simulation-Based
Optimization of
Renewable Enerqgy
Systems

Exploring simulation optimization in various
energy system domains

Master Thesis
Lucas Klootwilk

simulation-Based
Optimization of

Renewable Energy
Systems

Exploring simulation optimization in various
energy system domains

by

Lucas Klootwik

to obtain the degree of Master of Science in Sustainable Energy Technology
at Delft University of Technology

To be defended publicly on Tuesday the 12" of August 2025

Student number: 5351820
Thesis committee: Milos Cvetkovic Chair
Gautham Ram Chandra Mouli Core member

o]
TUDelft

Acknowledgements

This thesis was completed as a part of the MSc Sustainable Energy Technology program at Delft
University of Technology and marks the end of my journey at this university. Before presenting my
research, there are a few people I would like to acknowledge for their contribution to these past five
years.

First, I would like to thank my thesis supervisor, Milos Cvetkovic. When I was looking for a research
topic related to energy system simulation, he welcomed me warmly. His optimism and knowledge
inspired me to take on this challenge. I extend my thanks to my daily supervisors, Despoina Georgiadi
and Jort Groen, who supported me by reviewing my work and by helping me shape my graduation
project into what it ultimately became. I wish you good luck with the continued development of The
Illuminator and with your research.

Over the years, I have collaborated with numerous colleagues, to whom I would like to express my
gratitude. There is, however, one colleague I would like to thank in particular: Daan Schat. From the
first Master’s course to the last, we took every chance to work together, as we were an excellent team.
Thank you for being a great companion both inside and outside of academia.

My study period was not always easy and demanded a lot from me. The Electrotechnische Vereeniging
offered me a place to recharge and to develop myself outside of education. A warm thank you goes to
everyone involved in the association for providing me with (sometimes deserved) distractions from my
studies.

Speaking of distractions: Erik van Weelderen. He was part of the majority of the memories I made
as a student. From random creative outbursts and unplanned parties to good conversations and study
sessions. Thank you for being such a good friend, for your support, and for all the amazing times we
spent together.

I am thankful for my sister Christel, who patiently read through my thesis and caught many spelling
mistakes I would have otherwise missed. Your ambition and everything you have achieved in this short
time is inspiring. I am glad that we have grown closer over the past years.

My deepest appreciation goes to my parents. I am grateful for all the opportunities they have given me
and for their everlasting support. Thank you for always believing in me, especially during challenging
times.

Lucas Klootwijk
Delft, August 2025

Disclaimer: Assistance from LLMs was used in parts of this document for language and structure refinement purposes.

Abstract

The increasing complexity of renewable energy systems characterized by multiple energy carriers and
local intermittent resources, calls for accurate tools for effective design, operation, and planning. This
thesis investigates simulation-based optimization as a tool to support such decision-making processes.

To build a foundation for the proposed method, a background study was conducted on optimization
theory in general and on simulation-based optimization with a primary focus on energy systems. Addi-
tionally, the functionality of the simulation software used in this thesis, The Illuminator, was explored.

Based on this foundation, a new optimization framework was developed by extending The Illuminator
software and through the integration of three algorithms: Particle Swarm Optimization (PSO), Genetic
Algorithm (GA), and a gradient-based algorithm (L-BFGS-B). Parallelization was implemented to in-
crease the efficiency of the algorithms. To expand the modeling capability of The Illuminator, several
new hydrogen-related component models were developed. The framework was tested across multiple
domains by using three distinct scenarios: (1) a hydrogen production facility (hydrogen domain, con-
tinuous variables, system design domain), (2) a residential energy hub (electric domain, continuous
variables, system operation domain), and (3) an electric vehicle charging station (electric domain, dis-
crete variables, system planning domain).

Among the explored algorithms, Particle Swarm Optimization (PSO) proved to be the most suitable
across the three presented scenarios, achieving the lowest average gaps to the best-found solutions in each
case (0.107%, 0.363%, and 20.145%, respectively). Parallelization of the population-based algorithms
improved the total run time by a factor of almost 5.

The results show that simulation-based optimization is a promising approach for supporting the design,
operation, and planning of complex renewable energy systems.

11

contents

Acknowledgements i

Abstract ii

Nomenclature viii
1 Introduction

2 Background 4

2.1 The Nluminator e 4

2.2 Hydrogen supply chaino 7

2.2.1 Production 7

2.2.2 Conversion e 7

2.2.3 Storage e e 8

2.24 Transporto e e e e 8

2.25 Utilization Lo 8

2.3 Optimization e 8

2.3.1 Optimization theory 8

2.3.2 Algorithms e 10

3 Methodology 13

3.1 Simulation oL 13

3.1.1 Addition of hydrogen models o 13

3.1.2 Existingmodels. 18

3.2 Optimization e 19

3.2.1 Problem type 19

3.2.2 Algorithm choice 19

3.2.3 Imtegration 20

3.2.4 Algorithm evaluation L 22

3.2.5 Particle Swarm Optimization 22

3.2.6 (Parallel) L-BFGS-B 24

3.2.7 Genetic Algorithm 28

3.3 Evaluation scenarios L L 29

3.3.1 Hydrogen production facility scenario 29

3.3.2 Energy hub scenario 31

3.3.3 Electric vehicle (EV) charging station, . 33

4 Results 35

4.1 Hydrogen production facility scenarioo oL 35

4.1.1 PSO . . e e 35

4.1.2 Parallel gradient-based algorithm 36

4.1.3 GA . e e 36

4.1.4 Comparison of the algorithms 0oL 36

4.1.5 Optimization result 38

4.2 Energy hub scenarioo e 39

4.2.1 PSO . . e e 39

4.2.2 Parallel gradient-based algorithmo 40

4.2.3 GA . . e 40

4.2.4 Comparison of the algorithms 0oL 41

4.2.5 Optimization result Lo 43

4.3 Electric vehicle (EV) charging station 44

11

Contents v
4.3.1 PSO . . . e 44

4.3.2 Parallel L-BFGS-B 45

4.3.3 GA . L 45

4.3.4 Comparison of the algorithms oL 45

4.3.5 Optimization result 47

4.3.6 Parallelization result e 48

5 Discussion 49
5.1 Research question. L L 49
5.2 Further remarks L 52

6 Conclusion 54
6.1 Conclusion e 54
6.2 Recommendations L 55
References 56
A Detailed Figures 59
A1 Background Chapter 59

B Supplementary figures and tables 63
B.1 Methodology chapter e 63

B.2 Results chapter e 65

1.1

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

3.10

3.11
3.12

3.13

3.14
3.15

3.16
3.17

3.18

4.1
4.2
4.3

44
4.5
4.6
4.7
4.8
4.9

List of Figures

Global installed renewable energy capacity prospects for three scenarios: Stated Policies
Scenario (STEPS), Announced Pledges Scenario (APS), and Net Zero Emissions by 2050
scenario (NZE) [1].

The connection of models and CSV files for the simulation example.

The battery, renewable source generation, and demand power of the example simulation.

The state of charge of the system battery of the example simulation.
Classification tree of optimization problems [10].
Classification tree of optimization algorithms.
Local and global minimum of an example function.

Black box representation of the hydrogen compressor model.

The dependency of the volumetric density of hydrogen on pressure and temperature [32].

Black box representation of the pipeline model.
Black box representation of the electrolyzer model. L0
Black box representation of the fuel cell model.
Black box representation of the hydrogen storage model.
The operational flow of the Illuminator.
The general operational flow of an optimization algorithm.
The operational flow of simulation optimization, obtained by combining the operation
of the Mlluminator and an optimization framework. Two integration layers are added to
facilitate this. L L
Parallelization of the particles in each generation of the PSO. The rows represent the

particles, the columns represent the generations. At the bottom the time flow is defined.

One iteration of the parallelized L-BFGS-B algorithm.
One iteration of the parallelized L-BFGS-B algorithm using the new method. Each row
represents an independent instance of the algorithm.
The hydrogen production facility scenario consisting of an electrolyzer, a buffer, a com-
pressor, a demand, and a buffer controller. L.
The generated hydrogen production and demand data patterns.
The neighborhood scenario consisting of five households, five solar systems, a central
battery, a grid connection, and a battery controller.
The neighborhood demand and solar power generation over the course of a week.
The schematic representation of the EV charging station scenario implemented in the
Illuminator. The blue arrows indicate physical flows, while the green arrows represent
data flows between models.
Presence of the EVs at the charging station.

Convergence of all three algorithms applied to scenario 1.
Explored search space of the best run of the PSO algorithm for buffer size optimization.
Explored search space of the best run of the L-BFGS-B algorithm for buffer size opti-
mization. e
Explored search space of the best run of the GA for buffer size optimization.
A simulation of scenario 1 in which the buffer size is not optimized (500 kg)..
A simulation of scenario 1 in which the buffer size is optimized (419.91 kg).
Convergence of all three algorithms applied to scenario 2.
Explored search space of the best run of the PSO algorithm for threshold optimization.

Explored search space of the best run of the L-BFGS-B algorithm for threshold optimiza-
1721)

—
= O © OO Ut

—_

14
15
16
17
17
20
20

21

24
26

27

29
30

31
32

33
34

37
37

37
38
38
39
41
42

List of Figures vi
4.10 Explored search space of the best run of the GA for threshold optimization. 42
4.11 A simulation of scenario 2 in which the control thresholds are not optimized (6, =

€0.607/kWh and 6, =€0.333/kWh). 43
4.12 A simulation of scenario 2 in which the control thresholds are optimized (6, =€ 0.117/kWh

and 0; =€0.111/KWh). 44
4.13 Convergence plots of the best runs of the three algorithms applied to scenario 3. . 46
4.14 Search space explored in the best run of the PSO algorithm to find the charging start

time steps for five EVs. The best combination of starting time steps has the lowest cost. 46
4.15 Search space explored in the best run of the parallel L-BFGS-B algorithm to find the

charging start time steps for five EVs. The best combination of starting time steps has

the lowest cost. L 46
4.16 Search space explored in the best run of the GA to find the charging start time steps for

five EVs. The best combination of starting time steps has the lowest cost. 47
4.17 A comparison between a random suboptimal EV charging schedule and the schedule

found by the best run of PSO. 48
B.1 The Z values used for the calculation of the volumetric density of hydrogen[47]. 63
B.2 PSO search space for the upper price. L 0 65
B.3 PSO search space for the lower price. 65
B.4 Parallel L-BFGS-B search space for the upper price. 66
B.5 Parallel L-BFGS-B search space for the lower price. 66
B.6 GA search space for the upper price. Lo 66
B.7 GA search space for the lower price. o 66
B.8 Convergence of all algorithms for each generation. 67

2.1
2.2

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13
Al

B.1
B.2
B.3
B.4
B.5
B.6

List of Tables

Parameters for an example simulation. o0 Lo 5
Classification of (simulation) optimization algorithms used in literature. 12

Simulation optimization results for the PSO algorithm on scenario 1. The shortest run

time, the lowest cost, and the smallest gap are highlighted. 36
Simulation optimization results for the parallel L-BFGS-B algorithm on scenario 1. The
shortest run time, the lowest cost, and the smallest gap are highlighted. 36
Simulation optimization results for the GA algorithm on scenario 1. The shortest run
time, the lowest cost, and the smallest gap are highlighted. 36

Simulation optimization results of all algorithms applied on scenario 1. The shortest
average run time, the best average cost, the absolute best cost, and the smallest average

gap are highlighted. L 38
Simulation optimization results for the PSO algorithm on scenario 2. The shortest run
time, the lowest cost, and the smallest gap are highlighted. 40
Simulation optimization results for the L-BFGS-B algorithm on scenario 2. The shortest
run time, the lowest cost, and the smallest gap are highlighted. 40
Simulation optimization results for the GA algorithm on scenario 2. The shortest run
time, the lowest cost, and the smallest gap are highlighted. 41

Simulation optimization results of all algorithms applied on scenario 2. The shortest
average run time, the best average cost, the absolute best cost, and the smallest average

gap are highlighted. 43
Simulation optimization results of all runs of the PSO algorithm applied to scenario 3.
The shortest run time, the lowest cost, and the smallest gap are highlighted. 45

Simulation optimization results of all runs of the parallel L-BFGS-B algorithm applied
to scenario 3. The shortest run time, the lowest cost, and the smallest gap are highlighted. 45
Simulation optimization results of all runs of the GA applied to scenario 3. The shortest
run time, the lowest cost, and the smallest gap are highlighted. 45
Simulation optimization results of all algorithms applied on scenario 3. The shortest
average run time, the best average cost, the absolute best cost, and the smallest average

gap are highlighted. 47
Parallel and sequential run times for PSO and GA. 48
Optimization algorithms used in simulation optimization literature (detailed). 59
Variables used in the compressor model. 64
Variables used in the pipeline model. 64
Permeation coefficients for hydrogen in HDPE pipes [35]. 64
Variables used in the electrolyzer model. oL 64
Variables used in the fuel cell model. 65
Variables used in the hydrogen storage model. 65

vii

Nomenclature

Abbreviations

Abbreviation Definition

AOI Angle Of Incidence

APS Announced Pledges Scenario

CcO Continuous optimization

CPU Central Processing Unit

CSV Comma Separated Values

DHI Diffuse Horizontal Irradiance

DNI Direct Normal Irradiance

EV Electric Vehicle

GA Genetic Algorithm

GHI Global Horizontal Irradiance

HDPE High-Density Polyethylene

IEA International Energy Agency

L-BFGS-B Limited-memory Broyden—Fletcher-Goldfarb—

Shanno with Box constraints

MH Meta-heuristic

MO Multi-objective

NL Non-linear

NZE Net Zero Emissions

PSO Particle Swarm Optimization

PV Photovoltaic

RES Renewable Energy Sources

SMR Steam Methane Reforming

SO Single-objective

SOC State Of Charge

SSB Single-solution based

STC Standard Test Conditions

STEPS Stated Policies Scenario

TSO Transmission System Operator

TSP Traveling Salesman Problem

YAML YAML Ain’t Markup Language

Constants

Symbol Definition Value Unit
R characteristic gas constant 8.314 J/mol - K
y specific heat ratio 1.41 -
€grav,H, gravimetric energy density of hydrogen 120 MJ/kg
M0 molar mass HyO 18.015 g/mol

Viil

Introduction

The Stated Policies Scenario (STEPS), developed by the International Energy Agency (IEA), anticipates
a notable expansion of the worldwide renewable energy deployment [1]. The globally installed capacity
for renewable energy generation is expected to grow from 4250 GW in 2024 to 9750 GW in 2030. This
significant increase is a consequence of the current international initiatives and announced governmental
policies to reduce emissions. To follow a pathway aligned with net-zero emissions by 2050, an additional
1750 GW increase of capacity is required before 2030 [1]. This growth is illustrated in Figure 1.1, in
which the following three scenarios are compared:

« Stated Policies Scenario (STEPS), which takes into account the latest market, policy, and
economic status of countries;

o Announced Pledges Scenario (APS), which assumes all climate targets set by governments
will be met;

o Net Zero Emissions by 2050 scenario (NZE), which is the scenario in which net zero emission
will be reached by 2050 and the temperature increase will be limited to 1.5 °C.

Installed capacity (GW)
12 500

10 000
7 500
5000

2500

2010 2020 2030

STEPS APS NZE

Figure 1.1: Global installed renewable energy capacity prospects for three scenarios: Stated Policies Scenario (STEPS),
Announced Pledges Scenario (APS), and Net Zero Emissions by 2050 scenario (NZE) [1].

The growing use of renewable energy is beneficial for the reduction of greenhouse gases such as CO5 and
thus aid in the battle against climate change caused by humans. Additionally, renewable energy sources

(RES) are inexhaustible. This makes the implementation of these technologies a long-term solution for
the global increase of energy demand. Furthermore, the transition towards a RES-dominated energy
portfolio grants significant economical advantages [2].

Regardless of the aforementioned advantages of RES, their increasingly large share introduces serious
challenges. One of these challenges is the intermittent energy generation pattern introduced by many
RES, such as solar and wind technologies. An example of a direct cause of this pattern is the fluctuation
of solar irradiance during the day, and its complete absence during nighttime. Energy shortages during
times of high demand and energy surplus during times of low consumption are a consequence of this
intermittency. As a result, it becomes increasingly difficult to keep the grid stable. The instability is
amplified in RES-dominated grids due to a lack of physical inertia, which is the ability to resist sudden
frequency deviations by temporarily storing and releasing kinetic energy through rotating masses. This
is a feature that is inherent to conventional generators, such as gas turbines. In addition, the current
energy infrastructure is often unable to facilitate the decentralization of RES. Unlike conventional energy
generation technologies such as gas turbines and coal plants, RES are frequently distributed at lower
grid levels, which are not originally designed to accommodate significant energy injections.

Aside from energy generation, the energy transition also alters consumption patterns, resulting in
additional challenges for the grid. An example of this is the electrification of transport and heating
technologies such as electric vehicles and heat pumps, which add substantial and unpredictable loads to
the grid. When the grid cannot deliver the power required by the loads, because the demand is higher
than what the grid connection can deliver, grid congestion occurs.

Together, the changes in demand and supply of energy increase the complexity of (renewable) energy
systems, and the demand for alternative energy carriers. One of these alternative energy carriers is
hydrogen, which is prospected to have a share of 24% of the final energy consumption in 2050 [3]. The
reasons for this large share, are the many advantages of this energy carrier. For example the possibility
to store it in large quantities, its transportability, and its environmentally benign nature [4]. Due to
the increasing complexity of energy systems, the growing role of hydrogen, and the diversity of energy
systems, there is a need for methods that aid the design, operation, and planning of robust and efficient
systems.

Optimization plays a key role in addressing the aforementioned challenges. By providing the possibil-
ity to identify optimal parameters, optimization makes the design, operation, and planning of energy
systems simple and accurate. In optimization models however, an entire system is described by large
mathematical equations. This becomes intricate when the system is complex, affecting flexibility.

To optimize a system while still offering flexibility in the design, operation, and planning of the system,
simulation optimization can be used. For the simulation part, the behavior of the individual components
of the energy system are modeled. After this, the individual models are interconnected, and the system
as a whole is simulated. An example of software that can be used for this is The Illuminator toolbox
(v3.0.0-beta.5) [5], an open source software that can simulate energy systems by combining individual
energy system components. Due to the educational purpose of The Illuminator, the software is especially
useful for prototyping purposes, because of its flexibility and modularity. This becomes especially
clear when comparing it to software that has a different scope, such as PyPSA and PowerFactory.
Furthermore, The Illuminator is beginner friendly due to its gentle learning curve, as opposed to other
energy system simulation software such as OSeMOSYS [6].

Simulation optimization requires a framework that, based on a cost function and observations from
simulation, optimizes the energy system parameters. As the modeled system is composed of component
models, the system can be quickly adapted by changing model parameters, or even by changing the
combination of models used in the simulation. This approach offers higher flexibility, and is especially
advantageous over optimization models for complex system optimization [7].

Therefore, the objective of this thesis is to develop a simulation optimization framework around the
Tlluminator toolbox and to investigate its application to energy system design and control.

Based on the motivation provided above, this thesis is driven by the following research question:

1. How can simulation optimization support the development of improved configurations
of renewable energy systems?

This question explores the feasibility and effectiveness of simulation optimization. The aim is to de-
termine whether this approach can support and simplify decision making in energy system design, by
identifying more optimal configurations. Additionally, this question encourages the investigation of the
technical feasibility and effectiveness of simulation optimization as an energy system design tool. To
help answer the main research question, the following sub-questions are addressed:

1.1 What are the main technical prerequisites and challenges for combining optimization

algorithms with simulation models?

1.2 Which optimization algorithms are applicable to simulation optimization in energy

system modeling, and how do they differ from one another?

1.3 How generalizable is a simulation optimization framework to various energy system

problem domains?

1.4 How can multi-carrier energy systems be effectively modeled to enable meaningful

insights?

To answer the research questions in a structured and understandable manner, this thesis is subdivided
in different sections:

Chapter 1 introduces the thesis. This is done by outlining the current situation and prospects of
the energy transition, providing the motivation for this research, establishing the objective, and
defining the research question.

Chapter 2 expands upon the introduction by providing the reader with background knowledge of
the simulator (the Illuminator), hydrogen supply chain, and optimization theory.

Chapter 3 presents the research methodology used in this paper, required to achieve the objectives
and to answer the research question presented in the introduction.

Chapter 4 demonstrates and analyzes the results obtained from the implementation of the method-
ology.

Chapter 5 discusses the results of the previous chapter, and provides the reader with an answer
to the research question.

Chapter 6 concludes the thesis by summarizing the findings and by providing recommendations
for future research.

Background

The following chapter provides the reader with essential context that is required to comprehend the
research presented in this thesis. Firstly the simulation tool used in this research is discussed. This
section is followed by an introduction to the supply chain of hydrogen in energy systems. Finally, a
section is dedicated optimization techniques that can be used for energy systems.

2.1. The Illuminator

The Iluminator (v3.0.0-beta.5) [5] is a simulation toolbox that can be used to model and simulate
the integration of energy systems. The benefits of the Illuminator are its flexibility, scalability, and
accessibility as it is open-source software [6]. To use the software, predefined models of components
found in energy systems can be selected and adapted to ones liking. That is, the parameters and input
data can be customized. Consequently, a configuration of an energy system can be created, after which
the simulator can be instructed to simulate a scenario. The software can be considered as a general
solution to conceptualize energy systems, and is an excellent tool to perform quick analysis and the
prototyping of energy systems.

The configurations of the systems are defined in scenarios. The scenarios are described in YAML files
in order to instruct the simulator what the scenario consists of. YAML is a file format that is used for
the configuration of applications. In the case of the Illuminator, it serves this purpose as well, as it
contains all the information needed to simulate a scenario. More specifically, it consists of the following
parts:

e Scenario specification: In this part the name, the time frame of the simulation, and the time
resolution are specified;

e Models: Here the parameters of the predefined models that are used in the system are specified.
e Connections: This list defines how the models are interconnected;

e Monitor: Here the data streams that the user wants to monitor are listed.

To show what The Illuminator can be used for, a simple simulation is provided below. This simulation
scenario contains a household, a solar panel (PV), a wind turbine, and a battery. All these components
are connected to each other. To simulate this scenario, a CSV file containing solar irradiation data in
The Netherlands is linked to a PV model [8]. This is repeated for a CSV file containing wind speeds
and the wind model. Inside these models, the generation is calculated based on their respective CSV
input data. Another CSV file contains fabricated demand data and is linked to a load model. The
three models, together with a battery model, are connected to a controller model, which monitors the
output of the demand and generation. The controller then decides the flow in and out of the battery.
The connections are displayed in Figure 2.1.

2.1. The lluminator

wind
speeds

!

— Z[c)z ~

| I

demand
pattern

solar
. . .
irradiation
Figure 2.1: The connection of models and CSV files for the simulation example.

Inside of the YAML file, the parameters of the most important models are defined as in Table 2.1.

Table 2.1: Parameters for an example simulation.

Model Parameter Value Unit
PV m__area 4 m?
NOCT 44 °C
m__ef ficiency__stc 0.198 —
G_NOCT 800 W/m?
P_STC 250 W
peak__power 600 W
m__tilt 14 °
m_az 180 °
cap 500 W
Wind p_rated 0.3 kW
u_rated 10.3 m/s
u__cutin 2.8 m/s
u__cutout 25 m/s
cp 0.40 —
diameter 2 m
Battery mazr_p 0.8 kW
min_p —-0.8 kW
Max__energy 10 kWh
charge_ef ficiency 90 %
discharge__ef ficiency 90 %
soc_min 10 %
soc_max 90 %

2.1. The lluminator 6

After defining all the parameters, connections, and outputs that need to be monitored, the simulation
is run. The data from the output CSV file was processed and plotted, in order to analyze the system.
In Figure 2.2 the battery power, the power from renewable energy sources (wind and solar), and the
demand power are shown. It can be observed what the three power patterns look like. Additionally, the
plot illustrates that the controller makes sure that the battery feeds power into the system, whenever
the renewable energy sources do not generate sufficient power to cover the demand.

2.00

—— Battery power
RES generation
—— Demand

0.25 1

O_OOﬁ T T T T u T T ‘A. T T u T /.\ T T T T U T ‘\

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

Figure 2.2: The battery, renewable source generation, and demand power of the example simulation.

In Figure 2.3 it can be seen how the state of charge (SOC) of the battery changes in relation to the
patterns in Figure 2.2. The SOC decreases when battery power is used to meet the demand, while the
SOC increases when the generation of renewable energy sources is larger than the demand.

100

90

80

70 A

SoC [%]

60

50 1

40

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Hour

Figure 2.3: The state of charge of the system battery of the example simulation.

2.2. Hydrogen supply chain 7

2.2. Hydrogen supply chain

Over the past decade, hydrogen has become a relevant energy carrier for the energy transition. The
reason for this is its versatility, as it can operate as an energy carrier, a storage medium, a fuel, or a
feedstock. Furthermore, it has a relatively high gravimetric energy density. It has several advantages
compared to other energy carriers such as fossil fuels. One of the facets in which hydrogen outperforms
fossil fuels, are the emissions that result from the use of the energy carrier. Where fossil fuels emit air
pollutants such as CO3 and NO,, hydrogen only produces water vapor when used in a fuel cell or when
it is combusted.

Another advantage of hydrogen is that it is the most commonly found element in the universe, whereas
the presence of fossil fuels is much more limited. It should be acknowledged that this statement is
somewhat misleading. Although the hydrogen element is abundant and common on planet Earth, it
is not present in its pure form, which is Hy. In fact, to obtain this pure form of hydrogen, it must be
extracted from other molecules, such as water or hydrocarbons.

After this extraction, hydrogen can be recombined with other elements, or be transitioned into another
phase, to make the supply chain more efficient and safer. The conversion step can be followed by a
storage stage, in which the energy carrier is stashed to use it at a later moment, or to keep a stock
to guarantee energy at all times. Another stage is the transport stage, in which the energy carrier is
physically transported from one place to the other. The final stage in the hydrogen supply chain is the
utilization stage, in which hydrogen is consumed. The following sections dive deeper into the stages of
the supply chain, and reveal the components that can be found in hydrogen systems.

2.2.1. Production

As already mentioned, hydrogen does not appear in the universe in its purest form. Instead, it needs
to be extracted from other molecules. There is a large variety of methods to obtain hydrogen from
other molecules. One of these methods is Steam Methane Reforming (SMR), in which steam reacts
with methane to form carbon-oxide and hydrogen. Its reaction formula is provided in Equation 2.1.

CH, + H,0 — CO + 3H,. (2.1)

If the carbon-oxide that remains after hydrogen extraction is captured, the hydrogen is considered blue
hydrogen. If this is not the case it is considered gray hydrogen.

Two other common hydrogen production methods are pyrolysis and electrolysis. In pyrolysis, natural
gas is decomposed by applying a high temperature, with the absence of steam and oxygen. As a result,
hydrogen is extracted together with solid carbon, which can be easily captured. This reaction is shown
in Equation 2.2. Electrolysis on the other hand, uses electricity to extract hydrogen from water. If the
electricity used is coming from renewable sources, the process is considered green. As electricity is used
to produce hydrogen, and hydrogen can be used to produce electricity, this method can be used to store
the electric energy as chemical energy. The device used to produce hydrogen with electrolysis is called
an electrolyzer. The reaction for electrolysis is provided in Equation 2.3.

CH, — C + 2H,. (2.2)

9H,0 — Oy + 2H,. (2.3)

2.2.2. Conversion

After hydrogen is extracted from another medium, it can be converted to have more appealing properties
for storage, usage or transport. This can done by combing the hydrogen molecules with other elements,
for example with nitrogen to form ammonia, which has a higher energy density.

Another method to achieve better energy density is compression. This is done by a hydrogen compressor,
which uses electrical energy to compress the initial hydrogen gas to a higher pressure and as a result
occupy less space.

2.3. Optimization 8

2.2.3. Storage

As mentioned before, hydrogen can be stored before it is used. This can be done in liquid or in gaseous
form. The most important parameter in hydrogen storage is the capacity or size of the storage. The
investment costs are proportional to size, and therefore hydrogen is stored by occupying low volume.
This is done by using a compressor, as mentioned in Section 2.2.2.

2.2.4. Transport

The produced or stored hydrogen can be transported when it must be used in a different location than
the production site. This can be done by using tube trailers or pipelines. An important factor to
consider in these transportation methods is leakage and pressure loss. This is highly dependent on the
material of the storage medium, and can influence the efficiency of the hydrogen supply chain. Steel
for example, has lower permeability than polymer based materials, but is more expensive. For short
distances or at low pressures, the losses incurred from transport are often negligible.

2.2.5. Utilization

After the hydrogen passed one or more of the previous stages, the hydrogen can be finally used. The
hydrogen can be used directly as a fuel, for example in hydrogen fueled vehicles. However, it can also
be converted (back) to electricity by using red-ox reactions. The device responsible for this conversion
is a fuel cell.

2.3. Optimization

To find optimal energy system configurations, optimization theory can be applied. This is particularly
useful when designing an energy system in which parameters are still undefined. Furthermore, it can be
used to evaluate an existing system by comparing it to an optimal configuration. This section starts with
basic optimization theory and a classification of optimization problems. After this, the optimization
algorithms are classified. Finally, a short summary of the algorithms used in simulation-optimization is
provided.

2.3.1. Optimization theory

Optimization is referred to the study of problems that look for the minimal of maximal values for an
objective function on a predetermined domain [9]. Optimization problems are often formulated as in
Equation 2.4:

min f(9), (2.4)
st. g:(0) <0, i=1,...,m, (2.5)
hij(0)=0, j=1,...,p. (2.6)

This equation defines an objective function f(f) that must be either minimized or maximized. The
decision variable 6 is bound to search space ©, which is a set including all possible solutions. The
search space is bounded by constraints, which can be categorized into two types: inequality constraints
(Equation 2.5) and equality constraints (Equation 2.6).

There are various optimization problem types. Each problem type is characterized by properties of the
objective function, the constraints, and the decision variables. The optimization approach for solving a
problem depends on the type of optimization problem, which makes it important to identify the problem
type. Some common types of problems are:

e Linear problems: the objective function and constraints are linear;
e Nonlinear problems: the objective function or any of the constraints are nonlinear;
e Multi-objective problems: multiple objective functions are optimized simultaneously;

e Stochastic problems: some of the parameters are uncertain.

Multiple types can be grouped into broader classes of problem types based on their mathematical
properties and solution approaches. Figure 2.4 illustrates a taxonomy of these problem types.

2.3. Optimization 9

Under
Uncertainty

Robust Stochastic Continuous Discrete
Optimization ~ Programming | Optimization Optimization
Unconstrained Constrained Combinatorial |
Optimization Optimization

Complementarity
Problems

Figure 2.4: Classification tree of optimization problems [10].

One of the distinctions that can be made between optimization problems is whether the problem is
convex or non-convex. This distinction is made based on the objective function f(#). The objective
function is convex when it meets the condition defined in Equation 2.7 derived from [11].

£+ (1= X)) < Af(02) + (1 — \)f(6). (2.7)

In which A is a number between 0 and 1. According to the equation, any function value on a straight
line between two points 6; and #3 on the function f(0) is less than or equal to the weighted average
of f(01) and f(#2). More concisely, if the function is truly convex, it is impossible to draw a straight
line between two points on the function that cuts through the function itself. If on the other hand it is
possible to do this, the function is considered non-convex, and non-convex optimization is required to
find the global optimum.

An optimization problem can be further defined by the properties of the search space. In the case it
consist of a definite set of possible values for the decision variables, the problem is called discrete and
discrete optimization needs to be applied. A simple example of a discrete problem is a problem in
which the decision variables are required to be integers (6 € Z). This is called integer programming.
Another example of discrete optimization is combinatorial programming, in which the optimum is a
combination of a set of discrete variables. In continuous optimization on the other hand, the search
space is a continuous set, meaning that the decision variables can take any real value allowed by the
constraints (f € © C R").

Another distinction between problems that can be made is based on the presence of constraints. When
the decision variables are not subject to any constraints, it is referred to as unconstrained optimization.
Meanwhile, if there are constraints in place, it is referred to constrained optimization. The latter is
generally more computationally expensive than the former, as constraints reduce the search space in
such a way that the optimal value is harder to find [12].

As previously mentioned, simulators provide a way to model and evaluate complex energy system under
various conditions. However, a simulator does not inherently provide the most optimal configuration
of an energy system. Rather, it computes outputs based on inputs provided by the user. Therefore,
by combining a simulator with optimization techniques, an optimal simulation configuration can be
generated. In literature, the combination of the two fields is referred to as simulation optimization. The

2.3. Optimization 10

simulator can introduce stochasticity to the simulation on its own, the user can use random variables to
simulate a scenario, or the simulation can be deterministic (absence of stochasticity). Either way, the
expected value of the output of the simulation is the component that is being optimized in simulation
optimization. Provided that the output of the simulator is defined as f(x), Equation 2.4 can be rewritten
as shown in Equation 2.8.

min FE[f(0,w)]. 2.8

min ELf(0,w) (28)
In this equation w represents the possible randomness or noise included by the simulator, and E[]
represents the expected value of the simulation output.

When an analytical form of the objective function f(#) and possibly also the constraints associated
with the decision variable # are unknown or too complex to formulate, the optimization is referred to
as black-box optimization. In this type of optimization, only the inputs and outputs of the objective
function are used, as its internal working is unknown or considered irrelevant. This is for example
the case for physical experimentation, such as the trial-and-error processes used in the synthesis of
molecules to find better material properties [13]. Another example of black-box optimization is found
when the objective function and constraints are dependent on computer simulation [14]. In the case of
black-box optimization, the derivative cannot be analytically found. Therefor black-box optimization
is also referred to as derivative free optimization. The derivative can however be approximated by
applying methods such as the finite differences method, although this can result in large evaluation
times.

2.3.2. Algorithms

As mentioned in Section 2.3.1, the approach used to solve an optimization problem is highly dependent
on the nature of the problem. Additionally, the desired outcome of the optimization influences the
choice of the solving method. Because of the numerous problem types in optimization theory, various
problem solving algorithms have been developed over time. Each of these algorithms has strengths and
weaknesses, and corresponds to a subset of the problem types. Figure 2.5 illustrates a systematization
to the classification optimization algorithms. Note that each algorithm can be a member of multiple

unrelated classes.

strategy solution accuracy
global search A A —> approximate
~ ~
search space type search strategy
A
population

single-solution based population based

Figure 2.5: Classification tree of optimization algorithms.

The first distinction is made between discrete and continuous techniques. In discrete techniques, the
search space is limited by a finite set or by a set that is countably infinite. Typical sets are integers,
permutations, or graphs [15]. Continuous techniques, however, are not limited by this requirement, and
the search space is continuous, such as a function. An example of a discrete (combinatorial) problem that
can be solved with discrete techniques, is the Traveling Salesman problem (TSP) [16]. In this problem
a salesman is given the task to visit cities from a set of cities. The constraints are the following:

2.3. Optimization 1

e The salesman must visit all cities once;

e the salesman must end in the city in which he started his journey

In this problem, the search space is a finite set, namely the set of cities. More precisely, the solution is
a permutation of this set.

Optimization algorithms are further defined based on solution accuracy. Algorithms can be either exact
or approximate algorithms. Approximate algorithms look for a satisfactory (close to optimal) solution,
whereas exact algorithms do not stop until the most optimal solution is found. Ideally the best solution
is found, but for large and complex problems this can be time-consuming. Approximate algorithms
are beneficial for these types of problems, but have the disadvantage that they are more sensitive to
parameter settings, making the configuration of the algorithm more challenging [17].

Within approximate algorithms there is a differentiation between heuristic and meta-heuristic algo-
rithms. A heuristic is a rule or strategy used to find a satisfactory solution to a specific problem. An
example of a heuristic based optimization algorithm is greedy search, of which the rule is to take the
best local optimal solution for each step from the point of view of the current state in the hope of
finding the global optimum [18]. Meta-heuristic algorithms are algorithms that guide heuristics in the
exploration and exploitation of the search space in an efficient way. Because of this characteristic, the
algorithms are often more general and can be applied to different types of problems [19]. An example
of a meta-heuristic algorithm is a genetic algorithm, in which the exploration of the search space is
done in an efficient way by recombining solution properties found in different points of the search space.
The algorithm applies a set of rules in an efficient manner, namely by recombination based on a fitness
function and by introducing randomness (mutation).

Next to these categories, optimization algorithms can be classified based on their search scope. When
the scope is local, the algorithm searches for an optimum within a local domain of the search space, and
converges to the nearest local minimum or maximum. Often, this is not the best solution in the entire
search space in non-convex problems. Global methods, on the other hand, aim to find the best solution
in the entire search space, namely the global optimum. Figure 2.6 illustrates the difference between a
local and a global minimum.

3.5

—— f{x)=0.5x% - 3.5x> + 8.5x? — 8.5x + 3

f(x)

-0.5 Global
-1.0
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X

Figure 2.6: Local and global minimum of an example function.

Local search algorithms typically require fewer iterations and are generally less computationally de-
manding to find the optimum compared to global search algorithms. In case a local algorithm is used
to solve a non-convex problem, a risk is introduced. Since in non-convex problems a local optimum
is not necessarily a global optimum, it is possible for the local algorithm to get 'trapped’ in this local
solution, and never finding the global optimum. Because of this, the starting points needed to initiate

2.3. Optimization 12

the algorithm, need to be carefully chosen [20]. Global optimization algorithms have a reduced risk to
converge to local optima. The reason for this, is that this type of algorithm is designed to escape from
the local optima and to continue the search for a global optimum. Moreover the solution found by a
good algorithm in this category can find the optimal solution irrespective of the starting points [21].

Besides the search scope, optimization algorithms can be categorized depending on their search strategy.
Namely, algorithms can be defined as deterministic or stochastic. Deterministic algorithms follow
rigorous mathematical approaches. They are therefore often referred to as mathematical programming.
The algorithms rely on linear algebra as they frequently make use of gradients [22]. In stochastic
algorithms on the other hand, the search towards an optimal solution involves a random process. This
includes the use of a random initialization or the use of randomness in search moves. An example of
a stochastic algorithm is the previously mentioned genetic algorithm, in which the first population is
randomly chosen and mutation occurs with a certain probability.

Another distinction is made between optimization algorithms that are single-solution based and popula-
tion based. In short, population based algorithms use multiple solution candidates to find the optimum
in an efficient manner, while single-solution based algorithms iteratively try to improve single solution
to achieve the optimum. Population based algorithms provide a better exploration of the search space,
are less sensitive to convergence into local optima, and have a high potential in the domain of parallel
computation compared to single-solution based algorithms. The downside however, is that the compu-
tations required are often more extensive, making the iterations slower. Furthermore, more memory is
required compared to single-solution based algorithms.

A list of simulation optimization algorithms that are used in literature, including algorithms that are
used for simulation optimizations, is presented in Table 2.2. A more complete version of this table
containing a summary of each algorithm can be found in Appendix A.1 (Table A.1).

Table 2.2: Classification of (simulation) optimization algorithms used in literature.

Multi- Meta- Population
Algorithm objective . .. Deterministic p Continuous Global Ref.
. heuristic based
compatible
Simulated [23]%, [24],
Annealing X X X X [25]
Genetic 1
Algorithm X X X X X [26]
Tabu 1
Search X X X [27]
Particle X X X X 28!
Swarm
Ant 1
Colony X X X [29]
Bee X X X X X 30]!
colony

I Reference uses the algorithm for simulation optimization.

Methodology

3.1. Simulation

The simulator software that was used in this thesis is The Illuminator (v3.0.0-beta.5) [5]. This toolbox
contains numerous models, but at the time of writing missed some hydrogen components. This section
describes the hydrogen models that were added in this thesis project, and briefly discusses the models
required to develop the scenarios presented later in this chapter.

3.1.1. Addition of hydrogen models
To broaden the model library of The Illuminator, the following hydrogen-related models were added:

e Hydrogen compressor;
e pipeline;

o electrolyzer;

o fuel cell;

e hydrogen storage.

To create these models, it was important to define the level of abstraction. In fact, energy systems can
be modeled with varying degrees of complexity. For example, modeling the operation of an electrolyzer
or fuel cell can be done as specific as on a molecular level, taking into account the various technologies
and materials. By looking at the existing models, which will be briefly described in Section 3.1.2, it
was noted that the models are defined as black box models. This means that the models focus is on
the inputs and outputs of components, rather than their internal workings. For simulations at system
level this was considered to be a satisfactory level of detail. The specific details of a component are
less relevant for the operation of an entire system. Additionally, if the models contain calculation that
increase computation costs while not adding significant value to the simulation of the system, simulation
optimization becomes less appealing. Therefore, the models added in this thesis are at black-box level,
and several assumptions were made to facilitate this.

Hydrogen compressor

The first model that was added to the Illuminator library, was a hydrogen compressor model. The
purpose of a compressor is to increase the energy density of hydrogen. In other words, to store more
energy in a smaller volume. This is useful to, for example, reduce the long term hydrogen storage size or
to allow for a smaller fuel tank in hydrogen powered vehicles. The most important factors to take into
account when modeling a hydrogen compressor are the hydrogen volumetric output and its power usage.
Based on the parameters provided by the user of the Illuminator, such as the input pressure, desired
output pressure, and compressor efficiency, these characteristics are calculated at each simulation step.
Table B.1 contains all variables that were used to model the compressor model, along with their units.
A black box representation of the compressor model is given in Figure 3.1.

13

3.1. Simulation 14

Electricity | P [W]
m [kg] Conversion m [kg]
Hydrogen Compressor Hydrogen
3. 3,
Vim Volume change vim]

Figure 3.1: Black box representation of the hydrogen compressor model.

To find the power usage of the hydrogen compressor, the work required to compress the hydrogen from
the input pressure ps to the output pressure p, is needed. For simplicity, the compression in this model
was assumed to be an isentropic process, meaning that no heat is transferred to the surroundings of
the compressor (adiabatic), and that no energy is lost due to friction or other loss inducing forces
(reversible). Under this assumption, the work required to compress a gas from one pressure to another

is given by Equation 3.1, which was derived from the European Forum for Reciprocating Compressors
[31].

~—1

gl p2\ "
, =T r.m (2 -1 mol]. 1
Wisentropic ~y 1 R 1 <<p1>) [J/ 0] (3)

To account for losses in the compressor model, an efficiency factor was implemented by using Equation
3.2, resulting in the real electrical work required by the compressor. This was necessary as isentropic
compression is not possible in real life.

Wroal = Wisentropic [J/mol] (32)
Tlcompressor

Considering m;,, is the input flow of hydrogen in kg/s, Equation 3.3 was formulated to provide the
power consumed by the compressor in each timestep.

P = Wyeas * % [J/mol]. (3.3)

After the power required to compress hydrogen is calculated, the model calculates the change in volu-
metric output flow. For this, the volumetric energy density is needed, which is dependent on pressure
and temperature. Figure 3.2 describes this behavior.

80
70
60
50
40

30

Density (kg/m?"3)

20

10 —-_—373K

0 500 1000 1500 2000
Pressure (bar)

Figure 3.2: The dependency of the volumetric density of hydrogen on pressure and temperature [32].

3.1. Simulation 15

Often, the volumetric density of gases is approximated by the ideal gas law described in Equation 3.4.

p 3

p=o lig/nl) (3.4)
As the name suggests, this equation assumes ideality, neglecting physical properties of the molecules
of gas at different temperatures and pressures. The difference in the behavior of a real gas compared
to an ideal gas becomes apparent at higher pressures. To account for this, the model calculates the
volumetric density calculation with the use of Equation 3.5, which includes a Z-factor. This factor,
which has been experimentally derived by comparing the ideal gas with hydrogen gas, is presented in
the table in Figure B.1.

pH, Mp, 3
=== Ik . 3.5
p=""p g lke/m’] (3.5)
Knowing the volumetric density, the volumetric output flow V in m? /s is calculated by using Equation
3.6.

_m m3s
V=" (3.6)

Pipeline

The next model that was added to the Illuminator was the pipeline model. This model can be used
for systems in which hydrogen needs to be transported over a long distance with the use of pipes.
Specifically, this model has been created to simulate hydrogen pressure and mass loss in pipes. The
variables used in the pipeline model are listed in Table B.2. Figure 3.3 shows a black-box representation
of the pipeline model.

m lka] Transport m - 3m [kg]
Hydrogen Pipeline Hydrogen
v [ma] ’ Volume change V-3V [mg]
Mass change

Figure 3.3: Black box representation of the pipeline model.

For the calculation of the pressure loss over a pipeline, the model uses the Darcy-Weisbach equation
(Equation 3.7).

A Lepvt p 3.7
p=f L [pa) (37)
In this equation f is the friction factor, which is dependent on characteristics of the hydrogen and
the pipe, and the type of flow. The type of flow is determined by Reynolds number Re. For values
lower than 2300 the flow is considered laminar, while if it is larger than 4000 it is considered turbulent.
Between these thresholds the flow is transitional, which is a combination of both laminar and turbulent
flow. For simplicity, this type of flow has been neglected in the model, and turbulent flow was adopted
for Reynolds numbers higher than 2300. The equation used for the calculation of the friction factor
is provided in Equation 3.8 [33]. The first part of the equation is used for laminar flow. For the
turbulent flow the Colebrook—White equation is normally used, but as this is an implicit function it can
be approximated with the Haaland equation, which is the second part of Equation 3.8. This equation
shows a maximum error of 3% compared to the Colebrook—White depending on the roughness and
Reynolds number, which is considered accurate for this case [34].

Re

(—1.8logy[(555) 1 + &2])2 if Re > 4000.

f= (3.8)

{64 if Re < 2300,

3.1. Simulation 16

Reynolds number is a dimensionless quantity used in fluid dynamics used to predict patterns in fluid
flow. It is given by Equation 3.9. The density in this equation can be found by using the previously
defined Equation 3.5. From this it can be concluded that the flow regime the hydrogen finds itself in is
mainly dependent on the variables of pipeline diameter and flow velocity.

_p-v-D
T

Re (3.9)

In addition to the pressure loss, hydrogen can leak through the pipe wall because of permeation. The
amount of leakage is negligible when materials with low permeability are used, such as a steel. However,
as polymer pipes are sometimes used for natural gas transport, and reusing gas pipes is considered for
hydrogen transport, permeation was accounted for in the model. Equation 3.10 describes the amount
of hydrogen lost per second. The equation was derived from Fick’s first law of diffusion.

A/10_4) (pzn - pout)
/102

Q= P, poiy - [cm? /s]. (3.10)

In this equation Pp,_pory is the permeability coeflicient of hydrogen for a specific material. As natural
gas pipes are typically made from High-Density Polyethylene (HDPE), this material was considered in
this model. The coefficient is dependent on the pipe material, the type of gas, and the pressure of the
gas. The values of these coefficients for hydrogen in HDPE pipes at different pressures can be found
in Table B.3. The values were taken from a paper that determines them experimentally and through
estimation [35]. The values obtained by the latter method were used in this model. Note that the paper
provides the coefficients in the unit cm3(STP)-cm/(cm?-s-cmHg). In Table B.3 this has been converted
to be in cm?®(STP)-cm/(cm?-s-Pa) for simplicity (lemHgr 133.3Pa).

Electrolyzer

The third model that was created was an electrolyzer model. In hydrogen systems, an electrolyzer is
a machine that uses electrical energy to extract hydrogen from water. In fact, electrolyzers convert
electrical energy to hydrogen. The two key features that needed to be modeled are the hydrogen output
flow and the required water input flow. The variables used by the model are listed in Table B.4. Figure
3.4 shows a black-box representation of the model.

Electricity Production
—_—
e Hydrogen
Electrolyzer ——>»
Water m [kg]
—_—

m [kg]

Figure 3.4: Black box representation of the electrolyzer model.

The model was defined by an input power, water consumption, and the hydrogen output flow. In
Equation 3.11 the hydrogen output flow is provided based on the power input.

Pin *Tez

Mgy, /1 k . A1
o My, /1000 [/ (3.11)

mHg,out =

Electrolyzers are often unable to increase or decrease production over a short period of time, and
therefore the power provided to the electrolyzer cannot change abruptly. Additionally the power flow
is limited by a maximum input power rating. These constraints were modeled by using Equation 3.13
and Equation 3.12 respectively.

0 < Pin < Ijin,rated- (312)

3.1. Simulation 17

|Ijin,t - Pin,t—ll S Pin,ramp- (313)

The amount of water necessary for the production of hydrogen is related to the input power and the
efficiency. The general chemical reaction to produce hydrogen from water is provided in Equation 3.14,
from which it has been derived that the molar ratio of water used to hydrogen produced is one to one.
Consequently the model calculates the required water flow by using Equation 3.15.

2H,0 — 2H, + O, (3.14)
. Pin - 572
Muwater = m [kg/s]. (3.15)
Fuel cell
Utilization
— > Fuel cell — >

Figure 3.5: Black box representation of the fuel cell model.

The chemical energy that hydrogen holds can be transformed into electrical energy. The electrochemical
reactions to achieve this conversion take place in a fuel cell. The electrical power that is produced by
a fuel cell can be calculated with Equation 3.16.

mH2 '77fc . thH2 q

Pfc,t = MH

uad[W]. (3.16)

2

Similarly to the electrolyzer model, the output of this model was limited by the physical properties of
the fuel cell, setting maximum output (Equation 3.17) and ramp up values (3.18).

0 S ’I7"LH2 S mHgm@a;E- (317)

Pfc,t - min(Pfc,tfl + APfc,mam7 Pdemand)' (318)

Hydrogen storage

The final model added to the Iluminator library was a hydrogen storage model. The model keeps
track of the hydrogen that flows in- and out of the storage while taking possible losses into account.
Furthermore, the model considers the state of charge, and based on this determines its in and output
flows. The variables used in this model are listed in Table B.6.

Storage
Hydrogen ; Hyd rogen Hydrogen)
m [kg] sto rage m [kg]

Figure 3.6: Black box representation of the hydrogen storage model.

3.1. Simulation 18

The hydrogen storage model was modeled to have a negative net flow when the output flow is larger
than the input flow and vice versa. Equation 3.19 describes this behavior.

QHQ*StO,tfl + QHzfstofin,t ' anfsto,charge for QHQ*SiO*’L’TL,t > 07

QHQ*.stofin t f
_stot— ———a SO or _sto—int < 0.
QHQ sto,t—1 + NHy—sto,discharge QHQ sto—in,t

(3.19)

QHg—sto,t =

The flow of the hydrogen storage is bounded by the minimal and maximal in- and output flow. Fur-
thermore, the state of charge of the storage is limited by a minimum and a maximum. These thresholds
define the operational range of the storage model.

3.1.2. Existing models
In this section the existing models that were used in the scenarios of Section 3.3.1, 3.3.2, and 3.3.3 are
briefly described.

Battery

The battery model input, defined as flow2b, receives a value that is positive when the battery must
be charged and negative when the battery must be discharged. Based on this input, the model keeps
track of the state of charge (SOC) internally. This is done by taking into account the following model
parameters:

o max_p: the rated input power [kW];

o min_p: the rated output power [kW];

e max__energy: the total battery capacity [kWh];

o charge_ef ficiency: the efficiency with which the battery is charged [%];

o discharge_ef ficiency: the efficiency with which the battery is discharged [%];
o soc_min: the lowest achievable state of charge [%];

e soc_max: the highest achievable state of charge [%].

The most relevant variable in this model is the state of charge, which can be used to make decisions in
the system.

Photovoltaic (PV)

The photovoltaic (PV) model requires irradiation data as input. This data should consist of the Global
Horizontal Irradiance (GHI), Diffuse Horizontal Irradiation (DHI), Direct Normal Irradiation (DNI),
ambient temperature, solar height, form factor, and the solar azimuth at each timestep. Together with
solar panel specific data, such as its efficiency under standard test conditions and its power rating, the
power generation per square meter can be determined. Based on the area specified in the parameters,
the output provides the generated power per timestep.

Electrical demand

The electrical demand model is driven by a demand file. In this file, the demand, for example of a
household, is given for each timestep. In the demand model this demand can be scaled, if necessary, by
a tuning parameter. The output represents the total demand per timestep.

Wind turbine

The input of the wind turbine model expects wind speed data for each timestep of the simulation. The
parameters that need to be specified for this model are the rated power, the rated wind speed, the
cut-in and cut-out speed, the power coefficient, and the diameter of the rotors. Together with the input,
the parameters are used to calculate the generated power at each timestep, which is provided at the
output of the model.

Electric vehicle (EV)

The electric vehicle (EV) model provides the power required at each timestep for charging an electric
vehicle. The power required during a charging cycle, the battery capacity, the timestep in which the
EV should start charging, and the state of charge at arrival are defined in the parameters. The input
requires presence data, indicating whether the EV is present at a charging station. Based on these
parameters, the state of charge of the EV is monitored for each timestep.

3.2. Optimization 19

3.2. Optimization
3.2.1. Problem type

Selecting an optimization algorithm compatible with The Illuminator toolbox required defining the type
of optimization problems that potentially need to be solved. Therefore, characteristics of the possible
search spaces and objective functions had to be analyzed.

The last part of Section 2.3.1 mentioned that optimization problems in which the analytical objective
function is unknown or complex are called black-box optimization problems. In the case of this thesis,
the objective function is dependent on simulation outputs. Since the computations in the simulation
are complex and unknown to the optimizer, the optimization problems considered in this thesis were
defined as black-box optimization problems. Nevertheless, it was possible to make assumptions and
educated guesses regarding the properties of the search space. By applying these assumptions, the
algorithm choice, which is described in the next section, became simpler.

First of all, the search space of potential problems was assumed to be continuous in most cases. Most
problems faced in energy systems are regarding the optimization of one or more variables that can
attain any value within a range of values and not a value from a discrete set. An exception of this is
the problems regarding system planning.

Additionally, the assumption was made that the simulations were deterministic, meaning that each
simulation yields the same results when the same parameters are used. In other words, stochasticity
does not play a role in the simulations.

Furthermore, by looking at the nature of the models used in the simulator, it was assumed that the
search space contains non-linearity. An example of this property is the influence of the sun’s angle
of incidence (AOI) on PV generation. Namely, the power output of PV systems is dependent on
trigonometric relationships with the AOI, introducing non-linear behavior.

Another property that has been considered is convexity. Most models are expected to be individually
convex, such as the battery model. However, in the case that the system requires a form of control,
the decisions made by the system controller can introduce non-convex behavior in the search space.
Examples of control methods that can introduce non-convexity are switching behaviors (e.g., charging or
discharging of a battery), binary logic (e.g., toggling a generator), or piecewise functions (e.g., when the
production of a generator is dependent on thresholds). In other words, control can cause discontinuities
in the search space, making it non-convex. It must however be noted that it is possible for the search
space to be piecewise-convex, meaning that it is an accumulation of convex functions.

Finally, an assumption was made regarding the dimensionality of the problems that need to be solved
with simulation optimization. Dimensionality refers to the number of decision variables pertaining to
the optimization problem. Due to large dimensionalities, search spaces increase, negatively influencing
the computation cost. In this thesis, the assumption was made that only a small number of variables
need to be optimized. To summarize, the search space is assumed to have the following properties:

e continuous;
e non-linear;
e NON-convex Or piecewise-convex;

o small dimensionality.

3.2.2. Algorithm choice

Aside from the properties mentioned in the previous section, it was important to take evaluation time
into consideration for the choice of a suitable algorithm. The evaluation time, i.e. the time it takes
to do one simulation, is in the order of minutes. Large number of evaluations are therefore practically
infeasible[36]. It must be noted that this number is problem specific and that it is usually found
empirically.

Nevertheless, literature on optimization algorithms reveals a trend. In comparative studies that use
complex problems as benchmark, the most efficient algorithms in terms of accuracy and the number of
evaluations are Particle Swarm optimization (PSO), Genetic algorithm (GA), and Simulated Annealing

3.2. Optimization 20

(SA). Among these three, the general consensus is that particle swarm optimization outperforms the
other two when the same problem is evaluated [37] [38] [39]. In the specific field of simulation optimiza-
tion, comparative studies point out that PSO and GA are the most accurate algorithms for the shortest
computation time [40].

For simple convex problems of which the analytical objective function is known, gradient-based algo-
rithms are more efficient. However, as it is unknown whether this is the case in black-box optimization,
simulation optimization literature does usually not consider this type. Estimation of the gradient re-
quires additional evaluations, which could make it inefficient. Additionally, as most gradient-based
algorithms are local algorithms, they are not applicable to non-convex search spaces. However, as ex-
plained in Section 3.2.1, the search space for black-box optimization problems can be piecewise-convex.
For this reason, gradient-based algorithms are considered in this thesis.

Section 3.2.1 also describes that the search space is assumed to be most often continuous. The discrete
algorithms from Table 2.2 are therefore not considered. Adaptations to discrete algorithms that work
with continuous search spaces can be made, but these are generally less efficient than algorithms that
are specifically made for this purpose.

Based on this information, the following three algorithms were evaluated in this thesis:

e Particle Swarm Optimization;
o Gradient-based algorithm (L-BFGS-B);

¢ Genetic algorithm.

3.2.3. Integration

Before diving deeper into the theory of the selected optimization algorithms, a blueprint for the im-
plementation of simulation optimization was created. To merge simulation with optimization, an opti-
mization layer has been built around The Illuminator core code. As explained in Section 2.1, a scenario
is defined using a configuration file in YAML format. The Illuminator takes this configuration file and
possible data input files, and executes the simulation. The scenario defines the system to be simulated
and its parameters. The output of each simulation is a comma separated values (CSV) file, that contains
the values of predefined simulation parameters at each timestep. Figure 3.7 illustrates the workflow of
the Illuminator.

Optimization algorithms begin by initializing decision variables. Subsequently, the objective function is
evaluated with these variables. Based on this evaluation, the variable values are either changed according
to an algorithm-specific strategy or accepted as optimal values. Whether or not the algorithm continues
and changes the decision variables depends on the stopping criterion. This criterion is either a maximum
number of iterations, or converging characteristics. If the stopping criterion is not met, the algorithm
updates the values and enters the evaluation loop. The general flow of optimization algorithms is
illustrated in Figure 3.8.

Decision variable

initialization
Scenario definition
(YAML)
Objective function
A 2 evaluation
llluminator simulation Input data l
Strategical generation No Stopping

Yes
4 of decision variables criterion met? CetaRstition
Output data CSV

Figure 3.8: The general operational flow of an
Figure 3.7: The operational flow of the Illuminator. optimization algorithm.

3.2. Optimization 21

The concept of simulation optimization is to combine the two above-mentioned flows. To do this, two
integration steps were added.

The first integration step consisted of the integration of the insertion layer. This layer is necessary,
as the decision variables obtained from the optimization flow cannot be directly used in a simulation.
The layer makes a copy of the original scenario file and replaces the desired parameters with the values
obtained from the optimization loop.

As optimization algorithms are unable to process raw CSV output files, an evaluation layer was added
as the second integration step. This layer extracts the relevant values from the output file and uses
these to evaluate a cost function. The cost function, in combination with the simulation part of the
flow, essentially replaced the objective function evaluation of the original optimization flow.

The resulting flow of the simulation optimization framework is illustrated in Figure 3.9.

Initial scenario Decision variable . '
definition (YAML) initialization I:I Simulation
| Optimization
v v |
Replace scenario I:I Integration

llluminator
simulation

Input data

\ 4

Output data CSV

Evaluation of output

Ccsv

Strategical generation No Stopping Yes))
of decision variables €< qjiterionmet? > Optimal solution

Figure 3.9: The operational flow of simulation optimization, obtained by combining the operation of the Illuminator
and an optimization framework. Two integration layers are added to facilitate this.

3.2. Optimization 22

3.2.4. Algorithm evaluation

The algorithms that were selected in Section 3.2.2 were compared by applying them to three optimization
problems. The problems are presented later on in this thesis (section 3.3.1, 3.3.2, and 3.3.3). The
algorithms were compared based on the set of criteria listed below, which are based on three performance
categories, namely efficiency, reliability, and quality of solution [41]:

1. Solution accuracy: This criterion indicates how close the solution found by an algorithm is to
the global optimum. Since the true global optima of the problems were unknown, the accuracy
was measured by comparing the cost found by the algorithm with the best found cost among
all algorithms. This was done by calculating the gap, which is defined by Equation 3.20 and is
measured in percentages. C; is the cost found by algorithm i and C* is the best-found cost among
all algorithms.

|

gap = |c|g|c -100 (%] (3.20)

2. Convergence speed: This is the speed with which the algorithm finds a stable optimal solution.
In this thesis, this is defined by the number of iterations required until the optimization finds a
stable solution. This criterion is used to get an indication of the algorithm efficiency. This is
important since, as explained in Section 3.2.2, the number of iterations should be minimized to
make simulation optimization a feasible technique.

3. Flexibility: This metric indicates the flexibility with which the algorithm can be applied to
different types of problems. In other words, how well the optimizer works on different problem
types. This is not a quantitative metric, but rather a general indicator.

3.2.5. Particle Swarm Optimization
After the blueprint for simulation optimization was created, the optimization algorithms were imple-
mented. The first algorithm was Particle Swarm Optimization (PSO).

To begin the algorithm, a population of particles that are randomly distributed across the search space
is initialized. Each particle represents a position in the problem’s search space, corresponding to a set
of parameter values. In each iteration, a simulation is executed for each particle by using its current
parameter set. After this, the resulting output of each simulation is evaluated. Based on the cost or
quality of the solution, each particles is moved to a new location that is evaluated in the next iteration.
The movement of each particle is dependent on the particle’s velocity, which is determined by the
particle’s previous velocity (based on an inertia factor), the particle’s personal best solution, and the
population’s global best solution. The latter two factors include stochasticity, and their influence on
the particle’s new velocity can be tuned with weight factors. The velocity determines the next position
of the particle, i.e., the next evaluated solution. The personal best solution of each particle and the
global best solution of the population are updated in each iteration. After the stopping criterion is met,
the global best solution at that moment is nominated as the optimal solution for the problem. The
pseudo-code for PSO is provided in Algorithm 1.

3.2. Optimization 23

Algorithm 1 PSO pseudo-code

1: procedure PSO(f, n,, d, w, c1, ca, mazxiter)

2 Initialize position z; and velocity v; for each particle ¢ € {1,...,n,} in d dimensions
3 Set personal best pbest; < x; for each particle

4 Evaluate f(pbest;) and find global best gbest among all pbest;

5: Set iteration counter k < 0

6 while k < maxIter AND (not converged) do

7 for each particle ¢ do

8 Generate random numbers 71, ro ~ U(0, 1)

9 Update velocity:

v —w-v; +cp -1 - (pbest; — ;) + co - o - (gbest — ;)

10: Update position: x; < x; + v;
11: Evaluate f(x;)

12: if f(x;) < f(pbest;) then

13: pbest; < x;

14: Update gbest if any pbest; is better
15: k+—k+1

16: return gbest

f: objective function

np: population size

d: dimensions (number of decision variables)
w: inertia weight

c1, c2: weight factors

mazlter: maximum number of iterations
x;: position of particle ¢

71, r2: random numbers

v;: velocity of article ¢

pPest: personal best of particle i

g°t: global best

The implementation of the PSO algorithm in Python was done by using the pymoo [42] optimization
package (version 0.6.1.3). FEach particle position requires an evaluation of the cost function, and
therefore a simulation run. Hence, for population size n, and the number of generations ny (either
generations required or maximum number of iterations maxlter), the total number of simulations
required is defined by Equation 3.21.

Ns =Ny - Ng. (3.21)

By default pymoo 0.6.1.3 executes the evaluation of each particle sequentially, meaning that the total
simulation ts_;0q time is equal to the total amount of simulations required for one problem ng times
the run time for one simulation t,, which is defined in Equation 3.22.

ts—total = Mg " s [S] (322)

To reduce the total computation time, parallelization was implemented. Since in PSO the particles
within a generation are independent of each other, their simulations can be computed in parallel. That
is, line 11 until line 18 of Algorithm 1 can be executed in parallel. After all the parallel simulations
within a generation are executed, the solutions are evaluated and a new generation is created (the
code is resumed from line 14). Parallelization was implemented by using the standard Python 3.11
multiprocessing package. After this implementation, which is illustrated in Figure 3.10, the theoretical
new total simulation time is equal to the number of generations n, times the singular simulation time
ts(Equation 3.23).

ts—total = Ng - ts [S] (323)

3.2. Optimization 24

Simulation Simulation Simulation
(1,1)) (1,2) ¢ 0 (1,ng)
Simulation Simulation Simulation
(2,1) (2,2) e (2,ng)
J - / - /
[] ° []
[] [] []
[] d []
Simulation Simulation . o o Simulation
(npi1) (np’z) (npang)
ts > s > T f
ts-total 4

Figure 3.10: Parallelization of the particles in each generation of the PSO. The rows represent the particles, the
columns represent the generations. At the bottom the time flow is defined.

In practice, the number of parallel simulations is limited by the number of available CPU cores of
the system used. In fact, by using process pools, one simulation is assigned to each core of the CPU,
making the maximum number of parallel simulations equal to the number of cores in the system(ncores)-
Furthermore, as in sequential operation the workload of a single simulation can be divided among
multiple cores, a single simulation run is slower in parallel operation. To account for this, a core
isolation bias 6;_core must be added to the previously defined individual simulation time t,. This bias
is proportional to the computational complexity of the simulation.

Because of the two aforementioned complications, Equation 3.23 no longer holds. Instead, assuming
that each simulation has the same simulation time, the equation for the total simulation time becomes
as defined in Equation 3.24. This equation takes into account that the number of particles within a
generation can be larger than the number of available cores, i.e. n, > ncores, and the core isolation bias

5t—core .

nCOT@S

ts—total = Ng - ’7 i —‘ : (ts + 61‘,—(;07’6) [S} (324)

3.2.6. (Parallel) L-BFGS-B

The Limited-memory Broyden—Fletcher—Goldfarb—Shanno with Box constraints(L-BFGS-B) is a gradient-
based algorithm, meaning that it uses the slope of the objective function to find a local minimum. This
single solution based algorithm is considered deterministic, as the same solution is obtained for each
run. In addition to using the gradient, the algorithm approximates the hessian, which is the second
order partial derivative matrix of the objective function. The hessian provides curvature information,
allowing for quick convergence in problems with a single optimum that require a high convergence
speed. In problems for which the search space is highly non-convex or discontinuous, this algorithm is
less suitable, as it is characterized by its inability to escape local minima.

Since it is not possible to obtain gradients from the objective functions of black-box optimization
problems, it is approximated with the finite difference method. In this method, a function is evaluated
at two nearby points, after which they are subtracted and divided by the difference of the two points.
The method is defined by Equation 3.25, in which the gradient is estimated by perturbing a single

variable x with step size e.
of _ fla+e—f)

~ 2
ox € (3.25)

3.2. Optimization 25

When dealing with multiple variables, the method is defined as in Equation 3.26, which estimates the
whole gradient. In this equation the vector e; is the standard basis vector, which makes it possible to
perturb a single variable of vector x. Concisely, its value is 1 for the single coordinate to be perturbed,

and 0 otherwise.
of flx+ee)— fx)
6351- €;

Vfix)= fori=1,2,...,n. (3.26)
Each perturbation of the solution represents a perturbation in the variable of a simulation. This means
that after the simulation is evaluated for a point, an additional simulation is run for a nearby point to
estimate the gradient of that point. The pseudo-code of the L-BFGS-B algorithm in combination with
the finite difference method is shown in Algorithm 2.

Algorithm 2 L-BFGS-B Algorithm with finite difference method

1: procedure L-BFGS-B(f, xo, maxIter, e)

2: Set current point x < xg

3 Compute initial gradient g + FiniteDifferenceGradient(f, x, €)
4 Set iteration counter k < 0

5: while k£ < maxlter and not converged do

6

7

8

9

Compute Hessian approximation Hy(g)
Compute search direction pi(H})
Determine step size oy (HY)

Update point: Xpew < X + o Pk

10: Evaluate function at new point: frew < f(Xnew)
11: Compute new gradient gey FiniteDifferenceGradient(f, frnew, Xnew, €)
12: Update x + Xpew
13: Update g < gnew
14: k+—k+1
15: return frew
16: procedure FiniteDifferenceGradient(f, frew X, €)
17: Initialize gradient vector g <— 0 of size length(x)
18: for i =1 to length(x) do
19: Create perturbed vector x() « x with in) —x+ g
20: fi + f(x®)
21: gi fiffnew
£
22 return g

f: objective function

Xo: initial point

mazlter: maximum number of iterations e: small perturbation vector for finite difference gradient
x: current point (vector of decision variables)

g: gradient of the objective function f

k: iteration counter

Hy: approximation of the inverse Hessian at iteration k
Px: search direction at iteration k

«ay: step size at iteration k

Xnew: updated point

fnew: Objective at updated point

Enew: gradient at updated point

L-BFGS-B was implemented by using the SciPy(1.14.1) [43] python package was used. The initial
solution x¢ is defined by Equation 3.27, the center point of the search space with respect to the upper

and lower boundaries x,, and x;j.
Xo = Xu;‘XI . (327)

3.2. Optimization 26

It is crucial to note that, because of the use of the finite difference method (procedure FiniteDifference-
Gradient of Algorithm 2), each iteration requires an additional simulation evaluation for each variable
in x. If the time required for one simulation is defined as ¢, the total time required for one iteration of
the algorithm ts_;seration 1S defined by Equation 3.28.

ts—iteration = ts - (1 + length(x)) [s]. (3.28)

To shorten the total simulation time, parallelization was used again. Unlike PSO, L-BFGS-B is single
solution based, making parallelization of each iteration impossible. Initially, as the perturbation of
each variable in x is independent, the finite difference method was parallelized. This meant that the
perturbation and corresponding evaluation of each variable was executed in parallel (line 18 until line
21 in Algorithm 2). This parallelization is illustrated in Figure 3.11. As a result, the simulation time
for each iteration ts;_;ieration Was reduced to the theoretical Equation 3.29, as the evaluation of all
perturbations occurred at once.

s N
Simulation Simulation
X x(1)
N\ J
. . \
Simulation
x(2)
J
Simulation
X(Iength(x))
ts ” s ”
ts-iteration

Figure 3.11: One iteration of the parallelized L-BFGS-B algorithm.

ts_iteration = ts * 2 [S] (329)

This, however, is the theoretical simulation time, as the parallelization is limited by the number of
cores in the system’s CPU. Furthermore, the time for a single parallelized simulation is increased by a
bias 0¢_core as a consequence of core-isolation. A more realistic estimation of the simulation time per
iteration is defined by Equation 3.30

length(x)w s+ 01 eore) . (3.30)

ts—iteration = ts ’7
Necores

While implementing this parallelization method, another implementation of parallelization was identi-
fied. L-BFGS-B is known to be inefficient in complex and non-convex search spaces. Furthermore, it is
unable to escape local optima. If the algorithm is initialized in a variety of places in the search space,
it is possible that one of the instances finds a local optimum that is also the global optimum. Even

3.2. Optimization 27

though the instances do not act as an interdependent population such as in PSO, an optimum can be
found by an individual instance.

The initial solutions are either spread evenly over the search space bounded by its constraints or spread
randomly. By implementing this parallelization, the simulation time per iteration returns to be rep-
resented by Equation 3.28. However, for this implementation, n, (population size) instances of the
algorithm are run in parallel. Therefore, the simulation time of one instance is not reduced, but the
search space is explored more thoroughly while theoretically taking an equal amount of computing time.
By taking a core isolation bias (0;—core) into account, the total simulation time is described by Equation
3.31. A single iteration of the resulting algorithm is illustrated in Figure 3.12.

Simulation Simulation Simulation Simulation
X1 x; x1 @ *° x4 ength()

Simulation Simulation Simulation Simulation
X2 xo(" X2 *°° xolength(x))

Simulation Simulation Simulation Simulation
Xnp an(1) xnp(2) ¢ xnp(length(x))
ts ” s ” tg > s

ts—iteration

Figure 3.12: One iteration of the parallelized L-BFGS-B algorithm using the new method. Each row represents an
independent instance of the algorithm.

ts—iteration - ts : (1 + length(x)) + 5t—co7‘e [S] (331)

3.2. Optimization 28

3.2.7. Genetic Algorithm

The final algorithm implemented in this thesis is the Genetic Algorithm (GA). The Genetic Algorithm
is an algorithm that is based on the principles of natural selection and evolution. Similar to the PSO
algorithm of Section 3.2.5, a population of potential solutions is initialized randomly and evaluated at
the start of the GA algorithm. However, the search strategy differs from PSO. Instead of exploring the
space by updating all population members directly, GA progresses its exploration by selecting a subset
of the population members with a high fitness, called "parents”. A new generation, called ”offspring”,
is generated by applying crossover to the parents and applying mutation to the newly formed members.
Crossover combines segments of two parent solutions to form new solutions with a predefined probability.
Mutation introduces a probability-based random variation to some of the new solutions to encourage
exploration of the search space and to prevent premature convergence. A new population is selected
combining a number of best-performing solutions from the previous population (elitism) with the newly
generated offspring. Elitism ensures that the best solutions are always preserved across populations.
The evolutionary process is repeated until the stopping criterion is met, i.e., the maximum number of
iterations is reached or convergence is achieved. During the process all candidate solutions and their
fitness are logged for analysis purposes. The pseudo-code for GA is provided in Algorithm 3.

Algorithm 3 GA pseudo-code

1: procedure GA(f, n,, d, maxIter, pc, pm)

2: Initialize population P = {Xl,xz, ..., Xn, } with individuals in d dimensions
3 Evaluate objective function f(x) for each individual x € P

4: Set iteration counter k < 0

5: while k < maxIter AND (not converged) do

6 Select mating pool M from P

7 Initialize offspring population O +

8 for each pair (x,,xp) in M do

9: Generate random number r ~ /(0, 1)

10: if r < p. then

11: Apply crossover to (z,,zp) to produce (01, 02)

12: else

13: Set (01,02) < (Xa, Xp)

14: Mutate 01 and og with probability p,,

15: Add 01 and 02 to 0]

16: Evaluate f(x) for each x € O

17: Select new population P from current P U O (e.g., elitism)
18: k<k+1

19: return best individual in P

f: objective function

np: population size

d: dimensions (number of decision variables)
mazlter: maximum number of generations
Pe: crossover probability

Pm: mutation probability

P: current population

k: iteration counter x;: solution in a population
M: mating pool

O: offspring population

(Xa, Xb): mating pair

(01,02): offspring pair

r: random number

The Genetic Algorithm was implemented by using Python’s pymoo package (version 0.6.1.3) [42]. This
is the same package that was used for the implementation of PSO.

Similar to PSO, the algorithm was parallelized by evaluating each solution of the same generation in

3.3. Evaluation scenarios 29

parallel. The total simulation time ts_;0q; of GA is therefore also represented by Equation 3.24 and
the parallelization is also illustrated as in Figure 3.10. However, it must be kept in mind that for GA
the evaluations within the same row are not necessarily dependent on each other, but rather individual
evaluations.

3.3. Evaluation scenarios

To assess the optimization framework’s performance and generalizability, three distinct fictional sce-
narios that reflect real-world situations were employed. In the first scenario a hydrogen production
facility was modeled. To maximize system efficiency and cost, the buffer size was optimized. The
second developed scenario represented a small neighborhood energy hub, of which continuous opera-
tional parameters costs were optimized. The third scenario represented an electric vehicle charging
station. For this scenario the charging schedule was optimized, resulting in a discrete planning problem.
The selection of these scenarios and their associated optimization problems covered the hydrogen and
electricity domains, the design, operational, and planning domains, and the continuous and discrete
domains. The scenarios are described in more detail in the following sections.

3.3.1. Hydrogen production facility scenario
The hydrogen system was composed of five models:

1. Electrolyzer;
Buffer (100 kg capacity);
Compressor;

Demand,;

R o

Hydrogen controller.

The electrolyzer is responsible for the production of hydrogen gas from electricity. After production,
the hydrogen gas is temporarily stored in a buffer, which operation is managed by a controller. The
compressor ensures that the hydrogen is at the right pressure for transport, which is modeled by a
demand model. The resulting system is illustrated in Figure 3.13. Given that the controller is not
managing the demand and supply of the system, the system must be designed to handle potential
imbalances. The imbalance between supply and demand is solved in two ways. First, the excess
hydrogen is stored in the buffer and released when there is a demand surplus. However, in case of a
production surplus while the buffer has reached its full capacity, the excess is flared. This causes a loss
of potential earnings and should be avoided as much as possible. The scenario was simulated for 1 week
in time steps of 15 min.

=3 Physical flow
—) Data flow

iy

Figure 3.13: The hydrogen production facility scenario consisting of an electrolyzer, a buffer, a compressor, a demand,
and a buffer controller.

v
11
[s]
n
A

3.3. Evaluation scenarios 30

The supply and demand data were artificially created using random processes. To imitate a pattern
that is representative of an electrolyzer, the production data was generated while taking into account
the following characteristics:

¢ Based on normal distributions, varying per time of day, the production rate is determined for each
timestep;

o The electrolyzer has a base production of 0.75 kg/15min.
The demand pattern is generated according to the following characteristics:

e Based on normal Gaussian distributions, the demand rate is around 2 times higher on weekdays,
and there is almost no demand outside of peak hours;

e The demand is scaled to achieve a total production that is equal to 108% of the total demand in
a month.

The resulting production and demand patterns are illustrated in Figure 3.14.

—— Demand
3.04 Production

251

V]

N
o

Hydrogen [kg]
=
w

=
=]

V]

sl TG | i | 'N’WMFW'

2025-04-01 2025-04-05 2025-04-09 2025-04-13 2025-04-17 2025-04-21 2025-04-25 2025-04-29
Time

Figure 3.14: The generated hydrogen production and demand data patterns.

The imbalance that can be observed in the previous figure and the requirement to reduce flaring cause the
need for an efficient setup. The most important parameter that is related to these system requirements
is the buffer capacity, also referred to as buffer size. In theory, an infinitely large buffer size is optimal,
as this allows a large bandwidth of stored hydrogen, making it easier to meet the demand. Furthermore,
a large buffer size makes it possible to store more hydrogen, avoiding the necessity of flaring the
excess production. However, the investment cost of hydrogen buffers is directly related to their size,
contradicting the theoretical optimum. To summarize, the buffer size must be kept minimal to avoid
high investment costs, but large enough to be able to optimally make use of the buffer. Because of this
duality, a system design optimization problem arose.

In the case of this scenario, the optimization problem consists of a single decision variable, namely the
buffer size. The buffer size can take on any continuous value, and therefore the problem is considered
a single-variable continuous optimization problem. The cost function for this problem consists of two
parts: the buffer size x itself and the utilization of the buffer capacity. To take the utilization of the
capacity into account, the number of time steps the buffer state of charge reaches 0% or 100% in the
simulated time frame is summed. This sum is defined as the number of SoC' violations ng,c,vio and is
number is determined by Equation 3.32.

T
NSoC,vio = Z 1is0c,<0} + 1{s0c,>100}- (3.32)
t=1

3.3. Evaluation scenarios 31

To combine these two parts of the cost function, a large penalty that is proportional to ng.c,vio is added
for each SOC violation to buffer size . This penalty is specified by A, and is an order of magnitude
larger than the buffer size, specifically 1000. The resulting objective function is defined in Equation
3.33.

I;él}(l T+ A NSoC,wio- (333)

3.3.2. Energy hub scenario

The energy hub system consisted of the following models:
Five household demands;

Five PV models (60 m? each);

Central battery (100 kWh);

Central grid connection;

AR

Battery controller.

The five households in the neighborhood of this scenario are supplied by five centrally connected PV
modules. The excess power of the PV modules is either fed back into the grid or stored in a central
battery. When the PV modules do not provide enough power to meet the demand of the households,
power is either extracted from the grid connection or from the battery. In this scenario the assumption
is made that each individual household is interested in collaborating with the neighbors to achieve
solid power reliability and collective financial efficiency. The use of a central battery and controller
consolidates this collaboration, as all households influence the operation of these models. The scenario
was simulated in time steps of 15 min, and the total time simulated was 1 week. The schematic
representation of the system is illustrated in Figure 3.15.

———3 Physical flow
=) Data flow
%)
—

5x

Figure 3.15: The neighborhood scenario consisting of five households, five solar systems, a central battery, a grid
connection, and a battery controller.

To implement a realistic scenario, an existing dataset for household demand [44] was used. The dataset
contains missing values, which were filled by extrapolating values from previous data points from the
same dataset. Furthermore, since the dataset has an accuracy of 1 min while the scenario requires a 15
min-accuracy, the dataset was converted to the correct resolution by averaging the data points for every
15 min interval. Five distinct demand patterns were generated, by randomizing the data four times

3.3. Evaluation scenarios 32

using a normal distribution (standard deviation = 5%). A dataset containing irradiance data (GHI,
DHI, DNI), temperature, and solar positional data (height, azimuth angle, fill factor) was used for the
PV models [8]. The five PV systems were assumed to be of the same size, namely 60 m?, resulting in
a total area of 300 m?. The total demand and solar generation of the neighborhood over the course of
a week is plotted in Figure 3.16.

100 1 = Solar generation
Total demand

80 1

60

Power [kW]

401

Sy |
/Mh . AU A)m ,“'J “j\ \“_

2007-01-01 2007-01-02 2007-01-03 2007-01-04 2007-01-05 2007-01-06 2007-01-07
Time

[o]

Figure 3.16: The neighborhood demand and solar power generation over the course of a week.

Similarly to the hydrogen scenario (Section 3.3.1), there is a mismatch between energy production
and demand. Again, the energy storage component of the system and its control are the two most
important components of the system. This time however, the problem is approached from an operational
perspective. To do this, the control of the battery was programmed to be dependent on the intraday
electricity market, in which the electricity price can vary every 15 min. The intraday market prices this
resolution were obtained from a publicly available dataset provided by the Dutch TSO TenneT [45].
The control based on this dataset was done by using two parameters:

o Upper threshold 0, [€ /kWh]: In case the market price is higher than this threshold, feeding
the surplus energy back to the grid is prioritized over charging the battery;

o Lower threshold 6§, [€ /kWh]: In case the market price is lower than this threshold, the energy
shortage is resolved by pulling electricity from the grid, rather than discharging the battery.

The market price dataset consists of two subsets: shortage price Pspore and surplus price Psyrp. The
shortage price indicates the price the grid user is required to pay to the TSO when it extracts energy
from the grid. The surplus price defines the price that the TSO is required to pay to the grid user when
the user delivers energy back into the grid. The two price subsets are defined by Equation 3.34 and
Equation 3.35 respectively, in which p; is the settlement price at 15 min-interval ¢, and T is the last
simulated interval.

Pshort:{pihort}thl [€/kWh]7 (3'34)
Peurp = {pi"""}_1 [€/KWh]. (3.35)

During the simulation of this scenario, the power flow between the grid and the neighborhood FPyq
is monitored for each timestep. The flow is determined by the decisions made by the controller which
are mainly dependent on the other models in the system. These dependencies are complex, and thus
Pyriq is obtained by simulating the system. The controller decisions are dependent on 6, and ;. As
the optimization of this scenario is approached from an operational perspective dependent on these

3.3. Evaluation scenarios 33

parameters, the grid power is defined as P,,;q(0,,0;). Depending on the direction of the grid power flow
at timestep ¢, i.e., whether Py,;q+(0y,0;) is positive or negative, the neighborhood either receives pyhort
or p;"“"?. Consequently, the total cost Cissq; can be obtained by taking the sum of all transactions in the
simulated time frame. The total cost Ciorq; can then be optimized with respect to the two thresholds 6,
and #;. This represents the total combined price the members of the neighborhood must either pay or
receive at the end of a week. The resulting cost function is defined by Equation 3.36, which is subject

to the constraints defined by Equation 3.37 and 3.38.

T
—P, T ouae cppP if P, T 01“0 > Oa
min Crorar = » 3 * 4¢(0u, 01) b o1 (8, 01) (3.36)
0.,0:€0 =1 _Pgrid,t(euv 0[) 2 - if Pgrid,t(ezu 91) S 07
s.t. min(Pghort) < 6 < max(Pshort), (3.37)
min(Psyrp) < 0, < max(Psurp)- (3.38)

3.3.3. Electric vehicle (EV) charging station
The third scenario that was developed for this thesis represented a charging station for electric vehicles.
This energy system consisted of the following models:

o Five EV models (60 kWh battery capacity);
o PV model (240 m?);
o wind turbine model (300 W rated power);

e charging controller.
The charging station featured 5 charging bays. When one or more EVs are present at the station, they
are available to be charged with power obtained from the PV installation, the wind turbine, and the
grid. Based on this presence, the charging controller determines when the charging cycle of each EV is
started. The simulations of this system represented a single day and had a time resolution of 15 min.
The schematic representation of the system is provided in Figure 3.17.

———3 Physical flow
= Data flow

Figure 3.17: The schematic representation of the EV charging station scenario implemented in the Illuminator. The
blue arrows indicate physical flows, while the green arrows represent data flows between models.

In this scenario the EV models were assumed to have a constant and equal charging profile of 11 kW.
Furthermore, the EV batteries were set to have a capacity of 60 kWh. As a consequence, each charging
cycle takes approximately 5.5 hours (tcharging =~ 5.5 h). The EVs charging availability is based on the
generated presence schedule illustrated in Figure 3.18. This schedule can be represented by the arrival
times tarrival and departure times tgeparture-

3.3. Evaluation scenarios 34

Present - [l —
Absent —_ EV2
— EV3
Present : Ev4
Absent 4 — EV5
Present
Absent 4
Present 1
Absent 4
Present
Absent T . - .
0 20 40 60 80

Time step index

Figure 3.18: Presence of the EVs at the charging station.

The same solar irradiance data as in the previous scenario was used, but for this scenario a single model
with a total area of 240 m? was implemented. The wind turbine model was set to have a diameter of 2
m and a rated power of 300 W.

For the operation of the charging station, of which the loads can be substantial, it is important to
consider the strain on the grid connection. The reason for this is to mitigate the risk of grid congestion,
which, as explained in the introduction chapter, is a growing challenge associated with the energy
transition.

To reduce the maximum load on the grid connection, the charging schedule of the five electric vehicles
can be optimized. By optimally scheduling the starting times of the charging cycles, the maximum
power drawn or fed back into the grid can be minimized. The decision variables for this problem are
therefore the starting time-steps 7, 79, 79, 7%, and 79, vectorized as 7°. The problem’s search space
is constrained by the EV presence pattern presented in Figure 3.18 minus the charging time tcnarging,
as the EVs need to be fully charged before departure. The cost function is thus defined as in Equation
3.39, subject to the constraint of Equation 3.40.

I(r}é%_ Pyrid,peak = max({Pgrid,t(To)}fz1) (3.39)

s.t. tarrival < 70 < tarrival — tcharging (340)

Results

This chapter presents the results of the experiments performed on the scenarios from Section 3.3. For
each scenario, the problem is reintroduced, after which the three algorithms are applied to the scenario.

To test the consistency of each algorithm, each algorithm is was applied three times to each scenario,
each time using a different randomized set of initial solutions. Furthermore, the gradient-based algo-
rithm (parallel L-BFGS-B) was applied an additional time with a set of initial solutions distributed
equidistantly over the search space. The best resulting run of each algorithm was used to produce the
plots for each algorithm application.

The maximum number of iterations was set to 100 for all cases. For PSO and GA the tolerances that
indicate convergence were set to 0.001 for both the function and the variables. The period variable,
which determines for how many generations the tolerances must be met, was set to 5. The number of
parallel processes was set to 9. Therefore, the population-based algorithms used a population size of
9 and the parallelized gradient-based algorithm consisted of 9 parallel instances. For PSO the initial
weight was set to 0.9 and the two coefficients were both set to 1.5. However, adaptive weights were
enabled in the pymoo package, meaning that the weights changed dynamically over time.

4.1. Hydrogen production facility scenario

Scenario 1, as described in Section 3.3.1, involved a hydrogen system consisting of an electrolyzer, a
buffer, a compressor, and a refueling station. The problem related to this scenario aimed to minimize
the buffer size. Therefore, the optimal solution corresponded to the lowest cost.

In the following sections the results of the three algorithms are presented and briefly compared. In the
figures that illustrate the explored solutions in the search space, the decimal logarithm of the cost is
used. This is because the penalty applied to the cost function is significantly larger than the buffer size,
making the figures less understandable if the standard cost is used.

41.1. PSO

First, the PSO algorithm was applied to scenario 1. The solutions that were explored by the PSO
algorithm are illustrated in Figure 4.2. From this figure, it can be observed that the buffer size at which
the best cost is obtained is around 420 kg. Furthermore, the figure shows that the most evaluated
solutions are equal to or larger than this found optimum. Additionally, it can be observed that the
search space contains a discontinuity close to this optimum, which can be explained by the use of the
penalty. In other words, buffer sizes lower than the optimum receive a penalty for being too small.

Table 4.1 presents the results of these three runs with different initial solution distributions. In this
table, the number of generations, the run time, the solution, the lowest cost, and the gap to the best-
found solution of each run are listed. It can be observed that the solutions are close to 420 kg, and
the best-found solution is 419.91 kg. In all runs, the cost had the same value as the solution, as in
these cases no penalty was applied. The algorithm was consistent among runs as the largest gap was

35

41. Hydrogen production facility scenario 36

0.223%. The run time for each run is similar, but the run with ID 42 was the quickest (282.9 s). It can
be concluded that all runs had similar performance in terms of run time and solution quality.

Table 4.1: Simulation optimization results for the PSO algorithm on scenario 1. The shortest run time, the lowest cost,
and the smallest gap are highlighted.

ID TIterations Run time [s] Solution [kg] Cost [kg] Gap [%]

42 9 282.9 420.32 420.32 0.097
33 9 324.6 419.91 419.91 0
1 9 337.2 420.85 420.85 0.223

4.1.2. Parallel gradient-based algorithm

The second algorithm that is applied to this scenario is the parallel gradient-based algorithm (parallel
L-BFGS-B). The solutions explored by the best run of this algorithm are illustrated in Figure 4.3. From
the figure it can be observed that the explored solutions are spread over the search space, with a dense
cluster around the 420 kg mark. Except for this, the explored solutions are similar to the ones of PSO.

From Table 4.2 it can be observed that the best solution found by this algorithm is 419.95 kg. The
algorithm shows some inconsistency as the gap is between 0.010% and 0.526%. The solutions are
however still close to the optimal. The quickest run had a run time of 1380.2 s but had the worst
solution of the four runs.

Table 4.2: Simulation optimization results for the parallel L-BFGS-B algorithm on scenario 1. The shortest run time,
the lowest cost, and the smallest gap are highlighted.

ID TIterations Run time [s] Solution [kg] Cost [kg] Gap [%]

- 34 1899.1 420.73 420.73 0.196
42 32 1678.2 419.95 419.95 0.010
33 32 1805.6 421.42 421.42 0.359

1 22 1380.2 422.12 422.12 0.526

413. GA

The last algorithm that was applied to scenario 1 was GA. In Figure 4.4 it can be observed that GA
mainly explored solutions close to optimal value, while having a less distributed exploration space. In
fact, almost no solutions above 475 kg were explored.

Table 4.3 concludes that the best solution found by the GA is 419.92. Although the differences between
the three runs are small, this run was also the quickest, with a run time of 362.8 s. The gap showed a
small variability in the calculated gaps and the solution with the best gap had a gap of 0.003%.

Table 4.3: Simulation optimization results for the GA algorithm on scenario 1. The shortest run time, the lowest cost,
and the smallest gap are highlighted.

ID TIterations Run time [s] Solution [kg] Cost [kg] Gap [%]

42 12 378.1 420.03 420.03 0.029
33 12 398.5 421.13 421.13 0.291
1 11 362.8 419.92 419.92 0.003

4.1.4. Comparison of the algorithms
In this section, the performances of the three algorithms that were applied to the optimization problem
of scenario 1 are compared.

Figure 4.1 shows the convergence curves of the three algorithms. It can be observed that the gradient-
based-algorithm (parallel L-BFGS-B) required substantially more iterations than the other algorithms
to achieve convergence. Additionally, it was terminated many iterations later. It can also be observed
that the global best cost of PSO was found after 4 iterations, while only 1 iteration was required to

41. Hydrogen production facility scenario 37

make an improvement to the initial solution set. Furthermore, the figure shows that the PSO terminates
first, and is followed two iterations later by GA.

The characteristics of the application of each algorithm to the problem of this scenario are listed in
Table 4.12. In this table, it can be observed that PSO shares its best average cost with GA. Although
the difference is small, the shorter average time of PSO makes it the best performing algorithm to this
problem. The gradient-based algorithm showed to have the worst performance indicators compared to
the other two algorithms. Although the average gap was low, it was a factor 2 larger compared to the
other two algorithms.

470 7/
= Convergence PSO
= Convergence parallel L-BFGS-B
—— Convergence GA
460 -
i
3
O 450+
)
(7]
()
o)
— 440
©
O
o
O 430+
420
T T T T T T T T // // T T T T
2 4 6 8 10 12 16 . 26 28 30 32 34
Iteration
Figure 4.1: Convergence of all three algorithms applied to scenario 1.
554 551,
® 5 o,
Y L]
5.0 ‘o 5.0 LI
® L]
— 4.51 ° . 4.51 ®
+J -+ °
0 0
o [] o ‘
S . S °
o 4.0 o 4.0 ‘.
— —
(@2} (@)} °
o ° o
3.51 3.51
3.01 3.01
omes® ¥ ‘ - * "
2.5 T T T T 2.5 T T r T
100 200 300 400 500 600 100 200 300 400 500 600
Buffer size [kg] Buffer size [kg]

Figure 4.2: Explored search space of the best run of the Figure 4.3: Explored search space of the best run of the
PSO algorithm for buffer size optimization. L-BFGS-B algorithm for buffer size optimization.

41. Hydrogen production facility scenario 38

5.51

5.01 ‘s

4.5 A

logio (Cost)

3.51

3.01

aes®®

2.5 : | . |
100 200 300 400 500 600
Buffer size [kg]

Figure 4.4: Explored search space of the best run of the
GA for buffer size optimization.

Table 4.4: Simulation optimization results of all algorithms applied on scenario 1. The shortest average run time, the
best average cost, the absolute best cost, and the smallest average gap are highlighted.

Algorithm Avg. iteration Avg. time [s] Avg. cost [kg] Best cost [kg] Avg. gap [%]

PSO 9 314.88 420.36 419.91 0.107
L-BFGS-B 30 1690.78 421.05 419.95 0.273
GA 11.67 379.77 420.36 419.92 0.107

4.15. Optimization result

To show the result of the optimization, the scenario is run two times, one time with a large buffer size
of 500 kg, and one time a buffer size that is found by the best run of PSO (419.91 kg). The state of
charge of these simulations are Illustrated in Figure 4.5 and Figure 4.6.

100
__ 80+
X
O 601
@)
wn
D 40-
&
@
201
0 T T T T T
N N N i e A°
Na Ne e e Na e
o 4 4 4 o 4
D D D D D D
Date

Figure 4.5: A simulation of scenario 1 in which the buffer size is not optimized (500 kg).

4.2. Energy hub scenario 39

100
__ 80+
s
O 601
O
)
— 100.000
Hq_) 40 1
‘-5 99.995
o 201 99.990 -

99.985 o
0 I | I 99.9530 T T T T T T
3 S > K3 A o

Ng Ne Ne Ne Ng N

0o o 04 o o o
D » D > D »
Date

Figure 4.6: A simulation of scenario 1 in which the buffer size is optimized (419.91 kg).

Figure 4.5 shows that the state of charge does not reach 100% by a lot. From this it can be deduced
that the buffer size can be decreased. In fact, in the optimal case illustrated in Figure 4.6 it can be
observed that a state of charge of 100% is almost reached, implying a more optimal utilization of the
buffer.

4.2. Energy hub scenario

As explained in Section 3.3.2, scenario 2 represents the grid in a small neighborhood, containing five
households, five PV installations, a central battery, and a central grid connection. The cost function
of the optimization problem associated with this scenario represents the total cost for the use of the
grid over the course of a week. The objective is to minimize the cost. A negative cost implies that the
neighborhood earns money from selling energy back to the grid and buying energy at an advantageous
price. Therefore, a low or even negative total cost is favorable. The cost function is highly dependent
on two variables that indicate at which settlement price the energy should be bought or sold back from
the grid. Since two variables are optimized, the figures illustrating the explored solutions in the search
space have three dimensions. The two axes each represent a variable, while the cost is indicated by a
color.

4.2.1. PSO

The first algorithm that was applied to the optimization problem of scenario 2 is the PSO algorithm. In
Figure 4.8 it can be observed that the optimal solution of the problem found by the PSO algorithm is
the central part of the search space. In fact, a cluster of solutions with a low cost-value can be observed
in the middle of the figure. In the figure it can also be observed that the solutions of which the lower
threshold is between €0/kWh and €0.25/kWh have a higher cost compared to the other solutions.
From this it can be concluded that the solution quality is dominated by the lower threshold variable.

The contribution of each variable and the dominance of the lower threshold variable is visible in Figure
B.2 and B.3 in Appendix B.2. In fact, it can be observed that a larger standard deviation is present in
the cost of the upper price variable, compared to the lower price variable.

The PSO algorithm was applied three times to the optimization problem of scenario 2. The results
obtained from these three runs are presented in Table 4.5. From this table it can be concluded that the
run with ID 42 yielded the lowest cost, namely € —60.51. The solution that resulted in this cost has
an upper threshold of €0.117/kWh and a lower threshold of €0.111/kWh. The calculated gaps of the
runs are low. The number of iterations and the total time that was required to obtain the solutions are

4.2. Energy hub scenario 40

similar for each of the three runs. The quickest run time was 829.9 s.

Table 4.5: Simulation optimization results for the PSO algorithm on scenario 2. The shortest run time, the lowest cost,
and the smallest gap are highlighted.

ID TIterations Run time [s] Solution [€ /kWh] Cost[€] Gap [%]

42 20 829.9 0.117, 0.111 -60.51 O
33 21 1074.2 0.084, 0.127 -60.14 0.612
1 19 944.7 0.123, 0.106 -60.22 0.478

4.2.2. Parallel gradient-based algorithm

After the PSO algorithm was applied to the second scenario, the parallelized L-BFGS-B algorithm was
implemented and evaluated. The step size € of the finite difference algorithm was set to 0.1. The
resulting search space exploration plot is illustrated in Figure 4.9. The first thing that can be noticed,
is that a diagonal line of solutions appears across the search space plot. This line can be explained by
the distribution of initial solutions in the best performing run of this algorithm. In fact, in this run the
initial solutions were distributed equidistantly across the search space. All these initial solutions were
between the upper and lower bounds of the search spaces, determined by the maximum and minimum
of the used price dataset [45]. The optimal solution found by this algorithm is found at the center of the
plot. For conciseness, the plots of the individual costs of the solutions values are attached in Appendix
B.2 and can be seen in Figure B.4 and Figure B.5.

The parallel L-BFGS-B algorithm was applied four times to the optimization problem of scenario 2.
The results for each run are listed in Table 4.6. From this table it becomes clear that the best result
was obtained when the initial solutions were spread equally over the search space, resulting in a cost
of €—-54.99. This cost was found for an upper threshold of €0.123/kWh and a lower threshold of
€0.044/kWh required the largest number of iterations and also had the longest run time. The quickest
run had a run time of 923.3 s but resulted in the second worst cost. The gaps calculated for these runs
were large, with the largest gap being 66.985% and the smallest being 9.129%.

Table 4.6: Simulation optimization results for the L-BFGS-B algorithm on scenario 2. The shortest run time, the
lowest cost, and the smallest gap are highlighted.

ID TIterations Run time [s] Solution [€ /kWh] Cost[€] Gap[%]

- 45 3127.1 0.123, 0.044 -54.99 9.129
42 26 1807.8 0.607, 0.333 -19.98 66.985
33 18 2645.9 0.627, 0.074 -42.75 29.356
1 11 923.3 -0.054, 0.383 -24.67 59.236

42.3. GA

The final algorithm that was applied to the second scenario was GA. The plot for the explored solutions
in the search space is illustrated in Figure 4.10. From this figure it can be observed that there is a high
density of solutions at the center of the plot.

As for the other algorithms applied to this scenario, the cost of the individual explored parameters can
be found in Appendix B.2 (Figure B.6 and B.7).

The three runs of the GA on scenario 2 resulted in the characteristics listed in Table 4.7. The best
performing run in terms of cost required 19 iterations and took the least amount of time. With a
threshold of €0.117/kWh and a lower threshold of €0.103/kWh, the cost was € —60.19. Although the
costs found in each run were close to each other, and thus also their gaps, the run times showed a larger
variance.

4.2. Energy hub scenario 41

Table 4.7: Simulation optimization results for the GA algorithm on scenario 2. The shortest run time, the lowest cost,
and the smallest gap are highlighted.

ID TIterations Run time [s] Solution [€ /kWh] Cost [€] Gap [%]

42 32 1758.3 0.079, 0.125 -60.09 0.699
33 26 820.4 0.089, 0.126 -60.16 0.575
1 19 615.7 0.117, 0.103 -60.19 0.521

4.2.4. Comparison of the algorithms
This section compares the results obtained by applying each of the three algorithm to the optimization
problem related to scenario 2.

By comparing the convergence curves of the three algorithms in Figure 4.7, it can be observed that the
gradient-based algorithm required more iterations to achieve a stable result, compared to the other two
algorithms. In fact, the gradient-based algorithm required 25 iterations to converge, and terminated at
iteration 45. The GA and the PSO algorithm only required 14 and 15 iterations respectively, and both
terminated 5 iterations later. Additionally, it can be observed that the GA made a large improvement
regarding the global best solution in the first three generations. Conversely, the convergence rates of
the other two algorithms were slower in the initial phase.

— Convergence PSO
Convergence parallel L-BFGS-B
== Convergence GA

Global best cost

LI L L L L L L L L L N L L L N L N AN N BN BN B N B N BN SR N NN B U NN B NN B N N B B N B

5 10 15 20 25 30 35 40 45
lteration

Figure 4.7: Convergence of all three algorithms applied to scenario 2.

4.2. Energy hub scenario 42

2.0 2.5
1.5 2.0 1
= T 151
1.01
s =
=~ = 1.01
¥, 051 w,
e e
= = 0.51
2 o001 = 1 2
0] a8
v O 0.01 “--
5 -051 S
g g -0.5
9 -1.0 3 101
—1.57 -1.51
-2. r T " T ; T ; -2.0 T T T T T T w T
-20 -15 -1.0 =05 0.0 05 10 15 2.0 -2.0-15-1.0-0.5 00 05 1.0 15 20 25
Upper threshold [€/kWh] Upper threshold [€/kWh]
Figure 4.8: Explored search space of the best run of the Figure 4.9: Explored search space of the best run of the
PSO algorithm for threshold optimization. L-BFGS-B algorithm for threshold optimization.
2.0 —
1.5
I -20
=
1.0
= 0
¥4
~
¥, 051 F-30
S
[e) : -+
£ 001 - 3
o o
[}
= -40
S -051
—
()]
?, —1.01
| -50
_1'5 4
-2.0 T -60

220 -15-1.0 =05 0.0 05 10 15 2.0
Upper threshold [€/kWh]

Figure 4.10: Explored search space of the best run of the GA for
threshold optimization.

In Table 4.8, the characteristics of the applied algorithms are listed. It can immediately be observed
that the PSO algorithm performed the best in terms of time and solution quality. In fact, the PSO
algorithm had the best average iteration count, run time, and cost, while also achieving the best overall
cost. While the performance of the GA is relatively close to that of the PSO algorithm, the run time and
quality of the parallel L-BFGS-B stands out. The average time is significantly higher and the average
cost is almost a factor 2 worse than the cost obtained by the other algorithms. This is reflected in the
average gap, which is a factor 100 larger. In fact, it seems that the algorithm was not able to achieve a
solution close to the true optimum.

4.2. Energy hub scenario 43

Table 4.8: Simulation optimization results of all algorithms applied on scenario 2. The shortest average run time, the

best average cost, the absolute best cost, and the smallest average gap are highlighted.

Algorithm Avg. iteration Avg. time [s] Avg. cost [€] Best cost [€] Avg. gap [%]

PSO 20 949.60 -60.29 -60.51 0.363
L-BFGS-B 25 2126.03 -35.59 -54.99 41.177
GA 25.67 1064.77 -60.15 -60.19 0.598

4.2.5. Optimization result

To evaluate whether the optimization of this scenario was successful, a comparison is made between a
simulation with suboptimal and optimized thresholds. The suboptimal case is depicted in Figure 4.11,
while Figure 4.12 depicts the optimized case. The figures are structured in the same way. The first plot
illustrates the power flows of the demand, grid usage, and PV generation. The second plot illustrates
the variable prices and the thresholds applied to the case. Finally, the third plot illustrates the state of
charge of the central battery throughout the week as a consequence of the thresholds. It is important
to note that the grid power usage is negative in the figure when power is pulled from the grid, while it
is positive when the neighborhood feeds power into the grid.

Power [kW]

Price [€/kWh]

SoC [%]

=
o
o

[
o

o

1.0

0.5

0.0

-0.5

100

75

50

25

Power Flows

—-__I\-u\n

—— Total Household Demand
PV Generation
= Grid Usage

Energy Price

- Shortage price
—— Surplus price

! Y\ ;“f\,ﬂ\ ALJS A r"‘:"w'ﬁn"‘ﬁ

Battery State of Charge

100 200 300 400 500 600
Timestep

Figure 4.11: A simulation of scenario 2 in which the control thresholds are not optimized (6, = €0.607/kWh and

0, =€0.333/kWh).

4.3. Electric vehicle (EV) charging station 44

Power Flows

=
o
o

= Total Household Demand
PV Generation
= Grid Usage

v
o

———

Power [kW]

o

Energy Price

1.0 . “ | —— Shortage price
| “ ‘ ~— Surplus price

0.0 R T A T T AT T e WA NG RV A 7 LR LR Vi S /| B W Vawe (g
VAl \N || J i ! A | 1 I

Price [€/kWh]

Battery State of Charge

SoC [%]

0 100 200 300 400 500 600
Timestep

Figure 4.12: A simulation of scenario 2 in which the control thresholds are optimized (6, = €0.117/kWh and
0; =€0.111/kWh).

By comparing the two figures it becomes clear that by optimizing the thresholds, the battery behavior
becomes significantly more dynamic. In fact, in the suboptimal case the battery is almost always fully
charged, meaning that it is not optimally used to minimize the total energy cost of the neighborhood.
This is confirmed by summing the total costs. For the suboptimal case the neighborhood makes a profit
of €19.98, while in the optimized case this is € 60.51, a factor 3 improvement.

4.3. Electric vehicle (EV) charging station

The last scenario modeled an electric vehicle (EV) charging station equipped with a PV system, a small
wind turbine, a grid connection, and five EV charging points. The optimization problem pertaining to
the system of this scenario targets to minimize the peak power going through the grid connection, and
thus to reduce the strain on the grid connection. The cost found by the algorithm represents the peak
grid power and is therefore preferred to be low.

To do this, the charging schedule is determined by searching for the optimal combination of starting
time steps for the charging cycle of each EV. The starting time steps are constrained by the arrival and
departure times of the EVs and the requirement that each EV must be fully charged before departure.

Each solution to this problem is a combination of five time steps, one for each EV charging cycle. The
explored solutions are illustrated using plots of which the x-axis represents the EV index, and y-axis
indicates the charging start time step. Starting points belonging to the same solution are connected by
lines.

43.1. PSO

First the PSO algorithm was applied to this problem. Figure 4.14 illustrates the solutions that were
explored by the PSO algorithm. It can be observed that a clear range of feasible solutions was found.
In Table 4.9 it can be seen that in the lowest peak power found in all runs was 14.95 kW. The shortest
run was 155.8 s. The gaps were relatively large, with the largest being 39.891%.

4.3. Electric vehicle (EV) charging station 45

Table 4.9: Simulation optimization results of all runs of the PSO algorithm applied to scenario 3. The shortest run
time, the lowest cost, and the smallest gap are highlighted.

ID TIterations Run time [s] Cost[kW] Gap|[%]

42 9 155.8 20.91 39.891
33 11 201.4 18.02 20.544
1 21 357.3 14.95 0

4.3.2. Parallel L-BFGS-B

For the parallel gradient-based algorithm, the explored solutions are illustrated in Figure 4.15. It can
be observed that the solutions show significant variation and are not clustered.

The results of all runs of this algorithm are listed in Table 4.10. The best cost found among all runs
is 24.72 kW. The shortest run time was 2789.0 s. The gaps were very large, as the smallest gap was
65.420% and the largest was 97.130%.

Table 4.10: Simulation optimization results of all runs of the parallel L-BFGS-B algorithm applied to scenario 3. The
shortest run time, the lowest cost, and the smallest gap are highlighted.

ID TIterations Run time [s] Cost[kW] Gap[%]

- 8 2991.7 29.46 97.13
42 17 3575.6 24.72 65.42
33 14 3518.8 29.02 94.15
1 9 2789.0 25.81 72.71

43.3. GA
The final applied algorithm to scenario 3 was GA. The explored results are illustrated in Figure 4.16.

The figure shows a large variance in solutions. The results of the three runs of the GA algorithm are
listed in Table 4.11. The best cost found was 14.95 kW. The shortest run time was 118.2 s. The gaps
were relatively large and showed a large variance. The largest gap was 51.970%.

Table 4.11: Simulation optimization results of all runs of the GA applied to scenario 3. The shortest run time, the
lowest cost, and the smallest gap are highlighted.

ID TIterations Run time [s] Cost[kW] Gap[%]

42 10 171.1 22.71 51.970
33 10 166.4 14.95 0
1 7 118.2 19.76 32.246

4.3.4. Comparison of the algorithms
In this section, the three algorithm performances on the third scenario of this thesis are compared.

In Figure 4.13 the convergence curves of the three algorithms are illustrated. It can be immediately
observed that the L-BFGS-B algorithm did not converge to a similar value as the other algorithms.
Additionally, the gradient-based algorithm reached convergence the quickest. In terms of run time,
however, the PSO algorithm had the longest run time of the three algorithms, while the GA had the

shortest.

4.3. Electric vehicle (EV) charging station

46

Global best cost [kW]

—— Convergence PSO
- Convergence parallel L-BFGS-B
== Convergence GA

20
18
16
T T T T T T T T T T T T T T T T T T T
5 10 15 20
Iteration
Figure 4.13: Convergence plots of the best runs of the three algorithms applied to scenario 3.
j]
70 * - 70
60 60 1
o o
~ @
Q_ 50 b Q_ 50 4
(0] (O]
+J +J
])
40 40 A
£ £
+J -+
230 2301
o])
[. [.
© ©
{n 201 & 201
10 1 10+ . p
01 . 0 3
EV1 EV2 EV3 EV4 EV5 EV1 EV2 EV3 EV4 EV5

Figure 4.14: Search space explored in the best run of
the PSO algorithm to find the charging start time steps
for five EVs. The best combination of starting time steps

has the lowest cost.

Figure 4.15: Search space explored in the best run of

the parallel L-BFGS-B algorithm to find the charging

start time steps for five EVs. The best combination of
starting time steps has the lowest cost.

4.3. Electric vehicle (EV) charging station 47

70 A ® 45

(o))
o

40

w
o

IS
o
Cost [kW]

w
o

25

Starting timestep T°

N
o
L

20

=
o

T T T T T 15
EV1 EV2 EV3 EV4 EV5

Figure 4.16: Search space explored in the best run of the GA to
find the charging start time steps for five EVs. The best
combination of starting time steps has the lowest cost.

Table 4.12 lists the characteristics of the three algorithms applied to this problem. Supported by the
convergence plot, it can be concluded that the parallel L-BFGS-B did not find a competitive solution. In
fact, it has the worst performance on all aspects. Instead, the PSO algorithm achieved the best average
cost, and shares the best cost with GA. Additionally, it can be seen that the average gap of PSO and
GA were similar, while the average gap of the gradient-based algorithm was significantly higher. The
best average time obtained by the GA. From this it is concluded that the PSO algorithm performed
best on solution quality, but in terms of speed the GA was better.

Table 4.12: Simulation optimization results of all algorithms applied on scenario 3. The shortest average run time, the
best average cost, the absolute best cost, and the smallest average gap are highlighted.

Algorithm Avg. iteration Avg. time [s] Avg.cost kW] Best cost [kKW] Avg. gap [%]

PSO 13.67 238.2 17.96 14.95 20.145
L-BFGS-B 13 3362.1 27.73 24.72 85.565
GA 9 151.88 19.14 14.95 28.072

4.3.5. Optimization result

To show the result of the optimization performed on the third scenario, two schedules are compared.
The first schedule is a suboptimal schedule, while the second schedule is obtained by the best run of the
PSO algorithm. The comparison can be observed in Figure 4.17. The first plot in this figure illustrates
the RES generation and the grid usage for both the suboptimal and the optimized schedule. It is
important to note that for a negative grid usage power is extracted from the grid, while for a positive
grid usage, power is fed into the grid. The second and third plot represent a suboptimal and optimized
charging schedule, respectively. Each EV charging cycle is represented by a distinct color.

4.3. Electric vehicle (EV) charging station 48

Power Flows

(S
o

RES Generation
== Grid Power Unoptimized »
| =—— Grid Power Optimized

N
w

Power [kW]
o

Unoptimized Schedule

EV1 -
EV2 -
EV3 1
EV4 -
EV5 1

Optimized Schedule

EV1-

EV2-

EV3-

EV4

EV5 -

0 20 40 60 80
Timestep

Figure 4.17: A comparison between a random suboptimal EV charging schedule and the schedule found by the best
run of PSO.

In this figure, it can be observed that the magnitude of the largest grid peak is lower in the optimized
schedule compared to the peak in the suboptimal schedule. In fact, in the suboptimal schedule the
largest peak is 14.9 kW, while in the optimized schedule this is 33.5 kW. Furthermore, it can be
observed that in the optimized schedule, there is a larger overlap between EV charging cycles, and that
the cycles are more centered around the middle of the day.

4.3.6. Parallelization result

The EV charging station scenario was also optimized with sequential versions of the population-based
algorithms. To ensure a fair comparison, both PSO and GA were initialized with the same initial
solutions as used in their fastest parallel runs (run 42 for PSO and run 1 for GA). As a consequence,
the same number of generations were needed and the same solution was found.

Table 4.13 shows the run time for the sequential and parallel implementations of PSO and GA. It can
be observed that the parallel implementation of PSO is 4.7 times faster than its sequential version. For
GA the parallel implementation is 4.8 faster than its sequential counterpart.

Table 4.13: Parallel and sequential run times for PSO and GA.

Algorithm Sequential run time [s] Parallel run time [s]

PSO 735.08 155.81
GA 571.96 118.18

Discussion

In this chapter of the thesis, the results presented in Chapter 4 are discussed and analyzed. First, the
research questions posed in the introduction chapter of this thesis (Chapter 1) are answered. After this,
additional remarks are presented.

5.1. Research question

In this section, the thesis is discussed from the point of view of the research questions proposed in the
introduction. First the sub-questions related to simulation optimization of energy systems are answered,
followed by the main research question on this topic.

1.1 What are the main technical prerequisites and challenges for combining optimization algorithms
with simulation models?

The use of simulation models for the optimization of energy systems involves several key challenges
and considerations that must be addressed to ensure effective and reliable outcomes. As pointed out in
Section 3.2.1, one of the primary challenges in the implementation of simulation-based optimization is
the computational time required to run detailed simulations. Since each algorithm iteration requires at
least one simulation, it is important to use an algorithm that finds an optimum within a limited number
of iterations. To further minimize run times in existing algorithms, parallel computing was implemented
as described in Section 3.2.5, Section 3.2.6, and Section 3.2.7. The potential of this method became
evident when the theoretical simulation time equations of the sequential methods were compared to
their corresponding parallelized versions. The parallel execution of independent iterations resulted in
a significant reduction of total run time. In fact, as Section 4.3.6 pointed out, the parallel versions
of PSO and GA were almost 5 times faster than their respective original versions (4.7 and 4.8 times
respectively).

Nevertheless, the results obtained in the previous chapter confirmed that the optimization of a system
by using simulation optimization can be time costly. In fact, the shortest run time for the single-variable
continuous problem of scenario 1, was 282.9 s. For the two-variable continuous problem of scenario 2,
which aimed to optimize the operation of a system, the minimal run time was 615.7 s. For the last
problem, which was dependent on five discrete decision variables related to the planning of the system,
at least 118.2 s were needed to find a solution.

Although in general the total run time is proportional to the number of iterations, it can be observed
that this is not always the case. For example, when the PSO algorithm was applied to scenario 1 in
Section 4.1.1, the number of generations was equal in each run, while the simulation times slightly
varied. This can be caused by the fact that each run started with different starting solutions, resulting
in different particle trajectories before reaching an optimum. Furthermore, external conditions, such as
unrelated CPU usage during the runs, have an influence as well.

Aside from the aspects of time and number of iterations, there is a challenge regarding the objective and

49

5.1. Research question 50

search space for simulation optimization problems. As was explained in Section 3.2.1, the problems that
are solved with simulation optimization are black-box optimization problems. Because of this, there is
an uncertainty about the characteristics of the search space. Due to this, it can be difficult to select
the most effective algorithm, especially for complex problems. To overcome this challenge, it is useful
to have a generalized approach, and to classify the problem at hand as much as possible. For the EV
charging station problem, for example, it was known beforehand that the search space was discrete, as
the solution would entail a set of discrete time steps. An algorithm that is known to be ineffective on
this type of search space can therefore already be excluded.

To summarize, the main challenges that arise when combining optimization algorithms with simulation
models are the following:

e Large computation times due to the need for a simulation for each iteration;

e Uncertainty in the search space and objective of the problem because of simulation dependability
(black-box problem).

The following prerequisites are necessary for simulation optimization:

e The number of iterations, or rather the number of subsequent simulations, must be kept at a
minimum. An effective way of doing this is parallelization of independent iterations;

o Classifying the problem as much as possible beforehand and adapting the approach accordingly.

1.2 Which optimization algorithms are applicable to simulation optimization in energy system modeling,
and how do they differ from one another?

By investigating three different optimization problems in this thesis, it was observed that there is
a variety of possible problem types in this domain. The first problem was based on the design of
the system, the second problem aimed to optimize the operation of a system, and the last problem
addressed the optimization of the planning of a system. Furthermore, the third scenario involved a
discrete problem, while the others were continuous. Also, the number of variables differed among the
three problems. Considering this diversity, it is important to analyze how the different algorithms
performed on each problem type.

The three algorithms evaluated in this thesis use different approaches to find optima. PSO and GA use
evolutionary exploration methods, while L-BFGS-B is gradient-based. PSO employs a population of
particles that change their direction and speed depending on personal and group performance. Because
the particles retain their own identity across generations, they remain the same individual entities. In
GA, the exploration is based on genetic evolution, and by using recombination and mutation, each
generation consists of new entities. Both exploration methods make it possible to escape local optima
and increase the likelihood of finding the global optimum. L-BFGS-B, on the other hand, makes use
of gradient properties by using the finite difference method. The implemented algorithm uses instances
of local optimization by starting from different initial solutions. When an individual instance finds an
optimum, the instance stops its exploration. The quality of the initial solutions strongly influences
whether the global optimum is found in the gradient-based algorithm. This is confirmed by the results
obtained in Section 4.2.2, where four runs of the algorithm with different starting points were executed.
Among the different runs there is a large variance in the cost. In this scenario the calculated gaps were
9.129%, 66.985%, 29.356% and 59.236%, indicating a large variance among runs with different starting
points. This variance was less noticeable in the other algorithms.

To compare the convergence properties of each applied algorithm, Figure 4.1, Figure 4.7, and Figure
4.13 can be used. In the first two figures, PSO and GA started to converge after a similar number of
generations, namely after around 5 and 15 generations, respectively. The average run times from Table
4.4, 4.8, confirm that the speed of the two algorithms are similar in these scenarios, but PSO is slightly
quicker. In the third scenario, GA had a shorter run time compared to PSO, namely 151.9 s versus
238.2 s. From this data it is inferred that, in terms of time efficiency, PSO performs slightly better than
GA in the continuous problems, while GA is significantly faster in the discrete problem. L-BFGS-B was

5.1. Research question 51

consistently slower in all cases. In fact, compared to the two population-based algorithms, L-BFGS-B
was at least a factor 2 slower.

By observing the values from Table 4.4, it can be seen that PSO and GA had very similar results in terms
of average cost (both 420.36 kg), best cost (419.91 kg and 419.92 kg), and average gap (both 0.107%.
The difference is that, on average, PSO required less run time. L-BFGS-B performed significantly worse
on all fronts, although it found a similar best cost and had a small average gap. In the second scenario
(Table 4.8), the same pattern was observed. The PSO algorithm and the GA had similar performance in
terms of best cost and average cost, although the PSO performed slightly better. PSO had an average
gap of 0.363%, while GA had an average gap of 0.598%. Again, the parallelized L-BFGS-B algorithm
performed worse. In fact, it was not able to find an optimum that was competitive with the optima
found by the other algorithms. For the third scenario (Table 4.12), both PSO and GA found the same
best cost (14.95 kW). However, their average cost varied slightly, which was also reflected in the average
gap. PSO had an average gap of 20.145% and GA had an average gap of 28.072%. On the other hand,
as mentioned earlier, GA required less time. The parallel L-BFGS-B had the worst cost performance.
In fact, it did not find a competitive solution. This was as expected, because it was known beforehand
that it is not a suitable algorithm for discrete problems.

Between the explored algorithms in this thesis, the PSO algorithm resulted in the best average cost
and the best overall cost for all problems. Therefore, the PSO algorithm is the preferred algorithm for
simulation optimization. GA was comparable on this aspect but yielded slightly worse cost. However, on
the discrete problem, GA performed better time-wise while obtaining an equally good solution. If this
time characteristic is prioritized, GA can be considered the best algorithm for discrete optimization.
Furthermore, it is proved that the parallelized L-BFGS-B algorithm works for simple optimization
problems such as the one presented in scenario 1, but that it is not competitive compared to the other
two algorithms on any aspect.

1.3 How generalizable is a simulation optimization framework to various energy system problem do-
mains?

Based on the experiments performed with the selected algorithms it can be concluded that the Particle
Swarm Optimization (PSO) algorithm generally performed better than the other algorithms on the
presented set of problems. Therefore, PSO is the preferred algorithm for a generalized simulation opti-
mization framework. A potential distinction can be made for discrete problems, as the time performance
of GA on the discrete EV charging station problem was better than that of PSO. However, to confirm
this distinction, PSO and GA should be applied to additional discrete problems. Examples of these
are: other scheduling problems, such as load shedding or unit commitment decisions, and problems
regarding component selection from a set of predefined components.

Since no correlation was found between the algorithm performances and the energy carrier types treated
in the scenarios, simulation optimization is confirmed to be generalizable for different energy carriers.
The framework has been evaluated on the distinct hydrogen and electricity domains, but is expected
to perform equally for energy domains such as natural gas or heating systems. It must be noted that
the experiments performed in this thesis did not cover multi-carrier systems such as a combination of
hydrogen and electricity. However, it is expected that the optimization framework works on these types
of systems as well.

A distinction was made between design, operational, and planning problems in energy systems. However,
no difference in performance was found in the conducted experiments that can be correlated to this
distinction. To draw a conclusion regarding this distinction, more problems must be evaluated. However,
it is proven that the optimization framework is generalizable on the problems presented in this thesis.

To conclude, a simulation optimization framework is well generalizable among the different domains
treated in this thesis. The best algorithm in terms of generalization was found to be PSO.

5.2. Further remarks 52

1.4 How can multi-carrier energy systems be effectively modeled to enable meaningful insights?

In this thesis two energy carriers were presented: electricity and hydrogen. As The Illuminator lacked
full capability of simulating hydrogen systems, several additional component models were developed.
This was done by using a top-down approach and by considering each component as a black box. The
newly created models can be subdivided into the five categories presented in Section 2.2: production,
conversion, storage, transport, and utilization. From this, the analogy between electrical and hydrogen
component types became apparent. With the use of an appropriate abstraction level, the behavior of
real-life components was approximated. The results of some of these models are observable in Section
4.1, which shows how the models are working together as a system that is optimizable by the created
framework.

The simulation results presented in this thesis, together with the description of the created models,
therefore show how energy systems with varying carriers can be effectively modeled. Especially in com-
bination with the newly implemented optimization framework, meaningful insights could be generated
regarding designing, operating, and planning multi-carrier energy systems. Although this thesis did not
actively present multi-carrier energy systems, the results can be extended to scenarios in which models
pertaining to the electrical and hydrogen domains can be combined. This functionality is readily avail-
able, since all models of The Illuminator, including the newly created hydrogen models, are created
at the same level of abstraction. Furthermore, all inputs and outputs use the same units. Therefore,
no difference in performance is expected when models belonging to different carriers are directly con-
nected to each other. Examples of systems that can currently be simulated and optimized are hydrogen
production facilities that use electrical systems to produce hydrogen. Another example is the use of
hydrogen as energy storage in energy hubs. A combination of the scenarios presented in this thesis can
be a reasonable starting point. The exploration of these types of systems can provide valuable insights
into multi-carrier energy systems, contributing to the energy transition.

1. How can simulation optimization support the development of improved configurations
of renewable energy systems?

As energy system complexity increases due to an increasing share of renewable energy sources, the design
and operation of energy systems becomes more challenging. While the use of simulation facilitates the
design, operation, and planning of energy systems, it does not inherently aid the search for optimality
in terms of efficiency, cost, and reliability. By combining simulation with optimization techniques, it
becomes possible to find optimal simulation parameters, and with this support the development of
energy systems.

Three scenarios, each with a different objective, were modeled and optimized in this thesis. The first
scenario involved the optimization of the size of the buffer, while ensuring system efficiency and cost
minimization. The second scenario involved optimization of the operational strategy, and the final
scenario involved planning optimization. The diversity of the scenarios and the success of the algorithms
proved that simulation optimization can be applied to a variety of energy system problem types.

The ability to manage continuous and discrete variables confirms the potential of simulation optimiza-
tion. The best performing algorithms, PSO and GA, showed reliable performance in system optimization
with complex search spaces, a common characteristic of systems that consist of many interdependent
components.

A notable challenge in simulation optimization is computation time. The implementation of paralleliza-
tion in this thesis helped to minimize this time, creating prospects for the application of simulation
optimization on energy systems.

5.2. Further remarks

As mentioned in Section 3.3, the evaluation scenarios of this thesis were fictional scenarios that represent
potential scenarios as accurately as possible. However, there are certain improvements that can be made
to further increase the realism of the scenarios. For example, in the first scenario, specifically in Figure

5.2. Further remarks 53

4.5 and 4.6, it can be predicted that if the simulation time frame had continued with the same production
and demand pattern, the buffer would have been too small to prevent hydrogen flaring. The reason
for this is that in this scenario the total production was significantly higher than the total demand.
Additionally, the system had a low level of flexibility in terms of demand and production control. In the
second scenario, the assumption was made that all neighbors connected to the energy hub shared the
interest of maximizing the total profit. To make the scenario more accurate, intra-hub trading could
be implemented, such that the individual profits could be optimized. Moreover, to increase the profit,
trading with the energy stored in the battery could also be implemented. In the third scenario, the
assumption was made that an EV can only charge in one uniform charging stint. In real life however,
this is not an obligation. Furthermore, for this scenario it must be noted that the starting timesteps
of EV2, EV3, and EV5 are interchangeable. The reason for this is that these vehicles are present at
the charging station during the same period of time. This does not become clear in the figures 4.14,
4.15, and 4.16, because of the search strategy of the algorithms. In fact, the algorithms do not explore
all possible solutions but rather persuade an optimal solution. As a consequence, there is no guarantee
that the optima found in this thesis are the true optimal solutions.

Conclusion

6.1. Conclusion

This thesis investigated the potential of simulation optimization to support the design, operation, and
planning of energy systems. To execute this investigation, The Illuminator simulation software was
used. To extend its capabilities, new (hydrogen) models were developed to be able to explore different
energy carrier domains. Additionally, an optimization framework was integrated with The Illuminator,
which enabled optimization by using simulation performed by this software. To evaluate the technique,
three distinct scenarios were created.

Three optimization algorithms were implemented: Particle Swarm Optimization (PSO), a gradient-
based algorithm (L-BFGS-B), and a Genetic Algorithm (GA). As these algorithms were not directly
compatible with the simulation software, a framework was built to feed algorithm-generated decision
variables into the simulation, and to evaluate the output of a simulation. It was found that both
the simulation time and the number of simulations played a significant role in the total run time of
simulation optimization. This finding is consistent with literature. Parallelization was applied to the
algorithms in an attempt to reduce run times. For PSO and GA this allowed solutions within the
same generation to be evaluated simultaneously. Indeed, for these two algorithms, the total runtime
was reduced by almost a factor 5. As L-BFGS-B was found to require multiple runs at various starting
points to find a global optimum, parallelization was used to execute these runs simultaneously to reduce
the total run time as well.

The three evaluation scenarios were diverse and covered various domains in different categories. The
first scenario involved a hydrogen production facility that required the optimization of the buffer size.
The scenario covered a hydrogen-based system design problem with a continuous variable. The second
scenario involved a residential energy hub. Its purpose was to optimize two operational parameters that
determined the use of the electricity grid and its financial impact. Hence, the optimization problem
covered an electricity-based system operation problem with continuous variables. The last scenario
involved a charging station for electric vehicles (EV) that was powered by RES and a grid connection.
For this scenario, the goal was to optimize the charging schedule (measured in discrete time steps) of
the EVs to minimize the peak power from and towards the grid. The problem therefore covered an
electricity-based system planning problem with discrete variables.

PSO was found to be the overall best performing algorithm, performing well across all domains, i.e.,
continuous, discrete, hydrogen, electricity, and all system problems, i.e., system design, operation, and
planning. Only for the third scenario GA outperformed PSO in runtime. The L-BFGS-B performed
worst in all scenarios. Although it found a viable solution in the first scenario, it was not able to find
a competitive solution for the other two scenarios.

From these findings, it was concluded that PSO is the most suitable algorithm for the optimization
problems presented in this thesis. Moreover, the results show that simulation optimization is a valuable
technique that can support and improve the development of renewable energy systems, despite its

54

6.2. Recommendations 55

computational demands. Future work should focus on the experimentation of the developed framework
on real-life systems, validation, and further computation speed improvements.

6.2. Recommendations

Based on the results of the experiments conducted and the simulation optimization methods applied, a
number of recommendations for future research is proposed.

To assess the potential of simulation-based algorithms and the performance of GA and PSO, it is
advisable to experiment with scenarios that cover a larger time frame or to make a compilation of
multiple smaller time frames. For example, the energy hub scenario could be simulated for a single
day or week and use these results to initiate a consecutive simulation. By implementing this chain of
simulation, the price thresholds can become more dynamic and may be used to control the hub for a
longer period of time.

Another recommendation for future research is the validation of the developed framework by using
real-life systems and experimental setups for which the optimal values are known. This way, the true
accuracy of the optimization framework can be found, as in this thesis the performance was measured
by comparing each result to the best-found results, making it a relative metric.

Additionally, it can be valuable to experiment with various algorithm parameters. Using the optimal
parameter for a specific problem may result in higher accuracies and perhaps shorter computation times.
These optimal optimization parameters can for example be found by performing a high number of runs
with different parameters, and by investigating their effect.

From the results of the applied algorithms it was concluded that PSO is the most suitable algorithm
to implement for a general simulation optimization framework. GA showed good speed performance
on a discrete problem. For future research, the capability of this algorithm on more complex discrete
problems must be further investigated. Suggestions for scenarios are: other system planning algorithms
or problems in which the optimal component combination is required. An example of the latter category
is a problem in which a combination of components must be made from a set of existing components
with slightly varying characteristics.

Finally, an important research topic is the further improvement of run time. An example of an improve-
ment is the memory handling of simulation files. Currently, each simulation requires the creation of
a separate configuration file and a separate output file. Ideally, this is not needed and is replaced by
overwriting operations. Additionally, it can be interesting to investigate the influence of hardware spec-
ifications of the simulation system. An example is the use of more computation cores or even the use
of multiple processors contemporaneously. Effectively this could lead to an increase of the population
size for PSO and GA, which in its turn could reduce the number of generations needed to find a viable
solution.

References

Energy Agency International (IEA), “World Energy Outlook 2024,” p. 103, Oct. 2024. [Ounline].
Available: https://www.iea.org/reports/world-energy-outlook-2024, (accessed on May 16,
2025).

D. Maradin, L. Cerovi¢, and T. Mjeda, “Economic Effects of Renewable Energy Technologies,”
Nase gospodarstvo/Our economy, vol. 63, no. 2, pp. 49-59, 2017. doi: 10.1515/ngoe-2017-0012.

S. P. Filippov and A. B. Yaroslavtsev, “Hydrogen energy: development prospects and materials,”
Russian Chemical Reviews, vol. 90, no. 6, pp. 627-643, Jun. 2021, issn: 0036-021X. doi: 10.1070/
RCR5014.

M. A. Rosen and S. Koohi-Fayegh, “The prospects for hydrogen as an energy carrier: an overview
of hydrogen energy and hydrogen energy systems,” Energy, Fcology and Environment, vol. 1, no. 1,
pp- 1029, Feb. 2016, issn: 23638338. doi: 10.1007/s40974-016-0005-z.

A. Fu, R. Saini, R. Koornneef, A. van der Meer, P. Palensky, and M. Cvetkovic, The Illuminator.
[Online]. Available: https://github.com/Illuminator-team/Illuminator, (accessed on Mar.
25, 2025).

A. Fu, R. Saini, R. Koornneef, A. van der Meer, P. Palensky, and M. Cvetkovié¢, “The illuminator:
An open source energy system integration development kit,” 2028 IEEE Belgrade PowerTech,
pp- 1-5, 2023. doi: 10.1109/PowerTech55446.2023.10202816.

L. Hréka, P. Vazan, and Z. Sutova, “Basic Overview of Simulation Optimization,” Research Papers
Faculty of Materials Science and Technology Slovak University of Technology, vol. 22, no. 341,
pp. 11-16, Dec. 2014. doi: 10.2478/RPUT-2014-0001.

Meteonorm, Climate. [Online]. Available: https://meteonorm.com/climate/, (accessed on Jul.
15, 2025).

H. Jongen, K. Meer, and E. Triesch, Optimization Theory. New York: Springer, 2004. doi: 10.
1007/1130886.

N. Guide, Optimization problem types. [Online]. Available: https://neos-guide.org/guide/
types/, (accessed on Mar. 27, 2025).

A. Roberts Wayne and D.E. Varberg, Convex Functions. New York: Academic Press Inc, 1974,
vol. 57.

K. H. Rahi, H. K. Singh, and T. Ray, “Partial Evaluation Strategies for Expensive Evolutionary
Constrained Optimization,” IEEFE Transactions on FEvolutionary Computation, vol. 25, no. 6,
pp- 1103-1117, Dec. 2021, issn: 19410026. doi: 10.1109/TEVC.2021.3078486.

K. Terayama, M. Sumita, R. Tamura, and K. Tsuda, “Black-Box Optimization for Automated Dis-
covery,” Accounts of Chemical Research, vol. 54, no. 6, pp. 1334-1346, Mar. 2021, issn: 15204898.
doi: 10.1021/acs.accounts.0c00713.

1. Bajaj, A. Arora, and M. M. Hasan, “Black-Box Optimization: Methods and Applications,”
Springer Optimization and Its Applications, vol. 170, pp. 35-65, Jan. 2021, issn: 19316836. doi:
10.1007/978-3-030-66515-9.

C.H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complezity.
United States: Dover Publications, Jan. 1998.

C. Blum and A. Roli, “Metaheuristics in combinatorial optimization,” ACM Computing Surveys
(CSUR), vol. 35, no. 3, pp. 268-308, Sep. 2003, issn: 03600300. doi: 10.1145/937503.937505.

R. Olaechea, D. Rayside, J. Guo, and K. Czarnecki, “Comparison of exact and approximate multi-
objective optimization for software product lines,” ACM International Conference Proceeding
Series, vol. 1, pp. 92-101, Sep. 2014. doi: 10.1145/2648511.2648521.

56

https://www.iea.org/reports/world-energy-outlook-2024
https://doi.org/10.1515/ngoe-2017-0012
https://doi.org/10.1070/RCR5014
https://doi.org/10.1070/RCR5014
https://doi.org/10.1007/s40974-016-0005-z
https://github.com/Illuminator-team/Illuminator
https://doi.org/10.1109/PowerTech55446.2023.10202816
https://doi.org/10.2478/RPUT-2014-0001
https://meteonorm.com/climate/
https://doi.org/10.1007/b130886
https://doi.org/10.1007/b130886
https://neos-guide.org/guide/types/
https://neos-guide.org/guide/types/
https://doi.org/10.1109/TEVC.2021.3078486
https://doi.org/10.1021/acs.accounts.0c00713
https://doi.org/10.1007/978-3-030-66515-9
https://doi.org/10.1145/937503.937505
https://doi.org/10.1145/2648511.2648521

References 57

[18]

[19]

[20]

[27]

[28]

[29]

Y. Wang, “Review on greedy algorithm,” Theoretical and Natural Science, vol. 14, no. 1, pp. 233—
239, Nov. 2023, issn: 2753-8826. doi: 10.54254/2753-8818/14/20241041.

S. Desale, A. Rasool, S. Andhale, and P. Rane, “Heuristic and Meta-Heuristic Algorithms and
Their Relevance to the Real World: A Survey,” International Journal of Computer Engineering
in Research Trends, vol. 2, pp. 296-304, 2015, issn: 2349-7084.

V. Shoarinezhad, S. Wieprecht, and S. Haun, “Comparison of Local and Global Optimization
Methods for Calibration of a 3D Morphodynamic Model of a Curved Channel,” Water 2020, Vol.
12, Page 1333, vol. 12, no. 5, p. 1333, May 2020, issn: 2073-4441. doi: 10.3390/W12051333.

B. Hartke, “Global optimization,” Wiley Interdisciplinary Reviews: Computational Molecular Sci-
ence, vol. 1, no. 6, pp. 879-887, Nov. 2011, issn: 1759-0884. doi: 10.1002/WCMS.70.

M. Cavazzuti, “Deterministic Optimization,” Optimization Methods, pp. 77-102, Sep. 2013. doi:
https://doi.org/10.1007/978-3-642-31187-1.

J. Haddock and J. Mittenthal, “Simulation optimization using simulated annealing,” Computers €
Industrial Engineering, vol. 22, no. 4, pp. 387-395, Oct. 1992, issn: 0360-8352. doi: 10.1016/0360-
8352(92)90014-B.

M. H. Alrefaei and A. H. Diabat, “A simulated annealing technique for multi-objective simulation
optimization,” Applied Mathematics and Computation, vol. 215, no. 8, pp. 3029-3035, Dec. 2009,
issn: 0096-3003. doi: 10.1016/J.AMC.2009.09.051

K. Amine, “Multiobjective Simulated Annealing: Principles and Algorithm Variants,” Advances
in Operations Research, vol. 2019, no. 1, p. 8134674, Jan. 2019, issn: 1687-9155. doi: 10.1155/
2019/8134674.

J. A. Joines, K. A. Thoney, R. E. King, and M. G. Kay, “Supply chain multi-objective simulation
optimization,” 4th International Industrial Simulation Conference 2006, ISC 2006, pp. 377-383,
2006. doi: 10.1109/WSC.2002.1166395

B. Dengiz and C. Alabas, “Simulation optimization using tabu search,” Winter Simulation Con-
ference Proceedings, vol. 1, pp. 805-810, 2000, issn: 02750708. doi: 10.1109/WSC.2000.899877.

A. Sedki and D. Ouazar, “Swarm intelligence for groundwater management optimization,” Journal
of Hydroinformatics, vol. 13, no. 3, pp. 520-532, Jul. 2011, issn: 1464-7141. doi: 10.2166/HYDRO.
2010.163.

H. Abbasi, A. Afshar, and M. R. Jalali, “Ant-colony-based simulation—optimization modeling for
the design of a forced water pipeline system considering the effects of dynamic pressures,” Journal
of Hydroinformatics, vol. 12, no. 2, pp. 212-224, Mar. 2010, issn: 1464-7141. doi: 10.2166/HYDRO.
2009.147.

R. F. Adebiyi, K. A. Abubilal, M. B. Mu’azu, and B. H. Adebiyi, “Intelligent Systems and Appli-
cations,” Intelligent Systems and Applications, vol. 8, pp. 68-74, 2018. doi: 10.5815/ijisa.2018.
08.06.

European Forum for Reciprocating Compressors, Tutorial: Introduction to Thermodynamics. [On-
line]. Available: https://www . recip.org/tutorial - introduction- to-thermodynamics/,
(accessed on Apr. 16, 2025).

A. M. Elberry, J. Thakur, A. Santasalo-Aarnio, and M. Larmi, “Large-scale compressed hydro-
gen storage as part of renewable electricity storage systems,” International Journal of Hydrogen
Energy, vol. 46, no. 29, pp. 15671-15 690, Apr. 2021, issn: 0360-3199. doi: 10.1016/J.IJHYDENE.
2021.02.080.

A. Raj, I. A. Larsson, A. L. Ljung, et al., “Evaluating hydrogen gas transport in pipelines: Current
state of numerical and experimental methodologies,” International Journal of Hydrogen Energy,
vol. 67, pp. 136-149, May 2024, issn: 0360-3199. doi: 10.1016/J.IJHYDENE.2024.04.140.

G. Papaevangelou, C. Evangelides, and C. Tzimopoulos, “A new explicit relation for the friction
coefficient in the Darcy-Weisbach equation,” Proceedings of the Tenth Conference on Protection
and Restoration of the Environment: PRE10, Jul. 2010. [Online]. Available: https://tinyurl.
com/yr63kz87.

https://doi.org/10.54254/2753-8818/14/20241041
https://doi.org/10.3390/W12051333
https://doi.org/10.1002/WCMS.70
https://doi.org/https://doi.org/10.1007/978-3-642-31187-1
https://doi.org/10.1016/0360-8352(92)90014-B
https://doi.org/10.1016/0360-8352(92)90014-B
https://doi.org/10.1016/J.AMC.2009.09.051
https://doi.org/10.1155/2019/8134674
https://doi.org/10.1155/2019/8134674
https://doi.org/10.1109/WSC.2002.1166395
https://doi.org/10.1109/WSC.2000.899877
https://doi.org/10.2166/HYDRO.2010.163
https://doi.org/10.2166/HYDRO.2010.163
https://doi.org/10.2166/HYDRO.2009.147
https://doi.org/10.2166/HYDRO.2009.147
https://doi.org/10.5815/ijisa.2018.08.06
https://doi.org/10.5815/ijisa.2018.08.06
https://www.recip.org/tutorial-introduction-to-thermodynamics/
https://doi.org/10.1016/J.IJHYDENE.2021.02.080
https://doi.org/10.1016/J.IJHYDENE.2021.02.080
https://doi.org/10.1016/J.IJHYDENE.2024.04.140
https://tinyurl.com/yr63kz87
https://tinyurl.com/yr63kz87

References 58

[35]

[36]

[39]

[40]

H. Kanesugi, K. Ohyama, H. Fujiwara, and S. Nishimura, “High-pressure hydrogen permeability
model for crystalline polymers,” International Journal of Hydrogen Energy, vol. 48, no. 2, pp. 723—
739, Jan. 2023, issn: 0360-3199. doi: 10.1016/J.IJHYDENE. 2022.09.205.

S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury, “Simulation optimization: a review of
algorithms and applications,” 4OR, vol. 12, no. 4, pp. 301-333, Nov. 2014, issn: 16142411. doi:
10.1007/s10288-014-0275-2.

K. Chandrasekar and N. V. Ramana, “Performance Comparison of GA, DE, PSO and SA Ap-
proaches in Enhancement of Total Transfer Capability using FACTS Devices,” Journal of Electri-
cal Engineering & Technology, vol. 7, no. 4, pp. 493-500, 2012. doi: 10.5370/JEET.2012.7.4.493.

S. Alam, X. Zhao, I. K. Niazi, M. S. Ayub, and M. A. Khan, “A comparative analysis of global
optimization algorithms for surface electromyographic signal onset detection,” Decision Analytics
Journal, vol. 8, p. 100294, Sep. 2023, issn: 2772-6622. doi: 10.1016/J.DAJOUR.2023.100294.

H. Wang and J. Gong, “A comparative study of GA, PSO and SCE algorithms for estimating
kinetics of biomass pyrolysis,” Emergency Management Science and Technology, vol. 2023, p. 9,
doi: 10.48130/EMST-2023-0009

M. Wetter and J. Wright, “A comparison of deterministic and probabilistic optimization algo-
rithms for nonsmooth simulation-based optimization,” Building and Environment, vol. 39, no. 8,
pp. 989-999, Aug. 2004, issn: 0360-1323. doi: 10.1016/J.BUILDENV.2004.01.022.

Vahid Beiranvand, Warren Hare, and Yves Lucet, “Best practices for comparing optimization
algorithms,” Optimization and Engineering, vol. 18, no. 4, pp. 815-848, Dec. 2017, issn: 15732924.
doi: 10.1007/s11081-017-9366-1.

J. Blanc and k. Deb, “pymoo: Multi-Objective Optimization in Python,” IFEE Access, vol. 8,
pp- 89497-89 509, 2020. doi: 10.1109/ACCESS.2020.2990567.

P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: fundamental algorithms for scientific
computing in Python,” Nature Methods, vol. 17, no. 3, pp. 261-272, Mar. 2020, issn: 15487105.
doi: 10.1038/S41592-019-0686-2.

G. Hebrail and A. Berard, Individual Household Electric Power Consumption, 2006. doi: 10 .
24432/C58K54.

TenneT, Settlement Prices, 2023. [Online]. Available: https://www.tennet .eu/nl-en/node/
3479, (accessed on Jun. 20, 2025).

J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proceedings of ICNN’95 - Interna-
tional Conference on Neural Networks, vol. 4, pp. 1942-1948, doi: 10.1109/ICNN. 1995.488968.

L. M. Valle-Falcones, C. Grima-Olmedo, L. F. Mazadiego-Martinez, A. Hurtado-Bezos, S. Eguilior-
Diaz, and R. Rodriguez-Pons, “Green Hydrogen Storage in an Underground Cavern: A Case Study

in Salt Diapir of Spain,” Applied Sciences 2022, Vol. 12, Page 6081, vol. 12, no. 12, p. 6081, Jun.
2022, issn: 2076-3417. doi: 10.3390/APP12126081.

https://doi.org/10.1016/J.IJHYDENE.2022.09.205
https://doi.org/10.1007/s10288-014-0275-2
https://doi.org/10.5370/JEET.2012.7.4.493
https://doi.org/10.1016/J.DAJOUR.2023.100294
https://doi.org/10.48130/EMST-2023-0009
https://doi.org/10.1016/J.BUILDENV.2004.01.022
https://doi.org/10.1007/s11081-017-9366-1
https://doi.org/10.1109/ACCESS.2020.2990567
https://doi.org/10.1038/S41592-019-0686-2
https://doi.org/10.24432/C58K54
https://doi.org/10.24432/C58K54
https://www.tennet.eu/nl-en/node/3479
https://www.tennet.eu/nl-en/node/3479
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.3390/APP12126081

A.l. Background Chapter

Table A.1 is a more detailed version of Table 2.2 from Section 2.3.2.

Detailed Figures

In this table the types each

algorithm belongs to is listed. Additionally, the table provides a short summary of the operation of

each algorithm.

Table A.1: Optimization algorithms used in simulation optimization literature (detailed).

Algorithm Type Algorithm summary References
Simulated annealing . L Begin the iteration with an [23]F
o Single objective; o .
S initial solution and temperature
e meta-heuristic; .
« stochastic; Ty. Tteratively: generate
« single-solution based neighbor solution, evaluate the
e continuous; objective function, in case of a
+ global. positive change accept solution,
in case of negative change
accept with a probability
P(T, f(x)), reduce temperature.
Repeat until T' < TY.
Similar to single-objective [25], [24]*

Multi-objective;
meta-heuristic;
stochastic;
single-solution based
continuous;

global.

simulated annealing. However
now, non-dominating solutions
found in the exploration of the
domain are stored in a memory.
With the correct acceptance
probability, the problem
converges to a set of Pareto
solutions.

Al Background Chapter

60

Genetic algorithm

Single-objective;
meta-heuristic;
stochastic;
population based;
continuous;
global.

Begin the iteration by
initializing a randomly
generated population consisting
of N individuals and evaluating
the objective function for each
of these individuals. The best
individuals are recombined
based on their performance,
generating a new population.
The individuals of the new
population are evaluated and
iteration is continued until the
maximum number of iterations
is reached [26].

Multi-objective;
meta-heuristic;
stochastic;
population based;
continuous;
global. .

Tabu search

Single-objective;
meta-heuristic;
deterministic;

single-solution based;

discrete;
global search.

single-solution based.

A random initial solution is [27]1
picked and selected as current
best solution. Iteratively the
following two steps are executed
until the maximum number of
iterations occur:

1) Neighboring parameter sets
are generated and evaluated.

2) The best newly occurring is
stored in the Tabu list.

When the list is full, the oldest
set is eliminated. When the
iterations are complete, the best
solution in the Tabu list is set
to be the best solution.

Al Background Chapter

61

Particle swarm

Single-objective;
meta-heuristic;
stochastic;
population based;
continuous;
global.
population based.

Initial positions of a number of
particles are generated
randomly in the search space.
After this, they are individually
evaluated in the objective
function. The results are set as
the current best solution for
each particle (personal best).
Iteratively the particles values
are updated based on their
previous value and the particle
velocity. The particle velocity
can be defined as the magnitude
and direction of the particle’s
movement in search space. The
velocity is dependent on a
reduced inertia weight
(controlling the influence of the
previous velocity), the personal
best solution of the particle, and
the global best solution, which
is the best solution found by
any particle in the swarm. The
process is terminated when the
particles are converged to a
similar solution or the maximum
number of iterations is reached.

[28]" [46]

Ant colony

Single-objective;
meta-heuristic;
stochastic;
population based;
discrete;

global.

Initially a set of ants(agents)
travel through search space at
random. After each step, each
agent selects its new path based
on the pheromone level of paths,
which is dependent on the
quality of the solutions found by
other agents. The pheromones
are ’evaporated’ by time, in
other words their strength is
decayed, to promote diversity
and prevent premature
convergence. In the meantime
the global best solution is
tracked and the process is
repeated until the termination
conditions are met.

Al Background Chapter

62

Artificial bee colony Single-objective:
meta-heuristic;
stochastic;
population based;
continuous;
global.

The algorithm is initiated with [30]"
food sources (random solutions
to the problem). First the
employed bees explore the
neighborhood of each food
source and keep track of the
best solution. Next, the
onlooker bees choose a food
source based on the fitness of
the solution. Finally, scout bees
neglect the food sources that
have not been improved and
generate a new random solution.
This cycle continues until the
termination condition is met.

1Reference uses the algorithm for simulation optimization.

Supplementary figures and tables

This appendix provides additional supplementary figures and tables belonging to various chapters.

B.1. Methodology chapter

Figure B.1 illustrates a table that contains the Z-values (or z-factors) for a number of pressure and
temperature combinations. The table is hard coded in the compressor and pipeline models described in
Section 3.1.1. When the model is provided with an unknown pressure or temperature, nearest neighbor
interpolation is used.

Temperature (K)
250 27315 298.15 350 400 450 500

1 1.00070 1.00004 1.0006 1.00055 1.00047 1.00041 1.00041
5 1.00337 1.00319 1.00304 1.00270 1.00241 1.00219 1.00196
10 1.00672 1.00643 1.00605 1.00540 1.00484 1.00435 1.00395
50 1.03387 1.03235 1.03037 1.02701 1.02411 1.02159 1.01957
100 1.06879 1.06520 1.06127 1.05369 1.04807 1.04314 1.03921
150 1.10404 1.09795 1.09189 1.08070 1.07200 1.06523 1.05936
200 1.14056 1.13177 1.12320 1.10814 1.09631 1.08625 1.07849
Pressure (bar) 250 1.17789 1.16617 1.15499 1.13543 1.12034 1.10793 1.08764
300 1.21592 1.20101 1.18716 1.16300 1.14456 1.12957 1.11699
350 1.25461 1.23652 1.21936 1.19051 1.16877 1.15112 1.13648
400 1.29379 1.27220 1.25205 1.21842 1.19317 1.17267 1.15588
450 1.33332 1.30820 1.28487 1.24634 1.21739 1.19439 1.17533
500 1.37284 1.34392 1.31784 1.27398 1.24173 1.21583 1.19463
600 1.45188 1.41618 1.38797 1.33010 1.29040 1.2592 1.23373
700 1.53161 1.48880 1.44991 1.38593 1.33914 1.30236 1.27226

Figure B.1: The Z values used for the calculation of the volumetric density of hydrogen[47].

Table B.1 provides the variables required by the compressor model and their respective units.

63

B.1. Methodology chapt

er

64

Table B.1: Variables used in the compressor model.

Symbol Description Unit
P1 initial pressure bar
D2 final pressure bar
T1 initial temperature K
Neompressor compressor efficiency —

Table B.2 provides the variables required by the pipeline model and their respective units.

Table B.2: Variables used in the pipeline model.

Symbol Description Unit

L pipe length m

v flow velocity m/s

D pipe diameter m

€ pipe roughness m

L dynamic viscosity of hydrogen Pa

Py, _poty Permeability coefficient em3(STP) - em/(em? - s - Pa)
A cross-sectional area pipe m?

Din — Pout pressure gradient inside-outside Pa (1bar = 10° Pa)

d pipe wall thickness m

Table B.3 provides the permeation coefficients for hydrogen in HDFE pipes. These coefficients are used
in the pipeline model. Again, nearest neighbor interpolation is used for pressures that are not explicitly

provided in the table.

Table B.3: Permeation coefficients for hydrogen in HDPE pipes [35].

Pressure [M Pa] Permeability coefficient [cm3 - cm/cm? - s - Pal
10 5.77-1078
30 4.17-1078
50 2.84-1078
70 1.99-108
90 1.68-1078

Table B.4 provides the variables required by the electrolyzer model and their respective units.

Table B.4: Variables used in the electrolyzer model.

Symbol Description Unit
P; input power w
Nex electrolyzer efficiency —
Piy rated rated input power w
Py ramp max ramp input power W

Table B.5 provides the variables required by the fuel cell model and their respective units.

B.2. Results chapter

65

Table B.5: Variables used in the fuel cell model.

Symbol Description Unit
Prey output power w

Ne fuel cell efficiency —

mpy, hydrogen input flow kg/s
MH, maz Maximum hydrogen input flow kg/s
APfemae ~maximum ramp up output power W/'time’

Table B.6 provides the variables required by the hydrogen storage model and their respective units.

Table B.6: Variables used in the hydrogen storage model.

Symbol Description Unit
Q Hy—sto,t hydrogen charge at time t kg
Q Hy—sto,maz hydrogen storage capacity kg
Q Hy—sto—in,t hydrogen storage input flow kg/s
Q Hy—sto—in,min minimal hydrogen storage input flow kg/s
QHy—sto—in,maz ~ Maximal hydrogen storage input flow kg/s
QHy—sto—out,min Minimal hydrogen storage output flow kg/s
QH,—sto—out,maz Maximal hydrogen storage output flow kg/s
1 Hy—sto,charge hydrogen storage charge efficiency -
NH,—sto,discharge Nydrogen storage discharge efficiency —
SOCH,—sto,min, ~ minimum state of charge %
SOCH,—stomaz ~ Maximum state of charge %

B.2. Results chapter

Figure B.2 illustrates the upper threshold component of all solutions found by PSO. Figure B.3 illus-
trates the lower threshold components.

-10 - -10 -
L ° ° ° * o ° °
° 9 ° °
° ° ° °
-20 o . o os o o -20 o gecee e
° ';6 ° : c;) .
-30 -30
- o
[[
] (o]
O O
-40 -40
L o0 o°
o "
IO oot
-50 o -50 ?
II“
[[
<
-60 4 -60 f
-20 -15 -10 -05 00 05 1.0 15 2.0 -20 -15 -10 -05 00 05 1.0 15 2.0
Upper threshold [€/kWh] Lower threshold [€/kWh]
Figure B.2: PSO search space for the upper price. Figure B.3: PSO search space for the lower price.

Figure B.4 illustrates the upper threshold component of all solutions found by L-BFGS-B. Figure B.5
illustrates the lower threshold components.

B.2. Results chapter

66

-10 +
N . o o . s
® s ¢ °
-20 P ° ° °
0 -30 .
GJ
E °
T _40 .8
“ s
-50
)
-60 °
-20 -15 -10 -05 00 05 1.0 15 20 25
Upper threshold [€/kWh]
Figure B.4: Parallel L-BFGS-B search space for the

upper price.

Fitness

-10 =
o ° oo ° .
o o9 °
o
-20 . o o
e
-30 .
L]
-40 oo
H
.
-50
@
.
-60
-20 -15 -10 -05 00 05 1.0 15 20 25

Lower threshold [€/kWh]

Figure B.5: Parallel L-BFGS-B search space for the

lower price.

Figure B.6 illustrates the upper threshold component of all solutions found by GA. Figure B.7 illustrates

the lower threshold components.

-10
-20 ° ..; °
e
-30 L]
wn
wn
4
S o
i -40 <
-50 Ne
4-.
<
—60 :]
-20 -15 -1.0 -05 0.0 0.5 1.0 15
Upper threshold [€/kWh]
Figure B.6: GA search space for the upper price.

2.0

Fitness

-10
° ° o °
°
°
< °
-30 -
®
—40 .
=50 ®
s
]
—60]
-2.0 -15 -1.0 -0.5 0.0 0.5 1.0 15 2.0

Lower threshold [€/kWh]

Figure B.7: GA search space for the lower price.

Figure B.8 illustrates the progression (and convergence) of the three algorithms during a number of

iterations for the energy hub scenario.

B.2. Results chapter

67

Iter 1

Iter 5

Iter 10 Iter 15

Iter 19

Iter 20

Iter 45

2

0 ° ‘}- t ° ° °
<
= 2
3 2
A
S
o 4
< 04 ° []] °
0
(9]
—_
c
]
o

2
H 2
o
—

[]
L] L] L]
0 o . & K]
2
2 0 22 0 2 0 22 0 22 0 2 0 22 0

Figure B.8: Convergence of all algorithms for each generation.

Upper threshold [€/kWh]

PSO

GA

L-BFGS-B

-60

Cost

	Acknowledgements
	Abstract
	Nomenclature
	Introduction
	Background
	The Illuminator
	Hydrogen supply chain
	Production
	Conversion
	Storage
	Transport
	Utilization

	Optimization
	Optimization theory
	Algorithms

	Methodology
	Simulation
	Addition of hydrogen models
	Existing models

	Optimization
	Problem type
	Algorithm choice
	Integration
	Algorithm evaluation
	Particle Swarm Optimization
	(Parallel) L-BFGS-B
	Genetic Algorithm

	Evaluation scenarios
	Hydrogen production facility scenario
	Energy hub scenario
	Electric vehicle (EV) charging station

	Results
	Hydrogen production facility scenario
	PSO
	Parallel gradient-based algorithm
	GA
	Comparison of the algorithms
	Optimization result

	Energy hub scenario
	PSO
	Parallel gradient-based algorithm
	GA
	Comparison of the algorithms
	Optimization result

	Electric vehicle (EV) charging station
	PSO
	Parallel L-BFGS-B
	GA
	Comparison of the algorithms
	Optimization result
	Parallelization result

	Discussion
	Research question
	Further remarks

	Conclusion
	Conclusion
	Recommendations

	References
	Detailed Figures
	Background Chapter

	Supplementary figures and tables
	Methodology chapter
	Results chapter

