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Abstract

Electric vehicles (EVs) equipped with vehicle-integrated photovoltaics (VIPV) and EVs with vehicle-to-grid
(V2G) technology can support in overcoming power grid challenges emerging from the energy transition.
Despite the widespread benefits that VIPV and V2G have to offer, their potential impact on battery life governs
their economic viability. Current studies on the impact of VIPV and V2G on battery life are often simplistic, use
unrealistic battery data, and rarely investigate methods to reduce battery ageing. To fill this research gap, this
study combines validated models to determine the impact of VIPV and V2G on EV battery life and investigates
methods to reduce battery ageing.

First, an EV battery data generation model was developed to simulate EV load profiles with and without VIPV
and V2G. Afterwards, a one-year mobility and charging profile was constructed based on EV driving data in the
Netherlands and Germany. Subsequently, driving cycles were simulated using Lightyear’s Vehicle Performance
Model (VPM) to generate realistic per-second EV battery data. Following this, VIPV power generation profiles
for the Netherlands and Spain were modelled using Lightyear’s SolarSimulator tool. Thereafter, two load
profiles of V2G services in the Netherlands were modelled, namely day-ahead electricity trading and automatic
frequency restoration reserve (aFRR), both with a battery capacity retention limit during V2G of 50% state of
charge (SoC) and 20% SoC. The VIPV and V2G load profiles were merged with EV battery data to generate eight
EV battery datasets. Finally, the EV battery datasets were implemented in a semi-empirical NMC-based ageing
model (NMC-AM) and a semi-empirical LFP-based ageing model (LFP-AM) to determine the impact of VIPV
and V2G on battery life.

Results from the EV battery data generation model show that gradual VIPV charging can reduce the annual
grid charging frequency by 23% in the Netherlands and 44% in Spain. Reduced grid charging frequency due
to VIPV caused the battery to range at lower SoC, which is beneficial for battery calendar life. Consequently,
NMC-AM suggests that VIPV could extend battery life by 6 months, while LFP-AM suggests a battery life
extension of 2 months. However, additional irregularity in the load profile due to gradual VIPV charging is likely
to have caused the ageing models to overestimate cycling ageing. Furthermore, the ageing models suggest that
additional cycling due to V2G, with the aim of maximising profits for the EV owner, could shorten battery life
by 7.8 to 12.5 years for NMC and by 1.2 to 3.9 years for LFP. The results of the ageing models indicate that LFP
batteries are more resistant to additional cycling than NMC, which is in line with literature.

Additionally, simulated scenarios in which the SoC was kept at 50% or 100% for one month per year, showed
that SoC regulation could extend battery life by up to 2 years, allowing for 38,000 km of additional driving range
before the battery reaches its end of life (EoL). Furthermore, results suggest that VIPV could lower battery
temperature by 10 °C within one sun hour and can keep the battery cool when parked in the sun, by 23 °C in
the Netherlands and 35 °C in Spain. Ageing simulations in which VIPV was used to cool the average annual
battery temperature by 5°C, suggest that VIPV can extend battery life by up to 4.6 years, allowing for 88,000 km
of additional driving range before the battery reaches its EoL. SoC regulation can be performed by delayed
VIPV charging, delayed grid charging, or V2G. Battery temperature regulation can be performed using VIPV or
grid power. Taking electricity cost into account, grid-powered battery temperature regulation could prove to
be a cost-effective method to extend battery life, especially for EVs experiencing extreme temperatures.

Furthermore, as semi-empirical ageing models often lack clarity regarding their implementation, are
usually not based on ageing tests with irregular load profiles, do not consider path dependency, are based on
accelerated ageing tests under limited operating conditions and on a particular battery cell chemistry and size,
applying these ageing models on irregular load profiles or other cells may lead to ageing estimation errors.
Consequently, to determine how VIPV impacts battery cycle life, it is recommended to conduct battery ageing
tests under identical operating conditions, with and without VIPV. Further research on the impact of VIPV on
battery life would help develop strategies that optimally balance VIPV power used for battery charging and for
battery temperature regulation.

Concluding, this research shows promising initial findings on methods to reduce battery ageing using VIPV
and V2G, which could further improve their business case, accelerating the transition to sustainable mobility.
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1
Introduction

In both 2020 and 2021, the transportation sector was the most significant contributor to the European Union’s
(EU) greenhouse gas (GHG) emissions [20, 86]. With the intention of reducing GHG emissions from trans-
portation, the EU recently announced measures that no longer allow cars or vans with an internal combustion
engine (ICE) to enter the market from 2035 onwards [24]. Compared to ICE vehicles, electric vehicles (EVs) are
responsible for a considerably smaller amount of GHG emissions [22, 100]. In Europe in 2021, the full life-cycle
GHG emissions of an average EV were 66% lower than comparable ICE vehicles [27]. The introduction of
EVs can thus plays a crucial role in decarbonising the transportation sector. Fortunately, global EV market
penetration is estimated to reach 56% by 2035, as shown in the left graph of Figure 1.1 [58]. Although EVs can
help reduce GHG emissions from the transportation sector, the increasing market penetration of EVs can cause
grid congestion and electricity shortage risks for Transmission System Operators (TSOs) and Distribution
System Operators (DSOs). Vehicle-to-grid (V2G), which enables EVs to discharge electricity into the power
grid, and vehicle-integrated photovoltaics (VIPV) which enables EVs to charge using solar energy, can support
grid operators in overcoming these power grid challenges.

EVs with V2G can enable a more reliable electricity grid by offering electricity trading and grid balancing
services to TSOs. By charging from the grid when electricity demand is low and discharging into the grid when
electricity demand is high, EVs can collectively act as a virtual power plant to even out energy imbalances for
TSOs. EV owners can thereby benefit from low charging costs during low electricity demand and are financially
compensated for offering balancing services during high electricity demand.

EVs with VIPV, or solar electric vehicles (SEVs), partially charge from the sun and are designed to be energy
efficient. SEVs thereby naturally demand less electricity from the power grid compared to typical EVs, which
helps DSOs reduce grid congestion [106]. Research suggests that a 20% market penetration of SEVs in the
Netherlands could reduce investments in the Dutch power grid by €2.2 bn in the 2022-2040 period [71].

However, to realise the widespread implementation of VIPV and V2G, the technologies must be cost-
effective [41]. By discharging and charging the battery, VIPV and V2G impact battery life. While the cost of
batteries is expected to reduce significantly, batteries are expected to remain the most expensive subsystem of
an EV, as shown in the right graph of Figure 1.1 [18, 46, 50]. The impact of VIPV and V2G on battery life thereby
governs their economic viability [41, 89].

Figure 1.1: The left graph shows the estimated global EV market penetration forecast from 2020 to 2050 [58].
The right graph shows the estimated cost of manufacturing different EV subsystems for 2020 and 2030 [46].
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2 1. Introduction

Researchers agree that additional cycling for V2G services is harmful to Li-ion battery life [18, 59, 96,
106, 114]. One study found that when batteries are additionally cycled for V2G services with the aim of
maximising profit for the EV owner, V2G services can result in a 75% increase in capacity loss [18]. Another
study found that with an optimised V2G strategy, V2G can extend battery life [98]. Although researchers
agree that V2G services without battery life optimisation strategies will shorten battery life, the impact of V2G
services available in the Netherlands on battery life has yet to be researched. The most extensive study on
the impact of VIPV on battery life found that solar panels could elongate battery cycle life [50]. However, the
researchers neglected the impact of VIPV on battery calendar life and considered only one battery ageing
stress factor, while multiple stress factors impact ageing. Additionally, the model-based study used a simplistic
battery model to simulate EV battery data. Furthermore, researchers have studied methods to extend battery
life by lowering the average battery state of charge (SoC) [18, 33, 98], which is considered beneficial for Li-ion
batteries [5, 18, 81, 84, 102]. Moreover, while increased battery temperatures also heavily impact Li-ion battery
life, methods to reduce battery ageing through VIPV and V2G-powered thermal battery management have
yet to be researched [5, 81, 102]. Generally, it appears that studies on the impact of VIPV and V2G on battery
life either use unrealistic load profiles or simplistic ageing models to determine the impact on battery life.
Moreover, methods to extend battery life using VIPV have not been investigated.

To fill this research gap, this study determines the impact of VIPV and V2G on EV battery life using validated
models. First, Lightyear’s Vehicle Performance Model (VPM) is used to simulate realistic EV battery data.
Following this, Lightyear’s SolarSimulator tool is used to model VIPV power generation profiles for the Nether-
lands and Spain. Subsequently, V2G data from the Netherlands is used to model the V2G electricity demand
and response load profile. Afterwards, the generated EV battery datasets are consequently implemented in
validated semi-empirical ageing models from literature to quantify the impact of VIPV and V2G on battery
calendar and cycle life. Finally, methods to reduce battery ageing using VIPV and V2G are proposed.

This work is conducted in collaboration with Delft University of Technology and Lightyear, the SEV manu-
facturer based in Eindhoven, the Netherlands. For illustration purposes, Figure 1.2 shows the energy flows of a
Lightyear 0 vehicle charging its battery using VIPV and discharging it into the power grid using V2G.

Figure 1.2: Illustration of the energy flows of a Lightyear 0 vehicle that is charging its battery using VIPV and discharging it using V2G.

1.1. Motivation
Despite the widespread benefits of VIPV and V2G, the potential impact of VIPV and V2G on battery life
present economic and regulatory implications for EV owners, original equipment manufacturers (OEMs) and
policymakers [41, 98]. Established EV manufacturers like Hyundai and EV scale-ups like Lightyear are currently
developing V2G technology. Lightyear is also developing a VIPV system certified for automotive standards and
designed for mass customisation. Researchers suggest that an appropriate compensation model for V2G and a
cost-effective integration of VIPV are necessary to enforce the expansion of these technologies [41, 91].

To support OEMs and policymakers with the development of business models and appropriate com-
pensation models for VIPV and V2G, this work investigates the impact of these technologies on EV battery
life. Additionally, methods to extend battery calendar life using VIPV and V2G are investigated. This work is
conducted to support the further development of VIPV and V2G with the ultimate goal of accelerating the
decarbonisation of the transportation sector.
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1.2. Research objective
Based on the existing literature and the motivation, the research objective is formulated as follows:

Determine the impact of vehicle-integrated photovoltaics and vehicle-to-grid on electric vehicle battery life.

To fulfil the research objective, four sub-objectives are addressed. The sub-objectives are shown schematically
in Figure 1.3 and are elaborated on below.

Figure 1.3: Flow diagram depicting the steps required to fulfil the proposed research objective.

i Simulate use case scenarios with and without VIPV and V2G to generate one-year EV battery datasets.

ii Implement the EV battery datasets into battery ageing models from literature to quantify battery calendar
and cycling ageing for each use case scenario.

iii Compare the ageing results of the use case scenarios to analyse the impact of VIPV and V2G on battery
calendar and cycling ageing.

iv Validate the ageing models by simulating ageing tests performed to develop the ageing models.

1.3. Methodology
The following methodology is defined to fulfil the research objectives stated in Section 1.2.

Literature review
The literature review uses papers found predominantly in the fields of electrochemistry and power. It provides
insight into the characteristics and electrochemistry of commonly used Li-ion EV battery. Li-ion battery ageing
causes, mechanisms, degradation modes and subsequent effects on battery capacity and power capability
are described. The developments in VIPV technology are discussed and he mechanism of V2G day-ahead
electricity trading and V2G grid-balancing services are explained.

EV battery ageing modelling
Realistic driving and charging profiles are designed based on EV driving data in the Netherlands and Germany.
A modelled version of the Lightyear 0, the world’s first production-ready SEV, is used to simulate EV battery
data. Various driving cycles are simulated to generate realistic one-year EV power profiles. These modelled
power profiles follow the mobility and charging behaviour of EV drivers. Power profiles of VIPV and V2G are
integrated with the EV power profiles to simulate various use case scenarios. These power profiles form the
basis for deriving the factors that stress battery life. The battery datasets are consequently implemented in
battery ageing models found in literature. These models integrate the battery data into ageing equations
derived from empirical ageing tests to determine the capacity loss due to calendar and cycling ageing.

Validation and results
The capacity loss due to battery calendar and cycling ageing is determined for realistic use case scenarios,
with and without VIPV and V2G. The battery ageing results of the use case scenarios are compared with each
other to determine how certain applications of VIPV and V2G affect battery life. The model that generates EV
battery data is validated by comparing its output with battery data from the VPM. Finally, the ageing models
are validated by simulating the ageing tests used by the authors to develop the ageing models, to compare the
modelled results with results from the ageing tests.
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1.4. Scope
The scope of this work is limited to one passenger EV, two geographical areas, two Li-ion battery technologies,
two different kinds of V2G services with two different configurations, and three battery ageing models from
literature. The EV used for simulations and data modelling is the Lightyear 0. The locations used to model
VIPV power generation potential are Amsterdam, the Netherlands and Madrid, Spain. Both V2G day-ahead
electricity trading and V2G grid balancing services are simulated for the Netherlands. The battery technologies
researched in terms of ageing are lithium nickel manganese cobalt oxide (NMC) and lithium iron phosphate
(LFP). The scope of this work results in eight different use case scenarios, which are summarised in Table 1.1.
These scenarios correspond to driving and charging scenarios of an EV with and without VIPV and V2G, with
variations in VIPV power generation, type of V2G service and with battery capacity retention limits during V2G
of 50% SoC and 20% SoC. One-year EV load profiles are modelled per second for each use case scenario. These
load profiles portray the net power load acting on the battery and form the basis for deriving the profiles for the
battery SoC, temperature, voltage, current, C-rate, number of cycles, and throughput. The EV battery datasets
are implemented in two of the three semi-empirical ageing models from literature. Due to the limitations of
the LFP ageing model, the results from the NMC ageing model are the main focus of this work.

Table 1.1: Use case scenarios researched with respect to battery ageing. ‘Standard’ corresponds to the standard EV battery load which
consists of power for forward traction, grid charging, regenerative braking, and the necessary auxiliaries.

Load profiles

Use case scenario Standard VIPV V2GDay-Ahead V2GaFRR

Base V

VIPVNL V V

VIPVESP V V

VIPVNL & V2G50% SoC
DA V V V

V2G50% SoC
DA V V

V2G20% SoC
DA V V

V2G50% SoC
aFRR V V

V2G20% SoC
aFRR V V



2
Background

This chapter elaborates on EV batteries, VIPV and V2G. In Section 2.1, the working principle of Li-ion batteries
is explained, battery chemistries commonly found in EVs are compared, and factors that impact battery ageing
are explained. Afterwards, Section 2.2 provides an overview of the types of battery ageing models. Finally, the
workings of VIPV and V2G are described in Sections 2.3 and 2.4, respectively.

2.1. EV batteries
Over the years, various rechargeable battery chemistries have been used to power EVs, with the three main
types being lead-acid, nickel-metal hydride (NiMH) and Li-ion. Li-ion batteries have taken the stage due to
their high volumetric energy density, high gravimetric energy density (specific energy), high gravimetric power
density (specific power), and low self-discharge rate [37, 105]. Several EV manufacturers have also shown
interest in solid-state batteries (SSB), which uses a solid-state electrolyte instead of a liquid electrolyte and a
carbon anode. While SSBs could result in a 20% energy density improvement, the technical challenges of SSBs,
coupled with the decreasing cost of liquid electrolytes leads researchers to conclude that Li-ion batteries will
likely remain the favoured technology in the foreseeable future [99].

2.1.1. Working principle of a Li-ion battery
Li-ion batteries consist of a positive and negative electrode, an electrolyte, and a separator. The electrodes
lay in the electrolyte, a chemical liquid that allows the flow of Li-ions but not of electrons. The separator is a
porous plastic that separates the two electrodes to prevent them from short-circuiting.

The anode is the electrode that releases the positively charged Li-ions during discharging, and the cathode
is the electrode that then absorbs Li-ions. Figure 2.1 shows how the Li-ions intercalate through the electrolyte
and the separator towards the cathode. The Li-ions create a flow of negatively charged electrons (e-) from
the anode through the external circuit towards the cathode to neutralise the charge of the electrons. The flow
of electrons created by the flow of Li-ions creates an opposite flow of electrical current, which can power an
electric device or system. During charging, the flow reverses. The electrode that releases Li-ions is the cathode,
and the electrode that the Li-ions intercalate into is the anode.

Figure 2.1: Discharging process of a Li-ion battery [29]. The original figure has been adjusted.

5
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2.1.2. Analysis of common Li-ion batteries
The characteristics of Li-ion batteries differ due to the chemistry of their electrodes. While lithium-titanate
oxide and silicon are sometimes used as anode materials in Li-ion batteries, graphite is the most commonly
used anode material. Graphite is abundant, low cost, has a long cycle life, high specific energy and high specific
power.

Therefore, Li-ion batteries are mainly classified according to the chemical composition of their cathode.
Currently, the most common chemistries are lithium cobalt oxide or LCO (LiCoO2), lithium manganese oxide
or LMO (LiMn2O4), NMC (LiNiMnCoO2), LFP (LiFePO44), lithium nickel cobalt aluminium oxide or NCA
(LiNiCoAlO2), and lithium titanate oxide or LTO (Li2TiO3) [6]. These five chemistries are analysed below
according to the following six battery characteristics:

• Specific energy corresponds to energy per unit weight [Wh/kg], which reflects the driving range.

• Specific power corresponds to power per unit weight [W/kg], which reflects the potential acceleration.

• Safety corresponds to the battery’s ability to remain safe (e.g., not to catch fire or explode).

• Performance corresponds to the battery’s ability to withstand extreme temperature conditions.

• Lifespan corresponds to the battery’s resistance to ageing.

• Cost corresponds to the battery’s technological feasibility and cost of ownership.

LCO
The main advantages of the LCO battery are its high specific energy and low self-discharge rate [66]. Cobalt
increases the battery’s specific energy, thermal stability, lifespan, and safety [11]. The disadvantages of the LCO
battery are its low thermal stability which leads to safety risks, its limited specific power, its relatively short
lifespan, and the use of cobalt, a rare element with a controversial supply chain [42, 85].

LMO
The advantages of the LMO battery are its low internal resistance, good current handling, and high safety [17].
The main disadvantage is its short lifespan, average specific power, average specific energy, low performance
and short lifespan [95]. However, its design flexibility allows for it to be optimised for a high specific energy,
high specific energy, or long lifespan.

LFP
LFP batteries are implemented in half of Tesla’s produced EVs. Partly because choosing LFP batteries reduces
cobalt and nickel supply chain challenges and partly due to its overall performance, which is shown in Figure
2.2 [40]. The main advantages of the LFP battery are its safety due to its thermal stability, long lifespan, and lack
of cobalt. Its performance is attributed to limiting the battery’s high self-discharge by using costly, high-quality
cells or expensive control electronics. Its main disadvantage is the battery’s low specific energy [17].

NMC
The main advantage of the NMC battery is that it can be optimised to serve a particular purpose. Nickel
provides high specific energy but poor stability, and manganese provides low internal resistance but low
specific energy. By blending nickel and manganese, the strengths of the two materials are enhanced, which
according to Miao et al. (2019) makes NMC the winner among the Li-ion batteries. Blends of nickel, cobalt
and manganese in proportions of 5:3:2 and 8:1:1 instead of 1:1:1 have proven to offer useful combinations of
qualities while reducing the amount of cobalt in the battery [6, 60].

NCA
The advantages of the NCA battery, in which aluminium is used to improve stability, are similar to that of NMC.
NCA batteries provide high specific energy, average specific power and long lifespan [6, 32]. Its disadvantages
are its high cost and lack of safety. NCA is also used by Tesla, who claims that their NCA battery uses even less
cobalt than the NMC 8:1:1 battery [55].

LTO
The LTO battery uses titanate for its anode instead of graphite, which all the aforementioned battery chemistries
use. The advantages of LTO are its safety due to its thermal stability and long lifespan [66]. The disadvantages
of LTO are its low specific energy and high cost due to the expensive raw material titanate.



2.1. EV batteries 7

Comparative overview
Figure 2.2 and Figure 8.1 of the appendix show a similar comparative overview of the battery chemistries
mentioned above. The information in the two figures closely corresponds, with the only significant difference
being the cost of the LTO battery. The outer hexagons in the two comparative overviews correspond to the
most desirable quality. Figure 8.1 shows that the LTO battery chemistry scores well in terms of cost, which is
likely incorrect due to the high cost of titanium [66, 107].

Figure 2.2: Overview of Li-ion batteries. (a) LCO (LiCoO2); (b) LMO; (c) LFP; (d) NMC; (e) NCA; (f) LTO [55].

According to McKinsey & Company (2022), NMC and LFP are expected to remain the most prominent battery
chemistries [54]. The left graph of Figure 2.3 shows the expected capacity demand for common EV batteries in
2030. The right graph of Figure 2.3 shows the specific energy of the currently mass-produced Li-ion battery
chemistries. While the LFP battery outperforms NMC in most of the considered battery characteristics, it
is inferior in terms of specific energy. The specific energy of a battery plays an important role as it heavily
impacts vehicle weight. Vehicle weight plays a large role in improving driving range, which has long been
considered a significant barrier to the acceptance of electric mobility (e-mobility) [7, 26, 38]. Considering their
widespread implementation, both NMC and LFP batteries are researched in terms of degradation.

Figure 2.3: The left graph shows the expected capacity demand for different Li-ion battery chemistries in 2030 [54].
The right graph shows a comparison of the mass-produced EV Li-ion batteries in terms of specific energy [6, 34, 40, 51, 88].

2.1.3. Li-ion battery ageing
Li-ion batteries undergo ageing during usage and rest [80, 103]. Calendar ageing occurs both during usage
and at rest and cycling ageing occurs during usage due to the intercalation of Li-ions during charging and
discharging [102]. Therefore, battery researchers distinguish between cycling and calendar ageing [73, 81, 84].
The terms ‘degradation’ and ‘ageing’ are used interchangeably.
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The causes of battery degradation mechanisms, associated degradation modes, and the subsequent effects
on the battery are shown schematically in Figure 2.4 and in a similar diagram in Figure 8.2 of the appendix.

Figure 2.4: Causes of battery degradation mechanisms, associated degradation modes and subsequent effects on the battery [5, 102]. A
connection has been added between high cell voltage and lithium plating, which is explained in the Degradation mechanisms subsection.

Ageing stress factors
So-called ‘ageing stress factors’ cause or accelerate the physical degradation mechanisms of the battery. The
ageing stress factors for calendar ageing are time (t ), SoC, and temperature (T ), while the ageing stress factors
for cycling ageing are SoC, T , depth of discharge (DoD), capacity throughput (Ah), and current rate (C-rate)
[96, 102].

Time causes the formation of the solid electrolyte interface (SEI) layer, which will be elaborated on in the
next subsection.

High temperatures impact ageing mainly due to the Arrhenius reaction rate dependence on temperature.
The Arrhenius reaction rate increases with temperature, which is shown in Equation 2.1:

Φ=Φr e f ·exp

[
Ea(Φ)

R

(
1

Tr e f
− 1

T

)]
(2.1)

whereΦ is the reaction rate, subscript ref denotes the reaction rate value at a reference temperature, Ea(Φ) is
the activation energy whose magnitude determines the sensitivity of temperature onΦ, R is the gas constant
with value 8.3144 J K1 mol1, and T is the ambient temperature in degree centigrade [114]. The Arrhenius
equation shows that the reaction rate increases with temperature. For batteries, this means that the parasitic
side reactions occur faster at elevated temperatures. These parasitic side reactions accelerate degradation
due to the formation of the SEI layer. Temperatures above 60 °C can cause thermal runaway [102]. During
thermal runaway, the battery cell enters a self-heating state which could cause the cell to catch fire or explode
[4]. Low temperatures can cause the diffusion rate of Li-ions to decrease, which causes lithium plating as will
be elaborated on in the following subsection.

SoC is the level of charge relative to the battery’s full capacity, and effectively describes the difference in
voltage between the two electrodes. The bigger the voltage difference, the larger the imbalance between the
two electrodes. High SoC can cause parasitic side reactions to occur, which grow the SEI layer. Low SoC can
cause lithium plating [102]. Several studies have found that NMC batteries age the least when kept at 50%
SoC [14, 19, 84, 109]. LFP ageing studies show that LFP batteries age the least when stored at lower SoC levels
[57, 81, 113].

DoD is defined as the percentage of battery capacity that is discharged relative to the available storage
capacity during that cycle. For many Li-ion batteries, shallower cycle depths cause less ageing compared
to deeper cycle depths [14, 45]. Figure 8.3 of the appendix illustrates the relation between cycle depth and
capacity loss.
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Ah refers to the capacity throughput, or throughput, of the cell. The higher the throughput, the more
Li-ions intercalate between the electrodes, causing cycling ageing. Equation 2.2 can be used to describe the
cumulative throughput [107].

Ah = N ·DoD ·Q f ul l (2.2)

where N corresponds to the number of cycles N, DoD to the depth of the corresponding cycles, and Q f ul l to
the cell’s usable capacity [102]. The impact of throughput can be described using the following relation: Ahz ,
with 0 ≤ z ≤ 1 [102]. While most researchers argue that z = 0.5 best follows the ageing pattern, Schmalstieg et al.
(2014) found z = 0.75 to give the best fit to measured ageing data.

C-rate is the rate at which a battery is being charged or discharged. A C-rate of 1C means that the battery’s
rated Ah would be discharged in one hour, a C-rate of 2C means it would discharge its rated Ah at double the
current in 30 minutes, and a C-rate of C/2 means it would discharge its rated Ah at half the current in 2 hours.
C-rate has a strong interdependency with temperature. Above 2C, cycling ageing is thought to be exponentially
dependent on C-rate [102].

Degradation mechanisms
In Li-ion batteries with a graphite anode, the main calendar ageing mechanism is the growth of a thin layer on
the surface of an electrode, called the SEI layer [74]. The SEI layer is a lithium-containing passivating film that
results from irreversible side reactions between the electrode and the electrolyte [37, 65]. The function of the
SEI layer is that it prevents further electrolyte decomposition to maintain cycling ability [25]. However, the SEI
layer causes undesired degradation effects as it consumes cyclable Li-ions during formation and creates an
increasing resistance layer due to the growing layer thickness [37, 84, 103]. The electrolyte interface layer on
the anode mainly forms in the first few cycles. Its growth scales with the square root of time and accelerates
with higher SoC and higher temperatures. According to the Arrhenius reaction rate, high temperature increases
the rate at which parasitic side reactions occur, as discussed in the previous subsection.

An electrolyte interface layer can form on both the anode and the cathode. The interface layer on the
cathode, called the cathode electrolyte interface (CEI), grows due to electrolyte oxidation and salt deposition
[102]. According to the Li-ion battery, manufacturer Forge Nano and to Vermeer et al. (2022), the layer formed
on the cathode has a more limited passivation ability than the layer on the anode [25].

High SoC mainly causes electrolyte dissolution, which results in further growth of the SEI layer. High
SoC might also lead to increased ageing due to electrolyte oxidation, structural damage to the cathode and
transition-metal dissolution [102].

Cycling ageing also causes the SEI layer to grow due to Li-ion intercalation. A dominant cycling ageing
mechanism is lithium plating, or dendrite formation. Lithium plating is caused by spiny-structured piles of
Li-ions that during charging cannot be absorbed into the anode in time, subsequently stacking unevenly on
the surface of the anode [44, 74, 105]. Figure 2.4 shows that lithium plating is caused due to a high current
load, low temperature, and low cell voltage. At temperatures below 20 °C, the rate at which Li-ions diffuse into
the anode or electrolyte reduces, causing them to stack on the anode. According to scientists at NASA and
researchers at the Battery Research Group at the University of Maryland, lithium plating is also caused due to a
high cell voltage [43, 115]. Therefore, an arrow between high cell voltage and lithium plating has been added
to Figure 2.4. As shown in Figure 2.4, the compounds that make up the electrolyte and the binder decompose
due to, among other things, high temperatures and high SoC, which also causes degradation. Binder holds
the active material together and ensures the connection between the electrode and the contacts. Graphite
exfoliation is the separation of graphite layers. Loss of electric contact and electrode particle cracking are
mainly caused by mechanical stress due to Li-ion intercalation [5]. Thus, it appears that both calendar and
cycling ageing accelerate when the Li-ion battery is stored and cycled at extreme temperatures and voltage
levels.

The causes, rates and interdependencies of these degradation mechanisms are challenging to model.
Therefore, most physics-based models focus only on the dominant degradation mechanisms such as SEI
growth, lithium plating and electrode particle cracking [5, 37, 105].

Degradation modes
The effects of the degradation mechanisms are categorised into three main degradation modes, namely loss of
lithium inventory (LLI), loss of active material (LAM), and conductivity loss [5]. In contrast to the diagram
in Figure 8.2 of the appendix by Birkl et al. (2017), the diagram in Figure 2.4 by Vermeer et al. (2022) groups
LAManode and LAMcathode together. Uddin et al. (2018) defines kinetics limitations to be a separate degradation
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mode, whereas Birkl et al. (2017) and Vermeer et al. (2022) have seemingly allocated kinetics limitations to the
other degradation modes.

LLI is caused by the unavailability of active Li-ions, which become unavailable due to parasitic side
reactions. These parasitic side reactions can occur during the formation and decomposition of the SEI and CEI
layers, due to electrolyte decomposition, and lithium plating.

LAM is caused by the active mass of the electrodes no longer being available to take up Li-ions as a result of
the structural degradation of the electrode material. According to Figure 8.2 in the appendix, the active anode
material is lost due to binder decomposition, graphite exfoliation, lithium plating, loss of electric contact,
electrode particle cracking due to mechanical stress and corrosion of current collectors. The active cathode
material is lost due to binder decomposition, structural disordering, loss of electric contact, electrode particle
cracking due to mechanical stress, transition metal dissolution and corrosion of current collectors. According
to Figure 2.4, SEI and CEI layers can also cause LAM.

Conductivity loss, or contact loss (CL), is caused by binder decomposition, graphite exfoliation, and current
collector corrosion.

Effects
Battery researchers quantify the physical degradation by the battery’s capacity decrease (Qloss), or capacity
fade, and resistance increase, or power fade. Capacity fade is an irreversible loss of the ability of a battery to
store charge, which reduces the storage capacity and thus driving range of the EV. Power fade is an irreversible
reduction of the rate at which electrical energy can be accepted or released by the battery, which affects the
power capability and decreases the efficiency of the EV [98]. Capacity and power fade indicate the battery’s
state of health (SoH) compared to its beginning of health (BoH), and can thereby indicate whether the battery
has reached its end of life (EoL) [87]. Researchers often consider the EoL to be reached when 80% of the battery
capacity is retained compared to its initial capacity [31, 50], or sometimes when resistance has increased by
50% or 100% [81]. LLI results in capacity fade, LAM results in both capacity and power fade, and conductivity
loss results in power fade.

Graphical overview
Figure 2.5 graphically illustrates the possible degradation mechanisms and degradation modes of graphite-
based Li-ion batteries. The degradation mechanisms are colour-coded to indicate their corresponding degra-
dation mode.VERMEER et al.: COMPREHENSIVE REVIEW ON CHARACTERISTICS AND MODELING OF LIB AGING 2209

Fig. 3. Graphical summary of aging mechanisms in graphite-based LIBs. The aging mechanisms are color coded with respect to the accompanied degradation
mode. The figure is adapted from material made publicly available by Birki et al. [31], under Creative Commons Attribution 4.0 License CC-BY.

Fig. 4. Voltage versus energy capacity of five common electrode materials
compared to the electrochemical stability window of liquid organic elec-
trolytes, adapted from [24] and [40]. It shows that graphite is outside the
electrochemical stability window of organic electrolytes, rendering graphite-
based Li-ion batteries thermodynamically unstable and causing SEI layer
growth.

of Li-ions during cycling cause mechanical stress on the
electrodes. These volume changes can crack the SEI, allowing
new reactions to occur. As a result of this crack and repair,
the SEI continues to grow, resulting in additional LLI and
LAM [21], [44], [45]. Furthermore, cycling, especially with
high C-rates, creates a more porous SEI layer compared to
idle conditions [42], [43]. This increased porosity allows for
more reductive reactions to occur, whereas a denser SEI
layer reduces the reaction rate. Other factors influencing
the reaction rate are electrolyte composition and electrode
balance [39], [46].

Two opposing theories exist regarding SEI formation: 1) the
first theory assumes that the formation takes place at the elec-
trode/electrolyte interface and that the electronic conductivity
of the SEI should be the limiting factor of formation [22]
and 2) the second theory states that SEI formation takes
place at the anode–SEI interface and is limited by the solvent
diffusion process [47]. However, both theories result in an
aging behavior that follows a

√
time relationship, which is

typical for the passivation character of the SEI layer and
similar to what is often observed in experiments.

2) Lithium Plating: At lower temperatures, generally below
20 ◦C, the diffusion rate of lithium into the anode or electrolyte
reduces, and the intercalation potential of graphite material
approaches that of metallic lithium. Metallic lithium plating
may occur as a result of this. Lithium plating is especially
likely to occur at low SoC, low temperature, and high
C-rates [31]. Furthermore, after a certain age, the anode
resistance can reach a critical limit. After this limit, the anode
potential drops below 0 V versus Li/Li+, and lithium plating
starts to occur [43], [48].

Unlike SEI layer growth, lithium plating is a positive
reinforcing phenomenon: as it occurs, it deposits on the
anode, reducing the active surface area, resulting in a higher
current density at the remaining available pores, and further
increasing the metal plating. As a result, a knee point in
the degradation behavior is frequently observed at the age at
which lithium plating occurs. An example of this is shown in
Fig. 5(a) and (b), where two inflection points are observed
in both the capacity and impedance deterioration. Lithium
plating causes LLI and possibly reduces the cell’s safety,
as lithium dendrites can start to grow, leading to internal short
circuits [21].

Figure 2.5: Graphical overview of the possible degradation mechanisms and degradation modes of Li-ion batteries with graphite-based
anodes [5], adapted by Vermeer et al. (2022). LAM, LLI and CL are colour-coded.

Battery ageing modelling and limitations
Various battery ageing studies have been conducted to develop ageing models that can estimate how batteries
will age [30, 45, 52, 81, 84, 87, 92]. As time also passes during Li-ion intercalation, calendar and cycling ageing
are essentially intertwined and have a superposing effect on each other. Ageing modelling studies that only
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research cycling ageing inherently incorporate calendar ageing effects in the mathematical expressions, or
ageing equations, that describe cycling ageing [102]. Ageing models that are based on cycling tests and neglect
calendar ageing effects will lead to ageing estimation errors when used with more realistic EV battery data,
as realistic battery data includes rest periods between cycles. In an attempt to split the intertwined effects
of calendar and cycling ageing, some researchers subtract the impact of calendar ageing from the impact of
cycling ageing to be left with ‘pure’ cycling ageing [81, 84]. Essentially, these researchers assume that calendar
and cycling ageing can be superpositioned.

Furthermore, a study by Raj et al. (2020) suggests that battery ageing is sensitive to the order and periodicity
of calendar and cycling ageing, an effect called ‘path dependence’. The study indicates that ageing models
that do not consider path dependence of calendar and cyling ageing, but rather consider calendar and cycling
ageing to be independent and cumulative, may yield inaccurate ageing results. Specifically, the researchers
found that such ageing models are likely to underestimate ageing at higher C-rates and during continuous
cycling [72].
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2.2. Types of battery ageing models
Literature suggests that battery ageing models used for system design and control algorithm development
should accurately measure the battery’s degradation, be computationally efficient and easy to use. Jin et al.
(2017) considers electrochemical models, semi-empirical models, and empirical models to be useful models
to quantify Li-ion battery ageing. A study on ageing models found in literature by Vermeer et al. (2022)
adds equivalent circuit models and machine learning models to the list of useful models for battery ageing
applications. The different types of ageing models are described below.

Electrochemical models
Electrochemical models analyse physical and electrochemical processes in the battery to quantify ageing. The
advantage of electrochemical models is that they require a small amount of data and their operating conditions
are easily adjustable once a model is calibrated. Electrochemical models are, therefore, suitable for battery
design. The disadvantage of electrochemical models is that they require a thorough understanding of the
electrochemical and physical processes, which are described by many partial differential equations, making
them computationally inefficient and thus unsuitable for system design and algorithm development.

Equivalent circuit models
Equivalent circuit models use the impedance data from passive circuit components such as a resistor (R), an
inductor (L), and a capacitor (C) (RLC), to model the transient response of the battery. The operating conditions
of the RLC components do not change with time, meaning that the impedance data can only determine the
battery’s state at that particular time. By varying the condition of the RLC components according to the
defined ageing, the equivalent circuit models can be used as ageing models. These models are often used for
SOH estimation due to their mathematical simplicity but require large test matrices for different operations
conditions, making them unsuitable for system design.

Machine learning models
Machine learning ageing models feed an algorithm data for it to use simple parameters like voltage, current
and temperature to estimate ageing, or combine empirical modelling methods with regression models to
estimate ageing. While these models can accurately estimate ageing, they generally require large datasets to
train the algorithms, making them unsuitable for system design. However, a machine learning-based ageing
model recently showed increased predictive accuracy compared to current ageing models [39]. According to
the authors, the model meets requirements regarding the applicability, generalisability and interpretability,
which demonstrates the potential of machine learning ageing models in the near future.

(Semi-)empirical models
(Semi-)empirical ageing models curve-fit the relation of ageing stress factors onto empirical ageing data of a
particular cell to derive ageing equations, that could estimate ageing. The idea is that these ageing models
can consequently be used to estimate ageing of similar battery cells. The difference between the two is that
semi-empirical models are physics-motivated, while empirical ageing models do not consider the physical
and electrochemical ageing mechanisms, but use only experimental data to derive ageing equations.

The advantage of (semi-)empirical models is that their ageing equations provide intuitive insight into
how the ageing stress factors affect ageing. In addition, they are computationally efficient due to their
mathematical simplicity. Moreover, many (semi-)empirical ageing models can be found in literature. These
models are therefore suitable for system design and algorithm development and are thus used for smart
charging, feasibility, and cost analysis studies [102].

The disadvantage of these models is that once they are calibrated with specific data, the flexibility regarding
their operating conditions is limited. The use of the ageing equations is therefore bounded to the range of the
operating conditions used to design the ageing model. The operating conditions can be extended by consider-
ing the interdependency of ageing stress factors or by re-calibrating the models for new applications. However,
this requires time-consuming and expensive experimental data collection. Moreover, the ageing equations
defined in these models are often based on data derived from tests with accelerated ageing conditions and
limited test conditions due to a lack of available equipment or time.

Nevertheless, (semi-)empirical ageing models are specifically suitable for system design as they are com-
putationally efficient due to their mathematical simplicity, as well as their wide availability. Therefore, these
types of models are applied in this work.
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2.3. VIPV
The first vehicle-integrated solar panels were introduced in 1955 by William G. Cobb, who worked at General
Motors. His so-called Sunmobile featured 12 selenium PV cells and a small electromotor that drove the small
vehicle forward. Forty-six years later, in 2001, the TU Delft Dream Team ‘Nuna’ first participated in the World
Solar Challenge, obtaining first prize in the competition through the Australian Outback. In 2011, students
from the TU Eindhoven ‘Solar Team Eindhoven’ joined the competition. In 2016, their successors determined
it was technically feasible to mass-produce SEVs and decided it was time to transform EVs. The team from
Eindhoven founded ‘Lightyear’. Sono Motors, the SEV manufacturer from Germany, and Lightyear, the SEV
manufacturer from the Netherlands, are developing the first production-ready solar cars. In 2023, 68 years after
the first appearance of a solar car, SEVs are being driven in the Netherlands, Germany and Spain. Other vehicle
manufacturers, such as Mercedes, Fisker, and Hyundai, have added solar panels to their vehicle. These solar
cars, however, either use solar panels to power the auxiliaries or are not designed for mass production. Kanz
and Lim wrote a position paper on VIPV, proposing VIPV as a core source of electricity in road transport. The
study estimates the economic and environmental viability of on-board solar panels from technical viewpoints,
outlines strategies for integrated research and development (R&D) and clarifies the main bottlenecks to the
introduction of VIPV.

2.3.1. Solar-powered mobility
SEVs use solar panels mounted on the roof and the sides of the vehicle to charge the battery. The SEV can
thereby charge from the sun while driving and parking, adding additional range to the vehicle’s driving range.
Considering the small amount of energy solar panels can generate per unit area, SEVs are designed to be
energy-efficient. Due to their efficient design, SEVs require less electricity compared to normal EVs. By
demanding less electricity than standard EVs, SEVs could be considered a favourable alternative to standard
EVs due to their self-charging capabilities and low life-cycle GHG emissions.

Lightyear’s first vehicle, the Lightyear 0, has 5 m2 of vehicle-integrated solar panels mounted on its roof.
The patented double-curved crystalline silicon (c-Si) solar panels achieve an efficiency of 215 Wp/m2. In
contrast to most EVs on the market, the Lightyear 0 is designed with a focus on efficiency. Due to its in-wheel
motors, drag coefficient of 0.17 Cd, highly efficient converters and other efficient components, the vehicle’s
driving efficiency ranges around 100 Wh/km. According to Lightyear, the SEV’s efficiency allows it to charge up
to 11,000 km per year from the sun in Amsterdam, the Netherlands [48].

2.3.2. Alliance for Solar Mobility
Lightyear and Sono Motors founded the Alliance for Solar Mobility (ASM) with the mission "to become the
cooperative European platform to establish and foster the Solar Mobility Industry" [2]. As the solar mobility
industry grows, various EV and PV manufacturers and research institutes have joined the alliance. Among
them are TNO, Fraunhofer ISE, TU Eindhoven, and TU Twente.

2.3.3. Literature on the impact of VIPV on battery life
The impact of VIPV on EV battery life has barely been researched. The most extensive study found by the
author was a study by Mallon et al. (2017). This study presents a model that analyses the impact of on-board
solar panels on the battery cycle life of an electric bus. The simulation-based cycling ageing study suggests
that as gradual PV charging reduces the required number of battery cycles, Li-ion battery cycle life may extend
by up to 19% if VIPV are mounted on the roof and the sides of the bus. However, the battery model used by
the researchers only considered the battery’s DoD after a whole day of driving. According to the paper, the
implemented ageing model "assumed that the battery is discharged from its initial charge to final charge,
without significant charging in between" [50]. By only considering the difference in DoD at the start and end of
each day, the authors assumed that gradual solar charging is not significant enough to impact cycling ageing
during the day. In reality, gradual solar charging causes Li-ion intercalation from the cathode to the anode.
According to literature, this causes further growth of the SEI layer and lithium plating, which should increase
cycling ageing. Therefore, not considering the impact of gradual solar charging on cycle life inherently limits
the analysis. Additionally, the authors defined the battery’s EoL as if it is only influenced by cycling ageing,
while in reality calendar ageing would add a share of capacity loss to the battery’s total ageing until EoL. Thus,
the estimated cycle life extension due to VIPV is likely to have been overestimated. Moreover, the authors did
not validate the models used for the analysis.
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2.4. V2G
V2G allows for EVs to feed power into the electricity grid. V2G enables EVs to, among other things, participate
in day-ahead electricity trading and grid balancing services. Both these services balance the grid’s electricity
supply and demand and can be monetised by EV owners, EV manufacturers and utility companies, among
others. Considering the current participation of EVs in these forms of electricity trading and the consequent
effect on the EV batteries, the workings of day-ahead electricity trading and grid balancing services are
explained below. The modelling methodology of V2G is elaborated on in Section 3.4.

2.4.1. Day-ahead electricity trading
Day-ahead electricity trading enables balancing groups to trade electricity one day before the actual delivery
moment of the electricity [63]. Each balancing group has one balancing responsible party (BRP), responsible
for supplying or demanding the contracted power bid. Day-ahead electricity trading occurs on the day-ahead
electricity market [61]. The intermediate party that facilitates day-ahead electricity trading in the Netherlands
is EPEX Spot [23]. Examples of balancing groups that can trade on the day-ahead electricity market are large
power producers, utility companies and energy traders. EV companies can participate in day-ahead electricity
trading by aggregating multiple EV batteries to supply and/or demand energy. Essentially, the aggregated EV
batteries act as a virtual power plant, supplying and demanding energy from the grid when required.

2.4.2. Grid balancing services
The Dutch power grid should operate at a frequency of 50 Hz to function properly. If the frequency exceeds
a 0.2 Hz deviation, a blackout may occur [62]. Power supply and demand must be in balance to reduce grid
deviations. Transmission system operators (TSOs), such as TenneT in the Netherlands, are responsible for
stabilising the grid frequency. TSOs activate balancing services to ensure that the power grid frequency is
maintained at 50 Hz [64]. Balancing services in the Netherlands are the Frequency Containment Reserve (FCR),
automatic Frequency Restoration Reserve (aFRR), and the manual Frequency Restoration Reserve (mFRR) [94].
The balancing services are provided by balancing service providers (BSPs) and are centrally controlled by the
TSO. BSPs are market participants of FCR, aFRR or mFRR that can supply and/or demand power from the grid
upon the TSO’s request to support in balancing the grid.

FCR, aFRR, and mFRR have different requirements and rules. FCR is the primary reserve, aFRR the
secondary reserve, and mFRR the tertiary reserve [93]. As mFRR is required for large or prolonged imbalances
and must be pre-contracted, it is currently not viable for EV fleets to participate in. mFRR is therefore not
explained in further detail. The characteristics of FCR and aFRR are summarised below.

FCR
• 30-second full activation time (FAT) to deliver contracted power.

• Requires 1 MW minimum contracted power capacity.

• Symmetric service meaning that if the BSP wants to supply 1 MW, the BSP must also be able to demand
1 MW.

• Block duration of product delivery is 4 hours. The BSP is not required to be able to supply continuous
power for these 4 hours but needs to be continuously available to steer on minor frequency deviations.
The minimum continuous delivery time within those 4 hours is 1 hour.

• If BSP cannot supply the minimum duration/capacity, BSP can be kicked out.

• Participation requires prequalification, which takes between 6 and 12 months.

aFRR
• 5-minute FAT to deliver contracted power (used to be 15 min FAT).

• The minimum ramp rate of the offered aFRR volume (up and/or down) should be at least 20% per minute
of the energy bid volume.

• Requires 1 MW minimum contracted power capacity, with a 1 MW minimum granularity.

• Asymmetric service, meaning that the bid for upwards and downwards regulation does not need to be
equal. For example, it is also possible to demand less power than the power supplied.



2.4. V2G 15

FCR allows aggregated EVs to participate in. However, because it is a symmetric balancing service and
requires an extended prequalification time, it has a lower priority to research in terms of its impact on EV
ageing compared to aFRR. Therefore, aFRR is considered in this work.

2.4.3. Literature on the impact of V2G on battery life
Roks et al. (2019) wrote a report for the Netherlands Enterprise Agency on vehicle-to-everything (V2X) in the
Netherlands. The report sketches its current state of development and discusses battery ageing, institutional
bottlenecks and economic aspects of V2X. Zhou et al. (2011) modelled the cost of EV battery ageing due to V2G.
The research highlights the effect of DoD on ageing cost per kilowatt-hour (kWh) at peak electricity rate. In
addition, the study compares the cost of battery ageing to the cost of energy purchased and to the benefits
of energy sales to the utility grid. The researchers, however, disregarded the thermal management of the
EV’s battery, posing inherent limitations to the analysis. Steffen et al. (2020) researched optimal EV charging
considering the effects of a financial incentive on battery ageing. The authors state that with an appropriate
thermal strategy, no significant additional battery ageing should occur. Wang et al. (2016) quantified EV
battery ageing from driving compared to using an EV for V2G services and driving. The simulations used
for the research incorporated a detailed thermal management model. The study found that if V2G were
only used 20 times per year, the 10-year average capacity losses would be a maximum of 1.18% more than
without the V2G services. Dubarry et al. (2017) and Uddin et al. (2017) studied the ageing of similar Li-ion NCA
battery technologies. Dubarry et al. (2017) found that additional cycling associated with V2G services reduces
Li-ion battery lifespan, while Uddin et al. (2017) claimed that V2G could extend Li-ion battery lifespan. The
researchers together reflected on their research of 2017 and published a paper in 2018, clearing up how battery
ageing due to V2G can be managed to extend battery lifespan using a smart control algorithm that maximises
battery lifespan [98]. Mouli et al. (2019) used a mixed integer linear program (MILP) to model the potential
cost reduction of an EV fleet charging from PVs in different scenarios. Among other things, the simulations
showed that V2G for grid regulation services is more cost-effective than V2G for energy sales due to the ageing
of the EV’s battery.

Literature demonstrates the importance of characterising the specific application of V2G, as different V2G
services impact the battery lifespan to a greater extent than others [59, 106, 114].





3
EV battery data modelling

The following chapter elaborates on the EV battery data generation model as well as VIPV and V2G modelling.
The EV battery data generation model is used to simulate the eight use case scenarios introduced in Chapter 1.
Through the completion of this chapter, the first sub-objective is addressed:

i Simulate use case scenarios with and without VIPV and V2G to generate one-year EV battery datasets.

In Section 3.1, the methodology for modelling EV battery data and battery ageing is visualised and explained.
Hereafter, Section 3.2 provides a detailed description of the workings of the EV battery data generation model.
Following this, the methodologies for V2G and VIPV modelling are presented in Section 3.4 and Section 3.3,
respectively. Finally, the EV battery data generation model is validated in Section 3.5.

17
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3.1. Modelling methodology
The diagram shown in Figure 3.1 shows the methodology for EV battery ageing modelling. Lightyear’s VPM,
which is a modelled version of the Lightyear 0 vehicle, is used to simulate per-second battery data. A study by
Centraal Bureau voor de Statistiek (CBS) and a study called Mobility in Germany (MiG) are used to develop a
one-year mobility profile of a new EV. Charging data from ElaadNL is used to develop a charging profile for
an EV. By simulating driving cycles in the VPM according to the constructed mobility and charging profiles, a
realistic one-year EV load profile is derived. This one-year EV load profile data is consequently merged with
VIPV and V2G load profiles to construct the use cases mentioned in the introduction.

The battery ageing stress factors, namely t [s], SoC(t)[%], T(t) [°C], U(t) [V], I(t) [A], C-rate, and Ah are
derived mainly from the power profile. First, the power profile is integrated and subtracted from the full
battery capacity to derive the SoC profile. Second, the temperature profile is modelled based on the power and
SoC profiles and the EV characteristics derived from the VPM. Third, the voltage profile is derived from the
SoC profile and the cell-specific VOC(SoC) curve. Fourth, the current profile is derived from the power and
voltage profiles. Finally, the C-rate and throughput profiles are derived from the current profile. These battery
ageing stress factors form the inputs for the ageing models. Using the ageing stress factors, the ageing models
determine the capacity decrease and resistance increase per time step and yield a lifetime prognosis.
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Figure 3.1: Flowchart illustrating the methodology applied to model EV battery ageing.

Ideally, the outputs of the ageing model, namely the capacity decrease and resistance increase, are looped
back into the power profile. Thereby, the capacity decrease and resistance increase that the battery cell
has suffered in the previous time step are integrated following the time step of the battery data. Due to the
modelling complexity and required computational power, this step is omitted.
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3.2. EV battery data generation model
Two approaches are widely used by researchers to model EV load profiles [1]. One approach is charger-centric
and considers one EV charging station or aggregates multiple EV charging stations. The other approach is
vehicle-centric, in which individual EV loads are modelled that can be combined to create one aggregated load.
In literature, the vehicle-centric approach is preferred over the charger-centric approach, mainly because it
allows exploration of the finer details of an EV load [1, 49]. To develop a holistic EV battery ageing model, the
approach in this work combines the vehicle and charger-centric approach. The EV’s mobility and charging
profiles are constructed based on EV driving data in the Netherlands and Germany. Driving cycles are simulated
in Lightyear’s VPM, which generates power profile data of an EV battery. The battery power profile forms the
basis for deriving the ageing stress factors that influence battery ageing.

3.2.1. Mobility profile
CBS (2022) gathered historical travel data for the Netherlands in 2019 and 2020. The data suggests that in 2019,
the average one-year-old passenger vehicle had travelled 19,190 km. To simulate realistic travel behaviour, a
mobility profile is constructed comprising variations in travel patterns due to leisure, weekend and holiday
trips. The mobility profile includes a total of 260 commuting trips; 50 leisure trips for leisure, 13-weekend trips
to the Veluwe, the Netherlands, one winter trip to Soelden, Austria and one summer trip to Biarritz, France.
To model the work commuting distance, the total distance travelled for leisure, weekend and holiday trips is
deducted from the one-year travelled distance and spread evenly over working days. It is assumed that the
EV owner commutes to work every day of the work week and that the driver uses only one vehicle. The trips
are composed of various driving cycles, elaborated on later in this section. It is assumed that the constructed
mobility profile is sufficiently representative of average EV use in the Netherlands and Spain. An overview of
the determined one-year mobility profile of a new EV driver in Amsterdam is shown in Table 3.1 and Figure 3.2.

Table 3.1: Modelled one-year mobility profile characteristics.

Specification Journey Frequency Round trip distance [km] Total distance [km]

Commuting home - work 250 31.8 7,957

Leisure trips home - leisure 50 101.7 5,087

Weekend trips Amsterdam - Veluwe 13 121.1 1,574

Winter trip Amsterdam - Soelden 1 1,876 1,876

Summer trip Amsterdam - Biarritz 1 2,696 2,696

Total distance 19,190
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Figure 3.2: One-year mobility profile of a new EV driver defined using mobility statistics from the Netherlands and Germany.
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The 2017 Mobility in Germany study used data from 155,000 participating households to describe the
mobility behaviour of working people in Germany [28]. Schlund (2021) used data from the 2017 Mobility in
Germany study to create a stochastic model that describes the mobility behaviour of a large fleet of working
people with private EVs. Figure 3.3 visualises this weekly mobility behaviour. The figure shows a recurring
pattern of commuting to work during the weekdays and more time spent at home during the weekends.

Figure 3.3: Weekly mobility behaviour of a large fleet of working people with EVs in Germany in 2017 [82].

3.2.2. Charging profile
ElaadNL (2020) gathered data on charger arrival times for weekdays and weekends based on a large volume of
charging events in the Netherlands. Figure 3.4 shows the distribution of arrival times at private, public, and
workplace charging stations on weekdays. Figure 3.5 shows the distribution of arrival times at private and
public charging stations on weekends.
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Figure 3.4: Normalised profiles of charger arrival times on weekdays based on large volumes in the Netherlands [21].
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Figure 3.5: Normalised profiles of charger arrival times on weekends based on large volumes in the Netherlands [21].
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Figure 3.4 shows that charging activity peaks during weekdays around 8:45 AM for private, public and
workspace charging stations and around 18:15 PM for private and public charging stations. Figure 3.5 shows
that charging activity peaks during weekends around 00:15 AM for both private and public charging stations,
around 14:00 PM for public charging stations, and at around 17:15 PM for private charging stations. The same
charger arrival times are used for the composition of the power profile.

3.2.3. Lightyear Vehicle Performance Model
Through system modelling, vehicle systems can be modelled in MATLAB and Simulink. These vehicle systems
can be used to simulate driving cycles to generate EV battery load data [9]. As this method allows to closely
imitate the characteristics of an SEV, Lightyear’s VPM is used to model the EV load for the scenarios mentioned
in Table 1.1. As explained in Section 3.1 Lightyear’s VPM is a digital version of the Lightyear 0 vehicle designed
in Simulink. The VPM is used to simulate the EV’s behaviour and incorporates all aspects of the EV, including
the aerodynamic drag, rolling resistance, in-wheel motors, converters, inverters, thermal management systems,
high voltage (HV) and low voltage (LV) batteries. To ensure that the model is accurate and representative of
real-world conditions, the VPM of the Lightyear 0 vehicle has been validated on subsystem level, after which
the data has been fed back into the model [36].

Choice of time step
To decide on the unit time step for the modelled EV battery data, a trade-off is made between processing power
and data accuracy. A smaller time step corresponds to higher accuracy of results but to more computational
power. In contrast, a larger time step corresponds to lower accuracy of results but less required computational
power. The ageing models that will be applied to the data are based on ageing measurements which are
performed on a daily basis and thus do not consider minor deviations in the load profiles. Considering the
required computational power, accuracy of data and of the ageing tests, the chosen time step is per second.
The time step of the output of Lightyear’s VPM simulations is 0.1 s, which is sampled per second.

Battery configurations
Lightyear’s HV battery pack has a setup, with 10 modules in series, each having 10 cells in series and 34 cells in
parallel (100s34p). To maximise battery life, researchers suggest that a Li-ion battery should not utilise the
full 100% SoC range of the battery but should rather operate within a smaller SoC range. In other words, an
EV Li-ion battery should be charged and discharged within a minimum and a maximum SoC limit. Battery
manufacturers suggest discharging an EV battery up to 10% SoC [53]. The researchers determined that both
charging current and power are controllable up to an SoC level of about 90%. The minimum and maximum
SoC of the HV battery in the VPM is thus set to 10% and 90%, respectively. If the SoC of the battery reaches
90%, it is considered ‘full’ and cannot take any more energy. If the HV SoC approaches 10%, the battery is grid
charged with AC power to 90%. Each power profile starts with an initial SoC of the battery (SoCi ) of 90%. While
the Lightyear 0 has both an LV and an HV battery, for simplification, it is assumed that the SEV only uses an HV
battery.

Charging power
Based on Lightyear’s onboard charger (OBC) efficiency curve shown in Figure 8.4 of the appendix, the modelled
AC grid charging is performed at a constant charging efficiency of 95%. Moreover, the modelled EV uses
regenerative braking to recharge the battery using electricity generated during braking.
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3.2.4. Simulation of driving cycles
To generate battery data, a variety of driving cycles are simulated in the VPM. By organising these driving
cycles according to the mobility and charging profile, the travel patterns are simulated to imitate the EV travel
behaviour designed in Subsections 3.2.1 and 3.2.2. The following subsections describe the characteristics of
the simulated driving cycles. The driving cycles are simulated at a single battery temperature and with an
initial SoC of 90%. In reality, varying SoC and battery temperatures would influence the battery cell’s resistance,
which would consequently impact the derived ageing stress factors. It is assumed that this effect does not
heavily impact the ageing estimations of the ageing models.

WLTC driving cycle
The Worldwide harmonized Light vehicles Test Cycle (WLTC) procedure is used to determine light-duty
vehicles’ emissions and energy consumption [16]. The WLTC procedure is part of the Worldwide harmonised
Light vehicles Test Procedures (WLTP). While WLTC and WLTP are used interchangeably, the WLTP procedures
consist of more procedures than only the WLTC test cycles. The WLTP procedures act as the European vehicle
homologation procedure to approve vehicles. The WLTP procedures differ per type of vehicle based on the
vehicle’s power-to-mass (PMR) ratio and maximum speed. The Lightyear 0 vehicle’s maximum speed exceeds
120 km/h and, together with its weight, classifies it as a Class 3b vehicle. The characteristics of the WLTC cycle
of Class 3b WLTP procedures are summarised in Table 3.2. The consumption breakdown of the Lightyear 0
covering one WLTC cycle can be found in Figure 8.5 of the appendix. The power profile data of the four phases,
namely the low, medium, high, and extra high phases, are sampled per second and segmented per phase. The
velocity of the WLTC driving cycle per phase is shown in Figure 3.6. The WLTC driving cycle is simulated at
10 °C as it will be simulated throughout the year in the Netherlands, where the average ambient temperature
throughout the year is 10 °C.

Table 3.2: WLTC Class 3b driving cycle characteristics.

Phase Duration Stop duration Distance vmax vavg excluding stops amin amax

[s] [s] [m] [km/h] [km/h] [m/s2] [m/s2]

Low 589 156 3,905 57 26 -1.5 1.5

Medium 433 48 4,756 77 46 -1.5 1.6

High 455 31 7,162 97 61 -1.5 1.6

Extra high 323 7 8,254 131 94 -1.2 1.0

Total 1,800 242 15,914

Figure 3.6: Velocity profile during a WLTC driving cycle. Data sourced from Lightyear VPM simulations. Plot composition inspired by
DieselNet.
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Artemis driving cycle
The Artemis driving cycles is based on a statistical analysis of an extensive database of European real-world
driving patterns [15]. Figure 3.7 shows the velocity profile during the Artemis driving cycle. The characteristics
of the Artemis cycle, which takes about 18 minutes in total, are summarised in Table 3.3. The Artemis driving
cycle is simulated at 10 °C as it will be used throughout the year in the Netherlands, where the average ambient
temperature is 10 °C.

Table 3.3: Artemis driving cycle characteristics.

Duration Distance vmax vavg

[s] [m] [km/h] [km/h]

1,068 28,737 131 97

Figure 3.7: Velocity profile during the Artemis driving cycle. Data sourced from Lightyear VPM simulations.

Highway driving cycle
Figure 3.8 shows the velocity profile during the highway driving cycle. The highway driving cycle is simulated
at 25 °C, as the battery temperature is assumed to range around 25 °C battery temperature when the EV is
driving on the highway. The characteristics of the highway driving cycle, which takes 100 minutes in total, are
summarised in Table 3.4.

Table 3.4: Highway driving cycle characteristics.

Duration Distance vmax vavg

[s] [m] [km/h] [km/h]

5,844 244,740 160 151

Figure 3.8: Velocity profile during the highway driving cycle. Data sourced from Lightyear VPM simulations.
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Overtaking driving cycle
Figure 3.9 shows the velocity profile during the overtaking driving cycle. The overtaking driving cycle is
simulated at 25 °C, as the battery temperature is assumed to range around 25 °C battery temperature when the
EV is overtaking other vehicles on the highway. The characteristics of the overtaking driving cycle, which takes
100 minutes in total, are summarised in Table 3.5.

Table 3.5: Overtaking driving cycle characteristics.

Duration Distance vmax vavg

[s] [m] [km/h] [km/h]

1,068 42,720 154 144

Figure 3.9: Velocity profile during the overtaking driving cycle. Data sourced from Lightyear VPM simulations.

Brenner pass driving cycle
Figure 3.8 shows the velocity profile during the Brenner pass driving cycle. The Brenner pass towards Soelden
passes from Bolzano to Innsbruck. Figure 8.6 of the appendix shows the elevation profile of the Brenner pass.
The Brenner pass driving cycle is simulated at 35 °C, as it is assumed that the EV battery temperature will be
high when approaching the Brenner pass. The characteristics of the Brenner pass driving cycle, which takes
about 75 minutes in total, are summarised in Table 3.6.

Table 3.6: Brenner pass driving cycle characteristics.

Duration Distance Elevation vmax vavg

[s] [m] [m] [km/h] [km/h]

4,593 132,500 1,370 111 104

Figure 3.10: Velocity profile for the Brenner pass driving cycle. Data sourced from Lightyear VPM simulations.
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3.2.5. Power profile modelling
A one-year power profile is modelled per second using the mobility profile shown in Figure 3.2, the charging
profiles shown in Figures 3.4 and 3.5, and the vehicle configurations and driving cycles described in Subsection
3.2.3. The modelled one-year power profile consists of four alternating one-week power profiles. The four
one-week and one-year power profiles are described in detail below. The corresponding SoC profiles are
described in Subsection 3.2.6. In the power profiles, positive values correspond to the power output required
to drive the vehicle forward and to power the necessary auxiliaries, and negative values correspond to power
input due to grid charging and regenerative braking. Grid charging always charges the battery up to 90% SoC
with a charging power of Pcharging = 11 kW and a charging efficiency of ηcharging = 0.95. While the power profiles
depend on the battery temperature, the driving cycles are simulated at one single temperature depending
on the EV’s situation. The battery temperatures at which each driving cycle is simulated are described in
Subsection 3.2.4.

Composition of a working week with a weekend trip
Figure 3.11 shows a one-week power profile during a working week with a weekend trip. The modelled
one-week power profile with a weekend trip consists of the following:

• Commuting trips during workdays, from 8:30 AM to 9:00 AM and from 17:30 PM to 18:00 PM (31.8 km
round trip). A commuting trip consists of one WLTC cycle in a regular phase sequence, as it is shown in
Figure 3.6, and another WLTC cycle with the phase sequence reversed.

• A leisure trip on Wednesday afternoon from 19:00 PM to 20:30 PM and from 22:00 PM to 23:30 PM (101.7
km round trip). The leisure trip consists of a low and a high WLTC phase followed by an Artemis cycle,
and a high and low WLTC phase.

• A weekend trip towards the Veluwe on Saturday from 12:00 PM to 13:17 PM with a return trip on Sunday
from 16:00 PM to 17:17 PM (121.1 km round trip). The weekend trip consists of one regular WLTC cycle
followed by an Artemis cycle and a second WLTC cycle with the phase sequence reversed.

• Grid charging takes place at the workplace on Thursday at 9:00 AM and at home on Sunday at 17:17 PM.

• Battery preheating to 5 °C before each commuting trip and before the trips towards and back from the
Veluwe.
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Figure 3.11: Modelled one-week EV battery power profile with workday commuting, an extra trip on Wednesday afternoon, grid charging
on Thursday morning, a weekend trip, and grid charging on Sunday afternoon.

According to literature, average EV drivers charge their vehicles between two and three times a week, with a
lower charging frequency for EVs with a larger battery capacity. Considering the Lightyear 0 has a large battery
compared to its curb weight, the literature validates the two times per week charging behaviour portrayed in
Figure 3.11 [101]. In this power profile, the EV is not equipped with VIPV, does not participate in V2G services,
and does not use an air conditioning system.
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Composition of a working week without a weekend trip
Figure 3.12 shows a one-week power profile with the same composition as the profile described in the subsec-
tion above, but excludes the weekend trip to the Veluwe and battery preheating to 5 °C during the weekend.
Grid charging to 90% takes place on the same occasions as in the working week with a weekend trip.
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Figure 3.12: Modelled one-week EV battery power profile with workday commuting, an extra trip on Wednesday afternoon, grid charging
on Thursday morning, and grid charging on Sunday afternoon.

Composition of the winter trip
Figure 3.13 shows the modelled one-week power profile of the winter trip from Amsterdam to Soelden. The
power profile of the winter trip consists of the following:

• An outward trip from Amsterdam to Soelden covering 938 km. The outward trip consists of the driving
cycles in the following sequence: five continuous Artemis driving cycles - one WLTC driving cycle - one
Artemis driving cycle - grid charging - one highway driving cycle - one overtaking driving cycle - one
Artemis driving cycle - one Brenner pass elevation driving cycle - grid charging.

• Parking from Tuesday to Saturday at a 1,368 m elevation at a low ambient temperature (Tav g = 7 °C for
this particular week in Soelden), without thermal battery management.

• A return trip from Soelden to Amsterdam covering 938 km. The return trip consists of the driving cycles
in the following sequence: five continuous Artemis driving cycles - grid charging - one Artemis driving
cycle - one overtaking driving cycle - one highway driving cycle - one overtaking driving cycle - one
highway driving cycle - grid charging - one Artemis driving cycle - one WLTC driving cycle - five Artemis
driving cycles - grid charging.

• Battery preheating to 15 °C before the departure and return trip as it is considered that the EV owner will
additionally preheat the battery before a long trip.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Time [day]

-50

0

50

100

150

P
ou

tp
ut

ba
tte

ry
 [k

W
]

Figure 3.13: Modelled one-week EV battery power profile for a winter return trip from Amsterdam, the Netherlands to Soelden, Austria.
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Composition of the summer trip
Figure 3.14 shows the modelled one-week power profile of the summer trip from Amsterdam, the Netherlands
to Biarritz. The power profile of the summer trip consists of the following:

• An outward trip from Amsterdam to Biarritz covering 1,348 km. The outward trip consists of the driving
cycles in the following sequence: one WLTC driving cycle - five Artemis driving cycles - one WLTC driving
cycle - one Artemis driving cycle - grid charging - one highway driving cycle - one overtaking driving cycle
- one highway driving cycle - one overtaking driving cycle - two Artemis driving cycles - one highway
driving cycle - one overtaking driving cycle - grid charging - one highway driving cycle - one overtaking
driving cycle - one Artemis driving cycle - grid charging.

• Parking from Tuesday to Saturday at a high ambient temperature without thermal battery management.
Tav g = 24 °C for this particular week in Biarritz.

• A return trip from Biarritz to Amsterdam covering 1,348 km. The return trip consists of the driving cycles
in the following sequence: one highway driving cycle - one overtaking driving cycle - one Artemis driving
cycle - grid charging - one highway driving cycle - one overtaking driving cycle - one highway driving
cycle - one overtaking driving cycle - two Artemis driving cycles - one highway driving cycles - one
overtaking driving cycle - grid charging - one WLTC driving cycle - five Artemis driving cycles - one WLTC
driving cycle - one Artemis driving cycle - grid charging.
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Figure 3.14: Modelled one-week EV battery power profile for a winter return trip from Amsterdam, the Netherlands to Biarritz, France.

Composition of the one-year power profile
Figure 3.15 shows the modelled one-year power profile, which comprises the four aforementioned power
profiles. This one-year power profile consists of 13 working weeks with a weekend trip, 37 working weeks
without a weekend trip, a winter trip and a summer trip. This power profile forms the base scenario. The other
ageing stress factors, as well as the VIPV and V2G power profiles, are derived from this power profile.
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Figure 3.15: Modelled one-year EV battery power profile in the base scenario, comprising of 13 working weeks with a weekend trip, 37
working weeks without a weekend trip, a winter trip in January and a summer trip in July. Positive power values correspond to power

output.
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3.2.6. SoC profile modelling
The battery energy profile is derived from the modelled power profile subtracting the integration of the
power profile from the battery capacity, since E = P · t. The SoC profile is consequently derived by dividing
the remaining battery capacity by the total battery capacity. Figure 3.16 illustrates the relation between a
30-minute power profile (on the left y-axis) and the corresponding SoC profile (on the right y-axis). In this
figure, the 5 kW power output at the start of the positive power profile corresponds to battery power output,
enabling the HV heater to preheat the battery to 5 °C. The following positive battery power values correspond
to powering the electric drivetrain, and the negative battery power values correspond to charging the EV using
regenerative braking. Since the net power output in this 30-minute profile corresponds to 4.36 kWh, which is
overwhelmingly positive, the battery SoC drops from about 68% to 61%. This drop in SoC correlates with a 4.36
kWh energy capacity drop in a 59.42 kWh battery.
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Figure 3.16: Zoomed-in image of Figure 3.17 illustrating the power and SoC profile on Tuesday evening. The image shows the impact of
the power profile (left y-axis) on the battery SoC profile (right y-axis). The time period is 30 minutes from the first power deviation to the

last. Positive power values correspond to power output.

As the battery cell’s internal resistance depends on battery SoC and battery cell temperature, the actual SoC
traces differ from the SoC profile derived from integrating the power profile. The dependency of the battery
cell’s internal resistance on SoC and cell temperature is shown in Figures 8.9 and 8.8 of the appendix. While the
internal resistances are not considered in the modelled SoC profile, they are considered in the derived voltage
profile which is used as input for the ageing models, on which is elaborated in Subsection 3.2.8.

Modelled one-week and one-year SoC profiles
Figures 3.17 - 3.20 show the power profiles on the left y-axes with their corresponding SoC profiles on the right
y-axes. Figure 3.21 shows the modelled one-year SoC profile for the base scenario.
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Figure 3.17: Modelled one-week EV power profile (left y-axis) with its corresponding SoC profile (right y-axis) during a working week with
a weekend trip. Positive power values correspond to power output.
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Figure 3.18: Modelled one-week EV power profile (left y-axis) with its corresponding SoC profile (right y-axis) during a working week with
a weekend trip. Positive power values correspond to power output.
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Figure 3.19: Modelled one-week EV power profile (left y-axis) with its corresponding SoC profile (right y-axis) during a winter trip. Positive
power values correspond to power output.
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Figure 3.20: Modelled one-week EV power profile (left y-axis) with its corresponding SoC profile (right y-axis) during a summer trip.
Positive power values correspond to power output.
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Figure 3.21: Modelled one-year EV battery SoC profile in the base scenario, comprising 13 working weeks with a weekend trip, 37 working
weeks without a weekend trip, a winter trip in January and a summer trip in July.
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3.2.7. Temperature profile modelling
This section addresses the main factors that impact the battery temperature profile throughout the year and
explains the battery temperature modelling methodology used in this work.

Temperature increase during driving
There are several ways to determine how the battery temperature increases during driving. The most accurate
method is to implement an electro-thermal model for Li-ion batteries that uses a power profile as an input, like
the one designed by Huang et al. (2021). Another method is to use Lightyear’s VPM to simulate either the battery
temperature increase during driving over time, or the battery temperature increase over the distance travelled.
It is assumed that the battery temperature increase over the distance travelled will result in a disproportionate
increase of battery temperature during highway driving compared to city driving and that this effect is less if
the battery temperature increase during driving over time is considered.

Lightyear’s VPM is therefore used to analyse how the vehicle’s battery temperature behaves over multiple
hours of driving. 15 WLTC cycles are continuously looped for three different ambient temperatures. In all three
simulations, the starting battery temperature equals the ambient temperature of that simulation. The velocity
and battery temperature profiles for one simulation are visualised in Figure 3.22. In this figure, the left y-axis
shows the vehicle velocity and the right y-axis shows the battery temperature in degree centigrade. The figure
shows that at a starting battery temperature of 25 °C, in the first 12 WLTC cycles (from 0 s to 19,801 s (5.5 h)) the
battery temperature increases from 25 °C to 35.4 °C. This temperature increase of ∆T = 10.44 °C corresponds to
an average temperature increase of 1.90 °C per hour. In the second simulation, the ambient temperature and
thus the starting battery temperature is set at 15 °C. The temperature increase in the second simulation is 2.35
°C per hour. In the third simulation, the ambient temperature and thus the starting temperature is set at 10 °C.
The temperature increase in the third simulation was 2.58 °C per hour.

It appears that compared to the battery temperature increase rate at a starting battery temperature of 25
°C, the battery temperature increase rate is 24% higher at a starting temperature of 15 °and 36% higher at a
starting temperature of 10 °C. The higher battery temperature increase rate at lower temperatures might be
due to additional resistance in the battery cell at lower temperatures, which is also shown in Figure 8.9 of the
appendix.

Considering that the ambient temperature in the Netherlands over the whole year averages 10.2 °C, an
average temperature increase during driving of 2.58 °C per hour is considered throughout the modelling of the
temperature profile [13].

Figure 3.22: Velocity and battery temperature profile over 15+ full WLTC cycles with an ambient temperature of 25 °C.

Figure 3.23 shows the power profile on the left y-axis and the battery temperature profile on the right y-axis
for a single WLTC cycle. As highlighted in the black rectangle at around t = 1,500 s, the battery temperature
increases the most when the power output peaks. Figure 8.7 of the appendix, which shows the corresponding
temperature and velocity profiles, shows that the vehicle accelerates at around t = 1,500 s. This correlation
between temperature, power and velocity shows how the battery temperature increases the most during
vehicle acceleration.
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Figure 3.23: Power and temperature profile over one WLTC cycle with an ambient temperature of 25 °C.

Temperature decrease to ambient temperature during parking
To determine the heat loss rate of the battery during parking, Newton’s law of cooling is used, as shown in
Equation 3.1:

dT

d t
=−h

c
· A · (Tamb −Tbatt) (3.1)

where h corresponds to the heat transfer coefficient, c corresponds to the heat capacity of the battery pack,
A corresponds to the area of the battery pack, Tamb corresponds to the ambient temperature to which the
battery temperature will drop, and Tbatt corresponds to the battery pack temperature at the start of the cooling
period. The heat transfer coefficient is assumed to be 10 W / (m2 · K) at the bottom side of the battery pack,
and 5 W / (m2 · K) at the cabin side. Lightyear’s battery pack dimensions are approximately 1800x1600 mm,
corresponding to an area of 2.88 m2. Lightyear’s battery cells, battery enclosure, and battery coolant, have heat
capacity values of 206 kJ/K, 118 kJ/K, and 58 kJ/K, respectively, adding up to a total heat capacity of 380 kJ/K.
It is assumed that the cabin temperature equals the ambient temperature. For simplification, it is assumed
that the battery temperature decreases linearly instead of following an exponential decay. To model the linear
temperature decrease, first, the cooling time period of the previous cooling session is used to estimate to
what future ambient temperature the battery will drop. Then, to more accurately determine the temperature
decrease per second during the cooling of the battery, Equation 3.2 is used.

dT cooling
sec =−

(
ctotal ·

T est.
amb −T start

batt

2

)
(3.2)

where dTcooling
sec is the temperature decrease per second, c is the heat capacity which is set at 380 kJ / K, Test.

amb
is estimated ambient temperature to which the battery is expected to drop, Tstart

batt is the battery temperature
at the start of the considered cooling period, and the factor 2 is included to more-accurately approximate
the exponential temperature decay using a linear temperature decay. Equation 3.3 is subsequently used to
determine the actual cooling time period of the considered cooling session.

tcooling =
(T start

batt −T est.
amb

dT cooling
sec

)
(3.3)

where tcooling is the cooling time, Test.
amb is the estimated ambient temperature to which the battery will drop,

Tstart
batt is the battery temperature at the start of the considered cooling period, and dTsec is the temperature

decrease per second which is calculated using Equation 3.2.
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The ambient temperature throughout the year for the Netherlands is interpolated from hourly measure-
ments to per-second data. The hourly measurements are sourced from a typical meteorological year (TMY)
dataset. TMY is a dataset selected from a longer time period, in this case, 12 years. For each month of the year,
the most typical temperature values have been selected [13]. Figure 3.24 shows the TMY ambient temperature
for Amsterdam, the Netherlands, sourced from the European Commission’s Photovoltaic Geographical Infor-
mation System [12]. The values in this ambient temperature profile are for Tamb in the temperature profile
modelling equations.
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Figure 3.24: Ambient temperature in Amsterdam, the Netherlands. Data sourced from the European Commission’s Photovoltaic
Geographical Information System [12].

Thermal management system
EV manufacturers like Lightyear incorporate thermal battery management systems and strategies to improve
the battery’s performance to reduce battery ageing. For example, Lightyear performs active battery cooling
and battery preconditioning. Battery preconditioning refers to battery preheating and precooling.

Active battery cooling
During active cooling a fan forces cool air over the batteries to withdraw heat, keeping the battery temperature
within a certain desired range. Within the 5 °C - 25 °C temperature region, the battery cell resistance is
considered reasonable. Outside this region, the resistance increases to undesired levels, decreasing the C-rate.
This study assumes a desired battery temperature range of 5 °C - 25 °C. The C-rate is further discussed in
Subsection 3.2.10. Active battery cooling ensures that the battery temperature remains under 35 °C during
operation, as shown around t = 20,000 s in Figure 3.22. The battery is actively cooled at 35 °C to prevent higher
battery temperatures from causing the growth of the SEI layer to further accelerate, which would accelerate
ageing [102]. Due to slight temperature variations during active cooling, the battery temperature rises to a
maximum of 35.4 °C.

Battery preconditioning
Before driving or charging, the battery is preheated or precooled to reach a reasonable operating temperature
range. Battery preconditioning demands energy from the battery, for which an energy penalty is calculated.
This energy penalty is incorporated in the modelling of the power profile.

Preheating is performed using an HV heater when the ambient temperature is lower than the desired
battery operating temperature. The HV heater extracts up to 5 kW power from the HV battery. Therefore,
it is assumed that the HV heater demands a constant power of 5 kW for preheating the battery. Several
preconditioning tests from Lightyear show that it takes an average of 1070 s to heat the battery from -10 °C to 10
°C, 1300 s to heat up from -10 °C to 15 °C, and 1900 s to heat up from -10 °C to 25 °C. These heating rates imply
a linear temperature increase of 0.0185 °C/s. This same preheating temperature increase is used throughout
the temperature profile modelling. As the optimal operating range of the battery operating temperature is
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between 5 °C and 35 °C, the battery is preheated to 5 °C. Equation 3.4 is used to determine the time required to
preheat the battery from the ambient temperature to the desired battery temperature.

tpreheat =
T desired

batt −Tamb

dTheater
d t

(3.4)

where tpreheat is the time required to preheat the battery, Tdesired
batt is the desired battery temperature, which is 5

°C in this case, Tamb is the ambient temperature at the start of the considered preheating period, and dTheater
d t is

the heating rate, set at 0.0185 °C/s in this case.
Precooling is performed when the ambient temperature is higher than the desired battery temperature.

Equation 3.5 calculates the required energy to lower the temperature to the desired operating range.

E HVAC
req = ∆T · c

3,600 ·COP
(3.5)

where EHVAC
req corresponds to the energy required for the HV air conditioning (HVAC) system to cool the battery,

∆T corresponds to the difference in temperature, c corresponds to the sum of the heat capacity of the battery
pack components, and COP stands for coefficient of performance, which is again a function of temperature.
Precooling is not used for modelling the temperature profile of the Netherlands, as the ambient temperature in
the Netherlands does not exceed 35 °C.

Modelled one-week battery temperature profiles
Figures 3.25 3.26 show the modelled battery temperature week profile for January and August, respectively.
As shown in the graphs, the battery temperatures are governed by the ambient temperatures. Each morning
and evening in January, the battery preheats to 5 °C, concurrently causing a constant 5 kW power output
required to power the HV battery heater. As the ambient temperature in August exceeds 5 °C, no battery
preheating is required. Following this, a constant battery temperature increase of 2.58 °C per hour is simulated
during driving, after which the battery cools down to the ambient temperature in a linear matter according to
Equations 3.2 and 3.3.
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Figure 3.25: Modelled one-week battery temperature profile (left y-axis) and ambient temperature (right y-axis) during a working week
with a weekend trip in January.
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Figure 3.26: Modelled one-week battery temperature profile (left y-axis) and ambient temperature (right y-axis) during a working week
with a weekend trip in August.

Figures 3.27 and 3.28 show the modelled battery temperature week profile during the winter and summer
trips, respectively. In the winter trip, the EV driver travels from Amsterdam to Soelden on Monday and back on
Sunday. In the summer trip, the EV driver travels from Amsterdam to Biarritz on Monday and back on Sunday.
In the winter trip, the battery is preheated to 5 °C. Considering the higher ambient temperatures during the
week of the summer trip, no battery heating is required. In both trips, the battery temperature increases
at a rate of 2.58 °C per hour during driving. When the battery temperature reaches 35 °C, active cooling is
activated to prevent the battery from reaching temperatures that reduce performance and accelerate ageing
mechanisms in the battery. When the EV arrives at its destination, the battery cools down to the ambient
temperature in a linear matter according to Equations 3.2 and 3.3. In the winter trip, the battery temperature
during parking in Soelden averages around -6 °C. On the summer trip, the battery temperature during parking
in Biarritz ranges around 24 °C.
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Figure 3.27: Modelled one-week battery temperature profile (left y-axis) and ambient temperature (right y-axis) during a winter trip.
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Figure 3.28: Modelled one-week battery temperature profile (left y-axis) and ambient temperature (right y-axis) during a summer trip.
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Modelled one-year battery temperature profile
The red line in Figure 3.29 represents the ambient temperature of the Netherlands throughout the year, and
the blue line represents the modelled battery temperature. The graph illustrates how the battery temperature
is governed by the ambient temperature. For each month, the ambient temperature profile of a single week is
taken to simulate the battery temperature throughout the month. The following weeks are used to simulate
their corresponding months: 16/1 - 23/1; 6/2 - 13/2; 6/3 - 13/3; 3/4 - 10/4; 9/5 - 16/5; 6/6 - 13/6; 4/7 - 11/7;
16/8 - 23/8; 13/9 - 20/9; 11/10 - 18/10; 13/11 - 21/11 and 11/12 - 18/1. Therefore, the modelled ambient
temperature profile slightly varies from the actual ambient temperature profile.
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Figure 3.29: Modelled one-year battery temperature profile (left y-axis) and ambient temperature (right y-axis).

The same one-year battery temperature profile is applied throughout all the use case scenarios that
simulate an EV in the Netherlands. The scenarios that simulate an EV in Spain contain a slightly different
battery temperature profile, which is elaborated in Section 5.1.
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3.2.8. Voltage profile modelling
The battery cell’s voltage profile (Vcell(t)) is calculated using Equation 3.6:

Vcell =VOC −∆V (3.6)

where VOC corresponds to the open-circuit voltage of the battery cell, which is the difference in electrical
potential between the two electrodes of a battery when no current is applied and on which is elaborated below,
and ∆V corresponds to the voltage drop over the battery’s resistance. The corresponding battery circuit model
is shown in Figure 3.30.

Figure 3.30: Battery equivalent circuit model. Own composition.

The voltage drop over the resistance is calculated using Equation 3.7:

∆V = Rcell · Icell (3.7)

where Rcell is the resistance of the battery cell, and Icell is the current running through the battery cell [96]. Rcell

varies with SoC and temperature. Figure 8.9 of the appendix shows the battery sheet provided by Lightyear’s
battery manufacturer with the battery cell resistance in mΩ for various temperatures and SoC values. For
simplicity, the Rcell is assumed constant. As the average battery temperature over the full year is 10.2 °C, the
cell’s resistance is set at 20.0 mΩ, which corresponds to the discharging resistance around 10 °C according to
Figure 8.9. Icell depends on the voltage drop and is calculated by dividing the power output of one cell by the
cell’s voltage, as shown in Equation 3.8.

Icell =
P

Ncells in parallel ·Ncells in series ·Vcell
(3.8)

where P corresponds to the battery’s power output, shown in Figure 3.11, and n corresponds to the number of
cells in series, which add up the cell’s operating voltage.

As shown in the battery circuit model in Figure 3.30, the battery’s VOC depends on the battery’s SoC. The
relation between the two can be derived from the battery’s datasheet. Lightyear’s battery manufacturer has
provided a look-up table (LUT) that states the battery cell’s VOC for every SoC value. The LUT is plotted in
Figure 8.10 of the appendix, portraying a typical VOC(SoC) curve of an NMC battery. The LUT is expanded
using 1D-interpolation to match VOC values with exact SoC values from the modelled SoC profile. The resulting
VOC values per time step are used in Equation 3.6 to determine the battery cell’s operating voltage per time
step. The constant VOC(SoC) values between 0% and 2% SoC, and 99% and 100% SoC, are likely to be incorrect
values provided by the battery manufacturer. However, due to the set battery SoC limits of 10% and 90% stated
in Subsection 3.2.3, these values are neglected.

A single cell resistance Rcell is considered for every battery temperature and SoC value. In reality, the cell
resistance depends on the cell’s SoC and temperature, as can be seen in Figures 8.8 and 8.9 of the appendix.
Therefore, at elevated temperatures or different SoC levels, the simulated voltage profile will likely inaccurately
follow the actual EV voltage profile.
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Modelled one-week and one-year voltage profiles
Figure 3.31 shows a one-week VOC profile on the left y-axis and the corresponding SoC profile on the right
y-axis. The corresponding one-week cell voltage profile is shown in Figure 3.32. Figure 3.33 shows the modelled
one-year voltage profile for the base scenario.
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Figure 3.31: The VOC profile derived from the modelled SoC profile and the battery’s VOC(SoC) curve shown in Figure 8.10 of the appendix.
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Figure 3.32: Cell voltage profile for one week determined using Equations 3.6 - 3.8.
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Figure 3.33: Modelled one-year battery voltage profile for the base scenario.
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3.2.9. Current profile modelling
The current profile is derived by dividing the power profile by the voltage profile values, as shown in Equation
3.9, and scaling it accordingly to the battery pack setup. Figure 3.34 shows a one-week current profile and
Figure 3.35 shows the modelled one-year current profile for the base scenario.

I = P

V
(3.9)
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Figure 3.34: Current profile derived from the power profile shown in Figure 3.11 and the voltage profile shown in Figure 3.32.
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Figure 3.35: Modelled one-year battery current profile for the base scenario.
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3.2.10. C-rate profile modelling
In the VPM, the battery’s C-rate is specified as a function of SoC and cell temperature. For simplification, the
C-rate profile is derived by dividing the absolute cell current by the useful cell capacity at each second. The
useful cell capacity of Lightyear’s NMC battery is 4.85 A. Figure 3.36 shows a one-week C-rate profile and Figure
3.37 shows the modelled one-year current profile for the base scenario.
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Figure 3.36: Modelled one-week C-rate profile derived from the cell current profile shown in Figure 3.34 and the full cell capacity.
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Figure 3.37: Modelled one-year C-rate profile derived from the cell current profile shown in Figure 3.35 and the full cell capacity.
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3.2.11. Cycle counting method and capacity throughput definition
Rainflow cycle counting
In engineering, rainflow cycle-counting is used to accurately determine the combined fatigue of individual
stress cycles. Figure 8.12 in the appendix shows the working of the rainflow cycle-counting method. Rainflow
cycle counting is based on the assumptions that the specific sequence of different-sized cycles does not
influence the fatigue, and that the impact of a cycle on fatigue is the same over the period of time over which
the cycle counting is performed [47]. Close analysis of the results from Matlab’s built-in rainflow cycle counting
algorithm on battery data shows that due to the nature of the algorithm, the algorithm does not accurately
determine the start and end of each battery cycle. Thus, Matlab’s built-in rainflow cycle counting algorithm
shows to have limited applicability to battery data.

Load profile cycle counting
Instead, the load profile cycle counting method is used to determine the start and end of each charge and
discharge ‘partial cycle’. Each partial cycle’s start and end points are determined by the moment in time that
the power profile crosses the 0 value of the x-axis, which is named a ‘zero crossover point’. Figure 3.38 illustrates
this cycle-counting method. The first partial cycle in this illustration starts at point A and ends at point B,
which is a partial discharge cycle considering the sign convention of the power profile on the left y-axis. The
corresponding SoC profile on the right y-axis shows how the battery SoC drops from point A’ to point B’. The
second partial cycle in the illustration is considered a partial charging cycle, which starts at point B and ends at
point C, with the SoC profile showing the drop in battery capacity from point B’ to point C’. It appears that in
literature, researchers do not share one common definition for a cycle. In this work, a full equivalent cycle is
defined as the cell’s discharged capacity divided by the cell’s full capacity.

Figure 3.38: Illustration of the load profile cycle counting methodology.

Throughput definition
The definition of throughput appears inconsistent in literature. Throughput essentially describes the amount
of energy managed by the battery. Vermeer et al. (2022) define throughput as the net amount of energy
delivered by the battery. A researcher from RWTH Aachen affiliated with Schmalstieg et al. (2014) considers
throughput to be the energy charged and discharged by a battery. Schimpe et al. (2018) define separately total
throughput (QTot) as the cumulative amount of energy charged and discharged by the battery, and define
charge throughput (QCh) as the throughput in charging direction. It thus appears that there is no single
definition for throughput, but that it depends on the researcher’s definition.

The throughput is determined for every second of the year using Equation 3.10.

Q(t ) = I (t )

3,600
(3.10)
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3.3. VIPV modelling
As described in Section 2.3, VIPV enable EVs to harness energy from the sun to consequently charge the
vehicle’s battery. Lightyear’s SolarSimulator tool is used to simulate the potential VIPV power generation. A
description of the model is given below.

3.3.1. Lightyear’s SolarSimulator tool
Lightyear’s SolarSimulator tool is developed to simulate the energy generated by photovoltaic solar cells based
on weather and location input data. In order to do that, the model employs an optical, thermal and electrical
model. First, the optical model retrieves the irradiance falling on the surface, where-after the combined
thermal and electrical model determines the output power.

Two variables directly influence VIPV’s performance, namely the temperature of the panel and the incident
irradiance. These two parameters are consequently used in the electrical model. Standard test conditions (STC)
of PV modules do not represent the working conditions because in real conditions, high irradiance causes an
increase in the solar module’s temperature, leading to lower voltage and lower power output. Therefore, both
parameters are used as input for the thermal and electrical models.

Optical model
The optical model developed by Santbergen et al. (2016) and Regondi et al. (2017) was implemented to estimate
the irradiance falling on the surface. In the optical model, ray-tracing tracks the light from the source to the
surface investigated. The output of this simulation is combined with the all-weather model by Perez et al.
(1993) for sky luminance distribution to determine the solar irradiance. As the SolarSimulator tool does not
consider shading over the vehicle, it is assumed that the VIPV do not experience shading.

Thermal model
The thermal model evaluates the heat transfer processes, both internal and external to the PV module. The
heat transfer model combines three heat transfer types, namely conduction, radiation, and convection.

Electrical model
The electrical model consists of a single diode model, which according to Mohamed et al. (2013) is the simplest
approach for modelling a PV module. As shown in Figure 3.39, a single-diode model has a current source
parallel to a diode. The output of the current source is directly proportional to the light falling on the cell.
This electrical model requires only three parameters to completely characterise the current-voltage (I-V)
characteristic curve: short-circuit current (ISC), VOC and the diode ideality factor n. Furthermore, because
the single diode model does not adequately represent the cell’s behaviour when subjected to environmental
variation, especially at low voltage, the model includes a series resistance RS . This model, also known as the
RS -model, is the most widely-used model in PV system simulations due to its simplicity and computational
efficiency.

Figure 3.39: Single diode model equivalent circuit model [70].

In Figure 3.39, IL represents the solar-generated current in the cell, I0 is the diode reverse saturation
current, RS is the series resistance, Rsh is a shunt resistance, Ish represents the current lost due to the shunt
resistance.
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3.3.2. VIPV power profile modelling
Lightyear’s SolarSimulator tool simulates Lightyear’s one-year VIPV power generation data for different ge-
ographical locations. The data gives the VIPV power generation profile at a 15-minute time step. In the
simulation, the average VIPV power generation is taken for a Lightyear 0 vehicle driving in 28 different direc-
tions.

Modelled one-year VIPV power profiles
The top graph of Figure 3.40 shows the modelled one-year VIPV power generation profile for Amsterdam, the
Netherlands and the bottom graph for Madrid, Spain.

Figure 3.40: The top graph shows the modelled one-year VIPV power generation for the Netherlands and the bottom graph for Spain. Data
sourced from Lightyear’s SolarSimulator tool.

Annually, 5 m2 of VIPV can generate 664 kWh of energy in the Netherlands and 1.27 MWh in Spain. In this
scenario, 5 m2 of VIPV would generate 91% more power in Spain compared to the Netherlands due to the
difference in solar irradiance.
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Modelled one-week VIPV power profiles
The 15-minute VIPV power generation data is consequently interpolated to per second data to fit to the power
profile data modelled in Subsection 3.2.5. As an example, the top graph of Figure 3.41 shows the VIPV power
generation profile for a week in May in Amsterdam, the Netherlands and the bottom graph for Madrid, Spain.

Figure 3.41: The top graph shows the VIPV power generation data for a week May in the Netherlands and the bottom graph for Spain. Data
sourced from Lightyear’s SolarSimulator tool.
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Implementation of the VIPV power profile
The VIPV power generation is consequently applied on the power profile data modelled in Subsection 3.2.5.
For illustration purposes, the top and bottom plots of Figure 3.42 show the power and SoC profile of the same
week in May, without and with VIPV power generation, respectively. Both plots show the power profile on the
left y-axis and the SoC profile on the right y-axis.

The bottom plot of Figure 3.42 shows slight power deviations during the day, which represent power
generated by VIPV charging the battery. In comparison, these slight power deviations are absent in the top plot
of Figure 3.42 as VIPV power generation is absent. These slight power input values in between the spikes of
the power profile correspond to periods at which the EV is assumed to be parked in the sun, mostly during
working hours. As a consequence of this VIPV power charging the battery, the red SoC line slightly increases,
illustrating how the VIPV power generation provides battery capacity.

Figure 3.42: The top and bottom plots show the power profile (left y-axis) and SoC profile (right y-axis) for a week in May, without and with
VIPV power generation, respectively.
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Modelled one-year SoC profiles for the VIPV scenarios
The modelled one-year SoC profile for the VIPV scenario in the Netherlands is shown in Figure 3.43 and for
Madrid, Spain in Figure 3.44. The modelled one-year SoC profile for the scenario in which an EV is equipped
with VIPV is based in the Netherlands, and participates in V2G day-ahead electricity trading V2G with a battery
capacity retention limit of 50% SoC during V2G is shown in Figure 3.45.
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Figure 3.43: Modelled one-year battery SoC profile for an EV with VIPV in the Netherlands.
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Figure 3.44: Modelled one-year battery SoC profile for an EV with VIPV in Spain.
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Figure 3.45: Modelled one-year battery SoC profile for an EV with VIPV in the Netherlands, that also participates in V2G day-ahead
electricity trading and retains 50% SoC during V2G.

For each month, the VIPV power generation of a single week is taken to simulate the VIPV power generation
throughout that month. The following weeks are used to simulate their corresponding months: 16/1 - 23/1;
6/2 - 13/2; 6/3 - 13/3; 3/4 - 10/4; 9/5 - 16/5; 6/6 - 13/6; 4/7 - 11/7; 16/8 - 23/8; 13/9 - 20/9; 11/10 - 18/10; 13/11 -
21/11 and 11/12 - 18/1. Therefore, the modelled VIPV power generation profile slightly varies from the actual
VIPV power generation profile.
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3.3.3. Impact on grid charging frequency
The top and bottom graphs of Figure 3.46 show the power and SoC profiles for the same week in May, with and
without VIPV power generation, respectively. The top graph shows how for this modelled week in May, it takes
an extended period of time for the battery to reach lower SoC levels. Thereby, VIPV effectively reduces the
number of required grid charging sessions. In the VIPV power profile model, it is assumed that the EV owner
will plug in only once a week if VIPV allows them to get through the week without depleting the battery Soc.
Compared to the modelled base scenario in the Netherlands, VIPV can reduce the number of grid charging
sessions from 102 to 79 per year, corresponding to a 23% decrease in grid charging frequency. Compared to the
modelled base scenario in Spain, VIPV can reduce the number of grid charging sessions from 102 to 57 per
year, corresponding to a 44% decrease in grid charging frequency.

Figure 3.46: Power profile (left y-axis) and SoC (right y-axis) for a week in May, with VIPV power generation but with one charging occasion
instead of two.

The average SoC in the top graph of Figure 3.46 is 66%, while the average SoC in the bottom graph is 54%.
Thus, it appears that as VIPV reduces the grid charging frequency, VIPV reduces the battery’s average SoC.
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3.4. V2G modelling
As described in Section 2.4, currently, the most attractive V2G services for EVs participating in the Netherlands
appear to be day-ahead electricity trading and aFRR grid balancing. Day-ahead electricity trading is elaborated
on in Subsection 3.4.1 and aFRR grid balancing in Subsection 3.4.2. Considering the scope of this work, profits
due to V2G are not investigated.

As mentioned in Section 2.1, driving range has long been considered a major barrier to the acceptance
of e-mobility. The nature of V2G increases the probability that an EV is (partially) discharged due to V2G.
Therefore, it assumed that EVs with V2G capabilities will allow EV owners to regulate the minimum battery
capacity that they would like to retain during V2G. To determine its effect on battery ageing, the minimum
battery capacity retention limit is set to 50% SoC and 20% SoC, where a 20% SoC retention limit would allow
for more battery capacity during V2G services. Moreover, in the V2G use case scenarios, it is assumed that the
EV connects to a charging point as soon as it is parked to perform V2G services, except during the summer and
winter trips.

3.4.1. Day-ahead electricity trading
The mixed-integer linear programming objective function described in Equations 3.11 - 3.21 determines the
energy supply and demand for V2G day-ahead electricity trading.

Day-ahead electricity trading model
Objective function

minimise
τ∑
t
ϵDA,t · (Pcharge,t −PV2G,t) (3.11)

subject to the following constraints and bounds:

Energy balance
Estored,1 = Estart (3.12)

Estored,t = Estart,t-1 + (Pcharge,t-1 ·ηcharge −
PV2G,t-1

ηcharge
−Pdrive,t-1) (3.13)

V2G minimum SoC binary

0 ≤ PV2G,t ≤ Pmax, V2G ·BV2G, t (3.14)

BV2G, t ≤
Estored,t −0.5 ·Ebat,max

0.5 ·Ebat ,max
+1 (3.15)

Connection requirement

Pcharge,t = 0 ∀ t ∈ Tdisconnected (3.16)

PV2G,t = 0 ∀ t ∈ Tdisconnected (3.17)

Energy requirement
Estored,t ≥ Erequired ∀ t ∈ Trequired (3.18)

Non-negativity and maximum values
0 ≤ Pcharge,t ≤ Pcharge,max (3.19)

0 ≤ Estored ≤ Ebat,max (3.20)

0 ≤ PV2G ≤ PV2G, max (3.21)

where ϵDA,t is the electricity price on the day-ahead market inAC/kWh, Pcharge,t is the charging power from the
grid in kW, PV2G,t is discharging power to the grid in kW, Estored is energy stored in the EV’s battery in kWh,
Ebat,max is the maximum energy capacity of the battery in kWh, ηcharge is the OBC’s charging efficiency, BV2G, t

is a binary constraint allowing V2G only if the battery’s SoC is above 50%, Tdisconnected is a vector containing
times at which the EV is not connected to a charging point, and Trequired§ is a vector containing times at which
the EV battery is required to have a minimum SoC for the owner to be able to drive off.
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Modelled one-year SoC profiles for the V2G day-ahead electricity trading scenarios
The modelled one-year power profile of the base scenario described in Subsection 3.2.5 forms the base for
modelling the one-year V2G power profiles. Using this base scenario power profile and the objective function
described above, the one-year power and SoC profiles for the V2G day-ahead electricity trading scenarios are
modelled. The two V2G profiles are modelled with a 50% and 20% SoC retention limit during V2G services, as
described in the introduction of this section. The SoC profile for the V2G day-ahead electricity trading with a
50% SoC retention limit during V2G is shown in Figure 3.47, and with a 20% SoC retention limit in Figure 3.48.
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Figure 3.47: Modelled one-year EV battery SoC profile in the V2GDay-Ahead scenario with 50% SoC retention during V2G services.
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Figure 3.48: Modelled one-year EV battery SoC profile in the V2GDay-Ahead scenario with 20% SoC retention during V2G services.

3.4.2. aFRR grid balancing
As described in Section 2.4, on the aFRR market, revenue can be generated by counteracting imbalance.
Imbalance can be in two directions. There is either too much or too little power fed into the grid. When too
little power is fed into the grid, TenneT will activate bids for upwards regulation, or ‘regulation state 1’, starting
at the lowest bid per kWh, to feed more power into the grid. TenneT will consequently pay the activated BSP
an imbalance settlement price (ISP) for delivering a certain amount of energy. At the moment that there is an
excess of power supply in the grid, or not enough power is demanded, TenneT will activate bids for downward
regulation, or ‘regulation state -1’, starting at the highest bid per kWh, to demand power from the grid at that
moment. The activated BSP will demand power from the grid, and pay TenneT the price of the lowest accepted
bid within the ISP. If this accepted bid price is negative, TenneT will pay this negative of this negative amount
(positive amount) to the BSP.

For an EV, upwards regulation can be provided by stopping grid charging or feeding power into the grid
using V2G, with TenneT financially compensating the EV owner for supporting in balancing the grid. For an EV,
downward regulation can be provided by charging additional energy. In case the electricity price is positive,
the EV owner in this scenario benefits financially by charging with cheap electricity. However, the electricity
price can also be negative, meaning that the EV owner will be paid in return for charging from the grid. The
mixed-integer linear programming objective function described in Equations 3.22 - 3.25 determines the energy
supply and demand for V2G day-ahead electricity trading.



3.4. V2G modelling 49

Bid and acceptance model
The model consists of a numerical part which performs several precalculations and a sequential part which
tracks the amount of energy delivered, the resulting revenues earned and the current SoC. For each time step
the bid down is calculated as:

Bdown,τ = max(ϵaFRR,t,0) (3.22)

where Bdown is the bid placed for downward regulation. If accepted, a positive Bdown will be a payment from
the BSP to the TSO. The lowest bid to be placed is set at 0, which corresponds to free charging.

Bup,τ = ϵaFRR,t (3.23)

where Bup is the bid placed for upward regulation. If accepted, the payment will be from the TSO to the BSP.
Next, the minutes are counted in which a bid of this magnitude is accepted. It should be noted that this is

an estimation. However, for computational purposes, the choice is made for this middle ground between the
use of 4-second and 15-minute data. Still, in static pre-calculation, the following is performed:

Adown,τ =
Στ+14

t=τ Bdown, accept, t

15
∀τ ∈ T (3.24)

where bdown, accept, t = 1 if and only if Bdown,τ ≤ϵaFRR, down, t. Here, t enumerates the minutes and τ enumerates
the 15-minute ISPs to avoid confusion. This results in that Adown,τ will have a value between 0 and 1. This is
used to estimate the activated power of the aFRR per ISP.

The sequential part considers the EV’s relevant parameters. It tracks the battery SoC to ensure that the
aFRR can be provided in the required direction at each time step, without going under or over the desired SoC
limits and based on the charging time availability. Just like in the DA model:

Estored,t = Estart,t-1 + (Pcharge,t-1 ·ηcharge −
PV2G,t-1

ηcharge
−Pdrive,t-1) (3.25)

Modelled one-year SoC profiles for the V2G aFRR scenarios
The SoC profiles for V2G aFRR with 50% SoC and 20% retention are shown in Figure 3.49 and 3.50, respectively.
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Figure 3.49: Modelled one-year EV battery SoC profile in the V2GaFRR scenario with 50% SoC retention during V2G services.
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Figure 3.50: Modelled one-year EV battery SoC profile in the V2GaFRR scenario with 20% SoC retention during V2G services.
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3.5. Validation of the EV battery data generation model
As described in Section 3.2, Lightyear’s VPM is used to simulate driving profiles. The VPM generates a power
profile which is sampled per second. This power profile forms the basis for modelling the rest of the battery
ageing stress factors. These ageing stress factors, namely the battery’s SoC, voltage, current, C-rate, throughput,
and temperature are modelled using the EV battery data generation model. To validate the EV battery data
generation model, its accuracy is determined by simulating a driving cycle and comparing the modelled
battery’s SoC, voltage, and current data with data sourced directly from the VPM. It should be noted that the
modelled profiles are indirectly derived from the power profile. Validation of the EV battery data generation
model on vehicle-level could further validate the accuracy of the data.

A commonly used method to determine the error between measured and modelled data is the root mean
square error (RMSE), shown in Equation 3.26. The RMSE is a measure of accuracy, where an RMSE of 0 would
indicate an identical fit of the measured and modelled data.

RMSE =
√

n∑
i=1

(yi − ŷi)2

n
(3.26)

where yi is the data from the VPM, ŷi is the data modelled using the EV battery data generation model, i is a
variable, and N is the number of data points.

SoC profile validation
The top graph of Figure 3.51 shows the SoC sourced from the VPM in a solid red line (‘measured SoC’) and
the modelled SoC (‘modelled SoC’) in a solid blue line. The bottom graph shows the difference between the
measured and modelled data in SoC charge percentage. The RMSE for the modelled SoC profile is 0.364, which
suggests that the modelled SoC does not accurately follow the data from the VPM. As shown in Figure 3.51, the
error appears to increase over time. The increasing error in the modelled SoC is likely because ∆V described in
Subsection 3.2.8 is not considered in the SoC profile. Chapter 4 explains how the ageing models mainly use
voltage as input, in which the error is resolved.

Figure 3.51: SoC profile error analysis for validation of the EV data generation model. The top graph shows the modelled battery SoC in a
blue line and the measured VPM battery SoC in a red line. The bottom graph shows the absolute error between the two.
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Voltage profile validation
The top graph of Figure 3.52 shows the measured cell voltage in a solid red line and the modelled cell voltage in
a solid blue line. The bottom graph shows the difference between the measured and modelled data in voltage.
The RMSE for the modelled voltage profile is 0.067, which suggests that the modelled voltage accurately follows
the data from the VPM.

Figure 3.52: Voltage profile error analysis for validation of the EV data generation model. The top graph shows the modelled cell voltage in
a blue line and the measured VPM cell voltage in a red line. The bottom graph shows the absolute error between the two.

Current profile validation
The top graph of Figure 3.53 shows the measured cell current in a solid red line and should show the modelled
cell voltage in a solid blue line. However, considering the large y-axis range of the graph and that the error
is small, the lines appear to superimpose each other, fading away the blue line. Nevertheless, the bottom
graph of Figure 3.53 clearly shows the small difference between the measured and modelled data in voltage.
The RMSE for the modelled current profile is 0.010, which suggests that the modelled current very accurately
follows the data from the VPM.

Figure 3.53: Current profile error analysis for validation of the EV data generation model. The top graph shows the modelled cell current in
a blue line and the measured VPM cell current in a red line. The bottom graph shows the absolute error between the two.





4
Battery ageing modelling

The following chapter elaborates on EV battery ageing modelling. The reproduction of ageing models from
literature allows for ageing analysis on the battery data modelled in the previous chapter. Thus, through the
completion of this chapter, the second sub-objective can be addressed:

ii Implement the EV battery datasets into battery ageing models from literature to quantify battery cal-
endar and cycling ageing for each use case scenario.

Section 4.1 presents an overview of the three ageing models used in this work to analyse ageing. Following
this, Sections 4.2 - 4.4 thoroughly describe the ageing models by summarising the ageing tests on which they
were built, depicting their ageing equations, and clarifying how they should be implemented to estimate
ageing from battery data. Finally, the ageing models are validated in Section 4.5, which following the structure
of this work, addresses the fourth sub-objective:

iv Validate the ageing models by simulating ageing tests performed to develop the ageing models.

53
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4.1. Overview of the implemented ageing models
Semi-empirical models based on both NMC and LFP batteries are used to determine the ageing due to calendar
and cycling ageing for each use case scenario. An overview of the three implemented semi-empirical ageing
models, as well as their characteristics, is shown in Table 4.1. Ref. stands for literature reference, Cal. for
calendar ageing, Cyc. for cycling ageing, Q for capacity loss, and R for resistance increase. ‘Applicable’ refers to
whether the ageing model is applicable on battery data.

Table 4.1: Overview of the implemented semi-empirical ageing models for NMC and LFP battery cells.

Chemistry Authors Ref. Cal. Cyc. Q R Applicable Stress factors

NMC Schmalstieg et al. (2014) [84] ✓ ✓ ✓ ✓ ✓ time, V, T, DoD, Ah

NMC Käbitz et al. (2013) [45] ✓ X ✓ ✓ X time, T

LFP Schimpe et al. (2018) [81] ✓ ✓ ✓ X ✓ time, SoC, V, T, I, Ah

As shown in the table, the ageing model by Schmalstieg et al. (2014) describes both capacity and power
fade due to calendar and cycling ageing, and is applicable on battery data. The ageing model by Käbitz et al.
(2013) offers only calendar ageing equations for four constant battery temperatures, limiting its applicability.
Therefore, the model is used to benchmark NMC ageing determined by the model of Schmalstieg et al. (2014).
The ageing model by Schimpe et al. (2018) describes capacity loss for both calendar and cycling ageing. As
the LFP ageing model provides insight into the anode stoichiometry, it enables to transform NMC-based
ageing stress factors into LFP-motivated ageing stress factors. Furthermore, considering that Schmalstieg et al.
(2014) demonstrate large errors in resistance increase estimations, as well as that Schimpe et al. (2018) neglect
resistance increase, in this work, only capacity decrease is considered as a battery EoL criterion.
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4.2. NMC ageing model I (NMC-AM)
The first NMC-based semi-empirical ageing model (NMC-AM) was designed by Schmalstieg et al. (2014)
from RWTH Aachen. The researchers used accelerated ageing tests to design an ageing model that addresses
capacity decrease and resistance increase due to calendar and cycling ageing. The ageing tests were performed
using 60 Sanyo UR18650E round Panasonic NMC cells (1:1:1) [68, 104]. These cells have a nominal capacity of
2.15 Ah, a maximum C-rate of 3C and a specific energy of 162 Wh/kg. The Sanyo UR18650E cell, of which its
battery sheet can be found in Figure 8 of the appendix, is a high energy and high power battery cell ideal for
e-bikes, smaller electrical appliances, and robotics. According to NMC-AM, calendar and cycling ageing can
be superpositioned to determine total ageing.

Calendar and cycling ageing tests
Every 50 days, for 500 days, the calendar ageing capacity decrease and internal resistance increase were
measured. To verify the Arrhenius dependency, three battery temperatures were researched, namely 35 °C, 40
°C and 50 °C. The authors verified that the Arrhenius equation as presented in Equation 2.1 held for their data
by verifying a linear relation between the logarithm of the ageing rate and the inverse of the temperature. The
main focus was on the voltage dependency, which was researched by measuring ageing over time at 10 different
constant SoC levels and at 50 °C. Each combination was tested with three cells to demonstrate the consistency
of the tests. Figure 4.1 shows the mean capacity decrease and resistance increase due to calendar ageing and
includes an error bar plot to show the measurement deviations from the different cells. The calendar ageing
test data shown in Figure 4.1 suggests that both the capacity decreases and the resistance increases faster
when batteries are stored at high SoC values and slower when stored at lower SoC values, which is in line with
literature [14, 19, 109].

A total of 22 cycling ageing tests were performed with a constant temperature of 35 °C, a C-rate of 1, a
varying DoD and an average SoC. The batteries were cycled up to 12 full cycles per day. As calendar ageing
also occurs during cycling ageing, the impact due to calendar ageing has been subtracted from the measured
cycling ageing-induced capacity and power fade. Figure 4.2 shows the ‘pure’ capacity decrease and internal
resistance increase due to cycling ageing. The cycling ageing test data shown in Figure 4.2 suggests that both
the capacity decreases and the resistance increases more when the batteries are cycled between high SoC
values (e.g. 90 - 100%) and low SoC values (e.g. 5 - 15%), and less when they are cycled between average SoC
values (e.g. 45 - 55%), showing that SoC also impacts cycling ageing.
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Figure 3: Test matrix of cycle life tests performed on
a 2.05 Ah cell.

was measured during the 1C discharge down to
2.5 V. The inner resistance was measured at SOC
steps of 10 %, starting from 90 % SOC down to
10 % SOC. Every step was reached Ah based
by discharging 1/10 of capacity starting from a
completely charged battery in the first step. At
each step a pulse power characterization profile
(PPCP) is applied to the battery. The PPCP con-
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Figure 4: Voltage reaction of a new cell to a PPCP.
The two voltages used for calculating the 10 s dis-
charge resistance are marked red.

sists of an 18 s 2C discharge followed by a 40 s
rest period. After that a 10 s 1C charge is ap-
plied, again followed by a 40 s rest period. A
voltage response to this PPCP is shown in figure
4. From this profile various inner resistances are
calculated, a 2, 10 and 17 s resistance for the dis-
charge and a 2 and 10 s resistance for the charge.
For the aging calculation the 10 s discharge re-
sistance at 50 % SOC is used. This resistance
is calculated as the difference between the volt-
age before the discharge pulse and 10 s after the
beginning of the discharge pulse divided by the

current. All other resistances are calculated in a
similar way.

3 Calendar aging

In the calendar aging tests, cells were stored at
different temperatures and voltages. Each test
condition was performed with 3 cells to demon-
strate the reproducibility of the experiment. The
results show a very similar aging for cells tested
under the same conditions, the measured capaci-
ties show an especially great uniformity.
Only the tests at 100 % had a difference of more
than 4 percentage points between the best and
worst cell. As these cells also had a very strong
aging, they are excluded from further analysis.
With a storage voltage of 4.162 V they were
above the recommended end of charge voltage.
This might lead to additional aging effect which
cannot be scaled down to lower voltages.
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Figure 5: a) Normalized capacity over time and b)
normalized resistance over time for calendar aging
tests at 50 �C. For each SOC the average on three cells
under tests is shown.

For all tests a mean capacity loss and resistance
increase has been calculated for every checkup.
An error bar plot of both capacity and resis-
tance in the 50 �C tests can be found in figure
5. The cells suffer increasing capacity loss and
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Figure 4.1: Calendar-led ageing: a) normalised capacity
decrease and b) normalised internal resistance increase.
Graphs show the mean calendar ageing of 3 cells with corre-
sponding error bar plot for tests at 50 °C over 500 days [84].
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Figure 8: Arrhenius plot of aging factors ↵ for both
capacity and resistance over inverse temperature. The
shown temperatures are 35 �C, 40 �C and 50 �C. Also
the linear regression for temperature dependency is
shown.

3.5 Fit function calendar aging

For a mathematical model of calendar aging the
dependencies on voltage and temperature need to
be combined. Here an aging factor ↵ is used to
describe the aging rate during a test of time t.

C = 1 � ↵cap · t0.75 (6)

R = 1 + ↵res · t0.75 (7)

The test at 50 �C and 50 % is included both in
voltage and temperature fit and therefore chosen
as an intersection for both functions. The com-
bined aging factors for capacity and resistance
are

↵cap = (7.543 · V � 23.75) · 106 · e�
6976

T (8)

↵res = (5.270 · V � 16.32) · 105 · e�
5986

T (9)

for tests done at a voltage V and an absolute tem-
perature T . These equations allow one to calcu-
late the calendar aging for arbitrary conditions of
voltage and temperature. They are the basis for
the cycle aging analysis in the next chapter.

4 Cycle aging

Cycling a battery leads to additional aging due
to processes which do not occur during calendar
aging. During intercalation and de-intercalation
the material experiences a volume change which
is a stress factor for the battery system. Results

can be a crack-and-repair of the SEI which con-
sumes lithium and increase the inner resistance
or a contact loss of active material particles.
A lot of cycle aging tests varying cycle depth and
average SOC were performed. All cycle aging
tests were done at a temperature of 35 �C and a
current of 1C. This would result in 12 equivalent
full cycles per day, but real values are lower due
to time for checkups and other unplanned rest pe-
riods.
During the time of cycling calendar aging also
occurs. To get an analysis of the ’pure’ cycle ag-
ing, all test data had to be adjusted by the cal-
endar aging. The calendar capacity loss and re-
sistance increase were calculated using the func-
tions obtained from the tests discussed before
and then added/subtracted from the measured ca-
pacities and resistances. All discussion of cycle
aging in this chapter refers to these adjusted val-
ues. A selection of typical ’pure’ cycle aging
curves can be found in figure 9.
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Figure 9: a) Normalized capacity and b) normalized
resistance over equivalent full cycles. Values are ad-
justed to the ’pure’ cycle aging by subtracting the cal-
culated calendar aging. The shown tests were done
with 1C at 35 �C and a cycle depth of 10 %.

Within literature sometimes a linear aging over
charge throughput Q is found [16], but also work
about square root aging was presented [7, 17].
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Figure 4.2: Cycling-led ageing: a) normalised capacity de-
crease and b) normalised internal resistance increase. Both
graphs show the cycling ageing per equivalent full cycle for
tests with a C-rate of 1 and a DoD of 10% [84].
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Fit functions
The researchers determined ageing equations that best describe the ageing process. The ageing equations that
define the capacity decrease and resistance increase due to calendar ageing are shown in Equations 4.1 - 4.4.
Note that only the capacity loss ageing equations were used.

Qcalendar
I = 1−α

Q
I · t 0.75 (4.1)

Rcalendar
I = 1+αR

I · t 0.75 (4.2)

with

α
Q
I = (7.543 ·V −23.75) ·106 ·exp

(
− 6,976

T

)
(4.3)

αR
I = (5.270 ·V −16.32) ·105 ·exp

(
− 5,986

T

)
(4.4)

where t is time in days, T is the absolute temperature of the battery in Kelvin, and V is the voltage of the battery
cell. The t0.75 term indicates that calendar-led ageing follows an exponential decay over time, which is in line
with the slowing growth of the SEI film [102]. As stated in Section 2, the SEI layer is commonly assumed to
scale with the square root of time. For this ageing model, however, the researchers concluded that the t0.75

factor better follows the trend of the ageing data. Thus, considered calendar ageing stress factors are time,
temperature, and voltage. The ageing equations that define the capacity decrease and resistance increase due
to cycling ageing are shown in Equations 4.5 - 4.8.

Qcycling
I = 1−β

Q
I ·

p
Ah (4.5)

Rcycling
I = 1+βR

I · Ah (4.6)

with

β
Q
I = 8.175 ·10−3 · (ØV −3.683)2 +7.057 ·10−4 +4.198 ·10−5 ·∆DoD (4.7)

βR
I = 2.673 ·10−4 · (ØV −3.741)2 −1.900 ·10−5 +2.837 ·10−6 ·∆DoD (4.8)

where ØV describes the dependency on the root mean square voltage of the cycle and ∆DoD describes
the cycle depth. The

p
Ah term of Equation 4.5 indicates that cycling ageing capacity loss decreases with

throughput or number of cycles. The
p

Ah term of Equation 4.6 indicates that cycling ageing resistance
increases linearly with the number of cycles. Thus, considered cycling ageing stress factors are voltage, DoD,
and throughput.

In 2014, shortly after the publication of the paper by Schmalstieg et al. (2013), Elsevier published a similar
paper by the same authors. In the new publication, the authors seemingly revised Equations 4.7 and 4.8 [84].
Equations 4.9 and 4.10 below show the revised equations described in the paper.

β
Q
I, rev. = 7.348 ·10−3 · (ØV −3.667)2 +7.600 ·10−4 +4.081 ·10−3 ·∆DoD (4.9)

βR
I, rev = 2.153 ·10−4 · (ØV −3.725)2 −1.521 ·10−5 +2.798 ·10−4 ·∆DoD (4.10)

The superposition of the calendar and cycling result in two ageing equations that holistically describe
capacity decrease and resistance increase, namely Equations 4.11 and 4.12, respectively.

Qtotal
I = 1−α

Q
I · t 0.75 −β

Q
I, rev ·

p
Ah (4.11)

R total
I = 1+αR

I · t 0.75 +βR
I, rev · Ah (4.12)

where again t is time in days and Ah is the throughput delivered.
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Implementation
The model was implemented according to the explanation in the paper, supported by the flow chart shown
in Figure 4.4. As the ageing process is iterative, they should work in a loop, as shown in the graphical repre-
sentation of the model in Figure 4.3. Thereby, capacity and power fade after each time step are considered in
the next time step. In the implementation by the author of this study, the capacity decrease and resistance
increase are not looped back into the model, which can lead to ageing estimations. The model uses a load
profile and a temperature profile as input. Together with the impedance parameters of the cell, the load profile
and temperature profile form an electric-thermal model. Hildenbrand mentioned to use Matlab’s built-in
rainflow cycle counting algorithm to count cycles from the load profile. As mentioned in Subsection 3.2.11,
the rainflow cycle counting algorithm has been found to inaccurately determine the start and end of each
cycle, but proved useful for determining the cell throughput over multiple cycles. Hildenbrand mentioned
that as the capacity and resistance measurements for the cycling battery ageing tests were performed on a
multiple-day basis, the NMC-AM is not specifically designed for applications that determine ageing on a small
timescale. Therefore, smaller cycles could aggregated into larger cycles. According to Hildenbrand, the results
of the rainflow cycle counting algorithm appear to be accurate enough. The electric-thermal model calculates
the values of the ageing stress factors such as cycle depth and average SoC, which is calculated only during
current flow and neglects rest periods. The stress factors are derived using the flow chart shown in Figure 4.4.

Figure 4.3: Graphical overview of the ageing model. Inputs are
load and temperature profile and output is the lifetime progno-
sis [84].

Figure 4.4: Flow chart illustrating the process of deriving the
ageing stress factors for the ageing model. Inputs are stress
factors and outputs are capacity and power fade [84].

NMC-AM inputs the ageing stress factors into the ageing equations of Equations 4.7 - 4.12 to determine the
capacity decrease and resistance increase.

In the implementation of this work, calendar ageing capacity loss is determined by scaling up modelled
per-second data to per-day data, and subsequently accumulating the calendar ageing capacity loss over time.
Cycling ageing capacity loss is determined per partial cycle, after which the capacity loss caused by all the
partial cycles is summed. Cycling ageing capacity loss is determined per partial cycle and accumulated over
charge throughput cycles and total throughput cycles according to Equation 4.11.

Equations 4.7 shows that the capacity loss follows an exponential decay over time, which is considered
through linearisation of the ageing equations over time. Furthermore, the capacity decrease and resistance
increase are not looped back into the model, which may lead to ageing estimations.

Surprisingly, the cycling equations NMC-AM only correlate temperature with calendar ageing, while
literature suggests that increased temperatures also impact cycling ageing. Schmalstieg et al. (2014) assumed
that there is little to no temperature dependency on cycling ageing, which they validated using verification
tests with irregular load profiles.
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4.3. NMC ageing model II (NMC-AMII)
The second semi-empirical NMC ageing model (NMC-AMII was designed by Käbitz et al. (2013), also from
RWTH Aachen. The researchers performed accelerated calendar and cycling ageing tests to independently
analyse capacity decrease and resistance increase due to calendar and cycling ageing. The accelerated ageing
tests were performed using a high-energy NMC (1:1:1) pouch cell with a nominal capacity of 10 Ah and a
nominal voltage of 3.6 V.

Calendar and cycling ageing tests
The calendar ageing tests were performed over a course of 450 days and at four different temperatures, namely
25 °C, 40 °C, 50 °C, and 60 °C. All calendar ageing tests were performed at an SoC of 50%, corresponding to
a voltage of 3.72 V. The voltage was kept constant using a power supply unit. The authors found the voltage
dependency on calendar ageing between 50% and 90% to be quite small, while 20% SoC showed to be beneficial
for battery life. Thus, considered calendar ageing stress factors are time and temperature.

The cycling ageing tests were performed to analyse the impact of various mean SoC values and temperature
on ageing. Although cycling ageing tests were performed, the researchers only derived a regression function to
describe calendar ageing.

Fit function
The ageing equation for capacity decrease due to calendar ageing is shown in Equation 4.13.

Qcalendar = 1−αII ·
p

t (4.13)

with αII = 0.0017 for T = 25 °C, αII = 0.0038 for T = 40 °C, αII = 0.0061 for T = 50 °C, and αII = 0.0109 for T = 60 °C.
t corresponds to time in days. The authors expected SEI formation on the anode to mainly cause calendar
ageing capacity loss, following a square root of time ageing pattern.

Unfortunately, no ageing equations for cycling ageing were derived by Käbitz et al. (2013).

Implementation
Only the calendar ageing capacity loss over time for four different constant battery temperatures can be
determined using this ‘ageing modelṪhus, NMC-AMII is not applicable to EV data. Nevertheless, the results of
NMC-AMII can be used to benchmark the calendar ageing capacity loss results determined by NMC-AM, as
elaborated on in Subsection 4.5.2.
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4.4. LFP ageing model (LFP-AM)
The LFP-based semi-empirical ageing model (LFP-AM) was designed by Schimpe et al. (2018). The researchers
performed accelerated ageing tests over a period of 234 days to analyse the capacity decrease due to cal-
endar and cycling ageing. The ageing tests were performed on commercial cylindrical 26650-format Sony
US26650FTC1 LFP cells. The Sony US26650FTC1 LFP cell has a nominal capacity of 3.0 Ah, a nominal voltage
of 3.2 V, and is designed for stationary applications.

Calendar and cycling ageing tests
The calendar ageing tests were performed at 10 °C, 15 °C, 25 °C, 35 °C, and 55 °C, and were tested at a variety of
SoC values, ranging from 0% to 100% in steps of 12.5%. Thus, considered calendar ageing stress factors were
time, temperature, and voltage.

The cycling ageing tests were performed at 0 °C, 10 °C, 15 °C, 25 °C, 35 °C, and 55 °C, and were based on
constant current (CC) full cycle tests at C-rates of 0.25C, 0.5C, and 1C, with and without constant voltage (CV)
phases at the end of charging. Thus, considered cycling ageing stress factors are temperature, current and SoC.

Open-circuit anode potential
LFP-AM was used in this work as it provides insight into the anode stoichiometry on which the model is based,
from which the anode open-circuit potential can be determined. This is elaborated on in the subsection below.

The anode stoichiometry is calculated as a function of SoC through linear interpolation between 0% and
100% SoC, as shown in Equation 4.14.

xa(SoC ) = xa(SoC = 0%)+SoC · [xa(SoC = 100%)−xa(SoC = 0%)] (4.14)

where the degree of lithiation at 0% SoC and 100% SoC is derived by fitting the half-cell open circuit potentials
of both electrodes (Anode Li-C and cathode LiFePO4) to full-cell open circuit potential data.

The anode stoichiometry is subsequently used to determine the open circuit potential of the anode, as
shown in Equation 4.15.

Ua(xa) = 0.6379+0.5416 ·exp(−305.5309 · xa)+0.044 · t anh

(
− xa −0.1958

0.1088

)
−0.1978 · t anh

(
xa −1.0571

0.0854

)
−0.6875 · t anh

(
xa +0.0117

0.0529

)
−0.0175 · t anh

(
xa −0.5692

0.0875

) (4.15)

where Ua is the anode open circuit potential, and xa is the degree of lithiation, taken from Safari and Delacourt
(2011).

Fit functions
The ageing equation that determines the capacity decrease due to calendar ageing are described in Equations
4.16 and 4.17.

Qcalendar
III = kcal ·

p
t (4.16)

where kcal is determined using

kcal = kcal, ref ·exp

[−Ea, cal

Rg

(
1

T
− 1

Tref

)]
·
(
exp

[
α ·F

Rg

(
Ua, ref −Ua(SoC )

Tref

)]
+k0

)
, (4.17)

where kcal, ref is the calendar reference stress factor which equals 3.694 · 10−4 h−0.5, Ea, cal is the activation
energy parameter which equals 20592 J/mol, Tref is the reference temperature which equals 298.15 K, Rg is the
universal gas constant which equals 8.314 J/(mol K), F is the Faraday constant which equals 96,485 C/mol,
Ua, ref is the reference potential set at Ua,(SoC = 50%) = 0.123 V, T is the battery temperature in Kelvin, and α

and k0 are fitting parameters set at 0.384 and 0.142, respectively.
In this ageing model, a distinction is made between cycling ageing effects that occur at low and high

temperatures. The high temperature cycling ageing mechanism is assumed to occur both during charging
and discharging and thus independently of the current direction. In contrast, the low temperature induced
cycling ageing mechanism is assumed to occur only during charging. The researchers therefore distinguish
charge throughput and total throughput defined as the sum of charge and discharge throughput. The ageing
equations that define the capacity decrease due to cycling ageing are described in Equations 4.18 - 4.24. As
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shown in Equation 4.18, the capacity loss due to cycling ageing is consists of three sub-equations. Equation
4.19 describes cycling ageing at high temperatures, Equation 4.20 describes cycling ageing at low temperatures
and SoC values beneath 83%, and Equation 4.21 describes cycling ageing at low temperatures and SoC values
above 83%. The reference parameters used in these equations are calculated using Equations 4.20 - 4.24.

Qcycling
III =Qcycling

high T +Qcycling
low T, SoC<83% +Qcycling

low T, SoC>83% (4.18)

with

Qcycling
high T = kcyc, high T ·

√
Ahtotal (4.19)

Qcycling
low T, SoC<83% = kcyc, low T, SoC<83% ·

√
Ahcharge (4.20)

Qcycling
low T, SoC>83% = kcyc, low T, SoC>83% · Ahcharge (4.21)

with

kcyc, high T = kcyc, high T, ref ·exp

[−Ea, cyc, high T

Rg

(
1

T
− 1

Tref

)]
(4.22)

kcyc, low T, SoC<83% = kcyc, low T, SoC<83%, ref ·exp

[−Ea, cyc, low T

Rg

(
1

T
− 1

Tref

)]
(4.23)

kcyc, low T, SoC>83% = kcyc, low T, SoC>83%, ref ·exp

[−Ea, cyc, low T, SoC>83%

Rg

(
1

T
− 1

Tref

)]
·exp

[
βcyc, low T, SoC>83% · Icharge − Icharge, ref

C0

]
·
(

sg n(SoC −SoCref)+1

2

) (4.24)

where kref are reference parameters set at T ref = 298.15 K, with values kcyc, high T, ref = 1.456 · 10−4 · Ah−0.5,
kcyc, low T, SoC<83%, ref = 4.009 · 10−4 · Ah−0.5, and kcyc, low T, SoC>83%, ref = 2.031 · 10−6 · Ah−1. The temperature de-
pendence is implemented through the Arrhenius equation where Ea, cyc, high T = 32,699 J/mol, Ea, cyc, low T, SoC<83%

= 55,546 J/mol, and Ea, cyc, low T, SoC>83% = 2.3 · 105 J/mol. Furthermore, Icharge, ref = 3 A, βcyc, low T, SoC>83% = 7.8
h, and SoCref = 82%. Due to its sign function (sgn), Equation 4.23 is only included when the SoC exceeds 82%.

Limitation
The anode stoichiometry given by Safari and Delacourt (2011) and used by Käbitz et al. (2013) to develop
the model describes the relation between SoC and the degree of lithiation of the LFP anode. The LFP anode
stoichiometry is used to derive the anode open circuit voltage (Ua) from the NMC-based SoC profile modelled
in Subsection 3.2.6. As this SoC profile originates from NMC-based simulations of the VPM, essentially, the
derived Ua is NMC-motivated. Furthermore, no relation is given on the LFP’s V OC(SoC) curve shown in Figure
8.11 of the appendix. Therefore, the other ageing stress factors used in Equations 4.19 - 4.24 could not be
derived from the LFP’s open-circuit potential, and thus remain NMC-based. Consequently, the cycling ageing
equations of the LFP model use the NMC-based ageing stress factors to estimate cycling ageing, which limits
LFP-AM’s applicability. Ideally, Lightyear’s VPM with an LFP battery would simulate the same power profile to
generate LFP-based ageing stress factors, which could be implemented in this ageing model to improve the
ageing estimations. Nevertheless, the ageing model is implemented in this work as it is assumed that useful
comparisons can be made from NMC-motivated LFP-AM ageing results.

Implementation
The implementation of LFP-AM follows a similar implementation as NMC-AM. The calendar ageing capacity
loss is determined by scaling up modelled per-second data to per-hour data, and subsequently accumulating
the calendar ageing capacity loss over time. Cycling ageing capacity loss is determined per partial cycle and
accumulated over charge throughput cycles and total throughput cycles according to Equation 4.18. The
researchers assumed that calendar ageing at a storage temperature of 0 °C would be negligible, which is
remarkable considering that the authors demonstrated 3.6% calendar ageing at 10 °C after 200 days and a
significant cycling ageing capacity loss during cycling at 10 °C.
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4.5. Validation of the implemented ageing models
The following section presents the methods and results for the validation of the ageing models. In Subsection
4.5.1, the implementation of NMC-AM is validated by simulating the validation tests performed by Schmalstieg
et al. and comparing modelled results with measurements of the validation tests. Following this, Subsection
4.5.1 compared Lightyear’s NMC calendar ageing tests with modelled calendar ageing results from NMC-AM.
Moreover, Subsection 4.5.2 compares ageing results from NMC-AM with ageing results from NMC-AMII. Finally,
in Subsection 4.5.3, the implementation of LFP-AM is validated by simulating the ageing tests performed by
Schimpe et al. (2018) and comparing modelled results with measurements of the ageing tests.

4.5.1. NMC-AM validation
To validate the implementation of NMC-AM by Schmalstieg et al. (2014), the validation test performed by
the authors are simulated and modelled ageing results are compared with measurements taken during their
validation tests.

Validation tests performed by Schmalstieg et al. (2014)
Schmalstieg et al. validated their ageing model using the following method. First, the authors repeatedly
applied a 30-minute semi-irregular load profile on an NMC battery at different ambient temperatures to
imitate real driving behaviour of an EV battery. Subsequently, the authors measured the capacity decrease
and resistance increase during these validation tests. Following this, the authors implemented the same load
profile in their ageing model (NMC-AM). Finally, the authors compared the ageing measurements with the
results from NMC-AM. The semi-irregular load profile, which included both city and highway driving, was
taken from EV measurements in Aachen, Germany, and was scaled down to match the specifications of a single
battery cell.

The top graph of Figure 4.5 shows the 30-minute load profile and the bottom graph shows a 24-hour load
profile. The 24-hour load profile consists of two of the 30-minute load profiles, each one followed by grid
charging to 100% SoC. Note that the sign convention for the load profile is different than in Section 3.2. Here,
positive battery power values correspond to battery power input.

Figure 4.5: 30-minute and 24-hour load profiles of the ageing model verification tests by Schmalstieg et al. (2014) [84].
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Simulation of validation tests
To simulate the ageing modelling tests performed by Schmalstieg et al., these load profiles are reproduced
using WebPlotDigitizer [108]. Figure 4.6 illustrates this process. The three graphs on the left illustrate the
process for the 30-minute load profiles and the three graphs on the right illustrate the process for the 24-hour
load profiles. The top graphs are the validation profiles from the ageing model paper [84], the graphs between
the top and bottom illustrate the dataset extraction process by WebPlotDigitizer, and the bottom graphs show
the reproduced profiles simulated in Matlab.

Figure 4.6: Reproduction of 30-minute and 24-hour load profiles used by Schmalstieg et al. (2014) to validate their ageing model. The top
graphs show the model validation plots by Schmalstieg et al. (2014), the middle graphs show the dataset reproduction by WebPlotDigitizer,

and the bottom graphs show the reproduced graphs.

From top to bottom, the left graphs of Figure 4.7 show the load profile, corresponding SoC profile, and
voltage profiles. The three graphs on the right show how the EV data generation model reproduces the profiles.
Slight deviations are seen in the voltage profile, but overall the profiles seem alike.

Figure 4.7: Comparison of the reproduced power, SoC, and temperature profiles and the original profiles used by Schmalstieg et al. (2014)
to validate their own ageing model.

The 24-hour load profile is repeated on a daily basis throughout seven months, with varying battery
temperatures based on average ambient temperatures from 2001-2010 in Germany. The varying ambient
temperature is modelled as if it is equal to the battery temperature. The left graph of Figure 4.8 shows the
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monthly temperature variations from the paper [84]. The initial month is September. The right graph of Figure
4.8 shows the modelled seven-month SoC profile.

To analyse the accuracy of the model at elevated battery temperatures, the seven-month load profiles were
tested for three different battery heating scenarios. In the first scenario, the additional battery temperature is 0
°C. Thus, the battery temperature throughout the seven months is identical to the ambient temperature. In the
second scenario, 10 °C is added at every time step of the seven-month ambient temperature profile. In the
third month, 20 °C is added on every time step of the seven-month ambient temperature profile.

Figure 4.8: Temperature and SoC profiles of the validation tests used by Schmalstieg et al. (2014) to validate their own ageing model.

Ageing modelling results of the validation tests
Consequently, NMC-AM is applied on the seven-month data, which yields the modelled ageing results. The
table in Figure 4.9 shows the comparison between the modelled ageing results and the measured ageing results.
The left column shows the three different heating scenarios. The second column shows the ageing modelling
results of the reproduced load profiles for each scenario. The third column shows both the modelled and
the measured ageing results of Schmalstieg et al. for each scenario. In the graphs of the right column, the
striped and solid red lines show the modelled resistance increase and the red squares show the measured
resistance increase. As shown, the modelled resistance increase results do not closely follow the measured
results. Resistance increase is therefore not determined. The striped and solid blue lines show the modelled
capacity decrease and the blue circles show the measured capacity decrease. As shown, the modelled capacity
decrease are in line with the measured capacity decrease.

Finally, the ageing modelling results of the reproduced load profiles in column two are compared with the
measured and modelled ageing results by Schmalstieg et al. in column three to determine the accuracy of
the implementation of NMC-AM. The modelled ageing results appear to imitate the measured ageing results
surprisingly well, with a maximum deviation of 0.2% in ageing after six months.
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Figure 4.9: Comparison of modelled ageing and the actual ageing measurements for the validation of NMC-AM.

Figure 4.10 shows how the measured ageing is determined from the graphs using WebPlotDigitizer [108].
The figure illustrates a close-up comparison of the modelled ageing results and the ageing measurements for
the validation tests. The implementation and validation method have been presented to Felix Hildenbrand who,
as explained in Section 4.2, was trained by Johannes Schmalstieg to work with the ageing model. Hildenbrand
approved of the implementation method and agreed with the validation methodology during an online
meeting.

Figure 4.10: Close-up comparison of modelled ageing and the actual ageing measurements for the validation of NMC-AM.
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Comparison with Lightyear’s NMC ageing tests
Lightyear performed calendar ageing tests on three battery cells over the course of 12 months to determine the
cell’s capacity retention rate. Both accelerated ageing tests and more realistic use case tests were performed.

The realistic use case tests were performed using two cells stored at a constant battery temperature of 23
°C and 60% SoC. Capacity measurements were performed after 0, 109, 300 and 369 days. After 369 days of
storage, one cell showed to have retained 98.2% of its capacity, while the other cell retained 98.4% of its capacity.
Therefore, the average one-year capacity loss of the two NMC cells stored at a constant battery temperature of
23 °C and 60% SoC, appears to be 1.7%.

NMC-AM by was used to reproduce the realistic use case calendar ageing tests conducted by Lightyear.
The 370-day calendar ageing capacity loss of a cell stored at a constant battery temperature of 23 °C and 60%
SoC (Vcell = 3.81 V) is determined by the ageing model to be 1.9%.

Figure 4.11 compares the modelled calendar ageing results using the ageing model by Schmalstieg et al.
(2014) and the measurements from Lightyear’s calendar ageing tests, performed at a constant battery tempera-
ture of 23 °C and 60% SoC.
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Figure 4.11: Modelled calendar ageing results using NMC-AM [84], and the measurements from Lightyear’s calendar ageing tests, both
performed at a constant battery temperature of 23 °C and at a 60% SoC.

The modelled capacity loss results slightly differ from the measurements, which may be due to several
reasons. The ageing tests conducted by Schmalstieg et al. (2014) were performed on different battery cells,
namely Sanyo UR18650E by Panasonic. The final section of the appendix 8 shows the battery datasheet for the
Sanyo UR18650E battery cell by Panasonic [68], which states that the cell is ideal for e-bikes, radios, medical
devices and robotics. The fact that the Sanyo UR18650E cell is not specifically designed for EV applications
and that it originates from 2012 could explain the higher calendar ageing capacity loss compared to Lightyear’s
battery cells. It also seems that Lightyear’s third and fourth capacity measurements, which took place on
day 300 and day 369, respectively, deviate from the regression pattern. Nevertheless, Lightyear’s battery cell
appears to experience less calendar ageing than the Sanyo UR18650E used in the ageing model by Schmalstieg
et al. (2014).
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4.5.2. NMC-AMII comparison with NMC-AM
As described in Subsection 4.3, NMC-AMII has limited applicability on actual battery data. Instead, the ageing
model gives parameters to estimate calendar ageing for four different storage temperatures and at one single
SoC value. Like NMC-AM, NMC-AMII is also based on ageing tests of an NMC battery. Thus, under the same
conditions, NMC-AMII can be used to benchmark results from NMC-AM. Thus, both NMC-AM and NMC-AMII
are used to model the one-year calendar ageing capacity loss for an NMC cell stored under the same conditions,
namely 25 °C, 40 °C, 50 °C, and 60 °C, and at an SoC of 50% SoC. In NMC-AM, 50% SoC corresponds to a voltage
of 3.69 V.

Table 5.3 shows the modelled calendar ageing results from NMC-AM in the second column and from
NMC-AMII in the third column for the four temperature scenarios.

Table 4.2: Comparison of one-year ageing capacity loss results from NMC-AM [84] and NMC-AMII [45]. The same temperature and SoC
conditions are used in each temperature scenario - NMC battery.

Temperature scenario NMC-AM one-year Qcalendar
loss NMC-AMII one-year Qcalendar

loss

T = 25 °C 2.4% 3.2%

T = 40 °C 7.2% 7.3%

T = 50 °C 14.3% 11.6%

T = 60 °C 27.4% 20.8%

The calendar ageing capacity loss results of two models are similar in the T = 40 °C scenario. However, for
higher and lower temperatures than 40 °C, the capacity loss determined by NMC-AM appears to deviate more
than the capacity loss determined by NMC-AMII. This might be due to a difference in size or quality of the cell,
which alters their performance. For example, the cell on which NMC-AM is baded comprises 2.15 Ah, while
the cell on which NMC-AMII is based comprises 10 Ah.
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4.5.3. LFP-AM validation
To validate the implementation of LFP-AM by Schimpe et al. (2018), the capacity loss measured during the
calendar and cycling ageing experiments is compared with the capacity loss modelled for the base scenario
under the same temperature and SoC conditions. The following two subsections describe the validation of
LFP-AM for calendar and cycling ageing.

Calendar ageing validation
Figure 4.12 shows the measured capacity loss during calendar ageing tests by Schimpe et al. (2018). The
authors performed these calendar ageing tests to determine the influence of temperatures ranging from 10 °C
to 55 °C, at a constant 100% SoC, which corresponds to a voltage of 3.42 V.

Figure 4.12: Capacity loss during the calendar ageing experiments by Schimpe et al. (2018). The squares represent experimental data and
the curves represent simulations by the authors.

Figure 4.13 shows the modelled capacity loss for calendar ageing for battery temperatures at 10 °C, 25 °C,
and 45 °C and at a constant 100% SoC. The figure shows that the 200-day measured capacity loss at battery
temperatures of 10 °C °C, 25 °C, and 45 °C were 3.6%, 4.5%, and 7.9%, respectively. Comparing the capacity loss
curves from Figures 4.12 and 4.13 at the same battery temperatures, the modelled results seem to reasonably
follow the measured calendar ageing capacity loss results. Figure 4.13 shows that the 200-day modelled
capacity loss at battery temperatures of 10 °C °C, 25 °C, and 45 °C were 3.1%, 4.8%, and 8.1%, respectively.

Figure 4.13: Modelled capacity loss for battery temperatures at 10 °C, 25 °C, and 45 °C and at a constant 100% SoC.
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Cycling ageing validation
The top graphs of Figure 4.14 show the capacity loss during the cycling experiments at different temperatures,
on which the model is based. The capacity loss measured during these cycling experiments also reflects a share
of capacity loss due to calendar ageing. The authors of the ageing model assumed that cycling and calendar
ageing can be superpositioned, and thus subtracted the capacity loss due to calendar ageing from the total
capacity loss to determine the ‘pure’ cycling ageing capacity loss. The subtracted calendar ageing capacity loss
was calculated using the average battery temperature measured during the experimental cycling tests and at
an average SoC of 50%. The researchers thereby neglected the impact of the intercorrelation of temperature
and SoC, as well as the fact that the average SoC does not equal 50%. The bottom graphs of Figure 4.14 show
the capacity loss due to ‘pure’ cycling ageing.

Figure 4.14: The top graphs show the capacity loss during the cycling ageing experiments by Schimpe et al. (2018). The bottom graphs
show the ‘pure’ cycling ageing capacity loss during the same measurements.

The left bottom graph of Figure 4.14 shows that after 700 cycles and at a constant battery temperature of 25
°C, 10 °C and 0 °C the ‘pure’ cycling ageing capacity loss was measured to be 3.1%, 5.1%, and 15%, respectively.
The base scenario modelled in Section 3.2 is simulated for 10 consecutive years to accumulate cycles at a
constant temperature of 0 °C, 10 °C and 25 °C. In the base scenario, the throughput after one year is 342 Ah.
As the battery cell capacity in the modelled profile comprises 4.85 Ah, this throughput would amount to
70.5 cycles per year. Thus, after 10 years, the battery will have discharged 750 full equivalent cycles. Figure
4.15 shows the simulated cycling ageing capacity loss for the different temperatures. Here, NMC-AMII has
determined that after 705 cycles and at a constant battery temperature of 25 °C, 10 °C and 0 °C, the battery will
have suffered a cycling ageing capacity loss of 2.8%, 4.9%, and 9.1%, respectively.

It appears that the modelled cycling ageing results at a constant battery temperature of 25 °C and 10 °C
accurately follow the results from the authors, but give a relatively large error for a battery temperature of 0
°C. Schimpe et al. (2018) do not describe whether the trend deviation of the capacity loss graph for a battery
temperature of 0 °C is incorporated in the derivation of the cycling ageing equations. Nevertheless, for battery
temperatures of 10 °C and 25 °C, the simulated results appear to accurately follow the results of the ageing
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measurements conducted by the authors. Thus, LFP-AM could essentially underestimate ageing at battery
temperatures lower than 10 °C.

Figure 4.15: NMC-AMII cycling ageing capacity loss for a 10-year repeated base scenario at three constant battery temperatures.





5
EV battery ageing results

The following chapter presents the results from implementing the EV battery datasets developed in Chapter 3
into the ageing models described in Chapter 4. Thus, in this chapter, the third sub-objective is addressed:

iii Compare the ageing results of the use case scenarios to analyse the impact of VIPV and V2G on battery
calendar and cycling ageing.

The results of NMC-AM, NMC-AMII and LFP-AM are presented in Sections 5.1, 5.2, and 5.3, respectively.
The one-year capacity loss due to calendar and cycling ageing for the eight use case scenarios are thoroughly
analysed for NMC-AM and LFP-AM. The differences in ageing are substantiated using the one-year use case
characteristics of each scenario, Consequently, ageing patterns of calendar and cycling ageing are supported
by describing the electrochemical ageing mechanisms thought to occur in the battery cells. Finally, in Section
5.4, the ageing results of NMC and LFP according to NMC-AM and LFP-AM are compared. For reference,
Figure 8.13 of the appendix provides an overview of the SoC profiles for the eight scenarios.

71
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5.1. Results from NMC-AM
Table 5.1 provides an overview of the results from NMC-AM for each use case scenario with its corresponding
one-year use case characteristics. The table shows the one-year calendar, cycling and total ageing. Qcell

throughput
is the net energy delivered by a single NMC cell throughout the whole year. Neq. full cycles is the corresponding
full equivalent discharge cycles, given that the cell on which the ageing stress factors are based comprises a
usable capacity of 4.85 Ah, even though NMC-AM is based on a cell that comprises 2.15 Ah. Npartial cycles is
the number of partial cycles as defined in Subsection 3.2.11. SoCavg is the average SoC. DoDavg is the average
cycle depth of the partial cycles. EoL is the year in which the battery has retained 80% of its initial capacity
after calendar and cycling ageing capacity loss. The temperature profiles are identical in all the scenarios.
Furthermore, all scenarios model a Lightyear 0 vehicle covering a distance of 19,190 km per year, as described
in Section 3.2. The share of calendar and cycling ageing at the battery’s EoL as determined by NMC-AM are
described in the discussion below the table.

Table 5.1: Overview of NMC-AM results and use case characteristics.

Scenario One-year capacity loss One-year use case characteristics

Base Calendar ageing 1.05% Qcell
throughput 342 Ah SoCavg 69%

Cycling ageing 2.80% Neq. full cycles 70.4 DoDavg 0.18%

Total ageing 3.85% Npartial cycles 70,797 EoL 16.2 years

VIPVNL Calendar ageing 0.97% Qcell
throughput 340 Ah SoCavg 63%

Cycling ageing 2.81% Neq. full cycles 70.1 DoDavg 0.13%

Total ageing 3.78% Npartial cycles 73,642 EoL 16.8 years

VIPVESP with TESP Calendar ageing 1.26% Qcell
throughput 339 Ah SoCavg 58%

Cycling ageing 2.86% Neq. full cycles 69.9 DoDavg 0.14%

Total ageing 4.12% Npartial cycles 74,098 EoL 14.3 years

VIPVNL & V2G50% SoC
DA Calendar ageing 1.14% Qcell

throughput 606 Ah SoCavg 76%

Cycling ageing 5.46% Neq. full cycles 125 DoDavg 0.30%

Total ageing 6.60% Npartial cycles 71,686 EoL 7.1 years

V2G50% SoC
DA Calendar ageing 1.14% Qcell

throughput 607 Ah SoCavg 76%

Cycling ageing 5.48% Neq. full cycles 125 DoDavg 0.31%

Total ageing 6.62% Npartial cycles 71,695 EoL 7.1 years

V2G20% SoC
DA Calendar ageing 1.08% Qcell

throughput 772 Ah SoCavg 71%

Cycling ageing 8.78% Neq. full cycles 159 DoDavg 0.36%

Total ageing 9.86% Npartial cycles 71,529 EoL 3.8 years

V2G50% SoC
aFRR Calendar ageing 1.23% Qcell

throughput 459 Ah SoCavg 84%

Cycling ageing 4.83% Neq. full cycles 95 DoDavg 0.24%

Total ageing 6.06% Npartial cycles 72,459 EoL 8.2 years

V2G20% SoC
aFRR Calendar ageing 1.22% Qcell

throughput 477 Ah SoCavg 83%

Cycling ageing 4.80% Neq. full cycles 98 DoDavg 0.25%

Total ageing 6.02% Npartial cycles 72,368 EoL 8.4 years
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5.1.1. Scenario comparison

Base scenario

• The battery’s EoL is reached after 16.2 years, with a share of calendar and cycling ageing of 8.5% and
11.5%, respectively.

VIPVNL scenario

• As VIPV gradually charges the battery, in the Netherlands, VIPV can reduce the number of annual grid
charging sessions from 102 to 79 compared to the base scenario, corresponding to a 23% decrease in
grid charging frequency. By reducing the grid charging frequency, the battery ranges at lower SoC for an
extended period of time, reducing the average SoC by 9%. As higher SoC accelerate the growth of the SEI
layer, which causes calendar ageing, lower SoC is beneficial for battery life.

• Compared to the base scenario, one-year calendar ageing reduced by 8% due to VIPV, and cycling
ageing is similar. 20-year ageing simulations show that VIPV can reduce calendar ageing by 9% in the
Netherlands. Thus, NMC-AM suggests that VIPV can reduce calendar ageing by reducing the battery’s
average SoC, due to a decrease in grid charging frequency.

• The battery’s EoL is reached after 16.8 years, with a share of calendar and cycling ageing of 8.5% and
11.5%, respectively. NMC-AM suggests that VIPV can extend EoL by 6 months. This is thought to be an
underestimation of the potential benefit of VIPV on battery life for reasons mentioned below.

• Figure 5.1 illustrates the cycle depths in the base scenario in the top graph and in the VIPVNL scenario in
the bottom graph. The graphs suggests that VIPV decreases cycle depth, which is in line with the 28%
decrease in average DoD shown in Table 5.1. As shown in Figure 8.3 of the appendix, shallower cycle
depths cause less ageing than deeper cycle depths, which suggests that VIPV is beneficial for cycle life.

Moreover, the one-year cell throughput decreased by 2 Ah compared to the base scenario, which
according to the composition of Lightyear’s battery pack is equivalent to an annual energy throughput of
E = Q · V avg, working · Ncells = 2 Ah · 3.6 V· 3,400 = 26 kWh. This suggests that VIPV occasionally powers the
EV’s drivetrain directly, which could slightly reduce cycling ageing.

In contrast, the results in Table 5.1 suggest an increase in cycling ageing in the VIPVNL scenario compared
to the base scenario. This increase in cycling ageing is due to the 4% increase in the number of partial
cycles due to gradual VIPV charging. As NMC-AM is not based on irregular load profiles, it is suspected
that the increase in partial cycles causes NMC-AM to overestimate cycling ageing.

• Considering the complexity of the various effects of VIPV on cycling ageing, further analysis is required
to determine the impact of VIPV on battery cycle life.

Figure 5.1: Two graphs illustrating the difference in the number of cycles per cycle depth according to Matlab’s rainflow cycling counting
algorithm for the base scenario (top graph) and the VIPVNL scenario (bottom graph).
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VIPVESP scenario
The impact of VIPV on battery life for an SEV in Spain is determined by accounting for higher ambient
temperatures in Spain. Therefore, an ageing comparison is made between an EV in Spain with and without
VIPV. According to the difference in ambient temperatures between the Netherlands and Spain [13], an
additional scenario is modelled in which 3.3 °C is added to every time step of the battery temperature profile.
The battery temperature is again capped at a maximum battery temperature of 35.4 °C to simulate the effect
of active battery cooling, as discussed in Subsection 3.2.7. For simplification, it is assumed that the higher
ambient temperatures in Spain do not cause additional power to be used by the HVAC system and do not
impact the rest of the ageing stress factors. Figure 5.2 shows the modelled battery temperature profiles for the
Netherlands and Spain. The ageing results according to NMC-AM for an EV in Spain with and without VIPV are
depicted in Figure 5.2.

Figure 5.2: The top graph shows the modelled battery temperature profiles for the Netherlands and the bottom graph for Spain, where the
average ambient temperature is 3.3 °C higher. The same maximum battery temperature is considered in both temperature profiles.

Table 5.2: NMC-AM results on the impact of VIPV on battery life for an EV in Spain.

Scenario One-year capacity loss One-year use case characteristics

Base with TESP Calendar ageing 1.39% Qcell
throughput 342 Ah SoCavg 69%

Cycling ageing 2.80% Neq. full cycles 70.4 DoDavg 0.18%

Total ageing 4.19% Npartial cycles 70,797 EoL 13.1 years

VIPVESP with TESP Calendar ageing 1.26% Qcell
throughput 339 Ah SoCavg 58%

Cycling ageing 2.86% Neq. full cycles 69.9 DoDavg 0.14%

Total ageing 4.12% Npartial cycles 74,098 EoL 13.7 years

• As VIPV gradually charges the battery, in Spain, VIPV can reduce the number of annual grid charging
sessions from 102 to 57, corresponding to a 44% decrease in grid charging frequency. The reduced grid
charging frequency causes the average SoC to reduce by 16%.

• Compared to the base scenario in Spain, VIPV in Spain caused the one-year calendar ageing to decrease
by 9% due to the 44% reduction in grid charging frequency. 20-year ageing simulations show that VIPV
can reduce calendar ageing by 8% in Spain. It is expected that additional VIPV power generation would
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further decrease calendar ageing up to a certain threshold. If this threshold is crossed, VIPV charging
can cause the SoC to increase, which could increase calendar ageing.

• In the base scenario in Spain, the battery’s EoL is reached after 13.1 years, with a share of calendar and
cycling ageing of 10.0% and 10.0%, respectively. In the VIPVESP scenario, the battery’s EoL is reached after
13.7 years, with a share of calendar and cycling ageing of 8.5% and 11.5%, respectively. Thus, NMC-AM
suggests that VIPV can extend EoL by 6 months.

VIPVNL & V2G50% SoC
DA scenario

• Compared to the VIPVNL scenario, the one-year calendar ageing is 18% higher and cycling ageing 94%
higher in the VIPVNL & V2G50% SoC

DA scenario. The 18% increase in calendar ageing is because the required
grid connection for V2G services causes the vehicle to charge more often in the modelled scenario,
increasing the average SoC by 21% in the VIPVNL & V2G50% SoC

DA scenario. The significant 94% increase in
cycling ageing is due to the 44% increase in throughput compared to the VIPVNL scenario. The increase
in throughput is due to additional cycling for V2G day-ahead electricity trading. Furthermore, Equation
4.9 of NMC-AM suggests that the 131% increase in average DoD in the VIPVNL & V2G50% SoC

DA scenario
compared to the VIPVNL scenario contributes to the increase in cycling ageing.

• NMC-AM suggests that V2G day-ahead electricity trading, with the goal of maximising profits for the EV
owner, can significantly harm battery life as V2G increases calendar ageing due to increased SoC, as well
as increase cycling ageing due to additional throughput and increasing cycle depth.

• The results suggest that due to the increased grid connection required for V2G services, the battery’s
average SoC can increase, which increases calendar ageing. Thus, NMC-AM suggests that a controlled
V2G strategy can lower the average SoC to reduce calendar ageing.

• The battery’s EoL is reached after 7.1 years, with a share of calendar and cycling ageing at EoL of 5.1%
and 14.9%, respectively.

V2G50% SoC
DA scenario

• In the V2G50% SoC
DA scenario, the one-year calendar and cycling ageing, throughput, number of partial

cycles, and average SoC is are similar compared to the VIPVNL & V2G50% SoC
DA scenario. This indicates that

V2G governs ageing when combined with VIPV.

• Compared to the base scenario, the average SoC is 10% higher, which causes a calendar ageing increase
of 9%. The SoC increased due to the increased grid connection required for V2G services.

• The battery’s EoL is reached after 7.1 years, with a share of calendar and cycling ageing at EoL of 5.1%
and 14.9%, respectively.

V2G20% SoC
DA scenario

• Compared to the base scenario, the one-year calendar ageing is 3% higher and the one-year cycling
ageing is 214% higher in the V2G20% SoC

aFRR scenario, shortening battery life by up to 12.5 years. The 3%
higher calendar ageing is due to the 3% increase in average SoC, as V2G increases the grid charging
frequency. The 214% increase in cycling ageing is due to the 126% increase in throughput, which harms
the battery due to additional intercalation of Li-ions. Thus, NMC-AM suggests that V2G services, with
the goal of maximising profits for the EV owner, can be very harmful to battery life.

• Compared to the V2G50% SoC
DA , the one-year calendar ageing is 5% lower and the one-year cycling ageing

is 60% higher in the V2G20% SoC
DA scenario. The 5% lower calendar ageing is due to the 7% lower average

SoC, as the V2G services allow the battery to be discharged to 20% SoC in this scenario, which lowers
the average SoC. Thus, NMC-AM suggests that calendar ageing can be reduced by V2G by reducing the
average SoC, which naturally occurs with a lower SoC retention limit during V2G services.

• The 60% increase in cycling ageing is mainly due to additional capacity being discharged in the
V2G20% SoC

DA scenario. The reason that additional capacity is being discharged, namely 27% more than in

the V2G50% SoC
DA scenario, is a result of more capacity being available due to the lower SoC retention limit
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during V2G services. Part of the increase in cycling ageing is due to the X increase in average DoD. As
described above, larger DoD can result in more ageing, suggesting that the larger average cycling DoD in
the V2G20% SoC

DA scenario compared to the V2G50% SoC
DA adds to the increased cycling ageing.

• Thus, NMC-AM suggests that when EVs allow V2G services to cycle to a lower SoC retention limit, more
capacity becomes available for cycling, increasing throughput cycle depth, which increases cycling
ageing.

• The battery’s EoL is reached after only 3.8 years, with a share of calendar and cycling ageing at EoL of
3.1% and 16.9%, respectively.

V2G50% SoC
aFRR scenario

• Compared to the base scenario, the one-year calendar ageing is 17% higher and the one-year cycling
ageing is 73% higher in the V2G50% SoC

aFRR scenario. The 17% increase in calendar ageing is caused by a
22% increase in SoC, as high SoC accelerates the growth of the SEI layer. The significant 73% increase
in cycling is caused by a 34% increase in throughput, which causes growth of the SEI layer and lithium
plating.

• Compared to the the V2G50% SoC
DA scenario, the one-year calendar ageing is 9% higher and the one-year

cycling ageing is 12% lower in the V2G50% SoC
aFRR scenario. It should be noted that two scenarios with

different V2G services are being compared here, namely day-ahead electricity trading and aFRR.

• The 9% increase in calendar ageing is due to the 11% increase in average SoC, which accelerates calendar
ageing. The high average SoC in the V2G50% SoC

aFRR is due to the relatively low demand for aFRR grid
balancing energy. In this modelled scenario, this causes the EV to charge from the grid whenever it
is parked, increasing the average SoC and thus calendar ageing. Thus, NMC-AM suggests that due to
the increased grid connection required for V2G services, the battery’s average SoC can increase, which
increases calendar ageing. As mentioned before, this suggests that a controlled V2G strategy can lower
the average SoC to reduce calendar ageing.

• The 12% decrease in cycling ageing is due to the 24% lower throughput in the V2G50% SoC
aFRR scenario

compared to the V2G50% SoC
DA scenario. In the simulated scenario, aFRR balancing services appear to

demand less power compared to day-ahead electricity trading, naturally resulting in less cycling ageing
due to reduced throughput.

• The battery’s EoL is reached after 8.2 years, with a share of calendar and cycling ageing at EoL of 6.2%
and 13.8%, respectively.

V2G20% SoC
aFRR scenario

• Compared to the V2G50% SoC
aFRR scenario, the one-year calendar ageing is 1% lower and the one-year cycling

ageing is 1% lower in the V2G20% SoC
aFRR scenario. Calendar ageing is lower in the V2G20% SoC

aFRR scenario as the
lower SoC retention limit lowers the average SoC, which is beneficial for calendar ageing.

• The battery’s EoL is reached after 8.4 years, with a share of calendar and cycling ageing at EoL of 6.2%
and 13.8%, respectively.

• Compared to the V2G50% SoC
aFRR scenario, cycling ageing is lower while throughput is 4% higher in the

V2G20% SoC
aFRR scenario. An explanation for the increase in cycling ageing in the V2G50% SoC

aFRR scenario is the
slight increase in the number of partial cycles, which could cause NMC-AM to overestimate cycling
ageing.

Notes and limitations

• According to Table 5.1, one-year cycling ageing is dominant in every scenario. Simulations using NMC-
AM show that for the base scenario, calendar ageing becomes dominant above 22 °C.

• Capacity and power fade are not fed back into the data, which leads to ageing estimation errors.
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• While NMC-AM is based on a cell comprising 2.15 Ah, the ageing stress factors used in the analysis are
based on a cell comprising 4.85 Ah, which could lead to ageing estimation errors.

• NMC-AM is based on the rainflow cycling counting method to count cycles, which is shown to inac-
curately determine the start and end of each cycle. The implementation of load profile cycle counting
method described in Subsection 3.2.11 in combination with the increasing irregularity of the load profiles
due to VIPV and V2G, can cause the NMC-AM to lead to ageing estimation errors. This demonstrates the
limited applicability of semi-empirical ageing models on irregular load profiles.

5.1.2. Base scenario analysis

One-year SoC, temperature and capacity loss profiles
Figure 5.3 shows the one-year SoC, temperature and NMC-AM capacity loss profiles for the base scenario.
Cycling ageing appears dominant, as also discussed in Subsection 5.1.1.

Figure 5.3: Base scenario: one-year SoC, temperature and Qloss profiles for an NMC battery.

• The calendar ageing capacity loss profile follows a wavy curve, as well as an exponential decay. The
exponential decay is not clearly visible in the calendar ageing curve and is therefore discussed in the
10-year capacity loss subsection. Calendar ageing is governed by higher SoC and higher temperatures.
The impact of higher temperatures is visible during the summer months, where calendar ageing capacity
loss appears to occur at a higher rate compared to the winter months. The seasonal effect of temperature
causes the wavy capacity loss pattern over the year, as higher temperatures increase the Arrhenius
reaction rate, which causes electrolyte dissolution and parasitic side reactions to occur, which causes
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the SEI layer to grow. The growth of the SEI layer causes LLI and LAM, resulting in capacity loss. The
following subsection analysis how increased battery temperatures impact ageing.

• The cycling ageing capacity loss profile follows the following relation: -xz , where 0 ≤ z ≤ 1. This
exponential decay follows from the

p
Ah factor in Equation 4.5 of NMC-AM, and is in line with the

electrochemical effects occurring in the cell. As discussed in Subsection 2.1.3, the SEI layer mainly
forms in the first few cycles, after which its growth scales with the square root of time and accelerates
with higher SoC and higher temperatures. The NMC-AM cycling ageing capacity loss curve shown in
Figure 5.3 follows a similar pattern, where the most significant cycling ageing capacity loss occurs at the
beginning of the year.

SoC, temperature and capacity loss profiles during summer trip
As mentioned above, both cycling ageing and calendar ageing capacity loss accelerates at higher SoC and
higher temperatures. Figure 5.4 shows the one-week SoC, temperature and capacity loss profiles during the
summer trip at the beginning of July.

Figure 5.4: SoC, temperature and capacity loss profiles during the summer trip in the beginning of July.

• The calendar ageing capacity loss profile shows the steepest decline in the evening of day 183 and in
the morning of 189, as the battery temperature peaks around 35 °C. The calendar ageing decline is also
steep from day 184 to 189 when the SoC is high and the EV is exposed to high temperatures during
parking in Biarritz, Spain, which illustrates the effect of increased SoC and temperatures on battery
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life. As explained in Subsection 2.1.3, high SoC causes electrolyte dissolution and high temperatures
accelerate the parasitic side reaction rate, which accelerate the growth of the SEI layer. The SEI layer
consumes cyclable Li-ions, causing both LLI and LAM, resulting in capacity loss.

• The cycling ageing capacity loss profiles show step-wise capacity loss when the EV is driven to Biarritz
on day 183 and back on days 188 and 189. This illustrates the effect of the increased throughput, or
Li-ion intercalation, on battery life. As explained in Subsection 2.1.3, Li-ion intercalation causes, among
other things, further growth of the SEI layer as well as lithium plating, which both cause LLI and LAM,
resulting in capacity loss.
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10-year capacity loss
To illustrate both the wavy pattern and exponential decay of the calendar ageing capacity loss, Figure 5.5 shows
the 10-year capacity loss profile for the modelled base scenario. The blue solid line illustrates the wavy pattern
of calendar ageing capacity loss. The blue dashed line illustrates how a hypothetical linear decay for calendar
ageing would look, to contrast the exponential decay of calendar ageing capacity loss.

Figure 5.5: 10-year capacity loss profile resulting from NMC-AM. The blue dashed line is a hypothetical linear decay curve for calendar
ageing capacity loss, to illustrate the exponential decay of the actual calendar ageing capacity loss.

• The exponential decay follows from the t0.75 factor in Equation 4.1 of NMC-AM. The exponential decay
in both the calendar and cycling ageing capacity loss curves illustrates how the slowing growth of the
SEI layer impacts capacity loss. After 10 years, the EV will have covered a distance of 191,000 km while
having retained 85% of its capacity.

• For comparison, battery ageing data from an extensive Tesla Model S battery ageing survey is shown
in Figure 5.6. The battery size in the Tesla Model S varied over the years, ranging from 40 kWh to 100
kWh in newer models, but remained NCA. The data from the survey suggests that after 200,000 km
the battery will have retained about 93% of its capacity, which is significantly higher than the capacity
retention determined by NMC-AM for the same travelled distance. The difference is likely attributed to
the difference in battery size, chemistry, and quality.

Figure 5.6: Y-axis shows the remaining NCA battery capacity and the x-axis shows the covered distance. The blue dots show capacity
retention data from the survey and the red line shows the trend of the capacity ageing loss over the distance covered [90].
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5.1.3. VIPV scenario analysis
Figure 5.7 shows the one-year SoC, temperature and NMC-AM capacity loss profiles for the VIPV scenario in
the Netherlands.

Figure 5.7: VIPV scenario: one-year SoC, temperature and Qloss profiles for an NMC battery.

• Figure 5.7 shows how both the cycling and calendar ageing capacity loss profiles exhibit an exponential
decay according to the growth pattern of the SEI layer.

• Compared to the base scenario, calendar ageing capacity loss is slightly less due to the lower average
SoC. Figure 5.7 illustrates how VIPV impacts the SoC profile compared to the base scenario shown in
Figure 5.3.
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5.1.4. V2G scenario analysis
Figure 5.8 shows the one-year SoC, temperature and NMC-AM capacity loss profiles for the V2G scenario in
the Netherlands.

Figure 5.8: V2G scenario: one-year SoC, temperature and Qloss profiles for an NMC battery.

• Figure 5.8 shows how the cycling ageing curve starts with an exponential decay governed by the decreas-
ing growth of the SEI layer. Compared to the base scenario, especially in November and December, the
SoC profile shows increased SoC variations due to increased battery cycling for V2G day-ahead electricity
trading.

• The increased V2G cycling in the winter months could be due to an increase in electricity price variations
due to the increased intermittency of RES during the winter.

• As illustrated in the capacity loss graph of Figure 5.8, the additional cycles due to V2G during the winter
months cause a steeper cycling ageing capacity loss curve. The increased Li-ion intercalation due to
additional V2G cycles causes, among other things, further growth of the SEI layer as well as lithium
plating, which both cause LLI and LAM, resulting in capacity loss.
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5.2. Results from NMC-AMII
As explained in Subsection 4.5.2, NMC-AMII is limited in its applicability as it can only determine the calendar
ageing capacity loss for four different constant battery temperatures at 50% SoC. Nevertheless, NMC-AMII is
used to determine the impact of temperature on calendar ageing capacity loss. Figure 5.9 shows the one-year
capacity loss curves for the NMC battery stored at 50% SoC at different temperatures, namely 25 °C, 40 °C, 50
°C, and 60 °C. Table 5.3 shows the one-year NMC capacity loss and the expected EoL of the battery according to
NMC-AMII, for each battery temperature scenario.

The capacity loss and EoL results of NMC-AMII demonstrate the significant impact of battery temperature
on NMC battery life. Higher temperatures are thought to also impact cycling ageing. The fact that the impact
of higher temperatures on cycling ageing is not considered in this EoL calculation accentuates the negative
impact of higher temperatures on battery life.

Table 5.3: NMC-AMII results and use case characteristics.

Temperature scenario One-year Qcalendar
loss EoL

T = 25 °C 3.2% 19.9 years

T = 40 °C 7.3% 7.6 years

T = 50 °C 11.6% 2.9 years

T = 60 °C 20.8% 0.9 year
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Figure 5.9: One-year Qloss profiles for four different constant battery temperatures for an NMC battery.
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5.3. Results from LFP-AM
Table 5.4 provides an overview of the results from LFP-AM for each use case scenario with its corresponding
one-year use case characteristics. Like in Table 5.1, the table shows the one-year calendar, cycling and total
ageing. Qcell

throughput is the net energy delivered by a single cell throughout the whole year. Neq. full cycles is

the corresponding full equivalent discharge cycles given that the cell on which the ageing stress factors are
based comprises a usable capacity of 4.85 Ah, even though LFP-AM is based on a cell that comprises 3.00 Ah.
Npartial cycles is the number of partial cycles as defined in Subsection 3.2.11. SoCavg is the average SoC. DoDavg

is the average cycle depth of the partial cycles. EoL is the year in which the battery has retained 80% of its
initial capacity after calendar and cycling ageing capacity loss. The temperature profiles are identical in all
the scenarios. Moreover, all scenarios model a Lightyear 0 vehicle covering a distance of 19,190 km per year.
The share of calendar and cycling ageing at the battery’s EoL as determined by LFP-AM are described in the
discussion below the table.

Table 5.4: Overview of LFP-AM results and use case characteristics.

Scenario One-year capacity loss One-year use case characteristics

Base Calendar ageing 3.04% Qcell
throughput 342 Ah SoCavg 69%

Cycling ageing 2.03% Neq. full cycles 70.5 DoDavg 0.18%

Total ageing 5.07% Npartial cycles 70,797 EoL 12.7 years

VIPVNL Calendar ageing 2.91% Qcell
throughput 340 Ah SoCavg 63%

Cycling ageing 2.21% Neq. full cycles 70.1 DoDavg 0.13%

Total ageing 5.12% Npartial cycles 73,642 EoL 12.6 years

VIPVESP with TESP Calendar ageing 3.02% Qcell
throughput 339 Ah SoCavg 58%

Cycling ageing 2.07% Neq. full cycles 69.9 DoDavg 0.14%

Total ageing 5.09% Npartial cycles 74,098 EoL 13.5 years

VIPVNL & V2G50% SoC
DA Calendar ageing 3.36% Qcell

throughput 606 Ah SoCavg 76%

Cycling ageing 2.40% Neq. full cycles 125 DoDavg 0.30%

Total ageing 5.76% Npartial cycles 71,686 EoL 9.9 years

V2G50% SoC
DA Calendar ageing 3.36% Qcell

throughput 607 Ah SoCavg 76%

Cycling ageing 2.40% Neq. full cycles 125 DoDavg 0.31%

Total ageing 5.76% Npartial cycles 71,695 EoL 9.9 years

V2G20% SoC
DA Calendar ageing 3.19% Qcell

throughput 772 Ah SoCavg 71%

Cycling ageing 2.94% Neq. full cycles 159 DoDavg 0.36%

Total ageing 6.13% Npartial cycles 71,529 EoL 8.8 years

V2G50% SoC
aFRR Calendar ageing 3.64% Qcell

throughput 459 Ah SoCavg 84%

Cycling ageing 1.78% Neq. full cycles 95 DoDavg 0.24%

Total ageing 5.42% Npartial cycles 72,459 EoL 11.5 years

V2G20% SoC
aFRR Calendar ageing 3.63% Qcell

throughput 477 Ah SoCavg 83%

Cycling ageing 1.83% Neq. full cycles 98 DoDavg 0.25%

Total ageing 5.46% Npartial cycles 72,368 EoL 11.4 years
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5.3.1. Scenario comparison
Base scenario

The battery’s EoL is reached after 12.7 years with a share of calendar and cycling ageing at EoL of 11.3%
and 8.7%, respectively.

VIPVNL scenario
• Similarly to NMC-AM, VIPV gradually charges the battery, which can reduce the grid charging frequency

by 23% in the Netherlands. This decrease in grid charging frequency is based on NMC-based ageing
stress factors, and could be different for LFP-based ageing stress factors due to the difference in the
load profiles. Nevertheless, gradual VIPV charging is expected to lower the grid charging frequency by
a similar order of magnitude, which can lower the average SoC. Lower SoC is also beneficial for LFP
batteries as high SoC cause electrolyte dissolution, which accelerates SEI layer growth [57, 81, 113]. This
implies that VIPV can reduce calendar ageing by reducing the battery’s average SoC, due to a decrease in
grid charging frequency.

• Compared to the base scenario, the one-year calendar ageing is 4% lower and the one-year cycling
ageing is 9% higher in the VIPVNL scenario. Like for NMC-AM, the increase in cycling ageing is thought
to be an ageing estimation error. 20-year ageing simulations indicate that VIPV can reduce LFP calendar
ageing by 6% in the Netherlands. Considering the complexity of the various effects of VIPV on cycling
ageing, further analysis is required to determine the impact of VIPV on battery cycle life.

• The battery’s EoL is reached after 12.6 years, with a share of calendar and cycling ageing at EoL of 10.7%
and 9.3%, respectively.

VIPVESP scenario
Like for NMC-AM, the VIPVESP scenario is compared to a base scenario in which increased battery temperatures
are modelled. The ageing results according to NMC-AM for an EV in Spain with and without VIPV are depicted
in Figure 5.5.

Table 5.5: LFP-AM results on the impact of VIPV on battery life for an EV in Spain.

Scenario One-year capacity loss One-year use case characteristics

Base with TESP Calendar ageing 3.37% Qcell
throughput 342 Ah SoCavg 69%

Cycling ageing 1.67% Neq. full cycles 70.5 DoDavg 0.18%

Total ageing 5.04% Npartial cycles 70,797 EoL 13.3 years

VIPVESP with TESP Calendar ageing 3.02% Qcell
throughput 339 Ah SoCavg 58%

Cycling ageing 2.07% Neq. full cycles 69.9 DoDavg 0.14%

Total ageing 5.09% Npartial cycles 74,098 EoL 13.5 years

• Similarly to NMC-AM, in Spain, VIPV can reduce the grid charging frequency by 44% decrease, causing
a 16% decrease in SoC. The decrease in grid charging frequency is based on NMC simulations, but is
expected to be similar for an LFP battery.

• In the base with TESP scenario, the battery’s EoL is reached after 13.3 years, with a share of calendar and
cycling ageing at EoL of 12.8% and 7.2%, respectively. In the VIPVESP with TESP scenario, the battery’s
EoL is reached after 13.5 years, with a share of calendar and cycling ageing at EoL of 11.7% and 8.3%,
respectively. Thus, LFP-AM suggests that VIPV can extend battery life by 2 months.

Compared to the base scenario in Spain, the one-year LFP calendar ageing is 10% lower and the one-year
cycling ageing is 24% higher in the VIPVESP scenario. As explained in the VIPV NL scenario subsection,
VIPV gradually charges the battery, reducing the grid charging frequency, which lowers the average SoC.
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The lower average SoC is beneficial for calendar ageing, as shown in Table 5.5. 20-year ageing simulations
indicate that VIPV can reduce LFP calendar ageing by 9% in Spain.

Thus, LFP-AM suggests that VIPV in Spain reduces calendar ageing by reducing the average SoC.

VIPVNL & V2G50% SoC
DA scenario

• Compared to the VIPVNL scenario, the one-year calendar ageing is 11% higher and the one-year cycling
ageing is 9% higher in the VIPVNL & V2G50% SoC

DA scenario. The 11% increase in calendar ageing is due

to the 131% increase in average DoD and the 21% increase in average SoC in the VIPVNL & V2G50% SoC
DA

scenario. The average SoC increased as the required grid connection for V2G services causes the vehicle
to charge more often in the modelled scenario. The 9% increase in cycling ageing in the VIPVNL &
V2G50% SoC

DA scenario is due to the 44% increase in throughput compared to the VIPVNL scenario.

• The results suggest that uncontrolled V2G can be very harmful for cycle life, while controlled V2G could
lower average SoC by regulating the SoC.

• In the VIPVNL & V2G50% SoC
DA scenario, the battery’s EoL is reached after 9.9 years, with a share of calendar

and cycling ageing at EoL of 11.0% and 9.0%, respectively.

V2G50% SoC
DA scenario

• In the V2G50% SoC
DA scenario, the battery’s EoL is reached after 9.9 years, with a share of calendar and

cycling ageing at EoL of 11.0% and 9.0%, respectively.

• The results are similar to the VIPVNL & V2G50% SoC
DA scenario, indicating that V2G governs ageing when

combined with VIPV.

V2G20% SoC
DA scenario

• Compared to the base scenario, the one-year calendar ageing is 5% higher and the one-year cycling
ageing is 45% higher in the V2G20% SoC

aFRR scenario, shortening battery life by up to 3.9 years. The 5% higher
calendar ageing is due to the 3% increase in average SoC. The average SoC increases as V2G increases the
grid charging frequency in the modelled scenario. The 45% increase in cycling ageing is due to the 126%
increase in throughput, harming the battery due to extensive Li-ion intercalation. Li-ion intercalation
causes, among other things, growth of the SEI layer as well as lithium plating. Thus, LFP-AM suggests
that V2G services, with the aim of maximising profits for the EV owner, are also harmful to LFP battery
life.

• Compared to the V2G50% SoC
DA , the one-year calendar ageing is 5% lower and the one-year cycling ageing

is 23% higher in the V2G20% SoC
DA scenario. The 5% lower calendar ageing is due to the 7% decrease in

average SoC, as the V2G services allow the battery to be discharged to 20% SoC in this scenario. Thereby,
a lower SoC retention effectively lowers the average SoC. The decrease in calendar ageing is the same as
for the NMC battery. Thus, LFP-AM suggests that calendar ageing can be reduced using V2G by reducing
the average SoC, which naturally occurs with a lower SoC retention limit during V2G services.

• In the V2G20% SoC
DA scenario, the battery’s EoL is reached after 8.8 years, with a share of calendar and

cycling ageing at EoL of 9.9% and 10.1%, respectively.

V2G50% SoC
aFRR scenario

• Compared to the V2G50% SoC
DA scenario, the one-year calendar ageing is similar and the one-year cycling

ageing is 39% lower in the V2G50% SoC
aFRR scenario. It should be noted that two scenarios with different V2G

services are being compared here.

• The 39% decrease in cycling ageing is due to the 24$ decrease in throughput in the V2G50% SoC
aFRR compared

to the V2G50% SoC
DA scenario.

While the cycle depth decreased by 20% decrease, which is beneficial for LFP cycle life [67], DoD is not
considered as a stress factor in LFP-AM.
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• The decrease in throughput suggests that with this aFRR modelling method, aFRR balancing services
appear to demand less power compared to day-ahead electricity trading.

• The battery’s EoL is reached after 11.5 years, with a share of calendar and cycling ageing at EoL of 12.9%
and 7.1%, respectively.

V2G20% SoC
aFRR scenario

• Compared to the V2G50% SoC
aFRR scenario, the one-year calendar ageing is similar and the one-year cycling

ageing is 3% higher in the V2G20% SoC
aFRR scenario. The 3% increase in cycling ageing is due to the 4%

increase in throughput, which causes the lower SoC retention limit during V2G services.

• In the V2G20% SoC
aFR scenario, the battery’s EoL is reached after 11.4 years, with a share of calendar and

cycling ageing at EoL of 12.7% and 7.3%, respectively. Thus, LFP-AM again suggests that additional
battery cycling causes only a slight increase in cycling ageing capacity.

Notes and limitations

• According to Table 5.4, one-year calendar ageing appears to be dominant in the LFP battery. Simulations
using LFP-AM show that calendar ageing remains dominant at higher battery temperatures.

• Capacity and power fade are not fed back into the data, which leads to ageing estimation errors.

• While LFP-AM is based on a cell comprising 3.00 Ah, the ageing stress factors used in the analysis are
based on a cell comprising 4.85 Ah, which could lead to ageing estimation errors.

• The calendar ageing equations of the LFP model use LFP-motivated ageing stress factors and the cycling
equations use NMC-based ageing stress factors to estimate ageing, which limits LFP-AM’s applicability.
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5.3.2. Base scenario analysis
Figure 5.10 shows the one-year SoC, temperature and LFP-AM capacity loss profiles for the base scenario.
Calendar ageing appears dominant, as also discussed in Subsection 5.3.1.

Figure 5.10: Base scenario: one-year SoC, temperature and Qloss profiles for an LFP battery.

• Both the cycling and calendar ageing capacity loss profile follow the following relation: -xz , where 0 ≤ z
≤ 1. This exponential decay follows from the

p
t factor in Equation 4.16 and the

p
Ah factors in Equation

4.18 of LFP-AM.

• The exponential decay is in line with the electrochemical effects occurring in the battery cell. Like for
NMC-AM, the SEI mainly forms in the first few cycles, after which the growth of the SEI layer scales with
the square root of time and accelerates with higher SoC and higher temperatures. The growth of the
SEI layer causes LLI and LAM, which causes capacity loss. A similar pattern can be seen in the calendar
and cycling ageing capacity loss curves shown in Figure 5.10, where the most significant cycling ageing
capacity loss occurs at the beginning of the year and eases over time.
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5.3.3. VIPV scenario analysis
Figure 5.11 shows the one-year SoC, temperature and LFP-AM capacity loss profiles for the VIPV scenario in
the Netherlands.

Figure 5.11: VIPV scenario: one-year SoC, temperature and Qloss profiles for an LFP battery.

• Figure 5.11 illustrates shows how both the cycling and calendar ageing capacity loss profiles exhibit an
exponential decay according to the growth pattern of the SEI layer.

• Compared to the base scenario, calendar ageing capacity loss is slightly less due to the lower average
SoC and cycling ageing capacity loss is slightly more due to the increase in partial cycles, as discussed in
Subsection 5.3.1.

• The decrease in calendar ageing capacity loss in the VIPV scenario illustrates how a lower SoC is also
beneficial for LFP calendar life, as described in Subsection 2.1.3. Lower SoC is mainly beneficial because
high SoC causes electrolyte dissolution. Electrolyte dissolution causes the SEI layer to grow further,
which would cause LLI and LAM, resulting in capacity loss.
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5.3.4. V2G scenario analysis
Figure 5.12 shows the one-year SoC, temperature and LFP-AM capacity loss profiles for the V2G20% SoC

DA scenario
in the Netherlands.

Figure 5.12: V2G scenario: one-year SoC, temperature and Qloss profiles for an LFP battery.

• Figure 5.12 shows how the calendar ageing capacity loss profile exhibits an exponential decay with an
steep capacity loss decrease during the summer months. The elevated temperatures during the summer
months increase the Arrhenius reaction rate, accelerating the growth of the SEI layer growth. The SEI
layer causes LLI and LAM, resulting in capacity loss. Following the temperature dependence on ageing,
the calendar ageing capacity loss curve follows a wavy curve according to the seasonal temperature
variations.

• The cycling ageing curve starts with an exponential decay governed by the growth pattern of the SEI
layer.

• Like for NMC-AM, the SoC profile exhibits increased SoC variations in November and December due
to increased battery cycling for V2G day-ahead electricity trading. The additional Li-ion intercalation
due to additional cycling causes, among other things, further growth of the SEI layer as well as lithium
plating. Both SEI layer growth and lithium plating cause LLI and LAM, resulting in capacity loss, causing
a steeper cycling ageing capacity loss curve towards in November and December.
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5.4. Ageing comparison of NMC-AM and LFP-AM
5.4.1. Overview of ageing characteristics
Similarly to Tables 5.1 and 5.3, the table shows the one-year calendar, cycling and total ageing. Qcell

throughput
is the net energy delivered by a single cell throughout the whole year. Neq. full cycles is the corresponding full
equivalent discharge cycles given that the cell on which the ageing stress factors are based comprises a usable
capacity of 4.85 Ah, even though the ageing models are based on a different-sized cells. Npartial cycles is the
number of partial cycles as defined in Subsection 3.2.11. SoCavg is the average SoC. DoDavg is the average cycle
depth of the partial cycles. The EoL of each scenario according to the ageing models are found in Tables 5.1
and 5.3 for NMC-AM and LFP-AM, respectively. The temperature profiles are identical in all the scenarios.
Moreover, all scenarios model a Lightyear 0 vehicle covering a distance of 19,190 km per year. The share of
calendar and cycling ageing at the battery’s EoL as determined by LFP-AM are described in the discussion
below the table.

Table 5.6: One-year calendar and cycling ageing capacity loss according to NMC-AM and LFP-AM.

Scenario NMC-AM LFP-AM

Base Calendar ageing 1.05% 3.04%

Cycling ageing 2.80% 2.03%

Total ageing 3.85% 5.07%

VIPVNL Calendar ageing 0.97% 2.91%

Cycling ageing 2.81% 2.21%

Total ageing 3.78% 5.12%

VIPVESP with TESP Calendar ageing 1.26% 3.02%

Cycling ageing 2.86% 2.07%

Total ageing 4.12% 5.09%

VIPVNL & V2G50% SoC
DA Calendar ageing 1.14% 3.36%

Cycling ageing 5.46% 2.40%

Total ageing 6.60% 5.76%

V2G50% SoC
DA Calendar ageing 1.14% 3.36%

Cycling ageing 5.48% 2.40%

Total ageing 6.62% 5.76%

V2G20% SoC
DA Calendar ageing 1.08% 3.19%

Cycling ageing 8.78% 2.94%

Total ageing 9.86% 6.13%

V2G50% SoC
aFRR Calendar ageing 1.23% 3.64%

Cycling ageing 4.83% 1.78%

Total ageing 6.06% 5.42%

V2G20% SoC
aFRR Calendar ageing 1.22% 3.63%

Cycling ageing 4.80% 1.83%

Total ageing 6.02% 5.46%
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5.4.2. Comparative analysis of NMC-AM and LFP-AM
Figure 5.13 shows the one-year SoC, temperature profiles and capacity loss profiles according to NMC-AM and
LFP-AM. The profiles batteries for the base scenario in the Netherlands. Table 5.6 provides an overview of the
results from both NMC-AM and LFP-AM for each use case scenario with their corresponding one-year use
case characteristics.

According to the ageing models, for the base scenario, capacity loss due to calendar ageing is 189% higher in
LFP-AM and cycling ageing 28% lower compared to NMC-AM. Thus, the ageing models suggest that additional
battery cycling causes less harm for the LFP battery as for the NMC battery.

Figure 5.13: NMC and LFP battery ageing comparison: one-year SoC, temperature and Qloss profiles.
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• Table 5.6 shows that according to NMC-AM, cycling ageing is dominant in every modelled NMC scenario,
while according to LFP-AM, battery calendar ageing is dominant in every modelled LFP scenario.

• In contrast to NMC-AM, the ageing equations of LFP-AMII correlate both calendar and cycling ageing
with temperature.

• As shown in the capacity loss profiles of Figure 5.13, according to NMC-AM and LFP-AM, for the NMC
battery, calendar ageing at 10 °C is less significant compared to the cycling ageing. In contrast, for the
LFP battery, cycling ageing at 10 °C appears to be more significant than calendar ageing.

• Comparing the V2G20% SoC
DA scenario with the base scenario for both NMC-AM and LFP-AM, one-year

cycling ageing capacity loss increased 214% in the NMC battery and only 44% in the LFP battery. This
is in line with the comparative battery analysis of Figure 2.2 which shows that LFP batteries are more
resistant to ageing compared to NMC batteries. The authors of the paper specifically mention that LFP
have a long cycle life [55].

• Therefore, NMC-AM and LFP-AM suggest that additional battery cycling for V2G services causes less
harm for the LFP battery than for the NMC battery. Thus, the results suggest that LFP batteries could be
the favoured battery chemistry for EVs participating in V2G services.

• According to NMC-AM, compared to the base scenario, VIPV lowered calendar ageing by 8% in the
Netherlands and 9% in Spain. According to LFP-AM, VIPV lowered calendar ageing by 4% in the Nether-
lands and 10% in Spain for the same relative difference in SoC.

• Figures 8.10 and 8.11 show the VOC(SoC) relations of the NMC and LFP batteries, respectively, that were
used in NMC-AM and LFP-AM. The VOC(SoC) curve of the LFP battery appears to be almost between the
10% and 95% SoC, which is typical for LFP batteries.

• It should be noted that the comparison between NMC-AM and LFP-AM is limited for several reasons.
First, only one chemical composition of each battery cell is used in the analysis. The characteristics of the
battery cells heavily depend on the chemical composition of the metals in the cell. E.g., the ageing results
of an 8:1:1 NMC battery cell (80% Ni, 10% Co, 10% Mn) are expected to deviate from the ageing results
of an 1:1:1 NMC battery cell. Second, the ageing stress factors used in the calendar ageing equation of
LFP-AM is NMC-motivated, and the ageing stress factors used in the cycling ageing equations of LFP-AM
are NMC-based.

• It is remarkable that for the NMC battery, the one-year cycling ageing was 94% higher in the VIPVNL

& V2G50% SoC
DA scenario compared to the VIPVNL scenario, while for the LFP battery, cycling ageing is

only 9% higher in the same comparison. Thus, LFP-AM suggests that while additional cycling causes
additional cycling ageing for the LFP battery, it causes less additional cycling ageing for the LFP battery
than for the NMC battery, which is in line with literature [10].





6
Investigating methods to extend battery

calendar life

In this chapter, methods to reduce battery ageing are investigated. While EV batteries are often regulated to
reduce ageing during use, they are generally left to degrade during parking periods. Considering that EVs are
parked for over 90% of the time [3], battery SoC and temperature regulation during parking periods can poten-
tially reduce calendar ageing. This chapter investigates methods to influence SoC and battery temperatures
using VIPV and V2G. Thus, in this chapter, the third sub-objective is further addressed:

iii Compare the ageing results of the use case scenarios to analyse the impact of VIPV and V2G on battery
calendar and cycling ageing.

Section 6.1 examines the impact of SoC regulation using VIPV and V2G on calendar ageing, after which
Section 6.2 investigates the technical feasibility of using VIPV to regulate battery temperature and features
a battery temperature sensitivity analysis to determine the potential impact of VIPV-powered temperature
regulation on battery life. Considering the limitations of LFP-AM as discussed in Chapter 4, NMC-AM is used
for simulating scenarios throughout this chapter.

95
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6.1. Impact of SoC regulation on calendar life
Researchers have found that simply delaying charging to keep the battery’s SoC low for an extended period
of time, at 25 °C can potentially extend battery life by 1.5 years, while an optimised charging strategy can
potentially extend battery life by up 2.6 years [33, 98]. In contrast, Dubarry et al. (2017) found the effect of
delayed charging on battery life to be negligible at room temperature, but mention that the effect could be
significant at higher temperatures. Considering that the effects of SoC and battery temperature on ageing are
intercorrelated, the effect of lower SoC at both low and high temperatures is researched.

To investigate this, scenarios were simulated in which the EV battery was kept constant at 50% SoC and
100% SoC for a whole month per year, both at an average annual battery temperature of 10 °C and 20 °C. These
scenarios use the base use case scenario modelled in Chapter 3, in which the EV is parked during a one-month
holiday in March. The one-year battery datasets were repeated for multiple years to determine the impact of
SoC on the battery’s lifetime. Both calendar and cycling ageing are considered to determine the battery’s EoL,
defined as the year in which the battery reaches a total capacity loss of 20% compared to its initial capacity.

Regulating the SoC could be done by delaying VIPV charging, by charging and discharging the battery using
V2G, or by powering electronics in the EV, such as the battery thermal management system.

Figure 6.1 shows the one-year SoC profiles of these scenarios. The battery temperature varies according to
the battery temperature profile modelled in Chapter 3.

Figure 6.1: One-year SoC profiles for an EV in the base scenario, in which the EV is parked for a whole month. The top graph illustrates the
scenario in which the EV is parked with a constant 100% SoC, and the bottom graph illustrates the scenario in which the EV is parked with

a constant 50% SoC.

6.1.1. Impact of SoC regulation at low temperatures
In the scenario in which the battery was kept at 100% SoC in March with an average annual battery of 10 °C,
according to NMC-AM, the battery reaches its EoL after 14.7 years. In the simulated scenario in which the
battery was kept at 50% SoC in March, according to NMC-AM, the battery reaches its EoL after 16.7 years,
indicating that 50% SoC regulation for one month per year increased the battery’s lifetime by 2 years or 14%.

6.1.2. Impact of SoC regulation at high temperatures
The battery temperature is increased by 10 °C at every time step throughout the year, increasing the annual
average battery temperature to 20 °C.

In the scenario in which the battery was kept at 100% SoC in March with an average annual battery of 20 °C,
according to NMC-AM, the battery reaches its EoL after 7.7 years. In the scenario in which the battery was kept
at 50% SoC in March with an average annual battery of 20 °C, according to NMC-AM, the battery reaches its
EoL after 8.6 years, indicating that 50% SoC regulation for one month per year increased the battery’s lifetime
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by 13 months or 12%. Thus, the analysis shows that according to NMC-AM, lowering the SoC for an extended
period of time impacts calendar ageing less at lower ambient temperatures, but could increase battery life at
higher ambient temperatures. Further research is required to accurately determine the impact of higher SoC at
different ambient temperatures on calendar ageing.

6.2. Impact of temperature regulation on calendar life
In section 5.1, to accurately analyse the impact of VIPV in Spain, a ‘Spain’ base scenario was modelled in which
annual battery temperatures ranged 3.3 °C higher than in the Netherlands. In the analysis, NMC-AM shows
that calendar ageing would increase by 32% in the base scenario due to higher temperatures. Thus, according
to NMC-AM, higher battery temperatures can heavily impact battery life, indicating that regulating battery
temperature may extend battery life.

EVs are expected to be driven in countries with hot and sunny climates in which average annual battery
temperatures range significantly higher than the scenarios analysed in Chapter 5. For example, the average
annual ambient temperature in the United Arab Emirates (UAE) is found to range about 15 °C higher compared
to the Netherlands [110, 111]. In SEVs, power to regulate battery temperature could be sourced from the grid,
the battery or from VIPV. Considering that EVs are not always connected to a charging point and considering
that sourcing energy from the battery would cause additional cycling ageing, the technical feasibility of
sourcing energy from VIPV to regulate battery temperature is investigated.

6.2.1. Technical analysis of VIPV-powered battery temperature regulation
NMC-AM is used to analyse to what extent higher temperatures could accelerate battery ageing compared to
the Netherlands. As explained in Section 4.2, NMC-AM includes the temperature factor only in the calendar
ageing equation.

Lowering the battery temperature
Equation 6.1 can be used to determine the amount of energy required to power the HVAC system to cool the
battery. A scenario is considered in which the EV battery is cooled by 10 °C, e.g. from 35 °C to 25 °C.

E HVAC
req = c ·∆T

3,600 ·COP
(6.1)

with a total heat capacity c of 380 · 103 J/K, a temperature difference ∆T of 10 °C, and a COP of 2.5, the EV’s
cooling system would require EHVAC

req = (c · ∆ T) / 3,600 · COP = (10 K · 380 kJ/K) / (3,600 · 2.5) = 422 Wh of
electrical energy. The heat capacity is based on Lightyear’s battery pack, as described in Subsection 3.2.7. As
COP values generally range between 2 and 4, 2.5 is assumed to be a conservative estimate for the HVAC’s COP.

As seen in Section 3.3, during a sunny hour, 5 m2 of VIPV can generate 400-600 W of power in the Nether-
lands and between 600-800 W in Spain. This indicates that the solar panels are able to produce enough power
to cool the battery temperature by 10 °C in a single sun hour or less. The UAE sees at least 10 hours of sun even
in the shortest winter days [112], indicating the high potential of VIPV for regulating battery temperature in
sunny climates. Moreover, according to the ageing equations of NMC-AM given in Section 4.2, lowering the
battery temperature by a single degree would already be beneficial for calendar life.

Keeping the battery temperature low
Equation 6.2 is used to determine the amount of power required to keep the battery temperature lower than its
surrounding ambient temperature. A scenario is considered in which the battery temperature is kept 10 °C
lower than the ambient temperature, e.g. to keep the battery temperature constant at 25 °C with a surrounding
ambient temperature of 35 °C.

P HVAC
req = h · A ·∆T

COP
(6.2)

with a heat transfer coefficient h of 15 W/(m2 · K), a battery pack area A of 2.88 m2, a temperature difference
∆T of 10 °C, and COP of 2.5, the EV’s cooling system would require PHVAC

req = (h · A · ∆T) / COP = (15 W/(m2 · K) ·
2.88 m2 · 10 K) / 2.5 = 173 W of electrical energy. The heat transfer coefficient and battery pack area are based
on Lightyear’s battery pack, as described in Subsection 3.2.7.

Considering a conservative VIPV power generation during sun hours of 400 W in the Netherlands and 600
W in Spain, VIPV could cool the battery by ∆T = (Ppotential · COP) / (h · A) = 23 °C in the Netherlands and 35 °C in
Spain.



98 6. Investigating methods to extend battery calendar life

6.2.2. Potential impact of VIPV-powered battery temperature regulation
According to NMC-AM in the Netherlands, where the modelled average annual battery temperature is 10 °C,
the annual calendar ageing was 1.05%. To determine potential impact of VIPV-powered battery temperature
regulation at high temperatures, the UAE was considered. To determine the annual calendar ageing in UAE, 15
°C is added to the battery temperature at every time step throughout the year, increasing the annual average
battery temperature to 25 °C. In contrast to the previous chapters, in this analysis, the battery temperature was
not capped at 35.4 °C. According to NMC-AM, the increase in battery temperature caused an annual calendar
ageing capacity loss of 3.53%, indicating that calendar ageing in the simulated scenario would accelerate by
three to four times in UAE compared to the Netherlands. It should be noted that the battery cell used for
NMC-AM originates from 2012 and is designed for e-bikes, radios, medical devices and robotics, as shown in
Figure 8 of the appendix, which could lead to overestimation errors on the impact of temperature.

To determine the impact of battery temperature on battery calendar life, scenarios with different annual
average battery temperatures are modelled. Assuming that solar panels can reduce the annual average battery
temperature by an estimated 5 °C, in the scenarios used for the sensitivity analysis, the battery temperatures
varied from 25 °C to 10 °C in steps of 5 °C. The SoC and corresponding Tbatt profiles are shown in Figure
6.2. From top to bottom, these temperature profiles could represent annual battery temperatures in UAE,
Isreal, Madrid and the Netherlands. NMC-AM is subsequently used to determine the calendar ageing in each
scenario, which is elaborated below.

Figure 6.2: From top to bottom: SoC profile used throughout the four scenarios, battery temperature profile with an average battery
temperature of 25 °C, 20 °C, 15 °C, and 10 °C.

As mentioned before, EoL is defined as the moment in time at which the battery has retained 80% of its
initial capacity. The battery data is developed using the EV battery data generation model described in Chapter
3, in which an annual driving distance of 19,190 km is simulated. The results of the temperature sensitivity
analysis according to NMC-AM are summarised in Table 6.1 below.
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Table 6.1: Sensitivity analysis results of battery temperature on battery ageing.

Average annual Tbatt 25 °C 20 °C 15 °C 10 °C

EoL 5.6 years 8.3 years 11.6 years 16.2 years

Distance driven 108,000 km 159,000 km 223,000 km 311,000 km

Increased lifetime & range

compared to scenario with 5 °C - +47% +40% +40%

higher annual average Tbatt

The table shows that according to NMC-AM, if VIPV lowers the average annual battery temperature by 5 °C,
total battery life could extend by up to 4.6 years, adding 88,000 km of driving range to its lifetime.

6.3. Conclusions
Simulations using NMC-AM suggest that SoC regulation can extend NMC battery life cell by 2 years, allowing
for 38,000 km of additional driving range before the battery reaches its EoL. Additionally, simulations using
NMC-AM suggest that VIPV-powered battery temperature regulation can extend NMC battery life by up to
4.6 years, allowing for 88,000 km of additional driving range before the battery reaches its EoL. It should be
noted that the cell on which the implemented ageing model is based originates from 2012, which could lead to
ageing estimation errors. It is recommended to conduct further research on the impact of SoC and temperature
regulation on newer NMC and LFP cells used in EVs. Additionally, further research could determine to what
extent VIPV can reduce battery temperature for different geographical locations.

SoC regulation can be performed using delayed VIPV charging, delayed grid charging, or V2G. Battery
temperature regulation can be performed using VIPV power or grid power. The required grid connection for
V2G simultaneously allows for EVs to use grid power to regulate battery temperature. Taking electricity cost
into account, grid-powered battery temperature regulation could be a cost-effective method to extend battery
life, especially for EVs experiencing extreme temperatures.

In summary, initial findings suggest that VIPV and V2G can regulate SoC and temperature during parking
periods to extend battery life, potentially further improving the economic viability of VIPV and V2G.





7
Conclusions and recommendations

This chapter summarises the contributions of this work and recommends future lines of research emerging
from it.

7.1. Conclusions
The EU’s plan to electrify its transportation sector can cause power grid congestion and electricity shortage risks
for power grid operators. EVs equipped with VIPV and EVs using V2G technology can support grid operators in
overcoming these challenges. By charging and discharging the EV battery, the technologies impact the battery’s
lifespan. As batteries are expected to remain the most expensive subsystem of EVs, the impact of VIPV and V2G
on battery life governs their economic viability. Current studies on the impact of VIPV and V2G on battery life
are generally simplistic and use unrealistic battery data. Additionally, there is a lack of literature on methods to
extend battery life using VIPV and V2G. To fill this research gap, the following research objective was formulated:

Determine the impact of vehicle-integrated photovoltaics and vehicle-to-grid on electric vehicle battery life.

To fulfil this research objective, four sub-objectives were addressed. The methods used to achieve these
sub-objectives as well as the drawn conclusions are elaborated upon below.

i Simulate use case scenarios with and without VIPV and V2G to generate one-year EV battery datasets.

The first sub-objective was approached by developing an EV battery data generation model to simulate
EV use case scenarios with and without VIPV and V2G. A one-year mobility and charging profile was con-
structed based on EV driving data in the Netherlands and Germany. Using Lightyear’s VPM, which has been
validated on the sub-system level, five driving cycles were simulated to generate per-second EV battery data, in-
cluding battery SoC, temperature, voltage, current, C-rate, number of cycles, and throughput. Using Lightyear’s
SolarSimulator tool, load profiles were modelled for VIPV power generation in Netherlands and Spain. Load
profiles were modelled for V2G day-ahead electricity trading and aFRR, both with a battery capacity retention
limit during V2G of 50% SoC and 20% SoC. Subsequently, these VIPV and V2G load profiles were merged with
EV load profiles to generate eight one-year EV battery datasets. These EV battery datasets represent use case
scenarios of an EV with and without VIPV and V2G. Finally, the EV battery data generation model was validated
by comparing ageing stress factors derived from the EV battery data generation model with validated data
from the VPM.

ii Implement the EV battery datasets into battery ageing models from literature to quantify battery cal-
endar and cycling ageing for each use case scenario.

To fulfil the second sub-objective, three ageing models were implemented. The first NMC-based ageing
model (NMC-AM) was implemented based on its description from its paper [84]. The second NMC-based
ageing model (NMC-AMII) could not be used to compare ageing in the different scenarios due to its lim-
ited applicability to battery data. However, NMC-AMII could be used to benchmark results from NMC-AMI.
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The LFP-based ageing model (LFP-AM) was also implemented based on its description from its paper [81].
Following this, the eight EV battery datasets were implemented in NMC-AM and LFP-AM to determine the
capacity loss due to calendar and cycling ageing in each use case scenario. To more accurately determine the
impact of VIPV on battery life in Spain, a sub-scenario of the base scenario was modelled in which the battery
temperature was increased to account for higher ambient temperatures in Spain.

iii Compare the ageing results of the use case scenarios to analyse the impact of VIPV and V2G on battery
calendar and cycling ageing.

The third sub-objective was approached by comparing the one-year capacity loss due to calendar and cycling
ageing for the eight use case scenarios according to NMC-AM and LFP-AM. The differences in ageing were
explained using the one-year use case characteristics of each scenario, such as annual throughput, number of
cycles, average SoC and EoL. Additionally, ageing patterns of calendar and cycling ageing were substantiated by
describing the effects of electrochemical ageing mechanisms. Moreover, the ageing characteristics of NMC-AM
and LFP-AM were compared. Finally, methods to reduce battery ageing were investigated.

The most significant results of NMC-AM and LFP-AM on the impact of VIPV and V2G on battery calendar
and cycling ageing are summarised below. Following this, a concise comparison is given on NMC and LFP
battery ageing according to NMC-AM and LFP-AM, after which methods to reduce battery ageing using VIPV
and V2G are proposed. Finally, the main limitations of semi-empirical ageing models found in literature are
described.

NMC-AM
Impact of VIPV on NMC calendar ageing according to NMC-AM
As VIPV gradually charges the battery, it can reduce the grid charging frequency by 23% in the Netherlands
and 44% in Spain, causing the average annual SoC to range 9% lower in the Netherlands and 16% lower in
Spain. Lower SoC is beneficial for calendar ageing as higher SoC accelerates the growth of the SEI layer, which
causes calendar ageing. NMC-AM suggests that VIPV can reduce one-year calendar ageing capacity loss by 8%
in the Netherlands and by 9% in Spain. Simulations show that over a 20-year period, VIPV can reduce NMC
calendar ageing by 9% in the Netherlands and by 8% in Spain. The reduction in calendar ageing is due to a
decrease in SoC due to gradual VIPV charging. Including the effect of cycling ageing, NMC-AM suggests that
VIPV could extend the battery’s life by 6 months in both the Netherlands and Spain. The results show that VIPV
is beneficial for calendar ageing up to a certain threshold, indicating that when this threshold is met, VIPV
power could better be used for other purposes, such as the thermal battery management system or V2G.

Impact of VIPV on NMC cycling ageing according to NMC-AM
Results showed that VIPV can reduce the average cycle depth by 28%, which according to de Hoog et al. (2017)
is beneficial for battery cycling life. Moreover, simulations show that VIPV can reduce the battery’s annual
throughput by 26 kWh, indicating that VIPV can occasionally power the EV drivetrain directly, bypassing the
battery, which can reduce cycling ageing. In contrast, results from NMC-AM suggest an increase in cycling
ageing in the VIPVNL scenario. Due to limitations of the ageing models, the impact of VIPV on battery cycle life
could not be accurately determined.

Impact of V2G on NMC calendar ageing according to NMC-AM
NMC-AM suggests that in the modelled scenario, V2G aFRR can increase one-year calendar ageing capacity
loss by up to 17% due to a 22% increase in SoC, as higher SoC causes electrolyte dissolution, which accelerates
the growth of the SEI layer. Due to the increased grid connection required for V2G services, uncontrolled
V2G can cause the battery’s SoC to increase, which increases calendar ageing. NMC-AM suggests that if the
EV allows V2G services to discharge the battery to a lower capacity retention limit during V2G, SoC can be
reduced, which reduces calendar ageing. In case the capacity retention limit during V2G is 20% SoC, NMC-AM
suggests that calendar ageing can be reduced by 5% compared to a 50% SoC retention limit. By implementing
a controlled V2G strategy that lowers the average SoC, V2G can reduce calendar ageing.

Impact of V2G on NMC cycling ageing according to NMC-AM
NMC-AM suggests that V2G day-ahead electricity trading with a 20% SoC retention limit during V2G can
increase one-year cycling ageing by up to 214% compared to the base scenario, which would shorten battery
life by up to 12.5 years. This large increase in cycling ageing is due to a 126% increase in throughput, which
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due to additional Li-ion intercalation causes, among other things, further growth of the SEI layer and lithium
plating.

LFP-AM
Impact of VIPV on LFP calendar ageing according to LFP-AM
LFP-AM suggests that VIPV can reduce one-year calendar ageing capacity loss by 4% in the Netherlands and
by 10% in Spain due to a decrease in SoC. As mentioned before, results show that VIPV can reduce the grid
charging frequency by 23% in the Netherlands and by 44% in Spain, causing the average annual SoC to range
lower. Lower SoC due to gradual VIPV charging can reduce calendar ageing up to a certain threshold. If this
threshold is crossed, additional VIPV charging could increase SoC, which could accelerate calendar ageing.
Simulations show that over a 20-year period, VIPV can reduce LFP calendar ageing by 6% in the Netherlands
and by 9% in the Spain.

Impact of VIPV on LFP cycling ageing according to LFP-AM
As mentioned before, according to the one-year use case characteristics, VIPV reduces the average cycle depth
and the battery’s annual throughput by 26 kWh, which are thought to reduce cycling ageing. However, LFP-AM
suggests that VIPV can increase one-year cycling ageing capacity loss by 9% in the Netherlands and 24% in
Spain. Considering the complexity of the various effects of VIPV on cycling ageing, it is concluded that the
impact of VIPV on cycling ageing requires further research.

Impact of V2G on LFP calendar ageing according to LFP-AM
LFP-AM suggests that V2G aFRR can increase one-year calendar ageing capacity loss by up to 16% due to a
22% increase in SoC. Higher SoC causes electrolyte dissolution, which accelerates the growth of the SEI layer.
Like for NMC-AM, for uncontrolled V2G, the increased grid connection required for V2G services can increase
SoC, which increases calendar ageing. Thus, controlled V2G could lower calendar ageing by regulating SoC.
In case the capacity retention limit during V2G is 20% SoC, LFP-AM suggests that calendar ageing can be
reduced by 5% compared to a 50% SoC retention limit due to deeper discharge cycles causing a decrease in SoC.

Impact of V2G on LFP cycling ageing according to LFP-AM
LFP-AM suggests that V2G day-ahead electricity trading with a 20% SoC retention limit during V2G can increase
one-year cycling ageing capacity loss by 45%, which could shorten battery life by 3.9 years. The increase in
cycling ageing is due to a 126% increase in throughput, which due to additional Li-ion intercalation causes,
among other things, further growth of the SEI layer and lithium plating. However, V2G caused battery life to
shorten significantly less in LFP-AM compared to NMC-AM.

Ageing comparison of NMC-AM and LFP-AM
According to the ageing models, cycling ageing was dominant in every simulated NMC scenario, while calendar
ageing was dominant in every simulated LFP scenario. Moreover, according to NMC-AM and LFP-AM, the
modelled LFP battery appeared to be more resistant to additional cycling compared to the modelled NMC
battery, which is in line with literature. Due to its resistance to additional cycling, simulations indicate that LFP
batteries could be favoured over NMC batteries for EVs participating in V2G. Furthermore, according to the
ageing models, for NMC, calendar ageing at 10 °C is less significant compared to cycling ageing. In contrast,
for LFP, cycling ageing at 10 °C appears to be more significant than calendar ageing.

Investigating methods to reduce battery ageing
As high SoC and battery temperatures accelerate calendar ageing due to SEI layer growth, regulating SoC
and battery temperature could extend battery life. Therefore, SoC and battery temperature regulation are
investigated as methods to reduce calendar ageing.

Simulations show that if battery charge is kept at 50% SoC instead of 100% SoC for a whole month each
year, at an average battery temperature of 10 °C, SoC regulation could extend battery life by 2 years, allowing
for 38,000 km of additional driving range before the battery reaches its EoL. Controlled V2G can be used to
cycle V2G services at mid-levels SoC, which is beneficial for calendar life. SoC regulation could be performed
by delaying charging using VIPV, by delaying grid charging, or by discharging using V2G. V2G can thus best be
performed at mid-level SoC, taking the driver’s needs into acccount.

Furthermore, based on the battery’s thermal properties and the potential VIPV power generation in the
Netherlands and Spain, results show that VIPV can cool battery temperature by 10 °C within one hour of
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sun, as well as keep the battery 23 °C cooler than the ambient temperature in the Netherlands and 35 °C in
Spain. A battery ageing sensitivity analysis was performed using NMC-AM to simulate the impact of battery
temperatures ranging from 10 °C to 25 °C in steps of 5 °C. According to NMC-AM, VIPV-powered battery
temperature regulation could drastically extend battery life by up to 4.6 years, allowing for 88,000 km of
additional driving range before the battery reaches its EoL. Battery temperature regulation can be performed
using VIPV or grid power. The required grid connection for V2G simultaneously allows for EVs to use grid
power to regulate battery temperature regulation. Taking electricity cost into account, grid-powered battery
temperature regulation could prove to be a cost-effective method to extend battery life, especially for EVs
experiencing extreme temperatures.

Limitations of semi-empirical ageing models
Semi-empirical ageing models found in literature often lack clarity regarding their implementation, which
limits their application on battery data. Specifically, due to a lack of clarity regarding their cycle counting
method and definition of a cycle and throughput, applications of these model could lead to ageing estimation
errors. Moreover, ageing models are often not based on ageing tests with irregular load profiles. Consequently,
when the ageing models are applied on irregular load profiles, they could lead to ageing estimation errors.
Furthermore, ageing models are often based on accelerated ageing tests under limited operating conditions,
limiting their secondary application to a range of operating conditions. Additionally, ageing models that do
not consider path dependency in ageing but rather consider calendar and cycling ageing to be independent
and cumulative could underestimate ageing, especially at higher C-rates and during continuous cycling. Lastly,
ageing models are usually based on ageing tests of one particular cell chemistry and size. Considering that the
characteristics of similar cells may vary in terms of capacity and performance, applying the ageing models to
other cells may lead to ageing estimation errors.

iv Validate the ageing models by simulating ageing tests performed to develop the ageing models.

The fourth and final sub-objective was approached by reproducing the ageing tests performed to validate
NMC-AM and LFP-AM. Moreover, calendar ageing results from NMC-AM and NMC-AMII and from NMC-AM
and Lightyear’s calendar ageing tests were compared.

First, the implementation of NMC-AM was validated by simulating the validation tests performed by
Schmalstieg et al. (2014) to validate their model. Results from NMC-AM simulations were compared with
results from the ageing model validation tests performed by the authors, which showed very high accuracy for
three different battery temperature scenarios. Second, a comparison of the results from NMC-AM and NMC-
AMII showed that calendar ageing in NMC-AMII was less significant at extreme temperatures. Moreover, a
simulation of the calendar ageing tests performed by Lightyear show that the cell used in NMC-AM experiences
more calendar ageing than Lightyear’s battery cell. This is likely because the cell on which NMC-AM is based
originates from 2012, indicating that it is of lower quality than Lightyear’s cell.

Third, the implementation of LFP-AM was validated by simulating calendar and cycling ageing experiments
performed by Schimpe et al. (2018) and comparing modelled ageing results with results from the ageing
experiments on which LFP-AM is based. Apart from cycling ageing at T = 0 °C, the simulated results showed
high accuracy in following the results of the ageing experiments.
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7.2. Recommendations for further research
The higher-level intention of this work was to provide a foundation for future research. Along the way, the
assumptions that facilitated this research as well as the findings that emerged from it opened up four directions
for future work that can build on the contributions of this thesis.

1. First, it is recommended to integrate the ageing models into the EV battery data generation models,
such as Lightyear’s VPM. The integration of the ageing models in the EV battery data generation models
would allow for capacity and power fade to be looped back into the battery data continuously, as well as
increase flexibility in regard to simulation conditions. This would improve ageing estimations and allow
for detailed ageing analysis of other cell chemistries. Moreover, as ageing is thought to be cell-dependent,
to improve ageing estimations, it is recommended to develop semi-empirical ageing models for the
particular cells under question.

2. Second, further research on the impact of VIPV on battery calendar life is recommended to determine
methods to reduce battery ageing, which could further improve the business case of VIPV. OEMs could
develop strategies that optimally balance VIPV power used for battery charging, battery temperature
regulation or V2G. Additionally, it is recommended to investigate how VIPV would impact battery
calendar ageing in geographical areas with increased solar irradiance, with different-sized VIPV systems,
and with solar conversion efficiencies ranging up to the theoretical c-Si limit of 29%

3. Third, while VIPV was found to extend battery calendar life, gradual VIPV charging has been shown
to increase the irregularity of the battery load profile, likely causing semi-empirical ageing models
to overestimate cycling ageing. To accurately determine how VIPV impacts battery cycle life, it is
recommended to conduct empirical battery ageing tests under identical operating conditions with
and without VIPV. Furthermore, it is recommended to research whether cycling ageing estimations
could be improved by applying multiple ageing models, models based on irregular load profiles, or
machine learning-based ageing models, which have demonstrated high predictive accuracy as well as
applicability, as described in Section 2.2.

4. Finally, it is recommended to further investigate methods to reduce battery ageing using VIPV and V2G.
As simulations suggest that VIPV and V2G could drastically extend battery life by regulating SoC and
temperature, additional research could further improve the business case of VIPV and V2G, accelerating
their widespread implementation.
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Appendix

Figure 8.1: Similar overview of Li-ion batteries as Figure 2.2, but with an error in regard to the cost of LTO. (a) LCO; (b) LMO; (c) LFP; (d)
NMC; (e) NCA; (f) LTO [78].
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As an alternative, we propose to rely more heavily on a diag-
nostic approach, built on frequent cell characterisations using
available measurements which include information on the state of
health (SoH) of the cell. One such measurement is the cell's open
circuit voltage (OCV). Since the OCV is the difference between the
cathode and the anode voltage, it provides a thermodynamic
fingerprint of the electrodes at any point in time. Changes in this
fingerprint can offer valuable information on path-dependent
degradation of both the individual electrodes and the cell as a
whole. Not every degradation mechanism leaves a unique finger-
print in the cell's OCV but sets of mechanisms can be clustered into
so-called degradation modes, which have a measurable effect on
the OCV of the cell and the electrodes [18e21]. There are three
commonly reported degradation modes:

1 Loss of lithium inventory (LLI): lithium ions are consumed by
parasitic reactions, such as surface film formation (e.g. SEI
growth), decomposition reactions, lithium plating, etc. and are
no longer available for cycling between the positive and nega-
tive electrode, leading to capacity fade. Surface films may also
cause power fade. Lithium ions can also be lost if they are
trapped inside electrically isolated particles of the active
materials.

2 Loss of active material of the NE (LAMNE): active mass of the
NE (or anode) is no longer available for the insertion of lithium
due to particle cracking and loss of electrical contact or blocking
of active sites by resistive surface layers. These processes can
lead to both capacity and power fade.

3 Loss of active material of the PE (LAMPE): active mass of the PE
(or cathode) is no longer available for the insertion of lithium
due to structural disordering, particle cracking or loss of elec-
trical contact. These processes can lead to both capacity and
power fade.

A more comprehensive list of degradation mechanisms, their
causes, effects and links to degradation modes is provided in Fig. 3.
Note that Fig. 3 only lists the effects of degradation mechanisms
andmodes on the cell's thermodynamic (i.e. its OCV), not its kinetic
behaviour. The primary effect of degradation on the cell's kinetics is
an increase in internal resistance or cell impedance, which is easily
measured by the voltage drop in response to a load. It should be
noted that an increase in resistance can also lead to a decrease in
useful cell capacity under load, since the lower voltage cut-off of
the cell is reached sooner in a cell with a higher internal resistance.
Equivalently, the higher voltage cut-off is reached sooner during
charging. Methods to estimate internal cell resistance are widely
reported [22e24] and not the subject of the presented work.

The assumed links between the OCV and degradation modes
have been used for SoH estimation in the literature [19,25,26].
However, to the best of our knowledge, the existence of the pro-
posed degradation modes has never been proven experimentally
and unambiguously but only in simulation. Moreover, methods for
estimating degradation modes and inferring the SoH of Li-ion cells
are typically based on derivatives of OCV or cell capacity, so called
incremental capacity analysis (ICA) [27] or differential voltage
analysis (DVA) [28]. Differentiating measurements amplifies the
noise in the signal and makes it more difficult to use the resulting
data for processing. This is especially problematic in practical ap-
plications where voltage measurements may be noisier than in a
laboratory environment. In response to these open questions and
challenges, two primary objectives were defined for this work:

1. The design and execution of experiments to verify the mani-
festations of LLI, LAMNE and LAMPE on the OCV of Li-ion cells.

2. The creation of a diagnostic algorithm capable of identifying and
quantifying the nature and extent of degradationmodes present

Fig. 3. Cause and effect of degradation mechanisms and associated degradation modes.

C.R. Birkl et al. / Journal of Power Sources 341 (2017) 373e386 375

Figure 8.2: Causes of degradation mechanisms, associated degradation modes and subsequent degradation effects on the battery [5].

Figure 8.3: Graph illustrating the impact of cycle depth on capacity loss for an NMC battery [14].
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Figure 8.4: Lightyear’s OBC efficiency curve.
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Figure 8.5: Consumption breakdown of the Lightyear vehicle driving one WLTC cycle.
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Figure 8.6: Elevation profile for the Brenner pass driving cycle. Data sourced from Lightyear VPM simulations.
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Figure 8.7: Velocity and temperature profiles for a single WLTC cycle with an ambient temperature of 25 °C.
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Figure 8.8: 3D graph showing the relation between the internal resistance, the temperature and the SoC of Lightyear’s battery pack.

Figure 8.9: Overview of the battery cell resistance during discharging (top graph) and charging (bottom graph) for various temperatures
(x-axis) and SoC values (y-axis).
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Figure 8.10: VOC(SoC) relation of Lightyear’s NMC battery. Source: Lightyear VPM, 2022.

Figure 8.11: The blue line shows the VOC(SoC) relation used in LFP-AM to generate LFP-based ageing stress factors [77].
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Figure 8.12: Illustration of rainflow counting method where the loading history is rotated clockwise and an imaginary flow of rain starts at
each successive extreme point [47].
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Figure 8.13: SoC profiles, top to bottom order of the scenarios is: Base; VIPVNL; VIPVESP; VIPVNL & V2G50% SoC
DA ; V2G50% SoC

DA ; V2G20% SoC
DA ;

V2G50% SoC
aFRR , and V2G20% SoC

aFRR .
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