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Abstract

Since the early days of exploration seismology seismic receiver field arrays have been
employed for purposes such as suppressing high wavenumbers present in wavefield,
reducing the volume of recorded data and improving its signal-to-noise ratio. These
receiver field arrays rely on the receivers being placed on a predetermined geometric
layout, a condition which is not always met in the field. Misplacing receivers can
have a detrimental effect on the performance of the field array. Fortunately, advances
in seismic acquisition now enable a) recording the output of individual receivers and
b) knowing with high (but limited) accuracy the actual location of each receiver. It
is possible then to form arrays digitally on a computer, a process known as group
forming. Group forming can be viewed as a combination of filtering and resampling.
We propose two algorithms that take advantage of the positional information available
about the receivers and generate a linear space-varying (LSV) filter. The LSV filter
is suitable for filtering the nonuniformly sampled data, generating the filtered output
on the nominal grid. We examine the relation of our algorithms with other algorithms
from the bibliography and investigate their performance on synthetic data.
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Introduction 1
Over the years, exploration geophysics has utilized a multitude of methods in order to
probe the composition and structure of the first few kilometers of the Earth. Reflection
seismology is one such method. Back in 1921 it was experimentally shown for the first
time that subsurface layers of the Earth can be mapped using a dynamite charge to
generate a seismic wave and seismograms to record the reflected wavefronts[6]. Today,
very similar techniques are routinely used in subsurface exploration and especially in
the search for underground areas likely to contain hydrocarbons.

Reflection seismology exploits the properties of elastic wave propagation in matter.
In the most simple case, seismic sources generate seismic waves that propagate through
the Earth’s interior layers (body waves), on the Earth’s surface (surface waves) and
in the air (air waves). When the body waves meet an interface between two different
layers, part of their energy is reflected and part of it is refracted into the next layer.
A portion of the wavefield’s energy returns to the surface of the Earth where it is cap-
tured by specialized receivers, called geophones or hydrophones depending on whether
they operate on land or in water. A simplified schematic of this scenario can be seen
in Figure 1.1. The output of these receivers provides a spatially sampled version of
the continuous seismic wavefield in time. There are, however, two main reasons why
traditionally the output of individual receivers is rarely used directly: poor signal to
noise ratio (SNR) and storage/computational costs. With the modern capabilities of
digital storage and processing power, recording the output of every individual receiver
is possible, even when tens or hundreds of thousands of receivers are deployed. The
problem of improving the quality of the signal still remains though.

Traditionally these problems have been attacked by grouping receivers and sum-
ming their output in the field, by connecting all group outputs together. The grouped
receivers are usually referred to as a field array of receivers and the process as group
forming. The resulting signal has an improved signal to noise ratio (SNR) and the
high-wavenumber content is suppressed. The quantity of data that has to be stored
for further use is also reduced. The SNR is thus improved and storage/processing de-
mands remain at reasonable levels, when this is needed. Further, such types of data
pre-processing (e.g. suppression of incoherent noise) may be needed by some imaging
algorithms.

Harnessing the advantages of a field array, presupposes that the receivers will be
placed at specific locations, determined when designing the array. Failure to do so
may have detrimental effects on the performance of the array. In this thesis, we will
primarily deal with the effects of receiver positioning deviations and potential group
forming methods that compensate for positional deviations.
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seismic
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Layer 1

Figure 1.1: A simplified version of seismic exploration.

1.1 Problem statement

The main objective of this thesis is to develop methods to perform group forming
that take into account deviations from nominal positions in receiver locations. These
methods use knowledge about the actual locations of the deployed receivers and should
be robust. Robustness here means that different realizations of the receiver locations
should affect as little as possible the output after group forming. This output should
be as close as possible to the ideal output which is obtained when the receivers have
zero deviation from the nominal location.

1.2 Thesis organization

This thesis is organized as follows:

Chapter 2 establishes the geometry of the receiver layout that will be assumed
throughout this thesis. The concept of the apparent velocity and its relation to the
frequency-wavenumber spectrum is introduced. The notion of adequate sampling is
discussed as well.

Chapter 3 introduces the concept of group forming in more detail and gives an
overview of various approaches that have been proposed over the years. Two dif-
ferent cases are distinguished, depending on whether deviations from the underlying
(nominal) grid can exist or not.

Chapter 4 discusses the effects of nonuniform sampling to the spectral content of the
data and demonstrates the necessity to take this effect into account.

Chapter 5 presents two methods that we propose for group forming for nonuniform
grids. We also present in detail geometry compensating digital group forming, a method
that has been previously proposed and which will be used for benchmarking purposes
in the next section. In the end of the section a comparison with other methods in the
bibliography is given.
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Chapter 6 contains the results of the application of the two proposed methods on
synthetic data. Two benchmarks are used for comparison: group forming ignoring
the irregularities in sampling and the geometry compensating digital group forming
algorithm.
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1.3 Notation

Throughout this work several notational conventions will be followed. These are listed
below.

ι: The imaginary unit ι =
√
−1.

v: Vectors will be written as boldface lower case letters.

A: Matrices will be denoted with boldface capital letters.

AN×M : A has N rows and M columns.

1.3.1 Unary and binary operations on matrices

A number of unary and binary operations on matrices are frequently used. Let

A =

 A1,1 · · · A0,MA

...
...

ANA,0 · · · ANA,MA


NA×MA

and B =

 B1,1 · · · B0,MB

...
...

BNB ,0 · · · BNB ,MB


NB×MB

.

Then, the following notation is introduced:

A∗: The complex conjugate of A.

AT : The transpose of A.

AH : The Hermitian (complex conjugate) transpose of A.

A†: The left Moore-Penrose pseudoinverse of A when A has full column rank is given
by A† = (AHA)−1AH .

||A||F : The Frobenius norm of A, given by

||A||F =

√√√√ NA∑
i=1

MA∑
j=1

A2
i,j.

A � B: The Hadamard (elementwise) product of A and B. This is defined when
NA = NB and MA = MB as

A�B =

 A1,1B1,1 · · · A0,MA
B0,MB

...
...

ANA,0BNB ,0 · · · ANA,MA
BNB ,MB


NA×MB

.

A⊗B: The Kronecker product of A and B, defined as

A⊗B =

 A1,1B · · · A0,MA
B

...
...

ANA,0B · · · ANA,MA
B


NANB×MAMB

.
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1.3.2 Functions of vectors and matrices

Let

A =

 A1,1 · · · A0,MA

...
...

ANA,0 · · · ANA,MA


NA×MA

and v =


v1

v2

...
vN


N×1

.

Then the following functions can be defined.

row(A; l): The l’th row of A,

row(A; l) = [Al,1, Al,2, . . . , Al,MA
]1×MA

.

diag(v): The diagonal matrix with the elements of v on its diagonal,

diag(v) =


v1 0 · · · 0

0 v2

. . .
...

...
. . .

. . . 0
0 · · · 0 vN


N×N

.

vec(A): The vector constructed by stacking each column of A one below the other,

vec(A) =



A1,1

A2,1

...
ANA,1
A1,2

...
ANA,MA


NAMA×1

.

circ(v): The circulant matrix with v as the first column; the rest of the columns are
cyclic permutations of the first one,

circ(v) =


v1 vN · · · v3 v2

v2 v1 vN v3

... v2 v1

. . .
...

vN−1

. . .
. . . vN

vN vN−1 · · · v2 v1


N×N

.
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Sampling the wavefield 2
2.1 The sampling grids

As was stated in the introduction, special devices known as geophones or hydrophones
can record components of the continuous seismic wavefield in space and time. Here we
will assume that the receivers measure the z-axis (vertical) component of the particle
velocity field. Let

d(t, xs, ys, zs, xr, yr, zr) (2.1)

be a scalar valued function denoting the value of the vertical particle velocity field. The
coordinates (xs, ys, zs) are the coordinates of a seismic source, while (xr, yr, zr) are the
coordinates of a receiver1. Note that in a (2.1) we assume, without loss of generality,
that a single source is active each time. The variable t denotes time. The value of the
particle velocity field versus time for a particular combination of source and receiver
coordinates is called a seismic trace.

It is very common to select a specific subspace of the 7-dimensional space of (2.1).
A specific subspace of the data, commonly known as a panel or gather, may high-
light specific characteristics of the recorded wavefield. Examples of panels include the
Common Shot Panel (CSP), which is the (t, xr, yr, zr) subspace, the Common Receiver
Panel, which is the (t, xs, ys, zs) subspace. The algorithms proposed in this work may
be applied to any of the possible two-dimensional subspaces. For simplicity we assume
a CSP where the two dimensions map to (xr, yr, 0) ≡ (x, y) and the value of the vertical
particle velocity field is given by

d(x, y), (2.2)

Similarly, in the one-dimensional case, we assume that the receivers lie on the x-axis.
Then, (2.2) simply becomes d(x).

Some further assumptions are made regarding the placement of the receivers in the
field. In order to facilitate the discussion of these assumptions we define four types of
receiver grids, which are also depicted in Fig. 2.1.

• The input grid: This grid is defined by the actual locations of the geophones.
The coordinates of the geophones are the set {xi} when the geophones are placed
on a line and {(xi, yj)} when they are placed on a plane.

• The nominal grid: The nominal grid is a rectangular grid with uniform spacings.
The spacings, which define the nominal sampling interval, are ∆x along the x-axis
and ∆y along the y-axis. Ideally the receivers should be placed on the nodes of
the nominal grid, however this is not always the case in practical situations.

1An alternative to using the source-receiver coordinates as in (2.1) is to use the midpoint-offset coordinates
[18, Chapter 3].
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• The output grid: This grid is defined by the set of group forming output coordi-
nates. Unless specified otherwise, we assume that the output grid will be a subset
of the nominal grid defined above.

• The dense grid: When the receivers are distributed on a line, this will be a
uniform grid with spacing δx. When the receivers are distributed on a plane it
will be a regular grid with uniform spacings δx = 1

Mx
∆x and δy = 1

My
∆y. Mx

and My are integers greater or equal to 1.

More often than not, the input grid will not be a subset of the dense grid. In this case
we assume that the traces are collected at the closest dense grid point instead, since in
reality the location of each receiver is known with limited accuracy anyway. Mx and
My are chosen such that δx and δy are less or equal to the accuracy of the receiver
location measurement.

0 Nx−1∆x

δx

(a)

(b)

(c)

(d)
0

Nx−1
∆x

δx

0

Ny−1

∆y

δy

(a)

(b)

(c)

(d)

Figure 2.1: The same set of receivers projected on (b) the input grid, (c) the nominal grid and
(d) the dense grid. Their weighted and summed outputs generates the result on the output
grid (a). Here Nx = 5, Ny = 5, Mx = 4 and My = 3. For clarity, not all receivers are shown.

The actual receiver coordinates can be written as the coordinates of the nominal
grid plus their deviations from their nominal location:

xi = x̄i + δxi for the one-dimensional case,
(xi, yj) = (x̄i, ȳj) + (δxi,j, δyi,j) for the two-dimensional case.

(2.3)

A single bar denotes a coordinate component on the nominal grid, i.e. x̄i = i∆x and
ȳj = j∆y. Similarly, a double bar denotes a coordinate component defined on the dense
grid, i.e. ¯̄xi = iδx and ¯̄yj = jδx.

Occasionally in this work there is a need for indicator functions that are only nonzero
at the coordinates where receivers are present. We introduce two such functions, sδ(·)
for the continuous-space case and its discrete counterpart s(·) which is defined on the
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dense grid:

sδ(x) =
∑
i

δ(x− xi),

s(x) =

{
1 if x = ¯̄xi and there is a receiver present at ¯̄xi
0 otherwise

where δ(·) is the Dirac delta distribution. For the two-dimensional case we have

sδ(x, y) =
∑
i

∑
j

δ(x− xi, y − yj)

s(x, y) =

{
1 if x = ¯̄xi, y = ¯̄yj and there is a receiver present at (¯̄xi, ¯̄yj)
0 otherwise.

2.2 Apparent velocities and the FK spectrum

The data is sampled in time and space, however the time-space (TX) domain is not
always the most intuitive representation of the data. A good example of this occurs
when one wants to discriminate between different kinds of waves, based on their velocity,
angle of arrival and frequency content. Knowledge of these parameters enables us to
characterize the composition of the sampled wavefield energy in terms of wave types
such as direct waves, reflections, multiples etc. It also makes filtering out specific wave
types much easier.

The Fourier transform is an important tool that can be used for this purpose.
The temporal and spatial transformation from the TX domain to the frequency-
wavenumber2(FK) domain can be used to differentiate waves based on their apparent
velocities.

Let us assume a line of receivers, equispaced along the x-axis. This setup is known
as a uniform linear array and appears often in radar and communications as well. The
apparent velocity of a wave is the velocity it appears to have along the line of receivers.
A schematic represenation can seen in Fig. 2.2. For simplicity, we will assume a plane

θ

θ

capp

c

Figure 2.2: A plane wave arriving at an angle θ having velocity c.

2Sometimes the term “spatial frequency” is used in the literature instead of the term “wavenumber”.
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wave arriving with velocity c and frequency f impinging on the receivers with an angle
θ. Then the apparent velocity is given by

||capp||2 =
||c||2
sin(θ)

The apparent wavelength and the apparent velocity are linked via the frequency of the
wave

||capp||2 = λappf,

where λapp is the apparent wavelength. A special case arises when the wavefront is
parallel to the x-axis. Then the apparent wavelength will be infinity. The reciprocal of
the apparent wavelength is the apparent wavenumber

kapp =
1

λapp

=
f

||capp||2
. (2.4)

The apparent wavenumber is linked in a linear manner with frequency, assuming no
dispersion. It can be seen that in an FK spectral plot, any straight line passing through
the origin will represent a constant apparent velocity. Ground roll travels near the
surface of the Earth, generally with lower apparent velocities than the reflections coming
from underneath. Provided that no aliasing occurs, ground roll energy and reflection
energy generally occupy distinct areas in the FK spectrum of the data. An example is
demonstrated in Fig. 2.3. For simplicity, in the following sections apparent wavenumber
should be understood whenever the word wavenumber is mentioned. The reflected
energy will generally be near k = 0m−1, since its wavefronts will generally arrive at
an angle close θ = 0 i.e., almost parallel to the axis (or plane) of the receivers. The
apparent velocity of those wavefronts will be very large and it can be seen from (2.4)
that the apparent velocity will be close to 0.

2.3 The spatial sampling interval

In order to have an alias-free recorded wavefield, according to the sampling theorem,
the spatial sampling rate ksmp should be no less then the twice the largest wavenumber
present in the wavefield, kmax.

ksmp ≥ 2kmax.

This means that the sampling interval ∆x = 1/ksmp should be

∆x ≤ 1

2
λmin,

or in other words, that at least two samples should be acquired per minimum apparent
wavelength. If this condition is not met, than some of the recorded bandwidth will be
contaminated by aliases of the high wavenumbers. A more detailed explanation for this
phenomenon can be found in Chapter 4.

Usually the ground roll will have the minimum apparent wavelength as it is usually
the wave with the lowest apparent velocity. If we only care about the more narrow-band

10
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Figure 2.3: Constant apparent velocities apprear as straight lines pasing through the origin in
FK plots. The reflected wave energy can be clearly distinguished from the ground roll which
has much lower apparent velocities.

signal that contains only the energy of the reflections, then we can consider the ground
roll as part of the noise [18, Chapter 4]. In this situation it is possible to permit some
aliasing of the ground roll, by increasing ∆x. This is possible when single receivers are
used for acquisition and can lead to cost savings during a survey because less receivers
have to be used to cover a particular area [1]. The condition that should be met is
that the aliased wavenumbers should not enter the region of the spectrum considered
“signal”.

A wavenumber k ≥ ksmp/2 sampled at sampling rate ksmp will be aliased to the
wavenumber

ksmp

2
−
(
k − ksmp

2

)
= ksmp − k

A schematic example can be seen in Fig. 2.4. We may sample at rate kadq, instead of
ksmp, provided that any aliased wavenumber should be higher or equal to the highest
wavenumber of the portion of the spectrum that is considered signal. We denote that
wavenumber as ksig. Then

kadq − k ≥ ksig, ∀k

11



The highest wavenumber contained in the spectrum is usually the highest wavenumber
of the ground roll, kgr. Then the previous inequality becomes

kadq ≥ ksig + kgr

1

∆xadq

≥ 1

2∆xsig

+
1

2∆xgr

∆xadq ≤
2∆xsig∆xgr

∆xsig + ∆xgr

,

where ∆xadq is the adequate sampling interval, ∆xsig would be the required sampling
interval to record the signal unaliased and ∆xgr is the sampling interval that guarantees
unaliased sampling of the ground roll. When ∆xsig < ∆xgr, ∆xadq < ∆xgr and therefore
the sampling density can be reduced without harming the signal. Sampling with a
sampling interval of ∆xadq means that the ground roll energy may be aliased, but the
aliases will not enter the reflection part of the spectrum.

ksmp/2 ksmp0

kksmp - k

Figure 2.4: A example of wavenumber aliasing. The signal represented by the solid line is
sampled above the Nyquist rate. The dashed line represents a signal sampled below the
Nyquist rate. A wavenumber k > ksmp/2 is mapped to ksmp−k.
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Group forming 3
As we previously saw, it is possible to represent the sampled data in a different domain
than the domain they were recorded in. By transforming the data to the frequency-
wavenumber (FK) domain, it is possible to view the velocities of arriving waves as
linear segments. The advantage of this domain of representation is that now signal and
noise are much more decoupled. Noise removal can be effectively done by filtering out
combinations of frequencies and wavenumbers.

When recording is done in an analog fashion, filtering out frequencies can be per-
formed by passing the signal recorded by the receiver through analog filters with the
desired properties. In order to perform a similar type of filtering in the wavenumber
domain, one can take advantage of the fact that each wavefront arrives at a different
velocities at each receiver. By summing the outputs of a number of receivers it is
possible to selectively attenuate waves with certain velocities more than others, hence
performing a spatial type of filtering. A set of receivers whose output is summed is
commonly termed a field array, a field pattern or a group. A schematic depiction of a
group can be seen in Fig. 3.1.

Σ Σ Σ

Figure 3.1: Schematic depiction of a receiver group.

Group forming can be done both in the analog and in the digital domain, the differ-
ence being whether the summation is performed before recording the receiver (analog
group forming) or after (digital group forming). Digital group forming essentially de-
pends on the ability to record single sensors. Recording each receiver output, however,
has not always been an option, due to the huge amount of storage and recording ca-
pabilities required. Nowadays though, recording each receiver output is technologically
feasible and makes it possible to completely separate signal acquisition, done in the
field, from signal processing to be done digitally on the computer [13, 1].

Whether done in the analog or the digital domain, group forming can be conceptu-
ally seen as a succession of two steps, namely

• filtering, since summing a number of (possibly weighted) receiver outputs can be
interpreted as applying a finite impulse response (FIR) filter along the spatial
dimensions and

• resampling, since one filter output per group of receivers is kept. When the
filter outputs are generated on the nominal grid, resampling takes the form of

13



decimation. However, other possibilities also exist, such as generating the filter
outputs on a denser grid, or even at arbitrary locations [3, 14].

In the following sections we examine some practical considerations concerning these
two steps.

3.1 Filtering

The way filtering is conducted can be divided into two classes of methods. The first
class assumes that the input grid has some form of regularity, for example that it is
a line with uniform spacings or a rectilinear grid. The second class makes no such
assumption. When the filter parameters are decided, consideration must be given to
the following

1. The filter length should not be very large. A large filter length means that traces
which refer to significant variations in the subsurface might be summed. This has
the potential of introducing artifacts in the output.

2. The filter should be able to suppress aliasing that would be introduced after the
resampling phase. This is discussed in Section 3.2.

3. The actual geometry of the input grid should be taken into account, especially if
it deviates significantly from its theoretical description. A discussion on why this
can be important can be found in Chapter 4.

It is possible that not all of these considerations can be satisfied at the same time,
depending on which group forming is to be used. Usually the first two requirements
cannot be satisfied at the same time, because a FIR filter with excellent passband/stop-
band characteristics might require a very large number of taps. This, however, is very
likely to violate the first condition.

3.1.1 Uniform input grid

The simplest kind of group is composed of Lf identical equidistant receivers with a
spacing of ∆x and a gain of 1

Lf
[18]. Its discrete-time Fourier transform is given by

Hu(e
ιk) =

(Lf−1)/2∑
l=−(Lf−1)/2

1

Lf
e−ι2πkx̄l =

sin(πkLf∆x)

Lf sin(πk∆x)

If we do the substitution ∆x = ∆X/(Lf −1) where ∆X is the physical length occupied
by the Lf receivers, and take the limit as Lf →∞ we get

lim
Lf→∞

Hu(e
ιk) = lim

Lf→∞

sin
(
πk

Lf
Lf−1

∆X
)

Lf sin
(
πk 1

Lf−1
∆X

) =
sin(πk∆X)

πk∆X
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which is the cardinal sine (sinc) function, i.e., the Fourier transform of the boxcar func-
tion. The continuous variable k denotes the wavenumber in m−1. The final spectrum
after convolving the boxcar function with the data, will be a product of the DTFT of
the sampled data with Hu(e

ιk). Although convenient due to its simplicity, the uniformly
weighted filter has a number of drawbacks, the most important being the inability to
influence the amplitude of the sidelobes for a given number of receivers and sampling
interval.

A way to have more control over the wavenumber response of the group is to in-
troduce arbitrary gains and inter-receiver spacings on the receivers [16]. Then the
wavenumber response becomes

H(eιk) =

(Lf−1)/2∑
l=−(Lf−1)/2

h(xl)e
−ι2πkxl .

where h(xl) are the individual gains and xl the locations of the geophones. There is
a plurality of ways to select the gain values, drawing from a vast body of work in
filter theory. Savit et al. developed the moveout filter, which approximates an ideal
frequency response in the least squares sense, by either optimizing with respect to
the inter-receiver spacings or with respect to the receiver gains [16]. The latter case
is identical to the usual least squares FIR filter design with the further constraint
that the gains are such that the wavenumber response of the filter is 1 for k = 0.
Chebyshev weights are another option explored in [15, 10]. As Holzman notes, arrays
using Chebyshev weights have the narrowest passband lobe for a given absolute upper
bound in the stopband region, and conversely, have the the lowest absolute upper
bound in the stopband region for a given passband lobe width. The downside of using
Chebyshev gains, however, is that their wavenumber response is very sensitive to gain
and location variations in the receiver. Using the method proposed in [17], it is possible
to design the best possible Chebyshev array with respect to the tolerance of the gain
variations. Gain variations are generally an important consideration for any group
scheme which uses different weights for its elements. It is especially true if groups are
formed in the field and these gains are implemented in the receiver hardware and are
thus dependending on the tolerances of the electronic circuitry. For the rest of this
work we assume that the receivers do not exhibit gain variations.

3.1.2 Nonuniform input grid

The methods outlined in the previous section assume spatial uniformity in the input
grid. However in practical situations this is rarely true. Due to obstacles and other
terrain difficulties, misplacement of the equipment etc., it is very possible that some of
the receivers are not positioned very accurately. The question that arises is how should
filtering be performed in this situation, where the filter and the data lie on different
grids. Generally three approaches are used to deal with this problem:

1. Regularization1 of the data and application of a filter designed for the nominal
grid.

1Regularization in the sense of interpolation to the nominal grid.
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2. Design of a filter that operates at the input grid rather than at the nominal one.

3. Disregard the fact that the input grid and the nominal grid are different and
simply filter the data using a filter designed for the nominal grid.

The approach of [7] is of the first kind. The method introduced there estimates the
spectrum of the data using parametric inversion. Then the signal can be reconstructed
to the nominal grid by means of a simple inverse FFT. Filtering can then be performed
easily on the reconstructed data. A variant of their method that directly reconstructs
the data is also included in [7]. We discuss the details of this variant in Section 5.4.

An example of the second approach is the geometry compensating digital group
forming method [8]. This method interpolates a predesigned filter to the input grid
and applies additional weighting to each filter tap that compensates for the variations
in sampling density caused by the irregularities of the input grid. A detailed description
of this method is included in Chapter 5.3, as a benchmark for our proposed methods.
Among the advantages of this method, as the authors of [8] note, are the fact that
it makes no assumption about the characteristics of the data. It is also much less
computationally demanding than first regularizing the data and applying the filter
afterwards.

3.2 Resampling

Resampling may take place after filtering. In the example of Fig. 3.1, the filter output
is decimated with a resampling ratio β = 4. Decimation can be easily performed if
group forming is done digitally, as it merely means that filter outputs do not have to
be calculated for every possible spatial shift of the filter. It is possible to have arbitrary
resampling ratios, for example with the aid of fractional delay filters.

Since usually resampling is used to reduce the amount of seismic data, β > 1. The
new sampling interval ∆x′ becomes larger than the original sampling interval ∆x

∆x′ = β∆x

k′smp =
1

β
ksmp,

or equivalently the sampling rate k′smp = 1/∆x′ becomes β times smaller. Any
wavenumber greater than k′smp/2 will be aliased in the resampled data. Due to this rea-
son, the filtering should be performed such that wavenumbers that would be aliased are
attenuated as much as possible. In essence, the filter should have adequate antialiasing
characteristics [3].
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The effects of nonuniform
sampling on the spectrum 4
4.1 Deterministic sampling

When filtering is to be performed on sampled data, the way the sampling was conducted
matters and should be taken into account. This dependence on sampling regularly can
be demonstrated with an example. Assume that an infinite number of receivers is
distributed along the x-axis at locations xl for l = −∞, . . . ,−1, 0, 1, . . . ,+∞. For
simplicity we only consider irregularities in the sampling of the x-axis, assuming that
sampling is uniform in the time domain. Let

ds(x) = d(x)
+∞∑
l=−∞

δ(x− xl) (4.1)

be the sampled version of d(x) With the aid of the comb function sδ(x) =
∑+∞

l=−∞ δ(x−
xl) (4.1) then becomes

ds(x) = d(x)sδ(x). (4.2)

An important question that arises is what is the relation between the wavenumber
spectra of ds(x) and d(x). Assuming that the Fourier transform1 pairs

d(x)↔ D(k)

ds(k)↔ Ds(k)

sδ(x)↔ Sδ(k)

exist, then

Ds(k) =

+∞∫
−∞

D(k′)Sδ(k − k′)dk′. (4.3)

The relation (4.3) follows from the convolution theorem of the Fourier transform. The
spectrum of ds(x) is given by the convolution of the spectrum of the continuous-space
function d(x) with the the spectrum of the comb function. The form of Sδ(k) is, thus,
important in determining the form of Ds(k) and it is given by

Sδ(k) =

+∞∫
−∞

(
l=+∞∑
l=−∞

δ(x− xl)

)
e−ι2πkxdx =

l=+∞∑
l=−∞

e−ι2πkxl .

1The Fourier transform D(k) of a function d(x) is given by D(k) =
∫ +∞
−∞ d(x)e−ι2πkxdx.
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It is now interesting to examine the special case when the sampling is done in a uniform
fashion (i.e., on the nominal grid). Then xl = x̄l = l∆x for l = −∞, . . . ,−1, 0,=
1, . . . ,+∞. Substituting this in (4.1) we arrive at

Sδ(k) =
l=+∞∑
l=−∞

e−ι2πkl∆x =
1

∆x

l=+∞∑
l=−∞

δ

(
k − l

∆x

)
, (4.4)

which is the Fourier transform of a Dirac comb with sampling interval ∆x. Plugging
(4.4) into (4.3) we get

Ds(k) =

+∞∫
−∞

D(k′)

[
1

∆x

l=+∞∑
l=−∞

δ

(
k − l

∆x
− k′

)]
dk′

=
l=+∞∑
l=−∞

1

∆x

+∞∫
−∞

D(k′)δ

(
k − l

∆x
− k′

)
dk′

=
l=+∞∑
l=−∞

1

∆x
D

(
k − l

∆x

)

We can see that the spectrum of the discrete space samples d(l∆x) is a sum of periodic
repetitions of the spectrum of d(x). As is known from basic sampling theory, if the
highest wavenumber of D(k) is more than 1

2∆x
, then the shifted copies of D(k) will

partially overlap, a phenomenon known as aliasing.

In the more general case xl 6= x̄l, the spectrum of the comb function is not a train
of Dirac delta distributions. Examples of the spectrum of a nonuniform comb function
are given in Fig. 4.12. A discussion over the form of these spectra can be found at the
end of the next section.

Up to now we have examined the relation between the spectra of the continuous-
space function d(x) and its sampled version ds(x). We can now proceed with the effect
of applying a low-pass filter to the sampled data. Let h(x) denote a continuous-space
function that acts as a low-pass filter. Then the spectrum of the filtered data is given
by

DF (k) =

+∞∫
−∞

+∞∫
−∞

h(x′)ds(x− x′)dx′e−ι2πkxdx = H(k)Ds(k), (4.5)

which is given by the Fourier transform of the data convolved with the filter. H(k)
is the Fourier transform of h(x) and the right hand side follows from the convolution
theorem.

2The parameter α given under Fig. 4.1 controls the amount of permitted deviation that a receiver can have
from its nominal position, as a percentage of ∆x (see also Section 4.2).
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Using (4.3) and (4.1) in (4.5) we get

DGF (k) = H(k)

+∞∫
−∞

D(k′)
l=+∞∑
l=−∞

e−ι2π(k−k′)xldk′. (4.6)

Even if H(k) is an ideal low-pass filter, the aliasing due to nonuniform sampling will be
suppressed only in the stopband. The passband might still contain energy that has is
present due to the convolution term. Due to this effect, disregarding the irregularities
in sampling might not be a satisfactory solution for an anti-aliasing filter.

4.2 Stochastic sampling

Up to this point, the sampling points xl = x̄l + δxl are assumed to be perfectly known.
The effects of nonuniform sampling have been examined for a single realization of the
input grid. It is useful to have a picture of the average effect of nonuniform sampling
to the filtered spectrum of the recorded data. This can be done by assuming that the
δxl are random variables instead of fixed quantities. This means that d(x) is sampled
stochastically at a “jittered” location, close to the nominal sampling location (jittered
sampling [5]). The receivers are layed out in the spatial interval [0, X]. We assume
that the probability density function p(δxl) will be that of the uniform distribution
over the interval [−a∆x

2
, a∆x

2
]:

p(δxl) =

{ 1
a∆x

, −a∆x
2
≤ δxl ≤ a∆x

2
, 0 ≤ a ≤ 1

0 otherwise.
(4.7)

This essentially means that the sampling location will have an equal probability to lie
within a distance of a∆x

2
around the nominal sampling location.

The power spectral density (PSD) of DGF (k) reveals the influence of the irregular-
ities in sampling. Since h(x) is deterministic, the PSD of DGF (k) will be given by [9]

lim
X→∞

E
{
|DGF (k)|2

}
X

= |H(k)|2 lim
X→∞

E
{
|Ds(k)|2

}
X

. (4.8)

The function is assumed d(x) deterministic as well, therefore the PSD of Ds(k) will be
given by the convolution of |D(k)|2 with the PSD of Sδ(k)

lim
X→∞

E
{
|Ds(k)|2

}
X

=

+∞∫
−∞

|D(k′)|2 lim
X→∞

E
{
|Sδ(k − k′)|2

}
X

dk′. (4.9)

Dippé and Wold [5], building on the work of Beutler and Leneman [2], provide analytic
expressions for the PSDs of various sampling functions. For the case of jittered sampling
without missing samples the PSD becomes

lim
X→∞

E
{
|Sδ(k)|2

}
X

=
1− |γ(k)|2

∆x
+

1

∆x
|γ(k)|2

+∞∑
l=−∞

δ(k − l

∆x
) (4.10)
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where

γ(k) =

+∞∫
−∞

p(δxl)e
−ι2πkδxldδxl =

sin(πka∆x)

πka∆x
= sinc(πka∆x) (4.11)

is the Fourier transform of the probability density function. Plugging (4.11) into (4.10)
and moving |γ(k)|2 in the summation we get

lim
X→∞

E
{
|Sδ(k)|2

}
X

=
1− sinc2(πka∆x)

∆x
+

1

∆x

+∞∑
l=−∞

sinc2(πla)δ(k − l

∆x
). (4.12)

The behavior of the PSD of the sampling comb function for various values of a can be
seen in Fig. 4.1. We see that,

• for a = 0, no jittering is allowed. All the geophones are placed at their nominal
locations and the equation (4.12) becomes

lim
X→∞

E
{
|Sδ(k)|2

}
X

=
1

∆x

+∞∑
l=−∞

δ(k − l

∆x
), (4.13)

using sinc(0) = 1. As in (4.4), the result reduces to a uniform comb function in
the wavenumber domain.

• for a = 1, δxl is allowed to take values in the whole interval [−∆x
2
, ∆x

2
]. Then

(4.12) reduces to [5]

lim
X→∞

E
{
|Sδ(k)|2

}
X

=
1− sinc(πk∆x)

∆x
+

1

∆x
δ(k), (4.14)

using that sinc(lπ) = 0 for l 6= 0. It is noteworthy that when a = 1 there is but
one impulse in the PSD. This means that the spectrum of Ds(k) will no longer be
a simple repetition of shifted copies of D(k). This result suggests that by using
randomized sampling it is possible to suppress impulsive aliasing. This possibility
comes at the expense of introducing aliasing with more noise-like features, in our
case represented by the first term [5].

• for 0 < a < 1, an intermediate situation emerges. Multiple impulses are present,
but each individual one is scaled by sinc2(πla). Since the cardinal sine function is
monotonically decreasing for a ∈ [0, 1], it follows that all impulses except for the
first one will have a smaller scale the closer a gets to 1. The opposite is true for
the first term, which will generally decrease as a approaches 1.

An example of the detrimental effects of nonuniform sampling can be seen in Fig.
4.2. On Fig. 4.2(a) can be seen spectrum of the uniformly sampled data. When the
sampling pattern becomes nonuniform, spectral leakage occurs due to convolution with
a nonimpulsive sampling pattern spectrum. The result is depicted in Fig. 4.1. As
expected, simply applying a wavenumber filter to the nonuniformly sampled data will
do very little about the spectral leakage in the stopband, a fact which can be clearly
seen in Fig. 4.2(c).
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(b) a = 0.5
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(c) a = 1

Figure 4.1: The spectrum of the comb function, as calculated for a single realization of the
receiver locations (deterministic case) and the PSD of the stochastic case. The former is
calculated using (4.1) and the latter using (4.12). Each plot is for a different value of a.
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(a) Uniformly sampled data
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(b) Nonuniformly sampled data
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(c) Filtered nonuniformly sampled data

Figure 4.2: The effects of nonuniform sampling on the spectrum of the data (α = 0.8).
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Group forming for
nonuniformly sampled data 5
5.1 The one-dimensional case

5.1.1 Spatial domain optimization

For this group forming method we will assume that the receiver locations are a subset
of the dense grid nodes. This is not an overly restrictive requirement as the dense grid
can be made to be dense enough so that the distance of the receiver from the closest
dense grid node is within the accuracy of the location measurement. We also assume a
FIR filter with Lf taps h(x̄i) for i = 0, 1, . . . , Lf −1 and that Nx receivers are dispersed
in the interval [0, Nx∆x). If the geophones where placed on the nominal grid, then the
filtering step of group forming would be a simple discrete convolution with the filter

dGF(x̄l) =
Nx−1∑
m=0

h(x̄l−m)d(x̄m), for l = Lf − 1, Lf , . . . , Nx − 1, (5.1)

which can be compactly written as the matrix-vector product

dGF = HdNOM (5.2)

The vectors dGF and dNOM contain the filtered data and input data respectively, stacked
as column vectors,

dGF =


dGF(x̄Lf−1)
dGF(x̄Lf )

...
dGF(x̄Nx−1)


(Nx−Lf+1)×1

, dNOM =


d(x̄0)
d(x̄1)
...

d(x̄Nx−1)


Nx×1

.

The matrix H is actually a (Nx−Lf + 1)×Nx Toeplitz matrix with the first row con-
structed by padding the Lf filter coefficients with Nx−Lf zeros. Thus the convolution
is calculated only over the range [(Lf − 1)∆x, (Nx−1)∆x], where all samples entering
the convolution are known. In this way the convolution edge effects are discarded. The
structure of H is given by:

H =



Nx−Lf︷ ︸︸ ︷
h(x̄Lf−1) · · · h(x̄0) 0 · · · 0

0 h(x̄Lf−1) · · · h(x̄0)
. . .

...
...

. . .
. . . · · ·

. . . 0
0 · · · 0 h(x̄Lf−1) · · · h(x̄0)


(Nx−Lf+1)×Nx

(5.3)
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A different scheme has to be devised when the input locations do not coincide with
the nominal grid. Since only the values d(x̄i+δxi) are known, a reasonable requirement
would be to find a set of filters gl(¯̄xn) such that

dGF(x̄l) =
Nx−1∑
m=0

h(x̄l − x̄m)d(x̄m) =
NxMx−1∑
n=0

gl(x̄l − ¯̄xn)s(¯̄xn)d(¯̄xn), (5.4)

for l = Lf − 1, Lf , . . . , Nx − 1. In matrix notation (5.4) becomes

HdNOM = GSdDEN (5.5)

where

S = diag




s(¯̄x0)
s(¯̄x1)
...

s(¯̄xNxMx−1)



NxMx×NxMx

and dDEN =


d(¯̄x0)
d(¯̄x1)
...

d(¯̄xNxMx−1)


NxMx×1

. (5.6)

Each element (l−Lf + 1, n) of the (Nx−Lf + 1)×NxMx matrix G is equal to gl(¯̄xn).
We require that gl(¯̄xn) = 0 for n − (l − Lf + 1)Mx ≥ LfMx. Then, each row of G
represents a filter with the same spatial support as that of each row of H. Unlike H
though, each row of G is not necessarily a shifted version of the first row. Therefore
it can be said that G represents a linear space-varying (LSV) filter in contrast to H
which represents a linear space invariant (LSI) filter. Also note that the output of G
is defined on the nominal grid.

The relation (5.6) still depends on samples of the wavefield collected on the nominal
grid, which are not available in reality. In order to drop the dependence on dNOM, a
relation between dDEN and dNOM must be established. If d(x) is bandlimited in the
wavenumber domain, an approximate relation exists between the values of the wavefield
on the nominal grid d(x̄q) and the values on the dense grid d(¯̄xn):

d(¯̄xn) ≈
Nx−1∑
q=0

sincd(Nx; ¯̄xn, x̄q)d(x̄q) (5.7)

This is a discretized version of the well-known sinc interpolation. The function sincd(·)
is defined to be

sincd(Nx; ¯̄xn, x̄q) =



sin( π
∆x

(¯̄xn−x̄q))
Nx sin( π

Nx∆x
(¯̄xn−x̄q))

if Nx odd and ¯̄xn 6= x̄q,

sin( (Nx−1)π
Nx∆x

(¯̄xn−x̄q))
Nx sin( π

Nx∆x
(¯̄xn−x̄q))

+ 1
Nx

cos( π
∆x

(¯̄xn − x̄q)) if Nx even and ¯̄xn 6= x̄q

1 if ¯̄xn = x̄q.
(5.8)

The equation (5.7) can be written as a matrix-vector product

dDEN ≈ QdNOM (5.9)
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where

Q =

 sincd(Nx; ¯̄x0, x̄0) · · · sincd(Nx; ¯̄x0, x̄Nx−1)
...

...
sincd(Nx; ¯̄xNxMx−1, x̄0) · · · sincd(Nx; ¯̄xNxMx−1, x̄Nx−1)


NxMx×Nx

Plugging (5.9) into (5.6) we get

HdNOM ≈ GSQdNOM, (5.10)

which should hold for every possible dNOM. A way to accomplish this is to find a matrix
G such that

H ≈ GSQ. (5.11)

A way to find such a matrix G is to solve the least squares problem

min
G

{
||H−GSQ||2F

}
. (5.12)

From its definition it follows that the Frobenius norm can be written as a sum of the
`2 norms of its rows:

||H−GSQ||2F =

Nx−Lf∑
l=0

|| row(H; l)− row(G; l)SQ||22. (5.13)

Each row of G contains elements that should not be optimized. These are the elements
n for which n − (l − Lf + 1)Mx ≥ LfMx. This ensures that each row of G is a FIR
filter with the same spatial support as h(x). The elements of each row of G that are to
be excluded from optimization can be removed together with the corresponding rows
of S. Let Sl be the submatrix of S formed by removing the rows that correspond to
variables of row(G; l) = gl that should not be optimized. Then

||H−GSQ||2F =

Nx−Lf∑
l=0

|| row(H; l)− gTl SlQ||22 (5.14)

Since (5.14) is a summation of nonnegative quantities, solving (5.12) is the same as
solving

min
gl

{
|| row(H; l)− gTl SlQ||22

}
for l = 0, 1, . . . , Nx − 1. (5.15)

Sl can be eliminated since its effect is to set certain elements of gl and rows of Q to
zero. Let g̃l be gl after removal of those elements which would have been set to zero by
the product gTl Sl. Similarly let Q̃l be a reduced version of Q that only retains those
rows that would not be set to zero by the product SlQ. Then (5.15) becomes

min
g̃l

{
|| row(H; l)− g̃Tl Q̃l||22

}
for l = 0, 1, . . . , Nx − 1. (5.16)

The closed form solution is given by

g̃l = (Q̃T
l )† row(H; l)T . (5.17)
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5.1.2 Wavenumber domain optimization

Instead of the linear convolution operator defined in (5.2), the circular convolution
operator could be used to perform the filtering.

d′GF(x̄l) =
Nx−1∑
m=0

h(x̄(l−m) modNx)d(x̄m), for l = 0, 1, . . . , Nx − 1. (5.18)

The objective is to find a set of filters g′l(¯̄xn) such that

d′GF(x̄l) =
NxMx∑
n=0

g′l(¯̄xlMx−n)mod(NxMx))d(¯̄xn) for l = 0, 1, . . . , Nx − 1.

Just as with gl(¯̄xn), each g′l(¯̄xn) should have a bounded support, which now takes the
form

g′l(¯̄xn) = 0 if (lMx − n)mod(NxMx) ≥ LfMx. (5.19)

We can now start exploring a new method for creating a LSV filter, denoted by the
Nx ×NxMx matrix G′ whose element (l, n) is g′l(¯̄xn). We begin by defining

hPAD = [h(x̄0), h(x̄1), . . . , h(x̄Lf−1),

Nx−Lf︷ ︸︸ ︷
0, . . . , 0]T . (5.20)

The circular convolution can be then written in matrix notation as

d′GF = H′dNOM = circ(hPAD)dNOM. (5.21)

where d′GF is a vector of the stacked values d′GF(t, x̄l) for l = 0, 1, . . . , Nx − 1.
Let F be a Nx×Nx discrete Fourier transform (DFT) matrix such that 1

Nx
FHF = I.

The spectra of d′GF and dNOM have a simple relation that is given by the DFT transform:

Fd′GF = FH′dNOM =
1

Nx

(FH′FH)(FdNOM) (5.22)

From the fact that the columns of DFT matrices form the eigenvectors of circulant
matrices, it follows that DFT matrices can diagonalize circulant matrices [4]. Therefore,
H′ can be factorized as

H′ =
1

Nx

FH diag(FhPAD)F (5.23)

Note that the relation above holds for circulant matrices. Unlike the spatial domain
formulation of the problem, the first Lf − 1 rows of H′ that produce the edge values
d′GF(t, x̄l), l = 0, 1, . . . , Lf−2 have to be present, to make H′ circulant. Plugging (5.23)
into (5.22) yields

FdGF = diag(FhPAD)(FdNOM) (5.24)

It can be seen from (5.24) that each wavenumber component of d′GF is simply a
scaled and phase shifted version of the corresponding wavenumber component in dNOM.
This is the expected behavior of a LSI FIR filter. Since we want d′GF to be a low-pass
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filtered version of dNOM, it is reasonable to express this requirement in the wavenumber
domain:

1

Nx

FH′FH(FdNOM) ≈ 1

Nx

FG′SQFH(FdNOM), (5.25)

which should hold for every FdNOM. Therefore

FH′F
H ≈ FG′SQFH , (5.26)

When the output grid is on the nominal grid, the indexes of the variables in G′ that
should not be optimized are the indexes of the zero elements of

circ([1TLf 0TNx−Lf ])⊗ 1TMx
, (5.27)

where 1Lf is a column vector of Lf ones and 0Nx−Lf a column vector of zeros. This
formulation follows from (5.19). Not optimizing with respect to the variables corre-
sponding the zeros of (5.27) ensures that the filter outputs of G′ are at the same
locations as those of H′ and that the each filter in G′ has the same physical length as
each filter in H′.

The filter h(x̄i) which we try to approximate in (5.26) is itself an approximation of
the ideal low-pass filter. Using the wavenumber domain formulation it is possible to
replace FH′FH with an ideal low-pass filter. Let

Hw(k) =

{
1, if k ∈ [−kpass, +kpass]
0, otherwise

(5.28)

be the ideal low-pass wavenumber response with bandwidth 2kpass. The sampled and
diagonalized ideal wavenumber response can be then constructed by sampling Hw(k):

Hw = diag




Hw(b+ 0 2π
Nx

)

Hw(b+ 1 2π
Nx

)
...

Hw(b+ (Nx − 1) 2π
Nx

)


 (5.29)

where b = (−1 + 1/Nx)π when Nx is odd and b = −π when Nx is even. It is possible
then to replace FH′FH in (5.26) with Hw. The optimization problem thus now becomes

min
G′

{
||W � (Hw −

1

Nx

FG′SQFH)||2F
}
. (5.30)

The matrix W applies weights that can be different for the diagonal elements and
the offdiagonal elements. In this way we may attempt to control the tradeoff between
accurate approximation of the low-pass filter and the amount of spectral leakage.

The expression can be simplified by eliminating S from the product G′SQ. Let
G̃′ be a matrix formed by the columns of G′ that have indexes corresponding to the
nonzero elements of S. Similarly, let Q̃ be a matrix formed by keeping those rows of Q
that correspond to the nonzero elements of S. Then (5.30) can be written as

min
G′

{
||W � (Hw −

1

Nx

FG̃′Q̃FH)||2F
}

(5.31)
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It is possible to convert the Frobenius norm in (5.31) to an `2 norm by vectorizing
the problem. It is then easy to optimize only over the variables in G′ and discard the
zeros. Using the identity vec(ABC) = (CT⊗A) vec(B), (5.31) becomes

min
vec(G′)

{
|| vec(W �Hw)− diag(vec(W))(F∗Q̃T⊗ 1

Nx

F) vec(G̃′)||22
}
, (5.32)

where the asterisk denotes the complex conjugate. Let

Ũ = diag(vec(W))(F∗Q̃T⊗ 1

Nx

F)

g̃′ = vec(G̃′).

The elements of g̃′ and rows of Ũ that should be removed due to the limited spatial sup-
port of the filter g′l(¯̄xn) are given by the indexes of those elements of g̃′ that correspond

to the zero elements of g′l(¯̄xn). If we call ˜̃g′ and ˜̃U the results after the corresponding
row and element removal, the solution is given by

˜̃g′ = ˜̃U† diag(vec(W)) vec(Hw)

G′ can be reconstructed from the elements of ˜̃g′ and can be applied to the nonuniformly
sampled data.

5.2 The two-dimensional case

5.2.1 Spatial domain optimization

As in the one-dimensional case, we will assume that the receiver locations are a subset
of the dense grid nodes. The FIR filter will be two-dimensional with Lfx × Lfy taps,
h(x̄i, ȳj) for i = 0, 1, . . . , Lfx − 1 and j = 0, 1, . . . , Lfy − 1 that Nx. Nx ×Ny receivers
are dispersed on the plane [0, Nx∆x) × [0, Ny∆y). If the geophones where placed on
the nominal grid, filtering the gathered data would amount to a 2D convolution

dGF(x̄i, ȳj) =
Nx−1∑
m=0

Ny−1∑
n=0

h(x̄i−m, ȳi−n)d(x̄m, ȳn). (5.33)

Note that we do not make any assumption about the separability of the filter. The
equation (5.33) is analogous to (5.1) and holds both for separable and non-separable
filters. In order to convert (5.33) into matrix notation, a convention should be used on
how should the values of d(x, y) should be stacked in a vector. Unless otherwise men-
tioned, we will assume that data is stacked by varying x in d(x, y) keeping y constant,
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i.e.

dGF =



d(x̄Lfx−1, ȳLfy−1)
d(x̄Lfx , ȳLfy−1)

...
d(x̄Nx−1, ȳLfy−1)

...
d(x̄Nx−1, ȳNy−1)


(Nx−Lfx+1)·

(Ny−Lfy+1)×1

dNOM =



d(x̄0, ȳ0)
d(x̄1, ȳ0)

...
d(x̄Nx−1, ȳ0)

...
d(x̄Nx−1, ȳNy−1)


NxNy×1

(5.34)

It is now possible to construct a matrix H that can perform the convolution operation
in (5.33) as a matrix multiplication for data stacked in such a way. This matrix is a
block matrix that has the Toeplitz-like structure seen in (5.3) at a block level. Each
individual block also has this structure within itself. Let Hl be a matrix block of H.
Then

Hl =


h(x̄Lfx−1, ȳl) · · · h(x̄0, ȳl) · · · 0

0 h(x̄Lfx−1, ȳl) · · · h(x̄0, ȳl)
...

...
. . .

. . .
. . . 0

0 · · · h(x̄Lfx−1, ȳl) · · · h(x̄0, ȳl)


(Nx−Lfx+1)×Nx

,

(5.35)
and H can be constructed using Hl as building blocks:

H =


HLfy−1 HLfy−2 · · · H0 0 · · · 0

0 HLfy−1 HLfy−2 · · · H0 · · ·
...

...
. . .

. . .
. . .

. . .
. . . 0

0 · · · 0 HLfy−1 HLfy−2 · · · H0


(Nx−Lfx+1)(Ny−Lfy+1)

×NxNy

.

(5.36)
The filtering can next be performed by the matrix multiplication

dGF = HdNOM. (5.37)

In a similar manner to the one-dimensional case, the objective is to calculate the
coefficients of a two dimensional LSV filter gi,j(¯̄xm, ¯̄yn) that should ideally give the same
output values dGF(x̄i, ȳj) when applied to the nonuniformly sampled data:

dGF(x̄i, ȳj) =
NxMx−1∑
m=0

NyMy−1∑
n=0

gi,j(x̄i − ¯̄xm, ȳj − ¯̄yn)s(¯̄xm, ¯̄yn)d(¯̄xm, ¯̄yn)

or in matrix notation

dGF = GSdDEN (5.38)
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where S is

S = diag





s(¯̄x0, ¯̄y0)
s(¯̄x1, ¯̄y0)

...
s(¯̄xNxMx−1, ¯̄y0)

...
s(¯̄xNxMx−1, ¯̄yNyMy−1)




and dDEN =



d(¯̄x0, ¯̄y0

d(¯̄x1, ¯̄y0)
...

d(¯̄xNxMx−1, ¯̄y0)
...

d(¯̄xNxMx−1, ¯̄yNyMy−1)


.

(5.39)
The matrix S has size NxMxNyMy × NxMxNyMy and the vector dNOM now has size
NxNy × 1. G is constructed in a similar manner as H, except that the filter now has
NxMx ×NyMy taps and is not required to be the same for each output location.

In the 2D extension the interpolation kernel first interpolates along the x-axis and
then interpolates the result along the y-axis:

d(¯̄xm, ¯̄yn) ≈
Nx−1∑
i=0

Ny−1∑
j=0

sincd(Nx; x̄i, ¯̄xm) sincd(Ny; ȳj, ¯̄yn)d(x̄i, ȳj).

With the aid of the Kronecker product this can be written as

dDEN ≈ (Qy⊗Qx)dNOM (5.40)

where Qx and Qy have dimensions NxMx × Nx and NyMy × Ny respectively and are
defined in a similar fashion as Q. Plugging (5.40) into (5.38) we get

HdNOM ≈ GS(Qx⊗Qy)dNOM (5.41)

which we would like to hold for every dNOM. As in the one-dimensional case, we can
optimize

min
G

{
||H− GS(Qx⊗Qy)||2F

}
(5.42)

per row of G.

5.2.2 Wavenumber domain optimization

It is also possible to extend the wavenumber domain optimization to the two-
dimensional case. In a manner analogous to the one-dimensional case, the spatial
domain formulation can be restated as

(Fy⊗Fx)H′(Fy⊗Fx)
H = (Fy⊗Fx)G′S(Qy⊗Qx)(Fy⊗Fx)

H (5.43)
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were Fx and Fy are Nx ×Nx and Ny ×Ny DFT matrices respectively. The matrix H′
has block circulant - circulant block structure,

H′ =



H′0 0 · · · 0 H′Lfy−1 · · · H′1

H′1 H′0
. . .

. . .
. . .

. . .
...

... H′1
. . .

. . .
. . .

. . . H′Lfy−1

H′Lfy−1

...
. . . H′0

. . .
. . . 0

0 H′Lfy−1

. . . H′1 H′0
. . .

...
...

. . .
. . .

... H′1
. . . 0

0 · · · 0 H′Lfy − 1
...

. . . H′0


NxNy×NxNy

. (5.44)

Each block-row has Ny−Lfy blocks of zeros, so that each block-row contains Ny blocks.
Each block H′l is a circulant matrix given by

H′l = circ([h(x̄0, ȳl), h(x̄1, ȳl), · · · , h(x̄Nx−1, ȳl),

Nx−Lfx︷ ︸︸ ︷
0 · · · 0]). (5.45)

The matrix H′ differs from H in that H′dNOM also includes circular convolution edge
effects in the output. In this form however, H′ can be diagonalized by Fy⊗Fx [4]. We
can therefore replace the product (Fy⊗Fx)H′(Fy⊗Fx)

H with an ideal low-pass filter.
If the ideal low-pass filter is circularly symmetric, then its wavenumber response will
be given by

Hw(kx, ky) =

{
1, if

√
k2
x + k2

y ∈ [−kpass, kpass]
0, otherwise.

(5.46)

where kpass denotes the end of the bandpass region of the filter. A diagonal matrix Hw

can be constructed representing the ideal low-pass filter in a diagonalized form. This
diagonalized form can be constructed by sampling Hw(kx, ky) and stacking the samples
along the diagonal of Hw

Hw = diag





Hw(bx + 0 2π
Nx
, by + 0 2π

Ny
)

...
Hw(bx + (Nx − 1) 2π

Nx
, by + 0 2π

Ny
)

Hw(bx + 0 2π
Nx
, by + 1 2π

Ny
)

...
Hw(bx + (Nx − 1) 2π

Nx
, by + (Ny − 1) 2π

Ny
)




. (5.47)

The constants bx and by depend on whether Nx and Ny are even or odd integers. When
Nx is odd, bx = (−1 + 1/Nx)π. When Nx is even, bx = −π. The value of by is
calculated in a similar way. This has the effect of sampling Hw(kx, ky) in [−π, +π] in
both dimensions.
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It is then possible to optimize

min
G′

{∣∣∣∣W � (Hw − (Fy⊗Fx)G′S(Qy⊗Qx)(Fy⊗Fx)
H)
∣∣∣∣2
F

}
, (5.48)

in the same manner as (5.31). The variables in G′ not to be optimized when the output
locations lie on the nominal grid are given by the indexes of the zeros in(

circ([1TLfy , 0TNy−Lfy ])⊗ 1TMy

)
⊗
(

circ([1TLfx , 0TNx−Lfx ])⊗ 1TMx

)
.

5.3 Geometry compensating digital group forming

An alternative way of calculating coefficients for filtering irregularly sampled data is
presented in [8]. We implemented their method and used it for the purpose of bench-
marking the performance of the algorithms described in the previous section. In this
section an outline of their method will be presented, as well as a 1D adaptation. This is
done in order to examine more closely the differences and similarities with the methods
previously discussed.

5.3.1 The two-dimensional case

We begin with the 2D case since this is the case that is discussed in [8]. Recall from
(5.33) that

dGF(x, y) =

Lfx−1∑
i=0

Lfy−1∑
j=0

h(x− x̄i, y − ȳj)d(x̄i, ȳj), (5.49)

Let hc(x, y) and dc(x, y) be continuous and smooth functions for which hc(x, y) = h(x, y)
and dc(x, y) = d(x, y) holds, when x = i∆x, i = 0, 1, . . . , Lfx and j = 0, 1, . . . , Lfy,
j = 0, 1, . . . , Lfy. The functions hc(x, y) and dc(x, y) can be considered as continuous
interpolations approximating h(x, y) and d(x, y) respectively and have zero error at the
nominal grid points. 2D cubic interpolation is used in [8], but also other interpolation
methods are suggested, such as spline, sinc and polynomials.

Within the accuracy of the trapezoidal rule, (5.49) can be approximated as

dGF(x, y) ≈ 1

∆x∆y

∫∫
hc(x− x′, y − y′)dc(x′, y′)dxdy. (5.50)

The convolution integral in (5.50) can also be discretized at the nonuniformly sam-
pled input grid, using an appropriate quadrature rule. In order to perform this dis-
cretization, the portion of the plane covered by the receivers must be tesselated, i.e.
divided in nonoverlapping cells. There are multiple ways to perform this tesselation.
Ferber and Özbek use the Delaunay triangulation, also mentioning that Voronoi tesse-
lation could be used instead.

When the Delaunay triangulation is used the tesselation cells are triangles whose
vertices are the sampling points (xi, yj). In this case it is convenient to discretize the
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integral using the trapezoidal rule. The trapezoidal rule for numerically integrating a
function f(x′, y′) for a triangularly tesselated integration domain is given by

Nx∆x∫
0∆x

Ny∆y∫
0∆y

f(x′, y′)dx′dy′ ≈
NT−1∑
l=0

1

3

∑
i,j:

(xi,yj)∈Tl

f(xi, yj)Area(Tl) =

=
Nx−1∑
i=0

Ny−1∑
j=0

f(xi, yj)
∑
l:

(xi,yj)∈Tl

1

3
Area(Tl),

(5.51)

where NT is the number of triangles and Tl = ((xl1, yl1), (xl2, yl2), (xl3, yl3)) is a triangle
as generated by the tesselation and is defined by three input grid points that act as its
vertices. The area of a particular triangle can be calculated by the determinant of a
matrix composed by the coordinates of the vertices

Area(Tl) =
1

2

∣∣∣∣∣∣det

xl1 yl1 1
xl2 yl2 1
xl3 yl3 1

∣∣∣∣∣∣ . (5.52)

In our case f(x′, y′) = 1
∆x∆y

hc(x− x′, y − y′)dc(x′, y′). Substituting in (5.51) we get

dGF(x, y) ≈ 1

∆x∆y

Nx−1∑
i=0

Ny−1∑
j=0

 ∑
l:(xi,yj)∈Tl

1

3
Area(Tl)

hc(x− xi, y − yj)d(xi, yj), (5.53)

Note that dc(xi, yj) has been replaced by d(xi, yj) since by assumption d(x, y) = dc(x, y)
for (x, y) = (xi, yj). Therefore no interpolation has to be performed on the data, it is
only the filter that is interpolated. The interpolated filter coefficients are weighted by

wDEL(xi, yj) =
∑

l:(xi,yj)∈Tl

Area(Tl)

3∆x∆y
(5.54)

which is 1/3 of the total area covered by cells that have (xi, yj) as their common vertex,
normalized by the nominal cell area. It can be seen that the value of wDEL(xi, yj)
depends purely on geometrical information about the input locations and the kind of
tesselation used. It can also be seen that a relatively isolated input location will receive
more weight than one that is located in a denser part of the input grid.

When the Voronoi tesselation is used, the tesselation cells are polygons whose gen-
erators are the sampling points (xi, yj). Because the vertices of the polygons generally
do not coincide with sampling points, it is convenient to discretize the integral using a
quadrature rule of the type

Nx∆x∫
0∆x

Ny∆y∫
0∆y

f(x′, y′)dx′dy′ ≈
Nx−1∑
i=0

Ny−1∑
j=0

f(xi, yj)Area(Pi,j) (5.55)
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(a) Delaunay-based tesselation (b) Voronoi-based tesselation

Figure 5.1: Tesselation of the same grid using the Delaunay and Voronoi methods. The cells
around the same grid points are highlighted in both tesselations.

where Pi,j is the Voronoi cell corresponding to the generator point (xi, yj). Its area
can be calculated by dividing the polygon into triangles and using (5.52). Using this
quadrature rule, dGF(x, y) can be approximated as

dGF(x, y) ≈ 1

∆x∆y

Nx−1∑
i=0

Ny−1∑
j=0

Area(Pi,j)hc(x− xi, y − yj)d(xi, yj). (5.56)

The weights of the interpolated filter coefficients are now given by

wVOR(xi, yi) =
Area(Pi,j)

∆x∆y
. (5.57)

In Fig. 5.1 examples of the two tesselation methods are shown. Note that if the
nominal grid is rectangular the weights that are calculated using the Delaunay trian-
gulation might vary considerably for each input location, even if the input locations
have fairly uniform spacings. This happens because the cell around each grid point
might contain a different number of triangles (e.g. the pink and blue cells in Figure
5.1(a)). This effect is undesirable since we would like the weight to not vary much when
the deviations of the input locations are small. Using the Voronoi tesselation performs
better in this respect, generating cells which vary less in area.

After the weights have been determined using any of the tesselation methods, a
normalization factor γ is calculated such that

Nx−1∑
i=0

Ny−1∑
j=0

h(i∆x, j∆y) = γ

Nx−1∑
i=0

Ny−1∑
j=0

w{DEL,VOR}(xi, yj)hc(xi, yj). (5.58)

Multiplying the weighted filter coefficients by γ has the effect of setting the DC am-
plitude of the filter to zero. Finally, the discretized convolution can be written as
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dGF(x, y) ≈ γ
Nx−1∑
i=0

Ny−1∑
j=0

w{DEL,VOR}(xi, yi)hc(x− xi, y − yj)d(xi, yj) (5.59)

5.3.2 The one-dimensional case

In the one-dimensional case tesselation becomes less complicated, as it becomes a prob-
lem of dividing a line segment into subsegments. The trapezoidal rule can be used, but
now has the form

Nx−1∫
0∆x

f(x′)dx′ ≈
NLS−1∑
l=0

1

2

∑
i:

xi∈LSl

f(xi)Length(LSl) =
Nx−1∑
i=0

f(xi)
∑
l:

xi∈LSl

1

2
Length(LSl), (5.60)

where the LSl are the line segments and NLS is the total number of line segments.
In order to approximate the integral, the values of the function f(x′) to be integrated
have to be known at the input grid points xi, as well as the length of the subsegments
that have xi in common. Since those subsegments are xi−1 to xi and xi to xi+1, (5.60)
becomes

Nx−1∫
0∆x

f(x′)dx′ ≈
Nx−1∑
i=0

f(xi)
1

2
(xi+1 − xi−1). (5.61)

The function to be integrated is now f(x′) = hc(x− x′)dc(x′), therefore

dGF(x) ≈
Nx−1∑
i=0

[
xi+1 − xi−1

2∆x

]
hc(x− xi)d(xi), (5.62)

or

dGF(x) ≈
Nx−1∑
i=0

wLS(xi)hc(x− xi)d(xi), (5.63)

where wLS(xi) = xi+1−xi−1

2∆x
.

5.4 Comparison of methods and related discussion

We will now examine more closely the relation of the methods we developed in Section
5.1 with the GCDGF [8] and the band-limited reconstruction method found in [7].
While [7] is concerned with reconstruction rather than group forming, our methods
have some conceptual similarities that stem from the band-limited assumption in (5.7).

We begin by examining how a single output of filtered data is generated in each of
these methods, for example the output dGF(x̄l). In order to make the formulation less

cumbersome, we introduce the Nx × 1 vector d̃ALL in which all the acquired data at
points xi, i = 0, 1, . . . , Nx are stacked. We also define the Lf × 1 vector d̃PART that

contains those elements of d̃ALL that are within the spatial support of the translated
prototype filter h(x̄l − x). The output value dGF(x̄l) can be then calculated using
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1. our space domain optimization method. Using (5.17) we have that

dGF(x̄l) =

g̃Tl︷ ︸︸ ︷
row(H; l)Q̃H

l︸ ︷︷ ︸
(a)

(Q̃lQ̃
H
l )−1︸ ︷︷ ︸

(b)

d̃PART︸ ︷︷ ︸
(c)

.

Recall that Q̃l is formed by keeping only those rows of Q that interpolate at the
same locations as the data contained in d̃PART, therefore it is an Lf ×Nx matrix.
We can conceptually interpret the above equation as three distinct operations:

(a) interpolation of the filter coefficients to the input grid. This is easier to see if

row(H; l)Q̃H
l is written as (Q̃l row(H; l)H)H . It can be seen that Q̃l acts by

interpolating the filter in row(H; l)H . The result is then transposed to put
the interpolated filter in row form.

(b) “deconvolution” of the spectral leakage effects of nonuniform sampling.

(c) application of the resulting filter to the nonuniformly sampled data.

2. band-limited reconstruction and traditional filtering. After notation adaptations,
(12) from [7] can be written

d̂NOM = (QH
RWDQR + η2I)−1QH

RWDd̃ALL.

The vector d̂NOM holds the data reconstructed at the nominal grid. The matrix
Nx × Nx matrix QR performs band-limited interpolation from the nominal grid
to the input grid, i.e. d̃ALL = QRdNOM. The Nx ×Nx diagonal weighting matrix
WD and the scalar quantity η2 are present because of the maximum a posteriori
(MAP) regularization used in [7] to deal with missing samples and stability. In
order to expose the similarities of this method with our own, we will make the
simplifications WD = I and η = 0, effectively removing the regularization. Then,

dGF(x̄l) = row(H; l)d̂NOM

= row(H; l)︸ ︷︷ ︸
(c)

(QH
RQR)−1︸ ︷︷ ︸

(b)

QH
R d̃ALL︸ ︷︷ ︸

(a)

Again three steps can be recognized.

(a) interpolation of the acquired data to the nominal grid.

(b) “deconvolution” of the effects of the spectral leakage effects of nonuniform
sampling.

(c) application of the prototype filter to the reconstructed data.

3. GCDGF with band-limited interpolation of the filter. Any kind of interpolation
can be used with GCDGF, but for the sake of comparison we will assume that
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band-limited interpolation will be used to interpolate the filter coefficients to the
input grid. Then, the output at x̄l is given by

dGF(x̄l) = row(H; l)Q̃H
l︸ ︷︷ ︸

(a)

WC︸︷︷︸
(b)

d̃PART︸ ︷︷ ︸
(c)

,

where WC are the geometry compensating weights corresponding to the input
data in d̃PART. The three steps steps of this method can be summarized as follows:

(a) interpolation of the prototype filter coefficients to the input grid.

(b) sampling density-dependent compensation for nonuniform sampling.

(c) application of the resulting filter to the nonuniformaly sampled data.

We can see that methods 1 and 2 are conceptually similar, but work in “opposite
directions”: the first method reconstructs a prototype filter on the input grid, whereas
the second reconstructs the data on the nominal grid. An interesting point arises
when Lf = Nx, that is when the filter g̃l is allowed to have as many taps as the total

number of data samples. Then Q̃l = QR and is a square Nx × Nx matrix. In this
special case, Q̃H

l (Q̃lQ̃
H
l )−1 = (QH

RQR)−1QH
R and both methods give the same result if

no regularization is used. An important difference is how these two methods handle
the case of missing samples. This means that some output locations might have less
than Lf data samples within the support of the prototype filter. The first method will
generate a filter g̃l with less than Lf taps. The second method, however, can reconstruct
samples, therefore the prototype filter with its Lf taps can be used intact. The quality
of the output will of course depend on the quality of the reconstruction. Similarly, the
quality of the output of the first method will be limited by the performance of a filter
that has less taps than desired.

The first and the third method have a common first step, in that both interpolate
a prototype filter to the input grid. The main difference is that GCDGF corrects for
sampling density deviations but does not attempt to deconvolve nonuniform sampling
effects, which can sometimes lead to reduced performance. On the other hand, because
a least-squares problem is not invlolved, The GCDGF is computationally much cheaper.
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Results 6
6.1 Experimental setup: one-dimensional case

In order to test the performance of the proposed algorithms, a set of synthetic data
was created using modeling software based on finite differences numerical methods.

6.1.1 Acquisition geometry and velocity model

Traces are recorded every δx = 1m on the surface along a straight line on the x-axis.
The 1m spacing is used to simulate the dense grid. We assume a receiver nominal
spacing of ∆x = 10m and therefore Mx = 10. The deviation δxi of each receiver is
allowed to lie in the interval [0, α∆x]. For the Figs. 6.5-6.7 the parameter α = 0.8.
The dense grid point ¯̄xp closest to the actual receiver location xi is found and the
generated trace at ¯̄xp is used as the synthetic data trace for the receiver location xi.
The deviations are chosen randomly for each realization of the receiver geometry and
are following the uniform distribution. In this way it is possible to simulate nonuniform
sampling. In total 2500 traces are generated, which can support Nx = 250 receivers and
their potential deviations. Each trace is sampled with a sampling interval of ∆t = 1ms
for a total of Nt = 1501 samples per trace. Additive white Gaussian noise was added
to the traces so that the overall SNR is 20dB.

The subsurface model is a simple 3 layer model. The first interface has a slight
dip and each layer is denser than the previous one. Primary and secondary waves
travel with different velocities in each of the layers. The structure is depicted in Fig.
6.1, where the depth, density and supported wave velocities are shown. Each layer is
homogeneous.

6.1.2 Source wavelet

The source is located at an offset of 500m, on the x-axis. The wavelet emitted by
the source has a duration Twav = 0.05s. It is given by the second derivative of a
Blackman-Harris window and is given by

fwav(t) = 0.48829 cos

(
2π

Twav

t

)
− 0.56512 cos

(
2π

Twav

2t

)
+ 0.07683 cos

(
2π

Twav

3t

)
The wavelet can be seen in Fig. 6.2 along with its magnitude and phase spectrum. Its
bandwidth is approximately 70Hz and its phase is linear.

6.1.3 Filtering and decimation

We assume that a decimation by a factor β = 3 will be performed on the data. The
spacing of the output values will be ∆x′ = β∆x = 30m. A FIR filter of length
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ρ1 = 2100kg/m3

ρ2 = 3000kg/m3

ρ3 = 4500kg/m3

P-wave: 1500m/s
S-wave: 700m/s

P-wave: 2900m/s
S-wave: 1400m/s

P-wave: 4000m/s
S-wave: 2500m/s

z
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500m0m 2500m

Figure 6.1: A schematic depiction of the velocity model with ρi the density of layer i.
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Figure 6.2: The time representation and spectrum of the second derivative of the modified
Blackman-Harris window with a duration of 0.05s.

Lf = 7 was designed using the least squares method with the passband in [0, 0.15π]
and the stopband in [0.25π, 1π] in normalized wavenumbers. This filter works as an
anti-alias filter in order to suppress normalized wavenumbers above 0.333π. This filter
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is approximated by our spatial domain method and by the geometry compensating
digital group forming (GCDGF) algorithm. The bandpass (sinc) interpolation was
used to interpolate the filter coefficients.

Our wavenumber domain method tries to approximate an ideal filter with the same
passband and stopband. The prototype filter’s wavenumber response can be seen in
Fig. 6.3. The elements of the Nx ×Nx weighting matrix W are given below

Wm,n =


1
δp
, if |b+m 2π

Nx
| ≤ kpass

0, if kpass < |b+m 2π
Nx
| < kstop

1
δs
, if |b+m 2π

Nx
| ≥ kstop

, (6.1)

where 0 ≤ m,n ≤ Nx − 1 and

b =

{
−π if Nx even
−1 + 1

Nx
if Nx odd

.

For the results in the next subsection, δp = δs = 0.01, kpass = 0.15π and kstop = 0.25π.
The effect of W, when constructed as per (6.1) is to apply a weight 1/δp in the passband
and a weight 1/δs in the stopband. The zero weight in the in-between wavenumbers
effectively removes them from consideration, thus declaring them as a transition band.
Note that every row of W has the same weight. This means that the off-diagonal
elements of each row are equally weighted to the diagonal element of that same row.
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Figure 6.3: The prototype 7 tap filter to be approximated.

6.1.4 Results - one spatial dimension

Before discussing the performance of the algorithms presented in the previous chapters,
it is useful to examine the spectrum of the data in the ideal case where no receivers
are misplaced. This can be seen in Fig. 6.4(a). The ground roll is much stronger than
the reflection energy near k = 0 m−1. If the data were subject to resampling with the

41



ground roll left untreated, a significant amount of energy could potentially fold back to
the low-wavenumber region.

Applying the filter of Fig. 6.3 to the uniformly sampled data gives the filtered
version seen in Fig. 6.4(b). The spectral zeros of the filter can be clearly seen around
±0.038 m−1,±0.061 m−1 and ±0.09 m−1. As expected, the ground roll energy in the
stopband is attenuated, but its portion in the passband is almost left intact. This is
because our filter is designed with anti-aliasing in mind and is a wavenumber filter: its
passband does not change with frequency1.

Wavenumber (m−1)

F
re

qu
en

cy
 (

H
z)

 

 

−0.1 −0.05 0 0.05 0.1

0

10

20

30

40

50

60 −30

−25

−20

−15

−10

−5

0

(a) Spectrum
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(b) Spectrum after filtering

Figure 6.4: The FK spectrum of uniformly sampled data before and after filtering.

When the signal is not uniformly sampled, the situation is more complicated. The
average power spectrum of the filtered data can be seen in Fig. 6.5. One plot was
generated for each method. It is interesting to see what happens when we apply the
prototype filter of Fig. 6.3 to nonuniformly sampled data. The average result can be
seen in Fig. 6.5(a). The problem of this approach is immediately apparent: although
energy in the stopband is suppressed very well, the passband content on average differs
considerably from the ideal of Fig. 6.4(b). This confirms what was discussed in Chapter
4, namely that simply ignoring irregularities in the sampling pattern may not give
results that are satisfactory. Good performance in the low-wavenumber region is crucial
since it holds the energy of the reflection events.

Another interesting fact can be noted in Fig. 6.5(a). In the lower frequencies up
to 30Hz, the spectrum of the filtered output is not far from that of Fig. 6.4(b). At
first it might seem as if the filter performs better in that region. The truth is that
lower wavenumbers are less influenced by irregularities in sampling. The reason can
be intuitively understood with a simplified thought experiment. Consider two spatial
waves that have the same amplitude but different wavenumbers. The first has a low
wavenumber, the second one a high wavenumber. The first wave has a big wavelength
and varies very slowly; therefore the error introduced by sampling close to the desired
coordinate but not exactly at it does not introduce a big error in the measurement of the
wave’s amplitude. On the contrary, the high-wavemumber wave will vary more quickly

1It is possible to use velocity filters that attenuate specific velocity bands. We do not examine these kinds
of filters in this thesis, but the interested reader can refer to [11].
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in amplitude and sampling jitter might give significantly different measurements. What
happens in the low frequency region of the spectrum is less vulnerable to sampling jitter
for the same reason.

The performance of our two proposed algorithms can be seen in Fig.s 6.5(b) and
6.5(c). On average they perform better than the previous method. Note that in
Fig.s 6.5(b) the attenuation around the wavenumbers ±0.038 m−1,±0.061 m−1 and
±0.09 m−1 is not as large as the attenuation seen in Fig. 6.4(b) at the same wavenum-
bers. The filters designed by the spatial domain method is an approximation of the
prototype filter and is not guaranteed to exhibit exactly the same characteristics.

The average power spectrum of the GCDGF can be seen in Fig. 6.5(d). The per-
formance of the one-dimensional GCDGF2 is better than the first approach of simply
applying the LSI filter directly to the nonuniformly sampled data, but slightly worse
than using our proposed methods. GCDGF interpolates the filter to the receiver loca-
tions and corrects for sampling density, which leads to better performance than using
filter coefficient values calculated for uniformly sampled data. However, as discussed
in Section 5.4, it does not attempt to correct for the spectral leakage introduced by the
nonuniform sampling. Our proposed methods do, which is why a better result can be
achieved.

The standard deviation from the average for each method can be seen in Fig. 6.6.
The standard deviation has been normalized to the highest value of the average power
spectrum. The standard deviation can be considered as a measure of robustness of the
algorithms, in the sense that it reveals how much the output spectrum varies when
the layout of the receivers on the field varies. Smaller values mean that the output of
an algorithm does not vary much for a different realization of the receiver locations.
All methods exhibit some variance as would be expected, especially in the passband
region. However, our proposed algorithms exhibit a smaller standard deviation since
they partially remove the spectral leakage due to nonuniform sampling which is the
biggest contributor to the variance of the output.

In Fig. 6.7 the difference of the average power spectra from the ideal output power
spectrum of Fig. 6.4(b). It can be seen as a measure of the accuracy of the algorithms,
as it reveals how close is the output on average to the ideal output. It can be again seen
that our proposed algorithms give an output that is very close to the ideal output. The
difference is normalized with respect to the highest value of the ideal power spectrum
of the output.

6.2 Experimental setup: two-dimensional case

Due to the unavailability of synthetic data created by a more advanced method, such
as the finite differences method used for the one-dimensional case, the synthetic data
was created using simpler method that employs a superposition of plane waves at the
receivers. Also, the author’s implementation of the wavenumber domain method for the
two-dimensional case proved to be, in practice, extremely demanding in computational
power to be used for the following simulations, therefore simulations were performed

2As derived in Section 5.3.
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(a) LSI filter on nonuniformly sampled data
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(b) Spatial domain optimization
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(c) Wavenumber domain optimization
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(d) GCDGF

Figure 6.5: The average spectrum of the output.

only for the three other methods.

6.2.1 Acquisition geometry

The traces are generated on a rectangular grid with a sampling interval δx = δy =
1.25m. This grid plays the role of the dense grid. The nominal spacing between the
receivers is ∆x = ∆y = 12.5m. It follows that Mx = My = 10. The deviation of
each receiver along the x-axis, δxi,j, lies in the interval [0, αx∆x] and ax = 0.8 in our
simulations. Similarly, the deviation along the y-axis, δyi,j, lies in the interval [0, αy∆y]
and for the following results, αy = 0.8. Nonuniform sampling is simulated in the same
way as the one-dimensional case. The dense grid has 1000×1000 points and covers the
area [0m, 1250m] × [0m, 1250m]. NxNy receivers are distributed on the dense grid,
where Nx = Ny = 100. Each trace contains Nt = 150 time samples, with a sampling
interval of ∆t = 0.01s.

6.2.2 Generating the data

As mentioned earlier, the data was generated using a superposition of plane waves that
arrive at the receivers. The plane waves are generated by Ns sources. For our simulation
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(a) LSI filter on nonuniformly data
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(b) Spatial domain optimization
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(c) Wavenumber domain optimization
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(d) GCDGF

Figure 6.6: Standard deviation from the average output spectrum.

we use Ns = 2 sources: one at (xs1, ys1, zs1) = (500m, 500m, 0m) which is on the same
plane (z = 0) as the receivers and simulates the ground roll. The apparent velocity of
the ground roll is c1 = 1200m/s. This value is too high to be realistic. It was used here
to prevent severe aliasing of the ground roll. Each source generates plane waves with
frequencies in a certain range. For the ground roll this range is φ1 = [1Hz, 45Hz].

The second source simulates the reflections coming from beneath and is placed at
the location (xs2, ys2, zs2) = (500m, 500m, 3000m). The apparent velocity of the plane
waves generated by this source is c2 = 2000m/s and the frequency range is again
φ2 = [1Hz, 45Hz].

The data is generated at the frequency-space domain and is given by

d(f, x, y) =
∑

1≤l≤Ns
l:f∈φl

1√
Rl(x, y)

e−ι2πf(Rl(x,y)/cl) (6.2)

where Rl(x, y) =
√

(xsl − x)2 + (ysl − y)2 + zs2
l is the distance between the lth source

and the receiver at (x, y, 0). In our case we evaluate d(f, x, y) at the grid points of the
dense grid and at Nt equispaced frequencies in the range

[
− 1

2∆t
, 1

2∆t

)
. Then the data

in time can be recovered by means of an inverse DFT. Before the inverse transform is
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(a) LSI filter on nonuniformly sampled data
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(b) Spatial domain optimization
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(c) Wavenumber domain optimization
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(d) GCDGF

Figure 6.7: Difference of the average output spectrum from the ideal of Fig. 6.4(b).

applied, a window is applied along the frequency axis in order to minimize the ringing
effect caused by sharp boundaries. A Blackman-Harris window was used in our case.

6.2.3 Filtering and decimation

Similar to the one-dimensional case, we use a predesigned FIR filter as an input to our
spatial domain method. The filter is again designed for the same antialiasing scenario as
in the one dimensional case. The difference is that this time the filter is two-dimensional
and is approximately circularly symmetric. This is a desired property since plane waves
arriving at any apparent angle experience the same attenuation. The filter used here
is a Gaussian lowpass filter designed using the window method. The filter lengths are
Lfx = Lfy = 9 and its cutoff is at the normalized wavenumber 0.3π. The magnitude of
its wavenumber response can be seen in Fig. 6.2.3.

6.2.4 Results - two spatial dimensions

We begin by first examining the spectral content of the data that will be filtered. This
can be found in Fig. 6.9(a). It is a “frequency-wavenumber-wavenumber” (FKK) plot
where each slice shows the spectral content along the two wavenumber axes kx and ky
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Figure 6.8: The two-dimensional FIR filter.

for a given frequency3. The reflection energy is concentrated near kx = ky = 0m−1

and does not expand much for higher frequencies. The ground roll, on the other hand,
appears as a sequence of expanding rings in each slice, due to its lower velocity. This
is analogous to the one-dimensional case.

When the circularly symmetric filter is applied to the uniformly sampled data, the
resulting spectrum is seen in Fig. 6.9(b). Both the reflection energy and the ground
roll are within the passband region for f = 5Hz and f = 15Hz. For f = 25Hz we
notice that the ground roll starts entering the stopband region of the filter and gets
attenuated. For f = 35Hz, the ground roll has practically been suppressed.

The same types of plots as the one-dimensional case were generated in order to
evaluate the performance of each method. The results found on Figs. 6.10 - 6.12 were
calculated over 20 different realizations of the receiver locations, for each one of the
methods. Checking the average output spectra of Fig. 6.10 for each of the methods, we
can see that they are in general close to the ideal one of Fig. 6.9(a). However, the our
spatial domain method gives an average result that is less accurate in the passband,
a fact which can be seen clearly in Fig. 6.12(b). Fig. 6.12(b) shows the difference
between the ideal output of Fig. 6.9(b) and the average spectrum of the output of
the spatial domain method. This is not anticipated, as it is completely opposite from
what was seen in the one-dimensional case, where the spatial domain method generally
exhibits a better performance in the passband than the other methods. This discrep-
ancy is a strong indicator that the implementation of the spatial domain method for
the two-dimensional case and/or the simulation setup have to be further scrutinized
for mistakes.

3Note that the frequency axis in the two-dimensional case is reversed compared to the one-dimensional case
results, for the ease of depiction.
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(a) Spectrum

(b) Spectrum after filtering

Figure 6.9: The FKK spectrum of uniformly sampled data before and after filtering.
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(a) LSI filter on nonuniformly sampled data

(b) Spatial domain optimization

(c) GCDGF

Figure 6.10: The average spectrum of the output.
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(a) LSI filter on nonuniformly sampled data

(b) Spatial domain optimization

(c) GCDGF

Figure 6.11: Standard deviation from the average output spectrum.
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(a) LSI filter on nonuniformly sampled data

(b) Spatial domain optimization

(c) GCDGF

Figure 6.12: Difference of the average output from the ideal of Fig. 6.9
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Conclusions and suggestions
for future work 7
This thesis began by examining the relation of the spectral content of the data captured
by the seismic receivers to the apparent velocity of arriving wavefronts. It was then
discussed how the problems of data volume reduction, SNR improvement and spectral
content suppression have been traditionally dealt with by summing the output of mul-
tiple receivers arranged in arrays with a specific geometric layout. New advances in
seismic acquisition hardware permit single sensor recording which enables digital group
forming, which is a way that enables digital array forming. Conceptually, group forming
can be thought of as a filtering operation on the data, followed by a resampling opera-
tion. It was shown that misplacements of receivers introduce a form of spectral leakage
to the data that may make a simple filtering operation an unsatisfactory solution for
the first step of group forming.

Two methods were proposed to deal with this problem. Both of them design a
LSV filter that can be used to filter the data. This LSV filter acts as an anti-aliasing
filter and generates outputs that lie on the nominal grid. The difference between the
two proposed methods is that the first approximates a predesigned LSI filter defined
in the spatial domain, while the second approximates the ideal filter defined in the
wavenumber domain. The first method gives us the ability to approximate filters that
may be designed using any filter design algorithm. The second method, on the other
hand, also incorporates the filter design method in its formulation. Our first proposed
method shares conceptual similarities with other methods proposed in the bibliography,
as well as a number of differences. One of these alternative methods, GCDGF, is
examined in closer detail and a version of it, suitable for one-dimensional spatial data
is derived.

The methods were implemented and tested on synthetic data. In the case of sam-
pling jitter that follows the uniform distribution and when no receivers are missing, the
proposed methods for the one-dimensional case exhibit, on average, are more robust
and accurate in filtering than both GCDGF and simply applying an LSI filter on the
nonuniformly sampled data. The reason behind this performance is the fact that our
proposed algorithms compensate for the spectral smearing introduced by irregularities
in sampling. On the other hand, the proposed algorithms are computationally more
expensive than GCDGF due to the fact that a least squares optimization problem
has to be solved. When the receiver locations only have very small perturbations, it
may be possible to get acceptable results at much less time by ignoring the sampling
irregularities.

Unfortunately the same conclusions could not be verified for the two-dimensional
case, as the performance of the spatial domain algorithm was not at par with the
performance of the one-dimensional version of the algorithm. For the wavenumber
domain method, the computational complexity is an important issue that has to be
tackled before the algorithm can be used on real data.
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This work introduces a number of possible topics for further discussion and research.

• The LSV filter designed by the methods introduced in Chapter 5 generates filter
outputs on the nominal grid. However, many times resampling is also desired.
The possibility of generating outputs on an arbitrary grid could be investigated.

• A way to construct the weighting matrix W is given in Section 6.1.3. This is not
the only possibility however and is not necessarily the best.

• Assess the performance of the algorithms when the data contains gaps.

• Implement a computationally efficient algorithm for the wavenumber optimization
method.
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Appendix A
A.1 The sincd() function

The full proof for the formula of the sincd(·) function will be given below. We differ-
entiate between two cases depending on whether Nx is odd or even. In both cases the
proof is conceptually the same: the data sampled on the nominal grid is transformed
to the wavenumber domain, followed by an inverse transform evaluated on the dense
grid.

Let Nx be odd and P be an integer such that Nx = 2P + 1. The forward DFT of
d(x̄q) is given by

DDFT(p) =
Nx−1∑
q=0

d(x̄q)e
−ι 2π

Nx∆x
px̄q∆x, p = −P,−P + 1, . . . , P (A.1)

The inverse DFT evaluated at the locations ¯̄xn is given by

d(¯̄xn) =
1

Nx∆x

P∑
p=−P

DDFT(p)eι
2π

Nx∆x
p¯̄xn , n = 0, 1, . . . , NxMx − 1 (A.2)

Substituting (A.1) in (A.2) we get

d(¯̄xn) =
1

Nx∆x

P∑
p=−P

(
Nx−1∑
q=0

d(x̄q)e
−ι 2π

Nx∆x
px̄q∆x

)
eι

2π
Nx∆x

p¯̄xn (A.3)

After exchanging the order of the summations we get

d(¯̄xn) =
Nx−1∑
q=0

1

Nx

d(x̄q)

(
P∑

p=−P

eι
2π

Nx∆x
p(¯̄xn−x̄q)

)
(A.4)

The term in the parentheses is a geometric series and can be rewritten in closed-form

d(¯̄xn) =
Nx−1∑
q=0

1

Nx

d(x̄q)

(
eι

2π
Nx∆x

(−P )(¯̄xn−x̄q) − eι
2π

Nx∆x
(P+1)(¯̄xn−x̄q)

1− eι
2π

Nx∆x
(¯̄xn−x̄q)

)
(A.5)

Multiplying the nominator and denominator with eι
2π

Nx∆x
(− 1

2
)(¯̄xn−x̄q) and applying the

Euler formula we get

d(¯̄xn) =
Nx−1∑
q=0

d(x̄q)
sin( π

∆x
(¯̄xn − x̄q))

Nx sin( π
Nx∆x

(¯̄xn − x̄q))︸ ︷︷ ︸
sincd(Nx;¯̄xn,¯̄xq), Nx odd

. (A.6)

55



When Nx is even, a slight complication arises. The index p takes values−P+1,−P+
2, . . . , P , where 2P = Nx. The forward DFT now contains the Nyquist wavenumber for
p = P . in order for the interpolator to be real, three strategies can be followed. The first
is to ommit the Nyquist wavenumber and the second is to duplicate it. Both of these
strategies guarantee that the imaginary part of the Nyquist wavenumber vanishes. The
third strategy is to multiply the Nyquist wavenumber with 1/2 and then duplicate it.
Yaroslavsky argues in [19] that the third strategy decays faster to zero, thus introducing
less boundary effects. The sincd() function for the even Nx case can be obtained with
a modification of (A.4)

d(¯̄xn) =
Nx−1∑
q=0

1

Nx

d(x̄q)

( P−1∑
p=−P+1

eι
2π

Nx∆x
p(¯̄xn−x̄q)+

+
1

2

(
eι

2π
Nx∆x

(−P )(¯̄xn−x̄q) + eι
2π

Nx∆x
P (¯̄xn−x̄q)

))
.

Using similar steps as before, we arrive at

d(¯̄xn) =
Nx−1∑
q=0

d(x̄q)

(
sin( (Nx−1)π

Nx∆x
(¯̄xn − x̄q))

Nx sin( π
Nx∆x

(¯̄xn − x̄q))
+

1

Nx

cos(
π

∆x
(¯̄xn − x̄q))

)
︸ ︷︷ ︸

sincd(Nx;¯̄xn,x̄q), Nx even

. (A.7)

Using the L’Hôpital rule, it is easy to see that when ¯̄xn = x̄q, sincd(Nx; ¯̄xn, x̄q) = 1.
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