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Summary

Background and Research objective

There is a recent trend of rising need and popularity of non-motorised modes of transport as
part of urban travel constituting mainly of pedestrians and bicycles. In the Netherlands, there
is an increasing number of areas where both pedestrians and cyclists share the same space in
the absence of user segregation by any road markings. Such spaces are said to enhance safety,
resolve spatial limitations and provide a sustainable solution to the overall traffic problem.
The increasing number of such shared spaces has created a practical need for in-depth analysis
of the user’s behaviour within these spaces.

Many studies focusing on shared space interactions are limited by the current methods
of data collection and data extraction. Other studies on people movement also face similar
issues. The real-world data collections of visual data require the cameras to be installed in a
tilted orientation which makes it difficult for the researcher to determine the agent’s location
on the ground plane. The use of a 3D-camera to collect three-dimensional data of the scene can
be of value to overcome this challenge. Thus, to improve the data collection process, the stereo-
vision technology is investigated. The current real-world data processing also relies heavily on
manual labour as it is challenging for the traditional frameworks to detect agents appearing in
such dynamic ways. To avoid such labour intensive processes, automating the data extraction
collected in a controlled environment using certain rule-based approaches have increasingly
been adopted by the researchers. This is creating a gap between the behaviours studied by
the researchers and the real world behaviours. In order to fill this gap and encourage studies
on real-world datasets, this research aims to enhance the current data collection methods and
automate the data extraction process for real-world datasets. To achieve this research objective,
the following research question is proposed:

What can be a data gathering and processing framework to automatically extract
trajectories of cyclists and pedestrians in a shared space environment using a 3D-stereo

vision camera?

In order to deliver on the research objective, this research is broken down into five
stages, (i) Stereo camera selection, (ii) Data collection, (iii) Agent detection, (iv) Ground plane
representation and (v) Agent tracking. The last three stages are part of the data processing
framework.
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Stereo camera selection

The features identified for comparing different cameras available in the market were: (i)
sensor’s type, (ii) depth sensing range, (iii) recording quality and (iv) software support. The
cameras available in the market were compared and scored based on these features and the
best possible camera for this research was selected. The Zed camera by Stereolabs was selected
and was used to record with 720p resolution at 60fps. The camera’s software is able to correct
the recorded images for distortion and calculate the 3D coordinates of each pixel in the image.
This data is stored in the form of X, Y, Z value w.r.t. the camera’s coordinate system. This
camera was used to collect data during this thesis.

Data collections

Two data collections were performed, first in a controlled setting to test the camera setup and
to use the collected data to develop the data processing framework in the later stages. This
experiment was performed in the Green Village area of TU Delft. It consisted of 16 volunteers
and three different scenarios based on the modes of travel. The second data collection was
conducted in a real-world shared space area. This space was selected such that it was mainly
shared between pedestrians and cyclists, traffic flow was multi-directional and, allowed to
collect data for different crowding conditions. The shared space behind Amsterdam Central
station which is also near to the ferry terminal was selected. This dataset was used to test the
developed framework on real-world dataset.

Data processing framework

The data processing framework can be divided into three stages, (i) agent detection, (ii) depth
extraction and ground representation and, (iii) agent tracking. The output from these two
stages was then used as an input in the third stage of tracking. Following is a brief explanation
of each stage:

• Agent detection: A neural network based detection model was selected out of many
models based on literature and first-hand comparison. Faster R-CNN detection model
was used in this research [1]. The object type to be detected was set at people which
includes both pedestrians and cyclists. The detections were performed on the visual
images recorded by the camera and the output was in the form of bounding boxes around
the agent for every image in the video.

• Depth extraction and ground representation: This stage combines the bounding boxes from
the previous step and the depth information calculated by the camera to project the
agent on the ground. First, the combination of reference box and statistical operation
is used to refer to the agent’s 3D-coordinate w.r.t. the tilted camera axis. As the extracted
agent coordinated are on a tilted coordinate system, the coordinates are rotated using the
camera’s angle of tilt. The resultant coordinate system has one of its planes parallel to the
ground plane. Agent coordinates on this plane are used to project it on the ground plane.
During the design process, various parameter values were tuned using a small sample
from the Green Village dataset. Similar to detections, the detected agent’s 2D-points on
the ground plane are also obtained for every image of the video.
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• Agent tracking: The projected points on the ground plane are anonymous, i.e. they are
not linked with one another across the video. This information of the agent’s location
is the only data available for tracking. Moreover, in cases when there are multiple
agents available in a single frame, there exist multiple points which need to be correctly
associated with one another across the frames. For this, the SORT tracking model was
used in this research [2]. The parameters of the tracking model were identified and
tuned on the sample dataset from the Green Village recordings. In the final output, the
anonymous points are assigned with an id number which can be extracted and plotted
to derive the agent’s trajectories on the ground plane.

Results & Recommendations

The detections were sensitive to three main factors (i) occlusion, (ii) total number of agents
and (iii) agent’s shadows. Occlusion leads to the loss of the agent’s visual information used
by the model to detect them. The inability of this model to detect agents even when they
perfectly visible was exhibited in case of high crowding conditions (> 15 agents). Both of
these sensitivity parameters frequently occur in high crowding scenarios than in the lower
scenarios which makes the detection model ineffective in such scenarios. This can be a result
of biases generated during the training of this model and can be improved by providing a
more representative training dataset. For lower crowding conditions, the model was able to
provide stable and accurate detections for all the visible agents. Some rare moments of wrong
(false-positive) detections were given by the model while detecting people’s shadows or their
reflections in the glass as true detections. While most of the error was in terms of missed(false-
negative) detection only.

The depth extraction and ground representation process was largely dependent on the
number and quality of detection boxes provided by the previous stage. When the detections
were stable and continuous, the projected points also maintained their stability and continuity.
Small vibrations and other anomalies in the projected points were observed due to subtle
changes in the agent’s depth information. Thus, the camera was able to measure even small
changes in the observed area. For larger distances (>12 meters), the camera was unable to
estimate the depth of the observed area accurately. Exploring better ways to use the camera
and investigating multi-camera setups can help improve the accuracy and reliability of depth
estimation for larger distances.

The tracking model was able to account for some of the errors (false-positives, false-
negatives) passed on by the detection model in terms of missed and wrong detections. In
moments of brief occlusions, when the detections are only missed for brief time periods but
are available otherwise, the tracking model was able to assign ids across the missed detections
also. Such situations mostly occurred during low crowding scenario. In case of higher
crowds, as the detections were mostly unavailable, the tracking model was not able to provide
continuous trajectories. More information (such as agent’s visual information) can be included
in the tracking model to improve its performance.
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Main Contributions

This thesis analysed the working of Zed stereo camera and provided a methodology to collect
real-world data of a shared-space environment using this camera . The data collected during
the two data collection experiments is also a contribution which can be used to further develop
and improve the proposed framework. This project has integrated various different state-of-
the-art processes into one framework and has automated the data extraction processes. As
automation reduces the cost of data extraction, it will allow researchers to include larger
real-world datasets into there studies. Lower costs will also encourage municipalities and
private consultancies to undertake more of such studies themselves and help design better
infrastructure.

Future work

To further encourage such studies on people movement and 3D-data collections, the camera’s
supporting hardware needs to be much lighter, and easy to install on-site. As of now, the
processing framework is very top-down in nature and lacks a feedback loop between different
processes. Sharing of information between different data processing stages are interesting to
explore and can enhance the performance of this framework. To overcome the problem of
occlusion, multi-camera setups is one of the possible solutions to be investigated which will
also increase the depth range and accuracy of the camera setups. Lastly, an automatic mode
based differentiation and tracking of people can further advance this framework towards
automating the data processing framework in the future.
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Chapter 1

Introduction

As the non-motorised modes of transport become popular and their use is encouraged by
governments around the world, its is creating a need for urban planners to better understand
the movement patterns of these modes. Designing an efficient, robust and reliable data
collection and processing framework to gather information on people’s movement is the
first step in understanding the people’s movements. This thesis works on developing such
a framework using a 3D stereo vision camera. The introduction chapter elaborates on
the research objectives, questions and the approach used to design the data collection and
processing framework. The last section lays out the report structure followed in this thesis.

1.1 Background and Motivation

In Amsterdam, the share of active modes is as high as 61% out of which 29% of the trips are
on foot and 32% are by bicycle [5]. This rise in popularity of active modes has resulted in the
presence of three to four modes (cars, buses, bicycles and pedestrians) on the urban transport
infrastructure. Providing all these modes with a sufficient right-of-way is creating a design
challenge amongst traffic engineers. Other than the spatial constraints, safety of people on
the roads is another concern of the governments around the world. The incidences involving
conflict between motorised and non-motorised conflict have also been increasing [6]. As the
active modes (cyclists and pedestrians) have low speeds of travel, it creates an opportunity
for urban planners to facilitate a shared infrastructure for the non-motorised traffic [7]. Within
Netherlands, such spaces can be observed near shopping areas, public transport hubs and
sometimes near commercial and educational institutions. Apart from providing safety and
solving the spatial constrains, these shared space are said to increase livability, encourage local
economic activities, reduce emissions and improve air quality of the surrounding [8, 9]. In
such spaces, people exhibit interesting and complex interactions as different modes need to
negotiate for space and balance their priorities. The road users tend to adapt to each others
behaviour much more dynamically than in a uni-modal environment [10]. The presence of
multiple modes without any lane discipline makes the modelling of such interactions more
challenging. Most of the early modelling approaches have been motivated on the basis of
feeling and intuition and lacked enough data based support [11, 12]. Some of the more recent
modelling approaches which make use of the real-world datasets were limited by the current
data collection and data extraction approaches and used a small dataset [13].
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Collecting data on people movement within these spaces will provide deeper insights into
the behaviour and movement patterns of people. Moreover, the movement data collected can
also be used to better evaluate the safety, efficiency, walkability and usability of the shared
space infrastructure itself. Supporting the behavioural and modelling studies with a larger
real-world dataset will enhance the credibility and reliability of the future researches. To
facilitate this, there is a need to identify and improve upon the challenges faced during data
collection and data extraction.

Recent studies on people movement in real-world spaces rely on manual data extraction
processes by clicking on each and every person in the image thorough all the frames of a
video [10]. These repetitive manual tasks are boring, costly, and end up consuming a lot of
valuable research time. For perspective, if a ten minute video was to be analysed (consisting of
5 people in every frame recorded at 60 frames per second), it will amount to a total of 180,000
clicks. Such cumbersome processes are inefficient and limits the researcher’s ability to use large
real-world datasets. As a result, some of the researches have also resorted towards collecting
data on people movement under a controlled environment [14, 15]. Here, mostly a rule-based
methodology (e.g. based on specific colour) was used to automate the data extraction. Such
rule-based criteria are very limited as they can be applied under very specific and controlled
conditions. Thus, it limits the researchers to these custom datasets and they are unable to study
people movement in real-world environments. This lack of sufficient real-world datasets in
the behavioural and modelling studies on people movement suggests that there is a need for
a better data extracting approach.

Most of the researches use a monocular video camera to collect data in a shared space
environment [16, 17, 18]. This also limits the kind of information that can be extracted
from such data. Parts of the data extraction process can also be affected by the quality and
the approach of data collection. When collecting data using a video camera, they can be
installed in two orientations, overhead orientation which is vertically above the area of interest
or tilted orientation when the line of sight is at an angle to the horizontal ground plane.
The overhead orientation helps in tracking the motion in the horizontal ground plane but
reduces the viewing area and limits the data collecting to roofed environments only. The
tilted orientation increases the viewing area and allows the camera to be mounted on any
vertical structure enabling the data collection in open spaces where the majority of shared
spaces exist. But, this tilted orientation introduces another challenge of representing the agent
on the horizontal ground plane (such that the camera was installed overhead). Here, a new
spatial axis representing the depth of each pixel in the image is introduced which needs to
be estimated. The perception of depth is a limitation for monocular video cameras but can
be overcome by using the recent advancements in camera technology (such as depth sensing
3D-cameras).

Based on the motivation and some research gaps identified in this section, the next section
formulates the research object and questions. This is followed by an explanation into the
research approach taken during this thesis. The last section provides the structure of this thesis
report.
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1.2 Research objective and questions

This research investigates the possibilities of integrating the data output from the 3D-stereo
camera with the existing agent detection techniques to provide outputs necessary for studying
people’s movement. The developed data processing framework should be applicable in the
real-world environments with a focus on shared spaces environments. The data extraction
process should be automated to allow processing of larger datasets. From this research
objective and the above research background, the following research question is formulated:

What can be a data gathering and processing framework to automatically extract
trajectories of cyclists and pedestrians in a shared space environment using a 3D-stereo

vision camera?

In this research question, the term ’data gathering and processing framework’ focuses on
developing a data collection and data extraction framework. The question builds this research
around three main areas which are: the observing technology, the interacting agents and the
type of environment. The 3D-stereo vision is the observing technology, the pedestrians and
cyclists are the interacting agents and the shared-space is the type of environment where the
interactions happen. The main research question is broken down to formulate the following
sub-questions:

• Sub-question (1): Which features of the stereo-vision camera are to be considered for recording
the movement of people in shared spaces?
This research investigates on using stereo vision technology to gather data in shared
space environments. This question helps to identify the important feature of the stereo-
camera which leads to acquiring one of the many cameras available in the market.

• Sub-question (2): Which factors are considered while selecting the location and designing of the
data collection experiments?
This question helps to design the data collection experiments and develop a data
gathering framework within real-world shared-spaces using the acquired stereo-vision
camera.

• Sub-question (3): From the data recorded using the stereo camera, how can the agents
(pedestrians and cyclists) be identified and localised on the ground plane?
This question focuses on developing a data processing framework to perform two tasks
which are agent identification and agent localisation using the recorded data. The agent
is represented on the ground plane with its respective 2D-coordinates.

• Sub-question (4): Which of the existing object tracking frameworks can be integrated with the
extracted agent coordinates to provide trajectories on the ground plane?
After obtaining the agent’s location on the ground plane, this question investigates the
application of this data to derive agent’s trajectory.

The next section outlines the research approach to fulfil the research objective by elaborating
on each sub-question one-by-one.

3



1.3 Research Approach

The above research questions and research objectives are broken down into five stages
namely, (i) stereo camera selection, (ii) data collection, (iii) agent detection (iv) ground plane
representation (v) agent tracking. Each of the following paragraphs explains every stage in
detail.

• Stereo camera selection: First and the foremost step in this research is to identify the
key features needed in a stereo-vision camera to collect the data in real-world public
spaces. During the data collection, this camera is to be installed at a certain height to
capture movement of both pedestrians and cyclists. Thus, the selected camera should
have sufficient depth sensing range and frame-rate to capture outdoor scenarios. When
working with such new camera technologies and devices, its usability depends largely
on the software support provided by the manufacturer and its penetrations into the
online, open-source community. The later stages of data collection and agent localisation
methodology is directly affected by the quality and usability of the recorded data. More
of such features are identified from the literature and market survey. After comparing
different stereo cameras available in the market, the camera which provides the best
features for this research was selected.

• Data Collection: After acquiring the stereo camera, the next step is to collect the data
using this camera. The aim of the data collection was to test the camera setup in real-
world environments and to use the collected data in the later stages. Two data collection
experiments were performed, one in a controlled environment and another in a real-
world environment. For controlled environment, the data collection needs to be designed
in terms of the camera position and the movement patterns of the observed agents (both
pedestrians and cyclists). Later, this data is then used to develop the data processing
framework to localise and track the agents. For data collection in a real-world shared-
space environment, the site characteristics and the camera position are to be considered
beforehand. As these spaces are public, permissions from the local authorities largely
govern the decisions made during this experiment. This data is used to apply the data
processing framework developed on the controlled dataset and assess its applicability in
a real-world scenario.

• Agent detection: To enable the use of large real-world datasets, the process of data
extraction from the recorded data needs to be automated. Thus, the process of identifying
and localising agents should be automatic and reliable. The first step is to review some
of the existing state-of-the-art object detection techniques. In a real-world scenario, there
are multiple object types other than just people which are moving (or not moving) at
different speeds and directions. Many of such objects move along with the people like pet
animals, suitcases, bikes, scooters, etc. People themselves can appear in different shapes
and sizes depending on there outfit. These visual characteristics constantly change as
they move through the observed space. Different detection approaches are assessed
based on their ability to overcome such challenges using the literature. Following this,
one of the detection approach is selected for further investigation. The selected detection
method is then investigated further into different detection models proposed within this
approach. In this research, the shared-space environment will consist of people as both
pedestrians and cyclists. The possibility to distinguish these two modes is also examined.
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• Ground plane representation: The selected detection model is then integrated with the
stereo camera’s output data to obtain the desired localisation of agent on the ground
plane. Here, the depth data is used such that even when the camera records the data from
a tilted orientation, the proposed framework is able to view the agents on the horizontal
ground plane as they were observed from an overhead position.

• Agent tracking: Again, to enable the use of large datasets, the process of agent tracking
also needs to be automated. Two main challenges facing the automation of this step are
the possibility of discontinuous points and the existence of multiple points on the ground
plane. Unlike the manual localisation approaches, the automation of agent localisation in
the previous step will result in discontinuous and fragmented set of ground plane points.
Also, there will be multiple points representing each agents for every time-step. These
points need to be correctly differentiated and associated with each other throughout the
recorded data. Literature review into the existing tracking algorithms is performed and
an algorithm is selected such that it is able to overcome both these challenges using only
the agent’s location information. Using such an algorithm also enabled this research to
qualitatively comment on the performance of the previous steps of agent localisation.

1.4 Report structure

After the introduction, the next chapter provides the literature review of the existing method-
ologies applied by pedestrians and shared-space studies to extract data from visual videos
and on the related works done in the field of computer vision and people tracking. Chapter
3 provides an overview of the methodology used in this research. Chapter 4 answers the first
sub-question by identifying the camera features and selecting the stereo-camera to be used
in this research. The next chapter, chapter 5 describes the data collection process using the
selected camera. Here, two data collections were performed each explained in section 5.1 and
section 5.2 respectively. One of the data collected was used to develop the data processing
framework in chapters 6, 7 & 8. The third sub-question regarding agent localisation on the
ground plane is addressed in chapters 6 & 7. After localising the agent, chapter 8 deals
with the tracking of agent. The final framework consisting of all the design choices and the
tuned parameters is implemented on the real-world dataset in chapter 9. Each of the above
chapters includes its own discussion and summary sections for better readability. The report
is concluded in chapter 10 which provides an overall discussion, answer to research questions,
main contributions and a note on future possibilities of this study.
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Figure 1.1: Thesis report structure
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Chapter 2

Literature Study

This chapter is dedicated to the literature study of the previous works done in the field of
people identification, people tracking and stereo-vision camera. The paragraphs follow a
timeline starting from some of the early works and moves on to the more recent state-of-the-
art approaches in the field of computer vision. For every time period, a relation between
the advancements in the field of computer vision and the approach of data extraction in the
studies published on people movement has been made. Identifying such relationships helps
to justify and analyse the impact of this study in the field of computer vision. In the process,
the challenges faced by previous studies while tracking people are identified which guides
the development of data collection and processing framework in this research. Much of these
literature have been revisited in the later chapters to inform various design decisions.

People tracking using stereo-vision - early works and challenges

Some of the early studies published in the field of people identification and tracking using a
stereo camera setup largely focus on the stereo camera setup itself [19, 20, 21, 22]. Due to the
lack of readily available stereo camera setups, all of the researches during this time used a
self-made stereo camera setup. Thus, the researchers were limited by the camera capabilities
at the time and were focusing more on the camera’s depth sensing abilities rather than the
identifying people. Darrell et. al. used a combination of colour, depth and pattern detection
to identify pixels belonging to people [21]. Here, the features of people were hand-coded into
the detection program which limited its large scale applicability. These early self-made camera
setups were also limited by their depth sensing range [23]. Due to these limitations in data
gathering, most of the very early modelling approaches were motivated by the researcher’s
intuition and experience [11, 12, 24]. Thus, they lacked the supporting of large, real-world
data on movement of people.

Stereo vision - recent developments

Since then, the field of computer vision has come a long way. Nowadays, there are readily
available stereo-camera setups in the market which come with a generic software support
[25, 26, 27, 28, 29, 30]. All of these cameras provide both depth information and the visual
information (i.e. normal video recording) of the scene. These cameras can be differentiated
based on their depth sensing range, video quality, software support and its market price.
Some of the studies compare different cameras based on their sensor type [31, 32, 33]. Such
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comparative studies are used to guide the camera selection process in the later in this report
(section 4.1). As the visual information of the scene is available from the camera, the following
paragraphs review some of the work done on the people detection using visual images.

Data collection

From a camera’s perspective, some of the variables identified during the data collection are
lighting/shadows and internal variables like angle of observation, height from the ground
level and its recording configurations(like frame rate, resolution) [34, 35]. These camera
variables directly affect the quality of data that was to be collected and processed by the
software. Thus, impacting the performance of object detection, depth estimation and tracking
of agents. These variables are further discussed in the data collection chapter (chapter 5).

People detection and tracking - current practices and challenges

The availability of good quality, affordable, easy to use camera setups has certainly encouraged
the researchers to include datasets on people movement within their researches. As described
in the previous paragraph, the automation of data extraction is still limited. As a result, these
recent studies resort to either manual approaches or other rule-based approaches to extract
data from videos [36, 15, 37]. In cases of real-world datasets, these researches use manual
data extraction approach by clicking on each of the observed agent throughout all the frames
of the video. An example of a rule-based approach is colour based detection and tracking of
people in a controlled environments [35, 15, 38]. Such criteria are limited in there application
as they can only be used when the data is collected in a controlled experimental setup. Recent
studies on shared space modelling also rely on similar approaches to extract data from the
video footage [10, 7, 14]. All of the above researches collectively identify the challenges faced
during the automation of data extraction from visual images. In the real-world, people are
seen in many different heights, body types, dressing styles and so on. Moreover, as people
move through space, their body posture and orientation also changes constantly [34]. All this
makes the problem of detecting people automatically very challenging.

In year 2001, the first real-time face detector was released by Viola et.al., which came to be
know as Viola-Jones algorithm [39]. Later in year 2005, Navneet Dala and Bill Triggs proposed
a new methodology describing Histogram of Oriented Gradients (HOG) feature extraction
[40]. Since then, there has been an increasing number of studies to automate the agent detection
in a real-world environment. Some of the survey papers shortlist the methodologies used
in such approaches and identify the challenges faced by them [41, 42]. All these studies
hand-code most of the object features to detect them automatically on an image. This limits
the number of features which were considered while detecting an object. Thus, limiting the
accuracy and versatility of such rule-based algorithms.

People detection and tracking - recent developments

In year 2012, one of the first neural-network based image classifier was published which
outperformed all of the traditional rule-based models [43]. A survey paper by Brunetti et.al.
on pedestrian detection and tracking shows an emerging trend towards neural-network based
object detection in the field of computer vision [44]. These detection models are being applied
in various fields from agriculture [45, 46], healthcare [47], manufacturing [13], construction
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[48] and many more. Such applications of neural-network based detection models motivates
this research to investigate further into this detection approach.

The more recent object detectors not just classify an image but are capable of categorising
and localising multiple objects within an image [49]. One of the main disadvantages of this
approach is that the detection models need to be trained using large and labelled datasets
[44]. Thus, this research investigates the pre-trained versions of these models available online.
Some of the most used object detection models are Single shot detector (SSD) [50], You
Only Look Once (YOLO) [51] and Region based CNNs (R-CNN) [52] due to there overall
performance. Each of these detection models have different neural network architecture
which leads to variation in the way information is processed within these models. Thus, each
model has its own set of advantages and disadvantages based on its training and performance
parameters [44]. Pre-trained versions of these detection models (capable of detecting upto
ninety different types of objects) are readily available online for use [53]. As output, these
detection models provide object category, bounding box coordinates and its confidence score.
This output format remains the same across all the models mentioned above [54]. In 2017,
Google published a study comparing the performance and speed of a few of these detection
models [49]. This study does not focus on people detection specifically but on overall object
detection by these models. An elaborate selection process used in this study is provided in
section 6.1. Within literature, there is a scarcity of such comparative studies mainly due to a
lack of standardisation in the labelled datasets [55, 49, 44].

For tracking using visual images, the earlier approaches were largely focused on minimis-
ing the errors caused by the ineffective detection algorithms [56]. After the improvement and
increased reliability of the detection models, there has been increasing number of proposed
methodologies for tracking object using the detection information. One of the approaches for
tracking is to only use the object’s location in the image [2]. Another approach towards tracking
has been to extract and use the visual information of the object from the image together with
the object’s location information to perform tracking[57, 58, 59, 60]. Section 8.1 elaborates more
on the selection process of these tracking models for this research.

Summary and Conclusion

People’s detection and tracking is challenging mainly due to the large variety in people’s
appearances which is also dynamically changing as people move through space. The
traditional frameworks of detecting people in such dynamic real-world environments have
proven to be ineffective as the rules and features of detections were hand-coded. As a result,
the researchers either use manual processes to extract data from a real-world footage or resort
to collecting data in a controlled setup. Recent developments in the field of stereo-vision
cameras and people detection show promising results as reported in the literature. As the
stereo-vision cameras record both visual data and depth data of the scene, these data can be
integrated with the neural-network based detection models to automate the people detection
and tracking processes. Later chapters revisit the literature mentioned in this chapter to inform
the selection of camera, the detection model and the tracking model.
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Chapter 3

Methodology Overview

This chapter provides an overview into the methodology adopted in this research to fulfil the
research objective and answer all the research questions. Table 3.1 provides a summary of all
the points discussed below.

Stereo camera selection

The very first step in this research was to select the 3D-camera (with its supporting hardware).
The reason behind using such a camera was to investigate its value over the traditional
monocular cameras which are generally used for data collections. The step deals with the first
sub-research question by identifying the factors affecting the camera selection process using
the available literature and by surveying the camera’s market. Various cameras in the market
were scored based on their performance in each of the identified selection criteria. This process
helped in shortlisting and acquiring the best possible camera for this research.

Data collection

The next step was to collect data on people’s movement using the selected camera. This step
was aimed at testing the camera setup in real-world conditions, designing a data collection
framework and using the collected data to design/test the data processing framework. This
is addressed by the second sub-question which helps in selecting and designing the data
collection experiments. As a result, two data collection experiments were planned, one in a
controlled environment while another in a real-world shared space environment. The data
from the first experiment was used to mainly design the data processing framework. After
identifying and rectifying some of the shortfalls during this experiment, the second experiment
was performed. The real-world dataset was used to apply the data processing framework and
to qualitatively assess its performance.

Designing the data processing framework

The third and the fourth sub-research questions deal with developing the data processing
framework to obtain the trajectories on the ground plane. The data processing framework was
divided into three stages, (i) agent detection, (ii) depth extraction with ground representation
and, (iii) agent tracking. Each of these stages was designed using the data from the controlled
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experiment.

Agent detection: The third sub-question is answered in the first two data processing stages. The
agent detection stage uses the visual video recorded by the camera and processes it using a
neural-network based object detection model. Out of the many available detections models,
one model was chosen using literature and first-hand analysis. As this research was processing
videos offline, accuracy of results were more valued than the model’s processing speed. The
first hand comparison of three detection models was done on the controlled dataset due to the
scarcity of such comparative literature studies. The results obtained from the detection model
was in the form of bounding boxes around every detected agent for each frame of the video.

Depth extraction and ground representation: In the depth extraction stage, the depth map
calculated by the camera was combined with the detection box’s image coordinates to extract
the agent’s 3D-coordinates. A combination of reference box and statistical approach was
formulated to obtain stable and reliable results. The design parameters for these operations
were optimised using the calculated coordinates of an agent across some sample frames. As the
stereo camera was tilted w.r.t the ground plane, the extracted 3D-points of the agents were to
be transformed. This process was done in the ground representation stage. Thus, the original
coordinate system was transformed (or rotated) such that one of its plane is parallel to the
ground plane. The 2D coordinates of the agents along this plane were used for ground plane
representation.

Agent tracking: The agent’s projected points on the ground plane were anonymous. As
there are multiple agents in each frame, these anonymous points need to be automatically
associated with each other to form a trajectory. In the agent tracking stage, literature survey
was performed to select a tracking model capable of this association using the available 2D
coordinates. The parameters of the selected model were identified and tuned based on their
performance.

Framework application - Amsterdam dataset

As the main research question aims at developing a framework for real-world datasets, thus
chapter 9 applies the designed framework on the Amsterdam Central dataset. This helps to
identify the advantages and challenges of the proposed framework in a real-world scenario.
The results obtained during each step of this research are analysed and discussed in every
chapter of this report. The conclusion chapter summarises the main discussion points and
makes recommendations to overcome some of the challenges identified in the process.
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Table 3.1: Methodology overview for each research question by summarising its objective,
reasoning and the process used to answer the respective questions.

Research
question

Objective Reasoning Process Chapter

Sub-
question(1)

Camera selection
based on its features
for recording shared
spaces.

Investigate the stereo
camera for real-world
use.

Stereo-camera
selection

Chapter 4

Sub-
question(2)

Identify features for
selecting & designing
the data collection
using the selected
camera.

• Design the
data collection
framework,
• Use the collected

data to design/test
the data processing
framework,
• Test the camera

setup.

Performing two
data collections:
• Controlled

experiment,
• Real-world

experiment

Chapter 5

Sub-
question(3)

Identify and localise
the agents using the
recorded data.

To automatically
extract ground
coordinates of agents
with every time-step.

• Agent
detection using
visual video.
• Represent

agent on
ground using
the 3D-depth
data.

Chapter
6 &
Chapter 7

Sub-
question(4)

Obtain agent tra-
jectories using their
location information.

Automatically derive
trajectories using the
agent’s ground plane
coordinates.

Agent tracking Chapter 8

Main
question

Applying the final
framework on a real-
world data set.

To identify the advan-
tages and challenges
of the proposed
framework in a real-
world scenario.

Framework
application -
Amsterdam
dataset

Chapter 9
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Chapter 4

Stereo-camera selection and use

The main component of the hardware setup while collecting data was the depth camera sensor.
This chapter focuses on the selection and usage of the stereo depth camera. This camera was
later used to collect and extract 3D-information of the observed scene.

The first section elaborates on the selection process of identifying suitable 3D-camera for
sensing shared spaces. Here, the features affecting the camera selection process were identified
and different cameras available in the market were scored based on these features. Later
sections describe the processing of using this 3D-camera and the output provide by its generic
software. It also outlines some of the hardware configuration required to use the camera at its
full potential.

4.1 Camera selection

The features considered while comparing and selecting a depth camera were identified based
on the literature comparing different stereo-camera technologies and on preliminary market
survey. These features were: the type of depth sensor, its depth sensing range, image
resolution, frame rate of recording, software support provided by the manufacturer and the
market price of the camera (figure 4.1). The type of depth sensor was determined by its
method of collecting depth data from its surroundings (active or passive). The sensor’s type
also affects the camera’s ability to work in outdoor conditions (under direct sunlight) and the
computational support needed for video processing. Depth sensing range was the maximum
distance up to which a camera can sense depth. This factor was important as the camera
was to be installed in public spaces at a certain height to observe large areas. Frame rate and
resolution of the recorded coloured images and the depth map directly impacts the quality of
collected data. The level of software support was determined by the combination of generic
software provided by the manufacturer and the online support provided by the camera’s user
community. Software support was an essential factor as it will determine the overall ease
of using the depth camera and the methodology of data extraction and processing during this
research. Lastly, the price of the depth camera was also a factor in the camera selection process.
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Figure 4.1: Features affecting stereo-camera selection

Based on the method of sensing depth by the camera, they can be divided into two
categories, active sensor and passive sensor. Active sensors make use of a self-emitted
structured energy (such as infrared radiations) which gets reflected by the surrounding objects
and is detected by the sensor. This difference in time and intensity of the detected radiations
is used to create a depth map of the surrounding [31]. Generally, these cameras have an
additional RGB camera to capture visual images along with the depth map. Examples of
such camera sensors are Intel’s RealSense D400 series [25], Orbbec’s Astra series [26] and
Asus’s Xtion series [27]. Generally, active depth cameras are computationally light and are
considered ideal for indoor, short-range depth sensing applications. However, when faced
with an outdoor environment, the infrared radiations from the sun interferes with the camera’s
detector making the observations unreliable [31]. On the other hand, passive sensors have
two RGB cameras which capture the scene with two slightly different perspectives. This
slight difference in perspective between two images of the same scene is used to create the
depth map which is similar to human binocular vision [31]. Examples of such camera devices
are Stereolab’s Zed camera [28], Carnegie robotics’s Multisense S7[30] and Flir’s Bumblebee
series[29]. These sensors can work in outdoor conditions even under direct sunlight [32]. As
these cameras rely on visual information for their depth estimation, they are not suitable for
low-light conditions.

Table 4.1 compares and scores the depth cameras based on their features as provided by
the manufacturer on their official websites respectively. The number of plus signs represent
a greater value of that feature. Minus sign represents that the feature is not provided in the
camera. Whenever information on a feature was not provided by the manufacturer, the score
of this feature is labelled as not available (NA) in the table 4.1. Cameras providing best overall
features were Intel’s Realsense camera and Stereolab’s Zed camera. They provide very similar
level of image resolution and software support. However, the Realsense camera had a lower
depth sensing range and frame rate. Also, as the Realsense camera was a type of active sensor,
it was mainly limited to indoor, short-range applications [31]. A study by Deris et. al. was
about scanning historical structures using the Zed camera in outdoor environments [32]. They
reported no problems faced while using the Zed camera even under direct sunlight. These set
of better performance features in the Zed camera comes with a higher price tag.
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Table 4.1: Comparing and scoring of different depth cameras

Camera model Manufacturer Sensor type
Features

Max.
Range

Resolution
Frame

rate
Software
support

Price

Realsense D435i[25] Intel Active ++ +++ ++ +++ ++
Astra Pro[26] Orbbec Active + ++ + ++ +
Xtion Pro[27] Asus Active + ++ + + NA

Zed camera[28] Stereolabs Passive +++ +++ +++ +++ +++

Multisense S7[30]
Carnegie
Robotics

Passive NA + + + NA

Bumblebee 2[29] Flir Passive NA ++ + - NA

Considering the reliable outdoor performance, extensive depth sensing range (20m) with
high frame rate and resolution (720p @ 60fps), Zed camera was selected to be used in this
research which can be seen in figure 4.2. The manufacturer of this camera also provided
software support to record, process and use the recorded data in different ways. This camera
also had a large programming community second only to Intel’s Realsense camera which can
be very helpful when working with such new devices. Certain limitations to this camera were
its huge data generation rate (250MB/s) and its poor performance in low light conditions.
Such operational limitations were not known for other cameras as they were not investigated
first-hand.

Figure 4.2: Zed camera by Stere-
olabs Figure 4.3: Working principle of stereo vision camera[3]

4.2 Working of Zed camera

The Zed camera is a stereo camera with two monocular lenses. It mimics the principles of
human vision by using the binocular vision and extracting the depth information from the
two images [33]. As shown in figure 4.3, the two monocular cameras are placed at a distance
while observing the same scene at a slightly different angle. This slight shift in perspective
between both the individual cameras is termed as disparity. The disparity is higher for objects
nearer to the cameras compared to objects placed further away. Using this disparity and the
principle of triangulation, the camera’s generic software was able to calculate the depth of
each pixel in the image. A detailed list of camera features and the camera’s support hardware
(mini-computer, data cables) used in this research during the data collection are provided in
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appendix A.1.

4.3 Using the camera

In this research, the Zed camera was used at the resolution of 720p with the frame rate of
60fps. Referring to the study by Ortiz et. al., the above configuration was the optimum trade-
off between the quality of collected data and its processing time [33]. This camera generates
a massive amount of raw data while recording (0.9TB per hour). With the correct computer
configurations (GPU memory>4GB), the generic software was able to compress the raw visual
data into a 20 times smaller file size in real-time without any loss in image quality. This feature
allowed the data collections over a more significant period without running out of storage
memory.

The Zed camera recorded and stored the footage in a proprietary SVO format which can
only be read using its generic software (ZED SDK). The software was able to correct the original
image for distortion as can be seen when comparing figure 4.4a & 4.4b. Using the corrected
visual images from both the lenses, the depth information for each pixel was calculated as
represented in figure 4.4c. The generated depth maps were perfectly aligned with the visual
images for every pixel. This means that the pixel coordinates from the visual images can
directly be used to refer to its depth in the depth map without any modifications. The depth
information was expressed as the XYZ coordinate value w.r.t the left lens of the camera also
called as point-cloud data. This information can again be extracted using the pixel coordinates
to represent that pixel in the 3D-space w.r.t the camera’s coordinate axes.

4.4 Discussion

When exploring and working with such new technologies, the online programming communi-
ties can provide valuable support and thus was considered as one of the factors in the camera
selection process.

As the Zed camera relies solely on visual information for its depth calculations, apart from
just the image resolution and distance from the camera, the lighting conditions can also be
a factor affecting the accuracy of depth estimation. Literature covering this aspect of depth
estimation was unavailable and thus can be investigated in the future.

The supporting hardware with correct configurations was necessary to use the Zed camera
at its full potential. The camera’s generic software was freely available to be downloaded and
used by anyone with the correct computer configuration. This allows the recorded data in this
research to be easily shared amongst peers for future use. In future, further investigations in
to the use of Zed camera in a multi-camera setup can also be explored.
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4.5 Summary and Conclusion

The Zed camera was selected based on factors such as depth sensor’s type, depth sensing
range, video quality, software support and its market price. This camera was able to work
in outdoor environments with an extensive depth sensing range, and record the data at good
resolution and frame rate. However, it came with a heavy computational requirement and
was unable to perform in low-light conditions. The camera’s generic software was able to
correct the raw images for distortion and provided with a perfectly aligned depth map with
the visual images. The hardware setup used in this research enabled live compression of the
raw video footage which increased the available time for data collection. Such features eased
the handling and processing of data in later stages.

(a) Original image (distorted) (b) Corrected image

(c) Depth map

Figure 4.4: Representing the recorded image with lens distortion, corrected image and the
depth maps provided by the camera’s generic software
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Chapter 5

Data Collections

For this study, there was a need to collect first-hand data which was later analysed to develop
a methodology in extracting trajectories of agents. Before collecting the data, the process of
identifying the factors to be tested and designing the experimental setup helped in developing
a data collection framework for the real-world environments.

For this study, two data collection experiments were performed at two different locations.
The first experiment was conducted in the Green Village area within the campus of TU Delft.
This experiment was aimed at testing the camera setup in the real-world conditions and to
use the collected data to develop the data processing framework. The second data collection
was performed behind the Amsterdam Central station. This experiment was mainly aimed at
testing the developed data processing framework on such real-world dataset. In the real-world
environments, the traffic cameras are generally installed at an angle due to the lack of proper
overhead camera installing locations. Thus, to replicate this situation, the camera in both the
data collection experiments were installed with a certain angle of tilt.

This chapter provides a detailed explanation into both the data collection setups. At last,
some of the sensitivity parameters for this data collection setup are also identified.

5.1 Green Village experiment

The first experiment was aimed at testing the hardware setup in real-world conditions and
developing the data processing framework for trajectory extraction. The hardware setup
was tested for its sensitivity to external factors (like heat, sunlight), internal factors (like
data transfer and storage) and the reliability of supporting devices (like mini-computer, data
cables, power supply). The movement patterns in this experiment were controlled to help in
developing the data processing framework. For planning movements in the observation area,
control variables were identified considering the challenges faced in people tracking from the
literature. These control variables guided the design process of different scenarios as explained
in the following paragraph.
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Scenario Design

In the literature, one of the main challenges mentioned in case of people tracking was occlusion
[38, 35, 61]. The reasons and the nature of occlusion in public spaces can be linked to many
number of factors. In this controlled experiment, agent-to-agent occlusion was studied by
varying the direction of approach and crowding levels in the interaction area. As this study
focuses on two modes, namely pedestrians and cyclists in a shared space, this experiment
includes both the modes.

Based on the three control variables namely, crowding, direction of approach and differ-
entiation of modes, three scenarios were designed. Table 5.1 provides an overview of the
scenarios. Based on the mode of travel, these scenarios can be divided into pedestrian only,
mixed flows and cyclists only scenario. Each scenario was performed with varying level of
crowding densities. The initial densities were low with 1-2 agents while gradually increasing
the number of participants in the experimental space. This variation in the crowding levels
helped in observing its effect on the software’s performance while also helped in evenly
distributing the agents throughout the experimental space. The three scenarios are as follws:

• Scenario 1 was a pedestrian only scenario with bi-directional flow of agents as seen in
figure 5.1a. The movement of agents was horizontal w.r.t. the camera. This scenario
was aimed at testing the sensitivity of occlusion as a result of crowding to the software’s
people detection and tracking abilities. The participants entered the space in phases
to maintain the observed crowding levels. The first phase starts with two pedestrians
from either side of the waiting area which builds up to the last phase with all the 16
pedestrians.

• Scenario 2 had mixed traffic consisting of both pedestrians and cyclists in the interaction
area. This scenario was primarily aimed at testing the abilities of the software to
categorise different modes of transport. The detailed layout can be seen in figure 5.1b.
The total of 16 participants were divided into 6 cyclists and 10 pedestrians. The route
was predefined for both cyclists pedestrians as shown in the figure. Similar to the
previous scenario, this scenario also had participants entering the experiment one-by-
one in phases.

• Scenario 3 was a cyclists only scenario with eight cyclists travelling in a bidirectional
flow. The layout and route directions for this scenario were similar to that of scenario 2
but without pedestrians. The aim here was to study the detection and tracking of cyclists
independent of pedestrians.

Table 5.1: Overview of different scenarios in Green Village experiment

Scenario Modes Flow Participants
1 Pedestrian only Bi-directional flows 16 pedestrians
2 Mixed flows Crossing flows 6 cyclists, 10 pedestrians
3 Cyclists only Bi-directional flows 6 cyclists
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Initially, while selecting the control variables and designing different scenarios, much
more control variables were identified and the scenarios were performed than those described
above. These data were later discarded and not included further into this research. An
elaborate reasoning to discard these data and the lessons learned are provided in the discussion
section of this chapter (section 5.3). Each of the above scenario was also performed two times,
one with participants wearing red caps and one without red caps. This data was an additional
contribution of this project as it can be utilised later to derive agent trajectories using Moving
object detection and tracking tool [62] and compare it with the proposed framework in this
research. Red-cap plays no role and has no effect on the data extraction process developed in
this research.

Data Collection

This controlled experiment was performed in the TUDelft’s Green village area on Wednesday,
26th June 2019 from 14:00 until 16:00. The experimental layout can be seen in figure 5.2.
Considering the availability of space and the camera’s viewing area, the area of interaction
was decided to be 4m x 6m. The Zed camera was installed at a height of 6 meter from the
ground and at a distance of 4 meter from the start of the interaction area. Traffic cones were
placed around the interaction area to make it visually identifiable.

In total, 16 volunteers took part in this experiment. The participants were informed about
the aim of this experiment, the risks involved and the usage of the collected data in future. The
raw video of 30 minutes was recorded at 720p, 60fps (108,000 frames).

Observations

On the day of data collection, bright sunlight and high temperatures (32 ◦C) were observed.
This challenged the camera’s hardware as it was heating under direct sunlight which resulted
in unstable connections. As seen in figure 5.3, the camera also recorded shadows of the
participants which were casted towards the camera. This posed a challenge during the agent
detection process while determining their location as explained later in this report. The effort
to distribute the crowds by allowing them to enter in phases was effective for single-mode
scenarios (Scenario 1 & 3) as seen in figure 5.3a & 5.3c but not for mixed flows. Figure 5.3b
shows that in scenario 2 a frequent grouping was observed due to the need for waiting before
crossing the interaction area between pedestrians and cyclists.

Reflection

During the Green Village experiment, the Zed camera along with the mini-computer were
unable to withstand high temperatures under direct sunlight. However, the sunlight in the
interaction area did not impact the camera’s ability to calculate its depth information. The
GPU-enabled computer was able to compress the raw data from the camera in real-time
without any loss in image quality.

Before conducting the experiment, recruiting volunteers, acquiring permissions from the
Green Village authorities and planning for scenarios were the main tasks. Other than personal
connections of friends and colleagues, the timing of the experiment plays a crucial role
while recruiting volunteers. While designing the experiment, emphasis on including and
testing many control variables lead to over-engineering the scenarios. When such controlled
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experiments are preformed with a limited purpose (in this case, to test the camera’s working
and developing the data processing framework), much simpler and easy to execute scenarios
can be designed.

While conducting this experiment, the time of preparation of 1.5 hours was observed to be
insufficient as it required preparing the site and briefing the participants about the experiment.
It was easy to explain the different scenarios and movement patterns to participants with
graphical images and on-site demonstrations. Planning the experiment in sub-phases further
helped the participants to watch the initial participants and then follow them with a similar
movement pattern.

(a) Scenario 1 - Pedestrian only (b) Scenario 2 - Mixed flow

Figure 5.1: Layout of the interaction area in each scenario

(a) Camera’s view (b) On-site view

Figure 5.2: Pictures from the Green Village experiment
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(a) Scenario 1 (Pedestrian only) (b) Scenario 2 (Mixed Flows) (c) Scenario 3 (Cyclists Only)

Figure 5.3: Snapshots of visual recordings from Green Village experiment

5.2 Amsterdam Experiment

The second data collection was aimed at capturing real-world interactions in a shared space
environment. This data was later used to test the developed data processing framework(in
chapter 9). Out of all the shared-spaces consisting of pedestrians and cyclists, the area behind
Amsterdam Central station was used for data collection. This location was selected based on
three main criteria: (1) This space was majorly shared between pedestrians and cyclists with a
few motorbikes but no vehicular traffic (cars, buses). (2) The flow of traffic for both the modes
was multi-directional. (3) This space was used by numerous people daily allowing to test the
setup for high-density situations.

The data collection was performed on Thursday, 17th October 2019 from 14:00 until 17:00.
Figure 5.4 shows the on-site setup, camera’s location and the camera’s view of the observed
area. The camera’s pole was positioned near the ferry terminal behind Amsterdam Central
station. The height of the camera was 5.26 meters from the ground. Three reference points (A,
B & C) were marked on-ground as seen in figure 5.4c. Relative distances between the reference
points and, from the camera pole’s footing were measured. These measured distance were later
compared with the distances estimated by the Zed camera to asses the camera’s accuracy. The
on-site measurements of these reference points are given in table 5.2 where camera’s footing
is represented as ’O’. In total, approximately 29GB of raw footage (after the live compression)
was recorded during two hours of data collection.

When comparing this experiment with the controlled experiment, the real world conditions
were observed to be much more dynamic in terms of direction/speed of movement, physical
appearances and the accessories people were carrying (such as suitcases, dogs, bags, hats, etc.).
People walking and cycling through the space in groups of two or more were also observed
during this experiment. Due to the absence of direct sunlight, agents were forming no shadows
on the ground surface. This data can be divided into two main scenarios, normal conditions
and time of ferry arrival. Higher crowding levels were observed when the ferries docked and
its passengers started egressing through the shared space area. Its passengers consisted of both
pedestrians and cyclists. While during normal conditions (i.e. without the ferry passengers),
the crowding levels were notably lower. Regarding the hardware,camera and all its supporting
hardware worked smoothly without any issues.
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Reflection

Learning from the shortfalls of the Green Village experiment, multiple on-site visits and
intensive hardware testing were conducted before the Amsterdam experiment. Also, the day
of Amsterdam experiment was much cooler than the Green Village experiment. Such extensive
preparation prior to the actual experiment helped in performing the on-site experiment
smoothly without any issues. All the formalities and permissions from the Municipality of
Amsterdam were also secured beforehand.

(a) On-site setup

(b) Site location (c) Camera’s view & reference points

Figure 5.4: Pictures from the data collection in Amsterdam

Table 5.2: On-site measurements of reference points

Sides Distance(m)
OA 14.0
OB 16.6
OC 12.9
AB 5.64
BC 5.15
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5.3 Discussion

In addition to the three scenarios explained in the Green Village experiment, two more sce-
narios with multi-directional flow of pedestrians and a camera testing scenario was planned.
The data for multi-directional scenario was recorded but not used as the waiting areas during
the experiment were within the recorded frame which made the data unusable for analysis(see
figure 5.5). This made the data unfit for further analysis. The camera testing scenario was not
performed as the hardware setup for the camera installed at different orientations failed and
did not record any data. The shortfalls in the experimental setup were identified (issue with
connecting cables) which were then rectified before the Amsterdam experiment. The data for
all scenarios during the Green Village experiment was also recorded using a monocular camera
at the height of 10 meters. This is an additional contribution of this project as this data can be
used later to extract agent trajectories using the existing tools [62] and compare it with the
proposed methodology in this research.

Compared to the controlled experiment, the Amsterdam experiment was much hassle-free
as it involved only setting up the hardware and there was nothing to control over the agent’s
movement patters. Extensive preparation beforehand and multiple equipment testing ensured
a successful real-world experiment. Overall, this setup needed an intensive on-site support
regarding power supply and GPU enabled computer for video storage. Thus, further research
in building a lighter, more reliable data collection setup while using the Zed camera is needed.
This should provide an easy on-site installation and expand the 3D-data collection possibilities
using the Zed camera.

Figure 5.5: Snapshot for multi-directional scenario showing waiting areas within the frame
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Chapter 6

Agent Detection

One of the research objectives of this research was to identify and localise the agents in the
observed area. In this agent detection stage, the visual images from the Zed camera was used
to fulfil the research objective. Only after obtaining the location of agents on the image, the
3D-data from the Zed camera can be used to locate the detected agent on the ground plane.

As the aim was to automate the data extraction process, the first section of this chapter
selects a neural network based detection model capable to detect agents in an image. This
section uses both literature and first-hand analysis to select the best detection model for this
study. Following this, a brief explanation into the working of selected object detection model is
mentioned. Lastly, the implementation process and obtained results from the detection model
are discussed in detail. This section also explores the possibility to automatically distinguish
between two modes of travel (pedestrians and cyclists) using the detection models based on
the visual information only.

6.1 Model selection

Selecting the right detection model depends upon the nature of application which can vary
for each user. In the literature, two main criteria for comparing these models are the model’s
video processing speed and the accuracy of output detections. In this research, the visual
videos were to be processed offline. Moreover, the performance of all the later processes was
also dependant upon the quality of detections extracted in this stage. Thus, the detection
model’s accuracy was decided to be the main criteria of selection for this project rather than
the processing speed.

This section elaborates on the selection process of the object detection model which was
applied in this research. Initially, the comparison is done referring to two literature studies.
Due to the scarcity of such comparative studies, a brief first-hand analysis of different detection
models was performed on the data from Green Village experiment. Figure 6.1 provides an
overview of this selection process and the criteria of model selection.
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Figure 6.1: Process of selecting the detection model

6.1.1 Literature based comparison

In year 2017, a study published by Google which extensively compares the performance of
three different object detections algorithms namely SSD, R-FCN and Faster R-CNN under
controlled parameters [49]. This study used the model’s architecture as was originally
proposed in their respective papers. The same data used for training and testing the models
which created a level playing field for further comparison. These comparisons between
models were done based on speed and accuracy of detection. Speed was expressed as the
processing speed of the input video in frames per millisecond (or GPU time). The accuracy
was determined based on the mean average precision(mAP) which includes type-I and type-
II errors i.e. the number of false-positive and false-negative detections respectively. Figure
6.2a represents these results for each detection model. This study concluded that SSD and R-
FCN were significantly faster than Faster R-CNN (approx. 3 times faster) while Faster R-CNN
provided the highest detection accuracy.

Another online article by Jonathan Hui compares the performance of SSD, YOLO, R-
FCN and Faster R-CNN by aggregating and comparing the results as were reported in their
respective release papers [55]. As for speed, YOLO and SSD were reported to perform much
faster than the Faster R-CNN algorithm. While for accuracy, Faster R-CNN outperforms YOLO
and SSD by a slight margin. These conclusions were subject to different run-time parameters
both during the training phase and the processing of visual video for output.

6.1.2 First-hand comparison

Due to the scarcity of such comparative studies, a first-hand comparison of pre-trained SSD,
YOLOv3 and Faster R-CNN models was performed. The accuracy of the detection boxes can
assessed based on three criteria, number of false positives and false negatives detections and,
the goodness of fit of the detection box to its agent. False positive detections are the detections
which are considered valid by the model but are not truly valid. False negatives are the missed
detections by the model. The goodness of fit refers to the ability of the detection model to
draw a bounding box around the agent with minimum background. Pre-trained model files
were downloaded from Tensorflow model zoo [53] and YOLO’s official website [63] and were
integrated into the video processing python code. This code was inspired and build upon the
original code provided by Stereolabs [64, 65]. A minute of video consisting of 3600 frames from
each of the three scenarios (performed during the Green Village experiment) was extracted as
sample dataset for this comparison.
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Some snapshots of the output provided by the three models is represented in figure 6.3.
Based on the qualitative assessment of the detection boxes, the table 6.1 scores these models
based on the accuracy of detections and the speed of processing the video. In this table,
the number of plus signs compare the relative performances of these models with higher
the number of plus signs, better is the models performance for that criteria. With the given
computer configurations, SSD and YOLO processed the visual video at a similar speed of
about 15 to 20 fps while Faster R-CNN was much slower at about 0.5fps. From the figure
6.3, the accuracy of different models can be assess qualitatively. Both SSD and YOLO models
frequently categorised people’s shadows and traffic cones as a person too. They also missed
many valid detections or provided one detection for multiple people standing close by. All this
lead to a large number of false-positives and false-negatives by these two models. Dominant
shadows proved to be a challenge in determining the exact boundary of the participants these
models. The visual comparison of the detections from all the three models showed that Faster
R-CNN provided bounding boxes with a better fit than the other two models. i.e it was
better in excluding the background from the object of interest. Whereas both SSD and YOLO
frequently included shadows and the background into the bounding boxes.

To quantify some of these results, a 10 second video (600 frames) of bidirectional pedestrian
scenario with an average of 2.4 people in every frame was taken. This dataset was selected for
such comparison as it was one of least challenging dataset recorded during the Green Village
experiment. The total number of true detections for these frames were manually counted to
be 1450 out of which 850 detections were excluding the directly overhead detections. The
results of total number of detections provided by the three models on this sample dataset are
represented in figure 6.2. It was observed that all three models faced difficulty in detecting
the agents from a directly overhead position. Thus, the Faster R-CNN falls short of the 1450
detection mark in the figure 6.2. But, Faster R-CNN largely detected agents with minimum
false positive and false negative detections. SSD model had the highest number of detection
due to many false positive detections and was the worst performing model out of the three
models. YOLO was a much better model and provided a good number of true positive
detections. Even though SSD and YOLO can provide same or higher number of detections,
the accuracy of detection boxes is unmatched to those provided by Faster R-CNN.

Faster R-CNN’s superiority in excluding the background from the bounding box should
help in better depth estimation of the agent while detections with lower errors should provide
stable trajectories. Thus, Faster R-CNN’s pre-trained model was chosen over the other two
models to perform detections and extract bounding boxes from the recorded data.

Table 6.1: Qualitative assessment of observed speed and accuracy levels for detection models

Detection Models
Accuracy of

detection boxes
Processing Speed

(frames per second)
Faster R-CNN ++++ +

SSD + ++++
YOLO ++ ++++
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(a) Accuracy vs processing time [49] (b) First-hand comparison

Figure 6.2: Accuracy of detections for different detection models

(a) Faster R-CNN (b) SSD

(c) YOLO

Figure 6.3: Bounding boxes obtained using different detection algorithms
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6.2 Working of Faster R-CNN

A computer interprets an image as a collection of tiny pixels with each pixel storing some
information of the image. This information expresses the colour of that pixel and is encoded in
the RGB format. RGB format represents the intensity of red, green and blue colour respectively
in the pixel as seen in figure 6.4.

For image processing, the type of neural network used are called as convolutional neural
networks(CNNs). A neural network is a collection of neurons with each neuron performing
a dedicated function. All these neurons are arranged in the form of layers as shown in figure
6.5. The first layer takes the input as the image which is then processed by the neurons in
the hidden layers. In case of Faster R-CNN, these hidden layers can be divided into three
categories based on its operation: feature extraction network, region proposals network and
detection network. An overview of these networks can be seen in figure 6.6. The first stage of
feature extraction, a raw image undergoes various matrix operations to provide a feature map.
These feature maps retains all the spatial and structural information of an image and filters out
the irrelevant information. The second stage proposes a number of regions on the feature map
to look for an object. These regions are then analysed in the last stage to classify the regions
based on its object type. To obtain a detailed understanding into the working of Faster-RCNN’s
object detection framework, following literature [52][1] [66] [67], Stanford university’s online
lectures [68] and some online articles [54] [69] [70] can be referred.

Figure 6.4: Image as RGB matrix Figure 6.5: Neural networks

Figure 6.6: Network architecture of Faster R-CNN [4]
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6.3 Using the detection model

Faster R-CNN detection model used is already pre-trained to detect 90 different object classes
[53]. The original python code was modified to customarily set the object class as need. As
observed during the model selection process (section 6.1), the Faster R-CNN model was able
to detect people which included both pedestrians and cyclists. As this chapter also wanted
to investigate the possibility to differentiate the two modes, the Faster R-CNN model was
also used to detect bicycles (and not the cyclists or the rider itself) which is a different object
class. The outputs were filtered based on the detection’s confidence score. A higher confidence
threshold provided more accurate detections and less number of false-positive detections. But
this also reduced the total number of detection and increased the false-negative error. Figure
6.8 represents the distribution of total number of detection at different confidence scores.
This distribution was obtained for person only detection on a mixed-flow scenario dataset
recorded during the Green Village experiment. The nature of this distribution suggests that
this detection model provided the majority of its detection at a high confidence score (approx.
75% of the detections were with scores > 0.95). A similar trend was observed across all the
three scenarios and for both detections types (people and bicycles). This suggests that in case
of Faster R-CNN, the detections obtained were not much sensitive to the confidence threshold
value. Based on the best practice as reported in the literature, the threshold value of 0.75 was
used in this research [49][1].

Figure 6.7: Framework for using the detection model

Figure 6.8: Number of detections with each confidence score
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6.4 Results & Analysis

The output obtained from this process was in the form of bounding box coordinates w.r.t the
visual image. The detection model was tested to detect both bicycles and people (pedestrians
and cyclists) on the Green Village data individually as seen in figure 6.9. As observed, the
detection model faced some difficulty in distinguishing between the shadows and the person.
But the model performed well in identifying the other background from the true agent and
provided boxes with a good fit. Major challenges were faced by the detection model in cases
of partial occlusion between agents. As seen in figure 6.9a, the detection model labelled two
different agents as a single agent by bounding them in a single box.

The shape, size and orientation of the agents were constantly changing as they moved from
the space. To bound these moving agents, the detection boxes were also constantly resizing.
For pedestrians moving horizontally across the image, this change in box sizes was due to the
swaying of hands and feet while walking. For pedestrians walking vertically in the image,
this change was observed as due to their changing size as they change their distance from
the camera. For cyclists, this change was observed as they perform a paddling motion. The
orientation of agents within the boxes also change as they move from centre of the image to its
sides. No change in such orientation was observed when they move from top to bottom of the
image. For bicycles, the detections were stable as the change of shape and size for bicycles was
very limit. But here, the model was challenged while determining the bicycle’s true boundaries
as it was difficult to exactly identify where the bicycle ends and the rider starts.

(a) People detection & occlusion (b) People detection in mixed traffic

(c) Bicycle detections

Figure 6.9: Detection three scenarios of the Green Village experiment
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6.5 Discussion

In this study, the first-hand comparisons were done using pre-trained models. Thus, it does
not cover the effects of varying the design choices and the quality of training data set provided
to the untrained model. There can be many possible design choices during the training phases
of the model which largely impacts the performance of the detection model. This high degree
of freedom during the training phase makes the true comparison between different detections
models difficult. All the neural network based detection model can always be re-trained to
better fit a custom dataset and provide better detections on a given data. This is an advantage
of such detection models as they can constantly be improved as long as their is representative
and labelled dataset available.

Here, the number and quality of detections were not much sensitive to the confidence
threshold value due to the model’s high accuracy. Whereas, this value should be selected
wisely for other models which have lower accuracy levels(SSD, YOLO). In future, analysis
into the relationship between the detection accuracy and the characteristics of input images
in terms of its aspect ratio, resolution, brightness, contrast and other image properties can be
studied further.

6.6 Summary and Conclusion

The detection model was responsible to identify, categorise and locate the agents on the
visual image. Different detection models were compared using literature study and first-
hand analysis based on the accuracy of the detections. Out of all the models, Faster R-CNN
performed the best in terms of accuracy and thus was selected to be used in this research. The
detection model was successfully able to distinguish between people and bicycles. In case of
identifying people, both pedestrians and bicycle riders were included. The detections were
provided in the form of bounding boxes around each detected agent. The output results were
stored in the form of image coordinates of these bounding boxes for every image in the video.
Certain anomalies were observed in making these boxes around the agent due to shadows
and occlusion. A few instances of missed detections were also observed across all the three
scenarios. In the next chapter, these detection boxes were used to refer to the depth information
obtained using the Zed camera.
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Chapter 7

Depth extraction with Ground
representation

To obtain the trajectories on the ground plane, the agents first need to be projected on the
ground for every time-step (or every frame of the video). The previous process of agent
detection localised the agents on the visual images in every frame of the video recorded from
a tilted camera position.

This chapter elaborates on the process of using the detections from the previous process,
combining it with the depth map calculated by the camera and then representing the detected
agents on the ground plane. This data processing framework can be divided into two sub-
processes as shown in figure 7.1. First process was to extract the depth information of the
detected agent to estimate its 3D-location w.r.t the camera axes. Afterwards, using the camera’s
angle of tilt, this 3D-point of the detected agent was projected on the 2D ground plane. The
first section provides some initial calculation which were used to inform the design processes
of depth extraction and ground plane representation. The later sections cover each process
individually followed by the results and discussion of the developed framework.
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Figure 7.1: Framework for depth extraction and ground representation of agent in Green
Village data

7.1 Initial calculations

To design and tune the parameters values in the later sections, their should be some ground-
truth data which can be used as a reference for comparison. This section calculates the ground
truth coordinates of an agent w.r.t the ground plane axes keeping the camera as its origin.
For these calculations, this section relies on the on-site measurements (as explained in section
5.1) and visual inspection of the selected pedestrian agent from 10 frames. The process of
selecting the frames and the calculation of 3D-coordinates is explained further in this section.
These calculated coordinates are treated as the ground truth data and were used in two ways.
Firstly, to decide on the statistical operations and the size of the reference box while 3D
point estimation of the detected agent. Secondly, to determine the camera’s angle of tilt for
coordinate transformation and ground plane representation of trajectories.

From the Green Village videos, an agent was selected and its 3D-coordinates comprises
of X, Y, Z-coordinates w.r.t the ground plane axes were calculated. The foundation of these
calculations were the on-site measurements of camera height, traffic cone distances and the
grid structure of the ground plane as can be seen in figure 7.2. In this figure, the xG, yG, zG
represent the axes along which calculations of coordinate values were made. The origin of this
coordinate system was on the 3D camera’s left lens itself with the Xg − Zg plane parallel to the
ground plane. The xG-axis was laterally aligned, zG-axis pointed away from the camera while
the yG-axis was downward perpendicular to the ground. For simplicity, all the movement on
the ground plane was assumed to have change only on the Xg and Zg coordinates while Yg
coordinate representing the height component of agent remains unchanged.

For calculating the Xg and Zg coordinates, measurements done along the ground plane
(traffic cone distances, grid tiles on-ground) were used. As these measurements were done by
people, they do introduce human error in the further calculations. The Xg-coordinate value
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was the lateral distance between the camera and the agent while the Zg-coordinate was given
by the longitudinal distance (or depth) of the agent from the camera. The Yg-coordinates
represent the vertical distance (or height) of the camera from the agent’s centre when measured
perpendicular to the ground plane. This was calculated by subtracting half the height of the
agent from the total height of the camera. This remains unchanged for the selected agent as no
movement was along the yG-axis was assumed.

The 10 frames of the selected agent were equally spaced over the agent’s entire motion of 10
seconds (or 600 frames) as it enters from left edge of the image until it exits from image’s right
edge. This means that one sample frame was selected at every second of the ten second video.
This helped to spread the calculated coordinates across the interaction area while including
a variety of possible object orientation in the image. Certainly, 10 frames was a very limited
sample size but by spreading the frames across the agent’s motion and including different
agent orientations, this study partially accounts for this limitation. Three image samples out of
the ten images are represented in figure 7.3 representing the left most, centre and the right most
position of agent respectively. It can be seen that the orientation of agent was slightly tilted w.r.t
its position in the image. This orientation is only dependant on the agent’s alignment w.r.t the
right and left edge of the image and is not affected by the top and bottom edges. Calculated
coordinates for the selected agent in all the 10 frames are provided in the appendix table A.2
for reference.

(a) Elevated view (b) Top View

Figure 7.2: Experimental setup and 3D coordinate axis for Green Village Experiment

(a) Agent near the left edge (b) Agent in the centre (c) Agent near the right edge

Figure 7.3: Calculated coordinates of agent for each frame (in meters)
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7.2 Depth extraction

The output of the previous detection process provided the bounding box coordinates of the
detected agent on a visual image. These box coordinated can be combined with the depth map
calculated by the camera to extract depth information of the agent. The depth information was
in the form of point cloud data i.e. the X, Y, Z coordinate values (in meters) w.r.t the camera
axes. This depth information was calculated by the camera for each pixel in the visual image
which can be referred to as a depth map. This depth map was perfectly aligned with the visual
images from the camera’s left lens as explained in section 4.3.

Initially, there were two possible approaches towards extracting the depth value of the
agent. First approach can be to calculate the centre pixel of the bounding box and directly
refer to its depth value. This approach relied only on one pixel for its depth value and hence
could provide unstable and unreliable results. Moreover, it is also possible that for agents
near the edge of the image, the centre point does not lie on the agent itself but in the agent’s
background. Second approach can be to analyse the depth information of all the pixels in
the box and then extract the relevant depth value. This approach introduced a need to apply
some statistical operations over depth values from all the pixels in the bounding box. Deciding
these statistical operations can be tricky in cases when the box contains pixels of the far-way
background, the agent itself and the ground beneath the agent. Especially in case of Green
Village data, the ground beneath the agent was frequently included in the detection boxes due
to the agent’s shadow.

A third possible approach was to calculate the centre of the bounding box and then make
a reference box around this centre point to extract the depth information. This will overcome
the uncertainty caused by using only one pixel point while also make the selection process
of a statistical operation more concrete. This approach also ensures that in most cases, the
majority of pixels inside the reference box will belong to the detected agent. Thus, this third
approach was taken towards extracting depth information. The distance between the sides of
the reference box and the centre point was expressed in the number of pixels and was named
as reference distance(R).

The first subsection decides on the statistical operations to be applied on the extracted
distribution of X, Y & Z coordinates from the pixels in the reference box. This was to represent
the detected agent as a single 3D point in space. The second subsection analyses and selects
an optimum size of the reference box to be used. Both of these decisions were informed by the
calculations made in the prevision section 7.1 as explained further.

7.2.1 Statistical operation

The depth information extracted from the SVO file was in the form of point cloud data i.e. the
X, Y, Z coordinate values (in meters) w.r.t to the left lens of the camera. The reference box refers
to a distribution of X, Y & Z coordinates which needed to be analysed to output the true value
of the detected agent. Thus, a statistical approach was taken towards extracting the true depth
value of an agent. This also helped to filter the values given by the background pixels if it was
included in the reference box.

The 3D coordinate distributions w.r.t. the Zed camera were extracted for the same 10 frames
as used in the calculations in section 7.1. Out of these ten frames, a sample of three images are
shown in figure 7.4 with its X, Y & Z distribution in figures 7.5, 7.6, 7.7 respectively. For this
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analysis, the reference box of size R = 20 was taken represented with a solid red line in figure
7.4 containing 1600 pixels in each reference box. The later subsection will focus on the reference
box’s size optimisation.

Four statistical operations were investigated to refer to one value from the extracted
distribution of depth data using the reference box and the best option was decided. The first
choice was to select the value with highest frequency which is the histogram’s maximum value
of the distribution. This would have filtered all the 3D data from the background pixels only
when the majority of pixels inside the reference box were of the agent. This assumption might
not be true in cases when the majority of the pixels belong to the background and not to the
agent. Also, the calculation of maximum value in the histogram for each 3D data set over all
the frames was to be done in parallel to the running of detection algorithm on the SVO file. This
was observed to be computationally expensive and slowed the data extraction considerably.
This operational challenge and the uncertainty of maximum histogram value representing the
true value of the agent made this approach not practical. In future, further investigations in
programming this approach more efficiently can be done.

Other statistical operations considered were Lower quartile(Q1), Median(Q2) and Upper
quartile(Q3) values of the distribution. Observing the coordinate system and the nature of
data distribution, statistical operation were determined for each X, Y, Z value of the 3D data
respectively. The aim of these statistical operations was to give values which were closer to the
true maximum of the histogram i.e values derived from the agent’s pixel. Also, the calculations
of quartile values were significantly cheap on computation without loosing much of accuracy
given by the maximum histogram approach as seen in table 7.1.

For X distribution, figure 7.5a & 7.5c show that the edge frames had a skewed distribution
towards a clear peak value. Whereas, when the agent was in the centre of the image, the
distributions were more plateaued with smaller peaks as in figure 7.5b. Also, the peak of the
distribution shifts from right to left as the agent moves from left to right in the video. This
is due to the fact that X=0 plane passes from the centre of the image. Thus, to account for
this change in the nature of distribution, Median value (Q2) of the X-distribution was used to
extract the Xc coordinate of the agent. This value is represented by the red line in figure 7.5.

For Y value, the distributions were partially bi-modal in nature i.e. two peaks were
observed in their distribution with the latter peak being highly dominant as seen in figure
7.6. When measured along the yC-axis, the agent’s centre was nearer to the camera than the
background. Thus, the former peak (or blip) represented the background pixels while the latter
peak represented the agent pixels. To obtain values nearer to the latter peak, upper quartile
(Q3) value of the distribution was used to represent the Y-coordinate of the agent.

For Z value also, the distributions are bi-modal in nature. When measured along the zG-
axis, the agent was nearer to the camera that the background. Thus, in figure 7.7, the former
pixels were that of the agent while the latter were from the background. This arrangement of
agent being nearer to the camera than the background holds true in every scenario (excluding
the agent’s shadow). Thus, the lower quartile(Q1) value of the distribution was used to
represent the Zc-coordinate of the agent within the bounding box. For the left edge frame’s
distribution in figure 7.7a, the latter peak represented the background and has a higher value
than the former peak representing the agent. Thus, taking the absolute maximum value of the
histogram from the distribution can be risky and the lower quartile value accounts for such
distributions also. The quartile values in figure 7.7a, 7.7b are not very close to the maximum
histogram values but making these quartile values fit to the sample dataset can lead to over-
fitting.
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(a) Left edge frame (b) Centre frame (c) Right edge frame

Figure 7.4: Bounding boxes with reference boxes of reference distances 30, 20, 5 pixels.

(a) Left edge frame (b) Centre frame (c) Right edge frame

Figure 7.5: X-distribution of agent from the reference box

(a) Left edge frame (b) Centre frame (c) Right edge frame

Figure 7.6: Y-distribution of agent from the reference box

(a) Left edge frame (b) Centre frame (c) Right edge frame

Figure 7.7: Z-distribution of agent from the reference box
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For bicycles, the depth data was unstable and inaccurate due to two reasons. Firstly, the
bicycles itself are less solid than people (less pixels to refer to) which makes it difficult for the
3D-camera to calculate its depth accurately. Also, the reference box at the centre of the bicycles
meant targeting the rider’s legs for depth information as seen on figure 7.8. As the legs were
in constant motion, the depth information derived using the reference boxes was unstable.
This resultant distribution of extracted 3D-coordinates can be seen in figure 7.9 for reference
distance of 20 pixels. It shows that there are several peaks in the distribution which made it
harder to identify the true depth for a bicycle. Hence, to derive trajectories of bicycles, person
only detection was used similar to pedestrians as described above. Person only detection was
capable of detecting the bike’s rider while giving stable and reliable depth information which
was used to represent the bicycle in the observed space.

Figure 7.8: Bicycle detection with reference boxes

(a) X-distribution (b) Y-distribution (c) Z-distribution

Figure 7.9: Coordinate distribution using reference box (R=20) in bicycle detection

7.2.2 Reference box selection

After deciding the statistical operations, the next step was to decide the size of the reference
box for referring to the agent’s depth information. The 3D-coordinates extracted using the
statistical operation from the previous section was used to calculate the distance between the
camera and the centre of the agent (D =

√
X2 + Y2 + Z2). This calculation was done for five

different sizes of the reference boxes at R = 5, 10, 15, 20, 25, 30 pixels respectively over all
the ten sample frames. Difference in distances was used as the selection criteria for reference
box’s size as it enables the use of extracted coordinated from the depth map as it is without
any further modifications. This also helped to aggregate the differences caused in all the three
coordinates and expressed it in a single value.

For perspective, figure 7.4 shows the detection boxes in green while the reference boxes
with reference distance 30, 20 & 5 pixels with dashed orange, solid red and solid orange
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box respectively. The percentage difference between the distances using the extracted camera
coordinates and the calculated coordinates in section 7.1 was computed. These values can
be seen in appendix table A.3. Table 7.1 gives the average value of the percentage difference
in the distances over all ten sample frames. As the average distance measured was about
8.5 meters, the ∆D(%) of 4% means that the difference between the calculated distance using
on-site measurements and the derived distances using the camera was about ±0.34 meters.
This difference aggregates all the possible errors caused in on-site measurements, position of
the reference box, the statistical approach and the rounding-off of values during calculations.
Figure 7.10 represents the percentage of difference in distances(using the quartile coordinates)
for each reference distances with the standard deviation of this difference across the ten frames.

Table 7.1: Average error across frames for each reference box

Reference
distance

∆ Dmax.hist. (%) ∆ Dquartile (%)
Std. deviation

b/w frames
R = 5 3.44 3.77 2.06
R = 10 4.25 4.35 1.56
R = 15 4.36 4.50 1.32
R = 20 3.63 3.65 1.54
R = 25 3.52 3.40 2.27
R = 30 3.84 3.15 2.50

Figure 7.10: Average difference in derived distances w.r.t each reference distance

The reference box with reference distance of 5 pixels provided a good distance estimation
for the centre frames but performed poorly for the edge frames having a larger standards
deviation. This was due to its small sample size of only 10 x 10 pixels. For reference
distance of 10 and 15 pixels, the increase in percentage error shows that pixel values from
the background were making the quartile values deviate from their respective true maximums
in the histogram. Overall, the reference distance of 20 pixels performed the best with minimum
standard deviation in the derived distances across all the sample frames. Thus, the reference
distance of 20 pixels was used further in this project.
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7.3 Ground plane representation

The camera was installed in a tilted position while recording. Thus, the camera’s coordinate
axes were tilted w.r.t. the ground plane. This created a need to transform the camera’s
coordinate system to enable the representation of extracted 3D-point on the ground plane.
This section elaborates on this coordinate transformation approach.

In the following explanation, the XC, YC & ZC stands for the original camera’s axes
while XG, YG & ZG stands for the transformed axes used for ground plane representation
of trajectories. Figure 7.11a represents the Green Village scene w.r.t. the original camera axes.
This diagram clearly shows that original YC & ZC axes were tilted w.r.t to the ground plane.
XC-axis was also observed to be slightly tilted in the visual footage. As the trajectories were
to be represented on the ground plane, the original coordinate system was to be transformed
in a way to make the new XG-ZG plane being parallel and YG-axis being perpendicular to the
ground plane. For both the coordinate systems, the point of origin remained unchanged at the
camera’s left lens.

As there were two set of tilted angles, the coordinate transformation was done in two steps,
one step for each angle as shown in figure 7.12. Initially, the YC & ZC axes were rotated
anti-clockwise along the XC-axis to give the ZG-axis parallel to the ground plane and an
intermediate Y′-axis. Finally, the XG & Y′ axes were rotated clockwise along the ZG-axis to
make the XG-ZG plane parallel and YG-axis perpendicular to the ground. The equation for axis
rotation for any point A(xc, yc, zc) in the original plane to obtain new coordinates A(xg, yg, zg)
in the transformed plane can be expressed as:

zg = zc. cos θ − yc. sin θ,
y′ = zc. sin θ + yc. cos θ

(7.1)

xg = xc cos Φ− y′. sin Φ,
yg = xc. sin Φ + y′. cos Φ

(7.2)

During the Green village experiment, the camera’s angle of tilt(θ&Φ) were unknown. Thus,
the calculated coordinates of the agent from section 7.1 were used to estimate these angles for
coordinate transformation. As these coordinate points were calculated along the ground plane
axes, this gave the xg, yg, zg coordinates while the camera provided with xc, yc, zc coordinates
of the same agent. By substituting these values in equations 7.1 & 7.2, the unknown angles
θ&Φ were calculated as 55.65◦and -5.31◦anticlockwise respectively. For further reference, the
calculation are provided in appendix table A.4. Based on these angles of tilt, all the obtained
coordinates of the agent on the tilted camera axes were transformed to obtain the coordinates
on the ground plane axes as seen in figure 7.11b. This figure shows that the new XG-ZG plane
was parallel to the ground plane. Thus, these transformed coordinates were used to represent
the detected agents on the ground plane.

41



(a) Original camera axes

(b) Transformed ground plane axes

Figure 7.11: 3D representation of Green Village scene

(a) Yc − Zc axis rotation along Xc-axis (b) Xc −Y′ axis rotation along Zc-axis

Figure 7.12: Coordinate transformation for Ground plane representation
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7.4 Result & Analysis

In practice, the detection, 3D-point estimation and coordinate transformation was done using a
single python code over a SVO file video provided by the Zed camera. This code was inspired
and build upon the code published by Stereolabs [64]. The outputs were stored in a CSV file
with each column representing the frame number, bounding box coordinates w.r.t. the visual
image and the 3D-point of the detected agent w.r.t. ground plane axes. A sample data output
can be referred in appendix table A.5. Some of the results are visualised in figures 7.13, 7.14.
The resultant points on the ground plane are assessed based on the their continuity, stability
and the extent of false swaying. To do this, the ground plane points of the agents for all the
three scenarios are represented in two ways, (i) as trails in figure 7.13 and (ii) as trajectories for
a single agent in figure 7.14. These figures are explained further in this section. While analysis
these results, some of the reasons for anomalies in the ground points have been explained and
the possibilities of deriving agent’s direction of motion and travel speeds from this data have
also been discussed.

The visual pictures in figures 7.13a1, 7.13b1, 7.13c1 represent the detections on visual
images which are also represented on the ground plane in figure 7.13a2, 7.13b2, 7.13c2
respectively by the red dots. The smaller blue dots represent the trail of detections over the
past frames. For perspective, the traffic cones placed around the interaction area were also
represented on the graph with a red cross. These trails are a projection of detections on the
ground plane. Such representation provides further insights into the performance of detection
and the projection of point using the above methodology. It also helps in understanding the
speed and direction of motion of the detected agents. These individual points can be selected
and joined to obtain continuous trajectories for an agent. As an example, in figure 7.14 one
trajectory for each scenario is visualised. This was done by selecting an agent in each of the
three scenario (pedestrian only, mixed traffic and cyclists only) and manually extracting its
ground-plane points for all the frames in which it exists.

For pedestrians in figure 7.13a, the direction of trail represents the past locations of the
agent and the length of the trails represents the distance covered by agents in last 60 frames(≈
1 second). The areas 4, 6, 7 represent discontinuous trails due to lost detections. Area 4 has
lost detections in the past frames mainly due to occlusion while areas 6, 7 has lost detections
without any occlusion. Sharp swaying was observed as marked in areas 2, 3 can also be seen
in the plotted trajectory of pedestrian in figure 7.14a. This was due to two reasons. Firstly,
there is always some natural swaying of agents while walking with each step from left to
right. Secondly, agents also move their hands back and forth while walking. As the depth
was referred using the reference boxes near the agent’s waist area, this caused the hand to be
a part of depth information in some instances. Thus, a more abrupt and sharp swaying in
the extracted trails and trajectories was observed than what might be observed in a natural
movement. The diagonal points as marked in area 1 was caused due to changed orientation of
agents within the bounding box causing the reference box to extract depth of the background.
A similar patter of diagonal movement can be seen in area 5 which was caused by inaccurate
detection box bounding two agents in one box.

In the mixed traffic scenario, the trails displayed in figure 7.13b2 are for both pedestrians
and cyclists for past 100 frames (≈1.67 seconds). Longer trails of cyclists than the pedestrians
of the same number of frames convey that cyclists are travelling at a higher speed than
pedestrians. The discontinuous points in area 2 represents the lost detections for cyclists.
Inclusion of shadows and nearby pedestrians in a single box during detections also caused
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error and instability in ground plane projection of detected agents as seen in area 1. In this
scenario, as pedestrians were moving vertically in the image, the extracted depth information
was more stable and no sharp swaying was observed due to hand movements. Thus, the
plotted trajectory of pedestrian in figure 7.14b is smoother and without any abrupt swaying.
A slight bump in trajectory was caused while the agent was turning near the camera’s pole.
During this turning, the camera viewed only the head and shoulder of the agent. Thus,
the detection box was only bounding the agent’s upper body for which the depth was also
extracted and represented in the trajectory. As the agent moved away from the camera, the
box resizes to correctly bound the whole agent from head to toe. This caused the ground
plane points to shift back to its correct position(near the waist). The change in box size due
to changing agent’s orientation caused a sense of false movement(or bump) in the plotted
trajectory.

For the cyclists only scenario, the trails represented in figure 7.13c2 are for the past 100
frames. These ground points are much coarsely spaced even in case of continuous detections
that what is observed for bicycles in a mixed traffic scenario (figure 7.13b2). This suggests
that in cyclists only scenario, the riders were travelling at a higher speed that the mixed flow
scenario. The discontinuous points as marked in areas 1,2,3 were due to lost detections. From
the bicycle trajectory in figure 7.14c is much smoother than the pedestrian trajectories in figure
7.14a. This suggests that overall, the reference boxes for bicycle riders provided with a stable
depth distribution. A gradual change in the direction of motion beyond x=5 was observed as
the agent was making room for a U-turn to come back into the interaction area.

As explained in previously in section 6.4, the agent’s orientation and the size of the
detection box were constantly changing as the shape and size of moving agents change. This
constant resizing of the detection boxes has a direct impact on the positioning of reference
boxes which does introduce false motion along the Z-coordinate. Some of these false motions
were very evident as case of the bump in figure 7.14b. For cyclists, such anomalies were
difficult to observe in the obtained trajectories in figure 7.14c. The extent of this false motion
along the Z-axis depends on the angle of tilt for the camera. Larger the angle of tilt w.r.t.
ground, larger the amplitude of this variation.

Even after the constant change in box sizes and agent’s orientation within these boxes, this
methodology of 3D-point extraction and ground plane representation provided a largely stable
and continuous set of points as in figure 7.13a2, 7.13b2, 7.13c2. These graphs also provide a
clear sense of direction and speed of agents which matches the visual observations. While
extracting the trajectories for pedestrians and bicycles, the number of frames and the distance
travelled was roughly estimated to calculate the average speed of that agent. For instance, the
pedestrian trajectory in figure 7.14a existed for 535 frames(≈8.91 seconds) to cover a distance
of 10.8 meters which gives an average speed of 4.36 km/hr. Similarly, the agent’s walking
speed during mixed flows was calculated to be 3.5km/hr. This suggests that the agents were
walking at higher speeds in the pedestrian only scenario than in the mixed flow environment.
This again matches the visuals observations from the video and on-site observations during
the data collection experiment.
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(a1) Detection boxes
(a2) Trail on ground

(a) Pedestrian only scenario

(b1) Detection boxes
(b2) Trail on ground

(b) Mixed traffic scenario

(c1) Detection boxes
(c2) Trail on ground

(c) Cyclists only scenario

Figure 7.13: Green Village detections with trails on ground for all three scenarios
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(a) Pedestrian only (b) Mixed flows(pedestrian) (c) Cyclists only

Figure 7.14: Plotted trajectory using extracted points on ground plane

7.5 Discussion

The above approach of using the reference boxes in combination with the statistical operations
tries to minimise the inaccuracy passed on by the detection model in its detections and the
possible uncertainty in camera’s depth estimation. These inaccuracies in terms of missed
detections and unstable box sizes can always be minimised by improving the detection model
itself. But, the design choices made in the above process can also have many different pos-
sibilities which can improve its performance with the existing detections. Such as the shape,
size and aspect ratio of the reference box can be varied depending upon the agent’s position
and its orientation in the image. Similar variation while choosing the statistical approach in
selecting the relevant 3D-coordinates of the agent can be possible. A more idealistic approach
for selecting a statistical operation can be to take the coordinate with maximum histogram
value from the extracted distribution. This approach was computationally expensive as it was
performed for each detection in every frame of the video. While designing such approaches,
always only a small sample of the total dataset can be analysed and optimised for. This makes it
necessary to choose these samples in a way that they are normally distribution over all possible
scenario. This can make sure that the design choices made will hold true for a majority of the
dataset. Most importantly, there is always a risk of making the design choices such that they
might be over-fitting on the sample dataset and should be avoided.

While optimising the reference box’s size, the absolute distance from the camera was used.
As the agent was to be projected in the ground, another possible approach can be to use
the distance measured along the ground instead. To calculate this distance the coordinate
transformation needs to be performed beforehand. Thus, this approach might introduce
additional errors due to coordinate transformation and might not provide the true measure of
camera’s coordinate estimation. For the Green Village data, the angle of tilt was not measured
during the data collection. This lead to the development of an approach to calculate the angle
while using other site measurements and the available 3D-data as reference. This method can
also be used to validate the on-site measurements for angle of tilt provided that all the reference
data is reliable and accurate.

The existence of anomalies in the projected points of an agent due to some subtle changes
in the depth (such as pedestrian’s hand movement) suggests that the Zed camera was able to
detect these small changes. Thus, the Zed camera is sensitive and is able to observe even minor
changes in the depth information.

The projected points on the ground plane are the most basic input into many information
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of motion of the agent. For example, these points can be used to obtain instantaneous speeds,
direction of movement and individual spacing of agent w.r.t its surroundings. More aggregate
information representing the nature of space such as flows, densities, travel times, average
speeds, etc can also be calculated using this data. All this data can help in understanding the
movement of people in the real-world environment.

7.6 Summary and Conclusion

To summarise the above processes, initially the detection boxes were combined with the depth
information from the camera to provide 3D-points of the detected agents. These 3D-points
were first obtained on the camera axes which was tilted w.r.t the ground plane. Thus, the
obtained coordinated were transformed such as to make on of the planes (X-Z plane) parallel
to the ground plane. This enabled the projection of 3D-point of the detected agent on the
2D-ground plane to obtain trajectories on the ground plane.

For extracting the 3D-data of the detected agent, a combination of reference box and
statistical operation was used. For people, the extracted distribution of 3D-coordinates
using the reference boxes provided a clear distinction between the agent’s depth and the
background’s depth distribution. Thus, the choice of statistical operation to refer to only the
agent’s coordinates and filtering the background pixels was based on this nature of distribution
for each of the X,Y,Z coordinates. For bicycles, the extracted distributions were unstable which
did not allow a clear identification of bicycle’s true coordinates. Thus, it was decided to detect
and project the bicycle’s rider instead of the bicycle itself.

After the coordinate transformation of the camera’s original axes to the new ground
plane axes, all the extracted points were projected on the ground. These results were then
visualised as a trail of ground plane points side-by-side with its respective visual image. This
helped to identify the anomalies in the projected points and make qualitative conclusions on
the performance of the proposed methodology to represent the agent on the ground. The
anomalies observed in the projected points on the ground were mostly related to lost detections
and irregular boxes which caused a change in reference box’s position. Other irregularities like
swaying and small vibrations observed in the projected points were also due to small changes
in the depth information due to agent’s motion. This suggests that the camera is sensitive and
can precisely detect these changes in the visual images. Largely, this methodology to project
agents on the ground provided with a stable and continuous set of points but was highly
dependent on the quality of input detections. The trail of points also helped in understanding
the speeds and direction of motion of the detected agent. In the next chapter, these points are
used to derive agent trajectories on the ground plane.
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Chapter 8

Agent tracking

In the previous chapter, the detections obtained on the visual images were projected on the
ground plane using the 3D-data provided by the Zed camera. In this chapter, these points were
used to draw agent’s trajectories on the ground plane. As this research aims at automating
the whole data extraction process, thus the first section investigates into the existing tracking
models capable of tracking the agents using the available points. This section discusses the
process of model selections followed by a brief description on the working of the selected
tracking model. The third section describes the process of using the tracking model including
the parameter selection for running the model. The last sections analysis the output results of
this tracking approach and provides the main conclusion points of this chapter.

8.1 Model selection

For each frame in the video, the agent was represented as a point when detected. This was
the only information available for the tracking to be performed. In case of multiple agents
in a single frame, each frame generates multiple points representing every detected agent. To
obtain trajectories of detected agents, these projected points need to be uniquely identified and
associated over multiple frames for each agent. On the basis of the input data available and the
tasks to be performed by the tracking model, two main criteria for selecting a tracking model
are identified. (i) The tracking models should be able to track agents using information of
detections only. For this research, this information is represented in the form of 2D-coordinates
on the ground plane. (ii) As there can be many agents in the same frame, thus the model also
needs to distinguish and track multiple objects simultaneously. Following this, the existing
tracking models are assessed and one model is selected to be used further in this research.

Most of the multi-object tracking frameworks such as Similar multi-object tracking
(SMOT)[57], Deep affinity tracking[58], Markov Decision Processes tracking (MDP)[59], Deep
simple online tracking (DeepSORT)[60] uses a combination of agent’s location obtained from
the detection model and its appearance information from the visual videos. Hence, these
models make use of additional information rather than just the 2D-point information which
is the only information available in this stage. Also, using such tracking algorithms might
perform well in terms of tracking but, will not provide much insights into the performance of
the proposed framework of representing agents on the ground plane.
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In year 2016, Bewley et. al. proposed a Simple online real-time tracking (SORT) which
uses only the object’s detection formation to perform its tracking through the video [2]. It uses
a simple, rule-based tracking approach and combines prediction and association processes.
Using this approach, it is able to track multiple object and provide unique ids to each detection.
Using only the detection information for tracking also makes the performance of such models
largely dependent on the continuity and stability of these detections. As the SORT model
fulfilled both the criteria of selection, this model is used further in this research. This model
was originally developed to perform tracking using object’s location on the image (using image
coordinates) but this projects uses this model to perform tracking using the ground plane
points. The next section elaborates on the working of SORT tracking model.

8.2 Working of SORT tracking

SORT is an abbreviation for Simple Online Real-time Tracking. The word ’simple’ stands
for the simplicity of the tracking approach in this algorithm, word ’online’ explains that this
tracking framework does not need future frames for its working and relies only on the agent’s
location data from past frames. The word ’real-time’ refers to the speed at which this algorithm
is able to process data and assign ids to each detection. The model’s source code was in python
programming language and was made public by the author [71]. The following explanation
of SORT’s working was understood from its original release paper [2]. The original paper
proposed this model to track agents using the image coordinates, but the below working is
explained from the perspective of using it to track agents on the ground plane.

The input data consists of the detected agent’s location and its frame numbers. For this
research, the location of detected agent on the ground plane was used with each frame as an
input. The input data format with some sample rows is provided in appendix table A.6. The
tracking process in SORT is divided into two steps, prediction and association of detections.
For prediction, first a constant velocity model is used to form the equation of motion of the
agent based on its past locations. Kalman filter then uses this equation of motion to predict
the agent’s location in the next frame. This process of prediction helps to carry-forward
the agent’s id from past frames to the next frame and narrows down the search area for id-
association. These predicted locations of the agent then are associated with the given detected
locations using Hungarian algorithm. Here, a small box around the agent’s ground plane
location is drawn and the area of overlap between the predicted box and the detected box is
calculated. This area of overlap is also referred to as Intersection over Union(IoU). As there
are multiple agents in the same frame, Hungarian algorithm solves the assignment problem
using the overlapping area where IoUmin acts as a threshold value for association. During
tracking, the detections are treated as the true value and the equation of motion gets updated
after association. The Kalman filter constantly tries to minimise the error between its predicted
location and the detected location of the agent. The final output assigns the ground plane
points with there respective ids. Sample output data can be referred in appendix table A.7.
Parameters governing the process of id creation, association and deletion are explained in the
following section.
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8.3 Parameter Testing

A detailed explanation into the working of these parameters values was missing from the
model’s release paper (some of the parameters were not even mentioned in the paper). Initially,
this section identifies and explains the role of each of the parameters governing the SORT
tracking model. On the basis of this, the later paragraphs identify the performance indicators
and tune the parameter values for the given dataset using different run-time parameters.

Identifying parameters and their role

The first step to identify the parameter values was to develop a detailed understanding into
the model’s source code. In process, three main parameters were identified namely Minimum
hits(minhits), Maximum age (maxage) and Intersection over Union threshold(IoUmin). In the
next step, various runs with different combination of parameter values were performed to
clearly understand the role of each parameter on the obtained output. The role of each
parameter is explained in the following paragraph.

Minimum hits (minhits) controls the creation of a new tracker id for the available detection.
This value determines the minimum number of consecutive frames for which a new detection
needs to be successfully associated with other new detections. If a detection fulfils this
condition, then only it is assigned with a new id and if otherwise, the detection is considered
invalid and is deleted. This measure helps to check for false-positive errors passed on by
the detection model. Maximum age (maxage) determines the maximum number of frames
for which an id will be kept alive (or active) without any valid associations. If an id is not
associated with any detection after maxage number of frames, then the ids is deleted. When
an id is without any association, the tracking model constantly predicts its possible location
until maxage number of frames. This values helps to account for some of the false-negative (or
missed) detections in the input data for maxage frames. If the missed detections are greater
than maxage frames but the agent is still present in the frame, its id will be falsely deleted. The
resultant trajectories are fragmented and discontinuous. IoU threshold(IoUmin) determines
the ease of association between the predicted location and the actual location of the agent.
The effects of choosing different parameter values for the given dataset is explained in the the
following paragraphs. Next paragraph explains the dataset used for tuning these parameter
values.

Test setup

To tune these parameter values, the data of two scenarios from the Green Village were taken as
input. The reason behind taking two different datasets was to investigate if the performance of
the parameter values was sensitive to the type of input scenario. One scenario with pedestrian
only traffic which had less number of agents and posed a less challenging situation of the
tracking model. This scenario had bi-directional flows with 14 individual agents present over
all 2500 frames. It had 3-5 agents present in each frame with each agent taking on average
of 300 frames (≈ 5 seconds) to cross the interaction area. Another scenario used for testing
parameter values was a mixed flow scenario with both pedestrians and cyclists. This scenario
posed a more challenging situation for the tracking model and helped to test its parameters
in relation to the shared-space conditions. Here, the number of frames were 2000 with a total
of 35 agents (20 pedestrians and 11 cyclists). Each frame consisted of 5-7 pedestrians and 2-
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3 cyclists. On an average, an agent existed for 180 to 250 frames depending on the mode of
travel.

Based on the explanation into the working of each parameter value and its effect on the
output, two main indicators of performance were identified for tuning the parameter values.
These indicators are (i)number of ids assigned and (ii)their lifespan. Lifespan of an id is
expressed in number of frames and it stands for the total number of frames for which that
id exists. To better asses the output, four threshold values for the id’s lifespan value were
decided based on the observed lifespan of the agent in the visual video as describe in previous
paragraph. These thresholds were placed at 60 frames, 120 frames, 240 frames and 360 frames.
Total number of ids above these threshold values and there average lifespan were used to asses
the output from every run. Dividing and representing the results based on these threshold
values allows the visualisation of distribution for the ids with there respective lifespans. Less
number of total ids with more number of ids existing for a longer lifespan was the desired
nature of the output.

Four different combinations of run-time parameters are explained in the following para-
graphs with values as given in table 8.1. In practice, there were many runs performed (about
15-20 runs) but this report discusses only four runs to explain the trend and effect of each
parameter on the output. The output for both the scenarios w.r.t all the four runs is provided
in figure 8.1. The parameter values of run-1 serve as the base values for all the other runs. For
this run, the values were selected based on the continuity and stability of the input detections
and the understanding of the parameter values from the source code. Following the base run,
the value of each parameter was changed (one parameter at a time) to observe and explain
the effect of each parameter on the output. After every run, its output is compared with the
output from previous runs to explain the trend due to the change of each parameter value.
The following paragraph compares the explains each run one-by-one and selects the best
performing run-time parameters.

Comparison of outputs from different parameters

Here, the comparison of outputs from different runs is done using the results visualised in
figure 8.1 and the total number of ids in table 8.1. The performance indicators on which the
outputs are assessed have been explained in the previous subsection. Compared to the base
run, in run-2 the value of minhits needed for id generation was increased from 1 frame to 5
frame. This decreases the total number of ids generated as the id generation gets dearer.
Thus, more detections were considered as invalid which reduces the number of ids existing
above each frame threshold value. As the number of detections being a part of each trajectory
decreases, the average lifespan of the ids also reduces. Thus, minhits = 1 was fixed for all
other runs. In run-3, the IoUmin was increased from 0.1 to 0.5 which makes the criterion of
associating the predicted locations and the detected locations more stringent. This leads to an
increase in the number of unassociated but valid detections which increases the total number
of ids generated. A similar trend was observed in run-4 when the maxage of the tracker-id was
reduced from 30 frames to 5 frames. Both of these changes in parameter values increases the
number of ids with shorter life spans. Overall, run-1 provided with the most number of id
with higher lifespans than any other run. Thus, the parameters of run-1 were used to assign
ids and obtain trajectories in this research.
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Table 8.1: Run-time parameters for agent tracking

Runs
Input Parameters Output (Total ids)

IoU threshold
IoUmin

Maximum age
maxage

Minimum hits
minhits

Pedestrian only Mixed flows

Run 1 0.1 30 1 76 130
Run 2 0.1 30 5 69 122
Run 3 0.5 30 1 162 258
Run 4 0.1 5 1 184 314

(a) Pedestrian only scenario

(b) Mixed flows scenario

Figure 8.1: Number of Ids with their average lifespans for each test run during the parameter
tuning for the tracking model

52



8.4 Results & Analysis

The outputs were stored in a CSV format with each column representing frame number,
id number and the ground plane coordinates (X-Z coordinates) of the detected agent. A
sample dataset can be seen in appendix table A.7. The ground plane coordinates and there
respective frame numbers remains the same as input from the previous process of ground
plane representation. The output from the tracking algorithm adds a column of unique ids in
this dataset. Using this unique id number, the points belonging to each ids can be extracted to
plot the agent’s trajectory. Some of the results are visualised in figures 8.3, 8.2.

Figure 8.2 represents the ground plane points for two agents. For perspective, the traffic
cones places in the interaction area are represented by red cross. Area 1,2 in trajectory 55 shows
discontinuity in the detections. As these missed detections were for less than maxage number
of frames, the tracking model was successfully able to account for the missed detections (false-
negatives) and associate them to the correct ids. While ids 34,43 and part of 54 also represent a
single agent but was assigned with multiple ids. In area 3, the number of frames with missed
detections were greater than maxage which caused the deletion of old id(34) and the creation
of new id(43). Here, some of the detections represented by the grey dots were not associated
with any id as they were not able to associate itself with any other detections within minhits
number of frames. Thus, in case the projected points were too off and away from any other
valid detections (false-positives), they were not associated with any other valid detections
and deleted from the output. Area 4 was a case of id-switch when the points from two
different agents were falsely associated. This occurs due to the closeness between the predicted
points of one agent and the projected points of another agent. Thus, in case of unstable and
discontinuous detections, a longer prediction periods (or higher maxage) increases the chances
of false associations and id switches.

Figure 8.3 represents the trajectories obtained for each scenario which exists over 120
frames. The anomalies observed in the trajectories are in the form of false-vibrations, swaying
and discontinuous tracks. These anomalies exists in the agent’s projected points itself which is
already explained in section 7.4. To avoid repetition, please refer to the mentioned section
which provides a detailed explanation on the reasons behind such anomalies. For mixed
scenario, the trajectories were differentiated based on the model of travel by observing the
direction of trajectories. All these trajectories can provide insights into the path followed by
agents in each scenario. For pedestrian only scenario, figure 8.3a shows the trajectories to
be closely packed to each other and only in the horizontal direction. Thus, the agents were
walking in a bidirectional fashion and close to each other. While for the pedestrians in the
mixed flow scenario, figure 8.3b suggests that they were walking in vertical direction and
were more spread out over the interaction area. When comparing the trajectories of cyclists
from figure 8.3c and figure 8.3d, the cycle only scenario has a much smooth and laminar flow
while in mixed flow scenario, the cycle trajectories are more spread out and turbulent. This
was because the cyclists has to constantly change there directions to accommodate pedestrians
in a shared space environment while their was no such need in cycle only scenario. These
observations derived from studying these trajectories are coherent with the observations on-
site and from the visual videos.
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Figure 8.2: Id assignment on the agent’s projected points

(a) Pedestrian only (b) Mixed flows(pedestrian)

(c) Mixed flows(cyclists) (d) Cyclists only

Figure 8.3: Trajectories on ground plane using SORT algorithm
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8.5 Discussion

While selecting the parameter values, this research only considers the number of ids and
their average lifespans as the performance indicators. These indicators indirectly covers
other aspects of output trajectories such as discontinuity and fragmented trajectories but
not id switches. In future, these factors can also be included and made more explicit as
part of the performance indicators. Much better parameter tuning can be performed if the
ground truth trajectories are available as reference data. Also, as both pedestrians and cyclists
were identified as people, hence same parameter values were used to track both the modes.
Difference in speed and movement patters can lead to different parameter values for each
mode. For such mode based tracking, the projected points itself need to be classified based on
their travel mode.

Obtaining trajectories from the projected points can be seen as one of the applications of the
projected ground plane coordinates of the detected agent. While assigning unique ids to the
anonymous detections, the tracking model also tries to account for some of the errors passed
on by the previous processes of detection and depth extraction. For instance, false-negative
errors in the form of missed detections were accounted for by the tracking process as its was
able to assign ids across these missed detections also. False-positive detections were deleted as
they were not associated with any other valid detections. In future, the efficiency the tracking
model in removing these errors can be quantified.

The selected tracking model was purely rule-based and does not require any training
like the detection model. Hence, it can be easily extended to track object other than people.
Obviously, this is possible only when the the proposed methodology is able to both detect and
project objects categorically on the ground plane. The performance of this tracking approach
can be improved by passing more data specific to each detected agent for every frame. One of
such data can be agent’s visual information which can be included into the tracking framework
to obtain better outputs. Few of such tracking models which already make use of such
information were mentioned in section 8.1.

8.6 Summary and Conclusion

To get trajectories of agents in the interaction area, the anonymous projected points obtained
from the previous processes need to be associated with each other. A multi-object tracking
model (SORT [2]) was selected such that it uses only the available points on the ground plane
to perform this association. The selected tracking model uses a combination of prediction
and association processes to assign ids to every projected point. This model was originally
developed to be used for tracking agents using detection coordinated on visual images. In this
research, the source code was modified for tracking the detected agents using their ground
plane coordinates only.

The model’s release paper lacked a detailed explanation and identification of the model’s
parameter value. Thus, these parameter values were identified by in-depth study of the
model’s source code. A detailed understanding into the working of these parameter values
was developed by performing multiple runs (15∼20 runs) with varying set of values. The
output from these runs were also analysed to test and tune the parameters for the given data-
sets. The performance indicators used for this comparison were the number of ids generated
and their average lifespan. The final parameter values were used to obtain trajectories for all
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the three scenarios of the Green Village experiment. Later, these values are also used to obtain
trajectories from the Amsterdam dataset.

The trajectories provide the information of path followed by the agents throughout the
video. As the tracking model used the series of 2D-points as its main input, hence its
performance largely depends on the quality of these points (continuity, stability and other
anomalies). The results obtained suggest that the tracking model was able to account for some
of the shortfalls (false-negatives, false-positives) of the previous processes of detection and
ground plane representation.
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Chapter 9

Framework application - Amsterdam
Central dataset

In this section, the framework developed in the previous chapters using the Green Village data
was implemented on the Amsterdam Central data to extract agent trajectories on the ground
plane. This chapter is aimed at implementing and analysing the proposed data processing
framework on the real-world dataset to see its working on such datasets. The first section
represents the data processing framework developed using the Green Village data. Next
section outlines the test setup and the nature of dataset used in the chapter. The next sections
analysis the results from each of the data processing stage one-by-one. The last sections analyse
the results and discuss on the limitations and conclusions made from this Amsterdam case
study.

9.1 Developed Framework

From the previous sections, the developed data processing framework is represented in figure
9.1 with each stage namely: agent detection, depth extraction with ground representation and,
agent tracking. For each of these stages, the design choices selected and the parameter values
tuned on the Green village dataset are provided in table 9.1. These same values were used
on the Amsterdam dataset. Each of the following sections 9.3, 9.4, 9.5 are dedicated to each
data processing stage respectively. These sections start with mentioning the finding from the
previous chapters and then discuss the results obtained from this dataset .

Figure 9.1: Data processing framework for Amsterdam data
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Table 9.1: Overview of the design choices and the parameter values of each data processing
stage for Amsterdam data

Stage Design choice Parameters

Agent detection Faster R-CNN model
Threshold score = 0.75
Object class = Person

Depth estimation
Reference box Reference distance = 20 pixels

Statistical operation
X-distribution = Mean value

Y-distribution = Upper quartile value
Z-distribution = Lower quartile value

Ground representation
Coordinate

transformation

Rotate the original Y-Z plane along
X-axis using camera’s angle of tilt

(θ = 22◦)

Agent tracking SORT model
IoU threshold (IoUmin) = 0.1

Maximum age (maxage) = 30 frames
Minimum hits (minhits) = 1 frame

9.2 Test setup

When comparing the Green Village data with the Amsterdam data, the latter had agents
with much diverse set of appearances. They were also observed to perform motions in a
much more dynamic way and frequently changed their direction/speed of movement. As
there was no direct sunlight into the observation, no shadows were formed by the agents. A
more detailed discussion on the data collection and on-site observations is provided in section
5.2. As the observed space was near the ferry terminal, higher crowding levels were seen
as the ferries docked and its passengers moved through space. Thus, the dataset collected
during the Amsterdam dataset was divided into two categories based on the time of ferry
arrival which are: (i) Normal conditions (ii) Time of ferry arrival. Normal conditions are
times without any traffic of the passengers from the ferry near the shared space. While the
other category represents the data collected after the ferry arrival. After the ferry arrival near
the observed area, the passengers were observed egressing through the area which created
higher crowding levels than the normal conditions. During normal conditions, a single frame
of this dataset consisted of 5 to 15 agents in the observed area. While for the other dataset,
the average number of agents in a single frame were about 25 to 35 agents. Such division of
data allowed the following sections (section 9.3, 9.4, 9.5) to analyse the effect of crowding on
the performance of every data processing stage in this proposed framework. These sections
also make a comparison between the results obtained on the Green village dataset and the
Amsterdam dataset. This provides a better idea on the additional observations and conclusions
made while assessing the results from the real-world scenario.
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9.3 Agent Detection

For Amsterdam recordings, the people were detected using Faster R-CNN detection model
with a threshold score value of 0.75. Object category of people detects both pedestrians and
cyclists. This section first discusses different types of detections based on their accuracy which
are (i) Good detections, (ii) Inaccurate detections and (iii) False positive detections. Then, it
discusses the detections provided in the two different scenarios divided on the basis of ferry
arrivals. For better comparison, the number of detections are also quantified on a sample
dataset for both the scenarios.

The results visualising different types of detections based on accuracy can be seen in figure
9.2. Compared to the Green village data, the agents in Amsterdam data were captured with a
much diverse set of appearances. The bicycle riders were also observed to ride many different
types of bikes like cargo bikes, sports bikes and accessorised city bikes. Even after such
challenges, the detection model was able to detect agents as shown in figure 9.2a. The absence
of shadows in this scene contributed largely in obtaining stable and better fitting detections
boxes that the Green Village data. Inaccuracies in the detection boxes due to occlusion was
observed similar to Green Village data as seen in figure 9.2b. For agents further away from
the camera, the detections were unstable as there object size was small. Sometimes, the
reflection of agents passing nearby the glass window was also detected by the model as seen
in figure 9.2c. These were the only false-positive which was observed during the Amsterdam
experiment.

(a) Good detections (b) Inaccurate detections (c) False positive detec-
tion

Figure 9.2: Different types of detections based on accuracy for Amsterdam Central data

The snapshots of obtained detection w.r.t. the level of crowding are represented in figures
9.3a & 9.3b. To quality the number of detections in each scenario, a sample of 500 frames was
taken and the actual number of agents present in the frame were compared to the number
of detections provided by the model. For lower crowding conditions on average, the model
provided 5.95 detections against 6 number of people present in each frame. If a single agent
was observed for 250 frames in the camera, 235 detections were provided by the model. Here,
the agents were being detected even when they were close to each other but not occluding.
The main challenge here was agent’s occlusion itself. Dynamic appearances of agents did
not challenge the detection model at all. Thus, in this scenario the detections were stable
and the model was able to detect agents that were visible in the frame. For higher levels of
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crowding, on average 12 detections were obtained against 18 visible agents in the frame. When
a single agent was observed for a total of 300 frames, only 120 detections across its journey were
provided. Here, the occlusion occurred even more frequently as more number of people were
observed in the space. But, even in cases when agents were perfectly visible in the image, the
model was unable to provide detections for many of such agents. The problem of occlusion
was also identified during the detection analysis on the Green Village dataset (section 6.4) but
the inability of the model to even detection visible agents is a new observation which leads to
the following interpretation of the detection model.

This suggests that the detection model’s performance is not directly dependent on the
density of people observed but on the level of occlusion and the total number of people visible.
So, when the agent is occluded and when their are more people visible, the model tends to miss
the detections. But in case of less people, even when they are standing close and not occluding
each other, they were detected by this detection model. Such observations could not be made
during the controlled experiment due to limited number of volunteers.

(a) Normal conditions (low crowding)

(b) Time of ferry arrival (high crowding)

Figure 9.3: Detection for the two scenarios based on ferry arrivals for Amsterdam Central data
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9.4 Depth extraction and ground representation

After obtaining the coordinates of the bounding boxes w.r.t image coordinates using the
detection model, the depth data was extracted using the combination of reference boxes
and statistical operations. As proposed, the reference distance was set at 20 pixels and the
agent’s depth distribution was extracted. To obtain X, Y, Z coordinate value of the agent,
statistical operations of mean, upper quartile and lower quartile values was implemented on
each distribution respectively. Part of the observed area was out-of-range (> 20 meters) for
the camera to calculate its depth information. So, even when the detections were available
for people far from the camera, the depth information was unavailable as seen in figure 9.4.
Originally, these pixels contained null or no value which resulted in an error and crashed the
program while applying statistical operations on these null distributions. In such cases, the
depth data was programmed to output zero value for that detection.

(a) Detections on visual image (b) Detections represented on depth map

Figure 9.4: Depth map with detections out-of-range(>20m) for the camera

The ground plane w.r.t camera axis is represented in figure 9.6a. For Amsterdam data, the
camera’s angle of tilt was measured on-site as 22◦. Thus, the Yc- Zc axes were rotated along the
Xc axis by θ = 22◦ to get the transformed axes Xg, Yg, Zg for ground plane representation. The
ground plane coordinates w.r.t the transformed axes is represented in figure 9.6b. When looked
closely, it was seen that the ground plane was not represented as a straight plane but was
curved inwards (concavely curved). As the distance from the camera increased, the curvature
of the curve increased and formed a bowl-like formation as seen in figure 9.5.

To further support this argument, the 2D-coordinate values of the reference points A,B,C
(as describes in data collection section 5.2) were extracted using the Zed camera. The distances
between the camera pole’s footing, O(0,0) and reference points A(-6.8,11.3), B(-3,14), C(0.9,11.2)
as derived from the camera were calculated. The error between the on-site measured distances
and the calculated distances is given in table 9.2. This means for Amsterdam dataset, the Zed
camera was unable to accurately represent the ground plane as a straight plane. Such curve
in the ground plane was not observed in case of the Green Village dataset. This suggests that
the Zed camera under the current user settings (resolution, frame rate and other parameters)
and experimental setup (like lighting conditions) was unable to accurately estimate the depth
of the observed scene.

61



Table 9.2: Error between the on-site measurements and the calculated distances of the reference
points

Points
Measured

distances (m)
Calculated

distances (m)
RMSE

OA 14.00 13.17 4.74
OB 16.60 14.32 8.39
OC 12.90 11.25 6.31
AB 5.64 4.67 3.16
BC 5.15 4.80 1.86

Figure 9.5: Amsterdam’s ground plane represented with curved edges

(a) Original camera axes (b) Transformed axes

Figure 9.6: 3D-representation and coordinate transformation of Amsterdam scene to obtain
horizontal plane

Figure 9.7 represents the detections of the current frame on the visual images and the trails
obtained on the ground plane for the 100 frames. Here, the red dot represents the detections
on ground plane for the current frame while the smaller blue dots represents the trail of
detected agents over the past 100 frames. For each of the graph, the visual image on the
left represents the detection boxes on the visual images for the current frame. This is just a

62



way to visualise the 2D coordinates of agent on the ground plane and it does not affect the
data processing framework in any form. For agents standing far from the camera(> 20 m),
the depth estimations were unstable. This resulted in unstable representation of agents on
the ground plane. But when agents were clearly visible, both the detections and the ground
plane representation of trajectories were continuous and stable. In cases of good and stable
detections(as described in section 9.3), the proposed framework of estimating the agent’s 3D
location and representing it on the ground plane provided continuous trajectories.

(a1) Detection boxes
(a2) Detection trails

(a) Normal conditions (low crowding)

(b1) Detection boxes
(b2) Detection trails

(b) Time of ferry arrival (high crowding)

Figure 9.7: Detections with point trails for Amsterdam data

9.5 Agent tracking

For assigning ids to the agent’s 2D-points. the tracking model was used with selected
parameters (as in section 8.3). The comparison between the results obtained from the two
crowding scenarios was done on the basis of number of ids and their lifespans. Compared to
the Green Village data, the observation area of the Amsterdam area was larger. So, the agents
were in the frame for a larger time period. On average, a pedestrian took 450 frames while
a cyclists took 200 frames to cross the observed area. Thus, the threshold values to represent

63



these results was set at 120 frames, 360 frames and 600 frames. Segregating the outputs based
on these threshold values helped to better visualise and understand the distribution of id
numbers with there average lifespans.

Graph in figure 9.8 represents the distribution of ids with there average lifespans for both
the crowding scenarios. For the low crowding scenario, the number of ids were less but
had a longer lifespan due to uninterrupted and continuous detections. In higher crowding
conditions, the number of ids generated are much larger but with lower lifespans. This further
confirms that quality of input detections does have a direct impact on the working of such
tracking-by-detection based models. Figure 9.9 represents some of the trajectories obtained
for both cyclists and pedestrians. In Amsterdam, some of the pedestrians were also standing
still without moving. The detection model detected such agents on the same location across
multiple frames. The tracking model was also able to assign them with a constant id over
multiple frames. One such agent is represented with id number 269 in figure 9.9 who was
stationary for 750 frames (12.5 seconds). This means that the detection model was able to
detect and the tracking model was able to track agents even when they were stationary. In the
real-world applications, the value of this framework and its abilities to detect and track people
in motion and in stillness depends upon the type space observed.

Figure 9.8: Number of Ids with their average lifespans for Amsterdam data

Figure 9.9: Trajectory of agents (pedestrians and cyclists) on the transformed plane
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9.6 Discussion

If a comparison was done between the detections observed in figure 9.3a & figure 9.3b, then
people further away were easily detected in low crowded scenario but not in case of highly
crowded scenario. The model was also struggling to detect nearby objects in case of second
scenario. This can be a result of biases developed during the model’s training due to a biased
training dataset. To elaborate on this issue and to explain the generation of these biases in the
detection model, an imaginary example is used. Say the training dataset might have contained
images with a range of 10 to 15 people in one image. Thus, when this model will be faced with
30 people in one image, it will just detect 15 people and will miss other detections resulting
in false-negative detections. While in cases with fewer people, it might try to make at least
10 detections giving false positive detections. Thus, such detection models are not capable of
generalising the detection problem as they are unable to understand that there can be more or
less individual people in an image. Such biases can be removed by using a more representative
dataset while training the detection model based on the nature of its application.

From figure 9.6 representing the Amsterdam scene on the 3D plane, it can also be seen
that as the distance of points from the camera increases, the number of points represented
decreases. This reduction in number of observations can also be a factor in reducing the
accuracy of depth estimation as reported in the literature [33]. The Zed camera was unable
to project the Amsterdam’s ground plane as a straight surface. This was a limitation of
this camera which can be affected by the observed lighting conditions, nature of the surface
observed and the distance of the surface points from the camera. Different camera setting and
initial parameters can be tested in the future.

During the implementation of proposed framework on the Amsterdam dataset, the design
parameters (such as reference box’s size, tracking parameters) were used with similar values as
selected in the Green Village data. Due to the smaller size of people in the image and larger area
of observation, there are possibilities of tuning these values specific to the Amsterdam dataset.
In future, the parameter tuning framework developed and applied on the Green Village dataset
can also be used on this dataset.

9.7 Summary and Conclusion

This chapter applies the framework developed in the previous chapters on the Amsterdam
data. The dataset was divided into two scenarios, one recorded during the ferry arrival (high
crowding) while another recorded without the ferry passengers (low crowding). In this real-
world dataset, the agents (both riders and pedestrians) were observed with a large set of
varying appearances. Even then, the selected detection model was successfully able to detect
and draw bounding boxes around the agents. The stability and fit of the detection boxes were
affected by the level of occlusion, total number of visible agents and the object’s shadow. The
absence of shadows in the Amsterdam dataset largely contributed to the improved fit of the
bounding box compared to the Green Village data. In low crowding scenario, occlusion was
the main reason for missed detections. In high crowded scenario, frequent occlusion was
observed. Here, large number of perfectly visible agents also passed undetected (possibly
due to biases in the detection model generated due to biased training dataset). Thus, the
performance of this detection model was largely dependent on the occlusion and the total
number of people visible but was independent of the density by itself.
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During depth extraction, the Zed camera was unable to calculate the depth information of
scene at distance greater than 20 meters. Thus, even when the detection were available, the
agent’s depth could not be extracted. For the ground plane representation of the extracted
3D-point, the measured angle of tilt of 22◦ was used. The ground plane was projected as
a concavely curved plane instead of a straight plane. Hence for larger areas with greater
distances, the depth information from the Zed camera was unable to project the ground plane
as a straight plane. Thus, the obtained agent coordinates were w.r.t this curved ground plane
and not on a straight plane.

During tracking at low densities, the assigned ids were with longer lifespans due to
continuous and uninterrupted detections. For brief occlusions, the tracking model was able
to perform tracking even across missed detections. At higher crowding levels, the average
lifespan was much lower as the input 2D-points were fragmented and unstable. Thus, the
model was unable to account for much of the errors passed on by the detection model as they
were excessive. The last chapter of conclusion includes a overall discussion (section 10.1) of
this framework and elaborates on its limitations and possible improvements.
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Chapter 10

Conclusion

This section concludes all the findings of this thesis report by initially discussing the main
advantages, challenges and recommendations for the proposed framework. The research
questions are answered in section 10.2 followed by the main contributions of this research
for the scientific community and society. The last section lays out the future work to further
advance the proposed framework.

10.1 Overall discussion and recommendations

Discussion for each of the individual steps during this thesis project has been included in
every chapter above. This section links all these different chapters and provides an overall
discussion. It mentions the limitation and recommendations for possible improvements upon
the proposed framework and the methodology used in this research. It also reiterates some
of the important discussion points previously mentioned in the report. A summary of all the
discussion points are provided in table 10.1.

Zed camera

Regarding the Zed camera, the software provided by the manufacturer had a good user
interface and the online community support was overwhelming. The camera was small, light
and easy to carry and install. The advantage of using the Zed camera was that the camera was
sensitive to detect small changes in the depth values and it eliminated the need for any on-
site camera calibrations. The correction for lens distortion is done using the camera’s generic
software. However, it needed heavy on-site support it terms of the GPU-enabled computer
with a constant power supply. For a smaller depth range (10-12 meters during the Green
village experiment), the ground surface was projected as a straight plane. For such distances,
the camera also exhibits high sensitivity for even subtle changes in the recorded area. But for
larger ranges (15-20 meters in the Amsterdam experiment), the ground plane was projected as
a curved plane and not as a straight plane. Thus, the accuracy of camera’s depth estimation
was dependent upon the distance measured by the camera. It can be improved by further
investigating into the camera’s depth estimation process and testing different user settings
(resolution, frame rate and other parameters). Using multiple Zed cameras to observe the area
can also increase the accuracy and range of the camera setup.
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Agent detection

The detection model provides one of the main inputs into the proposed framework. It provides
the agent’s bounding boxes and thus their location with every time-step. The quality of these
detections highly determines the output quality of the later processes. The detection models
were able to detect agents in real-world conditions even when they were seen with much
varied appearances. Two main limitations of this model were (i) occlusion and (ii) higher
number of total agents (about >15∼ 18 agents) in the frame. Occlusion makes the information
needed for detections scare which can be challenging to resolve using the detection model
but can be partially solved by the tracking model as explained later. The limitation of the
maximum number of agents present in the frame can be a result of biases generated by the
training dataset. This can always be improved by re-training the model on additional datasets
consisting of labelled images with a higher number of agents. The ability to train such neural-
network based detection models and fit it to a custom dataset can also be seen as one of the
main advantages of this framework. Multi-camera setups can observe the scene from different
angles and reduce the number of missed detections due to agent occlusion.

Depth extraction and ground representation

While designing the depth extraction process, the sample dataset used during the parameter
tuning was minimal (10 frames only). A much larger and more representative sample dataset
can be used to obtain better results. The process of tuning should always avoid overfitting as
the sample dataset is always limited compared to the overall data size. The reference box’s
shape and size, and the statistical operation was fixed for all the agents. These operations can
also be designed to be a function of agent’s location within the image. This might improve the
overall depth extraction processes, particularly for agents in the edge frames. For representing
agent on the ground plane, the proposed framework needs only the camera’s angle of tilt as
an on-site measurement for coordinate transformation. The output of depth estimation and
ground representation stage was the agent coordinated on the ground plane for every time-
step. The main challenge faced this process was the discontinuity of projected points due to
missed detections. This challenge can be overcome by improving the detection model. The
output of 2D-coordinates with every time-step is the most fundamental data and can be used
to calculate many other forms of data such as flows, densities, trajectories, speeds and so on.
This research focuses on one of many data processing possibilities which was to obtain agent
trajectories on the ground plane.

Agent tracking

In the agent tracking chapter, the model was selected to use only the agent’s 2D-points on
the ground plane. SORT tracking model was able to track agents by assigning ids to the
anonymous 2D-points. Using the id number, all the 2D-points related to the respective id were
extracted and plotted to derive the agent’s trajectories. In cases when an agent briefly passes
undetected by the detection model (mainly due to occlusion), the tracking model was still able
to assign ids across those missed detections. Thus, this model was able to account for some of
the shortfalls passed on by the detection model. But in cases when detections were not at all
continuous and stable (high-crowding), the tracking model failed to provide full and unbroken
trajectories. As the detection model itself failed in high crowding scenario, this research was
unable to test the tracking model for situations when a large number of closely located points
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are inputted into this model continuously. To improve the tracking model, adding other forms
of data (like visual information) into the tracking process can enhance its performance and
reduce its reliance on the performance of the previous processes. During the parameter tuning
process, the performance of different runs was relatively judged. A better tuning framework
can be designed using the ground truth trajectories as reference.

Overall approach

While applying the developed framework on the Amsterdam data, parameter values tuned
during the design phase were used. There is a possibility to tune these parameters on every
custom dataset provided that a reliable ground truth dataset is available. Both Zed camera’s
depth estimation process and the detection model’s agent detection are entirely dependant on
the quality of visual information recorded by the Zed camera. Thus, this overall dependence
of the proposed framework on the visual data makes its implementation under low-light
conditions limited. Each stage of the proposed framework is very much fragmented i.e. there is
absence of any feedback loop amongst these individual processes. For example, the detection
process is not informed by either the depth data or the tracking algorithm to detect agents in a
video. Such frameworks can have its advantages and disadvantages. The current individuality
of each process allows future researchers with the flexibility to swap or modify one process
without the need to change much of other processes. While integrating these process can
provide better performance but at the expense of such modularity. Some of the possibilities of
integrating different processes are mentioned in section 10.4 while describing the future work.
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Table 10.1: Summary of the main advantages and challenges faced by each stage/process and
the recommendations for further improvements.

Stages Advantages Challenges Recommendations

Z
ed

ca
m

er
a

• Small, light, easy to carry
and install.
• Eliminates the need of

on-site camera calibrations.
• The camera is sensitive to

detect small changes in the
depth.
• Easy sharing and using of

raw data (free software).

• Inaccurate depth
estimation for longer
ranges.
• Heavy on-site

support.

• Exploring better
ways to use the
camera (and its
software).
• Multi-camera setups

for better depth
estimation and range.

A
ge

nt
de

te
ct

io
n

• Able to detect people in
real-world scenarios.
• Effective in differentiating

between people and other
objects (bags, suitcases,
bicycles, etc.).
• Negligible false positive

detection.

• Missed detections
due to occlusion of
agents.
• Missed detections

in high crowded
situations due to
biases.
• Sensitive to agent’s

shadow.

• Multi-camera
setups to overcome
occlusion.
• Re-training the

detection model on
custom data sets for
better performance.

D
ep

th
ex

tr
ac

ti
on

&
gr

ou
nd

re
pr

es
en

ta
ti

on • Reduces on-site
measurements (only
camera’s angle of tilt is
needed).
• Filters background pixels

and errors passed on by
the detection process.

• Discontinuous
points due to missed
detections.

• Making depth
extraction process
more dynamic and
robust.
• Improving the

detection model for
continuous points.

A
ge

nt
tr

ac
ki

ng

• Able to overcome missed
detections for small time-
steps.
• Model is purely rule-based

and can be extended to
track other objects.

• False swaying and
vibrations.
• Highly dependent on

detections.

• Curve smoothening
over certain time-
steps.
• Pass/add more

information in the
tracking model.
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10.2 Answers to research questions

• Which features of the stereo-vision camera are to be considered for recording the movement of
people in shared spaces?

The camera features considered while selecting a stereo vision sensor were: (i) sensor’s
type, (ii) range of depth sensing, (iii) quality of data recording, (iv) software support
and (v) market price. The methodology of the sensor to collect depth information of
its surrounding divided the depth sensors into two types, active sensors and passive
sensors. The distance up to which the camera can sense depth is said to be its depth
sensing range. The quality of the recorded data is determined by two factors, its image
resolution and its frame rate (frames per second). The software support includes the
generic software provided by the manufacturer and the online support available for the
selected camera. This feature is particularly important to consider when working with
such new technological devices. It determines the ease with which the recorded depth
data can be integrated into the data processing framework. Lastly, the camera’s buying
price was also one of the factors considered during this selection process.

• Which factors are considered while selecting the location of and designing the data collection
experiments?

During this research, two data collection experiments were performed, one in a
controlled environment while another in a real-world environment. For both the
experiments, the Zed camera recorded the data at 720p, 60fps. The factors considered
during each of these experiments are explained in the following paragraphs.

The controlled experiment aimed to test the camera setup for its data collection abilities
and to use the collected data to develop the data processing framework. To test the setup,
an outdoor location was selected such that the camera was exposed to external factors
(heat, sunlight), internal factors (data transfer and storage) and tested the reliability
of other supporting devices (mini-computer, data cables, pan-tilt, power supply). As
the research was aimed at developing the framework for cyclist and pedestrians, one
scenario dedicated to each of these modes was designed. To include the shared-space
perspective, a mixed flow scenario involving interactions between both the modes was
also designed. The camera’s height and the angle of tilt were chosen to mimic the real-
world data collection setup.

For the second data collection, the aim was to collect a real-world recording of shared
spaces. This dataset was then used to test the developed framework for real-world use.
The location was selected based on three criteria: (i) Shared space consists of mainly
pedestrians and cyclist, (ii) multi-directional flow of traffic and (iii) Allow testing for
different crowding conditions. The camera setup in terms of its location and the type
of setup to be used was largely governed by the nature of permissions provided by the
local authorities.

• From the data recorded using the stereo camera, how can the agents (pedestrians and cyclists) be
identified and localised on the ground plane?

The proposed data processing framework to localise the agent on the ground plane using
the data recorded using the Zed camera was divided into two stages, (i) agent detection,
(ii) depth extraction and ground representation. Each paragraph below briefly explains
the two processes.

71



In the agent detection stage, the visual video from the Zed camera is processed using
a detection model which was able to locate the agents on every frame of the video.
The detection model used in this research was a pre-trained Faster R-CNN model. The
model was modified to identify specific object types. It was successfully able to identify
and differentiate between a person and a bicycle using the visual images only. Both a
pedestrian and a cyclist were categorised as a person. This model was able to locate the
object in the image by providing bounding boxes around the detected agent. The output
provided by the model consists of the detected agent’s image coordinates with their
respective frame numbers and the object types. The quality and stability of detections
were dependent on the level of occlusion, total number of people in a single frame and
people’s shadows.

In the depth extraction process, the image coordinates of the agent were used to refer
to the depth map calculated by the camera. The depth map consists of 3D-coordinate
values (X, Y, Z values) for every pixel of the image w.r.t. the camera’s coordinate system.
An imaginary reference box of size 40 by 40 pixels was used to refer to the agent’s depth
information from the depth map. As this provided with a distribution of coordinate
values for each agent, a statistical operation was applied to obtain a single coordinate
value. Mean, upper quartile and lower quartile value for the X, Y, Z distribution were
taken respectively. When designing the framework, the depth estimation for bicycles
was unstable and unreliable as they provide less number of pixels for depth estimation.
Thus, only people (pedestrians and cyclists) were represented on the ground plane.

As the camera was tilted w.r.t. the horizontal ground surface, the camera’s coordinate
system was rotated to make one of the planes (X-Z plane) parallel to the ground plane.
The resultant coordinate values w.r.t the transformed plane were then used to represent
the agent on the ground plane. The angle of rotation was same as the camera’s angle of
tilt which can be measured during the data collection.

The framework for the above two stages was developed using the Green Village in
chapter 6 & 7 respectively. These sections provide a detailed explanation of the design
choices and the parameter values chosen for these stages. Sections 9.3 & 9.4 analyse the
results obtained from applying this framework on the Amsterdam dataset.

• Which of the existing object tracking frameworks can be integrated with the extracted agent
coordinates to provide trajectories on the ground plane?

The trajectories provide the information of path taken by the agent through the observed
space. From the previous processes, the agents were already represented on the ground
plane for every time-step (as per the video’s frame rate). To obtain the trajectories, the
tracking model should be able to perform (i) tracking using the agent’s 2D-coordinates
and, (ii) distinguish and track multiple objects simultaneously. Using these selection
criteria, the SORT tracking model was selected and used in this project [2]. This tracking
model was originally developed to track the detected objects on an image. But for this
research, the model’s python code was modified to track agents using the ground plane
points.

The tracking model assigned unique ids to a series of projected points by performing
association of individual points throughout the frames. Using the id-number, the series
of points can be extracted to plot the trajectory of a single agent. This tracking model
was able to provide ids even when the series of points were sometimes discontinuous
and thus accounting for the false-negative (or missed) detections. During the process of
association, the model also deleted some points which were not being associated with
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any valid id-number. This means the model was also able to account for false-positive
detections passed on from the previous processes. The parameters of this tracking model
were also identified and tuned based on the Green Village dataset in section 8.3.

After answering all the sub research questions above, the answer to the main research
question is as follows:

What can be a data gathering and processing framework to automatically extract
trajectories of cyclists and pedestrians in a shared space environment using a 3D-stereo
vision camera?

The research question focuses on two main research objectives which was to develop a data
gathering and a data processing approach. For data gathering, the stereo camera was selected
as the Zed camera. Its features were selected considering its further use in observed real-world
shared spaces. The two data collections performed during this thesis also allowed the testing
of camera’s supporting hardware which was important to utilise this sensor at its full potential.
During the data collections, the Zed camera was installed in a tilted orientation to allow the
development and testing of data processing framework in such real-world situations. For the
later data processing stages, only two kinds of data were to be collected on-site, (i) recordings
by the Zed camera and (ii) camera’s angle of tilt. For validation purposes, certain number of
ground measurements can also be collected.

The data processing framework was developed to automate the trajectory extraction using
the data collected by the Zed camera. The framework was divided into three stages, (i) agent
detection, (ii) depth extraction and ground representation and, (iii) agent tracking. Agent
detection uses a neural-network based object detection model. Here, the visual images from
the Zed camera are taken as input to output the bounding boxes around the agents for every
frame of the video. The depth extraction stage combines the depth data calculated by the
camera and the bounding boxes to output 3D-coordinates of the agent. As these coordinates
are on tilted camera axes, the ground representation stage rotates the coordinate system to
make one of the plane parallel to the ground plane. The agent’s coordinate values along this
transformed plane is used to represent it on the ground plane. The tracking stage uses these
set of ground plane points to assign them with ids automatically. These ids can then be used to
extract a set of ground plane points to derive agent trajectories. As overview of the final data
processing framework with all the parameter values are provided in section 9.1.

10.3 Main Contributions

This section identifies the key contributions made during this research based on the research
gaps identified from the literature review. These contributions are divided into parts, (i)
Scientific and (ii) Societal contributions.

10.3.1 Scientific Contributions

This thesis provides a data collection framework by using the Zed stereo-camera and investi-
gates its abilities to record the real-world data from a tilted orientation and then represent the
agents on the ground plane. In the process, this thesis also formulated a methodology to derive
the Zed camera’s angle of tilt which can be used to validate the on-site measurements provided
that the depth data recorded is reliable. As this project collects the data first-hand, this collected
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data itself is a contribution which can be used for further investigations. Especially, the
recordings with agents wearing the red caps can be used to to derive the ground truth and
compare the performances of different data extraction methodologies.

While designing the data processing framework, this thesis has integrated various indi-
vidual processes of data extractions and has tested it in the real-world shared spaces. During
the analysis of the results, limitations and biases of the tracking model were identified many
of which can be improved to enhance the framework’s performance. In case of real-world
datasets, lack of automation in the data extraction process was one of the main motivations of
this research. This project has investigated automation of data extraction at every stage of its
data processing framework and has identified its strengths and weaknesses. Such frameworks
focusing on automation and data quality will encourage future researchers to collect and
include real-world datasets in their studies.

10.3.2 Societal Contributions

By providing better tools for data collection and automating the data processing, this thesis has
contributed towards improving data quality while reducing the efforts for data processing. By
limiting (or eliminating) the manual and repetitive tasks performed otherwise during data
extractions, the costs of undertaking such detailed studies on gathering data on people’s
movement certainly reduce. Lower costs will encourage not only academic community by
also commercial consulting companies and local governments to perform such studies on
people movement. By including such detailed traffic analysis into the design process of public
spaces can help improve overall quality and usability of the infrastructure. Moreover, reduced
costs of such data-backed analysis can also allow urban planners to understand each space
individually and design custom solutions for every scenarios.

10.4 Future Work

This section discusses the possible future directions to advance the work done in this thesis.
Some of the recommendations and smaller improvements in the current framework while
using the model have been mentioned in previous section 10.1. This sections discusses the
research opportunities in the future.

• Lighter camera setup: Regarding the data collection setup, the Zed camera itself is
very light and easy to carry and install. But, the camera’s supporting hardware (mini-
computer, power supply) is heavy and needs constant on-site support. Thus, more
research is needed in designing the setup to be light, self-sufficient, easy to carry and
install on-site. This will help facilitate the use of such data collection setups in the future.

• Sharing of information between different processes: The proposed data collection
framework is very much top-down as the flow of information is only one-way. In future,
integrating different stages and sharing of information between different processes can
be investigated. For example, the tracking process can be designed to nudge the
detection model to detect agents. It might help reduce the number of missed detections.
Similarly, the depth information can also guide the detection model to make better
bounding boxes and filter the background pixels.
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Different processes can also be integrated into a single process to provide better output
quality. For instance, the detection model and the depth information can be integrated
to form cuboids enclosing the whole agent in 3D-space. This will truly integrate the two
stages and eliminate the need for additional depth extraction process.

• Multi-camera setups: Such camera configurations can help overcome the problem of
occlusion as the space can be observed from multiple directions and increase the overall
depth-sensing range of the setup. Thus, improving the stability, reliability and accuracy
of the output data.

• Mode-based tracking: Using the ability of the detection model to visually differentiate
modes and integrating it with some mode specific movement characteristics (like speed),
mode-based detection and tracking can also be explored.

• Exploring the use of location data: In this research, the agent’s location with every time-
step was used to derive agent trajectories. This location data can also be used to derive
other information of motion such as densities, speeds, flows and so on.

• Validation: This framework is still in its early stages. As this framework matures, an
extensive validation study to compare its output with the ground truth can be performed.
Before this, a methodology to determine a reliable ground truth data also needs to be
developed.

• Open sourcing the raw data: Lastly, even though the process of data extraction can
be automated and improved, the data collection process remains a manually intensive,
costly and cumbersome process. This initial process acts as a threshold and might
discourage many researchers from undertaking such projects and advancing this field
of computer vision. In future, this threshold can be reduced by making the 3D-
dataset publicly available. Moreover, a standardisation framework can be designed to
benchmark the performance of different algorithms on the given 3D-dataset. This will
allow further advancement into the field of people tracking using 3D-data and help
unlock its immense potentials.
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Appendix A

Appendix

A.1 Hardware selection

The camera generates a huge amount of raw data while recording which would take up large
disk space within short recording periods(0.9TB per hour). To overcome this barrier, a HP
Z2 mini workstation with Nvidia Quadro P1000 GPU was used for recording, storing and
processing the data. It has 4GB GPU memory while being light and easy to carry on-site during
data collection. Other supporting hardware includes a pan tilt and a USB data extension
cable. The pan tilt used was Zifon’s YT-260 a wireless remote control with a panning angle
of 230 degrees. The extension cable used was Lindy’s USB 3.0 Active Extension measuring 10
meters. This was to have flexibility with the camera in adjusting its angle and the distance of
connections while collecting data.

Table A.1: Technical specifications of Zed camera

Physical
characteristics

Dimension: 175x30x33 mm
Weight: 159g

Resolution and
Frame rate

2x(2208x1242)@15fps
2x(1920x1080)@30fps
2x(1280x720)@60fps
2x(640x480)@100fps

Depth
Range: 1m to 20m
Baseline: 120mm

System
requirements

Windows or Linux
USB 3.0
> 4GB RAM,
Nvidia GPU
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A.2 Calculation for Green Village data

The distances in table A.2 are calculated using the Euclidean distance formula.

Table A.2: Calculated coordinate values for agent in Bi-directional, less-crowded scenario (in
meters) (section 7.1) (Frame 175: left edge frame, Frame 422: centre frame, Frame 590: right
edge frame )

Frame no. 100 175 245 292 358 422 490 521 590 630
Xg -5.40 -4.00 -2.70 -1.50 0.00 1.00 2.30 3.30 4.60 5.50
Yg 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09 5.09
Zg 6.30 6.20 6.15 6.10 6.10 6.10 6.10 6.00 6.00 6.10

Distance
(from camera)

9.73 8.96 8.43 8.09 7.94 8.01 8.27 8.53 9.11 9.66

Ground
distance

8.30 7.38 6.72 6.28 6.10 6.18 6.52 6.85 7.56 8.21

Table A.3: Camera’s distance estimation (in meters) and the difference in distances (∆D(%))
from the reference distances (section 7.2)

Frame no. 100 175 245 292 358 422 490 521 590 630

C
am

er
a’

s
di

st
an

ce
es

ti
m

at
io

n

R = 5 9.55 8.60 8.29 7.61 7.68 7.67 8.12 8.43 8.53 8.96
R = 10 9.32 8.56 8.11 7.63 7.62 7.64 8.10 8.40 8.58 8.98
R = 15 9.29 8.54 8.07 7.60 7.67 7.64 8.10 8.26 8.61 9.00
R = 20 9.38 8.48 8.12 7.76 7.73 7.74 8.19 8.39 8.66 9.06
R = 25 9.33 8.56 8.13 7.82 7.86 7.80 8.23 8.46 8.66 8.85
R = 30 9.49 8.54 8.21 7.83 7.79 7.81 8.29 8.50 8.75 8.75

∆
D

(%
)

R = 5 1.89 4.06 1.64 5.82 3.37 4.23 1.79 1.25 6.43 7.26
R = 10 4.22 4.51 3.78 5.63 4.13 4.63 2.12 1.59 5.85 7.08
R = 15 4.53 4.68 4.20 5.95 3.50 4.58 2.05 3.14 5.53 6.82
R = 20 3.63 5.36 3.60 4.04 2.64 3.31 0.97 1.69 4.98 6.22
R = 25 4.20 4.55 3.50 3.25 1.09 2.60 0.45 0.85 5.02 8.45
R = 30 2.48 4.72 2.55 3.19 1.93 2.53 0.20 0.35 4.05 9.49

Average
∆D(%)

3.49 4.64 3.21 4.64 2.78 3.65 1.26 1.48 5.31 7.56
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Table A.4: Calculation for unknown angles of tilt for ground plane representation of 3D
coordinates (section 7.3)

Frames 100 175 245 292 358 422 490 521 590 630

C
oo

rd
in

at
es

w
.r.

t.
ca

m
er

a
ax

es

x c -5.72 -4.27 -2.97 -1.92 -0.52 0.62 2.07 2.72 3.97 4.67

y c -1.67 -1.87 -2.12 -2.27 -2.37 -2.52 -2.82 -2.72 -2.77 -2.92

z c 7.11 7.00 7.24 7.16 7.32 7.28 7.41 7.42 7.11 7.14

Y-
Z

ro
ta

ti
on

(θ
=5

5.
65

2) z g 5.40 5.50 5.84 5.92 6.10 6.20 6.51 6.44 6.31 6.44

y’ 4.93 4.73 4.79 4.63 4.71 4.59 4.53 4.59 4.31 4.25

X
-Y

ro
ta

ti
on

(Φ
=-

5.
31

9) x g -5.24 -3.82 -2.52 -1.49 -0.09 1.05 2.49 3.14 4.36 5.05

y g 5.44 5.10 5.04 4.79 4.74 4.51 4.31 4.32 3.93 3.79

A.3 Output of detection model, depth extraction and
ground representation

Table A.5: Sample output for Green Village dataset (mixed flow scenario) with frame number
(column 1), bounding box coordinates (column 2-5), prediction score (column 6), object class
(column 7), 3D coordinates (column 8-10)

framenr ymin xmin ymax xmax score class x y z
1 0.397363 0.520452 0.585258 0.569599 0.995047 1 0.989893 4.559073 3.11012
1 0.172934 0.407298 0.392473 0.45757 0.991616 1 -0.27639 4.73721 4.972407
1 0.555708 0.375584 0.823067 0.467958 0.986595 1 -0.21559 5.039148 1.976348
: : : : : : : : : :
2 0.395719 0.52064 0.585019 0.569912 0.992535 1 0.988496 4.525624 3.10555
2 0.150732 0.404539 0.357152 0.453859 0.981254 1 -0.3378 4.720756 5.203262
2 0.190645 0.297931 0.391355 0.356465 0.980762 1 -1.569 4.924088 4.967777
: : : : : : : : : :
3 0.395678 0.520655 0.584946 0.56991 0.993081 1 0.991506 4.539735 3.115287
3 0.153027 0.404484 0.377377 0.453528 0.984878 1 -0.33663 4.734605 5.148144
3 0.147485 0.35858 0.324592 0.408581 0.981243 1 -0.89053 4.628875 5.243807
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A.4 Input and output for the tracking model

Table A.6: Sample input into tracking model for Green Village dataset (mixed flow scenario)
with frame number (column 1), id number (column 2, -1 is garbage value), ground coordinates
(column 3-4)

framenr Id x z
1 -1 0.989893 3.11012
1 -1 -0.27639 4.972407
1 -1 -0.21559 1.976348
: : : :
2 -1 0.988496 3.10555
2 -1 -0.3378 5.203262
2 -1 -1.569 4.967777
: : : :
3 -1 0.991506 3.115287
3 -1 -0.33663 5.148144
3 -1 -0.89053 5.243807

Table A.7: Sample output of tracking model for Green Village dataset (mixed flow scenario)
with frame number (column 1), id number (column 2), ground coordinates (column 3-4)

framenr Id x z
1 1 0.989893 3.11012
1 2 -0.27639 4.972407
1 3 -0.21559 1.976348
: : : :
2 1 0.988496 3.10555
2 2 -0.3378 5.203262
2 3 -1.569 4.967777
: : : :
3 1 0.991506 3.115287
3 2 -0.33663 5.148144
3 3 -0.89053 5.243807
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