
 
 

Delft University of Technology

Reconstructing Tree-Child Networks from Reticulate-Edge-Deleted Subnetworks

Murakami, Yuki; van Iersel, Leo; Janssen, Remie; Jones, Mark; Moulton, Vincent

DOI
10.1007/s11538-019-00641-w
Publication date
2019
Document Version
Final published version
Published in
Bulletin of Mathematical Biology

Citation (APA)
Murakami, Y., van Iersel, L., Janssen, R., Jones, M., & Moulton, V. (2019). Reconstructing Tree-Child
Networks from Reticulate-Edge-Deleted Subnetworks. Bulletin of Mathematical Biology, 81(10), 3823-3863.
https://doi.org/10.1007/s11538-019-00641-w

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11538-019-00641-w
https://doi.org/10.1007/s11538-019-00641-w


Bulletin of Mathematical Biology
https://doi.org/10.1007/s11538-019-00641-w

ORIG INAL ART ICLE

Reconstructing Tree-Child Networks from
Reticulate-Edge-Deleted Subnetworks

Yukihiro Murakami1 · Leo van Iersel1 · Remie Janssen1 ·Mark Jones1 ·
Vincent Moulton2

Received: 5 February 2019 / Accepted: 3 July 2019
© The Author(s) 2019

Abstract
Network reconstruction lies at the heart of phylogenetic research. Two well-studied
classes of phylogenetic networks include tree-child networks and level-k networks. In
a tree-child network, every non-leaf node has a child that is a tree node or a leaf. In
a level-k network, the maximum number of reticulations contained in a biconnected
component is k. Here, we show that level-k tree-child networks are encoded by their
reticulate-edge-deleted subnetworks, which are subnetworks obtained by deleting a
single reticulation edge, if k ≥ 2. Following this, we provide a polynomial-time algo-
rithm for uniquely reconstructing such networks from their reticulate-edge-deleted
subnetworks. Moreover, we show that this can even be done when considering subnet-
works obtained by deleting one reticulation edge from each biconnected component
with k reticulations.

Keywords Phylogenetic network · Network encoding · Tree-child networks ·
Reticulate-edge-deleted subnetworks

B Yukihiro Murakami
yukimurakami07201994@gmail.com

Leo van Iersel
l.j.j.v.iersel@gmail.com

Remie Janssen
remiejanssen@gmail.com

Mark Jones
markelliotlloyd@gmail.com

Vincent Moulton
V.Moulton@uea.ac.uk

1 Delft Institute of Applied Mathematics, Delft University of Technology, Van Mourik
Broekmanweg 6, 2628 XE Delft, The Netherlands

2 School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11538-019-00641-w&domain=pdf
http://orcid.org/0000-0003-1355-5884


Y. Murakami et al.

1 Introduction

Phylogenetic trees are instrumental in representing the evolutionary history of a set of
species X . Leaves (extant species) are bijectively labeled by X , and speciation events
are depicted by internal nodes (non-extant species). Though powerful in their own
right, phylogenetic trees are limited by their inability to display complex evolutionary
events such as horizontal gene transfers, hybridizations, and recombinations (Sneath
1975). For such reticulate (non-treelike) events, there has been increased interest in
employing phylogenetic networks instead, which are generalizations of phylogenetic
trees to directed acyclic graphs (Morrison 2005; Huson et al. 2010).

In recent years, heavy focus has been cast upon the reconstruction of phylogenetic
networks. Many existing methods of tree reconstruction such as maximum parsi-
mony,maximum likelihood, anddistance-basedmethods havebeen adapted to network
reconstruction (Hein 1990; von Haeseler and Churchill 1993; Strimmer and Moulton
2000; Jin et al. 2006; Bordewich et al. 2018b; Huson et al. 2010). In this paper, we
tackle the reconstruction problem through a building block approach. Building blocks
are generally some class of subnetworks, e.g., binets (van Iersel et al. 2017), trinets
(Huber and Moulton 2013), or trees, used to infer the original network. A potential
problem here is that there could be more than one network with the same building
blocks. When considering trees as building blocks, Pardi and Scornavacca somewhat
resolved this distinguishability issue by considering ‘canonical forms’ of networks;
however, the problem still persists in general (Pardi and Scornavacca 2015). Therefore,
the goal in any building block approach is to see if it encodes the network. We say that
a network is encoded by a certain building block if given two networks containing the
same set of this building block, the networks are isomorphic.

It has been shown by Huber et al. (2014) that there exist networks which are not
encoded by all subnetworks (called subnets) induced on proper subsets of the taxa.
This is not to say that subnets do not encode many networks; in fact, it has been shown
time and time again that considering topologically restricted classes of networks can
help bypass this complication (Willson 2011; van Iersel and Moulton 2014; Gambette
et al. 2017; van Iersel et al. 2017). Two of the more prominent network classes are
the tree-child networks (Cardona et al. 2009) and the level-k networks (Jansson and
Sung 2006). In a tree-child network, every non-leaf node has a child that is a tree
node (nodes with indegree-1 and outdegree-2) or a leaf (nodes with indegree-1 and
outdegree-0). In a level-k network, the maximum number of reticulations (nodes with
indegree-2 and outdegree-1) in a biconnected component (blob) is k (see Fig. 1 for an
example of a level-4 tree-child network).

In this paper, we show that binary level-k tree-child networks, where k ≥ 2 are
encoded by reticulate-edge-deleted subnetworks, which are subnetworks obtained by
deleting a single reticulation edge. In fact, we prove an even stronger result that this
network class is encoded by its Maximum Lower-Level Subnetworks (MLLSs), the
subnetworks obtained by deleting a reticulation edge from every level-k biconnected
component. We do so by exploiting the fact that tree-child networks contain either
a cherry or a reticulated cherry (Bordewich and Semple 2016). Cherries need not be
reconstructed, since they stay intact in every MLLS; therefore we focus on recon-
structing reticulated cherries and show that they are uniquely reconstructible through

123



Reconstructing Tree-Child Networks from…

Fig. 1 (Color figure online) A
level-4 tree-child network N on
the set of species X =
{a, . . . , n}. Though N is a
directed acyclic graph, the edge
directions are omitted to avoid
cluttering. The arcs are directed
downwards. The leaf pair {e, f }
is a cherry since they share a
common parent. The leaf
pair {a, b} is a reticulated cherry
since the parent of a is also the
parent of the parent of b

Fig. 2 Networks N and N ′ are non-isomorphic but have the same lower-level subnetworks. Hence, any class
containing N and N ′ is not level-reconstructible. However, these networks have different subnetworks: N1
is a subnetwork of N but not of N ′; N2 is a subnetwork of N ′ but not of N . So {N , N ′} is subnetwork-
reconstructible

an exhaustive case study. In proving this result, we explore ‘blob trees’, an underlying
tree of a network, introduced initially by Gusfield and Bansal (2005). These labeled
trees are obtained from networks by collapsing every biconnected component to a
single node, labeling the node by its set of leaf-descendants, and removing the leaves.
In this paper, we introduce the class of valid networks; for such a class, we show that
we can reconstruct the blob tree of the original network from the blob trees of all
MLLSs (Theorem 3). The class of tree-child networks are contained within the class
of valid networks, and therefore, the result also follows for tree-child networks.

In the related literature, it has been shown that tree-child networks are encoded by
trinets (van Iersel and Moulton 2014) but not by trees (see Fig. 2). Gambette et al.
(2017) showed that level-1 networks (which are necessarily tree-child) with girth
(shortest cycle in underlying graph) at least 5 are reconstructible from their triplets.
The triplets are phylogenetic trees on 3 leaves; as the set of triplets can be computed
from the set of all displayed trees of the network, level-1 networks of girth at least
5 are encoded by trees and therefore by their MLLSs. Others have also constructed
level-1 networks (also called gt-networks) from trees. Nakhleh et al. showed that it

123



Y. Murakami et al.

was possible to find a level-1 network with the minimum number of reticulations
that displays an input of two binary trees in polynomial time if such a network exists
(Nakhleh et al. 2005). In the same paper, they also considered the following problem,
which we restate using our notation. Given an input of two non-binary trees, find a
level-1 network N with one reticulation such that N displays two MLLSs that are
refinements of the two input non-binary trees, if such a network exists. Huynh et al.
(2005) generalized this result by showing that one can find a level-1 network with the
minimal number of reticulations for an input size of at least two non-binary trees, if
such a network exists. They did not, however, consider whether the output network
was unique, which is our focus for this paper. In particular, we focus on showing that
certain networks are uniquely defined by their MLLSs and that they can be uniquely
reconstructed from them; this is fundamentally different from the problem of finding
a most parsimonious network for a set of trees—which, coincidentally, is a subset of
MLLSs for a level-1 network.

The paper is organized as follows. In the next section, we define essential terms
relevant to this paper, including MLLSs and the notion of encoding / reconstructibil-
ity. Section 3 presents the definitions and the key results on blob trees. In Sect. 4, we
investigate the possible topologies for each leaf pair. Per our definition, there are 5
possibilities for each leaf pair up to isomorphism, and we develop a method for recon-
structing a blob containing a particular leaf pair topology. In Sect. 5, we show ourmain
result for this paper, that binary level-k ≥ 2 tree-child networks are reconstructible
from their MLLSs (Theorem 6). A polynomial-time (in the size of the leaf set and
the MLLS set) algorithm for reconstructing tree-child networks from their MLLSs
follows naturally from our proof, and we present this in Sect. 6. In the last section, we
conclude with some discussion of potential future directions.

2 Preliminaries and Definitions

Definition 1 Let X be a non-empty finite set. A rooted binary phylogenetic network N
on X is a directed acyclic graph (a directed graph with no directed cycles) in which
every node is in one of the following categories:

1. one node of indegree-0 and outdegree-1 (the root);
2. |X | nodes of indegree-1 and outdegree-0 (leaf nodes or leaves);
3. nodes of indegree-1 and outdegree-2 (tree nodes); and
4. nodes of indegree-2 and outdegree-1 (reticulations).

The leaves are bijectively labeled with label set X , where the leaf set is sometimes
denoted L(N ).

We will henceforth refer to rooted binary phylogenetic networks as networks. The
edges feeding into reticulations are called reticulation edges, and each non-reticulation
edge is called a tree edge. We write v ∈ N to denote that v is a node in N . Given
an edge (x, y) in N , we say that x is a parent of y and y is a child of x . A directed
path of length n from x to y is a sequence of edges (v0, v1), . . . , (vn−1, vn) such
that x = v0, y = vn , where vi is a parent of vi+1 for i = 0, . . . , n − 1. The node x is
an ancestor of / above y, or y is a descendant of / below x if there is a directed path

123



Reconstructing Tree-Child Networks from…

from x to y in N . Two nodes are incomparable if neither nodes are above the other.
The network N is tree-child if every non-leaf node in N is a parent of a tree node or
a leaf. A tree path is a directed path that contains no reticulations except possibly for
its starting node. It is easy to see that, for each node v of a tree-child network, there
exists a tree path to a leaf.

Two networks N , N ′ on X are isomorphic if there exists a bijection f between
the vertices of N and the vertices of N ′ such that (u, v) is an edge of N if and only
if ( f (u), f (v)) is an edge of N ′ and each leaf of N is mapped to a leaf of N ′ with the
same label.

Definition 2 Deleting a node x from a network is the action of removing x and all of
its incident edges from N . Deleting an edge (x, y) from a network is the action of
removing (x, y) from N .

A cut-node is a node of a network whose deletion disconnects the network. A
cut-edge is an edge of a network whose deletion disconnects the network. A pendant
subnetwork of a network N is obtained by deleting a cut-edge (x, y) from N and taking
the connected component containing y. A pendant subtree is a pendant subnetwork
that is a tree.

Definition 3 A biconnected component of a network N is a maximal subgraph with
at least three nodes such that no node of the subgraph is a cut-node of the subgraph.
A blob is either a biconnected component or a tree node that is not in a biconnected
component.

We say N is a level-k network, denoted lvl(N ) = k, if the maximum number of
reticulations contained in any biconnected component is k (Jansson and Sung 2006).
A level-0 network is a tree (a network with no reticulations). Since the level of a
blob is the number of reticulations it contains, a tree node that is not in a biconnected
component is a level-0 blob.

We say that a network N on X displays a network N ′ on X if some subgraph
N ′′ of N is a subdivision of N ′ (i.e., if N ′′ can be obtained from N ′ by replacing
directed edges by directed paths). An alternative view of when a network is displayed
by another network is based on cleaning up a directed acyclic graph.

Definition 4 Cleaning up a directed acyclic graph is the act of applying the following
operations until none is applicable:

1. delete an unlabeled outdegree-0 node;
2. suppress an indegree-1 outdegree-1 node (i.e., if (u, v), (v,w) are edges in a graph

where v is an indegree-1 outdegree-1 vertex, we suppress v by deleting the node v

and adding an edge (u, w).);
3. replace a pair of parallel edges by a single edge, i.e., delete one of the parallel

edges and suppress both the parent node and the child node.

Note that cleaning up a directed acyclic graph, obtained from a network on X by
deleting, for each reticulation, at most one of the incoming reticulation edges, returns
a network on X .

123



Y. Murakami et al.

Lemma 1 If a network N on X displays a network N ′ on X, then we can obtain N ′
from N by deleting, for each reticulation, at most one of the two incoming reticulation
edges, and subsequently cleaning up.

Proof Since N displays N ′, some subgraph of N is a subdivision of N ′. Because
of this, there is an embedding of N ′ into N where the nodes and edges of N ′ are
mapped to nodes and paths of N , such that these paths are edge disjoint. Without loss
of generality, this embedding contains the root of N . For each reticulation of which
exactly one incoming reticulation edge is used by the embedding, delete the other
incoming reticulation edge, and subsequently clean up the directed acyclic graph. We
claim that all unused edges in the embedding have been removed in the resultant
network M .

Suppose not. Then, there exists an edge in M that is not used in the embedding
of N ′ into N . Consider a lowest such edge (x, y).

Node y cannot be a leaf of N because all leaves of N are in the embedding of N ′
into N .

Now suppose that y is a tree node of N . It is not possible that an outgoing edge of y
is in the embedding, because the root of the embedding is the root of N . Hence, the
outgoing edges of y are not in the embedding. At least one of these outgoing edges
of y is in M because otherwise y would have been deleted by cleaning up rule 1.
Hence, at least one outgoing edge of y is in M but not in the embedding of N ′ into N ,
contradicting the assumption that (x, y) is a lowest such edge.

Hence, y is a reticulation. If the other incoming edge of the reticulation is also not in
the embedding, it follows similarly to the previous case that the outgoing edge of y is
inM but not in the embedding, contradicting the assumption that (x, y) is a lowest such
edge. Hence, exactly one incoming edge of y is used by the embedding. Therefore, the
other incoming edge, (x, y), has been deleted, contradicting the assumption that (x, y)
is an edge of M .

This implies that every edge in M is used in the embedding of N ′ into N . Since in
addition all indegree-1 outdegree-1 nodes have been suppressed by cleaning up rule
2, we have that M is N ′. ��

Let N (N ) denote the set of all networks on X that are displayed by a net-
work N on X , excluding N itself. The networks in N (N ) are called the subnetworks
of N . A class C of networks is called subnetwork-reconstructible if for any two net-
works N , N ′ ∈ C with N (N ) = N (N ′), we have that N and N ′ are isomorphic.

A related but subtly different notion is the following. Let N be a level-k network.
Then,N k−1(N ) denotes the set of subnetworks of N that are of level at most k−1. The
networks inN k−1(N ) are called the lower-level subnetworks of N . Then, a class C of
networks is called level-reconstructible if for any two networks N , N ′ ∈ C of level-k
and N k−1(N ) = N k−1(N ′), we have that N and N ′ are isomorphic. Note that if a
network is level-reconstructible, then it is subnetwork-reconstructible. The converse
is not true in general, and an example of this is shown in Fig. 2.

In this paper, we prove a result that is stronger than level-reconstructibility. We first
define a type of reticulation edge deletion, and we introduce a corresponding subclass
of networks.

123



Reconstructing Tree-Child Networks from…

Definition 5 A reticulation edge deletion is valid if the resulting subnetwork, after
cleaning up, contains exactly 2 nodes and 3 edges fewer than the original network,
i.e., only the reticulation edge is deleted and its endpoints suppressed. A reticulation
edge deletion is invalid otherwise. Call a reticulation edge valid / invalid if its deletion
is valid / invalid.

Definition 6 Networks are valid if all reticulation edges in the network are valid.

An example of a valid reticulation edge is shown in Fig. 3.

Lemma 2 All reticulation edges in a tree-child network are valid.

Proof Let N be a tree-child network and suppose for a contradiction that deleting
some reticulation edge e = (u, v) is invalid. We note that v is a reticulation. As N
is tree-child, we also have that u is a tree node. Therefore, after deleting e, u and v

will each be indegree-1 outdegree-1 nodes and will be suppressed by cleaning up.
This removes a total of 2 nodes and 3 edges. Hence, to show that e is valid, it remains
to show that no further cleaning up occurs after deleting e and suppressing u and v.
As all remaining nodes have the same indegree and outdegree as before, there are no
unlabeled outdegree 0 nodes and no remaining indegree-1 outdegree-1 nodes. So we
just need to show that deleting e creates no parallel edges.

We split the proof into three sub-cases. First assume that suppressing u results in the
creation of parallel edges. Then, we must have that u is contained in a ‘triangle’ with
nodes x, y and edges (x, u), (x, y), (u, y). But then y is a reticulation, implying that u
is the parent of two reticulations y and v. Thus, u has no child that is a tree node or a leaf,
contradicting the tree-child property of N . Next assume that suppressing v results in
the creation of parallel edges. Then, we must have that v is contained in a triangle with
nodes x, y and edges (x, v), (x, y), (v, y). But then y is a reticulation, implying that v
is the parent of a reticulation y. Thus, v has no child that is a tree node or a leaf, con-
tradicting the tree-child property of N . Finally, assume that suppressing both u and v

results in the creation of parallel edges. Then, we must have that e formed the central
edge of a ‘diamond’ with nodes x, y and edges (x, u), (x, v), (u, v), (u, y), (v, y).
However, this cannot occur since the child of v, y, would be a reticulation, which
again contradicts the tree-child property of N .

Therefore, every reticulation edge of a tree-child network is valid. ��
The above lemma does not hold for general networks (see Fig. 3). Intuitively,

Lemma 2 states that removing any reticulation edge from a tree-child network is
self-contained, and it does not affect any other reticulations within the network. No
additional information is ‘lost’ when deleting valid reticulation edges. In particular,
Lemma 2 implies that tree-child networks are valid.

Fromhere onwards, it is implicitly assumed that the network N ′ obtainedbydeleting
some reticulation edges from N undergoes cleaning up.

Definition 7 A maximum subnetwork of a network N is a subnetwork obtained by a
single reticulation edge deletion from N .

Lemma 3 Every maximum subnetwork of a tree-child network is tree-child.

123



Y. Murakami et al.

Fig. 3 (Color figure online) Three networks N1, N2, N3 with their respective maximum subnet-
works N ′

1, N
′
2, N

′
3 obtained by deleting the red reticulation edge and subsequently cleaning up. The red

reticulation edge in N1 is valid; however, the red dashed reticulation edges in N2 and N3 are invalid. The
subnetwork N ′

2 contains 4 fewer nodes and 6 fewer edges than N2, and N ′
3 contains 3 fewer nodes and 5

fewer edges than N3

Fig. 4 (Color figure online) Visual aid for the proof of Lemma 3. The left case is when N ′ contains a
reticulation t that is a parent of a reticulation r . The right case is when a tree node t is a parent of two
reticulations. In either case, the red dashed edge (u, v)must be inserted in these particular places to obtain N ,
and in either case N is not tree-child

Proof Suppose that there exists a tree-child network N with a maximum subnet-
work N ′ that is not tree-child. Then, there exists a node t in N ′ such that all of
its children are reticulations. Let (u, v) be the reticulation edge deleted from N to
obtain N ′. Since t has a tree node as a child in N , node u must be a child of t in N .
Hence, (t, u) and (u, r) are edges in N , for some child r of t in N ′. But then N is not
tree-child as u is the parent of only reticulations v and r , a contradiction (see Fig. 4).

��

Definition 8 For k ≥ 1, a maximum lower-level subnetwork (MLLS) of a level-k
network N is a subnetwork obtained by deleting exactly one valid reticulation edge
from every level-k blob in N . Let Nmlls(N ) denote the set of all MLLSs of N .

Observe that as long as Nmlls(N ) is a non-empty set, it is equal to the set of all
subnetworks of N with level at most k − 1 and a maximum number of edges.

By considering each reticulation edge deletion separately, it follows from Lemma 3
that the MLLSs of a tree-child network are tree-child.

A class C of networks is called MLLS-reconstructible if for any two net-
works N , N ′ ∈ CwithNmlls(N ) = Nmlls(N ′),wehave that N and N ′ are isomorphic.
Because all MLLSs are lower-level subnetworks of N , we have Nmlls(N ) ⊆
N k−1(N ). Therefore, if a class of networks is MLLS-reconstructible, then it is level-
reconstructible. The converse also holds for valid networks.

123



Reconstructing Tree-Child Networks from…

Lemma 4 Let N be a level-k valid network. Then, we may obtain N k−1(N )

from Nmlls(N ).

Proof Let M ∈ N k−1(N ). As M is a lower-level subnetwork of N , by Lemma 1, M
must have been obtained from N by deleting at least one reticulation edge, say ei , from
every level-k blob, say Bi , in N , and deleting some reticulation edges from other blobs.
By definition of MLLSs, there must exist an MLLS N ′ ∈ Nmlls(N ) that was obtained
from N by deleting ei from Bi . Then clearly, some subnetwork of N ′, obtained by
deleting the rest of the reticulation edges, is M . That is,N k−1(N ) is precisely the set
of all subnetworks of the networks ofNmlls(N ), and the networks ofNmlls(N ) (i.e.,
N k−1(N ) = Nmlls(N ) ∪ ⋃

M∈Nmlls (N ) N (M)). ��
Corollary 1 Given a class C of networks containing only valid networks, if the class is
level-reconstructible, then it is MLLS-reconstructible.

Proof Let N , N ′ ∈ C with Nmlls(N ) = Nmlls(N ′). By Lemma 4, this implies
that N k−1(N ) = N k−1(N ′). As the class is level-reconstructible, we have that N
and N ′ must be isomorphic. ��

Note that this result does not hold in general, as networks may contain invalid
reticulation edges that cannot be deleted to obtain an MLLS.

Observation 1 Let C be a class of networks. If C is MLLS-reconstructible, then C
is also level-reconstructible. If C is level-reconstructible, then C is also subnetwork-
reconstructible.

We will henceforth assume that all considered networks are binary tree-child net-
works on a non-empty set of taxa X , unless stated otherwise.

3 Blob Trees

In this section,we showhow to reconstruct a blob tree, the underlying tree of a network.
The tree has a similar construction as the ‘blobbed trees’ in Gusfield and Bansal (2005)
with further modifications.

Definition 9 Theblob treeof a network N , denoted BT (N ), is the labeled tree obtained
by applying the following:

1. contract every blob into a single node, and label each node, except for the root
node, by the leaf-descendant set of the top node of the blob;

2. delete all leaf nodes.

We call the nodes in BT (N ) blob nodes.

An example of a blob tree is illustrated in Fig. 5.
We refer to the top nodes of blobs as pure nodes. In the case of a level-0 blob, this

top node is simply the tree node itself. Let x denote the pure node of some blob B of
some network N . Then descN (x) = descN (B) denotes the set of leaf-descendants
of x (and thus B) in N .

123



Y. Murakami et al.

Fig. 5 A tree-child network N , its maximum subnetworks N1, N2 obtained from deleting edges 1 and 2,
respectively, together with their blob trees

For a general network N , it is possible for BT (N ) to contain two nodes with the
same label if there is a blob in N of indegree-1 and outdegree-1. However, the same
cannot occur in tree-child networks, due to the following lemma.

Lemma 5 Let N be a tree-child network on X, let A ⊆ X and let x be a highest tree
node with descN (x) = A. If a tree node y 	= x also has descN (y) = A, then one child
of x is a reticulation r such that y is below x and y is above r . Hence, x is the unique
highest tree node with descN (x) = A and all other tree nodes y with descN (y) = A
are in the same blob.

Proof Let y 	= x be a tree node with descN (y) = A. To begin, note that y must
be either above or below x . To see this, note that by the tree-child property of N ,
there exists a leaf l that is reached by x via a tree path. Then, for y to be an ancestor
of l, y must be either above or below x . Hence, x is the unique highest tree node
with descN (x) = A and y is below x .

By the tree-child property of N , either x can have two children that are tree nodes
or leaves, or x can have one tree node or leaf child and one reticulation child. Let c1, c2
denote the children of x , and by the tree-child property of N , there exist leaves l1, l2
that are reached by c1, c2 via tree paths, respectively.

First suppose that the two children c1, c2 of x are tree nodes or leaves. Then, for y to
be an ancestor of both l1 and l2, y must be an ancestor of both c1 and c2, contradicting
that y 	= x is below x .

Hence, one of the two children of x is a reticulation r .Without loss of generality, r =
c1. It remains to show that y is above c1. Since y is an ancestor of l1, and there is a
tree path from c1 to l1, node y is either above or below c1. Suppose for contradiction
that y is below c1. Since y is also an ancestor of l2, there exists a directed path from y
to l2. This path must pass through x since the path from x to l2 is a tree path. This is
a directed path from y to x . However, since there is also a directed path from x to y
(via c1), and y 	= x , it follows that there exists a directed cycle, a contradiction. ��

The following corollary follows immediately from Lemma 5.

Corollary 2 Let N be a tree-child network. Then, its blob tree BT (N ) contains nodes
with unique labels.

Due to this, we identify blob nodes by their node labels, e.g., for a blob B in N
with descN (B) = A, the corresponding blob node in BT (N ) is A.

123



Reconstructing Tree-Child Networks from…

3.1 On Reticulated Cherries

Let x and y be two non-reticulation nodes in a network N . Let px , py be the parents
of x, y, respectively, where py is a reticulation and px is a parent of py . Let gy denote
the parent of py that is not px (see Fig. 6a). We call the subgraph of N induced by the
nodes x, y, px , py, and gy a reticulated cherry shape. We will refer to the reticulated
cherry shape as 〈x, y〉 and say that the nodes x and y form the reticulated cherry
shape. In this case, we say that the reticulation is on y and that the reticulation py is in
the reticulated cherry shape 〈x, y〉. This notion is a generalization of the reticulated
cherries defined by Bordewich et al. (2018b), in which both x and y are leaves.

Lemma 6 In a tree-child network, all reticulations are in a reticulated cherry shape.
Moreover, for k ≥ 1, there is at least one reticulation in each level-k blob that is in a
reticulated cherry shape formed by two nodes outside of the blob.

Proof Let N be a tree-child network and consider a reticulation r in an arbitrarily
chosen blob B. By the tree-child property, r must have a non-reticulation child y and
two tree node parents t1, t2. The child of t1 that is not r must be a non-reticulation x .
Then, r is in a reticulated cherry shape formed by x and y.

Now consider a lowest tree node a in B. If both children of a were to be
non-reticulations then at least one of the children would also be contained in B,
contradicting our choice of a. If both children of a were to be reticulations, then the
network would no longer be tree-child, a contradiction. Thus, one child of a is a retic-
ulation, say c, and the other a non-reticulation, say x . The child of c, say y, must be a
non-reticulation as the network is tree-child, and thus, B contains a reticulated cherry
shape formed by two nodes x, y. Moreover, x and y are outside of B because they are
either leaves or tree nodes, and below a lowest tree node in B. ��

A reticulated cherry shape 〈x, y〉 is called a lowest reticulated cherry shape of a
blob B, if the parent px of x is a lowest tree node of B. This implies that x and y are
not contained in B, as shown in the proof of Lemma 6.

Suppose we are given a reticulated cherry shape 〈x, y〉 with the reticulation on y
and let gy be the parent of py that is not px . We use the following operations defined
by Bordewich et al. (2018b).

– cutting 〈x, y〉 is the operation of deleting (px , py) and suppressing px and py .
– isolating 〈x, y〉 is the operation of deleting (gy, py) and suppressing gy and py .

Let N ′ be a maximum subnetwork of a tree-child network N obtained by isolating a
lowest reticulated cherry shape of a blob B. Then, there is a pure node in N ′ that is not
a pure node in N (Fig. 6). Moreover, if blob B is of level at least 2, the leaf-descendant
set of the new pure node is not equal to the leaf-descendant set of any node in N . This
leads to the following observation.

Observation 2 For a tree-child network N and B a level-k blob, with k ≥ 2, there is
always a reticulation edge we can delete from B such that the blob tree of the resulting
subnetwork is not equal to BT (N ).

123



Y. Murakami et al.

(a) (b)

Fig. 6 aA portion of the network showing a lowest reticulated cherry shape in a blob B. b The same portion
of the network after isolating the reticulate cherry shape 〈x, y〉. Note here that px is a pure node in the
subnetwork, but px is not a pure node in the original network

Now suppose x and y are both leaves. If x and y share a common parent, then they
form a cherry. If x and y form a reticulated cherry shape, then it is a reticulated cherry.
The following Lemma from Bordewich and Semple (2016) is essential for our results
and will be used extensively throughout the text.

Lemma 7 (Bordewich and Semple 2016) If N is a tree-child network on at least two
leaves, then N contains either a cherry or a reticulated cherry.

3.2 Reconstructing the Blob Tree of a Tree-Child Network

Lemma 8 For a valid network N, if the blob tree BT (N ) contains a blob node A,
then BT (N ′) contains the blob node A for every maximum subnetwork N ′ of N.

Proof First suppose that A is a blob node corresponding to a level-0 blob in N . The
corresponding node t in N is not incident to any reticulation edges, so it is not possible
to suppress t via a reticulation edge deletion. Note that a reticulation edge deletion
from a blob above or below t would not change the leaf-descendant set of t . Hence, t
remains a level-0 blob in all maximum subnetworks of N with leaf-descendant set A.
Thus, A is a blob node in all BT (N ′) for all maximum subnetworks N ′ of N .

Now suppose that A is a blob node corresponding to a blob of level at least 1.
Suppose t is the corresponding pure node in N . If t is not incident to a reticulation
edge, then there is no way of suppressing t by means of edge deletions and any
reticulation edge deletion will not change the leaf-descendant set of t . Hence, t is
a pure node with leaf-descendant set A in all maximum subnetworks of N . If, on
the other hand, there is a reticulation r with edges (t, r), (s, r), then let c be the
child of t that is a tree node (it is possible that c = s). Because t is the top node
of the blob, there is a directed path from t to s, which must include c. Hence, there
is a directed path from c to s and to r . Therefore, we have descN (r) ⊆ descN (c).
So descN (c) = descN (c)∪descN (r) = descN (t) = A.We now use the fact that after
a valid edge deletion, only the endpoints of the edge are suppressed in the resultant
maximum subnetwork. The maximum subnetwork where (t, r) is deleted contains c
as a pure node, and hence, A is a blob node in its blob tree. The maximum subnetwork

123



Reconstructing Tree-Child Networks from…

where (s, r) is deleted contains t as a pure node, and hence, A is a blob node in its
blob tree. The maximum subnetwork where some other reticulation edge is deleted
contains t as a pure node, and hence, A is a blob node in its blob tree. Thus, A is a
blob node in BT (N ′) for all maximum subnetworks N ′ of N .

��
Lemma 9 Fora valid network N, if BT (N ′) contains a blobnode A for everymaximum
subnetwork N ′ of N, then BT (N ) also contains the blob node A.

Proof Consider some lowest reticulation r in N such that r is the ancestor of
some a ∈ A. Let c be the child of r in N . Since r is of outdegree-1,we have descN (r) =
descN (c). We may assume descN (r) 	= A, as otherwise c is the root of a pendant sub-
tree spanning A in N , and consequently A is a blob node in BT (N ). Let (u, r), (v, r)
be the edges leading into r . Let N ′, N ′′ be the maximum subnetworks of N obtained
by deleting (u, r), (v, r), respectively. Note here that every node x in N ′ or N ′′ is also
a node in N . We now examine the relations between descN (r) and A exhaustively.

– Suppose descN (r) 	⊂ A and A 	⊂ descN (r). We show that there is no node in N ′
that has leaf-descendant set A. By assumption, there exists a node a′ ∈ descN (r)
such that a′ /∈ A. Then, a′ ∈ descN ′(c). Let x be a node in N ′ (which is also a
node in N ). We examine the relations between x and c in N ′ exhaustively.

– If x is an ancestor of c in N ′ then descN ′(x) 	= A since a′ ∈ descN ′(c) ⊆
descN ′(x).

– If x is a descendant of c in N ′ then descN ′(x) 	= A since A 	⊂ descN ′(c).
– If x is incomparable to c in N ′ then descN ′(x) 	= A since a /∈ descN ′(x) by
assumption that r was the lowest reticulation above a.

It follows that A is not in BT (N ′), and this case is not possible. The only possi-
bilities then are either A � descN (r) or descN (r) � A.

By assumption, BT (N ′) and BT (N ′′) both contain A. Because of this, there are
corresponding pure nodes x ′, x ′′ in N ′, N ′′ (also in N ), respectively,withdescN ′(x ′) =
descN ′′(x ′′) = A.

– Suppose A � descN (r). Then, x ′ must be a descendant of c in N ′, implying
that x ′ must be a descendant of r in N . We claim that x ′ is a pure node in N
withdescN (x ′) = A. If x ′ is not a pure node in N then there exists a reticulation s 	=
r below x ′ where s and x ′ are contained in the same blob in which x ′ is not the top
node, in N . The edge deletion does not suppress or delete the node s, since s is a
descendant of r , and any directed path from r to s is of length at least 2. Then, s
is a reticulation that is below r such that the leaf-descendant set of s contains an
element of A. This contradicts our choice of r , so x ′ must be a pure node in N .
Furthermore, we must have descN (x ′) = descN ′(x ′) = A where the first equality
holds as deleting a reticulation edge from above a node does not change its leaf-
descendant set in the resultant subnetwork. Then, x ′ must be a pure node in N
with descN (x ′) = A and we are done.

– So we may assume descN (r) � A. We now claim that descN (v) ⊆ A. Sup-
pose not. Noting that v is not suppressed in N ′ (since N is a valid network), and

123



Y. Murakami et al.

since descN ′(v) = descN (v), we split into the three possible cases for the relation
between x ′ and v in N ′.

– If x ′ is an ancestor of v, then it is also an ancestor of b /∈ A in N ′ for some b ∈
descN ′(v), a contradiction.

– If x ′ is incomparable to v, then x ′ is also incomparable to c in N ′. Then,
since a ∈ A is a leaf-descendant of x ′ in N ′, there is a reticulation s below r
in N such that s is an ancestor of a, which contradicts our choice of r .

– If x ′ is a descendant of v, then it must either be incomparable to or be a
descendant of c in N ′.

• If x ′ is incomparable to c in N ′, then we reach a contradiction by the same
argument as above.

• If x ′ is a descendant of c in N ′, then as descN ′(c) � A (since descN (r) =
descN ′(c)) we have that descN ′(x ′) � A, a contradiction.

Thus, we have that descN (v) ⊆ A. By an analogous reasoning on x ′′ in N ′′, we
have that descN (u) ⊆ A. It follows that x ′ must be an ancestor of v in N ′, and
so x ′ must be an ancestor of v in N . It also follows that x ′ must be an ances-
tor of u in N to ensure that there is a path from x ′ to the leaf-descendants of u
in N ′.
We now claim that x ′ is also a pure node in N with leaf-descendant set A.
Indeed, adding the edge (u, r) to N ′ (after undoing any cleaning up) only
joins descendants of x ′, implying x ′ has leaf-descendant set A in N . Further-
more, it cannot add any nodes that are not descended from x ′ to the blob
containing x ′. It follows that x ′ remains a pure node in N with leaf-descendant
set A. ��
By combining the previous two lemmas, we see that the blob trees of valid networks

are reconstructible from their maximum subnetworks.

Theorem 1 For a valid network N, given a set A ⊆ X, the blob tree BT (N ) contains
the blob node A if and only if BT (N ′) contains the blob node A for every maximum
subnetwork N ′ of N.

Proof Follows from Lemmas 8 and 9 . ��
We can prove a similar result for MLLSs.

Theorem 2 Let N be a level-k valid network, with k ≥ 1. Given a set A ⊆ X, the blob
tree BT (N ) contains the blob node A if and only if BT (Nmlls) contains A for every
MLLS Nmlls of N .

Proof Suppose first that the blob tree BT (N ) contains the node A, and let Nmlls

be an MLLS of N obtained by deleting the edges in the set E = {e1, . . . , em}.
Consider the maximum subnetwork N ′ of N obtained by deleting the reticu-
lation edge e1. By Theorem 1, BT (N ′) contains the blob node A. Now con-
sider the maximum subnetwork N ′′ of N ′ obtained by deleting the reticulation
edge e2. Then, BT (N ′′) contains the blob node A by Theorem 1. Continu-
ing in this fashion for all edges in E shows that BT (Nmlls) contains the blob
node A.

123



Reconstructing Tree-Child Networks from…

Now suppose that A is not a blob node of BT (N ). We prove that then there
exists an MLLS Nmlls of N such that BT (Nmlls) does not contain the blob
node A. Let B denote the blob in N with leaf-descendant set D, such that D is
the smallest set that contains A. Consequently, if there exists a pure node in an
MLLS Nmlls of N with leaf-descendant set A, then it must be a node that was
originally in the blob B. Now observe that deleting reticulation edges from blobs
that are not B do not affect the leaf-descendant set of nodes in B. Then, we may
assume, without loss of generality, that N is a single blob network. But then by
Theorem 1, A is not a blob node in BT (Nmlls), for some MLLS Nmlls of N .

��
We call a set A ⊆ X a foundation node of N if BT (N ) contains the node A.

Let F(N ) be the set of all foundation nodes of N .

Theorem 3 For a level-k valid network N, with k ≥ 1, its blob tree BT (N ) is recon-
structible from its MLLSs.

Proof By Theorem 2, the set of all foundation nodes F(N ) consists of the blob nodes
that appear in BT (Nmlls) for every MLLS Nmlls of N .

Then, the blob tree BT (N ) is the tree with vertex set F(N ) and an edge (A, B)

precisely if B � A and there is no C ∈ F(N ) with B � C � A. ��

3.3 MinimumNumber of MLLSs to Reconstruct the Blob Tree of a Tree-Child
Network

We consider the minimum number of MLLSs required to reconstruct the blob tree of
a tree-child network. Let r be some reticulation in a blob B. We call a node s a pseudo
pure node of r if it is a lowest node in B such that there are two edge disjoint directed
paths from s to r .

Lemma 10 Let N be a level-k tree-child network where k ≥ 1. Two maximum subnet-
works N ′ and N ′′ of N suffice to reconstruct BT (N ).

Proof Let r be a lowest reticulation in some blob B. Let 〈x, y〉 denote the reticulated
cherry shape that contains r . Let px and py = r be the parents of x and y, respectively,
and let gy be the parent of py that is not px . Let N ′ and N ′′ be the maximum subnet-
works of N derived by cutting and isolating 〈x, y〉, respectively. Let F ′ and F ′′ denote
the set of foundation nodes of N ′ and N ′′, respectively, that are not foundation nodes
of N . We claim that the intersection of F ′ and F ′′ is empty, from which it follows
that the intersection of the node sets of BT (N ′) and BT (N ′′) contains the foundation
nodes of N . Since by Lemma 8 each foundation node of N is a foundation node of
each maximum subnetwork, it follows that the intersection of the node sets of BT (N ′)
and BT (N ′′) is precisely the set of all foundation nodes of N .

Let P ′ denote the set of all pure nodes in N ′ that have leaf-descendant sets in F ′.
Similarly let P ′′ denote the set of all pure nodes in N ′′ that have leaf-descendant sets
in F ′′. We prove the following claims regarding the pure nodes of P ′ and P ′′.

Claim 1 Let p ∈ P ′ (p ∈ P ′′). Then p is an ancestor of r in N .

123



Y. Murakami et al.

Proof 1 Suppose not. First suppose that p is a descendant of r in N . As r is a lowest
reticulation in N , p is a tree node or a leaf in N ′ (N ′′). If p is a tree node, then p must
have been a pure node in N to begin with: the pendant subnetwork rooted at the child
of r is an invariant upon obtaining maximum subnetworks of N , since r is a lowest
reticulation. This contradicts the fact that p is an element of P ′ (P ′′). If p is a leaf,
then p cannot be a pure node in N ′ (N ′′), a contradiction.

Now suppose that p is incomparable to r in N . Let p be the pure node of a blob B ′
in N ′ (B ′′ in N ′′). As p is not an ancestor of r in N , p must also not be an ancestor
of px nor gy in N . We see that B ′ (B ′′) remains a blob after adding the edge (px , r)
to N ′ ((gy, r) to N ′′), and so p remains a pure node in N , a contradiction. ��
Claim 2 Let p ∈ P ′ (p ∈ P ′′), and let s be a pseudo pure node of r in N . Then, p is
a descendant of s in N and p 	= s.

Proof 2 Suppose not.
If p is equal to or strictly above s then p is an ancestor of both px and gy . Adding the

edge (px , r) to N ′ ((gy, r) to N ′′) only joins descendants of p. Furthermore, it cannot
add any nodes that are not descended from p to the blob in N ′ (N ′′) containing p. It
follows that p remains a pure node in N , a contradiction.

Nowsuppose that p is incomparable to s. If p is not in the blob B, then as reticulation
edge deletions do not affect other blobs, we have that p must have been a pure node
in N . This contradicts our assumption on p. So p must be in the blob B. Since p
is incomparable to s, but p must still be an ancestor of r by Claim 1, p must be an
ancestor of a reticulation r ′ such that s is an ancestor of r ′ and r ′ is an ancestor of r .
The parent of s, denoted ps , is not suppressed in both N ′ and N ′′. Now ps is either
above or incomparable to p, and the two nodes belong to the blob which contains r ′
in N ′ (N ′′) (see Fig. 7a). It follows that p cannot be a pure node in N ′ (N ′′), which
contradicts our assumption. ��

It remains to show that F ′ ∩ F ′′ = ∅. Let P ′
x = {p ∈ P ′ : p is an ancestor of px

in N } and let P ′
y = {p ∈ P ′ : p is an ancestor of gy in N }. By Claim 1, we

have P ′ = P ′
x ∪ P ′

y . By Claim 2, we have P ′
x ∩ P ′

y = ∅. Let P ′′
x = {p ∈ P ′′ :

p is an ancestor of px in N } and let P ′′
y = {p ∈ P ′′ : p is an ancestor of gy in N }.

Similarly, we have P ′′ = P ′′
x ∪ P ′′

y and P ′′
x ∩ P ′′

y = ∅. Let a′ ∈ P ′
x , a

′′ ∈ P ′′
x ,

and b′′ ∈ P ′′
y . Let u ∈ descN (x) and let v ∈ descN (y). Clearly, u ∈ descN ′(a′)

and u, v ∈ descN ′′(a′′). By Claim 2, v /∈ descN ′(a′) and u, v /∈ descN ′′(b′′) (see
Fig. 7b). This implies that for some A ∈ F ′ such that u ∈ A, we have A /∈ F ′′. An
analogous argument shows that for some B ∈ F ′ such that v ∈ B, we have B /∈ F ′′.
Because of the way in which we defined the network N ′, all foundation nodes in F ′
must contain the element u or v, but not both. Thus, the above two cases cover all
foundation nodes in F ′; therefore, F ′ and F ′′ are disjoint. ��

Let N be a network and let NA be a pendant subnetwork of N rooted by a node
with leaf-descendant set A. Collapsing NA from N means that we replace NA by a
leaf A. Let N\NA denote the network obtained by collapsing NA from N .

Lemma 11 Let N be a tree-child network, and let NA denote a pendant subnetwork
of N rooted at a node with leaf-descendant set A. Then, BT (N\NA) is obtained from
BT (N ) by deleting the pendant subtree rooted at A.

123



Reconstructing Tree-Child Networks from…

(a) (b)

Fig. 7 Visual aid for Lemma 10 proof. a Proof of Claim 2. Cutting or isolating 〈x, y〉 results in subnetworks
where ps and p lie in the blob containing r ′. b Proof of the paragraph after Claim 2, which shows that P ′ ∩
P ′′ = ∅

Proof By definition, there exists a blob node A in BT (N ). Note that pendant subnet-
works of N uniquely correspond to a pendant subtree of BT (N ), by definition of blob
trees and also because node labels of blob trees are unique for tree-child networks
(Corollary 2). Then, the pendant subtree of BT (N ) rooted at A is uniquely defined
by NA and vice versa: this implies the lemma. ��
Lemma 12 Let N be a level-k tree-child network with k ≥ 2. Two MLLSs Nmlls

1
and Nmlls

2 of N suffice to reconstruct BT (N ). In particular, Nmlls
1 is theMLLSobtained

by cutting a lowest reticulated cherry shape in every level-k blob, and Nmlls
2 is the

MLLS obtained by isolating these reticulated cherry shapes.

Proof We prove the lemma by induction on the number of level-k blobs l in N . For
the base case, there is only one level-k blob in N . By Lemma 10, we are done.

So suppose now that N contains l ≥ 2 level-k blobs. Consider a lowest level-k
blob B in N , and let A denote the leaf-descendant set of B. Let NA and Nmlls

i A denote
the pendant subnetwork of N and Nmlls

i rooted at the pure node with leaf-descendant
set A, for i = 1, 2. By Theorem 2, A is a blob node in BT (Nmlls

i ) for i = 1, 2, and
therefore, such pendant subnetworks exist. Note that the pendant subnetworks Nmlls

i A
are maximum subnetworks of NA obtained by cutting and isolating the reticulated
cherry shape associated with some lowest reticulation r . By Lemma 10, we have
that Nmlls

1A and Nmlls
2A suffice to reconstruct BT (NA). We now collapse Nmlls

i A from the
MLLS Nmlls

i for i = 1, 2. Furthermore, we collapse NA from the network N . Note
that N\NA is a level-k tree-child networkwith l−1 level-k blobs, and that Nmlls

i \Nmlls
i A

are MLLSs of N\NA obtained by cutting and isolating a lowest reticulated cherry
shape from every level-k blob, for i = 1, 2, respectively. By the induction hypothesis,
these two MLLSs of N\NA suffice to reconstruct BT (N\NA). Now by Lemma 11,
we have that BT (N ) is the blob tree obtained by appending BT (NA) to BT (N\NA).

123



Y. Murakami et al.

We append BT (NA) to the node C in BT (N\NA), such that A ⊆ C , and there exists
no node D ∈ BT (N\NA) where A ⊆ D ⊆ C . ��

Given N , Nmlls
1 , and Nmlls

2 as in the setting of Lemma 12, the foundation nodes
of N can be found by taking the intersection of the foundation nodes of Nmlls

1 and that
of Nmlls

2 . Then, BT (N ) can be reconstructed as in the proof of Theorem 3.

3.4 Identifying the Level-k Blobs of a Tree-Child Network

We now show that given the MLLSs, it is possible to identify which foundation nodes
correspond to a level-k blob in the original tree-child network.

Lemma 13 Let N be a level-k tree-child network with k ≥ 2. A blob of N is level-
k′ < k if and only if the set of children of the corresponding blob node in BT (Nmlls),
for every Nmlls ∈ Nmlls(N ), is precisely the set of children of the blob node in BT (N ).

Proof Suppose B is a level-k′ < k blob in N . Then, B remains intact (no reticulation
edges deleted) in all MLLSs of N . Let B ′ be a blob in N that is directly below B,
and let e denote the outgoing edge from B to the pure node of B ′. The edge e is not
suppressed in any MLLS of N . And since edges are deleted to obtain MLLSs of N ,
we have that the number of leaves that are below the edge e (below the child of e)
stays the same since blobs are biconnected. By Theorem 2, every node in BT (N ) is a
node in BT (Nmlls) for all MLLSs Nmlls of N . Furthermore for tree-child networks,
the node labels in blob trees are unique. Then, the blob node of B must have the blob
node of B ′ as one of its children in the blob tree of all MLLSs. Since B ′ was chosen
arbitrarily, this implies that the set of children of the blob node in BT (Nmlls), for
every Nmlls ∈ Nmlls(N ), is precisely the set of children of the blob node in BT (N ).

For the other direction, we prove the contrapositive. Suppose B is a level-k blob
in N , and let descN (B) = A. By Observation 2, we can isolate a lowest reticulated
cherry in B to obtain anMLLS Nmlls of N where BT (Nmlls) is different from BT (N ).
In this construction of Nmlls , there exists a pure node in Nmlls which was not a pure
node in N . Then, the set of children of A in BT (Nmlls) is not the same as the set of
children of A in BT (N ). ��

Figure 8 illustrates Lemma 13with a level-4 tree-child network N . The blob trees of
its MLLSs are taken, fromwhich the blob tree of N can be reconstructed (Theorem 2).
Then, it can be seen that the set of children of the blob node {a, . . . , n} in BT (Ni )

for i = 1, 3, 5, 6, 7, 8 differs from the set of children of {a, . . . , n} in BT (N ). Hence,
the blob with leaf-descendant set {a, . . . , n} is of level-4. Since the children of the
other blob nodes do not change, the blobs with leaf-descendant sets {a, b, c}, {e, f }
and {k, . . . , n} are blobs of level lower than 4.

4 Leaf Pair Analysis

In order to reconstruct a tree-child network from its MLLSs, we require a way of
locating the position of the missing reticulation edges. In this section, we show that

123



Reconstructing Tree-Child Networks from…

Fig. 8 (Color figure online) Ni for i = 1, 2, . . . , 8 refers to the MLLS of a level-4 tree-child network N
obtained by deleting the reticulation edge i . BT (N ) is the blob tree of the network N and BT (Ni ) is the
blob tree of Ni for each i . The foundation nodes are highlighted in yellow

studying the topology of a leaf pair in the MLLSs gives enough information to infer
the topology of those same leaves in the original network. The next section will show
how we can use this to find the location of the missing reticulation edge of each blob
by choosing the appropriate leaf pair.

We use the inter-node distance as defined by Bordewich and Semple (2016). For
our purposes, we slightly tweak the definition by allowing the endpoints to be non-leaf
nodes.

Definition 10 Let N be a network and let x, y ∈ N . An up-down path of length p
from x to y is a sequence of nodes x = v0, v1, v2, . . . , vp−1, vp = y in N , such that
for some 0 ≤ i ≤ p, N contains the edges

(vi , vi−1), . . . , (v1, x)

123



Y. Murakami et al.

Fig. 9 (Color figure online) A network N on 4 leaves. The shortest ac up-down distance is 5 (blue dash-
dotted path); however, the shortest ac distance in the underlying undirected graph of N is 4 (red dashed
path)

and

(vi , vi+1), (vi+1, vi+2), . . . , (vp−1, y).

The node vi is the apex of this up-down path. The length of a shortest xy up-down
path P in N is denoted dN (x, y).

Note that the shortest up-down distance dN (x, y) in a network N may not nec-
essarily be the shortest distance in the underlying undirected graph of N (where the
underlying undirected graph of N is obtained by replacing every directed edge by an
undirected edge), see Fig. 9.

Let Q be an up-down path between nodes u and v of length at least 2 in a tree-child
network N . An edge (u, v), if it exists, is called a shortcut. In some papers, the notion
of a shortcut (also known as a redundant arc) is defined on directed paths rather than
on up-down paths (Bordewich et al. 2018b; Willson 2010). For the purposes of this
paper and since a directed path is by definition an up-down path (without the ‘up’
portion), we define shortcuts on the up-down paths. Call an up-down path which has
no shortcuts in N a shortcut free up-down path. Note that shortest up-down paths are
necessarily shortcut free. Let N ′ be a maximum subnetwork of N obtained by deleting
some reticulation edge (u, r). Let P ′ be an xy up-down path in N ′ for nodes x, y.
Reinsert the edge (u, r) in N ′. Then, the xy up-down path P ′, together with any nodes
in {u, r} that intersect some edge of P ′, is called the embedded path of P ′ in N .

Lemma 14 In a tree-child network, deleting a single reticulation edge can reduce the
up-down distance between any two leaves by at most one.

Proof Let N be a tree-child network and let N ′ be a maximum subnetwork of N
obtained by deleting some reticulation edge (u, r). Let v be the parent of r in N that
is not u. Take any xy up-down path P ′ in N ′, and let P be its embedded path in N .
Let P∗ be an up-down path in N derived from P by taking the shortcut (u, r) if it is

123



Reconstructing Tree-Child Networks from…

Fig. 10 All possible shapes on two leaves {x, y} (up to permuting x and y). The dashed line indicates that
any ib up-down path has length at least 2

a shortcut in P . We show that |P∗| ≤ |P ′| + 1. Now compared to P ′, the up-down
path P contains at most 2 additional nodes—the nodes u and r . If it contains:

– 0 additional nodes then (u, r) cannot be a shortcut of the embedded path P .
So, |P| = |P∗| = |P ′|;

– 1 additional node, then again, (u, r) cannot be a shortcut of the embedded path P .
So, |P| = |P∗| = |P ′| + 1;

– 2 additional nodes, then (u, r) must be a shortcut in P , as otherwise delet-
ing (u, r) disconnects P ′. This implies that currently, P contains all three of the
points {u, v, r}.
Then |P ′| = |P|−2 ≥ |P∗|−1, where the inequality follows as taking a shortcut
reduces the length of an up-down path by at least 1.

It then follows that a single reticulation edge deletion from N can reduce dN (x, y) for
any two leaves x, y ∈ N by at most 1. ��

Lemma 15 Let N be a tree-child network. For each pair of leaves {x, y}, exactly one
of the following cases holds (see Fig. 10):

– N contains a cherry Λ(x, y) with nodes a, x, y and edges (a, x), (a, y);
– N contains a cherry subdivided by one tree node. If this tree node is the parent of y,
there is a subgraph with nodes a, b, c, x, y and edges (a, x), (a, b), (b, y), (b, c),
which we call λ(x, y);

– N contains a reticulated cherry, which is a cherry subdivided by one reticulation.
If this reticulation is the parent of y, there is a subgraph with nodes a, b, c, i, x, y
and edges (a, x), (a, c), (b, c), (c, y), (i, a) which we call K (x, y);

– if i = b, then we also call this shape A(x, y);
– if i 	= b, then we also call this shape H(x, y).

– if dN (x, y) ≥ 4, we say that N contains Π(x, y).

Hence, there are eight possibilities in total: Λ(x, y), λ(x, y), λ(y, x), A(x, y),
A(y, x), H(x, y), H(y, x),Π(x, y), each of which we call a shape. However, keep in
mind that when N contains Π(x, y), this does not mean just that there exists an xy
up-down path of length at least 4, but also that there does not exist an xy up-down
path of length at most 3.

Proof We employ the following distance arguments.

123



Y. Murakami et al.

– If dN (x, y) = 2, then N must contain Λ(x, y).
– If dN (x, y) = 3, then there is at most one reticulation on the shortest xy up-down
path. So if in addition we have that

– there are no reticulations on the shortest xy up-down path. Then, N must
contain λ(x, y) or λ(y, x);

– there is one reticulation on the shortest xy up-down path then N must contain
a reticulated cherry K (x, y) or K (y, x). If in addition we have that

• the parent of x and the parent of y share a common parent, then we say
specifically that N must contain A(x, y) or A(y, x);

• the parent of x and the parent of y do not share a common parent, then we
say specifically that N must contain H(x, y) or H(y, x).

– If dN (x, y) ≥ 4 then N must contain Π(x, y).

��
We now show that the shape on leaves x and y in a tree-child network is identifiable

from the shapes on x and y in its MLLSs. This is summarized in Table 1. We start
with the following theorem, which shows that each shape is preserved in at least one
MLLS.

Theorem 4 Let N be a level-k tree-child network where k ≥ 2, and let x, y be two
leaves in N. If N containsΛ(x, y), λ(x, y), A(x, y), H(x, y) orΠ(x, y), then there is
anMLLS of N containingΛ(x, y), λ(x, y), A(x, y), H(x, y) orΠ(x, y), respectively.

Proof In this proof, we refer to the node labels used in Lemma 15.
The case that N contains Λ(x, y) is trivial.
Now suppose N contains λ(x, y). If c , the sibling of y, is a reticulation then

deleting the reticulation edge leading into c that is not (b, c) returns an MLLS con-
taining λ(x, y). If c is not a reticulation, then deleting any reticulation edge will not
affect the shortest xy up-down path. This results in an MLLS containing λ(x, y).

Suppose N contains A(x, y). As x, y are leaves, A(x, y) is a level-1 blob, and thus
by definition, every MLLS of N contains A(x, y).

Suppose N contains H(x, y). If the blob containing the reticulation of H(x, y) is
of level lower than k, then every MLLS of N contains H(x, y), and we are done. So
suppose this blob is level-k. As k ≥ 2, there exists a reticulation r , which is not c, with
reticulation edges e and f . Let N ′ and N ′′ be the MLLSs of N obtained by deleting e
and f (among other reticulation edges), respectively. We claim that at least one of N ′
or N ′′ contains H(x, y). Indeed, if N ′ contains A(x, y), then in N , either b or i must
be incident to e, as otherwise a and c will still have different parents after deleting e
and cleaning up. Now, b cannot be incident to e as it violates the tree-child property,
regardless of whether b is the tree node or the reticulation incident to e. Then, i must
be incident to e. If i is r , then we note that b cannot be the parent of i due to the
tree-child property. This implies that upon deleting e and cleaning up, a and c have
different parents, and subsequently N ′ contains H(x, y). Thus, this case is impossible.
If, on the other hand, i is the tree node of e, then neither i nor b are suppressed after
deleting f and cleaning up. This implies that N ′′ contains H(x, y).

123



Reconstructing Tree-Child Networks from…

Suppose N contains Π(x, y). Suppose first that dN (x, y) ≥ 5. Take any xy up-
down path in N , and consider BT (N ). Note that any up-down path in N can bemapped
to an up-down path in BT (N ). The ‘up’ portion of the path passes through the blob
nodes containing x in their label, until the first blob node containing y is reached. The
‘down’ portion of the path passes through the blob nodes containing y in their label,
until a lowest blob node containing y is reached. In particular, the apex is contained in
the lowest blob which contains both x and y in their leaf-descendant set. So every xy
up-down path in N passes through the same set of blobs B. Furthermore, every xy
up-down paths enter and leave the blobs B ∈ B at the same nodes. Let tB and hB

denote these nodes, respectively.
We claim that there is a reticulation edge we can delete from any blob B ∈ B of

level-k such that every xy up-down path uses at least one edge from B in the resultant
subnetwork.We assume lvl(B) = k as otherwise the claim holds trivially. At least one
of tB or hB must be a reticulation, since we enter, pass through, and leave the blob B.
We consider the cases when they are both reticulations and when tB is a reticulation
but hB is not. Suppose first that tB and hB are both reticulations. Then B must contain
the apex of any xy up-down path; furthermore, because of the tree-child property, the
shortest tBhB up-down distance must be at least 3. Then, deleting a reticulation edge
incident to hB either disconnects the xy up-down path or reduces the length by at
most 1. In any case, at least one edge of B is still used in the xy up-down paths in the
resultant subnetwork. Now suppose that tB is the only reticulation. Suppose hB is not
incident to any reticulation edge. Since lvl(B) = k ≥ 2, there exists a reticulation edge
we can delete from B, such that neither tB, hB , nor the edge (tB, hB) are suppressed.
Now suppose hB is incident to a reticulation edge into a reticulation r . If this edge is
also incident to tB , then again since lvl(B) = k ≥ 2, there exists a reticulation edge
we can delete from B, such that neither tB, hB , nor the edge (tB, hB) are suppressed.
Finally, if the edge is not incident to tB , then deleting the reticulation edge incident
to r that is not (hB, r) ensures that tB, hB , nor (tB, hB) are suppressed. In any case,
deleting the chosen reticulation edge returns a subnetwork in which an edge of B is
used in every xy up-down path.

So if |B| ≥ 2, then there exists an MLLS Nmlls in which all xy up-down paths use
at least two edges from the blobs in B plus at least three edges connecting the two
blobs, x , and y. Therefore, dNmlls (x, y) ≥ 5. If |B| = 1, then by Lemma 14, there
exists an MLLS Nmlls with dNmlls (x, y) ≥ 4. Thus, if dN (x, y) ≥ 5, then there is an
MLLS of N containing Π(x, y) (Fig. 11).

Supposenow thatdN (x, y) = 4.Wefirst show that there are atmost 2 shortest xy up-
down paths in N . Let u, v be the parents of x, y, respectively. Then, any shortest xy up-
down path is always of the form (x, u), (u, w), (w, v), (v, y) (disregarding directions)
where w is some node in N , and one of u, v, w is the apex of the shortest up-down
path. Note that u and v are always included in any xy up-down path, since they are
the parents of x and y, respectively. Therefore, having two shortest xy up-down paths
where u and v are the apex in each would create a cycle in N , contradicting the fact
that N is a phylogenetic network. Therefore, if u is the apex of a shortest xy up-down
path in N , then there cannot be a shortest xy up-down path where v is the apex. There
can be, however, a second shortest xy up-down path in N where w is the apex.

123



Y. Murakami et al.

Fig. 11 (Color figure online) Proof visual of Theorem 4, dN (x, y) ≥ 5 case. The red dashed up-down
path in BT (N ) represents the trajectory of every xy up-down path in N , and consequently, the set of
blobs B through which every xy up-down path passes. A zoomed-in portion of the two particular blob
nodes illustrates the entry point tB and exit hB in N , and the case for when both points can be reticulations

Since u, v are contained in all xy up-down paths, we have that if two shortest xy up-
down paths have the same apex, then they must be the same up-down paths. Otherwise
the network would not be binary, or there would be parallel edges. If there were more
than two shortest xy up-down paths, then at least one of u or w would have degree
greater than 3. This implies N is non-binary, so there can be at most two shortest xy
up-down paths. This is shown in Fig. 12. Note that if there are two shortest xy up-down
paths in N , then it must be isomorphic to the one shown in Fig. 12, as otherwise the
only other option would be to have w and w′ be the apex, in which case w′ would be
a parent of 2 reticulations, deeming N to be not tree-child.

Now we show that if dN (x, y) = 4, then there is always an MLLS of N contain-
ing Π(x, y).

Suppose first that there are two shortest xy up-down paths. Then, as stated before, it
is isomorphic to the diagram shown in Fig. 12. There are no reticulation edges incident
to either of the shortest paths other than on the reticulation at v. In particular, (w, z)
cannot be a reticulation edge because N is tree-child. As lvl(N ) ≥ 2, there is another
reticulation edge e incident to a reticulation that is not v. Indeed, parents of x and y
remain different and non-adjacent in the MLLS obtained by deleting e. This particular
MLLS contains Π(x, y).

Now suppose there is only one shortest xy up-down path P . There are 5 nodes
on P including x and y, and there are at most two reticulation edges incident to P and
at most one on P by the tree-child property. Since lvl(N ) ≥ 2, there is at least one
reticulation edge such that its deletion does not affect P . Deleting this reticulation edge
and cleaning up ensures that the parents of x and y remain different and non-adjacent
in the resultant MLLS. Therefore, there exists anMLLS of N which containsΠ(x, y).

Thus, if dN (x, y) = 4, then there exists an MLLS of N containing Π(x, y). There-
fore, if N contains Π(x, y), there exists an MLLS of N containing Π(x, y). ��

123



Reconstructing Tree-Child Networks from…

Fig. 12 (Color figure online) An
example of 2 shortest xy
up-down paths in N ,
whenever dN (x, y) = 4. One
up-down path (red dashed)
is (x, u), (u, w), (w, v), (v, y)
and the other (blue dash-
dotted) (x, u), (u, w′), (w′, v), (v, y)
(disregarding directions)

Lemma 16 For a tree-child network N, if N contains Π(x, y), then no MLLS of N
contains Λ(x, y).

Proof We prove the contrapositive. Suppose one of the MLLSs Nmlls of N con-
tains Λ(x, y). Add the deleted reticulation edges back to Nmlls . Then, every node on
a shortest xy up-down path, excluding the apex and the leaves x, y, is incident to a
reticulation edge. We first show that these nodes cannot be pure nodes in N .

Suppose for a contradiction that one of these nodes p is a pure node in N . Then, p
must be a tree node, and there must exist two disjoint paths from p to its reticulation
child r . Without loss of generality, suppose that p is above x . Since p must be above r
via a path that does not use the edge (p, r), there exists a node z that is above x
and below p such that z is above r . When we delete the reticulation edges again to
obtain Nmlls , we must delete two edges from the blob with pure node p, which is
impossible. We have a contradiction.

Now suppose for a contradiction that there are two nodes u, v on a shortest xy
up-down path in N excluding the apex. By our assumption, u and v are contained
in a level-k blob. By the above claim, neither u nor v can be pure nodes in N , and
we note that the blob containing u contains the apex, and the blob containing v also
contains the apex. This implies that u and v are contained in the same level-k blob.
To obtain Nmlls , only one of u or v can be suppressed. In particular, (u, v) cannot be
an edge in N as otherwise, this blob would be a level-1 blob. This implies that Nmlls

does not contain Λ(x, y), a contradiction.
Therefore, there can only be one node on a shortest xy up-down path in N excluding

the apex, and thus dN (x, y) ≤ 3. Hence, N does not contain Π(x, y). ��
Theorem 5 Let N be a level-k tree-child network where k ≥ 2, and let x, y be two
leaves in N. The shape on {x, y} in N is identifiable from the shapes on {x, y} in the
MLLSs.

123



Y. Murakami et al.

Proof We now prove a series of claims which state that N contains a certain shape if
and only if there are distinct MLLSs of N containing certain shape(s) on {x, y}, and
not containing certain other shape(s) on {x, y}.
Claim 1 N contains Λ(x, y) if and only if all MLLSs of N contain Λ(x, y).

Proof 1 To show necessity, suppose N contains Λ(x, y) so that dN (x, y) = 2. Since
the parent of x and y is a tree node, there is no reticulation edge incident to Λ(x, y).
Then,Λ(x, y) is contained in everymaximum subnetwork of N , and therefore in every
MLLS of N .

For sufficiency, suppose for a contradiction that all MLLSs of N on X con-
tain Λ(x, y), but N does not. If N contains λ(x, y), λ(y, x), K (x, y), K (y, x),
or Π(x, y) then, as these are the only possible shapes and their shapes are preserved
in some MLLSs by Theorem 4, we have our required contradiction. Thus, the claim
holds. ��
Claim 2 N containsλ(x, y) if and only if there exists anMLLSof N containingλ(x, y)
and no MLLSs of N contain λ(y, x), K (x, y), K (y, x) or Π(x, y).

Proof 2 To show necessity note that by Theorem 4, there is an MLLS of N that
contains λ(x, y). The only possible reticulation edge incident to λ(x, y) is at b
whenever c is a reticulation. Deleting the edge (b, c) returns an MLLS contain-
ing Λ(x, y), and deleting the reticulation edge incident to c that is not (b, c) returns
an MLLS containing λ(x, y). All other reticulation edges do not intersect λ(x, y),
and hence, their deletions do not affect λ(x, y). Thus, an MLLS of N does not con-
tain λ(y, x), K (x, y), K (y, x) nor Π(x, y). The condition is therefore necessary.

To show sufficiency, suppose for a contradiction that the conditions hold but N
does not contain λ(x, y). If N contains Λ(x, y) then by Claim 1, no MLLSs of N
contain λ(x, y), a contradiction. If N contains λ(y, x), K (x, y), K (y, x), orΠ(x, y),
then as these are theonlypossible shapes and their shapes are preserved in someMLLSs
by Theorem 4, we have our required contradiction. The condition is necessary, and
the claim holds. ��

Since A(x, y) is a level-1 blob in N for two leaves x, y ∈ X , Claim 3 is trivially
true.

Claim 3 N contains A(x, y) if and only if all MLLSs of N contain A(x, y).

When N contains H(x, y), let BH be the blob containing the reticulation in H(x, y).

Claim 4 – N contains H(x, y) and lvl(BH ) = k if and only if there exist dis-
tinct MLLSs of N containing Λ(x, y) and H(x, y), and no MLLSs of N
contain K (y, x).

– N contains H(x, y) and lvl(BH ) < k if and only if all MLLSs of N con-
tain H(x, y).

Proof 4 We first prove the first statement of the claim. We first show necessity. Iso-
lating 〈x, y〉 returns an MLLS of N containing Λ(x, y). By Theorem 4, there is an

123



Reconstructing Tree-Child Networks from…

MLLS of N which contains H(x, y). For the third condition, suppose for a contra-
diction that some MLLS Nmlls of N contains K (y, x). Since we have a reticulation
on y in H(x, y), and because isolating 〈x, y〉 returns Λ(x, y), Nmlls must have been
obtained by cutting 〈x, y〉. But then we have that the node b, the grandparent of y,
has only reticulation children in N , contradicting the tree-child property of N . We
therefore have necessity.

To show sufficiency, suppose for a contradiction that the conditions hold but N
does not contain H(x, y). If N contains Λ(x, y) then by Claim 1, no MLLSs of N
contain H(x, y), a contradiction. If N contains λ(x, y) or λ(y, x), then no MLLSs
of N contains H(x, y) by Claim 2, a contradiction. If N contains A(x, y), then no
MLLSs of N contains Λ(x, y) by Claim 3, a contradiction. If N contains K (y, x),
then the shape is preserved in some MLLS of N by Theorem 4, a contradiction.
Finally, if N contains Π(x, y), then no MLLS of N contains Λ(x, y) by Lemma 16,
a contradiction. As these are the only possibilities, necessity follows. The claim holds
for lvl(BH ) = k.

We now prove the second statement of the claim. We first show necessity. Now
suppose that N contains H(x, y) and lvl(BH ) < k. Then, none of the reticulation
edges in BH are deleted to obtain any of the MLLSs of N by definition. It follows that
all MLLSs of N contain H(x, y).

We now show sufficiency. Suppose first that every MLLS of N contains H(x, y).
If N contained a shape that was not H(x, y), then there exists an MLLS of N that
contains that particular shape by Theorem 4. As this is a contradiction, we have that N
contains H(x, y). To show that lvl(BH ) < k, we note that if this was not the case, i.e.,
if lvl(BH ) = k, then we have shown above that anMLLS of N would containΛ(x, y),
which is a contradiction. Sowemust have that N contains H(x, y) and that lvl(BH ) <

k. ��
Claim 5 N contains Π(x, y) if and only if there exists an MLLS of N contain-
ing Π(x, y) and no MLLSs of N contain Λ(x, y).

Proof 5 We first show necessity. There is an MLLS of N that contains Π(x, y) by
Theorem 4. By Lemma 16, no MLLSs of N contains Λ(x, y).

To show sufficiency, suppose for a contradiction that the conditions hold, but that N
does not contain Π(x, y). If N contains Λ(x, y) then by Claim 1, every MLLS of N
containsΛ(x, y), a contradiction. If N containsλ(x, y) orλ(y, x) then noMLLSs of N
contain Π(x, y) by Claim 2, a contradiction. If N contains A(x, y) or A(y, x), then
all MLLSs of N contains A(x, y) or A(y, x) by Claim 3. This is a contradiction as no
MLLSs of N would contain Π(x, y). If N contains H(x, y) or H(y, x), then we split
into two cases. Recall that BH is the blob of N which contains H(x, y) or H(y, x).
If lvl(BH ) < k, then all MLLSs of N contains H(x, y) or H(y, x) by Claim 4. This
is a contradiction as no MLLSs of N would contain Π(x, y). If lvl(BH ) = k, then
there exists an MLLS of N which contains Λ(x, y) by Claim 4, a contradiction. The
condition is sufficient. The claim therefore holds. ��

��
Theorem 5 is summarized in Table 1. The table covers all of the different cases,

showing which shapes can appear in MLLSs given the shape that the original network

123



Y. Murakami et al.

Ta
bl
e
1

G
iv
en

a
tr
ee
-c
hi
ld

ne
tw
or
k
N

co
nt
ai
ns

on
e
of

th
e

{x
,
y}

sh
ap
es

lis
te
d
in

th
e
fir
st
co
lu
m
n,

fo
r
ea
ch

sh
ap
e
lis
te
d
on

th
e
fir
st
ro
w
,t
hi
s
sh
ap
e
m
us
ta
pp
ea
r
in

an
M
L
L
S

of
N

if
th
er
e
is
a
ch
ec
km

ar
k
(�

),
th
is
sh
ap
e
ca
nn
ot

ap
pe
ar

in
an

M
L
L
S
if
th
er
e
is
a
cr
os
s
(X
),
an
d
a
qu

es
tio

n
m
ar
k
(?
)
m
ea
ns

ei
th
er

co
ul
d
be

po
ss
ib
le

N
co
nt
ai
ns

Λ
(x

,
y)

A
(x

,
y)

A
(y

,
x)

H
(x

,
y)

H
(y

,
x)

λ
(x

,
y)

λ
(y

,
x)

Π
(x

,
y)

Λ
(x

,
y)

�
X

X
X

X
X

X
X

A
(x

,
y)

X
�

X
X

X
X

X
X

H
(x

,
y)

�
(X
)

X
(X
)

X
(X
)

�
(�

)
X
(X
)

?(
X
)

?(
X
)

?(
X
)

λ
(x

,
y)

?
X

X
X

X
�

X
X

Π
(x

,
y)

X
?

?
?

?
?

?
�

A
(y

,
x)

X
X

�
X

X
X

X
X

H
(y

,
x)

�
(X
)

X
(X
)

X
(X
)

X
(X
)

�
(�

)
?(
X
)

?(
X
)

?(
X
)

λ
(y

,
x)

?
X

X
X

X
X

�
X

In
th
e
ro
w
s
H

(x
,
y)

an
d
H

(y
,
x)
,t
he

no
n-
br
ac
ke
te
d
m
ar
ks

ar
e
fo
r
th
e
ca
se

lv
l(
B
H

)
=

k
an
d
th
e
br
ac
ke
te
d
m
ar
ks

ar
e
fo
r
th
e
ca
se

lv
l(
B
H

)
<

k

123



Reconstructing Tree-Child Networks from…

(a) (b)

Fig. 13 a Two non-isomorphic level-1 networks with girth 3 that share the same subnetworks. b Three
non-isomorphic level-1 networks with girth 4 that share the same subnetworks

contains. For any two rows in the table, there is some column in which one row has a
check and the other a cross. Thus, we can distinguish between any two cases just by
looking at the MLLSs, and so we can determine the structure between x and y on N .
Because the given shapes are the only possibilities between two leaves x and y, the
table covers all possible cases.

5 Reconstructibility of Tree-Child Networks

In this section, we show that the class of tree-child networks, excluding trees and level-
1 networkswith girth atmost 4, isMLLS-reconstructible and thus level-reconstructible
and subnetwork-reconstructible (where the girth is the length of a smallest cycle in
the underlying undirected graph). A pair of level-1 networks with girth 3 and a triple
of level-1 networks with girth 4 that is not subnetwork-reconstructible is shown in
Fig. 13.

Following the leaf pair analysis in Sect. 4, we show here that it is possible to infer
the location of a missing reticulation edge for level-k blobs from the MLLSs. By
Lemma 7, there exists a cherry or a reticulated cherry in every tree-child network.
We know that the common parents within cherries are level-0 blobs and A shapes
are level-1 blobs. Then, the reconstruction of level-k blobs can be accomplished by
reconstructing an H shape of every level-k blob.

We start by analyzing the possible shapes on x, y after cutting a reticulated cherry
on x and y, see Fig. 14 for examples.

Lemma 17 Let N be a tree-child network and suppose N contains H(x, y) on a
leaf pair {x, y}. Then, the maximum subnetwork obtained by cutting the reticulated
cherry 〈x, y〉 contains one of λ(x, y), λ(y, x), or Π(x, y). Furthermore, all other
maximum subnetworks of N contain either Λ(x, y) or H(x, y).

Proof Suppose for a contradiction that cutting 〈x, y〉 returns a maximum subnet-
work N ′ of N containing eitherΛ(x, y), K (x, y), or K (y, x). If N ′ contains Λ(x, y),
then the parent of x and the parent of y must share a common parent in N . This implies
that N contains A(x, y), a contradiction. If N ′ contains K (x, y), then the parent of y is

123



Y. Murakami et al.

Fig. 14 The three cases for H(x, y) in Lemma 17. Deleting edge (a, c) yields λ(x, y), λ(y, x), andΠ(x, y),
respectively

Fig. 15 (Color figure online) Three MLLSs Nmlls
1 , Nmlls

2 , and Nmlls
3 of a level-2 tree-child network

containing exactly two level-2 blobs. The threeMLLSs containΛ(x, y), H(x, y), andΠ(x, y), respectively.
We reconstruct the blob B with pure node p in Nmlls

3 initially and then reconstruct it in the other MLLSs.

In Nmlls
3 , nodes a, c are inserted directly above x, y, respectively, and an edge (a, c) is added (red dashed

edge). To reconstruct B in Nmlls
1 the pendant subnetwork rooted at p is replaced by the reconstructed

pendant subnetwork

a child of a reticulation in N . This contradicts the tree-child property of N . N ′ cannot
contain K (y, x) by Theorem 5.

To prove the second statement of the lemma, note that isolating H(x, y) returns a
maximum subnetwork of N that contains Λ(x, y), and deleting any reticulation edge
that is not incident to y returns a maximum subnetwork that contains H(x, y), since
the parent of x and the parent of y is not suppressed and they are adjacent. ��

We now show how we can reconstruct a blob containing the reticulation of a retic-
ulated cherry, see Fig. 15 for an example.

Lemma 18 Let N be a level-k tree-child network, and suppose N contains H(x, y)
for a leaf pair {x, y}. Suppose in addition that the blob B containing the reticulation
of H(x, y) is level-k. Then, we can reconstruct B in the MLLSs of N .

Proof ByTheorem5 andLemma17, N contains H(x, y) if and only if allMLLSs of N
contain either Λ(x, y), H(x, y), λ(x, y), λ(y, x), or Π(x, y), and there exist distinct
MLLSs of N that contain Λ(x, y), H(x, y), and one of λ(x, y), λ(y, x), or Π(x, y).
Now find the MLLS Nmlls of N that contains one of λ(x, y), λ(y, x), or Π(x, y).
Introduce nodes a, c directly above x, y, respectively, and add an edge (a, c) to Nmlls .
This reconstructs the blob B in Nmlls .

123



Reconstructing Tree-Child Networks from…

It remains to show how to reconstruct B in the other MLLSs. Hence, consider
an arbitrary MLLS Nmlls

1 . Let A ⊆ X denote the set of leaf-descendants of the pure
node p of B in N . Then, A is a node of BT (N ). Let Γ (A) denote the set of all children
of A in BT (N ). Let pi for i = 1, . . . , |Γ (A)| denote the corresponding pure nodes
in N . In N , delete the tree edge leading into p, and also delete the two outgoing edges
of pi for i = 1, . . . , |Γ (A)|, but do not clean up. Call the component that contains
the node p the B-part of N . By Theorem 2, the MLLS Nmlls

1 contains a pure node q
with leaf-descendant set A and pure nodes qi with leaf-descendant set equal to each
set in Γ (A).

In Nmlls
1 , delete the tree edge leading into q, and also delete the two outgoing edges

of qi , for i = 1, . . . , |Γ (A)|, but do not clean up. Call the component that contains the
node q the B-part of Nmlls

1 . We can then reconstruct the blob B in Nmlls
1 by replacing

the B-part of Nmlls
1 by the B-part of Nmlls . Since B is reconstructed correctly in Nmlls ,

and since an edge deletion from a blob does not affect the network outside of the blob,
it follows that this replacement correctly reconstructs the blob B in Nmlls

1 . ��
Definition 11 Let N be a tree-child network. A cherry Λ(x, y) is reduced by deleting
the node y and cleaning up (same definition as in Bordewich and Semple 2016). A
reticulated cherry K (x, y) is reduced by isolating K (x, y) and reducing the resultant
cherry Λ(x, y) (different definition to one in Bordewich and Semple 2016).

The following observation shows how we can obtain the MLLSs of a network
obtained by reducing a reticulated cherry from the MLLSs of the original network.
Note that a maximum subnetwork obtained by isolating a reticulated cherry in a tree-
child network remains tree-child by Lemma 3 and that a network obtained by reducing
a cherry in a tree-child network also remains tree-child (Bordewich and Semple 2016).

Lemma 19 Let N be a level-k tree-child network with a cherry or a reticulated cherry
on a leaf pair {x, y}, and let N ′ be the tree-child network obtained by reducing {x, y}
from N.

– If N contains H(x, y) and the blob B containing H(x, y) is of level-k, then, in each
MLLS of N, reconstruct B by Lemma 18 and subsequently reduce the reticulated
cherry H(x, y).

– Otherwise, reduce {x, y} in all MLLSs of N .

Let S denote the set of networks we obtain from either of the above two cases. Then, S
is precisely the set of all MLLSs of N ′.

Proof TheMLLSs of N ′ are obtained by first reducing {x, y} from N and then finding
the MLLSs of the resulting network. Since deleting edges from blobs has no effect on
all other blobs in the network, we can in fact switch the order of reducing {x, y} and
deleting edges from level-k blobs. In particular, the MLLSs of N ′ can also be obtained
by deleting exactly one reticulation edge from all level-k blobs of N (that are not B, in
the case that N contains H(x, y) and the blob B containing H(x, y) is of level-k), and
then subsequently reducing {x, y} in all the resulting subnetworks. The latter process
of obtaining the MLLSs of N ′ is exactly how the set S is obtained, and therefore, S
is precisely the set of all MLLSs of N ′. ��

123



Y. Murakami et al.

Theorem 6 The class of binary level-k tree-child networks is MLLS-reconstructible,
for k ≥ 2.

Proof We prove by induction on |X | that, for each level-k tree-child network N on X
with MLLS set M, the network N is the unique level-k tree-child network with
MLLS set M. The base case |X | = 1 is trivially true as when there is only one leaf,
any network of level-2 or higher is no longer tree-child. So suppose |X | > 1 and that
the claim is true for each level-k tree-child network on at most |X | − 1 leaves. Let N
be a level-k tree-child network on X and letM be its MLLS set. We will show that the
network N can be reconstructed fromM, thus showing that N is the unique network
with MLLS setM.

By Lemma 7, there exists at least one leaf pair {x, y} that forms a cherry or a
reticulated cherry in N .

If N contains H(x, y) and the blob B containing the reticulation of H(x, y) is of
level-k, then correctly reconstruct B in each element ofM as outlined in Lemma 18.
By Theorem 5, there is no other way of reconstructing the blob B. We update the
elements ofM by doing so. If B is the only level-k blob, we are done. Otherwise, we
proceed as follows. Note that we can do this, as we can identify all level-k blobs by
Lemma 13.

At this point, all networks inM contain the same shapeon {x, y}. Either all networks
contain Λ(x, y), all networks contain A(x, y), or all networks contain H(x, y).

Reduce {x, y} in each network of M, and call this new set of networks S. Each
network in S is tree-child and contains |X | − 1 leaves. By Lemma 19, S is the set
of all MLLSs of N ′, the level-k tree-child network obtained by reducing {x, y} in N .
By the induction hypothesis, N ′ is the unique level-k tree-child networks with MLLS
set S. Reconstructing N ′ and undoing the reduction operation on {x, y} yields the
tree-child network N , which is therefore the unique level-k tree-child network with
MLLS setM. ��

Gambette et al. have shown that level-1 networks with girth at least 5 are level-
reconstructible (Gambette et al. 2017). The next corollary follows from their results,
Observation 1, Theorem 6, and the following observation.

Observation 3 Let N and N ′ be two tree-child networks that are both either level at
least 2 or girth at least 4. If the level of N and N ′ is different, then they do not have
the same set of lower-level subnetworks.

Corollary 3 The class of tree-child networks, excluding trees and level-1 networks
with girth at most 4, is MLLS-reconstructible, level-reconstructible and subnetwork-
reconstructible.

6 Reconstruction Algorithm for Tree-Child Networks

In this section, we present an algorithm in the form of pseudo-code for reconstructing
tree-child networks from theirMLLSs.As shown inSect. 5,weneedonly to reconstruct
the H shapes contained in level-k blobs. Algorithm 1 systematically rebuilds every

123



Reconstructing Tree-Child Networks from…

level-k blob from the bottom-up, reducing common pendant subnetworks to leaves
on the way. We give an example of Algorithm 1 in Fig. 16. To keep the description
of the algorithm concise, it assumes that the input T consists of the set of MLLSs
of some level-k tree-child network, with k ≥ 2. Nevertheless, the algorithm can in
principle also be used to decide whether such a network exists or not. If the algorithm
returns a network N , then we can check whether T = Nmlls(N ). If this is not the
case, or the algorithm fails to output a network, then such a network does not exist
(see Theorem 7). Checking whether T = Nmlls(N ) can be done in O(|T |2|X |2)
time, because checking whether two tree-child networks are isomorphic can be done
in O(|X |2) time (Cardona et al. 2009).

Moreover, the algorithm can even be applied to an arbitrary set of level-k − 1 tree-
child networks as input. If a network displaying the input networks exists the algorithm
may find it, but is not guaranteed to do so (see Theorem 8.)

Before presenting the algorithm, we first go over a few key ideas required to prove
the correctness and find the time complexity of the algorithm. We reiterate the idea
of collapsing a pendant subnetwork from a network (presented in Sect. 3.3), and
additionally define what it means to collapse a common pendant subnetwork from a
set of networks. Let N be a network and let NA be a pendant subnetwork of N rooted by
a node with leaf-descendant set A. Collapsing NA from N means that we replace NA

by a leaf A. Let N\NA denote the network obtained by collapsing NA from N . LetM
be a set of networks containing a common pendant subnetwork NA. Collapsing NA

from M means that we collapse NA from every network in M. Let M\NA denote
the set of networks obtained by collapsing NA from M.

Lemma 20 Let N be a level-k tree-child networkwhere k ≥ 2. If there exists a common
pendant subnetwork NA for the MLLSs of N , then NA is a pendant subnetwork of N .

Proof Consider the blob tree BT (NA). Since NA is a common pendant subnetwork of
all MLLSs of N , the blob tree BT (NA) is a common pendant subtree of all blob trees
of theMLLSs of N . By Theorem 2, BT (N )must contain BT (NA). By Lemma 13, NA

must be a level-k′ < k network. This implies that no edge was deleted from NA in
obtaining the MLLSs of N . Therefore, NA is a pendant subnetwork of N . ��

The following two observations follow directly from Lemma 13.

Observation 4 Let N be a level-k tree-child network where k ≥ 2. There exists no
common pendant subnetwork for the MLLSs of N if and only if all lowest blobs in N
are of level-k.

Observation 5 Let N be a level-k tree-child network where k ≥ 2. There exists a
common pendant subnetwork NA for the MLLSs of N if and only if there exists a
common pendant subtree rooted at A for the blob trees of the MLLSs of N .

Theorem 7 Let N be a level-k tree-child network on X where k ≥ 2, and let T =
Nmlls(N ). Algorithm 1 finds the network N in time O(|T ||X |3/k).
Proof We first prove the correctness of the algorithm. By Lemma 20, every maximal
common pendant subnetwork ofT is a pendant subnetwork of N . Let NA be amaximal

123



Y. Murakami et al.

Data: A set T = Nmlls (N ) for some level-k tree-child network N , where k ≥ 2
Result: The network N

1 Update T by collapsing maximal common pendant subnetworks from every network in T ;
2 Find the blob tree for each network in T ;
3 Find a minimal set A that is a node of the blob tree of each network in T ;
4 Find a leaf pair {x, y} where x, y ∈ A such that distinct networks N1, N2, N3 of T
contain Λ(x, y), H(x, y), and one of λ(x, y), λ(y, x), or Π(x, y), respectively;

5 Update N3 by adding nodes a, c directly above x, y, respectively, and an edge (a, c);
6 Let NA denote the pendant subnetwork rooted at the top node of this blob in N3;

7 for Nmlls ∈ T do
8 Find the pure node p with leaf-descendant set A;
9 Replace the pendant subnetwork rooted at p by NA;

10 Collapse NA from Nmlls ;
11 end
12 if T contains a single element T then
13 N ′ := T ;
14 else
15 N ′ := TCMLLS- Reconstruction(T );
16 end
17 Construct N from N ′ by appending the maximal common pendant subnetworks we have collapsed;
18 return N

Algorithm 1: Algorithm TCMLLS- Reconstruction(T )

common pendant subnetwork of T . Then, we can collapse NA from N and T , solve
a smaller instance of the MLLS reconstruction problem by reconstructing N\NA

from T \NA, and then appending NA to the leaf labeled A—which is the final step
of the algorithm—returns the network N . Since all maximal pendant subnetworks
are disjoint from one another, we can repeat this reduction for all maximal pendant
subnetworks, by considering the reductions separately. Let T ′ and N ′ denote the set
of networks and network obtained by collapsing these pendant subnetworks from T
and N , respectively. By Observation 4, we have that all lowest blobs of N ′ are of level-
k. We search for a lowest level-k blob B by finding a minimal set A′ that is a node
of the blob tree of each network in T . Then, A′ is a lowest foundation node of N ′ by
Theorem 2. Then, we search for a leaf pair {x, y}which form a reticulated cherry in N ′
with the reticulation in B.Wenote that such a leaf pair exists since B is a lowest blob and
since we have collapsed all common pendant subnetworks. Moreover, we can find it
by searching for a pair of leaves as described in the algorithm in Table 1 and its proof in
Theorem 5. Now we reconstruct B using the steps outlined in the proof of Lemma 18.
Let A′ denote the leaf-descendant set of B, and let N ′

A′ denote the corresponding
pendant subnetwork (the subnetwork is pendant since B is a lowest blob). At this
point, if we only needed to reconstruct one level-k blob (i.e., the case when N ′ contains
one level-k blob), then we have reconstructed N ′. Otherwise, collapsing N ′

A′ gives the
full set of MLLSs of the network N ′\N ′

A′ . Continuing this reasoning, the recursive
call will return the network N ′. Appending the collapsed maximum common pendant
subnetworks to N ′ returns the network N .

Each recursive call of TCMLLS- Reconstruction reconstructs one level-k blob,
and therefore, the algorithm terminates once we have reconstructed all level-k blobs,
in which case we have reconstructed the network.

123



Reconstructing Tree-Child Networks from…

Fig. 16 (Color figure online) An example of the algorithm TCMLLS- Reconstruction({N1, N2,

N3, N4}). Initially, the common pendant subnetworks of the four input networks are determined by looking
at their blob trees. In this case, this is the cherry Λ(v, w) (line 1). Upon reducing the cherry Λ(v, w) to
a leaf {v, w} in all the MLLSs, the lowest foundation node is found to be {{v, w}, x, y, z}. We find a leaf
pair {{v, w}, x} specified in line 4 of the algorithm. Since N3 contains Π({v, w}, x), we reconstruct this
blob in N3, shown by the red dashed edge (line 5). After reconstructing the same blob in all the other
networks N1, N2 and N4, we see that the networks are all isomorphic (we enter the if statement of line 12).
The algorithm then returns the network N

123



Y. Murakami et al.

For the running time, observe that each recursive call ofTCMLLS- Reconstruction
acts on an instanceNmlls(N ′) on leaf set X ′ such that |X ′| < |X | and there is one fewer
level-k blob that needs to be reconstructed in the networks of Nmlls(N ′) when com-
pared to that ofNmlls(N ). Since every level-k blob has at least k + 1 outgoing edges,
the number of level-k blobs in N is at most |X |/k. Then,TCMLLS- Reconstruction
is called at most |X |/k times.

Each single iteration of TCMLLS- Reconstruction can be split into four parts—
collapsing largest commonpendant subnetworks from thenetworks (lines 1–2), finding
a lowest foundation node A (i.e., finding a lowest level-k blob) of N (line 3), recon-
structing a lowest level-k blob (lines 4–11), and checkingwhether all updated networks
are isomorphic to one another (line 12). Finding a largest common pendant subnetwork
can be done by looking at the blob trees, which can all be constructed in O(|T ||X |)
time. By Observation 5, there exists a common pendant subnetwork rooted at the pure
node with leaf-descendant set A, if there exists a common pendant subtree rooted at A
in the blob trees. The number of blob nodes is maximized for a tree on |X | leaves
(or whenever every reticulation is in a triangle), in which case it contains 2|X | nodes
in total (including the root). Then, there exist at most |X | − 1 foundation nodes, and
thus, at most |X | − 1 pendant subnetworks. Collapsing a pendant subnetwork from a
network takes constant time, and for every possible pendant subnetwork, we iterate
through the networks in T . This step takes O(|T ||X |) time. Finding a lowest founda-
tion node follows immediately as we have found all pendant subnetworks of the blob
trees. Then, this step takes constant time. The level-k blob reconstruction chooses
a pair of leaves which descend from a blob and subsequently searches through all
networks in T to see if the pair is the H shape we seek. This takes O(|T ||X |2) time
if we try each pair of leaves (or O(|T |2|X |) time if we try each cherry of each net-
work). Collapsing pendant subnetworks take constant time, and we do this for every
network in T . Therefore, the running time for reconstructing a lowest level-k blob still
takes O(|T ||X |2) time (or O(|T |2|X |) time). To decide whether all networks have
become isomorphic, we only need to check whether each blob tree consists of just two
nodes (including the root). It is not necessary to check whether some networks have
become isomorphic after each recursion, since the algorithm still works if the input set
contains isomorphic networks. The algorithm terminates when all level-k blobs have
been reconstructed: this is precisely when all networks become isomorphic.

Since we can construct (or update) the blob trees in O(|T ||X |) time, we can decide
whether all networks have become isomorphic in O(|T ||X |) time.

Thus, the total time over a single iteration of TCMLLS- Reconstruction
is O(|T ||X |2) (or O(|T |2|X |)).

It follows that the total running time of the algorithm is O(|T ||X |3/k) (or
O(|T |2|X |2/k)). ��

Here, we restrict the input data T to be the full set of MLLSs of some tree-child
network N , and return N . We now show that it is not necessary to have this restriction:
in fact, we require only three MLLSs to reconstruct N . That is, the same three MLLSs
can be used to reconstruct each level-k blob. However, if we do not have all MLLSs,
we are unable to identify the level-k blobs. Therefore, we require here that also the
number of reticulations in the network is given.

123



Reconstructing Tree-Child Networks from…

Theorem 8 Three MLLSs suffice to reconstruct a level-k tree-child network, with k ≥
2, if the number l of level-k blobs is known.

Proof Let N be a level-k tree-child network with l level-k blobs and k ≥ 2. We first
pick three MLLSs Nmlls

1 , Nmlls
2 , and Nmlls

3 of N and then show that Algorithm 1
returns N with these inputs and that no other tree-child network exists with these three
MLLSs and l level-k blobs.

Let B1, . . . , Bl denote the level-k blobs in N , and let, for i = 1, . . . , l, ri denote a
reticulation in Bi that is in a lowest reticulated cherry shape, which exists by Lemma 6.
Since Bi is a level-k blob where k ≥ 2, the parents of ri must be non-adjacent
(otherwise Bi would be a level-1 blob). Let Nmlls

1 denote the MLLS of N obtained by
cutting the reticulated cherry shapes that contain ri , and let Nmlls

2 denote the MLLS
of N obtained by isolating the reticulated cherry shapes that contain ri . Let Nmlls

3
denote the MLLS of N obtained by deleting, from each level-k blob Bi , a reticulation
edge that is not incident to ri , and such that the parents of ri remain non-adjacent
in Nmlls

3 . To see that such an MLLS exists, recall that by Theorem 4, we have that
if a network contains H(x, y), then there is an MLLS of N that contains H(x, y).
Therefore, by treating each level-k blob Bi as a level-k tree-child network, we may
invoke Theorem 4 to claim that such an MLLS Nmlls

3 exists.
Now we show that these three MLLSs suffice to reconstruct N with Algorithm 1.

Recall that Algorithm 1 initially collapses all maximal common pendant subnetworks
from the input. Let N ′ denote the network obtained by collapsing the same pendant
subnetworks from N . Then, the algorithm finds a minimal set A that is a node of the
blob tree of each of Nmlls

1 , Nmlls
2 , Nmlls

3 . By Lemma 12, A is a leaf of the blob tree
of N ′. Since the MLLSs Nmlls

1 , Nmlls
2 , Nmlls

3 were constructed in such a way that all
common pendant subnetworks are of level strictly lower than k, the set A is the set of
leaf-descendants of some lowest level-k blob of N ′. Note that, in N ′, r1 is contained in
a reticulated cherry H(x, y) for some leaves x, y, since there are no blobs below B1.
By construction, the MLLS Nmlls

1 contains one of λ(x, y), λ(y, x), or Π(x, y). The
MLLS Nmlls

2 contains Λ(x, y), and the MLLS Nmlls
3 contains H(x, y). Hence, we

can argue similarly to in the proof of Theorem 7 that the algorithm then reconstructs
the blob B1 in all input MLLSs, and that recursing the algorithm reconstructs the next
lowest level-k blob (which can be reconstructed analogously as done for B1). It follows
then that the algorithm reconstructs N after l recursions of the algorithm.

We now show that no other tree-child level-k network with l level-k blobs exists
that displays Nmlls

1 , Nmlls
2 and Nmlls

3 . Suppose such a network N∗ exists. Then, its
MLLS set contains Nmlls

1 , Nmlls
2 and Nmlls

3 . Hence, by the arguments above, running
Algorithm 1 on the full set Nmlls(N∗) of MLLSs of N∗ returns N . In particular,
note that since N∗ has the same number of level-k blobs as N , the same common
pendant subnetworks are collapsed (in each recursive call) when running the algorithm
onNmlls(N∗) aswhenwe run the algorithmon Nmlls

1 , Nmlls
2 and Nmlls

3 .ByTheorem7,
running the algorithm on Nmlls(N∗) returns N∗. Hence, N∗ and N are isomorphic.

��
Note that in theproof ofTheorem8,wecrafted three particularMLLSs Nmlls

1 , Nmlls
2 ,

and Nmlls
3 however, there could bemany triples ofMLLSswhich are sufficient in recon-

123



Y. Murakami et al.

structing the original network. Suppose that we have deleted the reticulation edge e ji
from the blob Bi to obtain the MLLS Nmlls

j for j = 1, 2, 3. The proof of Theorem 8
depends on the argument that if for every level-k blob, we can find the particular
three shapes, then we can reconstruct said level-k blob. Then, we can define three
new MLLSs that are also sufficient for reconstructing N as follows. Let N1 be the
MLLS obtained by deleting one of the three reticulation edges (e j1 , e

j
2 , e

j
3) from each

level-k blob (Bi ). Let N2 be the MLLS obtained by deleting one of the remaining two
reticulation edges, and let N3 denote the MLLS obtained by deleting the remaining
reticulation edges from N . If there were l level-k blobs in N , then we would have 3l
possible choices of N1, 2l possible choices of N2, and 1 possible choice of N3. There-
fore, we have 6l2 possible choices for having a triple of MLLSs that are sufficient
for reconstructing the network, given the reticulation edges e ji . Note that we simply
looked at a particular lowest reticulation ri for each level-k blob Bi and also note that
there could be more than one reticulation edge that we could have deleted in retrieving
the MLLS Nmlls

3 (in the proof of Theorem 8). This implies that there could be many
more triples of MLLSs that suffice to reconstruct N .

Therefore, it is possible to reconstruct the network from a subset of the MLLSs,
given that they hold enough information. In particular, if we have the three MLLSs
as stated in the proof of Theorem 8, then our algorithm returns the network in
time O(|X |2/k).

7 Conclusion and Outlook

In this paper, we have shown that level-k tree-child networks, where k ≥ 2, are deter-
mined by their MLLSs and provided a polynomial-time algorithm for reconstructing
such a network from its MLLSs. We achieved this result by exploiting one of the
tree-child properties—the lowest tree node is in a cherry or a reticulated cherry.

An apparent hindrance to our method is that there is no guarantee nor reason to
have the set of all MLLSs of the original network. Converting sequence data into the
MLLSs could be quite challenging, especially for higher level. It would therefore be
interesting to focus on ways to make our results more practical, possibly employing
similar approaches used inmethods such as trinet-basedmethods (Oldman et al. 2016),
which work with subnetworks with only three leaves.

On the positive side, we have shown that it is not necessary to know all MLLSs to
reconstruct the original network:we need only three, see Theorem8. Therefore, amore
plausible application of our approach would be the following. Suppose, for example,
that different studies each manage to produce a network with some reticulations.
However, in each of these networks some actual reticulate events have been missed,
possibly due to computational limitations or lack of data. Then, a method based on
our theoretical results could be used to reconstruct the full network from the networks
with missing reticulate events.

Extending our MLLS reconstructibility results to a more general class of networks
is another natural step forward.We briefly discuss and explain how it might be possible

123



Reconstructing Tree-Child Networks from…

Fig. 17 A valid network with a tessellating crown blob and its blob tree. Deleting any of the reticulation
edges keeps the original blob biconnected, and hence, it will not affect the blob tree

to adapt our results to the class of valid networks, where every reticulation edge in the
network is valid.

In the case of valid networks, it is not always true that there exists a reticulation
edge in every blob whose deletion results in a maximum subnetwork where the blob
tree differs from the blob tree of the original network (i.e., an analogous statement
to Observation 2 does not always hold for valid networks). An example of this, a
tessellating crown, is shown in Fig. 17.

For leaf pair analysis, there is an extra shape on two leaves {x, y} where both
parents px , py of x, y, respectively, are reticulations, and they share a common par-
ent gx . This shape, called a 2-reticulated cherry (see leaves b, c of Fig. 17, defined in
Bordewich et al. 2018a), is distinct from all others (given we adapt the definition of
when N contains Π(x, y)) as it contains K (x, y) and K (y, x) in its MLLSs, respec-
tively. Unlike tree-child networks, MLLSs of valid networks can contain a cherry,
reticulated cherry, or a 2-reticulated cherry stemming from the lowest tree node. The
reconstruction of a 2-reticulated cherry poses a challenge as there are two potential
places to reinsert the reticulation edge. That is, given an MLLS where (gx , px ) has
been deleted, we add two nodes a, b with edge (a, b). We know that b must be placed
directly above x . However, we have two possibilities for inserting a above py (illus-
trated in Fig. 18).

Nevertheless, we conjecture the following:

Conjecture 1 The class of binary valid networks is MLLS-reconstructible.

Note here that invalid networks, where not every reticulation edge is valid, are not
level-reconstructible in general. A counter example is given in Fig. 19.

123



Y. Murakami et al.

(a) (b)

Fig. 18 (Color figure online) a 2-reticulated cherry on {x, y}. bMLLSwhere the red dashed edge is deleted
from a. We have two options, a1, a2, for inserting the reticulation edge

Fig. 19 Two level-2 networks N1 and N2 are non-isomorphic but have the same lower-level subnetworks.
In general, invalid networks are not level-reconstructible

Ultimately, we wish to characterize precisely which networks are reconstructible
from their MLLSs. Though this could perhaps be possible by an analogous leaf pair
analysis as done in Sect. 4, we quickly reach a large number of cases, with level-2
networks already containing 15 possible shapes. A more efficient methodology will
be required to treat such general networks. Considering the level-k generators (van
Iersel et al. 2009) may perhaps provide an interesting approach to this problem.

Acknowledgements We thank the anonymous referee for their helpful comments in improving this
manuscript. Yukihiro Murakami, Leo van Iersel, Remie Janssen, and Mark Jones were supported in part by
the Netherlands Organization for Scientific Research (NWO), including Vidi Grant 639.072.602, and Leo
van Iersel also partly by the 4TU Applied Mathematics Institute. Vincent Moulton thanks the Netherlands
Organization for Scientific Research (NWO) Vidi grant 639.072.602, for its support to visit TU Delft.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Bordewich M, Semple C (2016) Determining phylogenetic networks from inter-taxa distances. J Math Biol
73(2):283–303

123

http://creativecommons.org/licenses/by/4.0/


Reconstructing Tree-Child Networks from…

Bordewich M, Semple C, Tokac N (2018a) Constructing tree-child networks from distance matrices. Algo-
rithmica 80(8):2240–2259. https://doi.org/10.1007/s00453-017-0320-6

Bordewich M, Huber KT, Moulton V, Semple C (2018b) Recovering normal networks from shortest inter-
taxa distance information. J Math Biol 77:1–24

Cardona G, Rossello F, Valiente G (2009) Comparison of tree-child phylogenetic networks. IEEE/ACM
Trans Comput Biol Bioinform 6(4):552–569

Gambette P, Huber KT, Kelk S (2017) On the challenge of reconstructing level-1 phylogenetic networks
from triplets and clusters. J Math Biol 74(7):1729–1751

GusfieldD, Bansal V (2005)A fundamental decomposition theory for phylogenetic networks and incompat-
ible characters. In: Annual international conference on research in computational molecular biology.
Springer, pp 217–232

Hein J (1990)Reconstructing evolution of sequences subject to recombination using parsimony.MathBiosci
98(2):185–200

Huber KT, Moulton V (2013) Encoding and constructing 1-nested phylogenetic networks with trinets.
Algorithmica 66(3):714–738

Huber KT, van Iersel L, Moulton V, Wu T (2014) How much information is needed to infer reticulate
evolutionary histories? Syst Biol 64(1):102–111

Huson DH, Rupp R, Scornavacca C (2010) Phylogenetic networks: concepts, algorithms and applications.
Cambridge University Press, Cambridge

Huynh TN, Jansson J, Nguyen NB, Sung WK (2005) Constructing a smallest refining galled phyloge-
netic network. In: Annual international conference on research in computational molecular biology.
Springer, pp 265–280

Jansson J, Sung WK (2006) Inferring a level-1 phylogenetic network from a dense set of rooted triplets.
Theor Comput Sci 363(1):60–68

Jin G, Nakhleh L, Snir S, Tuller T (2006) Maximum likelihood of phylogenetic networks. Bioinformatics
22(21):2604–2611

Morrison DA (2005) Networks in phylogenetic analysis: new tools for population biology. Int J Parasitol
35(5):567–582

Nakhleh L, Warnow T, Linder CR, John KS (2005) Reconstructing reticulate evolution in species—theory
and practice. J Comput Biol 12(6):796–811

Oldman J, Wu T, van Iersel L, Moulton V (2016) Trilonet: piecing together small networks to reconstruct
reticulate evolutionary histories. Mol Biol Evol 33(8):2151–2162

Pardi F, Scornavacca C (2015) Reconstructible phylogenetic networks: do not distinguish the indistinguish-
able. PLoS Comput Biol 11(4):e1004135

Sneath PH (1975) Cladistic representation of reticulate evolution. Syst Zool 24(3):360–368
Strimmer K, Moulton V (2000) Likelihood analysis of phylogenetic networks using directed graphical

models. Mol Biol Evol 17(6):875–881
van Iersel L, Moulton V (2014) Trinets encode tree-child and level-2 phylogenetic networks. J Math Biol

68(7):1707–1729
van Iersel L, Keijsper J, Kelk S, Stougie L, Hagen F, Boekhout T (2009) Constructing level-2 phylogenetic

networks from triplets. IEEE/ACM Trans Comput Biol Bioinform 6(4):667–681
van Iersel L, Moulton V, de Swart E, Wu T (2017) Binets: fundamental building blocks for phylogenetic

networks. Bull Math Biol 79(5):1135–1154
von Haeseler A, Churchill GA (1993) Network models for sequence evolution. J Mol Evol 37(1):77–85
Willson SJ (2010) Properties of normal phylogenetic networks. Bull Math Biol 72(2):340–358
Willson SJ (2011) Regular networks can be uniquely constructed from their trees. IEEE/ACMTransComput

Biol Bioinform 8(3):785–796

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/s00453-017-0320-6

	Reconstructing Tree-Child Networks from Reticulate-Edge-Deleted Subnetworks
	Abstract
	1 Introduction
	2 Preliminaries and Definitions
	3 Blob Trees
	3.1 On Reticulated Cherries
	3.2 Reconstructing the Blob Tree of a Tree-Child Network
	3.3 Minimum Number of MLLSs to Reconstruct the Blob Tree of a Tree-Child Network
	3.4 Identifying the Level-k Blobs of a Tree-Child Network

	4 Leaf Pair Analysis
	5 Reconstructibility of Tree-Child Networks
	6 Reconstruction Algorithm for Tree-Child Networks
	7 Conclusion and Outlook
	Acknowledgements
	References




