanonr) — T10/T10 + b1o (3.9)

As can be seen, the state x1o is a function of the calcium currents, a decay, and a base
(b1o). The electrical 1o state forms the input to the molecular subsystem which will be
discussed later.

To summarize, the electrical subsystem can be represented as a circuit in which the
membrane represents a capacitor an the channels nonlinear resistors. Using the capac-
itor equation and Ohm’s law the currents and the membrane potential are calculated.
Subsequently, the calcium currents can be used to calculate the calcium concentration
in the neuron. The resulting Diekman electrical model consists of ten states with one
“external” input x,3, provided by the molecular part.
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3.3.2 Response of the fast subsystem

The goal of this section is to investigate the emergence of the fast action potential spiking
seen in Figure 3.2B and to understand how the molecular x5 input effects this event.
In order to do so, the time scale separation principle was applied in combination with a
bifurcation analysis.

Recall that Figure 3.2 shows that only for certain time periods the electrical subsystem
is oscillatory on the millisecond time scale. Since slow state x13 is the only input to the fast
electrical subsystem, it was hypothesized that only for certain x5 inputs the membrane
potential is oscillatory on the millisecond time scale.

In order to investigate this hypothesis, a bifurcation analysis was conducted using
MATCONT. Recall that 13 is very slow such that when analyzing the fast electrical sys-
tem a constant x13 can be used. Therefore, the input constant x3 is taken as bifurcation
parameter. The bifurcation parameter was initiated at zero and slowly increased. Two
Hopf bifurcations were found. One at x13 ~ 0.00711 and one at x13 =~ 0.00952. The
stable equilibrium disappears through the first bifurcation only to reemerge through the
second. Figure 3.5 show the membrane potential as a function of x13. It can be observed
that the subsystem indeed oscillates for a range of z13 inputs while resulting in constant
steady state anywhere else. Moreover, it can be observed that the amplitude of the signal
greatly varies with different x,3 inputs.

Let us now zoom in on different areas of Figure 3.5 and view the solutions in time
(rather than in z,3). Figure 3.6 describes the responses in time for four different x5
inputs. For high x,3 the membrane potential is at a low constant steady state seen in
Figure 3.6a. When x5 is decreased the constant steady state gives way to oscillation seen
in Figure 3.6¢. In case x13 decreases further the amplitude and period drop resulting in
trajectories such as seen in Figure 3.6b. For yet lower 215 inputs the subsystem undergoes
the Hopf bifurcation resulting again in a constant steady state.

To conclude, the emergence of fast oscillations in the electrical subsystem results
from the state x3 crossing a region bounded by two Hopf bifurcation. In between these
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Figure 3.6: Different modes of the membrane potential depending on x;3.

thresholds the solutions oscillate while outside these thresholds the solutions reach a
constant steady state. When looking at Figure 3.2 it can be concluded that the circadian
oscillations of x5 cross the Hopf bifurcations twice every circadian cycle resulting in a
time period characterized by fast action potential spiking.

3.4 Molecular subsystem

This section aims to provide an in-depth analysis of the molecular subsystem. In doing
so, first some trajectories of the molecular states in a Diekman neuron are evaluated.
Thereafter, the differential equations are addressed. Finally, the response to an x1¢ input
is discussed.

3.4.1 Trajectories of the molecular states

A single Diekman neuron with initial conditions near the periodic orbit was simulated
in MATLAB. Figure 3.7a shows the trajectories of the three molecular states for a time
period of approximately 70 hours. Every cycle consists of a peak in mRNA concentration
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Figure 3.8: Interaction of the molecular states with input x;9. Sharp arrows indicate
enhancement while blunt arrows indicate repression.

(x11), followed by a peak in protein concentration (1), followed by a peak in activated
protein (z;3). Note that this corresponds with our biological representation from Chapter
2. The period of the circadian oscillations is approximately 21.5 hours. This is a little
low with respect to biological observations which are in the range of 21-26h [13].

3.4.2 Differential equation of the Diekman molecular subsystem

The molecular states interact in a feedback loop represented by Figure 3.8. The external
T state represents an external input to a feedback loop of states xq1, x19, and x13. The
Equations (3.10),(3.11),(3.12) describe the interaction of the states more precisely:

11
T12

T3

= a (CRE(xy9)Ebox(z13)" — x11) ,

= a(ﬂ?n - $12)

a(ryy — 13)

Y
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Ebox(z13) = <
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Here CRE(x19) is a nonlinear function describing the maximum rate at which the
mRNA (state z1;) can be produced. The electrical state z19 is an external input to
the molecular subsystem. FEbox is a measure of how strongly x,3 inhibits zi;. If x5 is
low the fraction Ebox becomes close to 1 meaning that the maximum transcription rate
CRE(z10) of mRNA (in Equation (3.10)) is asymptotically reached. However, if x13 is
high the fraction Ebox becomes close to zero meaning that the transcription of mRNA is
low. In the Ebox function k; is equal to the concentration of x13 at which x1; production
is half the maximum value. The value @ in Equations (3.10),(3.11),(3.12) describes a time
constant. The value of a (a = 5.6-107%) can be seen as the very small value of € used for
the time separation principle seen in Equation 3.1. The Hill coefficient, n, is a number
that represents the amount of protein that is needed to bind to the promotor.

To conclude, the molecular subsystem describes the concentration of three substances
that interact in a feedback loop. The only external input to the molecular subsystem is
the electrical state xp.

Remark The CRE(z19) function used in this report is a different function that the
original Diekman C'RF(x)9) function. The original CRE = 10° - Ca. — 75 ([23] p.9)
is changed to CRE = max(0,10° - Ca, — 75). This is done such that the CRE(z10)
function only yields a positive term. This alteration is validated by the insight that the
function C RE(x1g) is an activation and therefore cannot take negative values. Moreover,
a negative C RE(x19) forces the molecular states to become negative as well. Since these
states describe concentrations this cannot be the case. When referring to the Diekman
model in this report this alteration is included.

Remark This section may have given the impression that the parameters of the Diek-
man model can be chosen at will. The Diekman model, however, comes with a specific
parameter set which has been validated using biological data. For the sake of biological
plausibility this parameter set is not altered throughout this report. The Diekman pa-
rameter set can be found in Appendix A.

3.4.3 Response of the slow subsystem

The uncoupled molecular Diekman model is now evaluated in much the same way as
the electrical subsystem. The time scales are split and the model is analyzed using a
bifurcation analysis. The molecular subsystem has three states and one external input
x109. Using the time scale separation principle it was demonstrated that the fast x1q input
is perceived by the slow system as the average of x1g, represented by Z19. Recall that the
bifurcation analysis of the fast clectrical system was relatively easy as only one constant
input needed to be considered. This is not the case for the slow molecular system. On
the circadian time scale the input Tiq is not restricted to constant Z;o. The input can
also be of oscillatory nature (on the circadian time scale). Therefore, the analysis is split
into the case for which Z;q is constant and the case for which Z¢ is oscillatory.

Constant ;5 input

First, the case for which the input Z;o is constant is evaluated. The molecular model
was implemented in MATCONT and a bifurcation analysis was performed using 7o as
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Figure 3.9: A molecular system is driven with an x;g signal oscillating on the circadian
time scale.

a bifurcation parameter. The bifurcation parameter was varied over the range [0, 100].
The molecular subsystem was found not to oscillate (in steady state) for any Zjo input.
Figure 3.7b shows an example for the trajectories with arbitrary constant z;o = 0.2 and
arbitrary initial conditions. Since a constant Z;o for which the molecular oscillates cannot
be found numerically it was hypothesized that the Diekman molecular subsystem does
not oscillate for any constant z;y input.

In order to investigate this hypothesis, a local stability analysis was performed an-
alytically. This was done by evaluating the stability of the system around its unique
equilibrium. It was demonstrated that for any constant input a unique and stable equi-
librium exists (using the Diekman parameter set). The calculations can be found in
Appendix B.

Oscillatory z;y input

When evaluating the response to an oscillatory 7o input is evaluated, all kinds of fre-
quencies and amplitudes can be chosen. However, a good start would be evaluating the
autonomous circadian oscillation of 219 of a combined (electrical and molecular) neuron.
In this analysis the x19 input is chosen as the x;y that a molecular subsystem would
perceive in a combined (electrical and molecular) system.

The configurations of the simualton are represented in Figure 3.9a. The initial condi-
tions of the combined model are chosen near the periodic orbit. The separated molecular
system A is initiated identical to the combined molecular system B.

Figure 3.9b shown the trajectories of both subsystems. At the start of the simula-
tion the separated subsystem A appears to oscillate identical to connected subsystem B.
After some time the separated subsystem A starts oscillating with double period and an
increased amplitude. The separated molecular system A seems to be unable to track the
circadian oscillations of Z19. Instead, it only peaks every other cycle compared to T
(which peaks approximately every 24 hours). This is a interesting result for two reasons.
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First, identical molecular systems respond differently to identical ;o input signals. It
was therefore hypothesized that the molecular subsystem needs feedback through the
electrical subsystem to oscillate properly. Second, applying the circadian Z;9 input to the
molecular subsystem does not result in a model for the slow system.

The objectives of this section were to find the origin of the circadian oscillations and
to create a model of the slow dynamics. First of all, it was found that the molecular
subsystem does not oscillate for constant input Z;9. Recall from section 3.3 that the
electrical subsystem does not oscillate on the circadian time scale. Consequently, the
origin of the circadian oscillations was not found. Therefore, it is hypothesized that the
circadian oscillations must be the result of coupling between the two subsystems. Second,
at the start of this section it was assumed that feeding the molecular subsystem with the
average of T1g results in a model of the slow dynamics. However, this is not the case as
feeding 7, into the molecular model does not mimic the slow Diekman oscillations seen
in Figure 3.9b. Consequently, it is hypothesized that in order for the molecular subsystem
to express circadian oscillations, a feedback through the electrical subsystem is needed.

3.5 Emergence of oscillations on the slow time scale

In the previous section it was discussed that the molecular model requires an oscillatory
input to exert oscillations. In addition, the electrical system also requires a driver to os-
cillate on the circadian time scale. Both the electrical and the molecular system are not
self-oscillatory on the circadian time scale. Therefore, it was hypothesized that the oscil-
lations on the circadian time scale originate from coupling between the two subsystems.
The goal of this section is to find out if the interaction results in circadian oscillations.

In order to evaluate the interaction, the time scale separation principle is used to
determine the steady state solutions per time scale. The electrical system was given 130
different constant x5 inputs equally spaced between 0 to 0.013. The steady state values
of 119 were derived for every corresponding x;3 input. In case the constant input resulted
in an oscillating xy input the average of x5 was taken. The data points were collected
and plotted in Figure 3.10. Now the constant steady state values of the slow system for
any given Tio input were calculated. The result was also plotted in Figure 3.10.

Figure 3.10 describes the lines to which the two subsystems are attracted. When
starting at a certain point in the phase plane and alternately exciting the fast and slow
system one can draw the arrow graph in Figure 3.10b. First the slow system is simulated
for hours in order to reach its steady state: a point on the molecular steady state line.
Thereafter the fast system is excited for just a second. The fast system shoots towards its
steady state on the electrical steady state line. Then this 7 is used to excite the molec-
ular system. Note that the solutions start rotating in a clockwise manner demonstrating
the emergence of oscillations. There appears to be an unstable equilibrium where the
steady state lines cross. The steady states deviate from the equilibrium towards the limit
cycle shown in Figure 3.10b.

In summary, both the molecular and electrical system are individually not oscilla-
tory on the circadian time scale. However, when coupled the combined system exerts
oscillations due to the revolution in steady state solutions.
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Figure 3.10: Steady state per system

3.6 Switch models

The goal of this section is to derive a model of the slow dynamics of the Diekman neuron.
Previously, it was hypothesized that feedback through the electrical system is needed for
the molecular system to oscillate on the circadian time scale. Therefore, deriving a model
for the slow dynamics is believed to be equivalent to describing this feedback.

3.6.1 A model for the slow dynamics

Let us start by looking at Figure 3.10 once more. The figure suggest a strong relationship
between state 19 and state xi3. Instead of feeding the molecular state xy3 through the
electrical system to find the corresponding 7y value Figure 3.10 can be used as a lookup
table. On the slow time scale this makes sense since the molecular subsystem is not
interested in w19 but rather in ;9. Moreover, Ty is fast (compared to z13) and therefore
is assumed to be at steady state instantly (Zi9 & Z19ss). The result is a model of the
slow dynamics that uses Figure 3.10 to bridge output 3 to input x(.

The 71 curve in Figure 3.10 is just a set of data point. In order to use the data set, it
has to be translated to the continuous domain. Using the MATLAB curve fitting toolbox
equation g(x13) was fitted on the data set.

g(z13) =d- (=1/(1 +exp(—a- (x —Db))) + 1)+ ¢, with

a = 2665
b = 0.007473 (3.15)
¢ = 6.184¢ — 05

d = 0.0004121

Subsequently the smooth switch model was derived:

ill =a (h(l’lg) — IH) Wlth h(.flg) = CRE(Q($13))E()OZ’(CU13)4,
i1 = a(r1 — T12), (3.16)

T13 = a(r12 — 713),
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Here h(z13) includes the newly created g(x;3) function. It is a monotonically decreasing
function such that when x5 is low h(z13) is high and vise versa.

The newly created smooth switch model is an elegant and very simple representation
of the circadian dynamics of the Diekman model. However, the smooth switch model
can be further simplified. Instead of a logistic function a heaviside step function can be
used. Namely, T19 ~ 4.72-107* for 213 < 81072 and Z1o ~ 5.78 - 107> for x5 > 8- 1073,
Depending on the value of 215 the model switches between Z;p = 4.72 - 10~* and 7,y =
5.78 - 107°. When the output of the system is low the input is switched on. When the
output subsequently becomes high, the input is switched off. Using the MATLAB curve
fitting toolbox the following heaviside function was found:

Gheaviside(1) = 4.72 - 107*—(4.1420 - 10™*) - heaviside(x — @), with

(3.17)
a = 0.0073

The molecular subsystem with a heaviside switch results in the so called switch model.
A graphical representation of the switch model is given in Figure 3.11.

3.6.2 Trajectories of the switch models

In order to demonstrate the switch models, the trajectories of both models are evaluated
and compared to the original Diekman trajetories. The trajectories of the switch and
smooth switch model seen in Figure 3.12 are similar to those of the combined Diekman
model seen in Figure 3.7a. The periods as well as the amplitudes of both switch models
appear to be similar. The first state of the switch model (x17) is a little more “spiky”.
However, after integrating this signal twice in order to come up with state 3 this is
hardly visible anymore.

To conclude, the smooth switch and the switch model represent the Diekman model
on the circadian time scale. Both models vastly simplify the electrical Diekman model
while preserving the molecular subsystem. Both switch models are extremely useful as
they allows for analysis using bifurcation software.

3.7 Summary and conclusion

The goal of this analysis was to find out what causes an oscillating output, how to separate
timescales, and creating a model for each timescale. First, the time scale separation
principle was discussed. It was shown that the fast time scale can be represented by
replacing the slow variables with a constant. The slow time scale can be represented by
replacing the fast variables with their average.
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Figure 3.12: Comparison between the trajectories of the smooth switch and the switch
model

Thereafter, the Diekman model was split in a fast and a slow part. The fast system was
analyzed with a constant ;3 input conform with the time scale separation principle. Two
Hopf bifurcations spanning a domain of oscillations were found. The electrical subsystem
starts oscillating when it is exited with values of x5 in between the Hopf points.

Subsequently, the slow molecular subsystem was considered. It was found that the
molecular subsystem is not self-oscillatory. Besides, it does not oscillate with a constant
x19 input. Moreover, the molecular subsystem does not represent the circadian oscillations
of the Diekman model when an oscillatory x5 input is given. Therefore, it was concluded
that coupling with the electrical subsystem is needed for the emergence of circadian
oscillations. Using this insight the switch and the smooth switch model were derived.
These models describe the Diekman model on the circadian time scale.
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Chapter 4

Two coupled neurons

As discussed in Chapter 2, many of the interesting properties of the SCN such as syn-
chronization do not appear in a single neuron but rather in a network of coupled neurons.
Therefore, the single Diekman neuron case is extended to a network setting. As a first
step towards more complex networks, this chapter analyzes the most basic network: two
coupled neurons. The goal of this chapter is to find out if two neurons can synchronize
when coupled by gap junctions, neuromodulator coupling, or both. This coincides with
the first three research questions.

In order to understand these questions first a few definitions of synchronization are
discussed as well as a general coupling model. Thereafter, diffusive coupling, a model
for gap junction coupling is discussed. Thereafter, neuromodulator coupling is discussed
using the Gonze model [25]. Finally, the combination of gap junction coupling and
neuromodulator coupling is discussed.

4.1 Coupling and synchronization

Since we are dealing with a mathematical model of a single neuron, the coupling needs
to be defined mathematically. Moreover, an important result of this coupling is the
synchronization the neuron outputs. Therefore, a few mathematical definitions regarding
synchronization are provided here.

Coupling

First the coupling is discussed in a very general sense. Consider two identical coupled
neurons ¢ and j. The dynamics of the i-th neuron can be described using a state space
representation such that:

yi = Cx; (4.2)

Here, x; € R"™ represents the statevector of the i-th neuron and n represents the number
of states. The vector f(x;) contains n functions translating the state values x; of the i-th
neuron to the rate of change &; of the i-th neuron. The input u; € R™ describes the input
of the i-th subsystem with m being the number of inputs. The output y; € RP represents
output of the ¢-th neuron with p being the number of outputs. B € R™™ represents
the control matrix which determines how the system input affects the state change. The
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output matrix C' € RP*™ determines the relationship between the system states and the
system output. The neurons are identical, hence f, B, and C' do not depend on 1.

In our SCN network model any external inputs to the network are absent. In this
research the network is considered to be autonomous, so the only input to any neuron is
the output of other neurons. In our two coupled neuron network this simply means that
the output of neuron 7 influences the input of neuron j and vise versa such that:

U; = gij(yiayj)a

(4.3)
Uj = gji(?/ja yi)

where g¢;;(y;,y;) represents the coupling function of any two coupled neurons ¢ and j
depending on outputs y; and y;. So, the input of a neuron is a function of the outputs of
individual neurons. The coupling function g;; describes a specific type of coupling. In the
following sections this function will be specified for both forms of coupling (gap junctions
and neuromodulator diffusion).

Synchronization

Through the coupling function the outputs y; and y; can be altered. A special case
emerges when the coupling function drives the state error between two neurons to zero.
The two systems are now said to synchronize.

From a mathematical perspective this means that the states of two neurons of a
networked dynamical system, x; and x; converge to the same synchronized state x such
that

z;(t) = z5(t) and z;(t) = z5(t) as t = o0 (4.4)
The result is that:
tlim |zi(t) — z;(t)] =0 (4.5)
—00

However, when applying this general notion of synchronization to the Diekman neuron
problems are encountered. As a start, the ¢ — oo condition is confusing. On the fast
time scale t — oo can be estimated by taking ¢ in the order of minutes whereas on the
slow time scale the limit is estimated by taking ¢ in the order of weeks. Therefore, the
notion of output synchronization is provided.

Definition 4.1.1. Consider system 5.2-5.3 with output w; = z,,; where z,,; is any ob-
servable state n of neuron i. Neurons ¢ and j output synchronize in case w; and wj
converge to the same synchronized state ws such that

w;(t) = ws(t) and w;(t) — ws(t) as t — o0 (4.6)
The result is that:
ltlim |w;(t) —w;(t)] =0 (4.7)
—00

Note that the output y; is used in coupling the neurons whereas output w; is used to
measure synchronization.

Definition 4.1.1 is useful when analyzing synchronization in a analytical way. However,
using a numerical approach it will not be of much help. Due to numerical errors the output
error does not reach zero, but instead becomes small. In order to accommodate this case
a more practical definition of synchronization is given.
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Definition 4.1.2. Consider output w; = x,,; where z,; is the observable n-th state of
neuron 4. Neurons ¢ and j oscillate in practical output synchrony in case

(s — w)) (O] < B Il (s — wy)(O)]]) + 9, with 8 € KL (4.8)
where 3 is a class-KL function !, f(t) is a function of time, and ¢ is sufficiently small.

To summarize, a general coupling setting as well as some definitions of synchronization
were discussed. First, it was demonstrated that in an autonomous (two cell) network the
collective of outputs of the neurons form the inputs to the individual neurons. Thereafter,
a definition for synchronization was provided. In addition, two definitions for output
synchronization were provided.

4.2 Diffusive coupling

One of the important means of coupling, discussed in Chapter 2, is gap junction coupling.
This section aims to investigate diffusive coupling, which is a model for gap junction
coupling. The goal is to evaluate the first research question: “Can two SCN neurons
synchronize when they are only coupled by gap junction coupling?”

In order to do so, first the diffusive coupling model is introduced. This model pro-
vides a function for the coupling function g;; from Equation (4.3). In section 4.2.2 it is
demonstrated that two Diekman neurons coupled by diffusive coupling can synchronize.
However, this is not always the case and hypotheses regarding the stability of the syn-
chronous solution are formed. Thereafter, the electrical subsystem is analyzed in section
4.2.4. Finally, the molecular subsystem is analyzed in section 4.2.5.

4.2.1 Diffusive coupling as a model for gap junctions

The goal of this section is to introduce diffusive coupling and implement it into the
Diekman model. In order to do so, the input and output of the Diekman system are
defined. Thereafter, the coupling function (from Equation (4.3)) is derived. Finally,
some implications of diffusive coupling on the Diekman model are addressed.

Recall from Chapter 2 that a gap junction was represented as an ion channel between
two neurons. Several ions can flow through this channel and alter the local membrane
voltage of a neuron. As discussed a local depolarization of the membrane voltage increases
the permeability of the membrane resulting in an action potential. The action potential
can subsequently result in a depolarization of the membrane voltage of another neuron
across a (different) gap junction. In this way electrical signals can be transmitted from
one neuron to the next.

In diffusive coupling the gap junction is represented as an electrical resistance. The
input u to a neuron is the current though the channel and can be summed with the other

'Consider class-KL function 3(r, s) then [26]:

B(r,:) € K: strictly increasing and 5(0,-) =0
B(-,8) € L: strictly decreasing and l'gn B(-,s) =0
S o0
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ionic currents in the first differential equation of the Diekman model (see Appendix A)
such that:

jjl _ Itot(x)’

Cm

The current across the channel is determined by the difference in membrane potential
between the two neurons (and the resistance). The membrane potential of a neuron is
taken as an output. Using Ohm’s Law the current across is calculated by multiplying the
conductance (inverse of the resistance) with the difference in membrane potential of the
neurons. The result is the diffusive coupling equation for neurons i and j [27]:

with Tt = > Tion + 1 (4.9)

w =o(y; —y;), with y; =,

(4.10)
u; = o(y; —y;) = —u;

The coupling strength o represents the conductance of the membrane. Note that Equation
(4.10) is a specification of the general coupling equation (4.3).

Now that a mathematical gap junction model has been introduced the model is eval-
uated more intuitively. When the output y; in (4.10) is lower than the output y; a
negative input u; will be received by the i-th neuron. In case y; < y; a positive input will
be received by the i-th neuron. Consequently the input for u;; = —u;;. In a biological
representation this means that when the membrane potential of neuron i is lower than
the membrane potential of neuron j (y; < y;), a current from j to ¢ occurs. Subsequently,
when the membrane potential of neuron j is lower than the membrane potential of neuron
i (y; < yi), a current from ¢ to j occurs. Note that when both membrane potentials are
equal the coupling functions becomes zero. In fact, when a network of identical neurons
coupled by diffusive coupling is synchronized, the coupling disappears.

To summarize, for diffusive coupling a difference in membrane voltage drives a current
from one neuron to the other. The in flow from neuron ¢ to neuron j is equal the out
flow from neuron j to neuron ¢. In this way, the difference in membrane voltages and the
conductance dictate the input to a neuron.

4.2.2 Exploratory simulations and hypotheses

With diffusive coupling defined and implemented in the Diekman model, the dependence
of the network solution on the coupling strength o is investigated. The goal of this
section is to explore the network solutions numerically, and to form a conjecture on how
the coupling affects the network solutions.

Exploratory simulations

Two Diekman neurons were coupled by diffusive coupling and simulated using MATLAB.
Both neurons were initiated with a phase delay of 7 hours. The synchronizing property
was investigated by varying the coupling strength between the neurons. Figure 4.1 shows
the trajectories of electrical states x; and molecular states x1; of both neurons on the
circadian time scale for three different coupling strengths. It is observed that for a
coupling strength of ¢ = 0.001 both neurons do not synchronize as can be seen in Figure
4.1a. For this coupling strength (and these initial conditions) a non-synchronized solution
is observed. For a coupling strength of ¢ = 0.1 both neurons synchronize in the sense of
definition 4.1.2. This can be observed in Figure 4.1b. Finally, for a high coupling strength
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Figure 4.1: State trajectories of x1 and x11 for low, middle, and high coupling strength.

of 0 = 5 only the electrical x; states synchronize (in the sense of definition 4.1.2) while
the molecular states x1; states do not synchronize.

The previous simulation indicates that for low coupling strengths two neurons do
not necessarily synchronize, for certain coupling strength both neurons synchronize while
for high coupling strength the neurons only some states synchronize. For high coupling
strengths the electrical states synchronize while the molecular states do not synchronize.

Hypotheses

Considering the results of the previous simulations it is hypothesized that:
1) For coupling strengths below a certain threshold two neurons do not necessarily syn-

chronize.
2) There is an upper threshold above which two neurons do not synchronize.

Since the electrical state do not appear to synchronize for a low coupling strengths, it is

hypothesized that:
3) The electrical subsystem has a lower threshold on the coupling strength for which the

synchronized solutions are globally stable.
4) The electrical subsystem does not have an upper threshold on the coupling strength

for which the synchronized solutions are globally stable.
Since the molecular states do not appear to synchronize for low coupling strengths and
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for high coupling strengths, it was hypothesized that:

5) The molecular subsystem has a lower threshold on the coupling strength for which the
synchronized solutions are globally stable.

6) The molecular subsystem has an upper threshold on the coupling strength for which
the synchronized solutions are globally stable.

The hypotheses can be summarized in Figure 4.2 which represents the steady state
solution depending on the coupling strength o. The lower threshold on the coupling
strength is represented by ¢ while the upper threshold is represented by &.

To summarize, the dependence of the solutions on the coupling strength was explored
using some simulations. The results indicated that different coupling strengths result in
different network solutions. Therefore, six hypotheses were formed regarding the depen-
dence of the solution on the coupling strength.

4.2.3 Estimating thresholds on the circadian time scale

The objective of this section is to investigate the first two hypotheses. Recall that due
to the double time scale property it is challenging to analyze the network solutions using
bifurcation software. Therefore, the solutions are further investigated in several MAT-
LAB simulations. The goal of the simulations is to evaluate the (global) stability of the
synchronized solutions depending on the coupling strength.

In general, all simulations have the same setup. Two Diekman neurons were initiated
at a particular steady state solutions and the coupling strength was varied. The goal is
to find the coupling strengths for which the initial state oscillation becomes unstable. In
order to do so, MATLAB was used to simulate the two-neuron network for a simulation
time of 30,000 hours. After 30,000 hours the neurons were assumed to have reached their
final states.

First, the initial conditions of two coupled neurons were chosen randomly. The cou-
pling strength was set low and simulations started. It was observed that depending on
the initial conditions the neurons either synchronize or not. For initial conditions that
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do not result in synchrony the neurons do influence each other. It was observed that
there are several stable (non synchronous) solutions depending on the coupling strength
and the initial conditions. One of these solutions was found to be particularly persistent
with increasing coupling strength. The following simulations were initiated in this state.
The coupling strength was set to a constant value and the trajectories were estimated
using MATLAB for 30,000 hours. In case the neurons synchronized the coupling strength
was lowered and the simulation was done again. It was found that a coupling strength
o > 0.0024 (£0.0001) is needed for the system to jump from this non-synchronized at-
tracting state to a synchronized state (in a time span of 30,000 hours). Subsequently,
the initial conditions were set to the synchronized state and the coupling strength was
lowered. In this case no coupling strength was found for which the synchronized state
becomes unstable (in a time span of 30,000 hours).

Finally, the upper bound on the coupling strength was evaluated. First, the initial
conditions were set at the synchronized state, the coupling strength was set at a low
constant, and the trajectories were estimated for 30,000 hours. In case the molecular
states stay synchronized, the coupling strength is increased. In case the synchronous
state persisted, the coupling strength was increased. It was found that the synchronized
state breaks down for ¢ > 1.02 (£0.01). Finally, the experiment was reversed such
that the initial conditions were set to the solution that was found for high coupling
strength. The coupling strength was set at a high constant value and the trajectories
were calculated for 30,000 hours. In case the neurons did not synchronize the coupling
strength was lowered. It was found that for o < 0.98 (£0.01) both neurons synchronize.

Considering the results of the previous simulations it was concluded that for lower
coupling strengths the solutions depend on the initial conditions. For these lower cou-
pling strengths the solutions of the network either synchronize or are attracted to a non
synchronous solution. Therefore, the first hypothesis was considered validated. More-
over, there is also an upper threshold, above which the synchronized solutions becomes
unstable. Therefore, the second hypothesis was considered validated.

Obviously, the values limits found in the previous experiments are a little arbitrary
since they depend on the simulation time, the accuracy, and the precision of the simula-
tion. These numerical limitations unable us to draw any definite conclusions. However,
the experiments provides us with workable thresholds for which synchronized trajectories
can be simulated.

Besides the numerical limitations, these simulations paint a rather local picture. Since
it is impossible to evaluate all possible initial conditions, only a very limited number of
initial conditions were tested in the previous simulations. Therefore, there might be more
types of network solutions than previously found. Moreover, only coupling strengths in
the range of o < 1.02 were evaluated. Higher coupling strengths were not used. Therefore,
possible alteration in stability for coupling strengths ¢ > 1.02 are not explored.

4.2.4 Two coupled electrical subsystems

Previously six hypotheses regarding the network solutions of the network dynamic system
were formed. The goal of this section is to evaluate the hypotheses regarding the electrical
subsystem. Recall the hypotheses:

1. The electrical subsystem has a lower threshold.

2. The electrical subsystem does not have a upper threshold.
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In order to evaluate the hypotheses, two coupled electrical subsystems are evaluated on
the millisecond time scale. First, a numerical analysis using MATCONT will investigate
the coupled electrical subsystem case. Thereafter, an analytical approach is used.

Numerical analysis

In order to evaluate the hypotheses, some simulations were conducted using MATLAB.
In addition, a bifurcation analysis was done using MATCONT.

First, two electrical subsystems were coupled in MATLAB. The goal is to derive the
dependency of the solution on the coupling strength on the millisecond time scale. In
order to represent the fast dynamics the x,3 input was set to a constant z;3 = 0.008
such that action potentials firing (see Chapter 3) with a period of approximately 117ms
occurs. The initial conditions of both neurons were set 45ms apart (near/on the periodic
orbit). Figure 4.3a shows the initial oscillations for two uncoupled electrical subsystem.
The simulation time was set to 2 minutes and every simulation the coupling strength was
varied.

It was found that for low coupling strength the solutions are attracted to a non
synchronous steady state. Figure 4.3b shows the steady state oscillations for a coupling
strength of o = 5-107°. Since for low coupling strengths it take a long time to reach
steady state, Figure 4.3b only shows the last 700 milliseconds containing the steady state
oscillations.

When the coupling strength was increased this non-synchronized steady state solution
was not found, but instead a synchronized solution was reached. Figure 4.3b shows an
example for a coupling strength of o = 0.005.

When the coupling strength is increased further both subsystems converge towards
the synchronized state rapidly. Figure 4.3d shows the trajectories for o = 50. Note that
the difference in initial conditions is hardly visible. Both subsystems synchronize almost
instantaneously.

Considering the results of the previous simulation it was concluded that there is at
least one attracting non-synchronized state at low coupling strengths. Besides, it was
found that for higher coupling strengths two electrical subsystems synchronize. It seems
that there is no upper limit to the coupling strength for which the synchronized state is
stable.

Before analyzing the synchronized steady state this non synchronous attracting steady
state is briefly addressed. The goal is to estimate the threshold for which the non syn-
chronous steady state becomes unstable. In another MATLAB simulation two coupled
electrical subsystems were initiated in the non synchronous state found previously. The
simulation time was set to 1 hour and the coupling strength was initially low but in-
creased with every simulation. It was found that for o > 3 - 10~* the non-synchronized
steady state solution disappeared and only the synchronized steady state solution was
found.

The stability of the synchronized state is analyzed by evaluating the Floquet multi-
pliers of the system. In Floquet theory the multipliers determine the orbital stability of
a system [28]. Among the multipliers there is always one equal to one. For a stable orbit
the others are smaller that one. Calculating the multipliers of high dimensional nonlinear
systems such as the Diekman model is challenging. However, MATCONT can be used
to estimate the multipliers. The goal is to derive conditions on the coupling strength
for which the synchronized state is stable. In order to do so, two coupled electrical sub-
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systems were implemented in MATCONT with both z3 set to x13 = 0.008 such that
action potentials firing (see Chapter 3) with a period of approximately 117ms occurs.
The coupling strength was taken as a bifurcation parameter. The initial state was set
to the synchronized state and the coupling strength was varied from 0 to the arbitrary
value of 100 with a maximum step size of 0.1. For every iteration the multipliers were
estimated. The largest multiplier found was p = 0.9356. Therefore, it was concluded
that the orbit is stable in the range (0,100]. Therefore, it was concluded that there is
no upper threshold on the coupling strength for which the synchronized state becomes
unstable (for ¢ € (0, 100]). Moreover, no lower threshold for which the synchronized
state becomes unstable was found.

To summarize, it was found that for low coupling strengths there is at least one
attracting non synchronous steady state. Moreover, the synchronized state is also stable
for low coupling strengths. Therefore, it was concluded that for low coupling strengths
multiple solutions exist. In this co-existence region, the solutions depends on the initial
conditions. Therefore, in this region two electrical subsystems do not necessarily end
up in a synchronized state. However, if a certain threshold on the coupling strength
is crossed only synchronized solutions are found. Moreover, no upper threshold on the
stability of the synchronized state could be found. However, only a limited range of initial
conditions and coupling strength can be tested. Therefore, analytical analysis will have
to provide a more definite answer.

Analytical approach

The numerical analysis of the two coupled electrical subsystems did not falsify the hy-
potheses. However, in order to truly validate the hypotheses an analytical approach is
desired. The goal of this section is to prove that two coupled electrical subsystems syn-
chronize if the coupling strength is above a certain threshold. In order to do so, the
synchronization theorem, that proves the emergence of synchrony for diffusely coupled
oscillators analytically, is used. In this section, first the synchronization theorem and
then the subordinate lemmas are introduced. Thereafter, the synchronization theorem is
tested for the electrical subsystem.

Theorem 4.2.1. [29] Consider two diffusely coupled subsystems and suppose that its
solutions are confined to a closed and bounded set Q? C (R™)?. Furthermore, let the
subsystems be internally exponentially convergent. Then, for the synchronized subspace
S, there exists a constant ¢ € R, such that if

o>a
the S contains a globally (in €2) exponentially stable subset.

The synchronization theorem tells us that, given some conditions, the synchronous
state is globally exponentially stable if the coupling strength is large enough. Considering
the exploratory simulation of section 4.2.2, it is hypothesized that Theorem 4.2.1 holds
for the electrical subsystem but Theorem 4.2.1 does not hold for the molecular subsystem
and combined Diekman neuron.

According to Theorem 4.2.1 the problem of examining the asymptotic stability of the
synchronized state is reduced to

1. Validating that the solutions of the individual neurons are bounded.
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Figure 4.4: Internal and external dynamics of a Diekman neuron

2. Evaluating the internally convergence property of the neurons.

The reader might be unfamiliar with both properties. Therefore, both properties are
addressed one at a time.

Definition 4.2.1. Consider a system consisting of n states. The solutions are said to
be forward invariant if there exists a compact set 2 C R™ such that z(t) € €, then
z(t+7T) € Qforal T > 0.

Definition 4.2.1 can be tested by calculating the equilibrium points of every state and
validating the vector field at the equilibrium points inwards (into Q).

Before discussing the internal convergence property, the internal and external dynam-
ics of a system are separated. In order to do so, consider system

T = f(z)+ Bu

f@) (4.11)

y=Cr

Using an invertible coordinate transformation z; — (z;, y;) system (4.11) can be separated
in internal and external dynamics such that

% = q(zi, 91), (4.12)
Ui = a(yi, zi) + CBu; = a(y;, z;) + u;, if CB is invertible (4.13)

Equation (4.12) describe the internal dynamics and (4.13) describes the external dynam-
ics.

By splitting the internal and external dynamics, a Diekman neuron is divided as
seen in the block scheme of Figure 4.4. The external dynamics process the input and
generate the output. The internal dynamics represent a feedback that steers the external
dynamics. For the Diekman neuron the external state is y = x;. The internal states are
states z;_19 = x5_13. Note that the split in internal and external states is different that
the split in electrical and molecular states.

Now that the internal and external dynamics have been defined the convergence prop-
erty is considered. A system is called convergent if it has “a unique, in a certain sense,
globally asymptotically stable solution, called the steady-state solution” [30]. The system
converges to the unique steady state independent of the initial conditions. The system
“forgets” the initialization and all point converge towards the same solution.
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Definition 4.2.2. [29] Consider the internal dynamics of subsystem (4.12) where y; is
defined on (—o0, +00) and takes values in a compact set Y C R. The system (4.12) is
called uniformly convergent, resp. exponentially convergent if the following two conditions

hold:

1. For all initial conditions z;(0), the corresponding solutions z;(¢) exist and are
bounded for all ¢ > 0;

2. for all initial conditions z;(0) there exists a unique solution Z;(t), defined for ¢ €
(—o0, +00) which is globally uniformly asymptotically stable, resp. exponentially
stable such that

lim ||2(t) — Z(¢)|| =0 (4.14)

t—o00

Note that the internal convergence property again requires the solutions (this time
the solutions of a single neuron) to be bounded. In order to validate the convergence of
a system, Lemma 4.2.2, which provides a sufficient condition is used.

Lemma 4.2.2. [29] There exists a positive definite matrix P such that the eigenvalues

of the matrix
dq dq ’
P (82(2,10)) + (az(z,w)> P

are negative and separated from zero. Here w represents the external signal taken for a
compact set W C R. If such a matrix P exists, the system (4.12)(4.13) is exponentially
convergent.

Qz,w) = (4.15)

To summarize, in order for two subsystems to synchronize the subsystems need to have
bounded solutions as well as convergent internal dynamics. The bounds of the solutions
can be calculated by evaluating the directions of the vector field at the equilibrium points.
The convergence of the internal dynamics can by proven by finding a P matrix that
satisfies lemma 4.2.2.

Application of theory to the Diekman neuron

Now that all the tools for proving the synchronization theorem have been discussed
the electrical subsystem is tested. First, the bounds on the solutions are calculated.
Thereafter, the internal convergence of the electrical subsystem is discussed.

Bounded solutions The Diekman differential equations (found in Appendix A) were
set to zero and at the zero points the direction of the vector field was calculated. It was
found that

Lemma 4.2.3. For the Diekman model there is a set Q C R'® such that z(¢) € Q then
z(t+T)eQforall T € R

Proof. Appendix C O

Note, that not only the electrical states are bounded but also the molecular states.
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Internal convergence The second requirement for the synchronization Theorem 4.2.1
is the exponential convergence of the internal states. Therefore, an attempt is made
to prove that the Diekman electrical subsystem is exponentially internally convergent.
This will incorporates the many of the previously introduced tools and definitions. The
strategy is as follows. First the invertible coordinate change of (4.12),(4.13) is used to
split the Diekman electrical subsystem into an internal and an external part. Thereafter,
the internal subsystem is split again using lemma 4.2.4 that has yet to be introduced.
Then, a matrix P that satisfies the condition of lemma 4.2.2 has to be found for every
partitioning of the subsystem. Since this is possible it is concluded that the subsystem
is exponentially internally convergent.

Let us start by first applying the invertible coordinate change of (4.12),(4.13) to the
Diekman electrical subsystem such that

Yy=mn a=fi
Z1 = T2 @ = f
2y = T3 Q@ = f3
23 = T4 a3 = fa
24 = Ts Q=[5
R5 = Tg q = fo
26 = Tt g6 = [
27 = Tg qr = fo
28 = T10 qs = fio
29 = Tg q = [8

Note that the order of the numbering is shifted (19 = zg). This is done so that every
internal state only depends on the external subsystem (y) and previous internal states.
In this way the cascade like nature of the system is emphasized.

In addition the relationship of the internal dynamics is represented in the block scheme
of Figure 4.5.

When looking at Figure 4.5 one can observe the cascade property of the system. This
is an important property because if the block [q1, .., gs] is convergent it means that block
[q1, -, gs] has a unique steady state output (regardless of initial conditions) with respect
to input y. Therefore, states z4, 25, and zg are uniquely described by y at steady state.
Subsequently, these states (together with y) form the input to the next block. The result
is a cascade of convergent states. Therefore, only the individual blocks that are connected
in series have to be evaluated. This approach is validated by lemma 4.2.4 for convergence
in series connected systems.

Lemma 4.2.4. [30] Consider the system

2= Q1(21.y)

) 4.16
2y = Qz(zl, 2272/) ( )

Suppose the z;-subsystem with y as input is convergent, and the zy-subsystem with (21, y)
as input is convergent. Then system (4.16) is convergent.

When applying lemma 4.2.4 to the Dickman electrical subsystem (represented in Fig-
ure 4.5) one can observe that the convergent system property needs to be evaluated for 4
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Figure 4.5: Block representation of the internal dynamics of the Diekman electrical sub-
system

subsystems ([¢1, .., gs], [¢7], [gs], [go])- It is proven that these subsystems are convergent by
finding a P that satisfies the condition of lemma 4.2.2 for every block of the subsystem.

The differential equation from Appendix A are used to calculate the jacobian ? of the
first block [¢1, .., ¢6]
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et 0 0 0 0 0

0 0 0 0 0
e 71 M1 +ﬁ
0 0 —etm 0 0 0 (4.17)
J[<117~~,%](y) = 1 .
0 0 0o -+ 0 0
0 0 0 0 -+ 0
\ 0 0 0 0 0 —ed s

The jacobian is a variable matrix that only depends on y. Since the jacobian is a diagonal
matrix the eigenvalues are on the diagonal. Note that the eigenvalues take only negative
values for y € R. Therefore, with P = I the condition in lemma 4.2.2 is satisfied with
I representing the six dimensional identity matrix. Therefore, it is concluded that the
[q1, --, gs] subsystem is convergent.

For the last three subsystems lemma 4.2.2 is to be evaluated for three partial deriva-

°The jacobian matrix J is a matrix with dimension N x N and on the entries the partial deriva-
tives of every function to every state such that for X = F(X,y) with X = [z1,72,...,zx5]7 and
F=[f1(X,y), f2(X,y), ..., fn (X, y)] the jacobian matrix is

gf_l BQJL
OF o o
J = ﬁ(Xa y) =\ -
Ofn ... Ofn
(9;111 61’1\!
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tives. The partial derivatives are:

1 Kigcakear 2y (Eca —y)

L o 418
lar) (Y 24, 27) tauca, (K> + 27)° o
1
" = (4.19)
7
Jigo)(77) = —20000 272 — o (4.20)

Note that Jj,g is a negative constant constant so P = 1 satisfies the condition of lemma
4.2.2. Moreover Jyg(27) is a negative value for z; € R. Therefore P = 1 satisfies the
condition of lemma 4.2.2. Finally, using the boundedness property from lemma 4.2.3
and the upper and lower bounds of y, z4, and z; (found in Appendix C) it is found that
Jign (Y, 24, 27) < 0 for all (y, 24, 27) € Q. Therefore using P = 1 the condition in lemma
4.2.2 can be fulfilled.

To conclude, all blocks from Figure 4.5 are convergent. Using lemma 4.2.4 about series
connection it is concluded that the combined electrical subsystem is therefore internally
convergent.

Exponential convergence Previously it was shown using the series connection lemma
4.2.4 that the electrical subsystem is convergent. The series connection lemma is useful,
however, it only guarantees convergence instead of exponential convergence. In order to
prove that the subsystem is also exponentially convergent, a matrix P that satisfies the
inequality of lemma 4.2.2 for the whole electrical subsystem is derived using a MATLAB
linear matrix inequality solver.

First, the bounds of the solutions found in Appendix C were substituted in the ja-
cobian of the electrical subsystem. This resulted in 64 static jacobian matrices that
span the space in which the dynamic jacobian “lives”. Thereafter, considering the series
interconnection the structure of matrix P was assumed to be:

It 0 0 0
oy 0 0

P=10 0 4 0 (4.21)
0 0 0

Finally, a linear matrix inequality solver was used in MATLAB to find the coefficients
1, Y2, and 3 that satisfy the inequality of lemma 4.2.2 for every static jacobian matrix.
It was found that:

v = 0.1272
Yo = 322.46 (4.22)
v5 = 3.440 - 107°

results in a matrix P that satisfies the inequality of lemma 4.2.2 for all static jacobian
matrices. Therefore, it is concluded that the Diekman electrical subsystem is internally
exponentially convergent. Since all criteria of the synchronization theorem have been
met, it is concluded that two Dickman electrical subsystems synchronize with sufficient
coupling strength.
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Summary and conclusion

The goal of this section was to evaluate the hypotheses regarding the electrical subsystem.
Using numerical analysis it was found that two coupled electrical subsystem have a lower
threshold above which two subsystems synchronize for all initial conditions. Furthermore,
it was proven analytically using the synchronization theorem 4.2.1 that there is indeed a
lower threshold but no upper threshold. Therefore, both hypotheses are validated.

4.2.5 Molecular subsystems

After the electrical subsystem was evaluated the molecular subsystem is now tested. The
goal is to investigate the hypotheses:

1. The molecular subsystem has a lower threshold on the coupling strength.
2. The molecular subsystem has an upper threshold on the coupling strength.

First, a numerical analysis is performed. Thereafter, the previously introduced syn-
chronization theorem 4.2.1 is evaluated for the Diekman neuron including the molecular
subsystem.

Recall from section 4.2.4 that the MATCONT approach is only capable of proving
the existence of an upper thresholds. Therefore, it is expected to be useful in proving the
existence of an upper threshold for the molecular subsystem. In contrast, the analytical
approach using the synchronization theorem 4.2.1 is expected to be inconclusive. Proving
that lemma 4.2.2 fails does not mean that the synchronization theorem fails as lemma
4.2.2 is merely sufficient (not necessary). Therefore, in this case the analytical approach
is believed to yield less useful results.

Numerical analysis

Numerical analysis of the molecular subsystem is challenging for two reasons. First, diffu-
sive coupling as a model for gap junction coupling couples through the membrane voltage
which is an electrical state. Therefore, we cannot totally omit the electrical subsystem.
Second, as discussed in Chapter 3, simply separating the molecular part and feeding it
the x19 signal does not result in a model for the molecular state oscillations. Therefore,
the molecular subsystem cannot simply be evaluated using numerical analysis. However,
the slow dynamics of the Diekman neuron can be analyzed using the smooth switch
model introduced in Chapter 3. Since the smooth switch model drastically simplifies the
electrical part of the Diekman neuron while it preserves the molecular part, it can shed
light on how two molecular subsystems interact when coupled.

In order to do so, first two smooth switch models need to be coupled. Subsequently,
the corresponding network system is evaluated. Finally, a lower and an upper threshold
for which the synchronized state of the coupled smooth switch model is stable are found

using MATCONT.

Smooth switch coupling model First the coupled smooth switch model is derived.
Recall that the smooth switch model is a representation of a Diekman neuron in which
state xi3 is fed into a smooth switch. The output of the smooth switch represents the
x19 state of the original system which is high in case x13 is low and xy¢ is low in case 13
is high. In this representation the entire electrical subsystem is replaced by a switch.
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Figure 4.6: Schematic representation of coupled switch models ¢ and j

As demonstrated previously, two coupled electrical subsystem always synchronize for
sufficient coupling strength. In case the Diekman electrical system is perfectly synchro-
nized both x1¢ variables are identical. In case the two Diekman electrical subsystems
are coupled but not in perfect synchrony the x,¢ states are not equal but “pull” on each
other. The extent to which both Diekman x,y states influence or pull on each other is
determined by the coupling strength.

When taking the average of both x1¢ states the case of instantaneous perfect synchrony
of the electrical subsystem is represented. This describes the case of the Diekman coupling
strength ¢ — oo. Recall that this represents the case of Figure 4.3d where the electrical
subsystems synchronized almost instantaneously. However, in case it is not infinity a
weighted average is used such that the input to smooth switch models ¢ and 7 is defined
as:

u; = (v — 1)T104 + 7210, (4.23)
u; = (v — )10 + YZ10, (4.24)

where 7 is a coupling strength for the smooth switch model. For v = 0 the systems
are uncoupled. For v = 0.5 the average of both signals are taken. This represents the
case for which the Diekman electrical subsystems instantaneously synchronize: ¢ — oc.
In addition figure 4.6 shows a graphical representation of the interaction of two coupled
switch models.

Exploration of the coupled smooth switch model Before investigating the hy-
potheses, the trajectories of the coupled smooth switch model are evaluated. In order to
do so, the model was implemented in MATLAB. Figure 4.7 shows the trajectories of the
x11 states of both systems for coupling strengths 0.03, 0.2, and 0.4. For small coupling
strength v = 0.03 the coupled smooth switch model do not synchronize. When coupling
is increased the smooth switch models start to synchronize. For a large coupling strength
~v = 0.4 the models do not synchronize.

Note that the solutions observed in Figure 4.7 represents the solutions of the combined
Diekman neurons on the circadian time scale. Compared with the solutions shown in
Figure 4.1 similar network solutions can be observed. For low coupling strengths two
smooth switch models do not synchronize. For moderate coupling strength the models
synchronize. For high coupling strength the smooth switch models do not synchronize
and end up in a state that resembles the high coupling non-synchronized state of two
coupled Diekman neurons seen in Figures 4.1c and 4.7c. This state is characterized by
both neurons or switch models oscillating half a phase apart and by the alternation of a
low peak and a high peak.

When analyzing the network solutions it was found that for coupling strengths below a
certain threshold at least two solution exist. Therefore, depending on the initial conditions
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Figure 4.7: Trajectories of x11 for low, middle, and high coupling strength ~ for identical
initial conditions

the coupled switch model either synchronize or get stuck in a non synchronous attracting
steady state. It was found that if the coupling strength is increased across a threshold
only the synchronized state was found. Finally, if the coupling strength is increased

above a certain threshold the synchronous state becomes unstable and the smooth switch
models do not synchronize.

Estimation of the thresholds The main advantage of the switch model is that it
can be analyzed effectively in MATCONT. The goal of this analysis is to validate the
existence of the thresholds on the coupling strength.

In order to do so, first the coupled smooth switch model is implemented in MAT-
CONT. The initial conditions were set to the synchronized state. The coupling strength
o was chosen as a bifurcation parameter on the range (0, 0.5]. The multipliers were
estimated and shown in Figure 4.8. Note that near ¢ = 0.27 a multiplier crosses the
threshold of 1. Therefore, it is concluded that the synchronized solution becomes unsta-
ble for o > 0.27. Moreover, no lower stability threshold was found.

The lower threshold is estimated using MATLAB. The initial conditions were set on
the orbits seen in Figure 4.7a. Subsequently, the simulation time was set to 30,000 hours
and the coupling strength slowly increased. It was found that the neurons synchronize
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Figure 4.8: Floquet multipliers of two coupled smooth switch models

for v > 0.04.

Considering the results, it was concluded that for low coupling strength at least two
solutions exists (possibly more). One of these solutions is the synchronized solution. For
high coupling strengths the synchronized solution is no longer stable.

Summary and conclusion The smooth switch model was coupled by taking the
weighted average of the xjy inputs of the switch models. In this way, a system was
created that models two slow molecular subsystems that are coupled by diffusive cou-
pling. Using MATLAB and MATCONT, a lower threshold and an upper threshold were
found for the coupled smooth switch model for which the synchronized steady state is
globally stable. Therefore, it was concluded that the molecular subsystem in a coupled
Diekman neuron poses an lower threshold as well as an upper threshold on the coupling
strength for which the synchronized state is globally stable. Thereby, the fifth and sixth
hypotheses are considered validated.

Analytical approach

The intention of this section is to analyze the synchronization property of the molecular
subsystem using an analytical approach. Using a bifurcation analysis it was found pre-
viously that the molecular subsystem creates a lower threshold and an upper threshold.
The objective of this section is to find out how this relates to the synchronization theorem
4.2.1.

The stability of the synchronous solution of a double Diekman neuron network has
an upper threshold. Therefore, the synchronization theorem 4.2.1 does not hold for a
Diekman neuron. Previously, it was proven that the theorem holds for the electrical
subsystem. Therefore, it was hypothesized that the synchronization theorem 4.2.1 does
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not hold when the molecular subsystem is added to the electrical model (to form a
Diekman neuron). The goal of this section is to prove that the synchronization theorem is
not satisfied when the molecular subsystem is included in the neuron dynamics. Moreover,
it is demonstrated why the synchronization theorem fails.

Synchronization theorem Since there exist an upper threshold on the stability of
the synchronized state, it is known that the synchronization theorem fails for the full
Diekman neuron. Recall that the synchronization theorem has two requirements:

1. The solutions of the individual neurons are bounded
2. The internal states are exponentially convergent

Lemma 4.2.3 demonstrates that the solutions of the entire Diekman model are bounded.
Therefore, the first requirement is satisfied. Consequently, the second requirement must
be unsatisfied. Therefore, it is concluded that the Diekman neuron is not internally
convergent.

Moreover, it was shown that the electrical subsystem is internally exponentially con-
vergent. Since the molecular subsystem is connected to the electrical subsystem in series,
the molecular subsystem can be evaluated individually (lemma 4.2.4). Consequently, it
is hypothesized that the molecular subsystem is not convergent.

Simulations of convergence property In order to investigate the convergence prop-
erty of the molecular subsystem, a simulation was conducted. The goal is to demonstrate
numerically that the molecular subsystem is not convergent. This is done by searching
for sets of initial conditions that result in a different steady state solution.

Recall that a convergent system has a unique steady state relation to its input re-
gardless of initial conditions. Since the Diekman neuron is a nonlinear model, the steady
state cannot be calculated. However, the steady state can be estimated numerically. The
goal is to excite various identical systems with an identical input system but with a set
of varying initial conditions. For a convergent system all trajectories end up in the same
steady state. However, if the system is not convergent the steady state solutions are not
identical. Note that this approach is not guaranteed to be conclusive.

An arbitrary number of twenty Diekman molecular subsystem with different initial
conditions were given an identical electrical input signal. Since the molecular subsystems
only oscillate on the circadian time scale the simulation was conducted on the slow time
scale. The twenty subsystem received an identical xy input signal. Since the x1g electrical
input signal does not oscillate on the circadian time scale (for constant input z3) an
auxiliary molecular model was introduced. A graphical representation of the setup can
be seen in Figure 4.9a. The initial conditions of the 20 molecular subsystems were chosen
randomly within 2 (see Appendix C).

The trajectories of the states are shown in 4.9b. After the transients dissolve two
distinct steady state trajectories can be seen. Depending on the initial conditions the
subsystems either converge to one or the other. Therefore, it is concluded that the
molecular subsystem in not convergent.

Analytical analysis of the convergence property In addition to the numerical
result that the molecular subsystem is not convergent, an analytical approach regarding
the convergence is provided. The goal is to prove that the sufficient test of lemma
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4.2.2 fails for the molecular subsystem. In order to do so, the same strategy as for
the electrical subsystem is used: extend the invertable coordinate change, construct the
jacobian, evaluate the matrix P that satisfies lemma 4.2.2.

First, the coordinate change of (4.12)(4.13) is extended to the molecular system:

T11 = z10(28; 210, 212)
T12 = 211(210, 211) (4.25)
T3 = 212(211, 212)

Note that the molecular subsystem can be evaluated individually because it is connected

in series to the electrical subsystem (lemma 4.2.4).
The jacobian of the molecular subsystem

—a 0 —a-R(zs,212) C
’ . RE(ZB)
Tiore) (28, 212) = o _Oa with Rz, 212) = 55960102, + 0.001)7

(4.26)
was created. There is a special conditions for the eigenvalues of J(zs, z12) for which it
can be proven that a matrix P satisfying lemma 4.2.2 does not exists. If an eigenvalue
of J(zs, z12) has a positive real part the matrix P does not exist. This is an specification
from an Ostrowski-Schneider inertia theorem [31].

When using the bounds of z5,2¢9 € Q (found in Appendix C) the eigenvalues of the
jacobian J(zg, z12) take values with positive real part for zg and 215 in a subset of the
space ). For example using zg = 215 = 0.001 € Q results in Re(\) =~ —3.8, 0.42, 0.42

To conclude, the occurrence of eigenvalues (of J) with positive real part proves that
the matrix P does not exists. This demonstrates that lemma 4.2.2 cannot be satisfied
for the molecular subsystem.

Conclusion Using numerical analysis it was concluded that the molecular subsystem
is not convergent. This means that two molecular subsystems might react differently to
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the same electrical input. In case two electrical subsystems are perfectly synchronized
the molecular subsystems may end up in different network solutions. Therefore, the
molecular states do not necessarily synchronize. This is what appear to happen when the
coupling strength is too large. In that case the electrical subsystems synchronize while
the molecular subsystems respond with a different steady state solution.

Summary and conclusion

The goal of this section was to investigate the hypotheses
1. The molecular subsystem has a lower threshold on the coupling strength.
2. The molecular subsystem has an upper threshold on the coupling strength.

In order to represent the molecular system the smooth switch model was used. Using
the result that the electrical subsystems synchronize a weighted average of the x1o inputs
(depending on the coupling strength) was taken.

A bifurcation analysis in MATCONT indicated that the solutions of the smooth switch
models indeed pose a lower threshold and an upper threshold on the coupling strength for
which the synchronized state is globally stable. Therefore, the hypotheses are considered
validated.

Thereafter, the synchronization theorem 4.2.1 was evaluated for the Diekman neuron.
Using the synchronization theorem it was hypothesized that the synchronization theorem
of the combined Diekman neuron fails because the molecular subsystem is not conver-
gent. Simulations demonstrated that the molecular subsystem has a output response
that depends on its initial conditions. Therefore, it was concluded that the molecular
subsystem is not convergent. Besides, it was proven analytically that the sufficient test
for convergence of lemma 4.2.2 fails for the molecular subsystem.

4.2.6 Summary and conclusion

The intention of this section was to investigate diffusive coupling for two coupled neurons.
The objective was to investigate the first research question “Can two neurons synchronize
when coupled by gap junction coupling”. In order to do so, six hypotheses were formed
regarding gap junction coupling in a double neuron network. It was found that for low
coupling strength multiple solutions exist. Both the synchronized steady state as well
as other states are stable. For coupling strengths above a certain threshold two neurons
synchronize. For even larger coupling strength two neurons do not synchronize.

Using the synchronization theorem, it was concluded that two coupled electrical sub-
systems synchronize (for all initial conditions) when a lower threshold is crossed. It
was concluded that there is no upper threshold after which two electrical subsystems
desynchronize. Subsequently, using the insight that two electrical subsystem synchronize
(when a certain threshold is crossed), two smooth switch models were coupled. Using
a bifurcation analysis on the smooth switch model, it was concluded that the molecular
subsystem poses an upper threshold on the coupling strength for which the synchronized
state is stable.

To conclude, two Diekman neurons coupled by diffusive coupling can synchronize
(for all initial conditions) for a certain range of coupling strengths. Therefore, it was
concluded that two SCN mneuron coupled can synchronize when coupled only by gap
junctions. Thereby, the first research question is considered answered.

48



4.3 Neuromodulator coupling

In Chapter 2, two important means of coupling are discussed. These are coupling by gap
junctions and coupling by neuromodulator diffusion. This section focuses on neuromod-
ulator diffusion. The goal is to evaluate the second research question: “Can two SCN
neurons synchronize when only coupled by neuromodulator diffusion?” In order to do so,
the Gonze model [25] for neuromodulator diffusion is used.

First, in section 4.3.1 the neuromodulator coupling model is introduced and imple-
mented in the Diekman model. Thereafter, in section 4.3.2 the case of a single Diekman
neuron with neuromodulator action is evaluated. Finally, in section 4.3.3 the synchroniz-
ing property of two coupled neurons is evaluated.

4.3.1 Gonze model

The Gonze model is a coupled Goodwin model [22] that was introduced in 2005. It cou-
ples Goodwin oscillators using a general excitatory neuromodulator, which is designed to
represent basic VIP coupling. It is a powerful model because it is relatively simple and
describes the most essential parts of neuromodulator coupling.[25][32]

The Gonze model couples Goodwin oscillators in a mean field network. It means that
the input to every cell is the average of all outputs. The differential equations of the
Gonze model are

= L — F), with f(F)=v,——— 4.27
dY; Y;
A 4.2
dt K Ky+Y, (4.28)
dZz; Zi
D kY — g 4.2
dt 7 Ko+ Zi (4.29)
dv; Vi
dt = k7Xl — 'Ugm (430)
1 N
F=— Vi 4.31
NZ: (4.31)

where X,Y, Z are the familiar Goodwin states in nanomol. The state V' represents the
dynamics of the neuromodulator and K and v; are constants. The concentration of V
is induced by the activation of X. The state V' (and X,Y,Z) degrade in a nonlinear
manner. Subsequently, the average of every neuron V state is taken and fed back into
the first differential equation. The function f(F) describes how a neuron perceives a
concentration of the neuromodulator. Since the number of receptors on the membrane
is limited, a saturation is used. At peak saturation a maximum of v, reached, and k, is
the amount of neuromodulator at mid saturation. The value p represents the variable
coupling strength.

Implementation in a Diekman neuron

Since the Diekman model also uses a Goodwin-like molecular subsystem, the implemen-
tation of Gonze coupling can be done relatively easily. As the Diekman model uses only
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linear degradation terms the nonlinear degradation from the Gonze model was replaced
by a linear one such that the Diekman molecular model now look like

1

&1 =a (CRE(3310) (m) — T+ f(Vmean)) (4.32)
Tip = G(3311 - 3512) (4‘33)
T3 = a(T12 — T13) (4.34)

V= T(r11 —v4V) (4.35)

Here, the function f(Viuean) describes how a neuron perceives a high neuromodulator
concentration similar to the Gonze model:

Mvmean

= B W

(4.36)
where v, is a constant describing the sensitivity of a neuron to the neuromodulator. The
average is again defined as

N
1
Vmeanz_ ‘/z 4.37
N; (4.37)

Parameterset of the Gonze model The parameters of the Gonze model cannot be
directly translated to the Diekman neuron since the dynamics of the Goodwin systems are
slightly different. However the Gonze model provided an indication. The ratio between
the constants of the Gonze model were analyzed. The result is a set of parameters for the
Diekman model: vs = 1 nM/h,7 = a ms™', k. = 1 nM, vy = 3 nM/h. In the following
this set is referred to as the default parameter set for neuromodulator coupling. Note
that p, the coupling strength will be varied.

4.3.2 Single cell neuromodulator

One of the interesting implications of the model is that it couples a neuron to itself. In
this case a neuron receives an input that is identical to its own neuromodulator output.
This case is worth investigating since it represents the case of a neuron in a synchronized
network. The goal is to determine how the neuromodulator coupling strength affects the
the self-modulated neuron and thereby affects the synchronized state.

In the single neuron representation the neuromodulator concentration is only depen-
dent on zy;; and time. The dynamics for the neuromodulator state can be rewritten
as:

d‘/mean
dt

This is an isolated neurons that receives its own neuromodulator output as an input.
This will be referred to as a self modulated neuron. Before coupling multiple neurons a
self modulated neuron is evaluated. The goal is to investigate how the (neuromodulator)
coupling strength p affects a single Diekman neuron.

=T (I’H — Udeean) y if N=1 (438)

Trajectories

First the trajectories of a self modulated neuron are compared to a original Dickman
neuron. Figure 4.10 shows the development of the state x1; of one self modulated neuron
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x11 trajectories of a single Diekman neuron
T T T T

0.045 T
No neuromodulation
0.04 == == === \\Jith neuromodulator |
0.035 .

0.03

-
- 5

0.025

0.02

. —

x11 concentration

0.015

)

—x

\ i
0.01 A
AR
0.005 \l \
o 1 1
150 200 250 300

Time [h]

Figure 4.10: Original vs. self modulated neuron

(using the default parameter set) and one original Diekman neuron on the circadian
time scale (with identical initial conditions). It can be noted that the period of the self
modulated neuron is larger than the original Diekman neuron. In fact, this is a well-
known result of VIP coupling observed in biological experiments [33]. Moreover, the
amplitude of the self modulated signal is lower than the original model.

Additional exploratory simulation indicated that the size of the amplitude depends
on the coupling strength p. With increasing p the amplitude decreases. When a certain
threshold is crossed a stable equilibrium can be found. Therefore, it was hypothesized
that the self modulated neuron undergoes a Hopt bifurcation when the coupling strength
crosses a certain threshold.

Thresholds on the coupling strength The hypothesis is tested using a bifurcation
analysis in MATCONT. In order to do so, the smooth switch model was used (instead of
the Diekman neuron) because it of the single time scale property. Note that the smooth
switch model is very useful for neuromodulator coupling. Neuromodulator coupling is
slow and unlike diffusive coupling the input and output for neuromodulator coupling
are located in the molecular subsystem. Therefore, the neuromodulator smooth switch
network is assumed to represent the neuromodulator Diekman network well.

The value of f(V) was taken as a bifurcation parameter. A Hopf bifurcation was
found at f(V) = 0.0071. For f(V) > 0.0071 a stable equilibrium emerges at ;0 =
T12,0 = T13,0 = 0.0085. Note that the equilibrium of the smooth switch model is uniquely
described by f(V'). Therefore, it was concluded that the equilibrium changes stability at
xo = 0.0085.

This equilibrium is further inspected analytically. The goal is to come up with a
condition on the coupling strength (and parameters) for which the neuron oscillates on
the circadian time scale. In order to do so, first, the equilibrium is substituted in the
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state equations. Secondly, the equilibrium depending on the parameters is calculated.
Finally, a condition for which the equilibrium crosses the o = 0.0085 point is found.
The self modulated smooth switch model is represented by

11 = a(h(x13) — 211 + f(V)), with f(V) = %
= a(z11 — T12) (4.39)
«LlB = a(ry — 113)
(In — Vg - )
Substituting the equilibrium z110 = 2120 = 13,0 = Zo:
=)+ 0 =
120 = %o, (4.40)
Z13,0 = Lo,
V= T
Ud

Recall that the function h(x3) is monotonically decreasing (Chapter 3). For large values
of x13 it is practically zero. Since we are interested in the equilibrium near the bifurcation
we can use the fact that h(z13,10pr) = 0. Substituting final row in the first row of Equation
(4.40)

#o- 1fos
kr‘i‘xo',u/'l]d (441)

To R vy — kp—

Ty = Vg

which describes the equilibrium (in the region h(z13 mopf) = 0) near the bifurcation. In
order for the neuron not to bifurcate to a stable equilibrium, the condition

Vs — kel < 0.0085, or (4.42)
1
kr * Vg
LA 4.4
S 1 0.0085 (4.43)

has to be satisfied. The Gonze parameters are usually larger much values than xq = 0.0085
so the condition can be approximated to p-vs < k. - vg. Using the default parameter set,
it is concluded that the constant steady state is reached for p > 3.

The previous results only hold for the smooth switch model. Convenient as it may
be, this toy model does not represent an SCN neuron. Therefore, an attempt is made
to translate the results from the smooth switch model to the Diekman model. Since the
self-modulated smooth switch model is believed to be a accurate representation of the
self-modulated Diekman neuron, it is hypothesized that the pu > 3 threshold holds for
the Diekman neuron.

In an attempt to validate the hypothesis several simulations were conducted. In every
simulation the neuron was simulated until steady state was reached. In case the solution
was oscillatory the coupling strength g was slightly increased. The threshold was found
to be p & 3.1 (£0.1). Therefore, the hypothesis was considered validated.
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It is hard to overestimate the importance of the oscillation condition of Equation
(4.43). It does not only provide a condition on an oscillating self modulated neuron but
also on a synchronized network of arbitrary size. Consider a network of two coupled
neurons. In the synchronized network the state V; of neuron ¢ is equal to state V; of
neuron j. The input V,,eqn to both neurons is the average of both states V; and V;. Since
both states are equal the average is equal as well such that Ve, = Vi = V. So, every
neuron receives its own V state as an input. Therefore, in the synchronized state the
coupling disappears and both neurons can be represented as a self modulated neuron.
Consequently the inequality (4.43) provides a condition for which the synchronized state
of a network with arbitrary size is oscillatory.

To summarize, the self modulated neuron is a representation of a single Diekman
neuron with neuromodulator action. It also represents the case of a network of neurons
in complete synchrony. When using the default parameter set it was concluded that the
self modulated neuron is oscillatory for p < 3.

4.3.3 Two coupled neurons

In the previous, a condition on the coupling strength for which the synchronous state
is oscillatory was derived (Inequality (4.43)). However, a condition for which coupling
strength actually synchronizes two neurons has not been derived yet. The goal of this
section is to find out if there is a range of coupling strengths that can synchronize two
neurons. In order to do so, first some initial simulations are done. Thereafter, a bifurca-
tion analysis is conducted.

Two neurons were coupled using the default parameter set. Figure 4.11 shows the
trajectories of the eleventh state (211) on the circadian time scale. The neurons synchro-
nize with passing time. Note that the neurons synchronize fast at first but as the error
decreases it takes significantly longer to synchronize further.

In order to investigate the range of coupling strengths that synchronize two neuron a
bifurcation analysis was conducted in MATCONT. The modulator coupled smooth switch
model was used in combination with the default parameter set. The coupling strength p
was used as a bifurcation parameter and the stability of the error dynamics was analyzed.
The neurons were initiated in the synchronized state and p was varied on the domain
we [0, 3].

On the domain g € [0, 3] the error dynamics did not undergo a bifurcation and
remained at the stable equilibrium (at zero). Therefore, it was concluded that the entire
range of the coupling strength can (locally) synchronize two neurons. Moreover, for
coupling strengths p < 0.12 a region containing multiple solutions was found. Depending
on the initial conditions the solutions end up in either a synchronized state or a non-
synchronized attracting state. Therefore, it was concluded that the synchronous state is
globally stable for u € [0.12, 3]

The previous results found using MATCONT only hold for the smooth switch model.
Therefore, an attempt is made to translate the results from the smooth switch model
to the Diekman model. Since the self-modulated smooth switch model is believed to
be a accurate representation of the self-modulated Diekman neuron, it is hypothesized
that the synchronous solutions of two coupled Diekman neurons are locally stable for the
entire range of p € [0, 3], and globally stable for the for u € [0.12, 3].

In an attempt to validate the hypothesis, several simulations were conducted in MAT-
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x11 trajectories of two coupled neuron, k=mu=s=1, d=3
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Figure 4.11: Two neurons coupled by neuromodulator action with default parameter set

LAB. In every simulation the neurons were initiated at a non synchronous attracting
state and simulated for 30,000 hours. The coupling strength p was increased and the
network solution analyzed. It was estimated that the non synchronous states are stable
for i < 0.006. Therefore, the hypothesis was considered falsified. However, there exists
a threshold for which synchronized states become globally stable.

The results are summarized in the graph of Figure 4.12. The graph shows the type of
solution depending on the coupling strength and independent on initial conditions.

To summarize, the self modulated neuron representation was scaled to a two neuron
network. Using the default parameter set, a bifurcation analysis was conducted. It was
found that the synchronized state is oscillatory and locally stable for all p € [0, 3] and
globally stable for all 1 € [0.006, 3]. Therefore, it was concluded that neuromodulator
coupling with sufficient coupling strength can synchronize two neurons independent of
initial conditions.

4.3.4 Conclusion

This section evaluated the synchronizing properties of neuromodulator coupling. This
was done by coupling Diekman neurons through a Gonze-like coupling model. The pa-
rameters from the Gonze model were translated to the Diekman neuron resulting in a
set of parameters call the default parameter set. Thereafter, the newly created Diekman
neuron with neuromodulator coupling was evaluated. First a single self-modulated neu-
ron was analyzed, in which it was found that the coupling can result in a non-oscillatory
response. A condition on the parameter set and the coupling strength was derived for
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Figure 4.12: The ensemble steady state solution depending on the coupling strength p

which that the neuron oscillates. It was found that the default parameter set satisfied
this condition for 0 < p < 3. Thereafter, two neurons were coupled and the network
solutions analyzed. In order to do so, a MATCONT bifurcation analysis was conducted.
It was found that for the two neurons coupled by neuromodulator action with sufficient
coupling strength synchronize independent of initial conditions.

Therefore, it was concluded that two neurons coupled by neuromodulator synchronize
under certain conditions. Therefore the research question “Can two neurons synchronize
when only coupled by neuromodulator coupling” was considered answered.

4.4 Combination of gap junction and neuromodula-
tor diffusion

Previously diffusive coupling and neuromodulator diffusion were discussed individually. It
was shown that both diffusive coupling and neuromodulator coupling can synchronize two
Diekman neurons. However, in biology, neurons are not necessarily limited to one or the
other coupling, but may couple in both ways. Therefore the combination between diffusive
coupling and neuromodulator coupling is investigated. The goal is to find out how the
combination of diffusive coupling and neuromodulator coupling affects the thresholds
on the coupling strengths for which the synchronous steady state is globally stable. In
addition, also the performance of the combined coupled coupling was discussed.

4.4.1 Combination of the thresholds of the coupling strengths

For both diffusive and neuromodulator coupling a lower threshold was found. Since
both types of coupling have a lower threshold, it is hypothesized that the combination
also results in a region resulting in co-existent solutions for low values of the coupling
strengths. For diffusive coupling with high coupling strengths the electrical subsystems
of two neurons synchronize while the molecular subsystems do not synchronize. Since
neuromodulator action couples the molecular states directly, it is hypothesized that by
adding neuromodulator coupling the upper threshold is shifted such that higher coupling
strengths o still allow for a synchronized solution. For neuromodulator coupling an
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Figure 4.13: Type of network solution depending on the coupling strength.

upper threshold was found after which the response is no longer oscillatory. Since this
bifurcation is invariant for ¢ it is hypothesized that the upper threshold on p does not
change.

In order to test these hypotheses, a numerical experiment was conducted. In short,
the experiment consists of coupling two neurons, varying the coupling strengths, and
analyze the steady state solutions for different initial conditions. The goal is to find the
steady state solutions depending on the two coupling strengths and independent of initial
conditions. The result are shown in Figure 4.13.

Figure 4.13 contains two scatter plots with on the horizontal axis the diffusive coupling
strength (on the domain [0, 2]) and on the vertical axis the neuromodulator coupling
strength (on the domain [0, 4]). Four different network solutions are displayed in the
plot: sync, co-existent/bistable, non oscillatory (sync), and anti sync. The scatter plot
on the left on Figure 4.13 zooms in on the region around the origin.

The area in blue ‘+’ represents a synchronized solution. The red ‘o’ represents a
co-existence of solutions depending on the initial conditions. The purple ‘ - ’ represents
the anti sync solutions which represent the non-synchronized solutions resulting from
diffusive coupling strength above the @ threshold. These solutions are characterized by
signals with an alternating low and high peak and two neurons oscillating at half a phase
delay. The yellow ‘[J’ represent non oscillatory solutions resulting from neuromodulator
coupling strengths above the i threshold.

Let us have a look at some solutions in time while considering the line o = 1.3. For low
1 the solution the steady state solutions end in anti synchrony as can be seen in Figure
4.14a. When p is increased to u = 0.5 (and o = 1.3) the solutions become bistable. In this
case both the synchronized solution and the anti synchronized solution are stable. For an
initial phase difference of 2 hour the solution ends up in anti synchrony as seen in Figure
4.14b. However, for an initial phase difference of 30 minutes two neurons synchronize
as can be seen in Figure 4.14c. For p = 1.5 (and o = 1.3) the solutions synchronize
independent of the initial conditions as can be seen in Figure 4.14d. For p = 3.2 (and
o = 1.3) the solution is non oscillatory as seen in Figure 4.14e.

The lower co-existence area seen in the left scatter plot of Figure 4.13 contain non
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synchronous solutions and the synchronized steady state solution. For o = 0.0004, p =

0.002 the solution is either synchronous, as seen in the plots of Figure 4.15a or not
synchronized, as seen in the plots of Figure 4.15b.
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Considering the results it is concluded that the upper threshold on p for which the
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solution is oscillatory does not change. Moreover, it is concluded that by adding neuro-
modulator coupling to a diffusely coupled network the upper threshold is indeed shifted
such that higher coupling strengths o still allow for a synchronized solution. The previous
experiment was conducted on the domain o € [0, 2]. However, the tilting slope of the anti
sync area in Figure 4.13 suggests that there is a coupling strength p that guarantees a
synchronous solution independent of the value of 0. Therefore, the experiment of Figure
4.13 was repeated with o on a logistic scale on the domain [1, 10'°]. It was found that
for p > 0.93 all solutions are synchronized.

To summarize, adding neuromodulator coupling to a diffusely coupled network of
Diekman neurons increases the range of coupling strengths that synchronizes the network.
Moreover, there is a neuromodulator coupling strength that guarantees a synchronous
solution (independent of coupling strength o and initial conditions).

4.4.2 Performance of neuromodulator coupling compared to dif-
fusive coupling

In the following section the performance of the combination of both coupling mechanisms
is discussed. The performance is measured as the time required for two neurons to reach
(near) synchrony from an initial time lag.

Definition 4.4.1. Consider two Diekman neurons with synchrony outputs w; and w;.
The initial time lag is defined as the time Tj such that

w;(0),

w;(0) = w; (0 + Tp) (4.44)

Note that Ty = 0 represents initializing in a synchronized state

Definition 4.4.2. Consider two Diekman neurons with synchrony outputs w; and w;.
Given that two neurons synchronize, the performance is the time ¢ required to reach an
error equivalent to a time lag o such that

[wi(t) = w; ()] < [lwit) — wi(t +6)[, with w;(0) = w;(0 + To) (4.45)
where Tj is the initial time lag.

Definition 4.4.2 is satisfied if the absolute error between the two sets of synchrony
outputs becomes smaller that a certain threshold error. The threshold error is defined as
the absolute error of a neuron and the same neuron shifted in time by a time 0.

First, an exploratory simulation is conducted. The goal is to form a hypotheses on
how the combination of diffusive coupling and neuromodulator coupling affects the time
it takes to reach synchrony with respect to the individual coupling mechanisms. Subse-
quently, some simulations that compare diffusive coupling and neuromodulator coupling
are conducted. Thereafter, an analytical comparison is made by examining the Diekman
differential equations. Finally, the combination of diffusive coupling and neuromodulator
coupling is discussed.

Exploratory simulations

First two sets of initial conditions were chosen to accommodate a simulation in MATLAB.
The sets are chosen such that the uncoupled systems are initiated with a significant time
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lag (seven hours). Subsequently, a set of coupling parameters was chosen for which the
systems synchronize.

The trajectories for both neurons were estimated using MATLAB for a simulation
time of 2,000 hours. In the first experiment only neuromodulator coupling was used. The
trajectories, absolute error, and the time lag of the state x;; are shown in Figure 4.16b.
The time lag falls exponentially towards zero. When the error is large the decrease in error
is large, however, when the error becomes small the error is hardly reduced any further.
For the second simulation only diffusive coupling is applied. The trajectories, absolute
error, and the development of the time lag, shown in Figure 4.16¢ hardly converge for as
long as the time lag is over six hours. However, after the threshold (of approximately 6
hours difference) is reached both neurons synchronize rapidly and perfectly. Finally both
neurons were coupled by neuromodulation and diffusive coupling. The trajectories shown
in Figure 4.16d converge fast. In the first stage, the time lag rapidly drops to six hours.
Once there, the states quickly lock resulting in a (near) zero error.

Considering the results, it hypothesized that neuromodulator coupling can synchronize
effectively when the errors are high while diffusive coupling can synchronize effectively
when the time lag is low.

Numerical approach

In order to test the hypothesis, an experiment is conducted in MATLAB. Two Diekman
neurons were coupled with either diffusive coupling or neuromodulator coupling. The
initial conditions were set near the periodical orbit with nearly half a phase as initial
time lag. The coupling strengths were varied and the development of the time lag was
recorded. The time lag was measured as the difference in peak times of the x1; states.
Furthermore, it was assumed that initiating the two neurons with a high time lag also
represents the case of small initial time lags as high time lags automatically decay to
smaller time lags. It is therefore assumed that the time lag curve is shifted in time when
initiated at different initial time lags.

First, diffusive coupling was evaluated. The coupling strength o was varied on the
range [0.1, 0.4] in 60 evenly spaced intervals. The range [0.1, 0.4] was chosen such that
the neurons synchronize fast but not too fast to create the time lag curve (within 4 1,
peak times which result in just 4 data points). Figure 4.17a shows the development of the
time lag for five coupling strengths. It can be observed that the time lag curve consists
of two parts. First, a slow decay can be observed for all coupling strengths. Thereafter
an “elbow” followed by a steep drop can be seen. Higher coupling strengths ¢ result in
faster decays.

Finally, neuromodulator coupling is evaluated. The initial conditions are set near
the periodical orbit with nearly half a phase as initial time lag. The neuromodulator
coupling strength was varied on the domain [0.1, 3] in 60 evenly spaced intervals. Figure
4.17b shows the development of the time lag for five different coupling strengths. For
all coupling strengths it can be observed that the decay in time lag is initially strong.
However, as time passes the time lag curve flattens. Higher coupling strengths result in
sharper decays.

When comparing Figures 4.17a and 4.17b it can be observed that the time lag curve
for diffusive coupling is initially flat but rapidly falls as the time lag becomes smaller. For
neuromodulator coupling the decay in time lag is initially large but becomes significantly
smaller as time passes.
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Figure 4.16: Trajectories of x11 for two systems with no coupling, neuromodulator cou-
pling, gap junction, neuromodulator and gap junction coupling for identical initial con-
ditions. The initial conditions are placed with an approximately time lag of seven hours.
The absolute error is the absolute difference in z;; states.
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(b) Dependence of neuromodulator coupling
strength on the development of the phase er-
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Figure 4.17: Development of the phase error for different diffusive and modulator coupling
strengths. Initial phase error of approximately 9.5 hours.

One of the limitations of the previous experiment is the small range of coupling
strengths that was used. For high coupling strengths synchronization simply occurs too
fast to estimate the time lag curve. Therefore, it is challenging to predict the development
of the phase error curves for strongly coupled neurons.

Considering the results it is concluded that diffusive coupling is effective in synchro-
nizing smaller time lags. In order to synchronize rapidly, the errors should be no further
apart that six or seven hours. On the other hand, neuromodulator coupling is effective
when the time lags are large. However, when the errors are becoming small, neuromod-
ulator coupling becomes less effective.

Analytical approach

In addition to the numerical analysis, an analytic approach is used. In order to do so,
the differential equation of xq; is evaluated. Recall that:

i11 = a(CRE(x19) Ebox(113)* — w11 + f(V)), with (4.46)
1
Fbor = ——— 4.4
=000 - 24 + 10 (4.47)
CRE = max(0,10° 2,5 — 75) (4.48)

It can be observed that the neuromodulator action f(V') acts regardless of the state of
the neuron. Therefore, large errors decrease significantly faster regardless of the state of
the neuron. However, diffusive coupling enters the molecular subsystem through state
r10. Note that only when Ebox(x13)* is high the neuron is actually sensitive to the
CRE(xy1) input. Therefore, effective coupling of the molecular model is only possible
in case Ebox(xy3)? is high (713 is low). In order to validate this hypothesis a MATLAB
simulation is conducted. The goal is to find the time span for which Ebox(z3)* is high
and compare it to the six hours time span previously estimated.

A single neuron was simulated in MATLAB on its periodical orbit and the Ebox(x13)*
function was plotted in Figure 4.18. For most of the circadian cycle the sensitivity is low.
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Figure 4.18: Sensitivity to x10

Only for a range of six or seven hours the Ebox(zi3)* function peaks. Therefore, the
hypothesis is considered validated. Consequently, it is concluded that only during the six
or seven hour window of peak Ebox activity two neurons can synchronize their molecular
states effectively (through diffusive coupling).

Combined performance

Previously, diffusive coupling and neuromodulator coupling were compared. The goal of
this section is to compare the individual coupling mechanisms with the combination of
neuromodulator coupling and diffusive coupling.

The exploratory simulations indicated that the combination can enhance the perfor-
mance (shorten the time required to reach near synchrony). However, only one set of
coupling strengths was tested. Therefore, a wider range of coupling strengths will be
evaluated. The goal is to investigate the influence of the coupling strengths on the time
needed to synchronize.

In order to do so, a MATLAB experiment was conducted. Two neurons were initiated
near their periodic orbit with a 9.5 hour phase difference. The neurons were coupled both
with diffusive coupling and neuromodulator coupling. The coupling strengths were varied
and the absolute errors between the states were calculated. Finally, the performance with
d = 10 minutes (for Definition 4.4.2) was calculated. The results can be seen in Figure
4.19.

Figure 4.19 shows a scatter plot with on the horizontal axis the diffusive coupling
strength ¢ and on the vertical axis the neuromodulator coupling strength p. The size
of the circles in the plot indicate the time required to reach a state near synchrony.
Unsurprisingly, on the vertical axis it can be seen that low coupling strength p take
significantly more time to synchronize that higher coupling strength p. On the horizontal
axis a similar result can be seen for diffusive coupling. The white area in the lower right
corner of the plot contains the coupling strengths that do not result in a synchronous
solution. For the same reason the point [u, o] = [0,0] is not included in the plot. The
combination of diffusive and neuromodulator coupling decreases the time to synchronized
especially for low coupling strengths (4 and o). When the coupling strengths are higher
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Figure 4.19: The time required to reach near synchrony depending on the coupling
strengths ;1 and o. The size of the circle represents the performance of the u, o pair.

the combination becomes less relevant.

To summarize, it was observed that the combination between diffusive coupling and
neuromodulator reduces that time required to synchronize, especially for low coupling
strengths. Therefore, it is expected that the combination of diffusive coupling and neu-
romodulator coupling is beneficial in rapid synchronization of two neurons.

Conclusion

To conclude, neuromodulator coupling can synchronize two neurons with large (initial)
time lags fast while diffusive coupling is better at synchronizing two neurons with small
time lags. The combination of neuromodulator coupling and diffusive coupling can reduce
time lags faster that the individual part, highlighting the importance of the combination
rather than the individual parts. However, more research is needed on the performance
of the combinedly coupled neurons.

4.4.3 Conclusion

This section combined diffusive coupling with neuromodulator coupling. It was shown
that the upper threshold of the coupling strength for diffusive coupling can be scaled with
sufficient neuromodulator action. The neuromodulator thresholds remained unaltered. It
was therefore concluded that neuromodulator action broadens the range of diffusive cou-
pling strengths that guarantees synchrony. Moreover, there is a neuromodulator coupling
strength that always results in a synchronous solution regardless of the applied diffusive
coupling strength. Consequently, the third research question: “Does the combination
of neuromodulator coupling and gap junction coupling enhance synchronization between
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two SCN neurons?” was answered. Moreover, not only the range for globally stable syn-
chronous solutions was increased. Also the performance of the coupling is improved when
neuromodulator coupling and diffusive coupling are combined. Neuromodulator coupling
synchronized best when the time lag is large while diffusive coupling synchronizes best
when the time lag is lower. The combination of the two allows for rapid synchronization
of a larger range of errors that the individual mechanisms.

4.5 Conclusion

This chapter investigated if two coupled SCN neurons can synchronize. This was done
by analyzing two Diekman neurons coupled by diffusive coupling and neuromodulator
coupling. First, diffusive coupling was discussed whereafter neuromodulator coupling
was considered. Finally, the combination between diffusive coupling and neuromodulator
diffusion was considered.

It was proven analytically that for diffusive coupling two coupled electrical Diekman
subsystem synchronize provided the coupling strength is sufficiently high. However, the
combined Diekman neuron (electrical and molecular) does not necessarily synchronize
since the molecular subsystem is not convergent. This results non synchronous solutions
for coupling strengths above a certain threshold. However, since there exists a range for
the coupling strength for which the synchronous steady state is globally stable, it was
concluded that two SCN neurons can synchronize when only coupled with gap junctions.
Therefore, the first research question was considered answered.

Thereafter, neuromodulator coupling was evaluated. In order to do so, the Gonze
coupling model was added to the Diekman neuron. It was shown that for a sufficiently
high coupling strength two Diekman neurons synchronize. However, there is an upper
threshold above which the solution becomes non oscillatory on the circadian time scale.
Since there exists a range of coupling strengths that can synchronize two Diekman neu-
rons, it was concluded that using only neuromodulator diffusion two SCN neurons can
synchronize. Therefore, the second research question was answered.

Finally the combination of neuromodulator coupling and diffusive coupling was dis-
cussed. It was shown that the lower and upper thresholds of the coupling strength for
diffusive coupling can be scaled with sufficient neuromodulator action. It was therefore
concluded that neuromodulator action broadens the range of diffusive coupling strengths
that guarantees a synchronous solution. Moreover, it was demonstrated that neuro-
modulator coupling is very effective when the difference between two neurons are large.
However, when the differences between neurons become smaller neuromodulator coupling
is less effective. In contrast, diffusive coupling is only effective when the differences are
small. The combination of the coupling mechanisms allows for rapid synchronization for
a larger range of differences than the individual mechanisms. In all, it can be concluded
that the combination of neuromodulator coupling and diffusive coupling is more effec-
tive at synchronizing two neurons than the individual coupling mechanisms. Therefore
the third research question: “Does the combination of neuromodulator coupling and gap
junction coupling enhance synchronization between two SCN neurons?” was answered.
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Chapter 5

Coupled network

Previously, a single Diekman neuron and two coupled Diekman neurons were discussed.
Two neurons were coupled by means of diffusive coupling en neuromodulator coupling.
These coupling methods are models for gap junction coupling and diffusion of neuromod-
ulators. However, as discussed in Chapter 2, the SCN is a network of coupled neurons.
The network of the SCN is of great importance in creating a reliable output. This chapter
aims to investigate how different networks affect the ability of a network of Diekman neu-
rons to synchronize. This corresponds with addressing the final three research questions.

The exact biological network structure is unknown. However, as was discussed in
Chapter 2, gap junction coupling is believed to couple locally in a distributed network. For
the sake of simplicity, regular nearest neighbour networks will be used. Neuromodulator
coupling is represented to couple globally in an all-to-all network as discussed in Chapter
2. Therefore this research is focused on nearest neighbour networks and all-to-all network.

The organization of this chapter is as follows. Firstly, a general network representa-
tion is discussed. Here, some useful terminology and definitions are introduced. There-
after, diffusive coupling in general networks is addressed. Using the feedback gain, the
importance of the eigenratio of the Laplacian for diffusive coupling is demonstrated.
Subsequently, the eigenratio for several nearest neighbour networks is calculated. Then,
neuromodulator coupling in all-to-all networks is discussed. Finally, the combination
between gap junction coupling and neuromodulator coupling is addressed.

Network representation In order to scale the two coupled neuron case to a network,
a few definitions need to be provided. The neurons ¢ and j of the network are coupled
if there exists a link between them. A link between two neurons ¢ and j is called an
edge (i,j) with £ representing the set of all edges in the network. In this report, only
undirected edges are used meaning that if (i,5) € &, then (j,4) € £ The graph (or
network) is called simple if the nodes do not have internal loops (i,7) ¢ £ and any two
nodes are connected by at most one edge. The graph is called connected if there exists a
path between any two nodes ¢ and j [34].

For a better insight in set £, a graph is often represented in a graphical way. Figure
5.1 shows a connected graph with two nodes. Here, and throughout the rapport, the
black dot represents a node and an arrow represents an edge.

An adjacency matrix A is a one-hot representation of the set £ [34][35]. It isan N x N
matrix with N being the total number of nodes in the network. The value of the ij-th
entry of A is 1 if and only if there is an edge connection nodes i and j. Everywhere else
it is zero.
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Figure 5.1: Two coupled nodes

Synchonization in a network Previously, synchronization for two coupled neurons
was discussed. However, when increasing the network size a new type of synchronization
has to be defined.

Consider for example a network of four coupled neurons. In case all neurons are
synchronized the network is said to be completely synchronized with definition 5.0.1.
In case two or more neurons synchronize but not all neurons synchronize, the network
system is said to be partially synchronized. The synchronized neurons combined are
called a cluster.

Definition 5.0.1. Consider a network of N coupled neurons with w; the synchrony
output (definition 4.1.1) of the i-th neuron. The network system is said to completely
synchronize if:

w;(t) = ws(t) as t — oo for alli € [1,2,.., N] (5.1)

where z4(t) represents the completely synchronized solution.

To summarize, the SCN is a network of coupled neurons. The neurons are coupled
through their inputs and outputs. A link between two neurons is called an edge, and
the set of all edges can be represented in the adjacency matrix. Through this network
neurons potentially synchronize. A network for which every neuron is synchronized is
called a completely synchronized network.

5.1 Diffusive coupling in a network

In this section the double diffusely coupled neuron case is extended to a network of
arbitrary size. The goal is to answer the fourth research question: “Can a network of
SCN neurons synchronize when coupled only by gap junction coupling?”.

In order to do so, first a mathematical representation of a network of neurons coupled
by diffusive coupling is described. This representation uses a coupling matrix called the
Laplacian. Thereafter, the relationship between the Laplacian and the thresholds on the
coupling strength is derived. Thereafter, the general relationship is specified for several
nearest neighbour networks. Finally, a condition on the network for which the network
completely synchronizes is derived.

5.1.1 Network system representation

Like in the case of a single Diekman neuron a state space representation of the entire
network can be derived. The goal is to expand the state space representation of a single
neuron to the state space representation of the network system. This is useful since it
allows us to represent large networks in a compact notation.
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Consider a network of N identical Diekman neurons. Recall the dynamics of the i-th
neuron:

yi = Cu; (5.3)

Recall that x; € R” represents the statevector of the i-th Diekman neuron with n repre-
sents the number of states. The vector f(x;) contains n functions translating the state
values x; of the i-th subsystem to the rate of change i; of the i-th subsystem. The input
u; € R™ describes the input of the i-th subsystem with m being the number of inputs.
The output y; € RP represents output of the i-th neuron with p being the number of
outputs. B € R™ ™ represents the control matrix which determines how the system in-
put affects the state change. The output matrix C' € RP*™ determines the relationship
between the system states and the system output. The neurons are identical hence f, B,
and C' do not depend on .
The dynamics of a single neuron can be extended to a network system such that:

$=F($)+([N®B)u
y=Un®C) (5.4)

Here = represents the network state vector with x = [z 22 ... 24" with z; the state

vector of the i-th subsystem. F(z) = [fT(z1) f¥(x2) ... fT(zy)]" is a vector containing
continuous functions describing the state changes of the individual neurons. [y represents
the identity matrix with dimensions N x N. The ® symbol represents the Kronecker
product!. Basically this notation is a concatenation of all individual neuron dynamics.
This notation can always be used even if the network is unconnected. The coupling is
described by the way in which the network system output vector y is translated into the
network system input vector u. For diffusive coupling this is done by an elegant coupling
matrix that will be described shortly.

Recall that for diffusive coupling the total input received by the i-th neuron is the
sum of individual inputs. The number of individual inputs is equal to the number of
edges of the neuron. In case a neuron is coupled to four other neurons then the total
input is the sum of four inputs. The input of neuron ¢ can therefore be written as:

u; = ZU(% — ¥i) (5.5)

where j represents all neurons in the set of edges of neuron 7. Using the adjacency matrix,
the input for the entire network can be written as:

u=o(Ay — Dy) (5.6)

where w is the full input vector of the network system, and D is a diagonal matrix with
entries equal to the number of edges of the corresponding node. Matrix D is known as

IGiven matrix A with dimensions ¢ x r and B with s x t than A ® B is the ¢gs x rt matrix

allB R alTB

aqlB e aqu
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the degree matrix of the network [34]. Note that the entries of matrix D are equal to the
row sums of the adjacency matrix. The adjacency matrix and the degree matrix can be
combined into the Laplacian matrix [34][36]:

L=D-A (5.7)
The result is the network system input vector
u=—-o0L®vy (5.8)

Since the Laplacian matrix is diagonally dominant? and all diagonal terms are real non-
negative entries, matrix L is positive semi-definite. Combined with the insight that the
rank of L is N — 1 (with N the number of nodes), it is concluded that the eigenvalues of
Lare0=X\ <X < ... <Ay

Now that the input (5.8) has been defined it can be added to the network system
description (5.4) such that it is represented as an input-output system with output-
feedback such that:

= F(r)+ (In ® B)u
y=(UIy®C)x (5.9)
u=—-0L®y

To summarize, the network model as represented in (5.9) is a concatenation of in-
dividual dynamics and a coupling. The entire network is represented as the Laplacian
matrix, and the coupling is represented as a feedback gain.

5.1.2 Exploratory simulations and hypotheses

In order to evaluate the dependence of the network on the synchronization property of
the network, a number of simulations were conducted. The objective of the simulations is
to explore the relationship between the coupling strength and the network solution. The
goal is to form a conjecture regarding the thresholds for which the synchronous state is
globally stable.

Four Diekman neurons were coupled in a 2 nearest neighbour network as seen in
Figure 5.2a. The coupling strength was varied while the initial conditions were kept
constant. The simulation time has set such that the steady state was reached. The
coupling strengths were set to o = 0.002, 0 = 0.4, 0 = 0.8.

Figure 5.2 shows the trajectories of the state x;; for the four neurons. For a low
coupling strength the network does not necessarily completely synchronizes. Instead, two
clusters form. For a coupling strength of ¢ = 0.4 the network completely synchronizes
while for a coupling strength of ¢ = 0.8 the network does not synchronizes.

The network solutions found in the four neuron network are similar to the solutions
found for the two neuron network. Once again it appears that there is region contain-
ing multiple solutions for low coupling strengths, a region where the synchronized state
is stable, and a region where the synchronous solution is not stable. However, in the
four neuron network a coupling strength of o = 0.8 already results in non synchronous
solutions. Recall, that for the double neuron network the synchronized state becomes

ZMatrix A = a(i, j) is diagonally dominent if a(i,i) > > jzi la(i, j)| for all @
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Four neurons coupled in a 2 nearest neighbour network
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Figure 5.2: Steady state oscillations of state x11 for four neurons coupled in a 2 nearest
neighbour network.

unstable when o > 1. Therefore, it was concluded that the network shifts the thresholds
on the coupling strength.

Before further investigating the dependency of the thresholds on the network, the
thresholds are estimated. The goal is to find the range of coupling strengths for which the
synchronous state is stable. Since a (numerical) bifurcation analysis is very challenging
for the Diekman model, MATLAB simulations are used instead. For every simulation
the network was initiated in one of the network solution. The simulation time was set to
5,000 hours to allow the network to reach steady state.

First, the prevelent non-synchronized low coupling strength solution seen in Figure
5.2c was evaluated. It was found that this state is unstable for ¢ > 0.002 (£0.0005).
Thereafter, the synchronous network solution was tested. It was found that for o < 0.51
(£0.01) the synchronous state is stable. Finally, the steady state seen in Figure 5.2d was
evaluated. It was found that this steady state becomes unstable for o < 0.51 (£0.01).

The simulations indicate that the four neuron network has similar solutions as the
double neuron network. However, the range of coupling strengths for every solution is
scaled. The lower threshold appear to be equal to the threshold found for the double
neuron network, as discussed in Chapter 4. The upper threshold was estimated to be
half of the threshold of the double neuron network found in Chapter 4.
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Eigenvectors of the Laplacian

In section 5.1.1, it was demonstrated that the entire network structure can be written

as a Laplacian feedback gain. Moreover, it was shown that the network, and thus the

Laplacian scales the thresholds on the coupling strength for which the synchronous state

is gloabally stable. The goal of this section is to form a hypotheses on how the Laplacian

scales the thresholds. In order to do so, the feedback gain for section 5.1.1 is reevaluated.
Substitute (5.8) into (5.4) such that

t=F(r)—o(Iy®B)L(Iy ® C)x (5.10)

As discussed in Chapter 4 the coupling disappears when the system is synchronized.
Therefore the matrix (Iy® B)L(Iy®C)xz becomes zero when the network is synchronized.
Therefore, it is concluded that the synchronized state is the eigenvector corresponding to
the zero eigenvalue of L. This will be demonstrated with an example.

Recall the four neuron two nearest neighbour network of Figure 5.2a. For this network
the Laplacian is:

2 -1 0 -1
-1 2 -1 0

L=| "o | o _4 (5.11)
-1 0 -1 2

with eigenvalues \; and eigenvectors v;

1 1 0 —1
1 0 1 1
)\1 = 07 U1 = 1 ) >\2,3 = 27 Vg = -1 , U3 = 0 ) >\4 = 47 Vg4 = -1
1 0 —1 1
(5.12)

When all outputs are identical as for the first eigenvector the feedback gain is zero.
This corresponds to the synchronized state. The network solutions of Figure 5.2d can also
be recognized. This state is characterized by the cluster with two states near synchrony
and the other two states in anti synchrony. This state might be represented by the
eigenvector corresponding to eigenvalue 4. In this case the loop gain is scaled by 4.
Compared to the double neuron network the thresholds appears to be scales by a factor
2. This makes sense since the largest eigenvalue of the double neuron network is Ay = 2.

The lower threshold of the four neuron network appears to be equal to the double
neuron network. When examine the eigenvalues it is found that the smallest non-zero
eigenvalues of both networks are equal (both Ay = 2). This indicates that the lower
threshold scales with the lower threshold.

Considering the eigenvectors and eigenvalues of the Laplacian it is hypothesized that:
1) The upper threshold scales with the largest eigenvalue of the Laplacian.
2) The lower threshold scales with the smallest nonzero eigenvalue of the Laplacian.

To summarize, when coupling multiple neurons in a network the thresholds for which
the complete synchronous state is globally stable appears to be scales with respect to the
double neuron network. In order to investigate the scaling property, two hypotheses were
constructed.
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Network | Estimate upper threshold | 1 /Ay
2N1INN 1.00 £ 0.02 1.00
4AN2NN 0.50 £ 0.02 0.50
AN3NN 0.50 £ 0.02 0.50
6N2NN 0.50 £ 0.02 0.50
6N4NN 0.33 £+ 0.02 0.33
6NSNN 0.33 £+ 0.02 0.33

Table 5.1: Numerically estimated upper synchronization threshold for several networks
compared to the scaled threshold. The network aNbNN is a network with a neurons
connected to b nearest neighbours. Naturally a = b + 1 represents an all-to-all network.

5.1.3 Eigenvalues scale thresholds

The relationship between the eigenvalues and the thresholds is investigated numerically
using MATLAB simulation. The goal of the simulation is to estimate the thresholds of
various all-to-all network and nearest neighbour networks. Subsequently, the expected
thresholds are calculated by scaling them with the eigenvalues of the Laplacian. Finally,
a comparison was made between the estimated and scale threshold.

Six all-to-all and nearest neighbour networks were created. The networks are described
in the first column of Table 5.1. In order to inspect the upper threshold, the neurons
in the networks were initiated in synchrony. The simulation time was set to 5,000 hours
in order for the states to converge to their final state. The final states were evaluated
and the coupling strength either increased or decreased. The second column of Table 5.1
shows the estimated thresholds.

In Chapter 4, the upper limit for the two neuron case was estimated to be @ ~ 1.
The largest (and only) nonzero eigenvalue of a two neuron network is Ay = 2. The
upper threshold for the two neuron case was already scaled by a factor two (compared to
the unscaled threshold). Therefore, the upper condition for the synchronous state of an
arbitrary network can be redefined as ¢ < @; /Ay where &; = 2 represents the unscaled
upper threshold. The 1 subscript in ; represents the unscaled value.

The largest eigenvalue of all six networks was calculated using MATLAB. Subse-
quently, the upper threshold was scaled per network and listed in the third column of
Table 5.1.

In Table 5.1, it can be observed that the threshold for which the synchronized net-
work solution is stable is determined by the network. When comparing with the scaled
thresholds, it was concluded that the thresholds can be predicted by scaling the threshold
of the double neuron network with the largest eigenvalue of the Laplacian. Therefore, the
first hypothesis “The upper threshold scales with the largest eigenvalue of the Laplacian”
was considered validated.

In order to inspect the lower threshold, the same six networks were used. The neurons
in the networks were initiated near a non-synchronized attracting state. Subsequently,
after 30,000 hours of simulation time the states were evaluated. The simulation time was
set considerably higher since for low coupling strengths neurons need more time to reach
their steady state. At the end of every simulation the final state was evaluated and the
coupling strength was cither increased or decreased. The thresholds found are listed in
the second column of Table 5.2.
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Network | Estimate lower threshold | @/,
2N1INN 0.0024 £ 0.0002 0.0024
AN2NN 0.0022 + 0.0002 0.0024
4N3NN 0.0012 + 0.0002 0.0012
6N2NN 0.0048 + 0.0002 0.0048
6N4NN 0.0012 + 0.0002 0.0012
6N5NN 0.0010 + 0.0002 0.0008

Table 5.2: Numerically estimated lower synchronization threshold for several networks
compared to the scaled threshold. The network aNbNN is a network with a neurons
connected to b nearest neighbours. Naturally a = b + 1 represents an all-to-all network.

In the two coupled neuron case the lower threshold was found to be o =~ 0.0024.
Therefore, in a network of arbitrary size the lower threshold is o > ¢,/Ay where g, =
0.0048 which represents the unscaled lower threshold. The 1 subscript in o, represents
the unscaled value.

The smallest eigenvalue of the six networks was calculated using MATLAB. Subse-
quently, the lower threshold was scaled per network and listed in the third column of
Table 5.2.

In Table 5.2 it can be observed that the lower threshold is determined by the network.
When comparing the estimated threshold with the scaled thresholds, it was concluded
that the thresholds can be predicted by scaling the threshold of the double neuron network
with the smallest non-zero eigenvalue of the Laplacian. Therefore, the second hypothesis
“The lower threshold scales with the smallest non-zero eigenvalue of the Laplacian” was
considered validated.

To summarize, the thresholds on the coupling strength for several networks were
estimated. Subsequently, the thresholds found for the double neuron network were scaled
by the eigenvalues of the Laplacian. It was concluded that the upper threshold scales with
the largest eigenvalue of the Laplacian while the lower threshold scales with the smallest
non-zero eigenvalue. Therefore, the hypotheses posed in section 5.1.2 were considered
validated.

5.1.4 Diffusive coupling in nearest neighbour networks

Previously the importance of the eigenvalues of the Laplacian was demonstrated. It was
shown that the thresholds can be predicted by the scaling the thresholds of the double
neuron network by the eigenvalues of the Laplacian. Therefore, when evaluating the
synchronization property of any network, only the smallest and largest eigenvalue of the
Laplacian have to be evaluated. This section analyses the smallest non-zero and largest
eigenvalue of a general nearest neighbour network. The goal is to derive a condition on the
network for which the neurons completely synchronize independent of initial conditions.

Eigenratio

One the most important properties of the eigenvalues of the Laplacian is the eigenratio.
When Ay is low and A, is high the range for values of the coupling strength is high.
However, when Ay is high and A; is low the range for values of the coupling strength for
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which the system synchronizes becomes small. In fact if ?—; > % then there is no area
for which the neurons in the network completely synchronizes (for all initial conditions).
This fraction R = )’\\Ti is called the eigenratio of the Laplacian. It has a range of (0,1] (for
a connected graph). If the eigenratio is 1 (all-to-all network) both the lower and upper
thresholds are scaled proportionally. However, if the eigenratio is smaller than one, the
thresholds are not proportionally scaled. Moreover, there is an eigenratio for which no

coupling strength can completely synchronize the network.

Laplacian spectrum

In order to predict if there is a coupling strength that can completely synchronize the net-
work independent of initial conditions, the eigenratio of the network has to be determined.
In order to do so, the set of eigenvalues, called the spectrum of a matrix is calculated.
This is do for any nearest neighbour network (with even number of neighbours). The
calculations can be found in Appendix D. The result is the following function

k/2 .
2wy . .
N=k—-2Y Cif k=2.p with peR 1
jlcos< N ) i p, with p € (5.13)

describing the eigenvalues of the Laplacian. Here u = [1,2, .., N] represents the number
of the cigenvalue and N the number of nodes in the network. The number of neighbours
is represented by k.

In order to illustrate the spectrum that Equation (5.13) generates, an example is
provided. A 41 node nearest neighbour network was created. The number of neighbours
was initiate at £k = 2 and increased to kK = N — 1. The eigenvalues were calculated using
Equation (5.13) and shown in Figure 5.3a per number of neighbours. Note that the scale
is divided by £ in order to fit the figure.

Note that all sets of eigenvalues contain one zero eigenvalue as is characteristic for
the Laplacian spectrum. In Figure 5.3a it can be seen that for £ = 2 the eigenvalues
are centered around k. When the number of neighbours increases the eigenvalues tend
to grow towards the value N. When £ = N — 1 (an all-to-all network) all eigenvalues
take the value N except for a single zero eigenvalue. In addition, Figure 5.3b shows the
development of just the smallest and the largest eigenvalue. Note that at £k = N — 1 the
eigenratio is one and decreases with decreasing k.

Eigenratio and node degree

As discussed previously, a sufficiently high eigenratio is needed to guarantee the existence
of a coupling strength that completely synchronizes a network. The goal of this section
is to find out what properties of a nearest neighbour network result in a high eigenratio.

Equation (5.13) (and Figure 5.3) suggest that the eigenratio of a nearest neighbour
network is a measure of the connectivity of a network. For eigenratio with a value 1 the
network is highly connected in an all-to-all network. An eigenratio close to zero indicates
a poorly connected network. Using this insight, one could argue that the eigenratio of
a nearest neighbour network might be predictable considering the connectivity of the
network.
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Figure 5.3: Spectrum of a 41 node kNN Laplacian.

In order to represent the connectivity of a network, the node density is used. The
node density D; is the number of edges of a node i divided by the total possible number

of edges for that node such that
k

D; = N1 (5.14)
Since all nodes in a kNN network have the same number of edges and the same potential
number of edges, D = D;. A density D = 1 represents the all-to-all network. A density
D — 0 represents a network with a high number of nodes and a low number of links.
It is hypothesized that the density of a network is proportional to the eigenratio of its
Laplacian.

In order to test the hypothesis, three kNN networks were created. The number of
neighbours k was varied while the number of nodes was constant at 11, 21, and 41. For
every k both the node degree and the eigenratio of the network was calculated. The
results were plotted in Figure 5.4.

It can be observed that the eigenratio R is low with low density and high for high
densities. Moreover, the node density is a relatively network size (N) invariant measure.
When the number of nodes increases (11,21,41) the relationship to the eigenratio stays
more or less the same.

Therefore, it is concluded that the density of a nearest neighbour network is propor-
tional to the eigenratio of its Laplacian. Recall that for an eigenratio R < = *1 there is no
coupling strength that can synchronize a network of diffusely coupled Dlekman neurons.
Using the thresholds found in Chapter 4 and Figure 5.4, it was found that R < gi can be
approximated by a nearest neighbour network with density D < 0.04. Therefore, it was
concluded that Diekman neurons in a diffusely coupled nearest neighbour network need
to couple to at least 4% of the total number of neurons (in the network) in order for a
completely synchronous solution to be globally stable.

5.1.5 Summary and conclusion

The objective of this section was to investigate the fourth research question: “Can a
network of SCN neurons synchronize when coupled only by gap junction coupling?”.
In order to do so, nearest neighbour networks of diffusely coupled Diekman neurons
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Figure 5.4: The eigenratio as a function of the network density for nearest neighbour
networks.

were evaluated. Two hypotheses regarding the scaling of the thresholds on the coupling
strength were formed. It was found that the lower threshold on the coupling strength for
which the synchronous state is globally stable scales with the smallest nonzero eigenvalue
of the Laplacian. Furthermore, the upper threshold on the coupling strength for which
the synchronous state is stable scales with the largest eigenvalue of the Laplacian. The
fraction between the smallest nonzero and largest eigenvalue is called the eigenratio. For
an eigenratio below a certain threshold there is no coupling strength that completely
synchronizes a network. Furthermore, it was found that there is a relation between the
node density of a nearest neighbour network and its eigenratio. It was found that poorly
connected networks (networks with a low density) have a low eigenratio while highly
connected networks have a high eigenratio. Consequently, in order to guarantee complete
synchrony, a network of Diekman neurons requires a minimum number of connections
per neuron. Or, given a constant number of connections per neuron, there is a maximum
number of Dieckman neurons that can synchronize.

Considering these results, it is concluded that a network of SCN neurons does not
necessarily synchronize when coupled only by gap junctions coupling. The lack of global
connections has a limiting factor on the synchronizing ability of the network. Therefore,
it is believed that gap junctions create local synchronized clusters. Large SCN wide
synchronization is deemed unlikely. Thereby, the fourth research question is considered
answered.

5.2 Neuromodulator coupling

This section discusses neuromodulator coupling in a network setting. The goal is to
evaluate the fifth research question: “Can a network of SCN neurons synchronize when
coupled only by neuromodulator coupling?”

In order to do so, first, the network representation and the coupling matrix are dis-
cussed. Thereafter, some hypotheses are formed and tested regarding the thresholds of a
network.
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5.2.1 Network representation

The case of a network of Diekman neuron coupled by neuromodulator coupling can be
represented by a state space notation. The goal of this section is to extend the single
neuron state space notation of Chapter 4 to a state space notation representing the entire
network. As for diffusive coupling in section 5.1.1, the network is can be represented by:

T = F(x)+ (Iy ® B)G(u)

y=(Un&C)x (5.15)
1
=—J
u N Y
Here z represents the network state vector with x = [x; x5 ... :CN]T with z; the state

vector of the i-th subsystem. Recall from Chapter 4 that for neuromodulator cou-
pling every neuron was given an additional state V' such that the statevector becomes
2 = [Ti1, - viaz, Vi)L. F(x) = [f(x1) f(xa) ... f(zn)]" is a vector containing continuous
functions describing the state changes of the individual neurons. Iy represents the iden-
tity matrix with dimensions N x N. The ® symbol represents the Kronecker product.
Vectors B and C' are chosen such that the G(u;) is added to the 11-th state of neuron i
and the output y; = V;. The coupling matrix J is an N times N matrix with all entries
equal to 1. Note that the input is equal to taking the average of all outputs. The function
G represents the saturation function

u

Gu)=v, - Iy  ——
(u) = vs - Iy k.- Iny+u

(5.16)

5.2.2 Neuromodulator thresholds in a network

Neuromodulator coupling, as represented by (5.15) has several interesting properties.
First of all, the input to any neuron is equivalent to the input to any other neuron.
Moreover, the input to the neuron does not scale as the network grows. Therefore it is
hypothesized that the (lower) threshold for synchronization and the (upper) threshold
are invariant with respect to the network size.

In order to test this hypothesis a simulation in MATLAB was conducted. A network
containing 2, 4, 8, and 16 Diekman neurons were initiated with a phase difference of 5
hours. For every network the lower threshold on the coupling strength was estimated
(with an 0.01 precision). The same threshold (40.01) was found for all four networks.
Thereafter, the upper threshold was evaluated similarly. The same threshold (3.0 £ 0.1)
was found for all four networks.

Considering the results, it is concluded that the thresholds of the neuromodulator
coupling strength are invariant to the network size.

5.3 Neuromodulator with diffusive coupling

Previously it was shown that there is a finite network size for which a network of Diekman
neurons coupled by only diffusive coupling cannot completely synchronize the network. In
this section neuromodulator is added. The goal is to evaluate the final research question:
“Does the combination of neuromodulator coupling and gap junction coupling enhance
synchronization in a network of SCN neurons?”.
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First, in section 5.3.1, a network representation of the dual coupled system is pro-
vided. Subsequently, in section 5.3.2, some simulations are conducted in order to form
a hypothesis regarding the combination of diffusive coupling and neuromodulator cou-
pling. Thereafter, in section 5.3.3, an analytical approach is used to analyze the coupling
matrices.

5.3.1 Network representation

The combined coupling can be represented in a network state space representation such
that

& = F(x) + (In ® Bep)uer + (In ® Bum)G (tnm)

Unm
G nm) — Us * Iy
(U ) v N kf,« . IN + Unm
vt = (v Ca o .17
Uep = —O L Yel
[
nm — —J nm

Here = represents the network state vector with x = [z 25 ... x N]T with x; the state
vector of the i-th subsystem such that x; = [z; 1, .., z;13, Vi]T. F(z) = [f(21) f(x2) ... fzn)]T
is a vector containing continuous functions describing the state changes of the individual
neurons. [y represents the identity matrix with dimensions N x N. The ® symbol repre-
sents the Kronecker product. Vector B; is chosen such that the input u; ¢; of neuron ¢ is
added to the first state. Vector C,; is chosen such that the first state of neuron 7 is taken
as an output (ye,; = x;1). The coupling matrix L represents the Laplacian of the network
and o represents the diffusive coupling strength. Vectors B,,, and C,,, are chosen such
that the G(u;) is added to the 11-th state of neuron i and the output y,um,; = Vi. The
coupling matrix J is an N times N matrix with all entries equal to 1. The u represents
the neuromodulator coupling strength. The function G represents the neuromodulator
saturation function.

5.3.2 Exploratory simulations

First, a simulation is conducted to form a hypothesis on how adding neuromodulator
action might influence the system. The goal of the experiment is to evaluate the network
solutions on a range of coupling. In short, the experiment consists of coupling four
neurons in a two nearest neighbour network. The coupling strengths are varied and the
steady state solutions for different initial conditions are analyzed. The result are shown
in Figure 5.5.

Figure 5.5 shows the network solutions for the four neuron network. The horizontal
axis represents the diffusive coupling strength (on the domain [0, 2]), and the vertical axis
represents the neuromodulator coupling strength (on the domain [0, 4]). Four different
network solutions are found in the plot: sync, co-existent/bistable, non-oscillatory (sync),
and anti sync. The scatter plot on the left on Figure 5.5 zooms in on the region around
the origin.

When comparing Figure 5.5 to Figure 4.13 of section 4.4, several interesting properties
of the network can be observed. As discussed previously, the diffusive coupling upper
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Figure 5.5: Type of network solution for a 4 neuron 2 neighbour network depending on
the coupling strength.

threshold is scaled to @ = 71 /Ay = 0.5. The lower threshold is not scaled with respect to
the double neuron case. Therefore, the horizontal axis of Figure 5.5 is scaled compared
to the axis of Figure 4.13.

As discussed in section 5.2, the thresholds on the neuromodulator coupling strength do
not scale with the network. Therefore, the vertical axis of Figure 5.5 remains unchanged.
In section 4.4, it was found that there is a p that can synchronize both neurons (of a
double neuron network) regardless of the diffusive coupling strength or initial conditions.
When evaluating Figure 5.5 it appears that this is also the case for the four neuron two
nearest neighbour network.

In order to test this, the experiment of Figure 5.5 was repeated with ¢ on a logistic
scale on the domain [1, 10']. It was found that for > 0.93 all solutions are synchronized.
Therefore, it was concluded that for the four neuron two nearest neighbour network
1> 0.93 unconditionally synchronizes the network.

Considering these results, it was hypothesized that there is a threshold on the neuro-
modulator coupling strength that synchronizes any network of Diekman neurons (coupled
by diffusive coupling in nearest neighbour fashion and neuromodulator coupling in a mean
field representation) independent of the diffusive coupling strength and initial conditions.

5.3.3 Simultaneous diagonalization

In order to test this hypotheses, an analysis of the coupling matrices is performed. The
goal is to prove that, with sufficient neuromodulator coupling strength any network syn-
chronizes. In order to do so, an eigenvector decomposition on the coupling matrices is
performed.

Recall the coupling matrices J and L. The coupling matrices commute since

J=11"%and ZLW = 0Vi, therefore LJ=JL=00" (5.18)

J=1
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where 1 represents the one vector and 0 represents the zero vector of appropriate dimen-
sions. Since the coupling matrices commute, the same matrix can be used to diagonalizes
both coupling matrices. Consequently, a decomposition along the eigenvectors of the
coupling matrices can be made which allows us to predict the local stability of the syn-
chronized state, given the knowledge of the double neuron network. More specifically, if a
double neuron network (coupled diffusely in an nearest neighbour network and via neuro-
modulator in a all-to-all network) synchronizes for a certain p, any network synchronizes
for that pu.

Given the previous result and the existence of a neuromodulator coupling strength
that synchronizes a double neuron network (independent of the diffusive coupling strength
o and initial conditions), it is concluded that this neuromodulator coupling strength p
synchronizes any network of Diekman neurons (coupled via nearest neighbour and all-to-
all). Therefore, the hypothesis was considered validated.

5.3.4 Conclusion

This section discussed the combination of neuromodulator and diffusive coupling in a
network. In doing so, the thresholds on the coupling strengths for larger networks were
evaluated. It was shown that the thresholds of diffusive coupling scale while the thresh-
olds of neuromodulation remain unaltered. The result is a certain threshold on the
neuromodulator coupling strength for which any size network synchronizes. Therefore,
it is concluded that that any Diekman neuron network coupled by diffusive coupling
and neuromodulator coupling synchronizes if the neuromodulator coupling strength is
sufficiently high. Therefore, the sixth research question “Does the combination of neuro-
modulator coupling and gap junction coupling enhance synchronization in a network of
SCN neurons?” is considered answered.

5.4 Summary and conclusion

The goal of this chapter was to extend the double neuron diffusive coupling case to a
network setting. This was done by evaluating the synchronization property of diffusive
coupling in a nearest neighbour network and neuromodulator coupling in a mean field
representation.

For diffusive coupling, it was found that the upper limit for synchrony scales with the
largest eigenvalue of the Laplacian. Subsequently, the lower threshold scales with smallest
nonzero eigenvalue. The ratio between the smallest nonzero and largest eigenvalue is
called the eigenratio. When the eigenratio of a network drops below a certain threshold,
the network does not completely synchronize for all initial conditions.

In order for the eigenratio not to cross the threshold, the network needs to be suffi-
ciently well-connected. However, as the number of gap junctions is limited, larger net-
works are not able to completely synchronize. It is therefore concluded that gap junction
coupling alone does not necessarily synchronize (larger) networks of SCN neurons.

On the other hand, neuromodulator is able to synchronize larger networks of Diek-
man neurons. The mean field representation ensures that the thresholds are unscaled.
Therefore, it is concluded that neuromodulator diffusion can synchronize networks of
SCN neurons of arbitrary size.

Moreover, the combination of neuromodulator and diffusive coupling was evaluated.
It was found that a network coupled by both diffusive coupling and neuromodulator
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coupling always completely synchronizes provided the neuromodulator coupling strength
is sufficiently high. Therefore, it was concluded that the adding neuromodulator diffusive

strongly enhances the synchronizing properties of a network of SCN neurons coupled by
diffusive coupling.
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Chapter 6

Discussion

The goal of this research was to investigate the synchronizing properties of a network of
SCN neuron by means of gap junction coupling and neuromodulator diffusion. This was
done using a modelling approach. To aid the research, a research question was formed:
“How do gap junction and neuromodulator coupling synchronize the gene expression of
a network of SCN neurons?”

To answer the research question, six sub question were posed:

1. Can two SCN neurons synchronize when they are only coupled by gap junction
coupling?

2. Can two SCN neurons synchronize when coupled only by neuromodulator coupling?

3. Does the combination of neuromodulator coupling and gap junction coupling en-
hance synchronization between two SCN neurons?

4. Can a network of SCN neurons synchronize when coupled only by gap junction
coupling?

5. Can a network of SCN neurons synchronize when coupled only by neuromodulator
coupling?

6. Does the combination of neuromodulator coupling and gap junction coupling en-
hance synchronization in a network of SCN neurons?

In the following section 6.1 a summary and the general conclusions of the research
are provided. Thereafter, in section 6.2, some limitations of the research are discussed.
Finally, in section 6.3, some recommendations for further research are provided.

6.1 Summary and conclusion

In Chapter 4, two coupled Diekman neurons were investigated. First, in section 4.2,
diffusive coupling between two Diekman neurons was investigated. It was found that the
electrical subsystem of two Diekman neurons synchronize, provided the coupling strength
is high enough. However, the molecular subsystem imposes an upper threshold on the
coupling strength for which the synchronous state becomes unstable. Therefore, two
Diekman neurons coupled by diffusive coupling can only synchronize when the coupling
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strength is in a certain range. Therefore, it was concluded that two SCN neurons can
synchronize when coupled by gap junction coupling.

In section 4.3, the Gonze model was used to couple two Diekman neurons. It was
found that two Diekman neurons synchronize for a sufficiently high coupling strength
(independent of initial conditions). Moreover, if the coupling strength is too high, the
neurons do not oscillate on the circadian time scale. Therefore, it was concluded that
two SCN neurons coupled by neuromodulator coupling can synchronize.

Thereafter, in section 4.4, the combination of diffusive coupling and neuromodulator
coupling was investigated. It was found that with a sufficiently high neuromodulator
coupling strength two neurons synchronize for all diffusive coupling strengths. Therefore,
it was concluded that neuromodulator coupling (with sufficiently high coupling strength)
can guarantee a synchronous output when added to two gap junction coupled neurons.
Moreover, it was found that neuromodulator coupling is effective for synchronizing neu-
rons with a large phase difference while diffusive coupling synchronizes best when the
phase difference is small. Therefore, it was concluded that the combination of neuro-
modulator diffusion and gap junction coupling also enhances the performance of the
synchronization property.

In Chapter 5, the synchronization property of a network of Dickman neurons was
investigated. First, in section 5.1, several Diekman neurons were coupled in a nearest
neighbour network by diffusive coupling. It was found that the network properties scale
the thresholds on the coupling strength. It was found that large networks are only able
to completely synchronize if the number of connections is also large. Since the number
of connections for gap junction coupling is assumed to be limited, it is concluded that
gap junction coupling is not able to synchronize a network of SCN neurons larger than a
certain size.

In section 5.2, neuromodulator coupling in all-to-all networks of Diekman neurons
was evaluated. It was demonstrated that the thresholds for neuromodulator coupling
are network invariant (at least for all-to-all networks). Therefore, it was concluded that
neuromodulator diffusion synchronizes networks of SCN neurons of arbitrary size.

Thereafter, in section 5.3, the combination of diffusive coupling and neuromodulator
coupling was investigated. It was found that even though gap junction coupling cannot
synchronize large networks the combination of neuromodulator and gap junction can
synchronize networks of arbitrary size. Therefore, it was concluded that the combination
of neuromodulator and gap junction coupling can synchronize networks of SCN neurons
of arbitrary size.

Finally, the main research question is evaluated. “How do gap junctions and neuro-
modulator coupling synchronize the gene expression of a network of SCN neurons?”
Gap junction coupling is a form of coupling that synchronizes neurons fast and precisely.
It is able to synchronize both the daily cycle as well as individual action potentials. How-
ever, when synchronizing the daily cycle, it is only effective when phase differences are
small. Furthermore, when coupled in a large network it is not able to completely syn-
chronize the network. On the other hand, neuromodulator coupling is in many ways the
opposite. It is slow, not precise and only effective when the phase differences are large.
However, when coupled in a large network neuromodulator coupling is able to completely
synchronize a network of SCN neurons. Therefore, the combination between these two
types of coupling is very important in the establishment of network with versatile syn-
chronization properties.
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6.2 Limitations

Considering the methodology of the research, a couple of limitations need to be addressed.
First of all, are results are of a mathematical nature. Therefore, the conclusions are
limited with regard to the biological system. It may be the case that gap junction coupling
in the SCN is of a different nature than represented by diffusive coupling. Moreover, the
Diekman neuron is a single neuron model. Scaling the Diekman neuron to a network
does not necessarily represent a network of SCN neurons. As a result of the scaling of
the Diekman neuron, unwanted or improbable properties might surface.

Furthermore, validation of the mathematical results is very challenging as many of
the biological states are unobservable. Therefore, it is challenging to interpret or validate
the mathematical results.

6.3 Recommendations and further research

Regarding further research, several recommendations need to be addressed. First of all,
this research was limited to coupling by means of gap junctions and neuromodulator
coupling. However, in order to better represent the connections between two neurons,
synaptic coupling also needs to be considered. This type of coupling could be interesting
when added to the other coupling mechanisms.

Moreover, this research was focused on the Diekman single neuron model. In scaling
the Diekman single neuron model to a network setting, the non convergence property of
the molecular subsystem played a key role. However, whether this peculiarity is a property
of the Diekman model or that of an SCN neuron in general is unclear. Therefore, the
results from this research using the Dickman neuron model need to be validated using
different mathematical SCN neuron models.

Besides, this research focused on a networks of SCN neurons instead of the actual
SCN network. The SCN is a network with high heterogeneity between the neurons. Not
only is every neuron slightly different than the other neurons, also on the level of the SCN
there are multiple areas consisting of different neurons [37]. These areas differ by the kind
of neuromodulator they are able to secrete or observe as well as the number of electrical
connections. Therefore, further research is needed to evaluated how the conclusion hold
up in a heterogeneous SCN network.

Moreover, the all-to-all and nearest neighbour networks represented here are only sim-
plification of real SCN networks. The nearest neighbour networks were used to represent
a local network while the all-to-all networks were used to represent a globally connected
network. However, in biology, neurons are very unlikely to couple in a (perfect) near-
est neighbour or all-to-all network. Therefore, more research is needed on the effect of
network impurities on the synchronizing ability of the neurons.
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Appendix A

Diekman equations and parameter
set

This appendix contains the entire set of differential equations of the Diekman model. Two
separate representations of the model are provided. First, a more intuitive representation
containing many algebraic equations is given. This is a representation is especially useful
for those with a proper understanding of the biological system. Thereafter, a state space
representation without any algebraic equations is given. This representation is particu-
larly useful for those with a background in systems theory. Finally, the parameter set of
the Diekman model is provided as well.

Intuitive representation
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Tgoo = ——5——
2 10722 + 5.6

Ty = exp(—(x; + 286)/160),
73 = 0.51 4+ exp(—(V 4 26.6)/7.1),
T4 = exp(—(x1 — 67)/68),
Ts = T = 3.1,
T = exp(—(x; — 444)/220),
s = 500/(10722 + 5.6)

i = —ki(loar, + Lcanont) — & +b;, i=9,10

1

ill =a (CRE(ZL’lo)EbOI(JJB)n — $11) s
Ti9 = G(xn - -T12)7
i3 = a(r12 — 213),

CRE(xy) = max(0, 10% - 219 — 75),
Ebox(x13) = < i )

ki + 13

State space representation



£y, Lo, L3, Xy, L5, L6, L7, Ly, L9, 11:13)

T1, Ts, T, T7, Tg)
Jro(@1, 5, 26, 27, 79, 10)
(710, 211, 713)
f12(fl711, 112)
(

f13 T2, 3513)

Er—x(t
Cm . fl =0Naleak (ENa — I (t)) + 12<17 : ( )217 + 9K T4 (t)4 (EK — I (t))

5 (GIOOO(xlg(t)+w100)_10 +1>

(1) N — T P W A WY )

elooo (z13(t)+ﬂ%m-;) +1

K1 gcar 5 (t) (Eca — 21 (1))
KQ + Tog (t)

+ gna w2 (1) 23 (1) (Bna — 21 (1)) +
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f2,3,...

bcag —

bcag —

z1(t) | 143
+%50 1
—ee T | 2y (F) ~ —orm
e~ 8T T BL 41

x3(t)_%
1(1)
o Bl

T _10z(D) _ 266
- 7T T 71 4oL

¢ + 100

1
14 z1(t) 1/4
(eﬁ’ 17'+1)

w5 (t)— 1

1023 120
_ [ 51 17 41
taurl
1
6() = T0em 215
_ e 67 T BT 41
taurnl

z9(t) 111 1
—e220 5 | @y (t) — —
< e16(5)+4+1

711? 2
- 0+ ) (0 - )

5
xi—ff) + kcag (gCaNonL 26 (t) 27 (1) (Bca — 71 (1)) + KﬁL:ég(t) gear T5 (t) (Eca — o1 (t))>

x:if)t) =+ kcam (gCaNonL Tg (t) e (t) (ECa — X1 (t)) + Kz-i—L;q(t) gcal T5 (t) (ECa — T (t)))

¢ (x” (t) - (1000 (a?131(t)+10100)) max (0, 10° 210 (£) - 75))

a (w1 (t) — 212 (1))

a (212 (1) — 13 (1))
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Appendix B

Stability analysis of the molecular
subsystem

This Appendix demonstrates the stability of the unique and stable equilibrium for a
constant C'RE input. This is done by 1) calculating the equilibrium, 2) deriving the
jacobian, 3) evaluating the eigenvalues of the jacobian at the equilibrium.

Differnetial equations

Ty @ (CRE' (1000-i13+1) - $11>
I.12 - a (3711 - 51712) (B-l)
T3 a (r19 — x13)

Equilibrium The equilibrium of the Diekman molecular subsystem is calculated by
substituting @11 s = 412,65 = 413,55 = 0 in the differential equation. For the second and
thrid molecular differential equation this results in Zi1ss = T19ss, T12ss = L1355 Such that
Ty = T11ss = T12ss = T13ss- Rewriting the first differential equations (3.10) yields

0.001

t =CRE - (———)" — 29 = B.2
E=CRE - (G017 %0 =0 (B:2)
CRE, :IL'Q(l()OO - Xo + 1)77, CRE, Tog,n >0 (B?))
(B.A

Equation B.4 shows that the equilibrium of the molecular system can uniquely be
described by the input constant CRE. The equilibrium does not have a saturation
and for arbitrarily high C'RE the equilibrium becomes arbitrarily high. Also note that
CRE = 74(1000 - zg 4+ 1)™ has only one solution for z > 0. Therefore the equilibrium is
unique for x > 0.

Jacobian of molecular subsystem The jacobian matrix was formulated as:

—a 0 —aR
RE
Imol = a —a 0 with R = ~ ¢ 1 (B.5)
0 a —a 0.001" - n - # (555077 )
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When the equilibrium CREy = x0(1000 - g + 1) is substituted the R function becomes

1 1+n
R = 0001” N - T - (1 + 10001‘())” - <m) (BG)
. 0

When assuming z,n > 0 Equation (B.6) can be simplified drastically to

nro
R=___"" B.7
To + 0.001 ( )

Evaluating the eigenvalues of the jacobian For positive x this fraction (B.7) is
bounded between 0 and n. The equilibrium point is locally stable if and only if the
real parts of all the eigenvalues of the jacobian matrix evaluated at the equilibrium are
negative. To test this, the Routh-Hurwitz criterion was used [38]. The Routh-Hurwitz
criterion applied to a cubic equation

)\3 +CL2A2 +CL1/\+CLO = O (Bg)

is satisfied if ag, ag > 0 and ay - a3 > ag [38]. The characteristic equation of the jacobian
matrix is given by to the characteristic equation, which is

A=1P-R=0 (B.9)
N3N +3A+1+R=0 (B.10)

Clearly, the Routh-Hurwitz criterion is satisfied in case R +1 < 9. So R > 8 in order
for the jacobian to have eigenvalues in the open right half plane. When we combine this
with the result of (B.7) it is clear that the Hurwitz’s criterium cannot be satisfied for
n < 8. Therefore the trajectories of the Diekman model (with n = 4) are attracted to a
stable equilibrium.
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Appendix C

Bounded solutions

The solutions of the Dickman model are bounded. In order to prove this every differential
equation (of the model) is considered. It is shown that at every equilibrium the vector
field is directed inwards.
The analysis starts by taking a look at the system’s gating variables. The dynamics
of the gating variables x5 3 g are described by:
dxi _ Tio — T

= Tt ;=93 .. 1
dt 7_i ) Z 737 78 (C )

where, 0 < ;00 < 1 and 7; >Osuchthat% >Of0ra:i=0and% < 0 for z; = 1.
Consequently, when 0 < ;(ty) < 1 the solutions will never leave this space such that
0 < z4(t) < 1. Now let’s look at the differential equation describing the membrane
voltage. It is given by:
d$1
CE = —Ina — Ix — lcar, — Lcanont — Ikca — Tk —teak — INa—ieak + U
= —gna®323(71 — Ena) — 9x73(21 — Ex) = goarsfr(t1 — Eca) (C.2)
— gcanonr 67 (21 — Eoa) — grca(13)23(21 — Er) — 9 —tear(13) (21 — Ex)

- gNa—leak(ml - ENa) +u

where gna, 9x, gcaL: 9oaNonL, YNa—teak, C € R are positive constants and Ey,, B, Eca, I €
R. Conductances grco(713) and gg jear(T13) are also positive with boundaries 2 <

grca(13) < 200,0 < gx_tear(x13) < 0.2. Moreover fi, is defined as f;, = %J:xg, where
Ky > 0 and Ky > 0 such that 0 < f, < % The reversal potentials are given as

Eca > Eng > 0 and Ex < 0. At 27 = Ek equation (C.2) can be simplified to:

«i'l = — gNa.’Z'gxg(EK - ENCL) - gCaLx5fL(EK - ECG“)

- QCaNonLiL'ﬁl‘?(EK - ECa) - gNa—leak(EK - ENa)

(C.3)

where (Fx — En,) < 0 and (Ex — FEg,) < 0. Since all conductances g > 0 and

ceey

Therefore 2 is always larger than zero for x1 = Ex. Moreover, in case r1 = E¢, Equation
C.2 can be rewritten as:

&1 = — gnaT573(Boa — Ena) — 971 (Eca — Ex) — gxca(113)73(Eca — Ey)

C4
- .,(]K—leak(l'lii)(EC‘a - Ek) - .,(]Na,—lea,k(EC‘a, - ENa,) ( )
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where (Ecq — Eng) > 0 and (Ecq — Ex) > 0. Since all conductances g are positive
and all gating variables x93 s are nonnegative the right-hand side of (C.4) is a sum
of negative terms. Therefore & is always smaller than zero for z; = FE¢,. When x;
takes the value of Fy 1 is positive and x; increases. When x; takes the value Eg, 27 is
negative and x; decreases. So when z; is in this boundary, it will never get out. So when
21(t) ER: B < x(t) < Egg than 21 (t +T) € R: By < x(t+T) < Eg, with T € R.
In fact, when solving the the equation #; = 0 the bound around x; can be taken a little
tighter.

Subsequently it can be shown that x¢ and x1o are also bounded for bounded z;. Note
that x¢ and 1y represent the intercellular calcium concentrations. Therefore they are
only defined for xg, x19 > 0. The states are described by

d 1 7 .
D i(Tear + Toanons) — = + by, i =9,10 (C.5)
dt T;
T
= —ki(9car®sfr(z1 — Eca) + goanonrTex7(x1 — Ecq)) — — +b; (C.6)

where k;,7; and b; are positive constants. The gating variables z,3 g occupy values
between zero and one (for initial conditions between zero and one). Since r; < E¢, the
first term of the right-hand side of (C.5) is always nonnegative. Therefore 9 and g
are always nonnegative for xg, x19 > 7;b;. So for xg, v19 > 7;b;, the states will never drop
below 7;b;. When we substitute the lower bound of 2y = EFx the maximum functions of
g9 and Zy are given by

dIi K1

L
S _ki(gCaL_(EK - ECa) + gCaNonL(EK - ECa)) + bz - (07)
dt KQ Ti

When setting to zero and solving this equation one can find the upper bounds

K, .
Ty < —ky - Ti(gCaL?(EK — Eca) + gcanont(Ex — Eca)) + Tibs, = 9,10 (C.8)
2
Therefore states xg and x1¢ are also bounded for bounded x; and bounded gating variables
T23,....8
For completeness let’s evaluate the bounds for for the final three differential equations.
x1; represents the mRNA concentration defined as:

dCL’H
dt

= a(CRE(x10) * Epox(213)" — 211) (C.9)

where 0 < Ejpo(713) < 1 for 13 > 0 and a and n are positive constants. Since the altered
version of CRE(z19) = max(0,10° - 19 — 75) only takes nonnegative values the lower
bound of z1; is zero. The upper bound of x1; is given by substituting the upper bound
of CRE(x10) and Epoy(zy,) in Equation (C.9). The upper bound becomes

) K
z11 < (10% (=Ko - TlO(gCaL?l(EK — Ecq) + 9canont(Ex — Eca)) + Tiobio) — 75) — 11)
2
(C.10)
When we substitute the lower bound of x1; in the 12th differential equation we get
d
M, (C.11)
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which is converges to zero. So the lower bound of x5 is zero. The upper bound of x5 is
equal to the upper bound of x1; described by

K

K (Ex — Eca) + gcanont(Ex — Eca)) + Tiobio) — 75) — x11)
2

(C.12)
Subsequently, the lower bound of 3 is zero and the upper bound is equal to the upper
bounds of x;; and xs.

To summarize, the space € is defined as:

z12 < (10° - (—kio - T10(goar —

Ex <r1 < Ec,
0<zy, <1
0<zr3<I1
0<rys <1
0<zs;<1
0<xe <1
0<x; <1
0<zsg <1

K,
Toby <w9 < (—ko - To(gcar — (Ex — Eca) + gcanont(Ex — Eca)) + Tobo)

Ky
K,

K,

0 <z < (10° - (=kio - T10(goar —

Tob1o <210 < (—k10 - T10(90ar — (Ex — Eca) + 9canons(Ex — Eca)) 4 T10b10)

K
K,
K
Ky
K
Ky

(Ex — Eca) + 9canonr.(Ex — Eca)) + Tiobio) — 75))

0<mp < (10 - (=k10 - T10(9car—(Ex — Eca) + gcanonr.(Ex — Eca)) + Tiobio) — 75))

0 <713 < (10% - (=K1 - T10(9car.— (Ex — Eca) + goanont(Ex — Eca)) + Tiobio) — 75))

(C.13)
In the previous we have seen that there is a space 2 C R' such that z(t) € € than
z(t+7T) € Q with T" € R. This means that if the system is initiated within B than it

will never leave ). The space €2 is a 13 dimensional space spanned by the previously
estimated bounds of the states.
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Appendix D

Laplacian spectrum

The goal of this appendix is to calculate the spectrum a a nearest neighbour matrix.
First, a notion about circulant matrices will be considered. Thereafter, the spectrum of
(some) nearest neighbour networks is calculated.

D.1 Circulant matrices

A circulant matrix is a special kind of matrix. It is characterized by a high order of
repetition. Every row in the matrix is the same as the previous row but shifted to the
right by one position. Equation D.1 gives a example of an n x n circulant matrix C'. Note
that every row is shifted by one to represent the next row. This shift is called a circular
shift. This can be done until the final row of the matrix is reached. However, when the
final row is shifted the first row of the matrix appears. One can say the matrix is circular
in some sense.

o €1 C2 -+ Cp-2 Cp—]
Cn—1 Co E Cn—2
— Cn—2
C= (D.1)
Cn—2
Cy Co C1
&] Co - Cp—2 Cp-1 Co

The repetitive structure of a circulant matrix C' can be captured in a matrix polyno-
mial p(C'). The polynomial is build out of special permutation matrices. A permutation
matrix is any matrix that has a single one entry in every row and the rest zeros. An
example of a special permutation matrix is

01 0 0
0 1 O
M = (D.2)
0 1
10 -« --- 0

This permutation matrix itself is circulant. In fact it is the identity matrix subjected to
one circulant shift. Moreover, it is equal to the one nearest neighbour adjacency matrix.
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This will be further discussed later. Any circulant matrix can be represented as the sum
of powers of the permutation matrix [39]. When taking the power of the permutation
matrix every one entry moves one position to the right. Obviously, the powers of the
permutation matrix are again circulant.

Lemma D.1.1. [39] Any circulant matrix C' can be written as a matrix polynomial P(C')
such that
N-1
p(C) = col + 1 M + o M? + .+ ey MN2 = Z Cj]\/[j—l
j=0

(D.3)

where M is the permutation matrix

When evaluating the eigenvectors of a circulant matrix it is useful to consider the
eigenvectors of the permutation matrix. Since any circulant matrix is the sum of powers
of permutation matrices the eigenvectors of a circulant matrix can be distilled from the
eigenvectors of the permutation matrix. The permutation matrix has a special charac-
teristic equation. In order to invesigate this the determinant of (Al — M) is taken.

A =1 0 0 |V N . )
0o X -1 0 N -1
det(A\ — M) = ol
0 1 0 .
-1 0 0 A 0 0 0
(D.4)
10 e ..o |EDX(NSD
A1 :
=1%o
: L1 0
0 - 0 N -1

The determinant of (Al — M) is expanded to two determinants (D.4). The first deter-
minant is a triangular. Consequently, the determinant is equal to the product of the
diagonal entries i.e. the eigenvalues. The second determinant has values —1 on the di-
agonal and the eigenvalues on the sub-diagonal. It is also triangular. Consequently, the
determinant is equal to the product of all diagonal entries. Therefore the characteristic
equation of matrix M for arbitrary dimensions is

det( A\ — M) =N —1 (D.5)
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The permutation matrix therefore has the eigenvalue AV = 1. These eigenvalues are
called roots of unity [39]. They lay on the unit circle such that

2 2 AU
A = cos (%) + i sin (%) — eV, withu={1,2,..,N} (D.6)

Lemma D.1.2. [39] Let A be an eigenvalue of any matrix permutation matrix (not just
M) than A" is an eigenvalue of M"™ with the same corresponding eigenvector (v # 0).

Proof. Let M be a permutation matrix with eigenvalue A with corresponding eigenvector
v than

Mv = v
M" = M™ ()
M = A(M" )
M"v = \"v
O
Lemma D.1.3. Let p(C) = col + ;M + eoM? + ... + ey MY~ Suppose ) is an

eigenvalue of M with corresponding eigenvector v. Then p()) is an eigenvalue of p(C)
with the same eigenvector v

Proof. Suppose A is an eigenvalue of M with corresponding eigenvector v. Than using
lemma D.1.2

p(C)—('(][—F(‘lM—'—('QMQ"— +(in an !
C 1): ((‘0[+P1M—|—P2M2+ e M 1)
C 1):(0[—1—('1)\"—('2)\ + .. +p71 l>\n 1) v

O

By using lemma D.1.3 the eigenvalues of any circulant matrix can be written as the
sum of powers of the roots of unity. Next sections apply this concept to the all-to-all
network and some nearest neighbour networks.

D.2 Nearest neighbour networks

A nearest neighbour network is characterized by the number of nodes N and the number
of neighbours &.

Using lemma D.1.1 the Laplacian matrix for even k can be written as a matrix poly-
nomial such that

k/2
Ly =FklIy+ (—1)2 (Mj + MN_j) , given that k=2-p, andp € R
j=1
Using lemma D.1.3 the eigenvalues of the Laplacian are

k/2

o=k (1) Y (Mg +AN) - withw = {1,2,..., N}

j=1
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Substitute the standard eigenvalues of the permutation matrix

k/2

M=k (=1) Y0 (7 e

j=1

The Euler equation is used to separate the complex exponential into a real and an imag-
inary part. The imaginary part drops from the equation such that

k/2

A= — ; (005(27;\’;‘7) + cos(2m(1 — %m)

Note that the second term in the summation is equal to the first (with a period shift)
such that

k/2 .

2mug
Ay =k —2 — ], u={1,2,...N D.
]E:lcos< N) u={1,2, } (D.7)
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Acronyms

SCN suprachiasmatic nucleus. 1
TTFL transcriptional translational feedback loop. 7

VIP vasoactive intestinal peptide. 9
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