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Abstract

Ground based telescope imaging suffers from interference from the earth’s atmosphere. Fluc-
tuations in the refractive index of the air delay incoming light randomly, resulting in blurred
images. A deconvolution from wavefront sensing system is an adaptive optics system that
measures the modes in which the light is corrupted (i.e. the wavefront) and corrects it using
a process called deconvolution. The wavefront is measured using a wavefront sensor, which
consists of an array of microlenses combined with an imaging sensor. Each microlens casts
an image of the object unto the imaging sensor, resulting in a collection of images that are
differently aberrated depending on their location on the sensor. Conventionally, the wave-
front is calculated by measuring the shifts of each microlens image and integrating these
shifts over the aperture. This method, however, discards information about the higher order
deformations of the microlens images.

In this thesis, a novel method of wavefront reconstruction has been developed which
makes use of artificial neural networks in order to extract this higher order information. In
order to do this, the images produced by the microlenses are normalized, which is done using
a modified version of the blind deconvolution algorithm called TIP. After the normalization,
the microlens images are reduced to what they would look like if a point source was observed,
instead of the object. With the influence of the object removed, an artificial neural network
is used for the estimation of the wavefront.

By using this method, the wavefront can be reconstructed with twice the turbulence
strength compared to what is possible with conventional methods. Combining this method
with an image deconvolution step results in a real-time image correction system that works
up to 10Hz on the tested system, consisting of a desktop PC with an Intel Xeon E5-2630
DUAL CPU and a NVIDIA GeForce GTX 970 GPU.
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Samenvatting

Het beeld van een telescoop wordt vaak verstoord door de atmosfeer. Schommelingen in
de brekingsindex van de lucht vertragen het licht in een wikkekeurige wijze, wat zorgt voor
wazige beelden. Deconvolutie uit golffront metingen is een systeem dat dit soort beelden kan
corrigeren door eerst het golffront (de willekeurige vertragingen van het licht) te meten, en
er daarna voor de compenseren door middel van deconvolutie. Het meten van het golffront
gebeurt door middel van een golffront sensor, die bestaat uit een raster van microlenzen en
een camera sensor. Elke microlens vormt een beeld van het object op de camera sensor, en elk
van deze beelden is op een andere manier vervormd afhankelijk van zijn locatie in het raster.
Normaal gezien wordt de golffrontsensor uitgelezen door het bepalen van de verplaatsing van
elk microlensbeeld en het integreren van deze verplaatsingen over de hele sensor. Door aan
te nemen dat alle informatie over het golffront verscholen zit in de verplaatsing van het beeld
van de microlens gaat helaas veel informatie over het golffront verloren.

In dit proefstuk wordt een nieuwe methode van het uitlezen van de golffront sensor
voorgesteld. Deze methode maakt gebruik van kunstmatig neurale netwerk om meer infor-
matie uit de golffront sensor af te leiden. Hiervoor moet eerst de invloed van het specifieke
object op de beelden van de golffront sensor verwijderd worden, wat gebeurt door middel van
de blinde deconvolutie methode TIP. Na deze stap ziet elk beeld van de golffront sensor eruit
alsof de telescoop naar een punt bron kijkt (een ster bijvoorbeeld). Dit genormaliseerde beeld
kan vervolgens worden geïnterpreteerd door een neuraal netwerk.

Door het gebruik van deze methode kan het golffront worden gemeten met een dubbele
turbulentie sterkte vergeleken bij conventionele methoden. Door deze methode te combineren
met een deconvolutie stap kan het beeld van een telescoop in real time worden gecorrigeerd
met een frequentie van tot wel 10Hz. De computer die hiervoor gebruikt is heeft een Intel
Xeon E5-2630 DUAL processor en een NVIDIA GeForce GTX 970 videokaart.
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Chapter 1

Introduction

This introduction will start by discussing the general background of adaptive optics (AO)
which will be necessary to understand the relevance of this research. Section 1-2 then discusses
the principles of deconvolution from wavefront sensing, which is a class of AO systems which
will be developed further in this Thesis.

1-1 Adaptive Optics: Theoretical Background

When looking though a telescope, atmospheric turbulence interferes with the light coming
from the source, leaving discrepancies between the image and the actual object. This Section
will begin with discussing what the exact influence is of the turbulence on the light. Then,
wavefront sensing will be discussed, which encompasses the retrieval of information about the
degradation modes of the light, an essential part of AO.

1-1-1 Atmospheric Degradation

The main source of image degradation in properly aligned telescopes is a result of interference
of the light with the earth’s atmospheric turbulence. Atmospheric turbulence is a product of
the heating effects of the sun. Temperature gradients in the atmosphere bring about large
scale motions in the air. This air eventually becomes turbulent and the turbulent eddies break
up into progressively smaller scale motions, resulting in randomly sized pockets of air, each
having a characteristic temperature [25]. The size of the turbulent eddies ranges from the
inner scale l0 to the outer scale L0. The reflective index of the air is related to its temperature,
hence the pockets of air delay the incoming light in a random manner. After passing through a
number of turbulence layers, light rays traveling in the same plane before entering the earth’s
atmosphere (i.e. a flat wavefront) are delayed relative to each other by the time they reach
the ground.

An important parameter to quantify the severity of the atmospheric turbulence is the
Fried parameter r0 [8]. r0 is defined by the diameter of an area in which the root mean squared
(RMS) wavefront aberration is equal 1rad. Below 1rad, the wavefront aberrations have an
influence on the image that is negligible to human interpretation. The Fried parameter can
be seen as the aperture size above which further increase in diameter does not result in an
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2 Introduction

increase in resolution [25]. This limitation can be overcome using AO. r0 generally ranges
from less than 5cm in strong turbulence to over 20cm in good seeing conditions.

Because of its random nature, atmospheric turbulence can only be described statistically.
In Kolmogorov’s model for turbulence, the relative refractive index n(r) at point r depends
only on the distance |ρ| to point r + ρ. For l0 < |ρ| < L0, the variance of relative refractive
index is given by the index structure function DN (ρ):

DN (ρ) = 〈|n(r)− n(r + ρ)|2〉 = C2
Nρ

2
3 . (1-1)

Where the index structure coefficient C2
N is assumed to only be depending on the height

h above the ground [34].

The wavefront and point spread function

The influence of the atmospheric turbulence of the light can be expressed in terms of the
wavefront φ. A wavefront is a surface perpendicular to the rays of the object, intersecting
them at the points of equal phase. In free space, the wavefront is not obstructed by any
medium, and the location of equal phase of all the rays in the wavefront are the exact same
distance from the object, i.e. the wavefront is flat. The shape of the wavefront after the
turbulence is given by

φ(x) = k

∫ ∞
0

n(x, h)dh. (1-2)

With the wave number k = 2π
λ at wavelength λ and n(x, h) the refractive index at altitude

h.
There are two ways to numerically express the shape of the wavefront as a 2 dimensional

plane. In the zonal approach, the wavefront is expressed as a matrix in which each entity
represents the phase delay of the wavefront in a grid defined by the resolution of the matrix.
This method makes it possible to express any shape of wavefront as long as it can be properly
discretized, which makes it ideal for expressing the shape of turbulent wavefronts. With a
modal approach, the wavefront is expressed by a number of 2 dimensional polynomials.

A commonly used set of polynomials are the Zernike polynomials (visualized in Figure
1-1) [38]. Zernike polynomials are based on common aberrations found in optical compo-
nents, which makes them ideal for the expression of wavefront error introduced within the
optical system, such as defocus or astigmatism. As there are an infinite number of orthogonal
polynomials available, any continuous wavefront can be fully defined by a linear combination
of Zernike polynomials. While this approach does provide a wavefront representation that
is not bounded to a specific imaging resolution, the large amount of polynomials needed to
properly express a turbulent wavefront makes this approach often impractical.

The influence of the wavefront on the observed image is expressed in terms of a point
spread function (PSF). The PSF is a matrix that defines how each point in the object is
spread out into the image.

The relation between the PSF (k) and the wavefront (φ) is given by

k(u) ∝
∣∣∣F {P (x)eiφ(x)

}
(u)

∣∣∣2 . (1-3)

Where P (x) represents the pupil function, consisting of ones inside and zeros outside the
aperture. Figures 1-2 show an example of a turbulent wavefront with corresponding PSF.
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Figure 1-2: Example of a turbulent wavefront with a corresponding PSF, D/r0 = 12.

Looking at Equation 1-3, one would expect the PSF corresponding to a perfectly flat
wavefront (i.e. φ = ~0) to be a delta function. In practice, diffraction effects limit the PSF
to an ’Airy disk’, which is a disk surrounded with rings on a fixed spacing. This effect is
encompassed in Equation 1-3 by the pupil function P , which adds a padding around the
wavefront of a size depending on the numerical aperture of the system. If the RMS wavefront
aberration is below 1rad, the diffraction effects are the dominant source of image degradation
and the seeing is called ’diffraction limited’.

It is important to note that while the PSF is easily calculated given the wavefront, the
wavefront can not easily be calculated back when a PSF is observed. The squared term
in Equation 1-3 discards the information about the sign and complex values of the Fourier
transform, thereby losing information about the original wavefront.
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4 Introduction

Convolution

The PSF interferes with the object through a process called convolution. If the object is a
point source (e.g. a star) the image is equal to the PSF. Extended objects (i.e. anything except
point sources) can be seen as a collection of point sources, and the resulting image is equal
to the superposition of the distorted image cast by each of the point sources. Convolution is
denoted by

i = o ∗ k + n. (1-4)

Here, n is an additive noise component. The convolution operator reduces to an element-
wise multiplication in the frequency domain:

I = OK +N. (1-5)

Throughout this Thesis, the Fourier transform of a variable is denoted by the capital
of the variable, e.g. F{i} = I. Many calculations can be simplified by using the frequency
domain counterparts of variables because of this property.

Isoplanatism

Consider for now that the turbulence exists in one single layer in the atmosphere. Light from
a star passes though a section of the turbulence with an area A before entering the telescope.
The light from a neighboring star that is an arc distance of θ away passes though a slightly
different section of the turbulence. The wavefront of this second star will therefore be different
than the wavefront of the initial star. Whether this difference is significant depends on θ.
Since aberrations of less than 1rad can generally be ignored, the aberrations from the two
stars can be considered equal if θ < θ0 with

θo ≈ 0.31r0
h
. (1-6)

Here, h is the altitude of the turbulence (typically h ≈ 5km). θ0 is called the isoplanatic
angle. When the observed scene is within the isoplanatic angle, the assumption that the
atmospheric interference is equivalent for all points in the observed scene is valid [34].

In practice, an AO system designed for isoplanatic conditions will assume that in Equa-
tion 1-4, the PSF corrupting the object is equal across the entire image. This assumption
simplifies the image correction process significantly. In this Thesis, only isoplanatic observa-
tions are taken into account.

1-1-2 Wavefront Sensing

The wavefront sensor is the device in the AO system that helps to infer the shape of the
wavefront. Several types of wavefront sensors exist, such as the pyramid wavefront sensor
and the Plenoptic Sensor. The most commonly used sensor is the Shack-Hartmann (SH)
wavefront sensor or SHWFS.

The SHWFS consists of two parts: a microlens array (MLA) and a charge coupled device
(CCD) or imaging sensor. The MLA divides the light into N × N separate sections which
all cast an image on the CCD. These images are called the subaperture images. Figure 1-3
shows a schematic overview of a SHWFS.

V.S. de Bruijne Master of Science Thesis
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Figure 1-3: Schematic overview of a cross-section of a SHWFS (after [37]).

Conventionally, the SHWFS works by dividing the wavefront up into sections of which
the wavefront aberrations are fully divined by the first 3 Zernike modes. These wavefront
modes do not influence the shape of the subaperture images, but only its x and y position
from the 2nd and 3rd modes respectively. This simplification makes it possible to retrieve
the wavefront shape without the use of complex phase retrieval methods, by measuring the x
and y shifts of the subapertures and calculating them back to the actual wavefront. For this
calculation, the found wavefront slopes can either be fit to a number of Zernike polynomials
(modal wavefront reconstruction) or the wavefront slopes can be integrated into a 2D surface
(zonal wavefront reconstruction) [19].

Note that the Figures 1-4 and 1-3 both illustrate SH-patterns for point sources. In this
case, the shift of the subaperture image can be found by calculating the centroid of the image.
For extended scenes, the SH-pattern is equal to the point sources pattern convoluted with the
object. Figure 1-5 shows an example of this. In this case, the shift of each of the subaperture
images can be determined by the use of a correlation algorithm [15]. This type of algorithm
selects one subaperture image as a reference image, and correlates it with the entire SH-
pattern. The peak in the correlation function indicates a match between the reference image
and other subaperture images. The shift of each subaperture image can be determined from
the location of these peaks.

The performance of this algorithm can depend on the specific scene content. An obser-
vation of a checkerboard pattern, for example, would show distinct peaks in the correlation
function on more places than the number of microlenses. It is important that the CCD’s pixel
count and the number of mircolenses are coordinated in order to have a sufficient resolution
for each subaperture image for the correlation function to work properly.

Using this method, a SHWFS with a N × N MLA can be used to retrieve a wavefront
for a telescope with a diameter of D ≈ Nr0. The diameter of the individual microlenses is
not related to the diameter of the telescope, but only to the seeing conditions that the system
is designed for. This means that the use of a bigger telescope that receives more light from
a source is limited by the SHWFS, which needs to divide this light over more microlenses in
order to still reconstruct the wavefront sufficiently.

A solution to this limitation has recently been proposed by using machine learning to
reconstruct the wavefront, also called deep learning wavefront sensing (DLWS). It has been
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6 Introduction

shown by Nishizaki et al. [20], Hu et al. [11] and Bekendam [1] that artificial neural networks
(ANNs) can be used to estimate the Zernike coefficients of a particular wavefront from a
SH-pattern of a point source. Bekendam as well as Hu et al. [12] showed that ANNs can also
be used to reconstruct the wavefront directly. Bekendam in particular focused on comparing
the wavefront reconstruction capabilities of SH-patterns with different sizes of MLAs, which
can be useful for low-light situations. The key in all these papers is the use of convolutional
neural networks, which will be discussed in Chapter 3.

The ANN can be trained in order to reconstruct the wavefront not only based on the
shifts of the subaperture images, but also on the shape of these images. Figures 1-4 show
a wavefront overlaid with a grid that represents the MLA, as well as the PSFs from the
individuals MLAs. While some of the PSFs are seemingly diffraction limited (meaning that
the local wavefront is sufficiently represented by its tip and tilt modes), other microlenses
have aberrated PSFs, indicating that higher order information is available.

(a) Complete incoming wavefront as
seen by telescope.

(b) Wavefront divided up into the
seperate microlens sections.

(c) Wavefront PSF from turbulent
wavefront.

Figure 1-4: Resulting PSF’s from each microlens. The wavefront aberrations are approximately
D/r0 = 19.

To the authors best knowledge, no machine learning approach to general extended scene
SH-images has been proposed yet. The development of such an approach will be the focus of
this Thesis.

1-2 Deconvolution From Wavefront Sensing
So far, this Chapter has discussed the origin and effect of atmospheric aberrations. Now, the
task is to eliminate these aberrations in order to get a clear image of the object. A common
way to do this is by the use of a deformable mirror (DM). The DM is an optical component
that can induce specific wavefront aberrations based on a signal from a controller. A DM can
be used to induce aberrations opposite to that of the atmosphere, thereby eliminating the
distortions.

While the DM is a powerful component in the context of AO, there are a number of
reasons not to use them. Firstly, DMs are expensive due to the complicated mechanics
involved. Secondly, the control of a DM demands a large amount of computing power. Due
to the rapidly changing nature of atmospheric turbulence, any delay between the readout of
the SHWFS and the actuation of the DM has a direct influence on the quality of the wavefront
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Figure 1-5: Example of an extended scene SH-pattern. Rather than shifted PSFs, the subaperture
images now consist of the convolution of the subaperture PSFs with the object. If the subaperture
diameters are lower than r0, the subaperture images are shifted version of the object. If the
subaperture diameters are larger than r0, the subaperture images are differently distorted images
of the object (as is the case in this image). No wavefront sensing method yet exists that takes
the distortions of the individual subaperture images into account for the reconstruction of the
wavefront. This Thesis will develop such method.

compensation. The system has to be able to operate in the order of 102Hz [35] and, depending
on the DMs resolution, this requires a significant amount of computing power.

Image deconvolution, an alternative to the DM, does not have these drawbacks as it is
software based and is less computationally demanding. Given the PSF (calculated from the
wavefront) and image, one can make an estimate of the object by reversing the convolution
operator. This method is called deconvolution from wavefront sensing (DFWS), and will be
used in this Thesis.

State of the art deconvolution from wavefront sensing systems

Figure 1-6 shows a typical setup used in DFWS systems. The light from the telescope is split
by the beam splitter into two paths. One path goes through two lenses and to the main CCD
to form the image. The other path provides light to the SHWFS. The band stop is in place
in order to prevent the subaperture images from overlapping.

The processor reconstructs the incoming wavefront based on the received SH-pattern.
From this reconstruction, an estimate of the PSF of the main image is calculated, which is
then used to deconvolute the main image.

DFWS was first proposed by Primot et al. [22] as a compromise between AO systems
with a DM and speckle interferometry methods, which generally required more complex a
posteriori computation and more images. Because DFWS combines several methods that are
also found in other branches of AO and mathematics (most notably SHWFS interpretation
and deconvolution), research not specifically focused on DFWS has greatly improved image
reconstruction performance over the years.

Rimmele and Radick [24] showed that the use of correlation algorithms for determining
the shift of the SH subaperture images make the use of DFWS very reliable on extended
scenes. Jefferies and Hart [13] applied the frozen flow hypothesis (FFH) to DFWS. FFH
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Band Stop

Shack-Hartmann
Sensor

CCD

Telescope

Processor

Telescope

Beam Splitter

Telescope

Figure 1-6: Optical setup for a deconvolution from wavefront sensing system.

uses the assumption that, on short time scales, the only significant movement in atmospheric
turbulence is a linear regression [32]. This allows for the combination of adjacent SHWFS
measurements in order to improve the resolution of the reconstructed wavefront. Mugnier
et al. [18] introduced Myopic deconvolution, in which the object and wavefront are jointly
estimated, contrary to earlier methods, in which the wavefront originating from the SHWFS
is seen as fully determined. In this Thesis, improvement in wavefront sensing in the form of
deep learning wavefront sensing will be applied to DFWS.

Proposed system

This Thesis will explore the possibility of preprocessing the SH-pattern using blind deconvo-
lution algorithms in order to open up DLWS to extended field observations. The goal is to
implement this method in a real-time DFWS system.

DFWS is the ideal testing ground for this novel method of wavefront sensing because,
unlike AO systems using a DM, the operation speed of the processor has no direct influence
on the image reconstruction performance on the system. The reason for this is that in DFWS,
the main image and the SH-pattern are captured simultaneously. A DM command can only
be sent after the processing of the SH-pattern, meanwhile the wavefront can change. This
method therefore requires less computational speed during early research without loss in
performance. Nevertheless, the aim is to make a real-time image reconstruction system with
a refresh rate in the order of 10Hz.

In this proposed system, the processor will perform the following tasks:

1. Collect the image and the SH-image
2. Use blind deconvolution in order to reduce the SH-image to its point-source equivalent

(i.e. the SH-pattern)
3. Use an artificial neural network to reconstruct the wavefront based on the SH-pattern
4. Calculate the PSF from the wavefront
5. Estimate the object by deconvoluting the image with the PSF

This Thesis will start by discussing methods for image deconvolution and deep learning
wavefront sensing found in literature in Chapters 2 and 3, respectively. An essential part of
DLWS is training data. This training data is generated from a software simulation of the
optical system. The workings of the software simulation are explained in Chapter 4. Chapter
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5 then discusses the adaptation and integration of the methods found in the literature review.
Finally, Chapter 6 will elaborate on the performance of the novel system and compare it to
conventional DFWS and AO systems.

Given the versatility of ANNs, the question can be asked why the ANNs are only applied
to step 3. Indeed, Sánchez-Lasheras et al. [28] showed that it is possible to train an ANN in
order to reconstruct the wavefront from an extended scene SH-image directly, thereby letting
the ANN encompass both steps 2 and 3. Díaz-Baso and Asensio-Ramos [6] and Chen et al.
[4] showed that ANNs can be used to estimate the object directly from the corrupted main
image, thereby eliminating the need for a SHWFS and image deconvolution all together.
The need for step 2 is, however, highlighted by the limited application of both these papers.
Sánchez-Lasheras et al. [28] and Díaz-Baso and Asensio-Ramos [6] only use images of solar
spots. The work of Chen et al. [4] is limited to the observation of man-made satellites. If the
training data for the ANN and the application of the network are limited to similar objects,
more direct ANN reconstruction approaches have been shown to work. If the ANN is used
to interpret the extended scene SH-image directly, it would be nearly impossible to verify
that the ANNs performance is independent of the scene content. In this Thesis, a system is
developed that is meant to perform well independent of the scene content.

Additionally there are the constraints imposed by hardware limitations. The information
of a point-source SH-pattern can be encompassed in a significantly lower resolution image
compared to a extended scene SH-image. This reduction allows for the implementation of
large-scale state of the art ANNs, which would not be possible at the original resolution on
the hardware available for the research of this Thesis.

Research Question

As a guideline for this Thesis, the following research questions are formulated:

Can blind image deconvolution be applied in order to extend deep learning wavefront
sensing methods to extended scene observations?

Can the proposed methods be used in the context of deconvolution from wavefront sensing
for real time image reconstruction?
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Chapter 2

Image Deconvolution

In this Chapter, a number of deconvolution methods found in literature are reviewed. In the
design of the DFWS system as discussed in the Introduction, the processor uses two different
types of image deconvolution for two different tasks. Firstly, deconvolution is needed to
convert the received image and the estimate of the PSF into an estimate of the object. This
process is discussed in Section 2-1. Secondly, multi-frame blind image deconvolution (MFBD)
is used to eliminate the dependency of the object on the SH-pattern. This process is called
’blind’ because at this point both the object and PSF are unknown while the subaperture
images provide multiple, differently aberrated images of the object. This process is discussed
in Section 2-2.

The PSF interferes with the object though a convolution operator, denoted by ∗. The
model describing the distortions induced by the PSF in an isoplanatic system is as fol-
lows:

i(x, y) = k(x, y) ∗ o(x, y) + n(x, y). (2-1)

Here, i(x, y) is the convoluted image as observed by the telescope, o(x, y) is the undis-
torted object, k(x, y) is the PSF and n(x, y) is noise that is present in the system (e.g. due to
light pollution or sensor noise). The convolution of two matrices in the image domain is equiv-
alent to the element-wise multiplication of the two matrices in the frequency domain:

I(u, v) = K(u, v)O(u, v) +N(u, v). (2-2)

Here, the capitalized variable represents the 2D Fourier transform of the signal. For
readability, the indices (x, y) and (u, v) are omitted throughout the remaining Chapter. It
can be assumed that, unless mentioned otherwise, all the matrices represent two dimensional
variables.

Image deconvolution mainly revolves around finding a solution to an ill-posed inverse
problem of Equation 2-2. This type of problem is very common in mathematics and many
methods have been proposed to solve them. However, due to the nature of ill-posed problems,
there is not a unique solution and no single best method to find a solution.
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12 Image Deconvolution

2-1 Deconvolution
This Section will discuss two of deconvolution methods that have been found to provide a good
trade-off between operation speed and object restoration, namely least-squares deconvolution
and the Landweber method.

As the focus of this Thesis lies on wavefront reconstruction, the scope of the discussed
deconvolution methods is limited. For an overview of state-of-the-art deconvolution methods,
the reader is referred to Berisha and Nagy [2].

The method that is most popular in the DFWS literature is left out, namely Lucy-
Richardson (LR) deconvolution [23] [16]. LR deconvolution is a powerful tool that is able to
make accurate and low noise estimations of the object. The image domain implementation of
the method, however, makes it resort to computationally expensive mathematical functions
like the convolution and correlation operators. Even with modern adjustments attempting
to speed the algorithm up (e.g. [3] [39] [17] [27]) it is unable to surpass the Landweber algo-
rithm in terms of computational speed, while providing near identical image reconstruction
performance.

2-1-1 Least-Squares Deconvolution
Looking at Equation 2-2, it is not immediately evident why restoring the original object can
be a challenging task. It is straightforward to find a least-squares estimate of the object
[7]

Õ = arg min
O

||I −KO||22 = K̃∗I

|K̃|2
. (2-3)

Here, the superscript ∗ denotes the complex conjugate. The accuracy of the least-squares
method depends on the particular PSF. In many cases, the PSF matrix is ill-conditioned,
meaning that is has a number of singular values close or equal to zero. The low singular
values often correspond to high-frequency components. Dividing the noise by these singular
values results in an amplification of high frequency noise [2].

An easy way suppress the effect of the small singular values of K, is to add a small
regularization constant ε to the least-squares solution to ensure that the estimate Õ remains
finite:

Õ =
∑m
i=1 K̃

i∗Ii∑m
i=1 |K̃i|2 + ε

. (2-4)

A special case of Equation 2-4 is the Wiener filter. In the Wiener filter, the parameter
ε = N/S is set to the noise-to-signal ratio [5]. Here, S and N are the power spectral densities
of the object and noise, respectively. This Wiener filter minimizes the mean squared error of
the solution. In practice, however, the power spectral densities of the object and noise are
not known, but need to be estimated from the image data, prior knowledge of the imaging
setup and seeing conditions. Other regularization methods (e.g. Tikhonov regularization
or Total variation) provide other guidelines for choosing the regularization parameter, but
require information about the image and PSF that is not always known, leaving the user to
estimate certain image parameters.

Figure 2-1 shows an example of the performance of the least-squares deconvolution. It
can be seen that the ill-posedness of the PSF introduces periodic high-frequency artifacts in
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the image.

(a) Example Image (b) Estimated PSF (c) Estimated Object

Figure 2-1: Simulated example of the performance of a least-squares deconvolution method with
a regularization parameter of 0.1. It can be seen that periodic artifacts are introduced by the
deconvolution method as a result of the ill-posedness of the PSF. Note that the PSF is not the
actual PSF but estimated using the methods discussed in Chapter 3. Due to the errors in the
PSF, a perfect reconstruction is not possible.

Figure 2-1c shows that with least-squared deconvolution, high frequency periodic artifacts
can show up in the estimated object. There are ways to remove these artifacts by filtering the
frequency domain image (e.g. Varghese et al. [33]), which work by identifying peaks in the
frequency domain image and removing them. These methods are, however, not time efficient
and do not have the ability to distinguish noise from scene content, which can result in the
removal of periodic scene content.

2-1-2 Landweber Deconvolution

Iterative deconvolution methods generally handle ill-conditioned PSFs better, and are well
suited for image deconvolution. Unfortunately, the iterative nature of these methods has an
impact on their calculation speed. Frequency domain iterative image deconvolution methods
take the general shape of [2]

Õn+1 = Õn + τKT
(
I −K∗Õn

)
. (2-5)

Here Õn is the estimate of the object at iteration step n. In the iteration, the estimated
object is added to the residual error

(
I −K∗Õn

)
and multiplied by τKT . For stability of the

iteration, it must satisfy that

0 < τ <
2

σ2
max

. (2-6)

There are several methods to choose the exact value of τ , for example:

Steepest Descent: τ = ||KT (I−KÕn)||22
||KKT (I−KÕn)||22

Landweber Iteration: τ = 1
σ2

max

Quasi Newton: τ = −(P̂ ′n)−1
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14 Image Deconvolution

With σmax being the highest singular value and P̂ ′n an approximate Jacobian of K. A
proper choice of τ has the potential to decrease the number of iterations needed for conver-
gence. This does, however, not directly relate to an increase in computational speed because
some calculations of τ make use of expensive math operations and need to be repeated at
every iteration.

The performance of the iteration in terms of an image quality metric (e.g. mean squared
error to ground truth) is not necessarily converging for higher numbers of iteration steps.
Moreover, the relation between the image quality metric and the number of iterations is
not necessarily convex. It is possible to let the amount of iterations depend on a stopping
criterion, for example, the iteration ends if the following stopping criterion is met:

||I −KÕn||2 ≤ ||I −KÕn−1||2. (2-7)

The selection of stopping criterion depends on the application and can be tuned to fit
the preference of the user. However, due to the non-convexity of the iteration, it cannot be
ascertained that the best image is obtained when the stopping criterion is met.

Figure 2-2 shows a comparison of the performance of the Landweber method and the
least-squares deconvolution. Indeed, the iterative method handles the ill-posed PSF better
and does not show periodic artifacts in the estimated object.
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(a) Example image (b) True object

(c) Estimated object using Landweber
method

(d) Estimated object using least-
squared deconvolution

Figure 2-2: Simulated performance of the deconvolution methods as discussed in this Chapter,
compared to the true object. Note that the PSF used for the deconvolution is not true to the
PSF used for the convolution, hence no perfect reconstruction is to be expected. The Landweber
method performs better than the filtered least-squared deconvolution, but also takes longer to
compute.

2-2 Blind Deconvolution

In blind-deconvolution, there is no access to the PSF. Instead, the PSF needs to be estimated
alongside the object. To do this effectively, additional information about the object is often
used. In phase diversity for example, a second image is captured with an added known aber-
ration, which is used to reconstruct the object [21]. Another method is to use multiple images
with different unknown aberrations. This is called multiframe blind deconvolution (MFBD).
These mutliple images can be taken at different times, or, as in this case, simultaneously using
a SH-sensor.

The method for MFBD used in this Thesis is Tangential Iterative Projections (TIP) as
introduced by Wilding et al. [36]. The benefit of using TIP rather than other MFBD methods
is its lack of need for prior information and its unique framework that allows it to be tuned
for a large variety of applications.
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2-2-1 Tangential Iterative Projections
Tangential Iterative Projections (TIP) was first introduced by Wilding et al. [36]. TIP is a
multiframe blind deconvolution (MFBD) algorithm, meaning that no PSF is available and
both the object and PSF must be estimated from a collection of images. In the case of a
SHWFS, the collection of images is contained within one single image.

TIP works by alternating between estimating the PSF and the object from the image
and the latest estimates of the PSF and object. Given the latest estimate of the SH-PSF (K̂)
and the SH-image (I), an estimate of the object (Ô) can be calculated as follows:

Ô = PO arg min
O∈CM×M

∥∥∥I −OK̂∥∥∥2
. (2-8)

Given the updated estimation of the object, the estimate of the SH-PSF follows from:

K̂ = PK
I

Ô
. (2-9)

Here, the projection operators PX project the result of the least-squares deconvolution
onto a set of valid objects or PSFs X. In general, this valid set consists of positive and
normalized images. Additional constraints can be added to this set in order to guide the
convergence of the algorithm.

By iterating between Equation 2-8 and 2-9, the TIP algorithm will converge to an esti-
mate of the object and PSF that falls within the forced constraints. There is, however, no
promise that the estimated object and PSF are equal to the true object and PSF.
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Chapter 3

Deep Learning Wavefront Sensing

In this Chapter, state of the art deep learning wavefront sensing (DLWS) methods found
in literature are discussed. All the DLWS methods discussed make use of artificial neural
networks (ANN) to interpret SH-PSFs. In order to properly convey the difference between
the methods, it is necessary to explain the fundamentals of ANNs, which will be done in
Section 3-1. After that, different ANNs used for DLWS will be discussed and compared in
Section 3-2.

3-1 Artificial Neural Networks: Theoretical Background
Artificial neural networks (ANNs) are programmed functions that have an architecture loosely
based on biological neural networks. They utilize a network of neurons that individually only
use simple calculations, but when combined can form much larger and complex functions.
ANNs are not programmed in the same way conventional functions are programmed by fol-
lowing a set of fixed instructions, but are instead trained. The ANN is fed a large amount of
input data and desired output data and the training sequence tweaks the parameters of each
neuron in order to make the ANN converge to the desired function.

Figure 3-1 shows an example of a neuron within an ANN. The inputs of the neuron are
denoted by xi, with i ≤ n. The total amount of inputs n depends on the architecture of the
ANN. Within the neuron the inputs are weighted and summed together with a bias b. The
output of the neuron is f(b +

∑n
i=0 xiwi), where wi is the weight corresponding to input i

and f is the activation function. The activation function is a predefined function that can be
used to introduce non-linearity in the ANN. Most often in modern ANNs, the rectified linear
unit (ReLU) is used as the activation function, defined by

f(x) =
{
x, if x ≥ 0.
0, if x < 0.

(3-1)

Figure 3-1 also shows an example of how neurons can be combined in order to form an
ANN. This particular network can be used to map a 4 dimensional vector to a 2 dimensional
vector, with 5 neurons in the hidden layer. This amount of neurons results in 11 biases and
34 weights to be estimated. The weights and biases are estimated using a process called
training. In the training process, the network is fed a batch of training data and the outputs
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Input Layer Hidden Layer Output Layer

Input 1

Input 2

Input 3

Output 0

Output 1

Input 0

x0
x1

xn
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f(b+Σxi wi)

Neurons

Figure 3-1: An example of an ANN that maps a 4 dimensional input to a 2 dimensional output
using a single hidden layer with 5 neurons. On the right, the basic process of the neuron is
visualized, with xi and wi the neurons inputs with corresponding weights, b the neurons bias and
f the activation function.

are calculated. The output is compared to the desired output by means of a loss function
L, which can be, for example, the mean squared error. After that, the contribution of each
of the weights on the value of L is calculated, which finally is used in a gradient descent
optimization.

This process is repeated until each data point has passed though the ANN, which is called
an epoch. Multiple epochs can be performed in order to improve the prediction accuracy of
the network. The prediction accuracy of the ANN is expressed in terms of two variables: the
training loss and the validation loss. The training loss is the loss value for data that has been
used in the training process. The validation loss is the evaluated loss function on the data
that the network has not seen in the training process. The difference between the training
and validation loss indicates the extent to which the ANN is able to generalize the patterns
between the input and output data or the extent to which the ANN has simply remembered
the output data corresponding to each input set.

Even though the training of the ANN is fully automated, the process of making a well
functioning ANN is not as straightforward as providing the training data to the code. Only the
weights and biases are calculated automatically. The amount of layers, amount of neurons
in a layer, the choice of activation function, choice of loss function and many more (not
discussed) parameters still need to be chosen manually depending on the exact application.
The combination of these parameters is referred to as the network’s architecture. Often,
ANNs used for similar applications by others are a good starting point for the exact selection
of the network’s architecture.
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3-2 State of the art deep learning wavefront sensing 19

3-1-1 Convolutional neural networks

ANNs, as discussed, are powerful tools for many applications, but have some limitations.
Most significantly for imaging applications, it only accepts one dimensional input and output
vectors. Reshaping images into 1D vectors makes it hard for ANNs to compare adjacent
pixels and find repeating features in the image. A type of network that is more effective for
imaging applications is the convolutional neural network (CNN). In a CNN, the neurons do
not consists of weights and biases, but instead of a convolution kernel and a bias. These
kernels are N ×M matrices (usually 3× 3) that are convoluted with the input image to form
the neuron’s output. The pixel values of the kernels are trained in order to extract specific
features from the input image.

As an example, imagine training a CNN to recognize basic shapes, e.g. squares, circles
and stars. Figure 3-2 illustrates the CNN with a star shape as input. In the first convolutional
layer, the kernels could be trained to recognize very basic features like horizontal lines. In
the Figure, the top image is the activation pattern of this convolutional kernel. The second
image is activation pattern of a convolution kernel that recognizes vertical lines, the third
recognizes a specific orientation of corner and the last one diagonal lines. An examples of a
convolution kernel that is activated by horizontal lines is

c =

0 0 0
1 1 1
0 0 0

 . (3-2)

The second convolutional layer now has access to the location of different specific features
of the shape and can be trained to recognize, for example, specific relations between horizontal
and vertical lines.

In between the convolution layers, there are pooling layers. The most common pooling
layer is the max pool, which reduces the resolution of the image by selecting the maximum
values over a certain area. This reduction in size is not only beneficial to keep the size of
the neural network low, but also allows the deeper convolution layers to find patterns in the
data that span across a larger area in the original picture without having a larger convolution
kernel.

The amount of convolution layers and the amount of kernels per layer that are necessary
depend on the application. In the example where the CNN needs to identify basic shapes, 3
layers might be enough. If the CNN is used the identify, for example, different breeds of dogs
in an image, deeper layers are necessary to identify specific features like type of fur.

3-2 State of the art deep learning wavefront sensing

ANNs and CNNs have been shown to be useful for the interpretation of SH-PSFs in many
different ways. Earlier research showed that ANNs can be used to accurately reconstruct the
wavefront from SH slope measurements, either by using Zernike polynomials [9] or by using a
CNN to reconstruct the wavefront directly [31]. Suárez Gómez et al. [30] showed that CNNs
can be used to reconstruct wavefront slopes from the SH-PSFs, which could then be used
to reconstruct the wavefront. Recently, it was shown that CNNs could be used not only for
wavefront slope sensing and reconstruction separately, but that one CNN could be used to
fulfill both functions [11] [12] [1]. The simultaneous research done by both Hu et al. [11] and
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Figure 3-2: Example of a CNN with two convolution and pooling layers. Note that the output
structure of the network is not shown. It is visualized in the first layer how different convolution
kernels can be trained in order to identify different features within the image. Deeper layers can
recognize more complex features from the combinations of outputs in the previous layers.

Bekendam [1] came to very similar conclusions about the optimal CNN architectures to be
used. In these papers, 2 basic CNN architectures were discussed: AlexNet for the estimation
of Zernike coefficients and U-net for direct wavefront sensing. In this Thesis, the CNNs are
trained in order to reconstruct turbulent wavefronts, which are insufficiently approximated
by Zernike polynomials. Hence, only the U-net based architectures are discussed.

3-2-1 U-net
U-net was originally developed for image segmentation of biomedical images by Ronneberger
et al. [26]. In wavefront sensing, similarly to image segmentation, information does not ’move’
within the image, i.e. information of the wavefront on the location (x, y) can be found close to
(x, y) in the SH-pattern. Hence U-net is a very suitable network architecture for the purpose
of wavefront reconstruction. This property would not be fulfilled if, for example, the CNN
is trained in order to reconstruct the main sensors PSF from the SH-PSF, even though this
would be equally suitable for a DFWS application. The fundamental U-net architecture is
shown in Figure 3-3. U-nets unique feature is the concatenation of data in different levels
of the network, which is used to preserve data that would otherwise be filtered out by the
convolution layers.
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Input N

Residual Block 2x2 Max Pool Up-sampling + 2D Convolution Concatenate

OutputN2N 2N4N 4N8N 8N16N

Figure 3-3: A visualization of the general U-net architecture. The black arrow indicates a
concatenation operation, which is used in order to preserve information from earlier layers and
greatly improves the performance of the network. Different implementation of the network use
different residual blocks.

Hu et al. [12] and Bekendam [1] both based their architecture on U-net (shown in Figure
3-3), but adapted it in different ways. Bekendam used the residual block as seen in Figure
3-4 and N = 8. The residual block consists of two convolution layers with kernels of size 3×3
followed by a ReLU activation.

3

3

2D Convolution

ReLU

Residual Block

Figure 3-4: The residual block used in combination with the archetecture as shown in Figure
3-3 as used by [1].

The network architecture proposed by Hu et al. uses a significantly larger network with
N = 32 and a residual block as shown in Figure 3-5. This architecture has two notable
features. Firstly, kernels of different sizes ranging from 3× 3 to 9× 9 are used, which allows
the network to estimate features that span across multiple pixels in earlier layers. Secondly,
a 1 × 1 convolution layer is used in parallel and summed to the concatenation of the other
layers. A 1× 1 convolution layer is not able to recognize any features but is used to preserve
information that may not be extracted by the other layers. Within this residual block, there
are 1328N parameters to be estimated, compared to 18N in the residual block used by
Bekendam [1]. This combined with a increase of N by a factor of 4 makes this architecture
slower to train and evaluate, but also makes it potentially better at recognizing features within
the SH-PSF.

It must be noted that Bekendam proposed another architecture with similar features to
the U-net implementation of Hu et al. that was trained to estimate Zernike coefficients from a
SH-PSF. This architecture is not discussed in this Thesis because of the limitations imposed
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Figure 3-5: The residual block used in combination with the architecture as shown in Figure 3-3
as used by Hu et al.. The different sizes of kernel allow the network to recognize features spanning
across multiple pixels in earlier layers, but comes at the cost of an increase in parameters to be
trained. The additional single pixels convolution helps preserve information that is not extracted
by the other convolution layers.

by the modal wavefront representation. Bekendam did note that the 1× 1 convolution layer
bypass may decrease the CNN’s ability to filter out noise.
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Chapter 4

Numerical Simulations of Optics

In this Chapter, the numerical simulation of the optical system developed as part of this Thesis
is discussed. The simulation environment is a crucial aspect of this Thesis because it will be
used to generate training data for the deep learning approach to wavefront sensing. The
simulation must be very accurate and time efficient. Discrepancies between the simulation
and the actual optical setup will result in poor real world performance of the developed
methods, because neural networks used for deep learning wavefront sensing which are trained
using data from the simulation must be able to find the exact same patterns in the data from
the optical setup. The need for a fast simulation comes from a practical point of view. The
amount of data points needed for the training of the neural networks is in the order of 105,
which means that every second in simulation time will result in several hours in the process
of generating the training data.

This Chapter will discuss the numerical simulation in 3 separate parts: Firstly, Section
4-1 examines the generation of realistic turbulent wavefronts. Secondly, 4-2 explains the
propagation of the wavefront into the SHWFS. Lastly, 4-3 illustrates shortly how the wavefront
influences the image of the main imaging sensor.

4-1 Wavefront Simulation

In the simulation environment, turbulent wavefronts are generated as described by Lane et al.
[14]. A number of assumptions about the phase screen are made. The atmospheric turbulence
follows a Kolmogorov spectrum, its phase is statistically uniform over the interval [−π, π] and
it can be approximated as a single phase screen located at the entrance pupil. The Kolmogorov
phase screens are self-similar, meaning that they appear similar regardless the scale they are
looked at. On smaller scales, only the magnitude of the phase changes, not the fluctuation.
Because of this property, a turbulent wavefront can be generated independent on D or r0 and
scaled by (D/r0)

5
6 .

The phase screen is generated by initializing 4 points on a square grid, with a random
value and variance equal to σ2 (see Equation 1-1). The resolution of the phase screen is
increased by filling in the midpoint between existing data points by linear interpolation with
the addition of a random variable. The value of the random variable d1 is chosen such
that
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〈(
g1 −

g1 + g2
2 − d1

)2
〉

= σ2. (4-1)

Here, g1 and g2 are the left and right data point, respectively. This process is continued
until a sufficient resolution is reached. Figure 4-1 shows a visualization of this process. Note
that this method can only create square phase screens with a resolution equal 2n + 1, with
n ∈ N. Hence, if a circular phase screen with a diameter of 680 pixels is needed (as used in
this Thesis), a phase screen with a size of 1025× 1025 is generated and then cropped to the
desired shape.
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Figure 4-1: A visualization of the generation of a turbulent phase screen as described by Lane
et al. [14]. 4 points are randomly generated on a grid (gi). New data points (di) are generated in
between the existing ones by interpolating between the data points and adding a random value.

For this Thesis, an efficient way to up-sample the turbulent phase screen was developed,
which performs the interpolation using a dot product between the low resolution wavefront
and an interpolation matrix. In Figure 4-1 the black arrows represent the low resolution
wavefront and the collection of gray and black arrows represent the interpolated wavefront.
The relation between the two can be defined by

g1
d1
g2
d2
d3
d4
g3
d5
g4


=



1 0 0 0
1/2 1/2 0 0
0 1 0 0

1/2 0 1/2 0
1/4 1/4 1/4 1/4
0 1/2 0 1/2
0 0 1 0
0 0 1/2 1/2
0 0 0 1




g1
g2
g3
g4

+



0
r1
0
r2
r3
r4
0
r5
0


. (4-2)

Here r1 to r5 are random values that adhere to Equation 4-1. The interpolation matrix
depends on the size of the wavefront, but can be calculated in advance for each step in
resolution and imported from a file. Since the interpolation matrix is a sparse matrix, the
dot product can be calculated reasonably quickly.

At larger resolutions, the amount of memory required for the calculation of the dot
product is in the order of Terabytes. To avoid this, the size of the interpolation matrix can
be capped (e.g. at a resolution of 652 × 332 pixels depending on the available memory) and
the up-sampling can continue in blocks. For example, if the wavefront is interpolated from
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4-2 Point Spread Function Simulation 25

513 to 1025 pixels, the wavefront is divided into 16 blocks of size 33 which are individually
up-sampled to 65. Putting these blocks together then forms the wavefront of a 1025 × 1025
resolution. As the top row and left column of the blocks overlap with the adjacent blocks,
the continuity of the turbulent wavefront is maintained.

The generation of a phase screen of aforementioned resolution takes roughly 0.5sec per
phase screen. In order to increase computational speed, it is chosen to not generate a new
phase screen for every data set, but instead to save the 1025 × 1025 phase screen and crop
10 phase screens out of it at random locations. The cropped phase screens are then also
randomly mirrored and rotated.

Other literature which looks into deep learning wavefront sensing used wavefronts gen-
erated from Zernike polynomials instead of Kolmogorov statistics (e.g. [1] [11] [12] [20]).
Depending on the application of the imaging system, phase screens generated from Zernike
polynomials can be a valid approximation of random phase screens. In the context of approx-
imating turbulent wavefronts, however, this approach tends to ignore the high order (pixel-
to-pixel) variations in the phase. It does not take the self-similarity of the turbulent phase
into account. Wavefront sensing methods tested on phase screens generated from Zernike
polynomials tend to show better performance than when tested on Kolmogorov phase screens
as they generally lack the ability to retrieve these higher order wavefront fluctuations.

4-2 Point Spread Function Simulation

In the simulation, two PSFs must be constructed from the wavefront: the SH-pattern (Section
4-2-1) and the PSF of the main sensor (Section 4-2-2).

4-2-1 Shack-Hartmann Pattern Simulation

The simulation of the SHWFS is done in accordance to Soloviev et al. [29]. Recall the equation
that relates the wavefront phase φ to the PSF:

k(u) ∝
∣∣∣F {P (x)eiφ(x)

}
(u)

∣∣∣2 . (4-3)

The addition of the MLA makes this formula not directly applicable to SHWFS. The
influence of the MLA can be reproduced by dividing the wavefront phase into a grid represent-
ing the MLA (see Figure 1-4), calculating the PSF of each individual grid point and shifting
the resulting PSFs in accordance with the location of the cell. This process can, however, be
computationally expensive, especially with an high number of microlenses.

As shown by Soloviev et al., the influence of the MLA can also be modeled by adding the
influence of the MLA on the wavefront phase to the earlier generated phase screen, denoted
by φMLA. In order to not add additional distortions to the turbulent phase φ, φMLA has to
be limited to tip and tilt modes within the grid cells as seen in Figure 1-4. The tip and tilt
modes need to be chosen such that the subaperture PSFs end up in the exact right location. A
piece-wise linear defocused wavefront phase achieves both these criteria. The shape of φMLA
can be seen in Figure 4-2.

In the software implementation developed in this Thesis, the piece-wise linear defocused
wavefront was constructed by first sampling a continuous defocused wavefront on a course
grid of (N + 1)2 points, where N is the number of subapertures in the MLA, using
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φdefocus = a
(
2
(
(x− x̄)2 + (y − ȳ)2

)
− 1

)
. (4-4)

Here, x̄ and ȳ represent the value at the center of the x and y axis, respectively. The
values within this grid can now be found though a 2 dimensional linear interpolation of the
course defocus. The exact strength of the defocus (a), represents a scaling along the z axis
and must be chosen such that the subaperture spacing appears to correspond to the SH-
patterns found from the optical setup. Figure 4-2 shows a visualization of the piece-wise
linear defocused wavefront.
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Figure 4-2: Visualization of φMLA, which consists of a piece-wise linear defocus (after [29]). The
x and y axis represent the pixels of the wavefront matrix and the z axis represents the phase delay
[rad], and needs to be scaled in order to achieve the right subaperture spacing.

From the Nyquist-Shannon principle, it follows that the maximum wavelength that the
CCD can sample without aliasing is 2s, where s = 5.2µm is the pixel spacing of the CCD.
This corresponds to a maximum angular spectrum k of

|k| ≤ π

s
. (4-5)

The angular spectrum is also limited by the aperture of the MLA by

|k| ≤ NA2π
λ
. (4-6)

For the simulation of the SHWFS, the resolution should be high enough such that it
holds that

NA 2π
λ
≤ π

s
. (4-7)
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In the test setup, an square aperture of 3mm is used with a light source of λ = 470nm. It
follows that NA ≤ λ

2s ≈ 0.043, corresponding to an aperture of a maximum of 1mm. Hence,
the resolution of the simulation should be 3 times larger than the effective resolution of the
CCD (680 × 3 = 2040). After the SH-pattern has been generated it can be reduced to the
desired resolution by averaging.

4-2-2 Main Point Spread Function Simulation

The PSF of the main imaging sensor is necessary as input for the image deconvolution step.
Discrepancies between the simulated PSF and the true PSF of the optical setup will not
become apparent when testing the performance of the system within the simulation environ-
ment, but will decrease the performance only when the system is applied on the true optical
system. There is, however, a trade-off to be made between the speed and accuracy of the
simulation. Following the procedure of selecting the resolution of the simulated SH-PSF,
the simulated resolution of the main CCD must also be in the order of 103 pixels. This high
number of pixels, however, comes at the cost of more memory and computational time needed
for the Fourier transform, which is unfavorable for real-time operation. Moreover, the errors
that will be introduced in the wavefront reconstruction step have a much larger influence
in the discrepancies between the simulated and actual PSF than the errors resulting from
inadequate simulation.

For these reasons, it is chosen to simulate the PSF using wavefront screen of 128 × 128
pixels (equal to the output of the deep learning wavefront sensing step). The size of the pupil
function is then chosen such that the resulting size (in pixels) of the PSF corresponds to the
size found in the actual optical system.

4-3 Imaging Simulation
Now that the PSFs of both sensors have been constructed from the wavefront, the image can be
made through a convolution of an object and the PSF. Since the resolution and magnification
of the subapertures and the main CCD are different, the resolution of the object needs to be
adjusted. The object used for the main image is loaded from a file, and the object used for
the SH-image is a down-sampled version of the same object.

The images can now be found through a convolution of the object and PSF

i = o ∗ k
ish = o ∗ ksh.

(4-8)

Convolution in the image domain is a computationally expensive operation. A faster
alternative is to take the Fourier transform of o and k and to multiply them in an element-
wise manner. Note that in the image domain convolution, there is no requirement for o and
k to be of equal size. The resulting shape of i, denoted by Ni, will be Ni = No +Nk − 1. To
achieve the same resolution, o and k must be padded with zeros before transforming to the
frequency domain. After O and K are multiplied and transformed back to the image domain
to form i, i must be cropped again to the right size. The code snippet below shows how
this process is implemented in a Python function. Here, np points towards the math library
numpy or, if supported by the hardware, to its GPU accelerated version cupy.
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1 def convolve2(o, k):
2 # Add padding to the matrices
3 o_pad = np.pad(np.array(o), [0, k.shape[0]-1], mode=’constant’)
4 k_pad = np.pad(np.array(k), [0, o.shape[0]-1], mode=’constant’)
5
6 # Convolve the image and crop the edges
7 edge = np.minimum(o.shape[0], k.shape[0])/2
8 i_pad = np.real(np.fft.ifft2(np.fft.fft2(o_pad)*np.fft.fft2(k_pad)))
9 i = i_pad[edge:-edge+1, edge:-edge+1]

10 return i

Sensor Noise

The final step is to add sensor noise to the generated images. The exact simulation of the noise
distribution of a CCD can be complicated to reproduce and will depend on many variables, e.g.
exposure time, scene lighting, background radiation, etc. Since there is access to the optical
test setup, the noise distribution can be measured directly and is shown in Figure 4-3. The
noise that is added to the simulated images is generated according to this distribution.

For the determination of the noise distribution, the CCD settings were adjusted such
that the object was sufficiently bright. An object was chosen that did not cover the entire
field of view, leaving black borders along the image. These borders were extracted and their
pixel values were transformed to the distribution as seen in Figure 4-3.
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Figure 4-3: Visualization of the measured CCD noise distribution. Noise generated from this
distribution is added to the simulated image, after the image is normalized between 0 and 1. The
exact noise distribution depends on many parameters, e.g. frame rate, exposure time, background
light, etc. In the simulation, the noise pattern is copied from the noise found in one particular
camera setting.
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Chapter 5

Deconvolution From Wavefront
Sensing: System Design

This Chapter will walk though the design of the different subsystems of the DFWS system
proposed in this Thesis. This starts with the preprocessing of the SH-image in Section 5-
1, followed by DLWS step discussed in Section 5-2 and finally a brief note on the image
deconvolution in Section 5-3.

5-1 Pre-Processing Shack-Hartmann Images
The pre-processing of the SH-image is done using a modified version of the MFBD algorithm
TIP, which is discussed in Section 2-2-1. Usually in MFBD, the objective is to retrieve the
object. In this case, however, the goal is to retrieve the SH-PSF. Figure 5-1 shows the image
from the main CCD and the SH-image. Given these two images, the goal is to retrieve the SH-
PSF such that it can be used as input for the deep learning wavefront sensing method.

(a) Received main image. (b) Received SH-image.

Figure 5-1: An example of the information available from which the SH-pattern needs to be
estimated. These images were generated from the optical simulation.

TIP begins with an initial estimate of either the object or PSF. In this Thesis, the image
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30 Deconvolution From Wavefront Sensing: System Design

from the main CCD can be used as an initial estimate of the object. For this, the main image
needs to be down-sampled in order to match the resolution of the smaller subaperture images.
Distortions present in the main image have an influence on the resulting estimate of the SH-
PSF. A proper choice of the projection operator can help to minimize this influence.

For the construction of the projection operator, consider the 3 possibilities describing the
relation between the latest estimate of the object and the subaperture images:

1) The subaperture image is more blurred than the estimated object. This will result in
a large PSF (e.g. subaperture (4, 2) in Figure 5-2).

2) The subaperture image is similarly blurred to the estimated object. This results in a
PSF that is close to a delta function (e.g. subaperture (3, 3) in Figure 5-2).

3) The subaperture image is sharper than the estimated object. In this latter case, the
PSF does not represent a blurring function, but instead a sharpening function. In order for
the PSF to perform a sharpening action, it must contain negative values as well as large
positive values. This effect is highlighted in Figure 5-2. Subaperture (3, 5) is sharper than
the estimated object and contains negative values.
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Figure 5-2: The estimated SH-pattern in the first TIP iteration, before the projection step. Three
types of PSFs can be identified in this image: 1) The subaperture image is more blurred than the
estimated object, resulting in a blurred PSF, e.g. (4, 2). 2) The subaperture image is similar to
the estimated object, resulting in a sharp PSF, e.g. (3, 3). 3) The subaperture image is sharper
than the estimated object, resulting in a PSF with a large positive values as well as negative
values, e.g. (3, 5). Filtering out the subaperture images corresponding to 1) and discarding the
negative values will direct the TIP algorithm to an accurately estimated object.

As the low values in the PSF point towards subaperture images that are more blurred
than the estimated object, the TIP algorithm can be nudged into the right direction by
decreasing the contribution of these subaperture images for the estimation. This can be done
by increasing the contrast of the estimated PSF by normalizing it between 0 and 1 and raising
it to a certain power.

The Python code below shows a snippet of the exact implementation of the TIP algo-
rithm.

1 for n in range(iterations):
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5-1 Pre-Processing Shack-Hartmann Images 31

2 psf_est_F = i_F/(o_F+1*(np.abs(o_F)<1))
3 psf_est = np.real(fft.ifft2(psf_est_F))
4 psf_est *= (psf_est > 0)
5
6 psf_est -= np.min(psf_est)
7 psf_est /= np.max(psf_est)
8 psf_est **= iterations-n
9

10 psf_est -= np.min(psf_est)
11 psf_est /= np.sum(psf_est)
12 psf_est_F = fft.fft2(psf_est)
13
14 conj = np.conj(psf_est_F)
15 o_F = (conj*i_F)/(conj*psf_est_F+1e-9)
16 o = np.abs(fft.ifft2(o_F))
17 o *= setup.tip_pupil
18 o -= np.min(o)
19 o /= np.max(o)
20 o_F = fft.fft2(o)

Lines 2-4 perform a least-squares deconvolution and extract the positive real values from
the estimated PSF. Note that the regularization parameter is only added to the frequencies
with a lower absolute value than the regularization parameter in order to not distort valid
frequencies. Lines 6-8 normalize the estimated PSF between 0 and 1 and increase the contrast.
The exact power to which the image is raised is dependent on the iteration step and decreases
to 1 in the final step (note that in Python 0 ≤ n < iterations). Lines 10-12 normalize the
PSF such that the sum is equal to 1 and calculate the Fourier transform of the PSF. Lines
14-20 calculate the estimate of the object and normalizes it.

Unlike in the implementation of Wilding et al., the estimated object is the absolute value
of the inverse Fourier transform. Wilding et al. calculates the object similar to the PSF (lines
2-4) by taking the real and positive entities of the inverse Fourier transform. In the case where
one subaperture image is significantly sharper than the others, the increase in contrast will
filter out only one subaperture image. In the next iteration, the estimated object will be equal
to that subaperture image. After a number of iterations, the TIP algorithm will converge
to a SH-PSF that consists of one single delta function at the location of that subaperture.
By taking the absolute value in line 16, slight discrepancies will be introduced in the object,
which helps to prevent the algorithm from converging to the aforementioned trivial solution.
These discrepancies do not seem to appear in the estimated PSF.

Figure 5-3 shows how the implementation of the TIP algorithm performs on a simulation
of the optical system. It can be seen that the estimated SH-pattern is nearly identical to the
true SH-pattern and that the noise in the image is limited.
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(a) Simulated SH-image (b) Simulated image

(c) Estimated SH-pattern (d) True SH-pattern

Figure 5-3: An example of the performance of the TIP algorithm based on a simulation of the
optical system with a turbulence strength of D/r0 = 20. In (c), some subaperture PSFs are bright
and cover little pixels (i.e. are less aberrated), while others are dim and cover many pixels. By
increasing the contrast of the SH-patterns (e.g. by raising it by a power larger than 1), the highly
aberrated subapertures are filtered out. This helps the TIP algorithm find the correct object.

5-2 Deep Learning Wavefront Sensing
Now that the influence of the object is removed from the SH-image, DLWS can be used in
order to retrieve a reconstruction of the wavefront. The selection of the CNN architecture
has a large influence on the quality of the wavefront reconstruction.

5-2-1 Selection of Architecture

The CNN architecture to be used for this Thesis’ specific application is not necessarily the
same CNN architecture found to be optimal in literature for similar applications (which are
discussed in Section 3-2). There are several differences in SH-patterns used as input for the
CNN between literature and this Thesis. Most notably, previous research has used the true
SH-pattern, whereas the SH-pattern used in this Thesis is an estimate of the true SH-pattern
found though a blind-deconvolution step. The blind deconvolution step not only introduces
discrepancies in the shape of the individual PSFs, but also results in a lower signal-to-noise
ratio.

V.S. de Bruijne Master of Science Thesis



5-2 Deep Learning Wavefront Sensing 33

From a practical point of view, especially in early research like this Thesis, a smaller
network architecture is preferred, as it allows for faster iterations and more convenient tuning
of specific parameters. Also, for real time application of the network, a smaller network is
preferable both in terms of memory usage as well as evaluation time. The ideal architecture
for this application is the network with the least parameters to be trained that is still able to
extract all available information from the SH-pattern.

Recall the residual block of the architecture used by Hu et al. [12], shown in Figure 3-5,
which consists of different sizes of convolutional kernels as well as a ’bypass’ layer. The high
amount of noise in the SH-pattern can be an issue if a ’bypass’ of the convolutional layers
is used. This method maintains features in the image without being filtered, and thus can
preserve noise further in the network which results in a poorer performance on high noise
images. Along the same line of thinking, a convolution layer between the concatenation from
the different layers was added, resulting in a network architecture as displayed in Figure 5-4.
The addition of these convolutional layers can filter out noise that is not removed by the
earlier layers and prevents this noise from being concatenated in later layers.

Figure 5-5 shows the residual block used for this proposed architecture. This residual
block has features based on the architecture of Hu et al. [12], where different sizes of convo-
lutional kernels are used. The amount of larger size kernels is, however, significantly reduced
and does not depend on N . As a result of this reduction, the size of the network is much
lower than the architecture of Hu et al. because the amount of parameters in the convolu-
tional layer scales with the kernel size squared. Additionally, there is another concatenation
action introduced in the new residual block, located between the two convolutional layers.
This concatenation action mixes the information of the differently sized convolutional lay-
ers and allows information to pass through two different sizes of kernels within the residual
block.

Input N

Residual Block 2x2 Max Pool Up-sampling + 2D Convolution Concatenate

OutputN2N 2N4N 4N8N 8N16N

4N

8N

2N

N

2D Convolution

Figure 5-4: A visualization of the general U-net architecture modified for the application in this
Thesis, with N = 12. The convolution between the concatenation prevents noise present in the
input image from propagating into deeper layers. The residual block used is displayed in Figure
5-5.

Chapter 6 will present a detailed comparison of the performance of the different archi-
tectures.
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4
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Figure 5-5: Residual block used in the proposed CNN architecture. Similarly to Hu et al. [12],
different sizes of convolutional layers are used. The amount of larger convolutional layers is limited
and the concatenation of the layers happens twice in the residual block.

5-2-2 Data Normalization

For the training of neural networks, it is important that both the input and output data are as
constant as possible. The normalization of input and output data and the removal of data that
cannot be reconstructed or does not contain information is therefore very important.

The SH-pattern is normalized such that the lowest pixel value is equal to 0 and the
highest pixel value is equal to 1. Additionally, the shape of the SH-pattern is reduced to
128× 128 pixels from its original size of 680× 680 pixels.

Figure 5-6a shows an example of a SH-pattern as generated by the simulation environ-
ment. Due to the relatively low amount of subapertures, there are large spaces within the
SH-pattern that do not contain any information. In Figure 5-6b, the areas where the sub-
aperture PSFs are present are highlighted. The size of these areas is chosen such that they
form an image of 128 × 128 pixels when put together. This image is shown in Figure 5-6c
and is used as the input for the neural network. Hu et al. [12] and Bekendam [1] both use
an input image of 256 × 256, which is needed for the larger amount of subapertures in the
SHWFS. The reduced image size significantly speeds up the training and evaluation process,
as all element-wise and frequency domain transformation operations are sped up by a factor
of 22 and 2 log(2), respectively.

The output data, i.e. the wavefront, cannot be normalized between 0 and 1, as this will
disrupt the strength of the wavefront aberrations. It is, however, important to remove the
data of the wavefront that cannot be estimated for the SH-pattern.

The SH-pattern is not influenced by the first Zernike mode (piston). Additionally, the
preprocessing step of the extended-scene SH-image has been observed to introduce uniform
shifts in the estimated SH-patterns. As seen from the TIP-algorithm, the SH-pattern and
estimated object can both have an equal but arbitrary shift introduced, as long as the SH-
pattern stays in the image frame, while still being a valid solution to the blind deconvolution
problem. Since the global shift in the SH-pattern corresponds to the tip and tilt modes in the
wavefront, these modes can be corrupted by the preprocessing step. Fortunately, the piston,
tip and tilt modes (i.e. the first 3 Zernike polynomials) do not influence the resulting shape
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Figure 5-6: (a): The original SH-pattern, (b): the regions of interest within the SH-pattern
highlighted, (c): the cropped SH-pattern, consisting of the collection of the highlighted areas in
(b). This conversion loses no data from the original wavefront and allows the neural network to
speed up significantly as it does not have to process the empty space within the subapertures.

of the PSF and are therefore not necessary in the DFWS setting.
It is important for the neural network that the ’invisible’ wavefront modes are removed

in the training process. To remove these modes, the first step is to estimate the first 3 Zernike
modes of the wavefront using

φ = cZ.

c = φZT
(
ZZT

)−1
.

(5-1)

Here, φ is the vectorized wavefront of shape [1282], c is the array of Zernike coefficients
of size [3] and Z is the vectorized array of Zernike polynomials of size [1282, 3]. The influence
of these wavefront modes can now be removed by

φcorr = φ− cZ. (5-2)

Where φcorr is the corrected wavefront with removed piston, tip and tilt modes. Figure
5-7 shows an example of the wavefront before and after its correction.

5-3 Image Deconvolution

Chapter 2 already concluded that iterative methods are generally better at handling the
ill-conditioned properties of the image deconvolution step. Now, it must be decided which
iterative deconvolution method is best to use in this Thesis and for how many iterations. Two
methods are considered, the Landweber method with τ = 1.5 and steepest descent.

The amount of iterations to use can be either a fixed number, or determined by a stopping
criterion. In the context of real-time image deconvolution, a variable amount of iterations
resulting from the use of a stopping criterion can be disadvantageous as it can result in a
variable frame rate. It is discussed in Section 6-3 that the bottleneck in terms of real-time
performance is the DLWS step, which takes roughly 0.1sec to calculate. A calculation time
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Figure 5-7: On the left, the original wavefront. On the right, the wavefront with corrected
piston, tip and tilt modes. The piston mode of the wavefront cannot be reconstructed from the
SH-pattern. The information about tip and tilt modes can be corrupted by the extended scene
preprocessing step of the SH-PSF. Hence, these modes must be removed from the wavefront to
improve the training.

of 0.1sec corresponds to about 80 iterations for the Landweber method and 40 iterations for
steepest descent. If a stopping criterion is used, it must be limited to the these amounts of
iterations to maintain a constant frame rate in the systems integration.

Figure 5-8 shows the mean square error (MSE) between the deconvoluted estimated ob-
ject and the true object plotted against the amount of iterations in the deconvolution method.
These curves vary greatly case-to-case, but can still help to illustrate the considerations that
must be taken in account for the selection of stopping criterion or number of iterations.

Firstly, notice that both curves have an optimum somewhere around 50 iterations. The
steepest descent method converges faster to this optimum, but also diverges faster when too
many iterations are performed. Secondly, the convergence of the Landweber method is not
convex because the MSE increases between 2 and 10 iterations. Lastly, it is clear that the
increase in convergence speed of the steepest descent method does not weigh up against the
increased time per iterations. The steepest descent method converges to the optimal 20%
quicker, but the computation time per step is almost 2 times longer.

As the optimal amount of iterations is variable case-to-case, it is chosen in this Thesis
to use a stopping criterion to determine the amount of iterations to use. The criterion
is constrained by a minimum and maximum allowed number of iterations. The minimum
amount of iterations is set to 20 and is used to force the deconvolution method past the
non-convex part, which is generally located below n = 20. The upper limit to the number of
iterations is set to 80, to ensure a constant frame-rate.

The stopping criterion must not contain computationally expensive math operators in
order to avoid slowing down the deconvolution time. Recall the deconvolution iteration equa-
tion
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Figure 5-8: The convergence of the Landweber and steepest descent deconvolution methods.

Õn+1 = Õn + τKT
(
I −K∗Õn

)
. (5-3)

For a converging iteration, it must hold that

lim
n→∞

Õn+1 − Õn = 0. (5-4)

Therefore,

lim
n→∞

τKT
(
I −K∗Õn

)
= 0. (5-5)

As long as the increments in the object estimate (Õn) are decreasing, it is assumed that
the iteration is converging. If the increments start increasing, the object estimate is diverging.
Hence, the iteration is stopped when∑(

τKT
(
I −K∗Õn+1

))2
>
∑(

τKT
(
I −K∗Õn

))2
. (5-6)

I.e. the iteration is stopped when the MSE of the increment increases (or when n > 80).
Since the increment of the object estimate is calculated for updating the estimated object,
calculating its mean squared error decreases the computational speed only marginally.
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Chapter 6

Experimental Results

In this Chapter, the experimental results of the methods implemented in this Thesis are
discussed. Firstly, Section 6-1 explains the optical setup that is used for testing the system.
Section 6-2 will show the performance of the developed deep learning wavefront sensing meth-
ods and compare their performance to conventional methods for interpreting extended scene
SHWFS images.

6-1 Experimental Setup
The system will be implemented on an optical test setup which is made to replicate a small
diameter telescope. A test setup is preferred over a real telescope because it allows for
controlled experiments. An overview of the test setup is shown in Figure 6-1.

Processor

Beam splitter

Band Stop

Shack-Hartmann
Sensor

CCD

Turbulence Simulator

Light Source

Figure 6-1: A schematic of the optical test setup used. The lens left of the beam splitter is
chosen such that its numerical aperture corresponds to that of a small telescope. The light source
consists of an LED with a wavelength of 470nm with a object placed in front of it. The light
source is placed sufficiently far from the lens such that the wavefront is approximately flat when
it reaches the lens. As the light source takes up only a small section of the field of view, the
subaperture of the SHWFS does not overlap, leaving the band stop unused.

Except for the light source and turbulence simulator, the setup is nearly identical to a
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DFWS system as discussed in Chapter 1. The lens left of the beam splitter is chosen such
that its numerical aperture corresponds roughly to that of a 130mm diameter telescope with
a focal point of 103mm. The light source is an LED light (λ = 470nm) behind which either a
pinhole can be placed in order to simulate a point source, or a piece of paper with a figure to
simulate an extended scene. From the source, the light passes though a turbulence simulator.
This is a disk that introduces known wavefront aberrations and can be rotated using a motor
in order to simulate a regressing wavefront. Figure 6-2 displays the wavefronts on the available
turbulence simulators.
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Figure 6-2: A visualization of the wavefronts introduced by the 2 turbulence simulators. The
strength of the turbulence can be changed not only by moving the turbulence simulator closer of
farther from the light source, but also by switching turbulence simulator.

It is chosen to not collimate the beam after the light source, even though this would
better simulate the light that comes into a telescope from a star at infinity. Instead, the
light source is placed at a distance of roughly 12 times the focal point of the lens before the
beam splitter. This distance between the lens and the source results in an approximately flat
wavefront at the lens and has the benefit that the strength of the turbulence can be adjusted
continuously by either placing the turbulence simulator closer to the light source or closer to
the lens. If the turbulence simulator is placed closer to the source, the light will pass though a
small section of it. If the turbulence simulator is closer to the lens, the light will pass though
a larger section of turbulence. There is a limit to how low the strength of the simulated
turbulence can be, as anisoplanatic effects will arise when the turbulence simulator is placed
too close to the light source.

The processor in Figure 6-1 is a desktop PC with a 12 core Intel Xeon E5-2630 DUAL
CPU with 64 GB of memory and a NVIDIA GeForce GTX 970 GPU (CUDA enabled), with
4 GB of video memory. The same system is used for the training of the CNNs.

6-2 Wavefront Sensing
For the testing of the wavefront sensing capabilities of the newly developed method, the 3
different CNNs used for deep learning wavefront sensing are evaluated on a turbulence strength
ranging fromD/r0 = 0 toD/r0 = 18 in 19 discrete steps. For each step in turbulence strength,
100 unique wavefronts were generated which were not included in the training data set. The
tests were performed using the software simulation of the optical setup for easier calculation
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of the wavefront reconstruction performance.
To compare the developed methods to the conventional way of extended scene wavefront

sensing, a zonal and modal method were implemented, too. For the conventional methods,
the slope detection was done in accordance to Zhou et al. [40], using the absolute difference
function as correlation function combined with sub-pixel interpolation in order to retrieve
subaperture shifts on an accuracy higher than 1 pixel. The modal method represents the
estimated wavefront using the first 24 Zernike modes, equal to the number of effective sub-
apertures.

Figure 6-3 shows the results of the comparison. In this Figure, the 1rad RMS wavefront
estimation error is highlighted, indicating the minimum required performance. The RMS
wavefront error is calculated by

eRMS =

√√√√ X∑
x=1

Y∑
y=1

(
φ(x, y)− φ̃(x, y)

)2
. (6-1)

Where φ̃ is the reconstructed wavefront and φ is the true wavefront of size [X,Y ].
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Figure 6-3: An overview of the wavefront estimation performance of the different developed
deep learning wavefront sensing methods, compared to the traditional zonal and modal wavefront
sensing methods. The wavefronts used for evaluation are 1900 unique wavefronts that were not
included in the training data for the CNNs. For each discrete step in turbulence betweenD/r0 = 0
and D/r0 = 17, 100 wavefronts were generated. The dot represents the mean value over the 100
tested wavefronts and the error line represents the standard deviation of the error. For readability,
some data points are placed slightly before or after the integers on the x-axis. This does not
reflect a difference in tested wavefront strength between the different methods.

As expected, the zonal method manages to sufficiently estimate the wavefront up to a
turbulence strength of roughly D/r0 = 6, which is equal to the amount of subapertures in the
SHWFS. Since the wavefront is generated using Kolmogorov statistics rather than Zernike
polynomials, the performance of the modal method is lower than that of the zonal method.
The performance of the tested CNNs is very similar, all estimating the wavefront sufficiently
up to a turbulence strength of D/r0 = 14, which is a very significant improvement compared
to the modal and zonal methods.

Up to D
r0

= 12, the newly proposed architecture performs slightly, but not significantly
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better than Hu’s architecture, while both perform roughly 4% better than Bekendams archi-
tecture. At turbulence strengths of D

r0
> 12 Hu’s architecture performs roughly 2% better

than the proposed architecture. It must be noted that earlier in the development of the SH-
image preprocessing algorithm, the images used as input for the CNNs contained more noise
and the proposed network performed better with the lower signal to noise ratio.

Figure 6-4 shows an example of the wavefront reconstruction performance of the tested
CNN architectures. It can be seen that the DLWS method is able to reconstruct the global
shape of the wavefront accurately, but fails to retrieve the pixel-to-pixel fluctuations in the
turbulent wavefront.
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Figure 6-4: An example of the wavefront sensing performance of the 3 tested DLWS architectures.
The tested wavefront has a turbulence strength of D/r0 ≈ 12 and all networks reconstruct the
wavefront sufficiently. The DLWS architectures perform overall very similar and it does not appear
that one particular architecture fails or succeeds to recognize wavefront features that the others
do not.

Figure 6-4 also shows how the PSFs of the reconstructed wavefronts, as well as the
deconvolution of the true PSF with that of the reconstructed wavefronts. This deconvoluted
PSF depends on the used deconvolution technique but gives an idea of the residual PSF
after the image has been deconvoluted. The noise in these PSFs makes the calculation of
the Strehl-ratio unreliable. Instead, the Strehl-ratios of the PSFs resulting from the residual
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wavefronts is shown.
Interestingly, the DLWS methods show perfect phase unwrapping behavior. Areas with

added phase delays of multiples of 2π rad do not influence the SH-pattern and are therefore
invisible to the DLWS methods. The training data for the CNNs consisted of continuous
wavefronts (i.e. no large steps in phase delay), which has led to the DLWS only reconstruct-
ing continuous wavefronts. This effect is highlighted in Figure 6-5, where a jump in phase
is manually added to the true wavefront, but the DLWS method reconstructs a wavefront
with a phase wrap that corresponds to the turbulent wavefront without the added jump in
phase.
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Figure 6-5: A visualization of the phase unwrapping behavior of the DLWS methods. The DLWS
methods have been trained to reconstruct a wavefront with a continuous phase, if a discontinuous
jump in phase of 2π rad is added to the wavefront, this will not be present in the reconstructed
wavefront.

6-3 Real Time System Integration

Especially for real-time operations, it is important to not only compare the methods by
residual wavefront error, but also computational speed. Table 6-1 shows an overview of
the amount of parameters in the network, the evaluation time and the networks memory
requirement.

Table 6-1: Computational efficiency evaluation of the 3 tested DLWS CNNs. The evaluation
times depend greatly on the amount of background processes active. These tests were performed
while the other parts of the DFWS system were also running.

CNN Number of Evaluation Memory
parameters time [s] [MB]

Hu 2.14 · 107 0.145 252
Bekendam 4.86 · 105 0.092 6.29
de Bruijne 1.45 · 106 0.099 18.4

It can be seen that the newly proposed network is almost triple the size of Bekendam’s
network, both in terms of parameters and memory required. Hu’s architecture is roughly
another 15 times larger.
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In the software implementation developed in this Thesis, the process is divided into 7
parts as shown in Table 6-2. Depending on the systems resources, a number of these steps
can be performed in parallel. In a parallel setting, different functions of the program can
be performed simultaneously. For example, one image can be deconvoluted while the next
image is still in the wavefront sensing stage. In this parallel setting, the steps with shorter
evaluation times must either be combined or have an added delay in order to synchronize
the various processes. In this particular implementation no steps are combined, but instead
a delay scheduling is used. The delay scheduling can have a delay introduced either before
or after the step synchronization in order to spread the computational load evenly along the
step’s length. A disadvantage of this approach is that the leg between receiving the input is
longer, defined by

lag = N ||tn||∞. (6-2)

With N the amount of steps and tn the evaluation time of step n ≤ N . If all the steps are
implemented in series, it is not necessary to add delay and the output lag is reduced to

lag =
N∑
n=0

tn. (6-3)

Table 6-2: An overview of the different sections that the software implementation is divided
in, combined with their respective average computation time. Dividing the system up into these
discrete parts allows for efficient parallel computation. This increases the time between receiving
the image and estimating the object slightly, but allows for the calculation of multiple objects
from sequential images simultaneously.

Section Average Run
Time (tn) [ms]

1) Retrieving the image from the setup 53
2) Performing the TIP pre-processing step 42
3) Cropping and normalizing the estimated SH-PSF 4
4) Evaluating the DLWS CNN see Table 6-1
5) Constructing the PSF from the estimated wavefront 25
6) Performing the image deconvolution < 99
7) Rendering the estimated object 40

Tables 6-2 and 6-1 show that the bottleneck of the system is the evaluation of the CNN.
Hence, Hu’s architecture is unfavorable for real-time operation, as it limits the system to
roughly 7Hz. The newly proposed architecture limits the system to 10Hz and Bekendams
architecture to 11Hz.

6-4 Examples
Figure 6-6 shows the performance of the DFWS on a simulated scene. The system is able
to correct the observation to the diffraction limited image. Figure 6-7 also shows the system
performing on the real world optical setup. It is clear that the system is able to increase the
sharpness of the image significantly.
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True Object Received Image Estimated Object

Figure 6-6: A display of the performance of the system on in a simulated situation. The
turbulence strength is D/r0 ≈ 15.

Figure 6-7: Figure displaying the real time, real world correction capabilities of the system
developed in this Thesis. The left picture shows the received image and the right picture shows
the estimated object. This figure shows the inability of the developed system to correct tip and
tilt modes. The estimated object is sharp but not centered.

6-5 Conclusions
In this Chapter, the performance of the DFWS system developed in this Thesis was evaluated.
3 different CNN architectures were compared and the real-time image correction capabilities
of the system were showcased.

It can be concluded that the novel extended scene deep learning approach to wavefront
sensing is both more reliable and can be used in stronger turbulence than the conventional
approach to extended scene wavefront sensing. With this method, a 15 × 15 SHWFS can
reliably be replaced by a 6× 6 SHWFS, which increases the amount of light per subaperture
more than five fold.

The selection of CNN architecture to be used is a trade-off between computation time
and wavefront reconstruction accuracy. As stated in the Introduction, the goal is to have a
refresh rate of 10Hz. The best performing architecture that adheres to this goal is the newly
proposed architecture.

It is shown that the system is able to correct incoming images at a rate of 10Hz. It must
be noted that these results are from a PC with a CPU that is 9 years old and a GPU of 7
years old at the time of writing. The refresh rate is expected to be significantly higher on
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modern day consumer grade PCs and with more optimized implementation.
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Chapter 7

Conclusion and Discussion

In this Thesis, a novel approach to extended scene wavefront sensing was proposed. The
potential of this method was showcased in a real-time deconvolution from wavefront sensing
system.

It was shown that a modified Tangential Iterative Projections algorithm can be used in
order to reduce an extended scene Shack-Hartmann image to its point-source-equivalent. This
eliminates the dependency of the scene content on the Shack-Hartmann image. Deep learning
wavefront sensing techniques can then be used to reconstruct the wavefront from the point-
source Shack-Hartmann image. For this approach, it is not necessary for the subaperture
images to be diffraction limited because the deep learning method can (to a certain extent)
retrieve wavefront information from the shape of the point-spread function.

Using this approach, a 6× 6 microlens Shack-Hartmann sensor was shown to be able to
reconstruct the wavefront up to a turbulence strength of D/r0 = 15. Using a conventional
wavefront sensing method, a 15 × 15 microlens Shack-Hartmann sensor would be necessary
to achieve this accuracy. As a result of this reduction in microlenses, more than 4 times the
amount of light becomes available per subaperture, allowing for the wavefront correction in
low-light scenes.

This novel wavefront sensing approach was implemented in a deconvolution from wave-
front sensing system. This type of adaptive optics system uses the information about the
reconstructed wavefront in order to form an estimation on how the image from a secondary
imaging sensor is corrupted. This corruption was reversed using a process called image de-
convolution. This system was applied to a real world optical setup, showing impressive image
correction capabilities and a refresh rate of roughly 10Hz with an output lag of roughly
0.7sec.

7-1 Future work

The proposed wavefront sensing method is still in early development and currently has a
number of limitations and questions.

It was observed that the Tangential Iterative Projections algorithm used for preprocessing
the Shack-Hartmann image occasionally introduces shifts in the estimated Shack-Hartmann
pattern. As a result of this, the proposed deconvolution from wavefront sensing system was
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not able to correct the tip and tilt modes of the wavefront. Additional constraints on the PSF
and object could be added in the TIP implementation in order to eliminate the occurrence of
these shifts.

The developed system is currently limited to extended objects surrounded by a dark
background, which limits it employment in, for example, satellite or surveillance imaging.
It is expected that using a band stop to introduce a dark background into the subaperture
images can elevate this limitation, but this needs to be verified in future research.

This Thesis investigated the performance of the system using a 6 × 6 microlens array.
Bekendam [1] showed promising wavefront reconstruction capabilities for larger microlens
array sizes using point source deep learning wavefront sensing techniques. This trend is
believed to be true for the proposed system as well, but future research will have to verify
this assumption.

More research is needed to explore the potential of the proposed wavefront sensing method
in other areas of adaptive optics. For example, extended scene deep learning wavefront sens-
ing can be extended to anisoplanatic imaging or combined with the Frozen Flow Hypothesis
in order to utilize temporal correlations of turbulence for more accurate wavefront reconstruc-
tion.

It is expected that further improvements to the software implementation of the proposed
system will increase its real world reliability and speed. For commercial deployment of the
system, the code will likely need to be rewritten from Python to C++.
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Appendix

A-1 Python Code
The Python code developed in this Thesis can be found under
https://github.com/Basdbruijne/MscThesis.

A-1-1 Implementation of the convolutional neural network used for deep learning
wavefront sensing

1 inputs = keras.Input((128, 128, 1))
2 filter_size = [12, 24, 48, 96, 192]
3 activation = ’relu’
4
5 def residual_block(N, inp):
6 for ii in range(2):
7 c = []
8 c.append(Conv2D(4, (7, 7), activation=activation, padding=’same’)(inp))
9 c.append(Conv2D(4, (5, 5), activation=activation, padding=’same’)(inp))

10 c.append(Conv2D(N-8, (3, 3), activation=activation, padding=’same’)(inp))
11 inp = (concatenate(c))
12 return inp
13
14 # Setup the input layers
15 p = [inputs]
16 cin = [inputs]
17 for i in range(len(filter_size)):
18 cin.append(p[-1])
19 cin[-1] = residual_block(filter_size[i], cin[-1])
20 # The last input layer does not have a pooling layer
21 if i < len(filter_size)-1:
22 p.append(MaxPooling2D((2, 2))(cin[-1]))
23 p[-1] = BatchNormalization()(p[-1])
24 cin[-1] = Conv2D(filter_size[i], (3,3), activation=activation, padding=’same’

)(cin[-1])
25
26 # Setup the output layers
27 u = [cin[-1]]
28 for i in range(len(filter_size)-1):
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29 u.append(Conv2DTranspose(filter_size[len(filter_size)-2-i], (2, 2), strides=(2,
2), padding=’same’)(u[-1]))

30 u[-1] = concatenate([u[-1], cin[len(filter_size)-1-i]])
31 u[-1] = residual_block(filter_size[len(filter_size)-2-i], u[-1])
32
33 outputs = keras.layers.Conv2D(1, (1, 1), activation=’linear’)(u[-1])
34
35 model = keras.Model(inputs=inputs, outputs=outputs)
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