]
TU Delft

Approaching Message Optimal Byzantine Reliable Broadcast using Routing

Dany Sluijk
Supervisor(s): Jérémie Decouchant, Bart Cox
EEMCS, Delft University of Technology, The Netherlands

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

Abstract—In this paper we will consider the Byzantine
Reliable Broadcast problem on partially connected net-
works. We introduce an routing algorithm for networks
with a known topology. It will show that when this
is combined with cryptographic signatures, we can use
the routing algorithm to create an optimal amount of
messages. We will introduce a few algorithms to estimate
the routes required for this algorithm. Our simulations
show that the amount of messages required for Byzantine
Reliable Broadcast can be massively decreased by using
this. We will also show that the method of choosing these
paths has a huge impact, but come with their own trade-
offs.

I. INTRODUCTION

Distributed systems are older than the internet it-
self, but have always had their limitations compared
to centralized systems. The use of these distributed
systems has therefore been limited to some niche use
cases. But recently there has been a shift away from
centralized systems, by things like cryptocurrencies. This
has created a need for reliable communication within
these distributed systems.

In this paper we will limit ourselves to two prob-
lems within distributed systems: Reliable Communica-
tion (RC) and Byzantine Reliable Broadcast (BRB).
Reliable Communication means that a node can verify
that a received message has been send by one particular
node in a partially connected network, giving the illusion
that the network is fully connected. Byzantine Reliable
Broadcast means that all correct nodes in a system
will collectively accept or reject a broadcast, even in
the presence of faulty nodes. Both these problems have
been solved already, Reliable Communication by Bracha
with Double Echo [1], and Byzantine Reliable Broadcast
by Dolev [2]. It also has been shown that these two
protocols can be combined in order to uphold both
constraints with Bracha-Dolev from Bonomi et ai. [3].

While these protocols can guarantee reliability and
fault tolerance, they are very expensive in communi-
cation and have severe constraints. For example, the
connectivity of the system has to be strictly more than
twice the amount of fault nodes (¢ > 2f + 1). This
limits the amount of nodes in the system which are
realistically possible, and therefore the possible practical
applications of these protocols. It is therefore useful to
reduce these constraints to improve the efficiency of the
systems without impacting the fault-tolerant or reliability
properties. There has been work done to reduce these
limitations [4], [5], but it is expected that the efficiency
can still be improved.

We explore possible optimizations if we assume to
have knowledge of the topology of the system. By

expanding on previous work done by Klabér [5] with
regards to signed messages we can optimize the broad-
cast by using routing of messages. We will show that
we can reduce the amount of required messages send,
while still upholding the properties of Byzantine Reliable
Broadcast.

The paper is structured as follows. In the first Sec-
tion II we will explore the background where this paper
is based on. We will then move on to the improvement
which adds routing to the graph in Section III. After the
routing on the graph, we will explain in Section IV a few
methods to generate routing tables for this algorithm. We
will then in Section V talk about the evaluation of these
improvements, and what the results are and mean for
this paper. The we will turn our attention to talk about
responsible research in Section VI. Lastly we will close
off the paper with the conclusions in Section VII, and
talk about the main takeaways.

II. BACKGROUND

In this section we will elaborate on the background
surrounding the Byzantine Reliable Broadcast problem.
First we will define Byzantine Reliable Broadcast and
Reliable Communication more precisely. We will then
discuss Dolev’s protocol for Reliable Communication on
partially connected graphs. Finally we will discuss an
algorithm which uses signatures to improve the message
complexity and connectivity requirement, and guarantees
BRB. This last algorithm is where we will build upon
later.

A. Byzantine Reliable Broadcast

Byzantine Reliable Broadcast (or BRB) is the guaran-
tee that a broadcast will be agreed upon by all honest
nodes in a network, even if there are byzantine nodes
present. Byzantine nodes can behave arbitrarily, and the
network should be able to tolerate any type of irregular
behaviour. Agreement here means that all nodes will
either accept (and thus process) the message, or reject
(ignore) it. BRB algorithms do already exist, such as the
Double Echo algorithm by Bracha [1]. Another example
is Bracha-Dolev by Bonomi et ai. [3], which extend the
Double Echo algorithm to work on partially connected
networks. In order to say that an algorithm upholds as
BRB, we need to guarantee a set of requirements:

o Validity: if a honest node n broadcasts an message
m, then there is an honest node which will accept
m eventually.

e No duplication: no honest node will accept a mes-
sage m twice.

o Integrity: If a honest node accepts a message m
from node n, then n has previously broadcast-ed
m.

o Agreement: If a honest node accepts a message m,
then all honest nodes will eventually accept m.

B. Reliable Communication

Reliable Communication (RC) protocols allow pro-
cesses to authenticate received messages. This is useful
on partially connected networks, where multiple hops
might be required to deliver a message to a node. When
a RC protocol is used, it gives the possibility to add the
illusion of a fully connected network. The first proposal
for an RC protocol was made by Dolev in his paper [2].
Improvements on this protocol have been proposed later,
for example by Bonomi et al [6]. With most RC pro-
tocols in papers signatures are not used. This partly is
the case because using signatures make authentication
of messages trivial, and therefore not interesting for
research. Within this paper signatures are used in order
to guarantee RC. Reliable Communication has the same
requirements as Byzantine Reliable Broadcast, with the
exception of agreement. Within RC, agreement is only
guaranteed if the sender node itself is honest. In our
protocol RC is guaranteed, as it also guarantees the
stronger Byzantine Reliable Broadcast.

C. Dolev

In Dolev’s paper, an protocol for Reliable Communi-
cation (RC) is described [2]. This requires a connectivity
of 2f + 1 in the network, but it does allow the network
to be partially connected. When a node receives a Dolev
message, it will forward that message to all neighbours,
after adding itself to the path of that message. If a
message has been received through f + 1 disjoint paths,
then the message can be delivered in the node.

D. Signatures

The previous algorithms all work without signatures
to verify the authenticity of a message. Dolev does
this by waiting for f 4+ 1 in order to establish their
authenticated links. However, this is very inefficient in
terms of message complexity. By adding signatures to the
broadcast of a message, we can verify that a message
was indeed send by a certain node. This allows us to
instantly accept a message, given that there are other
guarantees to uphold the agreement requirement of BRB.
As observed by Klabér [5], this means that we only need
to have a connectivity of f + 1, instead of 2f + 1 with
the other algorithms. This is also the lowest possible

limit, as going any lower makes it possible to encircle
one or more nodes and therefore cut them of from the
rest of the graph. In the next section we will improve
on this knowledge to decrease the message complexity
even further.

III. IMPROVING BROADCAST WITH ROUTING

In the paper on using signed messages by Klabér [5]
the message efficiency was improved greatly by requir-
ing a message to be received f + 1 at minimum, instead
of 2f + 1 times as required by Dolev. This is essentially
a flooding algorithm on the graph, which implies that
there are a lot of duplicate messages send around. This
is a result of the fact that all nodes blindly broadcast the
message to all nodes, and the effect of this can be seen
in Figure la.

%

(a) Flooding, m = 10.

(b) Routing, m = 4.

Fig. 1: Broadcast using Flooding and using Routing (f = 0).

If the correct topology of the graph is know to the
nodes, then further optimizations are possible by adding
routing. A routing table can be build for each sender,
which ensures that every node is routed from exactly
disjoint f + 1 paths. As the network is at least f + 1
connected, such a routing table can always be build.
One algorithm for building this table will be discussed
in section IV. Removing any one message means that a
node receives messages from strictly less than f + 1
paths. This means that a property of BRB will be
violated, implying that this routed algorithm is optimal.
When a node receives a message it has not received
before it, will broadcast that message only to the nodes
which are in the routing table. As these routing ta-
bles can be completely pre-computed, the computational
impact after the generation is finished is minimal. A
re-computation of this table is not needed, unless the
topology of the network changes. It is important that
these routing tables are deterministic across all correct
nodes, or f 4+ 1 connections cannot be guaranteed. Such
a routing algorithm should take this into account. With
the routing table known, it’s easy to route incoming
messages, as shown in Algorithm 1.

Algorithm 1 Routing incoming messages

Algorithm 2 Brute-Forced route building

upon event < Init|top,id, faulty > do
N + GetNodes(top)
E + GetEdges(top)
routes < BuildRoutes(id, faulty, N, E)

upon event < Message|sender, from, msg > do

if verify(msg, sender) = false then
return

end if

deliver(sender, msg)

destinations <+ routes|s]

for dest in destinations do
sendMessage(sender,id, msg)

end for

IV. ROUTE BUILDING

In the last section we discussed how an routed algo-
rithm would work. What we deliberately skipped over is
how to actually build these routes.

It’s easy to check that these paths exist using Menger’s
Theorem [7] and a Max-Flow algorithm. It follows that
it’s possible to check if a set of routes can guarantee
Byzantine Reliable Broadcast. This is because the routes
can be converted into a directed graph of all nodes, on
which the same Max-Flow algorithm can be applied to.

Actually computing these paths is a way harder task.
It has to be deterministic, as this routing table is not
generated in a centralized place. Determinism is there-
fore required in order for all nodes to calculate the same
routing table independently. It’s possible that generating
these paths is a NP-Complete problem, and therefore
might not have an guaranteed and optimal polynomial
time solution. In this section we will consider three
different algorithms with different positive and negative
traits. Later in Section V-B we will evaluate the Fast and
Path-finding algorithms.

A. Brute-Force Algorithm

The simplest algorithm is, as it often is, a brute-
force algorithm. This is done by enumerating over all
possible combinations of routes, and return a valid set
of routes. This can either be the first match, or the one
with the least amount of required links. The first one is
the fastest and correct as it can return early, but probably
won’t return the optimal solution. The second one is
correct and optimal, but requires you to iterate over all
possible solutions making it slower. Due to the high
computational complexity of O(2F N E f), this algorithm
is very slow. An algorithm for the first version is shown
in Algorithm 2.

procedure BUILDROUTES(s, f, N, E)
return BuildRoutesRec(s, f,[]|, N, E)
end procedure
procedure BUILDROUTESREC(s, f, R, N, E)
e <+ pop E
RE + E — {e}
Exc < BuildRoutesRec(s, f, R, N, RE)
if IsValidRouting(s, f, Exc, N) then
return Faxc
end if
return BuildRoutesRec(s, f, RU{e}, N, RE)
end procedure
procedure ISVALIDROUTING(s, f, R, N)
for t in N do
if s =t then
continue
end if
if MaxFlow(s,t, R) < f then
return false
end if
end for
return true
end procedure

B. Fast Algorithm

The previous algorithm always returns a correct an-
swer, but is very slow for anything but the smallest
amount of edges. To make this more viable for larger
networks, another algorithm is needed. With this algo-
rithm, paths are created from the sender s, and growing
outward. In one cycle, all paths grow with a length of
one, splitting up when paths diverge. A node accepts
a path when it has not accepted enough, and if the
proposed path is independent of all already accepted
paths. If, in one cycle, there are more possible paths
to add to a node than there is space, then a conflict
resolution algorithm is used. For this see Section IV-B1.
This algorithm has an polynomial time complexity, and
is therefore relatively fast. As a disadvantage it does not
guarantee an optimal solution, or even a correct one (as
shown in Section V-D).

1) Conflicting Paths: It is possible for multiple paths
to be candidates to be added to a node, while less paths
are required. This can happen when there are more than
f+1 connections to one node. To resolve these conflicts
you can use a cryptographic hash, like SHA [8], on the
candidate paths. Then accept the path with the higher
hash value. As there is no inherent value on the hash
value, it does not matter what method is for deciding

Algorithm 3 Fast route building

procedure BUILDROUTES(/V, f, s,n)
paths « [[s]]
queue < |[[s]]
while queue # () do
possiblePaths < ||
changed <+ queue
queue < ||
for path in changed do
neighbours < N{last path]
for neighbour € neighbours do
if neighbour ¢ path then
newPath < path 4+ neighbour
possible Paths <+ newPath
end if
end for
end for
for node in N do
nodePaths < possible Paths
nodePaths filter last == node
nodePaths sort on route hash
accepted < count paths with node
missing < f + 1 — accepted
newPaths < nodePaths limit missing
paths < newPaths
queue < newPaths
end for
end while
routes < ||
for path in paths do
if path includes n then
routes < path[n + 1]
end if
end for
return routes
end procedure

which hash is higher. The only requirement here is that
it’s consistent across the entire network. As the paths are
equal, and hashing is deterministic, the output of this is
repeatable on every node. You need this step, instead of
just using the first compatible path, to remove any bias
towards certain nodes. This will make the routing graph
more balanced.

C. Path-finding Algorithm

As we will see during the evaluation in Section V-B,
the previous fast algorithm does improve the message
complexity compared to flooding. But the issue is that
the solution given is often still far from ideal. This is

where we introduce a path-finding algorithm which adds
the shortest possible routes with the least amount of
additional links required.

It starts by finding the closest node to s with the most
links still required, call this ¢. It will then try to find a
possible paths between s and t. These are ranked on the
following, using the next route iff the value is equal:

1) Is the shortest path.

2) Removes the least connectivity between s and .

3) Has the least amount of overlap with other poten-

tial routes.

4) Adds the least amount of links to the graph.

This route is then added, and the intermediate nodes are
marked unusable by ¢. This will repeat until all nodes
have sufficient connectivity with s, using the stored
routes.

This algorithm performs significantly better than the
fast algorithm, but is also a lot slower. This mostly
comes from the large amount of calls to the MaxFlow
algorithm. It is still significantly faster than then brute
force algorithm. In Algorithm 4 pseudo-code is shown.

V. EVALUATION

In this section we will elaborate on the method we
used to demonstrate the optimisations proposed in this
paper. We will compare the both the fast and the path
finding algorithms for route building to the flooding
algorithm. The brute-force algorithm is not considered,
as it is too slow. After this we will consider the time it
takes for these routes to be build. Finally we will talk
about the failure rate of the route building.

A. Methodology

For the test setup we created a virtual network with
virtual nodes and links. This is implemented in the
Rust programming language, with Tokio as an async
runtime with green threads. Network links are simulated
by adding a random delay on the N (75,25) distribution
to the delivery of the messages. This is done to introduce
some kind of randomness, as the performance of the
algorithms should not be affected by this. Other than
that, other properties like bandwidth is not restricted.
The code used for the test setup can be found in the
GitLab Repository.

Before simulations begin, random graphs are gener-
ated using the method from Steger [9]. However, these
graphs are not guaranteed to be k-connected yet. To
check this, we used a modified version of the method
from Esfahanian [10] to calculate the connectivity of the
graph. The graph will then be accepted if the connectivity
is at least the c currently used, otherwise it will try the

https://www.rust-lang.org/
https://tokio.rs/
https://gitlab.tudelft.nl/cse3000-2022-reliable-communications/dany-optimize-topology-routing

Algorithm 4 Path-finding route building

procedure BUILDROUTES(/V, f, s,n)
paths < []
missing < [{.N}— > f +1]
used + [{.N}— > []]
while m # 0 € missing do
t < FindT (s, N, missing)
path < FindPath(s,t, N,used, paths)
paths = paths U {path}
used[t] = used[t] U path
missing[t]— =1
end while
return paths
end procedure
procedure FINDT(s, N, missing)
queue < [s]
while queue # () do
considering < queue
queue < ||
lowest < None
for i in considering do
queue < {queue U Ni]}
if missingli] < missingllowest] then
lowest < 1
end if
end for
if lowest £ None then
return [owest
end if
end while
end procedure
procedure FINDPATH(s, t, N, used, P)
potential < paths in N from s to ¢
l < length of shortest path in potential
paths < potential| filter length of i == 1
conn < [connectivity of {IN — path}]

paths <« paths| filter conn[path] == max conn
over < [amount of overlapping path in paths]
paths <« paths| filter over|path] == min over

return path where size (paths N P) maximum
end procedure

generation again. We will focus on a very dense amount
of nodes, including any number of nodes between 1 and
20 inclusive. An exception on this is the timing graph,
which goes up to 30 nodes. For connectivity we have
generated a graph for every possible value. So a graph
with n = 4, we will have a connectivity c of 1 to n — 1.
Then we will generate 5 different graphs with these two
parameters, which then generate more data points.

For the simulation all algorithms are run on all the
generated graphs. With each graph we will explore every
possible count of faulty nodes. This means that a graph
with a connectivity of ¢ will be tested with f from 0
to ¢ — 1. A single message is send in the graph, as
multiple messages can water down the significance of
the amount of messages. Metrics are collected after the
simulation has finished. First it verifies that all honest
nodes have received all broadcasts correctly. It then
counts the amount of messages exchanged, and the time
it took to do this. The result of this can be seen in
section V-B.

All tests are run on an Dell XPS 9550, which has an
Intel Core i7-6700HQ and 16 gigabytes of system mem-
ory. The only evaluating test affected by this machine
is the the timing of the route building. Other machines
should have results of similar magnitude, but might differ
slightly in actual numbers.

B. Message Complexity

The goal with the routed algorithm is to reduce
the amount of messages required to achieve Byzantine
Reliable Broadcast. While in theory a routed algorithm
result in the most optimal amount of messages send,
this heavily depends on the routing table. Getting the
optimal routing table is computationally very difficult (as
shown in Section IV). This is shown clearly with the fast
algorithm in Figure 2. The lines in the figure represent
different values of f, with the lower values starting more
to the left.

Flooding

T
1 4 8 12 16 20
Node count (n)

Messages Per Broadcast (avg)
[+:]
o
\

Routing (fast)

Messages Per Broadcast (avg)
o
(=]
|

Node count (n)

Fig. 2: Messages send of the fast algorithm.

You can clearly see that the routed algorithm is less
affected by the growing amount of nodes n. This is
explained by the fact that the routed algorithm tries to
reduce the amount of excessive deliveries. Optimally the

amount of additional messages per added node is f + 1,
instead of one message per edge of the node.

However the fast algorithm is still far from optimal,
and the path-find algorithm is better in this regard. This
can be seen in Figure 3. Here we see even less growth
in message complexity for any added nodes. It is also
interesting to note that the difference between values of
f is also reduced. From this graph is seems clear that
the path-finding is significantly better, but in Section V-C
we will show that is has a big disadvantage.

Flooding

T
1 4 8 12 16 20
Nede count (n)

Routing (pathfind)

Messages Per Broadcast (avg)
-]
(=]
|

Messages Per Broadcast (avg)
=]
(=]
|

T
1 4 8 12 16 20
Nede count (n)

Fig. 3: Messages send of the path-finding algorithm.

C. Route Generation

One of the additional requirements of the routed
algorithm is a routing table. The methods to compute
this are discussed in more details in Section IV. The
computation can take a significantly varying amount of
time, depending on the method. In order to evaluate this
timing, we tracked the time it took for a full routing table
to be generated. The result of this is shown in Figure 4.
The different lines correspond the different values of
f. This correlation of n to the amount of time is very
strong, so this graph is shown with a logarithmic scale.
Do note that the routing of the flooding algorithm is
just broadcasting to all other nodes, and therefore has
a trivial routing table and not included in the graph.
The brute force algorithm is also not included, as it gets
computationally infeasible too quickly to be significant.

It is clear that the fast algorithm is indeed significantly
faster, and can therefore scale better than the other two
algorithms. While the path-finding algorithm finishes in
about ten seconds for 20 nodes, the fast algorithm is
still sub-second. It does still grow significantly for either
algorithm, so it takes a non-negligible amount of time for
either algorithm.

Fast Algorithm

107

Latency (ms)

10! 1

5 10 15 20 25 30
Node count (n)

Pathfind Algorithm

Latency (ms)

Node count (n)

Fig. 4: Duration of route generation.

D. Error Rate

While in theory the routing algorithms can be com-
pletely error free, both algorithms still experience failure.
This is because in the end of the day, they are still
estimations of the optimal routing tables. In Figure 5
the failures in routing is shown. Currently it is not clear
why these faults appear, this can be a starting point for
further research. In the figure you can see the failures,
but they seem significantly more commonplace than in
reality. The fast algorithm resulted in 11 failing graphs,
and the path-find algorithm in 8. This is out of the 4382
different considered graphs. This gives an error rate of
0,0025 and 0, 0018 respectively. It means that the current
route building algorithms cannot be used reliably for
BRB or RC in their current state.

20
® Fast Algorithm
Pathfind Algorithm
16 1 []
®
]
=)
@12 L b
=]
o
=
o)
]
£ 8
]]
]
44 °
°]
l T T T T T
1 4 8 12 16 20

Amount of Nodes (n)

Fig. 5: Failures of the route building algorithms.

VI. RESPONSIBLE RESEARCH

In Section V-A we discussed in depth on how we
set up the experimentation, but not exactly why it was
responsible. This is something we will dive into in this
section. With this research we have tried to remove as
many sources of bias as possible. This is done by testing
a small amount of graphs very extensively, to put the pro-
posed algorithms to the test in all varying circumstances.
In this paper we have also shown explicitly where there
the faults of the algorithms lie.

With this paper it is reasonably possible to reproduce
our results. The code is available to see at the TUDelft
GitLab server to verify our specific test setup. The
raw output for our tests are also available there, even
including the specific topologies used in the fopogies
folder. The dissyssym folder contains the source code
to build the binaries in order to run the simulation.
The dissyssym-lib folder contains the meat of the code,
which can be build separately and loaded as a Shared
Object in a different project with minimal changes. In the
scripts folder you will find some Python scripts which
can generate the graphs used in this paper. It is not
possible to reproduce the results exactly, as it depends
on random sources and race conditions. This difference
should however be minimal, and does not affect the
outcome of the paper in any significant way. As it’s
shown, we have done any reasonable accommodation to
remove any bias from the experiment setup.

VII. CONCLUSION

In this paper we introduced a routed algorithm with
signatures for Byzantine Reliable Broadcast. We showed
that this improvement theoretically decreased the amount
of messages required to an optimal level. This makes
the routed algorithm very interesting and a promising
method to achieve BRB in large networks. Next we
introduced several algorithms to compute the routes
needed for the algorithm to work. All of them have
their advantages and disadvantages, and in the end
none of them are easy to recommend. In the evaluation
section we discussed the performance of the algorithm in
comparison to a flooding algorithm. There we also show
that pre-computing the routing table takes a significant
amount of time, but this has no impact later on. We
also show that the current route building algorithms
aren’t completely reliable, with an average failure rate
of 0,22%. While this is a small error, this does mean
it still needs work before it can be used for Byzantine
Reliable Broadcast.

A. Future Work

While routed algorithms are very promising to mini-
mize the message complexity, the computation of these
routes is still an unsolved problem. Before this can be
used in BRB networks, a better method to generate
the routing table has to be created. The main things
to improve from the algorithms in this paper is the
unreliability issue and the expensive computation. When
these have been solved, then it can be interesting to look
into reducing the amount of required links even further.
It is still unclear if there exists an algorithm in P which
can give an optimal solution, which is also an interesting
angle.

REFERENCES

[1] G. Bracha, “Asynchronous byzantine agreement
protocols,” Information and Computation, vol. 75,
no. 2, pp. 130-143, 1987, 1sSN: 0890-5401. por:
https://doi.org/10.1016/0890-5401(87)90054-X.
[Online]. Available: https://www.sciencedirect.
com/science/article/pii/089054018790054X.

[2] D. Dolev, “Unanimity in an unknown and unre-
liable environment,” pp. 159-168, 1981. pDorI: 10.
1109/SFCS.1981.53.

[3] S. Bonomi, J. Decouchant, G. Farina, V. Rahli,
and S. Tixeuil, “Practical byzantine reliable broad-
cast on partially connected networks,” pp. 506—
516, 2021. por: 10.1109/ICDCS51616.2021 .
00055.

[4] T. Anema, “Message efficient byzantine reliable
broadcast protocols on known topologies,” 2021.
[Online]. Available: http://resolver.tudelft.nl/uuid:
44c79878-454d-4313-80f9-37d7e2e84431.

[51 R. Klabér, “Byzantine reliable broadcast on par-
tially connected networks with signatures,” 2021.
[Online]. Available: https://resolver. tudelft.nl/
uuid:c847d0e7-d85¢c-438e-97e6-ee917bbof094.

[6] S. Bonomi, G. Farina, and S. Tixeuil, “Multi-hop
byzantine reliable broadcast with honest dealer
made practical,” Journal of the Brazilian Com-
puter Society, vol. 25, no. 1, pp. 1-23, 2019.

[71 K. Menger, “Zur allgemeinen kurventheorie,”
Fundamenta Mathematicae, vol. 10, no. 1, pp. 96—
115, 1927.

[8] T.Hansen and D. E. E. 3rd, US Secure Hash Algo-
rithms (SHA and SHA-based HMAC and HKDF),
RFC 6234, May 2011. pot: 10.17487/RFC6234.
[Online]. Available: https://www.rfc-editor.org/
info/rfc6234.

https://gitlab.tudelft.nl/cse3000-2022-reliable-communications/dany-optimize-topology-routing
https://gitlab.tudelft.nl/cse3000-2022-reliable-communications/dany-optimize-topology-routing
https://doi.org/https://doi.org/10.1016/0890-5401(87)90054-X
https://www.sciencedirect.com/science/article/pii/089054018790054X
https://www.sciencedirect.com/science/article/pii/089054018790054X
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1109/SFCS.1981.53
https://doi.org/10.1109/ICDCS51616.2021.00055
https://doi.org/10.1109/ICDCS51616.2021.00055
http://resolver.tudelft.nl/uuid:44c79878-454d-4313-80f9-37d7e2e84431
http://resolver.tudelft.nl/uuid:44c79878-454d-4313-80f9-37d7e2e84431
https://resolver.tudelft.nl/uuid:c847d0e7-d85c-438e-97e6-ee917bb9f094
https://resolver.tudelft.nl/uuid:c847d0e7-d85c-438e-97e6-ee917bb9f094
https://doi.org/10.17487/RFC6234
https://www.rfc-editor.org/info/rfc6234
https://www.rfc-editor.org/info/rfc6234

[9]

[10]

A. Steger and N. C. Wormald, ‘“Generating
random regular graphs quickly,” Combinatorics,
Probability and Computing, vol. 8, no. 4, pp. 377—
396, 1999.

A.-.-H. Esfahanian, “Connectivity algorithms,” in
Topics in structural graph theory, Cambridge Uni-
versity Press Cambridge, 2013, pp. 268-281.

	Introduction
	Background
	Byzantine Reliable Broadcast
	Reliable Communication
	Dolev
	Signatures

	Improving Broadcast with Routing
	Route Building
	Brute-Force Algorithm
	Fast Algorithm
	Conflicting Paths

	Path-finding Algorithm

	Evaluation
	Methodology
	Message Complexity
	Route Generation
	Error Rate

	Responsible research
	Conclusion
	Future Work

