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Abstract

Wind energy currently is one of the most attractive solutions to help in the goal of switching
to a more sustainable way of energy production. To stay competitive with other forms of
energy production, the reduction of the Levelized Cost of Energy (LCoE) is an important
indicator. One way of achieving this goal is by increasing the size of the wind turbine. As
a result, the increased blade length also comes with a significant increase in fatigue loads
present on the wind turbine’s rotating and fixed structure.

Individual Pitch Control (IPC) forms an interesting opportunity in attenuating these fatigue
loads. IPC is generally applied with the help of the Multi-Blade Coordinate (MBC-) transfor-
mation. The IPC control strategy uses the Out-of-Plane (OoP) bending moments measured
on each blade. The MBC-transformation transforms the measured OoP bending moments
towards the non-rotating reference frame. As a result the OoP bending moments are trans-
formed into non-rotating yaw- and tilt-moments. The minimisation of these signals is then
used as a control objective. Subsequently, the provided non-rotating control signals are then
transformed back to the rotating domain to obtain the implementable individual pitch signals.

In the literature this controller synthesis is often employed by two separately operating Single-
Input Single-Output (SISO) control loops. Whereby implicitly (or sometimes explicitly) as-
suming that the yaw- and tilt-moments are sufficiently decoupled to make this type of control
viable. In the literature, a recent frequency domain analysis has shown that the coupling
is non-neglible. Literature suggests that the introduction of an offset in the inverse MBC-
transformation can help decouple these yaw- and tilt-moments, although this offset is usually
found in an heuristic manner and its real effects are unknown.

In this study a thorough analysis on the effects of the azimuth offset is given on simplified
and high-fidelity models. It is shown that the choice of blade-dynamic model structures has a
significant effect on the analysis for maximum decoupling. It is also shown that a first-order
model approximation is able to locate the ideal offset of a complex high-fidelity non-linear
wind turbine model, which is subsequently verified by simulations and a sensitivity function
analysis.
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Chapter 1

Introduction

As the worldwide demand for sustainable energy production grows, the demand for wind
energy also increases, because wind turbines are seen as a long-term trustworthy investment
for a steady supply of sustainable energy [1]. The Global Wind Energy Council (GWEC)
every year publishes statistics on wind energy, where the latest figures from 2001-2017 show a
more than 20 fold increase in the production of wind energy in 16 years [2]. The year-to-year
numbers are given by Figure 1-1.

Figure 1-1: Global Cumulative Installed Wind Capacity 2001-2017. An exponential increase in
the total amount of wind capacity can be observed [2].

The exponential growth in wind energy production is a strong motivation for production of
ever larger, more efficient, and longer lasting wind turbines. This puts a demand on many
different research fields to improve the overall performance and durability of a wind turbine.
The aim of most of this research is to contribute to the reduction of the Levelized Cost of
Energy (LCoE) of wind turbines, making wind turbines a more sustainable alternative to
traditional oil-based power production. This is in line with the goals stated in the Paris
Agreement [3].
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2 Introduction

Control of wind turbines

Control is one of the wind energy research fields. Wind turbine control aims to optimize
wind turbine performance of a current design. This is done through power maximization and
(fatigue) load minimization [4].

The focus of the control objectives differ depending on the operating conditions of the wind
turbine, which is usually divided in 3 or 4 regions.

• Region 1 is when the wind speed is below the cut-in wind speed. In this region the
wind turbine is usually kept at a standstill by supervisory control [4].

• Region 2 is referred to as the below-rated region. It is operates between the cut-in
and the rated speed. In this region, maximization of power production by operating the
rotor at the maximum power coefficient/efficiency is the main goal. For variable speed
turbines, this is done through torque control [5].

• Region 3 is the so-called above-rated region. In the above-rated region power pro-
duction is limited to make sure that no excessive stresses occur on the wind turbine.
For a variable pitch wind turbine, this is done through Collective Pitch Control (CPC),
altering the aerodynamic rotor characteristics and efficiency [5].

• Region 4 is the region where the wind speed is above the cut-out wind speed and the
wind turbine is shut down by supervisory control.

Another possibility is the individual control of the blades. This is a very active research area
and is usually referred to as Individual Pitch Control (IPC). IPC can help reduce loads, by
focussing on asymmetric loads. Although this is usually employed in region 3, it is also a
viable control strategy in region 2 [6].

It is also possible that an intermediate region is considered between region 2 and region 3
to assist in the transition from the different types of control [1]. In such a case it could be
referred to as region 2.5.

Developments in wind turbines

A way for LCoE reduction is by is by the increase in size of the individual turbines. This is
reflected by the prediction of the European Wind Energy Association (EWEA) in Figure 1-2
[7]. One of the reasons that this increase is being made is that the power produced by wind
turbines is directly dependent on the area spanned by the rotor blades: a linear increase in
wind turbine blade length corresponds to a squared increase in the area covered by the blades
[1].

The increasing size of wind turbines also comes with its challenges. The wind field hitting
the wind turbine becomes less homogeneous with an increasing area. As a result, the asym-
metric once per revolution (1P) periodic (fatigue) loads on the wind turbine blades increase
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1-1 Related Research 3

Figure 1-2: An overview of the history of the size of wind turbines is presented as well as the
forecasts for the foreseeable future [7].

significantly [6]. The higher harmonics also show increases in their loads (2P, 3P, . . . ). This is
due to the combined effects of yaw-misalignment, wind shear, turbulence and tower shadow [8].

It is desirable to mitigate these loads on the blades as much as possible. As mentioned ear-
lier, IPC shows great potential to aid in the reduction of these loads. A major advantage is
that many Horizontal Axis Wind Turbines (HAWTs) already have individual pitch actuators
installed on them. Furthermore, trying to reduce these loads through control is more eco-
nomical than creating new mechanical systems to cope with heavy loads [6].

1-1 Related Research

To mitigate periodic fatigue loads with the use of IPC, it should be clear what loads are
experienced by which components. The blades of the wind turbine mainly experience 1P
harmonic loads. The structural components of the wind turbine are mainly affected by nbP
harmonic loads, where nb are the number of blades of the wind turbine [8]. From this point
on, a 3-bladed HAWT will be considered.

To decompose the 1P loads towards a constant load the Multi-Blade Coordinate (MBC-)
transformation is employed [6]. This allows to perform control techniques directly in the low-
frequency region where it is desired [9]. It does this by transforming the loads from a rotating
frame of reference towards a non-rotating frame of reference which is solely dependent on the
azimuth angle of the blades.

To be precise, the MBC-transformation allows for the decomposition of many different types
of eigenmodes of the wind turbine [8]. Usually for control the ones considered are the Out-
of-Plane (OoP) bending moments on the blades [10]. This in turn transforms them in a
time-independent tilt- and yaw-moments present on the wind turbine structure.
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4 Introduction

The paper [11] extended this framework towards the control of 2P and 3P harmonics with the
use of the MBC-transformation. This was done by simultaneously incorporating separate con-
trol loops for 1P, 2P and 3P harmonics. It is based on the fact that the MBC-transformation
maps the 1P harmonics in the rotating frame towards the 0P harmonics in the non-rotating
frame, and it moves the 2P harmonics in the rotating frame towards the 3P harmonics in the
non-rotating frame [12].

Even though many HAWTs have the possibility of pitching each blade individually, the im-
plementation of advanced IPC is currently still limited. This is likely due to the combination
of pitch actuator loadings induced by continuous pitch action and difficult maintenance of
sensors on the blades [13, 14]. As a result, most of the research is currently based on simula-
tion results.

As these simulations provide promising results, several field tests have been carried out to
verify the promising simulation results [15, 16]. For a 3-bladed turbine [15] managed to reduce
the 1P loads on the blades significantly through MBC-transformation based IPC. The 3P
structural loads were also reduced by method of applying the MBC-transformation on the
2P harmonics. Although significant reductions were made on different harmonics this came
at the cost of a 4◦ − 5◦ per second pitch rate induced by IPC. Which was for their particu-
lar turbine well within the actuator range, but it should be a consideration on larger turbines.

The conventional IPC is inherently a Multiple-Input Multiple-Output (MIMO) control sys-
tem, because of the actuation of the 3 different blades. Even when using the MBC-transformation
it remains a 2-input, 2-output control system. Nevertheless several papers assume that the dy-
namics are sufficiently decoupled to allow for two separate Single-Input Single-Output (SISO)
control loops. This has resulted in a variety of control techniques being implemented for IPC,
this variety includes Linear Quadratic Gaussian (LQG) and Proportional Integral (PI) [6], as
well as the more modern Model Predictive Control (MPC) [17]. But because of this inherent
MIMO system, MIMO H∞ techniques usually result in better performing controllers [18, 19].

Suggestions have been made that it is possible to present an offset in the MBC-transformation
in order to increase the performance and/or decoupling of the system. The first suggestion is
made in [6] to include a constant offset in the reverse MBC-transformation to take the cou-
pling between the two transformed axes into account. In a subsequent paper the same author
suggests to introduce an offset to compensate for the phase lag between the controller and the
pitch actuator [20]. This is later corroborated by [21], where two offsets were introduced for
two parallel IPCs on the 1P and 2P harmonics. These offsets were determined by looking at
the phase lag in the bode plots of the linearised plant (including the addition of their filters).
These offsets are not compared to other offsets.

During the field tests of [16] it is noted that an offset can indeed compensate for delays and
the offset is found experimentally. In the other field tests of [15] the usefulness of these off-
sets (as well as for different harmonics) is also validated. The offsets are also determined
experimentally but it was mentioned that they are too big to only represent the frequency
dependent actuator delay. Here it is suggested that the offset mainly could help to compen-
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1-2 Problem Statement & Research Goal 5

sate for cross-coupling between the MBC-transformed axis. It is also stated that it might be
possible to determine the offsets in advance.

An extensive frequency-domain analysis of the workings of the MBC-transformation is given
in [18]. This frequency-domain analysis shows some of the effect of the cross-coupling present.
This cross-coupling is subsequently considered in the design of a controller using H∞ tech-
niques, but the effect of an azimuth offset is further left unconsidered. It should also be noted
that [18], in its framework assumes fully decoupled blade dynamics (i.e. the pitching of the
blades does not effect the loads on the other blades), which is not fully justifiable but allows
for an understandable analysis.

The first proper analysis focussed on understanding the offset in the MBC-transformation is
given in [22]. Here the author incorporates it in the framework set up by [18]. The effect
of the offset on the gain of the system as well as its effect on the stability of the system is
elaborated upon.

Summarizing, the introduction of an offset has been eluded to for several years. It has been
incorporated several times in manners that make use of ad-hoc reasoning without a proper
understanding of its effects. A first step has been taken to understand the effects of the
offset in the reverse MBC-transformation, and its influence on the stability of the system.
Therefore, this thesis will focus on expanding the understanding and framework related to
the offset in the MBC-transformation.

1-2 Problem Statement & Research Goal

There seems to be a lack of understanding on the effects of the introduction of an offset in
the MBC-transformation. More specifically, there currently exists a narrow framework based
on fully decoupled blade dynamics and introducing the offset in the reverse transformation
without clear reasoning for both of these implementations.

This thesis sets out to make an extensive analysis of the introduction of an offset in the
MBC-transformation. This analysis will be made to gain an insight into the properties of
the offset, aiming to clarify the different statements made in the literature. To date, the
literature’s main suggestion is that the offset is able to reduce the cross-coupling of the MBC-
transformed system, which in turn allows for more convenient controller synthesis for IPC.

In setting up the analysis, several sub-goals need to be stated to set clear focus areas where
the analysis can provide actual insights:

1. First of, the exact structure of the MBC-transformation together with (the validity
of) its assumptions is analysed. More elaborately, it has been stated in the literature
that the azimuth offset in the MBC-transformation should specifically be applied to
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6 Introduction

the reverse/inverse MBC-transformation without clear justification. A justification or
rebuttal of this claim is a goal of this thesis.

2. The validity of the fully decoupled blade-dynamic model structure will be investigated to
see if it is indeed a valid assumption for the MBC-transformation and if it also provides
an appropriate model for determining the offset in the MBC-transformation.

3. As most claims with respect to the offset in the MBC-transformation relate to different
type wind turbine model types, it is hard to make a general claim about its properties.
To help in the analysis, this thesis applies the analysis first on a very basic model to
gain a preliminary insight.

4. The basic model is then extended to a more complex model. It is then investigated
whether the preliminary insights translate to the more complex model, whereby looking
out for possible generalisations.

5. The final aim is to use the different insights gained to perform a simulation study to see
whether the results from the different linear analyses can be extended to the non-linear
domain. In this final section also the exact effects of the introduction of the azimuth
offset on the controller performance is investigated.

1-3 Report Structure

This master’s thesis presents six chapters. After this first introductory chapter, the second
chapter derive the MBC-transformation in the way it will be used throughout the thesis.
Different parts of the derivation are needed for alterations in the subsequent sections and
chapters. In the second chapter, an offset is introduced in the MBC-transformation and dif-
ferent variations of the blade-dynamic models will be considered.

In chapter 3 a first-order model is considered for the blade-dynamics, which is a very rough
approximation of the real dynamics, but it allows for an insightful analytic analysis. Chapter
4 will then use the results from chapters 2 and 3 to apply the MBC-transformation on lineari-
sations of a high-fidelity non-linear wind turbine model. The first-order model approximation
of chapter 3 will subsequently be applied to see if the insights of chapter 3 can be extended
to the high-fidelity model.

Chapter 5 applies the previously obtained knowledge to apply this on a simulation of a non-
linear wind turbine model. First, the found ideal decoupling for the linearisation is validated
to a spectral estimate of the non-linear model. After which a time-marching simulation is run
with and without the offset to see its effects on the non-linear controlled model. The chapter
is then concluded with an explanation of the effect of the azimuth offset on the controller
performance.

Finally, chapter 6 combines all the results in a final conclusion and gives recommendations
for possibilities of future research.
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Chapter 2

Multi-Blade Coordinate
Transformation

In the analysis of different structural loads on HAWTs, there is an interplay between the
rotating frame in which the individual blades are modeled and the fixed frame of the nacelle
and support structure. The MBC-transformation allows to combine these different frames
such that the structural loads can be analyzed in a single coordinate frame. This chapter first
provides an introduction to the MBC-transformation and, subsequently, the transformation
is derived for a linear wind turbine model. After which an azimuth offset is introduced in the
transformation. Finally, one of the main assumptions on which conventional IPC is based (a
fully decoupled blade-dynamic model structure) is alleviated and will be changed to see its
influence on the MBC-transformation.

2-1 Introduction to the transformation

In this introduction, the history related to the MBC-transformation is set out, after which
the application to wind turbine load control is explained. When the characteristics of the
transformation become clear, the possibility of exploiting possible arises.

2-1-1 History

The design and dynamics of a wind turbine closely resemble the ones of a helicopter [23]. In
this regard, one might take a look at the classic helicopter literature to see if the analyses
on helicopter blades is also applicable to the wind turbine rotor. The first occurrence of an
analysis of the dynamics of helicopter rotor blades through a decoupling of eigenmodes was
carried out in [24]. It was referred to as the Multi-Blade Coordinate transformation, and
it was used to analyze the stability related to flap-motion of the blades. In two subsequent
papers, [25, 26] the mathematical basis has been set out to decompose the blades from a
rotating frame to a frame where the eigenmodes could be analyzed. As Coleman was one of
its founders, it is also referred to as the Coleman transformation [25].
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8 Multi-Blade Coordinate Transformation

2-1-2 Application on wind turbines

Now that the origins of the MBC-transformation are known, its application to wind turbines
is assessed. The MBC-transformation can be applied to different modes of the wind turbine.
The most mathematically general form is presented in [10], where the author allows for the
analysis of different eigenmodes of the wind turbine and also for a different number of blades
of the turbine. The eigenmodes of the turbines analysed by [10] correspond to the analysis of
the loads made on the turbine by [8]. In the paper of [8] a large variety of loads present on
the wind turbine are explained with the help of the MBC-transformation. It also provides a
framework to analyse these eigenmodes in a non-rotating frame of reference. By exploiting
this frame of reference different (frequency dependent) properties of these loads are set out.
This thesis will focus on the application of the MBC-transformation on the Out-of-Plane
bending moments.

2-1-3 Control using the MBC-transformation

The MBC-transformation allows for a decoupling of the Out-of-Plane bending moments on
the blades in a rotating frame of reference towards structural yaw and tilt moments in a
non-rotating frame of reference. This results in yaw and tilt moments which are a function
of rotational speed. The resulting functions depending on rotational speed then allow for
frequency analysis, which in turn proves being useful for application of classic control tech-
niques. Combining this property with individual blade load measurements, the loads can be
reduced by controlling the individual blades. This field of research is generally referred to as
individual pitch control.

The first application of research in this topic is performed in [27], where different control
techniques are applied to asses the proper application of IPC for load reductions. Another
seminal paper in the research of IPC is [6], where the MBC-Transformation is used, although
the writer refers to it as the d-q transformation. An LQG controller is applied and a consid-
erable improvement in fatigue load reduction as compared to solely applying CPC is found.
In the paper, CPC is used to optimise for power output, and the IPC is applied in parallel
to reduce the loads on the individual blades as well as other harmonic loads. Except for an
LQG control implementation, also PI-controllers are used on different parts of the turbine for
comparison to the LQG controller. The results in the paper are shown in Figure 2-1.

Figure 2-1 shows the differences in loads on the system for different type of controllers. A big
reduction at the rotor speed frequency can be seen by introducing IPC for the shaft bending
moment and the Out-of-Plane bending moments measured at the root of the blade. The
difference in the yaw-bearing moment is mainly experienced as a reduction of the DC-gain.
This is due to the fact that the MBC-transformation maps the once per revolution harmonics
towards the 0P or DC-gain of the system. The difference between only collective pitch and the
introduction of the individual pitch is most significant. The reduction between the different
IPC strategies is less significant. These IPC strategies include LQG control as well as PI
control based on different sensors on the turbine (blade, shaft, and yaw bearing sensors).
Recently, more advanced control implementations are applied using the MBC framework. In
[18], the MBC-transformation is employed using linear blade models. The paper synthesises
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2-1 Introduction to the transformation 9

Figure 2-1: The application of different IPC controllers compared to a CPC controller. A
significant drop in loads present on the turbine can be seen at the 1P frequency for the OoP
bending moment and shaft bending moment for the IPC as opposed to CPC. For the yaw
moment this reduction is at the DC-gain, because of the properties of the MBC-transformation.
The difference between the different IPC strategies is not very significant. [6]

different SISO controllers and a robust MIMO controller based on H∞ loop shaping for IPC.
The H∞ controller proved to be most successful in the reduction of most bending moments,
which was discussed to be true because of the coupling between tilt- and yaw-moments.

In 2016, [19] elaborates on [18], where the MIMO H∞ synthesis is done more elaborately and
subsequently gives more insight into the sensitivity function analysis as well as the weight
selection in the model. Another improvement is the bound that is put on the input control
action to the specific blades (in other words, limiting how far the blades physically are able
to pitch). Furthermore, the use of a linearized model is analyzed and compared to a non-
linear model and the limitations show that a reduction of loads at higher frequencies is hard
to achieve using the linear model. It was discussed that this is due to the impossibility of

Master of Science Thesis Gianmarco Emilio Disario



10 Multi-Blade Coordinate Transformation

incorporating the higher order dynamics in the linear model. This means that based on
linearizations, significant reductions of 1P harmonic blade loads are attainable, but negligible
reductions are attained for 2P and higher harmonics.

The MBC-transformation nevertheless gives insight into the specific loads on the turbine, and
proves to be a useful tool for analysis and further controller synthesis.

2-2 Derivation of the MBC-transformation

This section presents a mathematical derivation for the MBC-transformation. As was noted
before by Bir and Hansen [10, 8], the MBC-transformation can be performed for a vari-
ety of eigenmodes and number of blades of the wind turbine. This section will only cover
the Out-of-Plane bending moments on the blades. The focus on this specific mode for the
MBC-transformation gives the opportunity to show more specific properties of the MBC-
transformation as opposed to the more generic form.

2-2-1 Basic setup of the MBC-transformation

The main setup for MBC-transformation based IPC can be seen in Figure 2-2. From the tur-
bine one can measure the bending moments on the specific blades, these are denoted asM1(t),
M2(t), M3(t). Furthermore, the rotational speed of the wind turbine, ω0(t) (in [rad/s.]) is
normally used for CPC, which then, in turn, provides a mean pitch actuation angle for all the
blades to turn to θ̄(t). When the bending moments are fed through the MBC-transformation,
this results in the separation of the average bending moment M̄(t) and a separate yaw-, and
tilt-moment Myaw(t), Mtilt(t), respectively. When these are fed through the IPC, two ab-
stract and non-intuitive pitch angles are obtained, which are referred to as θyaw(t), θtilt(t)
respectively. These are then combined with the CPC mean pitch actuation of all the pitch
angles θ̄(t) and fed back through the inverse MBC-transformation where blade-specific pitch
angles θ̃1(t), θ̃2(t), θ̃3(t) are obtained.

Any additional terms which are not of specific interest are captured in the term f(t). This
includes among other things wind loading and generator torque. Furthermore, φ(t) refers to
the azimuth angle of the first blade of the wind turbine. The azimuth angle in this case is
defined to be the angle between the top of the wind turbine and the current position of the
first blade. This means the azimuth angles of the second and third blade can be characterised
by the azimuth of the first blade with the addition of 2

3π and 4
3π respectively. The rotational

speed of the wind turbine, ω0, will be assumed to be constant. This results in an azimuth
angle of the form φ(t) = ω0t.

The transformation from the separate moments on the blades to the average, tilt- and yaw-
moments is through a matrix multiplication,
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CPC

T̃✓(�) T̃M (�)G(s)

IPC

Wind turbine model

Inverse

MBC-Transform MBC-Transform

✓̃1(t)

✓̃2(t)

✓̃3(t)

f(t)

!0(t)

M1(t)

M2(t)

M3(t)

M̄(t)

Mtilt(t)

Myaw(t)

✓tilt(t)

✓yaw(t)

✓̄(t)

Figure 2-2: The basic model how the MBC-transformation is used in IPC. The wind turbine
model gets input signals θ̃i(t) for the blade i ∈ {1, 2, 3}. All other inputs are captured in f(t).
The outputs of interest of the wind turbine model are the OoP bending moments Mi(t) (for
the blades i ∈ {1, 2, 3}), as well as the rotor speed ω0. For CPC, generally only ω0 is used,
which subsequently provides a mean pitch actuation signal θ̄(t). The MBC-transform transforms
the blade moments into three new signals, M̄(t), Myaw(t), and Mtilt(t). Where the tilt- and
yaw-signals are utilised for IPC. This then provides the signals θyaw(t) and θyaw(t). Which are
subsequently combined with the mean pitch signal to be transformed back by the inverse MBC-
transformation towards the pitch input signals.

 M̄(t)
Mtilt(t)
Myaw(t)

 =


1
3

1
3

1
3

2
3 cosφ(t) 2

3 cos
(
φ(t) + 2

3π
)

2
3 cos

(
φ(t) + 4

3π
)

2
3 sinφ(t) 2

3 sin
(
φ(t) + 2

3π
)

2
3 sin

(
φ(t) + 4

3π
)


︸ ︷︷ ︸
T̃M (φ)

M1(t)
M2(t)
M3(t)

 . (2-1)

This can be verified by decomposing the bending moments in a classical statics/mechanics
of materials framework and decomposing the blade moments in their respective horizontal
and vertical moments. In Figure 2-2 it can be seen that the average moment M̄(t) is not of
interest for IPC. This means that the first row from Eq. (2-1) can be omitted. This leaves
the form which is generally considered in IPC, namely
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12 Multi-Blade Coordinate Transformation

[
Mtilt(t)
Myaw(t)

]
=

2
3 cosφ(t) 2

3 cos
(
φ(t) + 2

3π
)

2
3 cos

(
φ(t) + 4

3π
)

2
3 sinφ(t) 2

3 sin
(
φ(t) + 2

3π
)

2
3 sin

(
φ(t) + 4

3π
)

︸ ︷︷ ︸
TM (φ)

M1(t)
M2(t)
M3(t)

 . (2-2)

The inverse transformation for the pitch angles has a similar derivation. It adds the mean
actuation of all pitch angles, θ̄(t) with a cosine and sine multiplication of the tilt- and yaw-
pitch actuation angles respectively. In this manner the transformation conforms with the
mechanics of materials theory once again. This results in

θ̃1(t)
θ̃2(t)
θ̃3(t)

 =


1 cosφ(t) sinφ(t)
1 cos

(
φ(t) + 2

3π
)

sin
(
φ(t) + 2

3π
)

1 cos
(
φ(t) + 4

3π
)

sin
(
φ(t) + 4

3π
)


︸ ︷︷ ︸
T̃θ(φ)

 θ̄(t)
θtilt(t)
θyaw(t)

 . (2-3)

It can be verified quite quickly that T̃M (φ) from Eq. (2-1) and T̃θ(φ) from Eq. (2-3) are each
others’ inverses. This is the reason they are commonly referred to as the MBC-transformation
and the inverse MBC-transformation. The IPC only provides an actuation of the pitch angles
on top of the mean actuation which comes from the CPC. This means that the different pitch
angles can be decomposed into


θ̃1(t) = θ̄(t) + θ1(t),
θ̃2(t) = θ̄(t) + θ2(t),
θ̃3(t) = θ̄(t) + θ3(t).

(2-4)

As the interest currently lies in discovering the properties of the IPC, the mean term will be
dropped out and the only term for interest is the blade-specific pitch angles. This means that
the first column of Eq. (2-3) can be omitted, which leaves

θ1(t)
θ2(t)
θ3(t)

 =


cosφ(t) sinφ(t)

cos
(
φ(t) + 2

3π
)

sin
(
φ(t) + 2

3π
)

cos
(
φ(t) + 4

3π
)

sin
(
φ(t) + 4

3π
)


︸ ︷︷ ︸
Tθ(φ)

[
θtilt(t)
θyaw(t)

]
. (2-5)

It is now interesting to see how the yaw- and tilt-moments are related to the yaw- and tilt-
pitch angles. This can be done by assuming a linear model for the blade-dynamics and setting
up a transfer function from (Mtilt(t), Myaw(t)) to (θtilt(t), θyaw(t)). This linear model will
relate the pitch blade actuation to the moments on the blades. It will be referred to as
G : C3×3 → C3×3. Please note that the terms "wind turbine model" and "blade-dynamics
model" will be used intermittently throughout this thesis, but both relate to G(s). This is
done because from time to time it might be better for the understanding of the reader to refer
to it as a wind turbine model or a blade-dynamics model. It should of course be clear that
it does not fully describe all the dynamics of the entire wind turbine, but only the ones that
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2-2 Derivation of the MBC-transformation 13

relate pitch angles to the moments.

Now that the characteristics of interest are described for IPC, the full framework can be set
up which will allow an in-depth analysis. This framework combines Eq. (2-2), Eq. (2-5) and
the assumption of a linear model G(s) which described the blade-dynamics. A block-diagram
of this framework is shown in Figure 2-3. In essence, the IPC-loop present in Figure 2-2 is
extracted in Figure 2-3. This allows for more efficient analysis of only the IPC part.

Tθ(φ) TM (φ)G(s)

IPC

Wind turbine model

Inverse

MBC-Transform MBC-Transform

θ1(t)

θ2(t)

θ3(t)

M1(t)

M2(t)

M3(t)

Mtilt(t)

Myaw(t)

θtilt(t)

θyaw(t)

Figure 2-3: The block-diagram model describing the IPC framework under consideration. This
is a reduced form of Figure 2-3.

The use of the linearized wind turbine model G(s) will prove to be very useful to gain an
insight into the offsets, gains, and couplings present in the turbine. The azimuth angle in
Figure 2-3 is dependent on time, φ(t). Figure 2-3 also shows that the mean moment and av-
erage pitch angle coming from the CPC are omitted compared to Figure 2-2. They can easily
be incorporated again later to provide full detail in their interactions, but for the derivation,
they would only prove to make it harder to follow.

2-2-2 Deriving the MBC-transformation

In classical controller design it is interesting to have a good picture of the dynamics between
the input and output. In Figure 2-3 the controller is situated in the IPC block. This means
that it is interesting to see the dynamics from

[
θtilt
θyaw

]
→
[
Mtilt
Myaw

]
. In Eq. (2-2) this is already

done to go from the specific blade moments to the generalised tilt- and yaw-moments. The
same has been done in Eq. (2-5) for the pitch angles. This means one step is missing which
is to go from pitch angles to the moments. Depending on the model it is described by

M1(t)
M2(t)
M3(t)

 = G(s)

θ1(t)
θ2(t)
θ3(t)

 . (2-6)
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14 Multi-Blade Coordinate Transformation

Combining Eq. (2-2), Eq. (2-5) and Eq. (2-6) into one equation results in the full interaction
from tilt- and yaw-pitch angles to tilt- and yaw-moments,

[
Mtilt(t)
Myaw(t)

]
= Tθ(φ(t))G(s)TM (φ(t))

[
θtilt(t)
θyaw(t)

]
. (2-7)

The sub-dependencies on ’t’ of the MBC-transformation are specifically indicated in Eq. (2-7)
to indicate that this is the time-domain interaction of the pitch angles and moments. For
controller design it is desired that this is transferred into the frequency-domain, because it
allows for a more insightful picture of the exact frequency dependent dynamics of the system.
Hereby the gain and phase properties on specific frequencies might indicate high loads in
certain regions which can be mitigated by the controller.

Eq. (2-7) can be transferred into the frequency-domain by a classical Laplace transforma-
tion. This Laplace transformation is not as straightforward as it seems, because of the
time-dependencies within the arguments of the sines and cosines in Eq. (2-2) and Eq. (2-
5). Furthermore, the choice of blade-dynamics model structure is also very important for the
resulting final description of the system. This will be discussed in detail in Chapter 2-4. For
now an assumption is made that there is no interaction in the dynamics between the different
blades and that the dynamics of every blade are the same. This allows for a fully decoupled
system and provides a clear and concise foundation for the derivation before expanding on it
in Chapter 2-4. This means that G(s) can be described by,

M1(t)
M2(t)
M3(t)

 =

gb(s) 0 0
0 gb(s) 0
0 0 gb(s)


︸ ︷︷ ︸

Gb(s)

θ1(t)
θ2(t)
θ3(t)

 . (2-8)

Which in turn allows for a system where Mi(t) = gb(s)θi(t), i ∈ {1, 2, 3}. This changes the
general form of Figure 2-3 into the specific form of Figure 2-4.

The full in-depth mathematical details of the derivation of the MBC-transformation can be
found in Appendix A. The resulting frequency-domain description of Eq. (2-7) is

[
Mtilt(s)
Myaw(s)

]
=
[

gb(s−jω0)+gb(s+jω0)
2 j gb(s−jω0)−gb(s+jω0)

2
−j gb(s−jω0)−gb(s+jω0)

2
gb(s−jω0)+gb(s+jω0)

2

] [
Θtilt(s)
Θyaw(s)

]
. (2-9)

This results in a similar form as described in [18], although a sign change is noticed on the
off-diagonal compared to the description of [18]. As that paper does not show its derivation, it
is assumed to be an error in their derivation. From this point, the coupling between the yaw-
and tilt-moments becomes clear since the off-diagonal components in Eq. (2-9) are not zero
if ω0 6= 0. This means that in case the rotor speed ω0 = 0 rad/s there is no coupling between
the yaw- and tilt-moments, but as soon as the wind turbine starts rotating a coupling starts
becoming apparent.
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Tθ(φ) TM (φ)
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IPC
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M1(t)

M2(t)
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θtilt(t)
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Figure 2-4: The block-diagram model describing the IPC framework for a fully decoupled blade-
dynamic model structure Gb(s). Here gb(s) describes the linear blade-dynamics from the pitch
actuation towards the bending moments on the blades.

2-3 Introduction of an offset

As earlier discussed in Chapter 1-1, several reasons have been proposed why the introduc-
tion of an offset in the MBC-transformation can come in useful. First of all, it can help to
compensate for the controller-actuator phase lag [6, 15, 16, 21]. During field testing it has
been seen that significantly more offset is usually needed than expected to be induced by
controller-actuator phase lag [20]. This offset might be explained by cross-coupling between
the tilt- and yaw-moments. This cross-coupling can indeed be seen in Eq. (2-9).

Furthermore the offset has classically always been suggested to applied in Tθ(φ) without clear
justification why. This Section explains why this might be the case and see what the effect is if
the offset is added either in Tθ(φ), in TM (φ), or in both. This will then also set the foundation
for any further analysis that might make use of the offset in the MBC-transformation.

2-3-1 Offset in the inverse MBC-transformation

When introducing an offset in the inverse transform it means that a new term is introduced
in the Tθ matrix of Eq. (2-5). This changes the model of Figure 2-3 into a model of the form
which can be seen in Figure 2-5.

As a result, the derivation made in Chapter 2-2 changes slightly. The following terms will be
introduced to mean the offset and will make clear that a different transformation is performed
as opposed in the previous section. The offset is introduced in the form φθ(t) = ω0t + ψθ.
Where ψθ is a constant offset. As can be seen in Figure 2-5 this offset is presented in Tθ
which changes its dependency from φ(t) to φθ(t). This also induces a change in Eq. (2-5) of
the form
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Figure 2-5: The block-diagram model describing the IPC framework with an offset inclusion of
ψθ in Tθ.

θ1(t)
θ2(t)
θ3(t)

 =


cosφθ(t) sinφθ(t)

cos
(
φθ(t) + 2π

3

)
sin
(
φθ(t) + 2π

3

)
cos

(
φθ(t) + 4π

3

)
sin
(
φθ(t) + 4π

3

)


︸ ︷︷ ︸
Tθoff (φθ)

[
θtilt(t)
θyaw(t)

]
. (2-10)

This has a considerable effect on the matrix multiplications in the derivation of the MBC-
transformation. The exact mathematical details are described in Appendix B-1. When it is
worked out in detail, the form of Eq. (2-9) changes into

[
Mtilt(s)
Myaw(s)

]
=
[

e−jψθgb(s−jω0)+ejψθgb(s+jω0)
2 j e

−jψθgb(s−jω0)−ejψθgb(s+jω0)
2

−j e
−jψθgb(s−jω0)−ejψθgb(s+jω0)

2
e−jψθgb(s−jω0)+ejψθgb(s+jω0)

2

] [
Θtilt(s)
Θyaw(s)

]
.

(2-11)

Where a phase-shift of the different blade-dynamics is observed. As the phase-shift e−jψθ
is applied on the argument shifted gb(s − jω0) and the phase-shift ejψθ is applied on the
argument shifted gb(s + jω0), the effect on the full model description cannot not easily be
interpreted without an explicit model description of gb(s).

2-3-2 Offset in the MBC-transformation

In case the offset is introduced in the MBC-transformation the change then occurs in TM .
This specific offset will be denoted as φM (t) = ω0t+ψM , where ψM is a constant. This means
that diagram of Figure 2-3 changes into the form described in Figure 2-6.

As a result the derivation changes slightly once again, but this time the change of the deriva-
tion is due to the introduction of the offset in Eq. (2-2). The new form is described by
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Figure 2-6: The block-diagram model describing the IPC framework with an offset inclusion of
ψM in TM .

[
Mtilt(t)
Myaw(t)

]
= 2

3

cosφM (t) cos
(
φM (t) + 2π

3

)
cos

(
φM (t) + 4π

3

)
sinφM (t) sin

(
φM (t) + 2π

3

)
sin
(
φM (t) + 4π

3

)
︸ ︷︷ ︸

TMoff (φM )

M̃1(t)
M̃2(t)
M̃3(t)

 . (2-12)

Once again the full mathematical consequences for the derivation are described in Appendix
B-2. The resulting transfer function relating the pitches to the moments is described by

[
Mtilt(s)
Myaw(s)

]
=
[

ejψM gb(s−jω0)+e−jψM gb(s+jω0)
2 j e

jψM gb(s−jω0)−e−jψM gb(s+jω0)
2

−j e
jψM gb(s−jω0)−e−jψM gb(s+jω0)

2
ejψM gb(s−jω0)+e−jψM gb(s+jω0)

2

] [
Θtilt(s)
Θyaw(s)

]
.

(2-13)

Eq. (2-13) shows that the offset introduced in the transformation makes a 180 degree phase
shift as compared to the offset being in the inverse MBC-transformation (Eq. (2-11)).

2-3-3 Offset in both the MBC-transformations

The final case of an offset being present is the possiblity that an offset is induced in the
regular MBC-transformation as well as in the inverse MBC-transformation. This means that
the offsets of Figure 2-5 and Figure 2-6 can now be combined into one block scheme including
both offsets. This is shown in Figure 2-7.

In case the derivation is made (as is done in Appendix B-3) the final form is obtained to be
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Figure 2-7: The block-diagram model describing the IPC framework with an offset inclusion of
ψθ and ψM in Tθ and TM respectively.

[
Mtilt(s)
Myaw(s)

]
=

 e−j(ψθ−ψM )gb(s−jω0)+ej(ψθ−ψM )gb(s+jω0)
2

−j e
−j(ψθ−ψM )gb(s−jω0)−ej(ψθ−ψM )gb(s+jω0)

2

· · ·

j e
−j(ψθ−ψM )gb(s−jω0)−ej(ψθ−ψM )gb(s+jω0)

2
e−j(ψθ−ψM )gb(s−jω0)+ej(ψθ−ψM )gb(s+jω0)

2

[Θtilt(s)
Θyaw(s)

]
. (2-14)

Where, in Eq. (2-14) the phase-shifts of Eq. (2-11) and Eq. (2-13) are combined. It is possible
to define a new offset ψ = ψθ − ψM and rewrite it in a more concise way as follows,

[
Mtilt(s)
Myaw(s)

]
=
[

e−jψgb(s−jω0)+ejψgb(s+jω0)
2 j e

−jψgb(s−jω0)−ejψgb(s+jω0)
2

−j e
−jψgb(s−jω0)−ejψgb(s+jω0)

2
e−jψgb(s−jω0)+ejψgb(s+jω0)

2

] [
Θtilt(s)
Θyaw(s)

]
. (2-15)

Eq. (2-15) has the exact same form as Eq. (2-11). This means that instead of introducing
an offset in both transformations a single offset can be introduced into Tθ(φ) and make that
ψ = ψθ − ψM . This means that an offset being present in the inverse MBC-transformation
suffices in the analysis. In case it is desired to have the offset be present in the MBC-Transform
instead of the inverse MBC-Transform then the sign of ψ can simply be changed.

2-4 Effects of the choice of blade-dynamic model Structure on the
MBC-transformation

During the derivation of a frequency domain representation of the MBC-transformation in
Section 2-2-2, an assumption was made that the wind-turbine model was fully decoupled and
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2-4 Effects of the choice of blade-dynamic model Structure on the MBC-transformation 19

equal for every θi(t) → Mi(t), i ∈ {1, 2, 3}. This led to a cancellation of different terms in
Eq. (A-18) such that the final MBC-transformation loses its dependency on terms with the
argument (s±2jω0). This section will make a thorough analysis of different model structures
of the blade-dynamics.

To prevent any confusion, the models indicated with a capital letter G(s) refers to the matrix
relating the pitch angles to the respective moments on the blades. Whereas the small letter
g(s) refers to the specific linear model relating the effects of one specific pitch angle (e.g.
θ1(t)) to a specific moment on a blade (e.g. M2(t)). This means that the most general form
might be written as

M1(t)
M2(t)
M3(t)

 = G(s)

θ1(t)
θ2(t)
θ3(t)

 =

g11(s) g12(s) g13(s)
g21(s) g22(s) g23(s)
g31(s) g32(s) g33(s)


θ1(t)
θ2(t)
θ3(t)

 . (2-16)

In an ideal case, one would analyse the system described in Eq. (2-16) and from there make
conclusions to simplifications based on the analytical analysis. As mentioned above, this
is undesirable because certain cancellations would not occur in the mathematical derivation
whereby making the general form not at all intuitive. This means that this section will restrict
itself to simplified model structures which could bear resemblances to real-world wind turbine
dynamics.

2-4-1 Decoupled blade-dynamic model structure

In the case that there is a negligible amount of interplay between pitch angles and loads on
the different blades, a fully decoupled system might be the appropriate choice for analysis.
This means that all off-diagonal terms in Eq. (2-16) are set to 0. There is then a second
choice which has to be made and that is if all blade-dynamics are exactly the same, meaning
that the interplay between θ1(t) → M1(t) ∼ θ2(t) → M2(t), or if that is not the case,
θ1(t)→M1(t) � θ2(t)→M2(t).

All decoupled blade-dynamics are equal

In the case of decoupled blade models the model can be described by g11(s) = g22(s) =
g33(s) = gb(s), where gb(s) is referred to as the most general blade-dynamics model. This
leaves the most simple description of the wind-turbine model relating the pitch angles to the
moments in the form,

M1(t)
M2(t)
M3(t)

 =

gb(s) 0 0
0 gb(s) 0
0 0 gb(s)


︸ ︷︷ ︸

Gb(s)

θ1(t)
θ2(t)
θ3(t)

 . (2-17)

The analysis of this blade-dynamics model is made in the derivation of the MBC-transformation
in Chapter 2-2. When the derivation is completely followed through including the azimuth
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20 Multi-Blade Coordinate Transformation

offset inclusion, the model will be the same as was seen in Eq. (2-15). However, the notation
that is used in this chapter is changed, as this improves readablity. The frequency shifted
Laplace operators are changed to

{
s− = s− jω0,

s+ = s+ jω0.
(2-18)

This also changes the notation of the MBC-transformed model that results from choosing
Gb(s) from Eq. (2-15) into

[
Mtilt(s)
Myaw(s)

]
= Pb(s)

[
Θtilt(s)
Θyaw(s)

]
=
[

e−jψgb(s−)+ejψgb(s+)
2 j e

−jψgb(s−)−ejψgb(s+)
2

−j e
−jψgb(s−)−ejψgb(s+)

2
e−jψgb(s−)+ejψgb(s+)

2

] [
Θtilt(s)
Θyaw(s)

]
(2-19)

.

An important remark is that this model structure has been the only model structure used
for IPC to the present day. Although quite simplistic, and relying on many assumptions,
it has already proved to be a useful blade-dynamic model structure for control. All further
extensions of the model structure explained in the remainder of this section are therefore still
very much experimental model structures.

Different decoupled blade-dynamics

The second case that can be made, is one that the blade-dynamics differ which means that
the assumption g11(s) 6= g22(s) 6= g33(s) is made. In this case g11(s) = gb1(s), g22(s) =
gb2(s), g33(s) = gb3(s). As a consequence the model in Eq. (2-17) changes intoM1(t)

M2(t)
M3(t)

 =

gb1(s) 0 0
0 gb2(s) 0
0 0 gb3(s)


︸ ︷︷ ︸

Gbi (s)

θ1(t)
θ2(t)
θ3(t)

 . (2-20)

This relatively minor change in the model as opposed to Gb(s) makes the entire derivation
as was performed in Appendices A and B much more cumbersome. The resulting MBC-
transformed model has the form

[
Mtilt(s)
Myaw(s)

]
= Pbi(s)

[
Θtilt(s)
Θyaw(s)

]
=
[

e−jψ
gb1 (s−)+gb2 (s−)+gb3 (s−)

6 + ejψ
gb1 (s+)+gb2 (s+)+gb3 (s+)

6
−je−jψ gb1 (s−)+gb2 (s−)+gb3 (s−)

6 + jejψ
gb1 (s+)+gb2 (s+)+gb3 (s+)

6
. . .

. . .
je−jψ

gb1 (s−)+gb2 (s−)+gb3 (s−)
6 − jejψ gb1 (s+)+gb2 (s+)+gb3 (s+)

6
e−jψ

gb1 (s−)+gb2 (s−)+gb3 (s−)
6 + ejψ

gb1 (s+)+gb2 (s+)+gb3 (s+)
6

] [
Θtilt(s)
Θyaw(s)

]
. (2-21)

It is verified that when gb(s) = gb1(s) = gb2(s) = gb3(s) Eq. (2-19) is equal to equal Eq. (2-21).
Moreover, this shows that the interaction between tilt and yaw does not change significantly in
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2-4 Effects of the choice of blade-dynamic model Structure on the MBC-transformation 21

the case of different blade dynamics. Although it should of course be taken into consideration
that this is only the case if the blade dynamics are fully decoupled from each other. In the
next section coupling in the blade-dynamic model structure is introduced.

2-4-2 Equal coupling between all blade-dynamics

In the case that the dominant blade-dynamics are on the diagonal it could be possible that
the effects of pitching the off-diagonal and non-dominant blade models (i.e. θ1(t)→M2(t) or
θ1(t)→M3(t)) can be approximated by a single linear model. For the sake of simplicity and
initial estimation, the blade-dynamics on the diagonal will be assumed to be equal to each
other as was done for Gb(s). In mathematical terms, this would change Eq. (2-16) into

M1(t)
M2(t)
M3(t)

 =

gb(s) gc(s) gc(s)
gc(s) gb(s) gc(s)
gc(s) gc(s) gb(s)


︸ ︷︷ ︸

Gbc (s)

θ1(t)
θ2(t)
θ3(t)

 , (2-22)

where gc(s) is defined as the coupling model. As gb(s) is the dominant (diagonal) model the
minor changes between the different off-diagonal models are assumed to be so minimal that
one off-diagonal model in the form of gc(s) suffices to take the coupling into account. The
resulting MBC-transformed plant is of the form

[
Mtilt(s)
Myaw(s)

]
= Pbc(s)

[
Θtilt(s)
Θyaw(s)

]
=
[

e−jψ gb(s−)−gc(s−)
2 + ejψ gb(s+)−gc(s+)

2
−je−jψ gb(s−)−gc(s−)

2 + jejψ gb(s+)−gc(s+)
2

. . .

. . .
je−jψ gb(s−)−gc(s−)

2 − jejψ gb(s+)−gc(s+)
2

e−jψ gb(s−)−gc(s−)
2 + ejψ gb(s+)−gc(s+)

2

] [
Θtilt(s)
Θyaw(s)

]
. (2-23)

Eq. (2-23) shows that the model relates very much to the fully decoupled model of Eq. (2-19).
The main difference is that all the off-diagonal terms are subtracted from the main diagonal
models. This shows that in the case of a significant gain difference between the diagonal, and
off-diagonal models the introduced complexity of gc(s) might be almost negligible in terms of
the final structure. In the case that coupling is non-existent, Eq. (2-23) changes into Eq. (2-
19).

A small stretch in assumptions can be made, when the diagonal terms are the dominant
blade-dynamics and the off-diagonal terms might show approximately the same dynamics but
on a smaller level. This would mean in the physical sense that the effect of pitching blade
1 has the most dominant effect on the moment of blade 1, but might have the same but
severely reduced effect on the moment of blade 2 and 3. In this case gc(s) = δgb(s), δ ∈ 〈0, 1〉.
This would result in the same model structure as Eq. (2-22), however, the MBC-transformed
version could be rewritten in the form of Eq. (2-19),

[
Mtilt(s)
Myaw(s)

]
= (1− δ)Pb(s)

[
Θtilt(s)
Θyaw(s)

]
. (2-24)
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22 Multi-Blade Coordinate Transformation

This type of blade-dynamics model would therefore just lower the gain of a fully decoupled
blade-dynamics model.

2-4-3 Equal coupling between different blade-dynamics

Another possibility is that the coupling is dependent on the previous and next blade dynam-
ics. This is the most advanced model under consideration which still allows for the dropping
out of the (s± 2jω0) terms in Eq. (A-18) and therefore make the MBC-transformed version
a lot better workable and analysable is a more advanced model of coupling. In this model
the effect of pitching blade i on moment of blade i is described by gb(s), but its effect on the
moment of blade i+ 1 will be different from the effect on the moment of blade i− 1. As this
is an extension of model Gbc(s) it is assumed that all blade-dynamics are still equal.

This means that the diagonal terms will be gb(s). The effect of θ1(t) → M2(t) ∼ θ2(t) → M3(t) ∼
θ3(t) → M1(t), as well as the effect of θ1(t) → M3(t) ∼ θ2(t) → M1(t) ∼ θ3(t) → M2(t).
For the sake completeness, it is assumed that θ1(t) → M2(t) � θ1(t) → M3(t) otherwise the
model would be the same as Gbc . Working all this out in the form of Eq. (2-16),

M1(t)
M2(t)
M3(t)

 =

gb(s) gp(s) gn(s)
gn(s) gb(s) gp(s)
gp(s) gn(s) gb(s)


︸ ︷︷ ︸

Gbcc (s)

θ1(t)
θ2(t)
θ3(t)

 , (2-25)

where gn(s) signifies the effect of pitching on the next blade, and gp(s) the effect of pitching
on the previous blade. To finalise this into the MBC-transformed model,

[
Mtilt(s)
Myaw(s)

]
= Pbcc(s)

[
Θtilt(s)
Θyaw(s)

]
= e−jψ

(
2gb(s−)−gp(s−)−gn(s−)

4 −j
√

3 gp(s−)−gn(s−)
4

)
+ejψ

(
2gb(s+)−gp(s+)−gn(s+)

4 +j
√

3 gp(s+)−gn(s+)
4

)
e−jψ

(
−j 2gb(s−)−gp(s−)−gn(s−)

4 −
√

3 gp(s−)−gn(s−)
4

)
−ejψ

(
−j 2gb(s+)−gp(s+)−gn(s+)

4 +
√

3 gp(s+)−gn(s+)
4

) . . .
e−jψ

(
j

2gb(s−)−gp(s−)−gn(s−)
4 +

√
3 gp(s−)−gn(s−)

4

)
−ejψ

(
j

2gb(s+)−gp(s+)−gn(s+)
4 −

√
3 gp(s+)−gn(s+)

4

)
e−jψ

(
2gb(s−)−gp(s−)−gn(s−)

4 −j
√

3 gp(s−)−gn(s−)
4

)
+ejψ

(
2gb(s+)−gp(s+)−gn(s+)

4 +j
√

3 gp(s+)−gn(s+)
4

)
[Θtilt(s)

Θyaw(s)

]
.

(2-26)

In Eq. (2-26) an interesting property emerges from the coupling: somehow the difference in
coupling between the blades introduces a phase-offset of the form j

√
3gp(s−)−gn(s−)

4 . This
means that a magnitude of the phase-offset is dependent on the difference in gain between
interaction of the previous and the next blade.

For the decoupling of the tilt- and yaw-moments it is desired to decrease the magnitude
of the off-diagonal terms by a considerable amount relative to the diagonal terms. As the
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off-diagonal terms have the introduction of a 90◦ phase-shift this cancels out against the
j
√

3gp(s−)−gn(s−)
4 term and turns that part into

√
3−gp(s−)+gn(s−)

4 . If these dynamics actually
play a significant part in the real-world setup then this specific term could play a role in the
choice of the azimuth-offset to decouple the system.

2-4-4 Conclusion

Most papers where MBC-transformation based IPC is applied, either implicitly or explicitly
state the assumptions on which their model is based. Where one of the first assumptions is
often the fact that a model structured of Gb(s) is considered. In this Section, this assump-
tion was let go, and the resulting blade dynamics model structure analysis has covered as
many separate variations which bear a resemblance to real-world interactions of dynamics as
possible.

The main result presented is that if a non-negligible amount of blade-dynamic coupling ex-
ists, that the model-structure on which the individual pitch controller is based can change
considerably. As a consequence this means that assuming a model structure of Gb(s) can
limit the achievable performance of the controller.

Furthermore, this elaborate analysis shows how the generalised tilt- and yaw-moments on the
wind turbine are very dependent on the dynamics of the blades and the interactions between
them. It is therefore very important to carefully choose the proper blade-dynamics model in
the linear model analysis.
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Chapter 3

Effects on a First-Order System

The wind turbine model undergoes significant changes by application of the MBC-transformation,
and it is not trivial how it relates to the characteristics of specific blade models (e.g. gb(s))
themselves. In this chapter the focus is on the application of a basic blade-dynamic model
and to investigate the effect of different extensions of the MBC-transformation. The basic
blade-dynamic model considered in the chapter is assumed to be a classic first order system.
Other models could also be considered, but would make the analysis more complex.

A basic first-order blade-dynamics model is of the form

Hb(s) = Mb(s)
Θb(s)

= K

τs+ 1 . (3-1)

To see its frequency-domain characteristics a gain of K = 10 and time-constant of τ = 0.25
are chosen. As a result, the DC-gain of the system is 10 (or 20 log10(K) = 20dB), and its
pole is located at s = −1/τ = −4. The corresponding frequency-domain characteristics are
shown in Figure 3-1.

If the MBC-transformation including the azimuth offset, in conjunction with a fully decoupled
blade-dynamic model is used (as described in Chapter 2-4-1), then the final form is described
by Eq. (2-15). Which means that if an offset is introduced that it is solely introduced in Tθ.
If gb(s) = Hb(s) then Eq. (2-15) can be written as

P (s) =

 e−jψ K
τ(s−jω0)+1 +ejψ K

τ(s+jω0)+1
2 j

e−jψ K
τ(s−jω0)+1−e

jψ K
τ(s+jω0)+1

2

−j
e−jψ K

τ(s−jω0)+1−e
jψ K

τ(s+jω0)+1
2

e−jψ K
τ(s−jω0)+1 +ejψ K

τ(s+jω0)+1
2

 . (3-2)

The terms in matrix P (s) currently seem to become quite complicated if one would try to work
them out, but if one is careful in its substitutions of Euler’s formula (ejψ = cosψ + j sinψ)
an easier form of P (s) is available, namely
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26 Effects on a First-Order System

Figure 3-1: Bode plot of a first-order model with K = 10 and τ = 0.25

P (s) = K

 (τs+1) cosψ+τω0 sinψ
(τs+1)2+τ2ω2

0

(τs+1) sinψ−τω0 cosψ
(τs+1)2+τ2ω2

0
−(τs+1) sinψ+τω0 cosψ

(τs+1)2+τ2ω2
0

(τs+1) cosψ+τω0 sinψ
(τs+1)2+τ2ω2

0

 . (3-3)

In Eq. (3-3) it is clear that the poles of all the different components of P (s) are the same,
because they have the same denominators. An analysis on the poles can be carried out by
setting the denominator to zero and see how τ and ω0 affect the poles of the system.

s = −1
τ
± jω0. (3-4)

It is clear that the pure pole that is present in the basic blade-dynamics model of Eq. (3-1)
(pole at s = −1/τ) becomes split up into a complex pole-pair for the MBC-transformed sys-
tem, where the imaginary component is fully dependent on the rotational speed of the turbine
ω0. A visual representation of this is shown in Figure 3-2. As ω0 increases, the poles start
moving away further and further from the real axis.

3-1 Decoupling the system

In this section, the interest is focussed on finding out when decoupling occurs, or in other
words, when the off-diagonal terms are minimal. This means finding minψ (|P12(jω)|). As a
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3-1 Decoupling the system 27

Figure 3-2: Poles of a MBC-transformed 1st-order system. As ω0 increases, the poles start
moving away further and further from the real axis.

consequence, it first has to be clear what the term exactly looks like before determining in
what way it can be minimised. If it is worked out the following form is obtained,

|P12(jω)| =
∣∣∣∣(τjω + 1) sinψ − τω0 cosψ

(τjω + 1)2 + τ2ω2
0

∣∣∣∣ =

√
(sinψ − τω0 cosψ)2 + (τω sinψ)2√(

τ2 (ω2
0 − ω2)+ 1

)2 + (2τω)2
. (3-5)

For reference purposes, this derivation can be made for the entire P (s). This means that if
the same is done for P11(s), P21(s), P22(s), Eq. (3-3) can be turned into

|P (s)| = |K|


√

(cosψ+τω0 sinψ)2+(τω cosψ)2√
(τ2(ω2

0−ω2)+1)2+(2τω)2

√
(sinψ−τω0 cosψ)2+(τω sinψ)2√

(τ2(ω2
0−ω2)+1)2+(2τω)2

√
(τω0 cosψ−sinψ)2+(−τω sinψ)2√

(τ2(ω2
0−ω2)+1)2+(2τω)2

√
(cosψ+τω0 sinψ)2+(τω cosψ)2√

(τ2(ω2
0−ω2)+1)2+(2τω)2

 . (3-6)

From the form presented in Eq. (3-5) it becomes clear that altering the offset ψ does not
affect the denominator, and thus does not affect the poles of the system. This means that for
decoupling, it suffices to minimise the numerator of P12(jω)(, because |P12(jω)| = |P21(jω)|,
whereby minimising the entire off-diagonal at once). In looking for the ideal offset three
different cases can be considered.

1. One case where the frequency of the system is a lot smaller than the rotor speed, ω � ω0.

2. The second case is when the system frequency is close to the rotor speed, ω ≈ ω0.

3. The third and final case is the system characteristics for higher frequencies, ω � ω0.

The mathematical derivation of these offsets can be found in Appendix C. This derivation
results in the ideal offsets for decoupling of
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ψ = tan−1(τω0), for, ω � ω0, valid for ψ ∈
[
−π

2 ,
π
2
]

ψ = 1
2 tan−1(2τω0), for, ω ≈ ω0, valid for ψ ∈

[
−π

2 ,
π
2
]

ψ = 0, for, ω � ω0.
(3-7)

It would be desired to decouple the system over the entire frequency spectrum, but the anal-
ysis just performed shows that one single offset is not able to decouple it over the entire
frequency spectrum. This means that a deliberate choice has to be made as to which fre-
quency region is of interest to decouple. This is fully dependent on the characteristics of the
system under consideration and there is not one answer that will be sufficient for all systems.

What this exactly entails for a system can be seen in Figure 3-3. For this particular example
τ = 0.2717 and ω0 ≈ 1.2671 rad/s, but τ and ω0 can be chosen arbitrarily and the argu-
mentation still holds. In the case that the offset is chosen to be as calculated in Eq. (C-1)
Figure 3-3 shows that indeed in the lower frequency region there is a significant drop in mag-
nitude. When ψ = 1

2 tan−1(2τω0), the drop magnitude around ω ≈ ω0 is visible, but the
change is very small compared to the case off ψ = tan−1(τω0). The case where ψ = 0◦ is
clearly very useful for decoupling the high-frequency region.

0

 >> 0

  0

 << 0

Figure 3-3: Bode magnitude plot to show the effectiveness regions for certain offsets. The yellow
line provides maximum decoupling in the low-frequency region for ω � ω0. The red line provides
maximum in the region ω ≈ ω0. The difference between the red and yellow line around the
frequency of ω0 appears to be minimal. The blue line provides the maximum decoupling in the
high-frequency region where ω � ω0.

In the case of IPC for load mitigation on the blades of HAWTs, the MBC-transformation is
generally applied on the 1P-frequency (i.e. at a frequency of ω0) load spectrum. The MBC-
transformation moves the 1P load harmonic in the rotating reference frame to a constant
0P signal in the non-rotating frame. Because 0P corresponds to DC or low-frequency signal
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3-2 Effect of MBC-transformation on system zeros 29

content, it is desired to decouple the system at an as low a frequency as possible, which
means that the DC-gain of P12(s) should be as low as possible. This is done by choosing
ψ = tan−1(τω0) as was calculated in Eq. (C-1). The offset ψd := tan−1(τω0) to make future
references to this low-frequency decoupling offset for a first-order system easy to refer to.

3-2 Effect of MBC-transformation on system zeros

The change in the numerator of Eq. (3-3) due to a change in the azimuth offset is the basis
of the induced change which is seen in Figure 3-3. This change in gain due to a change in the
numerator gives rise to the suspicion of an interplay between the gain of P12(s) and its zeros.
The zeros of P12(s) are located at the roots of the numerator, and it can be found that

s = ω0
tanψ −

1
τ
. (3-8)

On careful inspection, a couple of interesting properties show up when taking this approach.
The first one is when ψ = 0◦, then in Eq. (3-3) the term with the s drops out, meaning that
the zero completely disappears. In mathematical terms of Eq. (3-8) this is the same as taking
limψ+→0 s = ∞. In the case ψ is chosen relatively small, then the zero will be located at a
high frequency resulting in a small change comparative to when no offset is present (or the
blue line in Figure 3-3). When the offset is increased then the term ω0/ tanψ of Eq. (3-8)
starts to decrease, meaning the zero becomes located at a decreasing frequency.

As shown by Eq. (3-3) the ideal offset for decoupling in the low-frequency region was given
by ψd. If this is substituted into Eq. (3-8) the resulting term for the zero becomes s = 0.
Here it becomes clear that when increasing the offset from 0→ tan−1(τω0) the zero "travels"
from ∞ (in the limit) to 0: an ideal differentiator is the result of the zero placed at 0 rad/s.
This also proves that the yellow line of Figure 3-3 will keep decreasing for lower frequencies.
The above described characteristics can be seen in a plot of the zeros in Figure 3-4.

Consequently, the DC-gain of P12(s) is 0 for ψ = ψd, this perfectly decouples the system. It
is also important to know what the gains of other elements of Eq. (3-3) are with this specific
offset compared to the case no offset is applied. If the same exemplary case is used (meaning
τ = 0.2717 and ω0 ≈ 1.2671) then the DC-gains related are calculated to be

|P (j0)|ψ=0 =
[
0.8940 −0.3078
0.3078 0.8940

]
, |P (j0)|ψ=ψd =

[
0.9455 0

0 0.9455

]
. (3-9)

This shows an increase in the gain of |P11(j0)|ψ=ψd , which is not such a significant increase
as the decrease in gain of |P12(j0)|ψ=ψd . This means that something different appears to be
happening on the diagonal terms of P (s).

The same analysis of zeros can be performed on P11(s) to see how these change and what
effect this might have on the change in gain of the system by choosing ψ = ψd. In the case of
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Figure 3-4: Zeros of a MBC-transformed 1st-order system. As the offset, ψ increases, the zeros
travel from ∞ towards 0 for a value of ψd = tan−1(τω0). (If ψ > ψd the zero moves into the
left-half plane).

the location of the zero, this means the numerator of P11(s) in Eq. (3-5) can be set to zero
to find its roots,

s = −ω0 tanψ − 1
τ
. (3-10)

This shows that in the case of decoupling, s ψ=ψd= −ω2
0τ−1/τ . This is a non-trivial location of

the zero, but also does not pose any dangers to the system’s stability. This is due to the fact
that ω2

0, τ > 0, meaning the location of the zero is always located in the complex left-half
plane.

As a side note, the choice of ψ = tan−1(−1/(τω0)) should be avoided, as this would place
the zero of Eq. (3-10) at 0 rad/s (in effect creating an ideal differentiator in P11(s)). As
well as placing the zero of Eq. (3-8) at −ω2

0τ − 1/τ . This would make the yaw-moment
fully dependent on the tilt-pitch and would result in inverse-coupling of the system in the
low-frequency region.

Now that this has become clear for one specific τ , which corresponds to one specific time-
constant coefficient, or one specific wind turbine. As the limitation of the applicability of
ψ ∈

[
−π

2 ,
π
2
]
due to the tan−1 function it is not at all trivial that this allows the applicability

of the offsets in systems with arbitrary time-constants.

3-3 Analyzing the effects of DC-Gain, τ and ω0.

In the previous section for exemplary purposes certain model parameters were chosen. Several
effects were shown for these specific cases. It is interesting to see what how the decoupling
changes if the wind turbine’s characteristics change. In the case that the wind turbine blade-
dynamics are approximated by a first order model this means that the characteristics are
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described as in Eq. (3-1). As a consequence, K and τ are the parameters which change the
characteristics of the model. In Eq. (3-3) it was shown that the analysis of decoupling is irre-
spective of a change in K. This means that the most important characteristic is determined
by the choice of τ .

Secondly, the MBC-transformation induces a term which is dependent on the rotational speed
of the wind turbine, ω0. As this term shows up in different places of P (s) this might very
well also play a role in decoupling the MBC-transformation as was seen in Eq. (3-5).

Before looking at the effect of changing these values, a proper metric has to be chosen to
compare them to. As discussed earlier, the low-frequency properties are the most important
properties for decoupling because of the shift of the 1P harmonics of the non-rotating frame
to the 0P harmonics of the non-rotating frame. This coincides with the DC-gain. Therefore,
first the exact changes in DC-gain are analyzed before changing the values of τ and ω0.

3-3-1 DC-Gain change due to ψd

When changing the value of τ and to keep checking for decoupling in the low-frequency
region, a more general form of P12(s) in Eq. (3-3) is set up. For this the identities of
sin
(
tan−1(τω0)

)
= τω0/

√
τ2ω2

0 + 1 and cos
(
tan−1(τω0)

)
= 1/

√
τ2ω2

0 + 1 come in very useful.
The gain change for the off-diagonal is

P12ψd (s) = (τs+ 1) sinψd − τω0 cosψd
(τs+ 1)2 + τ2ω2

0
= τω0√

τ2ω2
0 + 1︸ ︷︷ ︸

K12dec

τs

(τs+ 1)2 + τ2ω2
0
. (3-11)

It is observed from Eq. (3-11) that a change in gain of magnitude K12dec compared to the
regular P12(s) is present. It has one zero in the origin. As was seen in Eq. (3-10) the zeros of
P11 do have a different location. The change in the denominator might also result in a change
in its gain. If the same substitution of Eq. (3-11) is done for P11(s) it becomes clear that

P11ψd (s) = (τs+ 1) cosψd + τω0 sinψd
(τs+ 1)2 + τ2ω2

0
= 1√

τ2ω2
0 + 1︸ ︷︷ ︸

K11dec

τs+ 1 + τ2ω2
0

(τs+ 1)2 + τ2ω2
0
. (3-12)

Which also shows a difference in the DC-gain of P11(s). This effect actually is more general
than these specific cases and it proves more helpful to analyse the entire P (s) structure. If
the DC-gain of P (s) is written out in terms as initially presented in Eq. (3-6) it means that
s = j0 should be substituted. This results in general DC-gains of the form

|P (j0)| = |K|

 | cosψ+τω0 sinψ|
τ2ω2

0+1
| sinψ−τω0 cosψ|

τ2ω2
0+1

|τω0 cosψ−sinψ|
τ2ω2

0+1
| cosψ+τω0 sinψ|

τ2ω2
0+1

 . (3-13)
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As this shows a big dependency on the choice of offset it is interesting to see how decoupling
affects all DC-gains. In the case the offset is set to zero (as is currently the norm in IPC),
the resulting DC-gains are

|P (j0)|ψ=0 = |K|

 1
τ2ω2

0+1
|−τω0|
τ2ω2

0+1
τω0

τ2ω2
0+1

1
τ2ω2

0+1

 . (3-14)

Now that the offset is increased to the appropriate values for low-frequency decoupling (i.e.
ψ = ψd), the resulting DC-gains are calculated to be

|P (j0)|ψ=ψd = |K|

 1√
τ2ω2

0+1
0

0 1√
τ2ω2

0+1

 . (3-15)

Now it is possible to relate the DC-gain change from ψ = 0 → ψ = ψd for the diagonal terms.
From Eq. (3-14) and Eq. (3-15) it is clear that both of the diagonal terms show the same
gain difference. The ratio between the upper diagonal elements of Eq. (3-15) and Eq. (3-14)
is
√
τ2ω2

0 + 1. It is trivial that τ2ω2
0 > 0, whereby it can be concluded that

√
τ2ω2

0 + 1 > 1,
or in other words, that a gain increase is present on the diagonal terms when decoupling hap-
pens. Furthermore, the DC-gain of the diagonal terms are exactly equal to the gain K11dec

as calculated in Eq. (3-12).

3-3-2 Effect of varying τ

In the case the rotor speed, ω0 is fixed the effect of the blade-dynamics model will change the
behaviour of the coupling terms in the MBC-transformation. For now it is assumed that ω0 is
fixed at the be the rated rotor speed. This is due to the fact that IPC is most often considered
to be enabled for load reduction in the above-rated region [6]. The term τ determines the
placement of the pole in the first order system model described by Eq. (3-1). When it is very
small (τ � 1) the system has pole very far in the complex left-half plane, or a very fast acting
pole. This indicates a fast responding system.

In the case of analysis on K12dec this would mean that it approximates K12dec ≈ ω0τ
2 at low

values for τ whereas it would steadily increase to about K12dec ≈ τ for higher values of τ .
Comparing this to K11dec ≈ 1 for low values of τ and K11dec � 1 if τ would become quite
large there is a trade-off present in the system. In the case that τ � 1, the offset which de-
couples the system at the low-frequencies would have the inverse effect in the mid-frequency
region where the roll-off is not present yet, but if τ is relatively small then ψ = ψd would
be a good choice for the offset. This is because it allows for near-perfect decoupling in the
low-frequency region and it would still allow the gain of the diagonal terms to be higher than
the off-diagonal terms which would ensure a certain amount of decoupling in the region where
it was previously shown to be thought of as inadequate.
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3-4 Verification of the low-frequency decoupling results 33

3-3-3 Effect of varying ω0

In the case ω0 is varied, τ is fixed and assumed greater than zero. Furthermore, it is assumed
without loss of generality that ω0 ≥ 0.

In the case the wind turbine does not rotate ω0 = 0, Kdec = 0 and as a consequence
P12ψd (s) = 0 which automatically decouples the system (which has also been shown ear-
lier that this happens irrespective of ψ). In the case the wind turbine has a low rotational
speed (ω0 � 1 rad/s) K12dec is also very small as the denominator will be dominated by the
"1" term, whereas K11dec ≈ 1. This means that the off-diagonal terms will have very low
gains no matter the frequency region and the diagonal terms will be dominant (and as a re-
sult decoupling happens over almost the entire frequency region). Furthermore, the complex
poles of the MBC-transformed system still lie close to the real-axis which means only small
oscillations occur on the yaw- and tilt-moments.

When ω0 starts increasing up until around π/2 rad/s (this equals 15RPM, which is a rea-
sonable rated rotor speed for a wind turbine [1]) coupling starts to exist with respect to the
gains of the system. As the magnitude of the complex components of the poles increases the
frequency of the yaw- and tilt-moments also starts to increase. This is the point where an
azimuth offset will therefore be the most useful. At rated rotor-speeds the highest coupling
appears (as the turbine will not rotate any faster than that) and therefore it is the most use-
ful region to start focussing on for decoupling. As IPC is usually implemented in the region
where the rotor speed is at its rated speed, this shows that the consideration of the offset in
the MBC-transformation can be very profitable from a performance viewpoint.

3-4 Verification of the low-frequency decoupling results

Now that several results have been found for a first order system, it is smart to verify them
through a different analysis. If this corresponds to the analytical results described in the
previous sections, it is safe to say that decoupling indeed happens under the considered cir-
cumstances. The most important part to verify is the decoupling in the low-frequency region
and its relations to various τ and ψ values.

3-4-1 Gain analysis of the MBC-transformed system

In the section describing the variation of ω0 it was noted that for low ω0 (rotor speeds)
decoupling automatically happens, whereas at higher rotor speeds decoupling is harder to
show and is especially dependent on the choice of the offset. To see if this is indeed the case
the gains of |P (s)| as described in Eq. (3-6) are plotted for ω0 ≈ 1.27 rad/s, while varying
τ and the offset ψ in Figure 3-5. It should be noted that the magnitudes are normalized
between a value of 0 and 1. Secondly, it should also be noted that only P11(s) and P12(s) are
plotted, because P11(s) = P22(s) and P12(s) = −P21(s).
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Figure 3-5: Normalized magnitude plots for P11(s) and P12(s) evaluated in the low-frequency
region (ω = 0 rad/s.) and for rotor speed equating to 12.1 RPM. The red line shows the
theoretical result for decoupling (ψd = tan−1(τω0)).

Several things can be observed in Figure 3-5. Firstly, in the case that τ is chosen smaller than
1 it is clear that the gain of P11(s) approaches 1 whereas the gain of P12(s) is near 0 for an
offset corresponding to the results found in Chapter 3-1. However as τ becomes larger than
1, The low-frequency gain of P11(s) approaches that of P12(s) for increasing values of τ . It
does correspond with what is described in the section of varying τ that the gain of the system
drops as τ increases, this also shows that the chosen verification method is not appropriate for
larger values of τ . Therefore in the next section the Relative Gain Array (RGA) is employed.

3-4-2 Relative Gain Array analysis of the MBC-transformed system

In the previous section the analysis was done by looking at the relative gain differences for
different values of τ and ψ. A classical method to do this is by calculating the Relative Gain
Array (RGA) of a system [28]. The RGA is a square complex matrix defined as

RGA(P (s)) := P (s)× (P (s)−1)T , (3-16)

where "×" denotes the Hadamard (or Schur) product between the matrices [28]. It is a
property of the RGA that the columns and rows of the RGA sum up to 1. The RGA is
generally considered as a pairing of how the different gains in the system relate to each other.
It is generally desired that control is not performed on RGA elements with negative values
[29]. In the values considered in Figure 3-5 no negative real values were calculated for the
RGA(P (s)). Since no negative pairing was present, the norm of the RGA(P (s)) is taken to
show the consequences of the RGA. The result can be seen in Figure 3-6.

The RGA shows an even clearer result than Figure 3-5 with respect to the decoupling effects.
Again, the red line is an indication of the analytically obtained result of Chapter 3-1. The
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Figure 3-6: The norm of the RGA of P11(s) and P12(s) evaluated in the low-frequency region
(ω = 0 rad/s.) and for rotor speed equating to 12.1 RPM. The red line shows the theoretical
result for decoupling (ψ = tan−1(τω0)).

RGA plot now also indicates that at low values for τ and high values for ψ even inverse pairing
can be seen. This inverse pairing for high values of τ was not at all obvious in Figure 3-5 but
also seems to be significant if the RGA is considered. Which was also what has been derived
in the previous sections.

The two plots of Figure 3-5 and 3-6 now fully corroborate the analytical results derived.
Figure 3-5 shows that indeed the gains of the MBC-transformed system significantly drop
when τ increases. This made it difficult to see if the decoupling was still guaranteed in this
region. The RGA plot of Figure 3-6 indeed showed that this was still the case. The RGA plot
also showed that inverse coupling is possible in case the offset is chosen in a wrong fashion.
This would mean that tilt- and yaw-moments would be controlled by yaw- and tilt-pitch
angles respectively. The RGA was still positive in these cases, which indicates that is not
necessarily undesired, but is highly unintuitive to do.

3-5 Application on equal coupling between all blade-dynamics

For now, the entire analysis of the first order model has been made with respect to the most
basic blade-dynamic model. In Chapter 2-4 the differences between different blade-dynamic
models has been discussed. Therefore it is also important to see the effect this has on an actual
system. In this section, the analysis is performed on the blade-dynamic model described in
Chapter 2-4-2 (assuming equal blade cross-coupling). This means that the previous analysis
changes considerably.

The main differences are that the different gains of the diagonal and off-diagonal models now
play a role in decoupling the system. This also means the system has to be set up in a different
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way. Two different models, gb(s) and gc(s), are now needed, as described in the Eq. (2-22)
and Eq. (2-23). For illustration purposes, the model is set-up as

{
gb(s) = Kb

1
τbs+1 ,

gc(s) = Kc
1

τcs+1 ,
(3-17)

and subsequently these descriptions of the blade-dynamics are substituted into Eq. (2-23). As
decoupling occurs on the off-diagonal, the interest is put on the upper-right term of Eq. (2-23).
This becomes

Pbc12
(s) = j

2

[
Kb

(τbs+ 1) sinψ − τbω0 cosψ
(τbs+ 1)2 + τ2

b ω
2
0

−Kc
(τcs+ 1) sinψ − τcω0 cosψ

(τcs+ 1)2 + τ2
c ω

2
0

]
. (3-18)

From Chapter 3-1 it became clear that decoupling can happen in different frequency regions.
The argument was given that decoupling in the low-frequency region amounts to the desired
decoupled characteristics. This amounts to minimization of the 2-norm of Eq. (3-18) with
s = j0 is substituted. If this derivation is followed carefully, the following result is obtained

[
Kb(1 + τ2

c ω
2
0)−Kc(1 + τ2

b ω
2
0)
]

sinψ −
[
Kbτbω0(1 + τ2

c ω
2
0)−Kcτcω0(1 + τ2

b ω
2
0)
]

cosψ = 0.
(3-19)

This has the same form as Eq. (C-1), but the multiplications are a bit more elaborate.
However, an analytic solution still exists,

ψ = tan−1
(
ω0
Kbτb(1 + τ2

c ω
2
0)−Kcτc(1 + τ2

b ω
2
0)

Kb(1 + τ2
c ω

2
0)−Kc(1 + τ2

b ω
2
0)

)
. (3-20)

On first sight this seems a complicated form. The nice thing however is that it indeed agrees
with the forms that were presented earlier. In case that τb = τc and the gains are written as
Kc = δKb which agrees with Eq. (2-24) as well as the decoupling found in Eq. (C-1).

3-6 Conclusion

The analysis of a first-order blade-dynamics model with the simplest form of coupling as dis-
cussed in Chapter 2-4 shows that a lot of different effects take place when changing the offset.
Moreover, it has been shown that it is impossible to fully decouple the system by choosing
one specific offset. A choice has to be made in what frequency region the offset has to be
most effective.

It has been argued that when IPC decoupling in the low-frequency region is desired, this is
achieved by the introduction of a pure differentiator in the origin. As a result the DC-gain of
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the coupling terms goes to zero. On the other hand this also introduces a zero in the diagonal
terms of P (s) on a non-trivial place in the complex left-half plane.

Finally, the exact effects of the choice of model-characteristics is examined. This shows that
even though coupling might occur in the low-frequency region, if τ is too large (in this case
meaning τ � 1) then the decoupling achieved in the low-frequency region is negated in the
mid- to high-frequency region.

In the next chapter the tools presented here are going to be applied on a more complex
model. This more complex model are higher-order linearisations of a high-fidelity non-linear
wind turbine model. The interest lays in extending the properties found in this chapter to
these linearisations.
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Chapter 4

Locating the Optimal Azimuth Offset
in Higher-Order Wind Turbines

4-1 Introduction

In Chapter 3 an extensive analysis is performed on the decoupling of a first-order blade-
dynamics model. The main result was the possibility of decoupling the system in certain
frequency regions. It was shown that no single constant offset was able to decouple the sys-
tem in the MBC-transformation over the entire frequency spectrum. As this result was only
presented for a first order model it is no guarantee that this will straightforwardly translate
into a high-order wind turbine model.

This chapter will look if to the possibility of extending the results previously obtained to high-
order linearisations from a non-linear wind turbine model. Once linear models are obtained,
the MBC-transformation is applied to it. This showcases which assumption of blade-dynamic
models of Chapter 2-4 are valid.

Subsequently, the possibility of approximating this high-order wind turbine by a first or-
der system is analysed. From Chapter 3 it is known what the ideal offset for the MBC-
transformation is of a first-order model. It is investigated in this chapter whether the first
order approximation can be related to the actual ideal offset.

4-2 Description of a High-Order wind turbine model

This section describes the choice of the non-linear high-fidelity model and its properties. The
model under consideration is the NREL-5MW baseline reference wind turbine. The turbine’s
properties and possibilities for IPC (analysis) will be explained.
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Table 4-1: Summary of specification of the NREL 5-MW Baseline Wind Turbine

Description Value
Rated Power 5 MW
Rotor orientation Upwind, 3 blades
Control Variable speed, collective pitch
Drivetrain High speed, multiple-stage gearbox
Rotor 126 m
Hub diameter 3 m
Hub height 90 m
Cut-in speed 3 m/s
Rated speed 11.4 m/s
Cut-out speed 25 m/s
Cut-in rotor speed 6.9 rpm
Rated rotor speed 12.1 rpm
Rated tip speed 80 m/s
Pitch-rate limit |8◦/s|

4-2-1 Description of the NREL-5MW baseline reference wind turbine

Various wind turbine models are used throughout wind turbine research fields. Currently,
one of the most referenced wind turbine models is the NREL 5-MW baseline reference wind
turbine model [30], which is also the model under consideration in this thesis. From now on
it will be simply referred to as the "NREL 5-MW turbine".

The NREL 5-MW turbine has been established to standardize research of wind turbines and
to allow for fast and convenient simulations on a high-fidelity non-linear model. The model
has been designed by the National Research Energy Laboratory (NREL) in the United States
of America. During the design process of the turbine model, an extensive survey was done
of specifications of other turbines. An overview of the resulting wind turbine can be seen
Table 4-1. For a more detailed overview of the NREL 5-MW turbine the interested reader is
referred to [30].

4-2-2 Description of the FAST high-fidelity wind turbine simulation package

Next to the wind turbine model, NREL has also developed a Computer Aided Engineering
(CAE) tool to simulate the coupled dynamic response of wind turbines: it is referred to as
FAST (Fatigue, Aerodynamics, Structures and Turbulence). The simulation package is pri-
marily designed for the use case of extreme and fatigue load analysis on wind turbines [31].
FAST is capable of joining aerodynamic models with control dynamic models as well as struc-
tural dynamics models. This coupling generates a high-fidelity non-linear model which can
be simulated in a time-marching simulation of the wind turbine. This non-linear simulation
makes use of wind-inflow (possibly turbulent) data and consequently computes turbine loads,
responses as well as rotor-wake effects. Furthermore, extensive possibilities for the evaluation
of the wind turbine’s control system are available. This ranges from individual pitch actua-
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tion, generator-torque control as well as nacelle-yaw control [31].

Next to the non-linear simulations FAST also allows for linearisations of the wind turbine
model. These linearisations give the possibility to gain extensive insight into the wind tur-
bine’s dynamics at that specific operating points. These linearisations are build up with the
help of several coupled modules (AeroDyn, ServoDyn, ElastoDyn, and InflowWind).

Currently there is a difference between the ways non-linear simulations are computed and
the way the linearisations are set up. Unsteady aerodynamic effects can be included in the
non-linear simulations whereas it is currently impossible to include these in the calculation
of the linearisations.

FAST can be run in two different ways. First in an executable format, which allows for
relatively fast simulation times. The second configuration is that FAST is compiled into an
S-Function block in MATLAB Simulink [31]. This S-Function block enables the inclusion of
custom Fortran routines. Also, the possibility of applying complex control in the Simulink
environment without the need to compile this into the executable allows for relatively fast
controller iterations.

4-3 Linearisation of the NREL 5-MW wind turbine

In Chapters 2 and 3 an analysis framework has been set up to see in what way decoupling
is possible by introduction of an offset in the MBC-transformation with respect to linear
blade-dynamic models. Now that the choice of a high-fidelity non-linear wind turbine model
has been made, this model is linearised for certain conditions.

The NREL 5-MW turbine model will be linearised under conditions where IPC is most useful.
The considered wind field under which the linearisation is made is a steady wind field with a
mean wind-speed of 25 m/s.

Linearisations are provided by FAST in continuous state-space form. Furthermore, the lin-
earisation can be made at different azimuth angles. To get a clear insight in the dynamics over
all rotor azimuth positions, linearisations are made at 36 distinct positions during its rotation.

Each of these linearisations results in a different state-space description. In the considered
set-up activated degrees of freedom, the state-space descriptions result in a 29th order model.
In the case under consideration the most important relation of states are the ones described
in Figure 2-3. This means that the for the MBC-transformation the input-output interaction
between the pitch angles and out-of-plane bending moments is considered. The resulting
magnitude frequency responses of the linearisations are plotted in Figure 4-1.

In Chapter 2-4 the effect of the choice of the blade-dynamics model structure has been ex-
plained. This can now be related to the obtained model. Figure 4-1 essentially indicates the
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Figure 4-1: Bode magnitude plots of the NREL 5-MW turbine linearisations. The green dashed
line indicates the rotational speed of the turbine. The orange plots indicate the diagonal terms,
whereas the blue plots show the interplay between different blades. Each separate line is a
linearisation of the wind turbine for azimuth angles over all rotor positions.

9 different transfer functions as described in Eq. (2-16). To get a first inclination as to how
they relate to each other, a purely qualitative analysis is made.

It is clear that the three diagonal terms display similar dynamics. Especially around the rota-
tional speed (ω0) of the turbine they exhibit a 10+ dB difference compared to the off-diagonal
terms. The dominance of these diagonal terms explains why the model consideration of a fully
decoupled blade-dynamics model has dominated the design of IPC up until now.

However, it is also quite clear that the off-diagonal terms are non-zero and all show quite sim-
ilar dynamics, which might give a good indication that the assumptions and blade-dynamic
model structure of Chapter 2-4-2 could help in the explanation to find the ideal offset.

The last observation which might prove useful is that in terms of model dynamics in Figure 4-
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1, the transfer functions of θ3 → M1 ≈ θ1 → M2 ≈ θ2 → M3, and θ2 → M1 ≈ θ3 → M2 ≈
θ1 → M3. This approximate equality is made on the basis of the spread in the frequency
region just above the rotor speed. This type of blade-dynamic model structure relates to
the assumptions made Chapter 2-4-3. Which might indicate that the interactions between
the previous and next blade might be important in the analysis of the offset. Although it
should be noted that the change compared to Chapter 2-4-2 is only significant in the spread
just above the rotor speed frequency, which might be a reason to not consider the significant
higher complexity of the model, as decoupling is desired in the lower frequency region.

4-4 MBC-transformation of the linearised wind turbine model

In the previous section the linearisations were made of the NREL 5-MW turbine at a wind-
speed of 25 m/s on 10◦ intervals. These resulted in a 36 different 29th order state-space
descriptions of the system. In Chapter 3 only "simple" 1st order systems were considered to
do analysis for the MBC-transformation. This means that either the state-space systems have
to be transformed into a description of the form of Chapter 2, or a full MBC-transformation
has to be performed on the full state-space systems. This last point seems like to be the best
option to make sure that no loss of dynamics occurs.

As a result, an analytical description of the MBC-transformation will be derived in the next
section. This MBC-transformation is also able to incorporate the azimuth offset. In the
subsequent section this MBC-transformation is performed on the obtained linearisation of
Figure 4-1.

4-4-1 Theoretical derivation MBC-transformation for state-space models

A state-space model description is a linear model description. In the case it is a linearization
of a non-linear model it is only valid in an operating region close close to the part where the
dynamics are linearized. In the case of the NREL 5-MW turbine there are 36 models which
describe the wind turbine dynamics at different azimuth angles. All these models describe the
dynamics of the wind turbine over one rotation, this means that the state-space systems can
be coupled to a switched system, dependent on rotational speed. As a result it means that
to capture the full dynamics of the wind turbine in one state-space model, the state-space
model obtains changing A,B,C,D matrices with respect to the azimuth angle (which in turn
is dependent on time). Consequently, this results in a time-varying model of the form,

ẋr(t) = Ar(φ(t))xr(t) +Br(φ(t))ur(t)
yr(t) = Cr(φ(t))xr(t) +Dr(φ(t))ur(t).

(4-1)

Where xr(t) is the state vector containing all the states present in the linearisation. The sub-
script r indicates that the system is in its rotating frame of reference. The input vector is re-
ferred to as ur(t), and yr(t) is the output vector. MatricesAr(φ(t)), Br(φ(t)), Cr(φ(t)), Dr(φ(t))
are the state-, control-, output-, and feedthrough matrices respectively. The output matrix
can be partitioned into Cr(φ(t)) =

[
Cr1(φ(t)) Cr2(φ(t))

]
, with the dimensions of Cr1(φ(t))
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corresponding to the dynamics dependent on the first time derivative of the system states.
The dimensions of Cr2(φ(t)) correspond with all other states. This partitioning will become
useful in transforming the system to the non-rotating frame later on. This state-space sys-
tem contains many more states than the ones of interest for MBC-transformation analysis.
A script has been presented in [32]. This script, MBC3, performs the MBC-transformation
on state-space models where it should be indicated exactly what states should be MBC-
transformed. For the introduction of an azimuth offset in the MBC-transformation, the MBC3
script is modified. It presents the new non-rotating model as,

ẋnr(t) = Anr(φ(t))xnr(t) +Bnr(φ(t))unr(t)
ynr(t) = Cnr(φ(t))xnr(t) +Dnr(φ(t))unr(t).

(4-2)

Where the subscript nr now indicates that the change into the non-rotating frame of reference
has been made. The change in coordinates of the matrices is made by



Anr(φ(t)) =
[
T̂M 0
0 T̂M

]Ar
 T̂θ 0
φ̇

˙̂
Tθ T̂θ

−
 φ̇

˙̂
Tθ 0

φ̇2 ¨̂
Tθ + φ̈

˙̂
Tθ 2φ̇ ˙̂

Tθ


Bnr(φ(t)) =

[
T̂M 0
0 T̂M

]
BrT̂u

Cnr(φ(t)) = T̂y
[
Cr1 T̂θ + φ̇Cr2

˙̂
Tθ Cr2 T̂θ

]
,

Dnr(φ(t)) = T̂yDrT̂u.

(4-3)

Here all capital letters are matrices which are all dependent on φ(t). The argument is omitted
to keep the transformation clear to the reader. Furthermore, it can be said that φ̇(t) = ω0,
which is constant in the considered case, and φ̈(t) = 0, because of the consideration that the
above-rated regime is considered.

The transformation matrices indicated by the T̂ are relatable to the classical MBC-transformation
as described in Chapter 2. To be more specific, T̂M =

[
Iñ 0
0 T̃M

]
. Where xr ∈ Rñ+3 is parti-

tioned such that the last three states of xr(t) indicate the states which are to be used in the
MBC-transformation (in this case, the 3 out of plane bending moments of the blades). The
same argument can be made for T̂θ =

[
Iñ 0
0 T̃θ

]
. Because the MBC-transformation matrices

are dependent in their argument on φ(t), the time-derivative of T̂θ(φ(t)) is derived using the
chain rule. In mathematical terms this is

d

dt

(
T̂θ(φ(t))

)
= ∂T̂θ

∂φ︸︷︷︸
˙̂
Tθ:=

∂φ

∂t
= ˙̂
Tθφ̇.

By the same idea, the second derivative ¨̂
Tθ := ∂2T̂θ

∂φ2 . Lastly, the matrices T̂u =
[
Im̃ 0
0 T̃θ

]
(, where

ur ∈ Rm̃+3), and T̂y =
[
Ip̃ 0
0 T̃M

]
(, where yr ∈ Rp̃+3).
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As this thesis focusses on the effects of decoupling due to the introduction of an offset in the
MBC-transformation it is important to note that the introduction of a constant offset does not
change anything the described derivation. This is due to the fact that the offset is introduced
as a constant addition in φ(t). This means that it drops out for d

dtφ(t), which preserves the
transformation described in Eq. (4-3). For a full derivation of the MBC-transformation for
state-space systems, the interested reader is referred to [32].

4-4-2 MBC-transformation on the NREL 5-MW Turbine

Now that the full 29th order system can be transformed by the MBC-transformation, it can be
implemented on the obtained linearisations of the NREL 5-MW turbine described in Chapter
4-3. As this system has many more inputs and outputs than are needed for IPC, only the
relevant dynamics are used. This means that the interaction between yaw- and tilt-moments
and pitch angles are extracted from the MBC-transformed models. These yaw- and tilt- dy-
namics are not present in the original models. This results in Figure 4-2. In this case the
MBC-transformation is performed without an offset present to set the baseline.

Figure 4-2: Bode magnitude plots of the MBC-transformed NREL 5-MW turbine linearisations
(MBC-transformation of Figure 4-1). No azimuth offset (ψ = 0◦) is present in the model. The
green dashed line indicates the rotational speed of the turbine. The orange plots indicate the
diagonal terms, whereas the blue plots show the interplay between yaw and tilt.

It is interesting to see that the model periodicity in Figure 4-2 is considerably reduced in the
low-frequency region. This is a consequence of the change from a rotating frame of reference
to a non-rotating frame of reference.
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4-4-3 Introduction of an offset

As from Figure 4-2 it seems that significant coupling exists, it is interesting to see if this
coupling can be reduced by the introduction of an azimuth offset in the MBC-transformation.
For this section only two subplots of Figure 4-2 will be used. The first is θtilt(s) → Mtilt(s),
which will be referred to as P11(s), and the second one is θyaw(s) → Mtilt(s), which will be
referred to as P12(s). This is done because the other two subplots are approximately equal
to P11(s) and P12(s) for the low-frequency region.

Because the interest lays in the fact that the (low-frequency) magnitude of P12(s) is desired
to be as close to zero as possible, it is interesting to see what the effect of different offsets
are on this part of the model. This is set out in Figure 4-3. A significant drop in the lower
frequency region can be seen when an offset of ψ = 19◦ is introduced. The spread between the
different models is quite apparent however. A reason why this might happen is that because
even for a first order model the choice of the optimal offset seemed to have a polynomial or
exponential decay once it was not chosen perfectly (as can be seen in Figure 3-6). This in
turn would mean that each separate model would need its own offset.

Another interesting thing is that the dynamics present between 1 and ∼ 15 rad/s. also seem
to be affected by the offset. Which seems to hit a resonance peak at ψ ≈ 45◦ and subsequently
die down when ψ increases further. Where, at ψ = 90◦ these dynamics seem to be mitigated
altogether.

Now that it is known what happens to P12(s) it is also needed to see the effects of the offset
on the P11(s). The plots of P11(s) are set out in Figure 4-4. Several important things happen
in this plot.

Firstly, there seems to be a minor increase in gain for ψ = 19◦ as opposed to ψ = 0◦. This
is also what happened for a first order model in Chapter 3-3. The second interesting thing
about the offset of 19◦ is that the dynamics of P11(s) in the region between 2 and ∼ 10 rad/s.
is smoothed out. Whereas in this frequency region with an offset of ψ = 45◦ it again shows
a resonance peak.

Another thing that corresponds to the findings of Chapter 3 is that as the offset increases to
higher values (up until 90◦) the coupling slowly starts to invert. This can be seen by the fact
that the DC-gain of the ψ = 90◦ plot of Figure 4-3 is significantly higher than the gain of the
ψ = 90◦ plot of Figure 4-4.

4-4-4 Definition of decoupling

Up until now, the way that decoupling was checked for, was by checking if the DC-gain of
the off-diagonal terms of P (s) would be as low as possible. In the linearisation of the NREL
5-MW turbine it has been hard to calculate an exact DC-gain. That is why it is important
to define the ideal decoupling due to the introduction of an azimuth offset angle.
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Figure 4-3: Bode magnitude plots of the MBC-transformed NREL 5-MW turbine linearisations
(MBC-transformation of Figure 4-1). Only the off-diagonal model P12(s) is plotted for different
offsets ψ ∈ {0◦, 19◦, 45◦, 90◦}. For ψ = 19◦ significant lower gains are observed in the frequency
region at and below ω0, whereas for ψ = 90◦ the gain is even increased in this region.

The low-frequency dynamics are still an important aspect to consider, because these indicate
the amount of coupling in the parts where control is most effective. If the azimuth offset is
changed, P12(s)’s most significant change with respect to the low-frequency domain, is in the
region from about 0.1 rad/s. to about 1 rad/s. This can be seen in Figure 4-3 for the offset
ψ = 19◦.

It is also apparent in previous plots that the gain of the 36 different linear approximations
vary significantly in various regions. In order to take this into account with the definition of
decoupling an averaging amount of the different linearisations is desired. At this point the
superscript i in P i12(s) indicates which of the 36 different linearisations is used.

A way to combine the above noted observations in the definition of ideal decoupling, is to
consider the average off-diagonal magnitude in the region from 0.1 to 1 rad/s. As this is
all relative, the absolute magnitude is not necessary and a normalized magnitude gives an
appropriate indication of decoupling.

In mathematical terms this translates to
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Figure 4-4: Bode magnitude plots of the MBC-transformed NREL 5-MW turbine linearisations
(MBC-transformation of Figure 4-1). Only the off-diagonal model P11(s) is plotted for different
offsets ψ ∈ {0◦, 19◦, 45◦, 90◦}. There does not seem a lot of difference in the low-frequency
region for the offsets ψ = 0◦, 19◦, 45◦, but for ψ = 90◦ the gain decrease is significant.

η(ψ) := 1
nlin

nlin∑
i=1

1
ωmax − ωmin

∫ ωmax

ωmin
P i12(jω, ψ)dω. (4-4)

Where nlin = 36 is the amount of linear models, and ωmin and ωmax signify the minimum and
maximum frequency between which the decoupling is desired. In this case ωmin = 0.1, ωmax =
1. To normalize Eq. (4-4), the infinity norm is used. This means ||η(ψ)||∞ = maxψ η(ψ). This
means the ideal ψ5MW for decoupling the linearized NREL 5-MW turbine model is defined as

ψ5MW := arg min
ψ

η(ψ)
||η(ψ)||∞

. (4-5)

Now that the mathematical framework is set out, it helps in the clarification to plot the result.
In Figure 4-5, η(ψ)/||η(ψ)||∞ is plotted for different values of ψ. The green line indicates the
ψ-value for which the minimum is found. Now that is clear that the ideal decoupling according
to the definition of Eq. (4-5) is found to be ψ5MW = 19◦ the following step is to see whether
this can be linked to the results obtained in the previous chapters.
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Figure 4-5: A plot of the minimization function of Eq. (4-5) is plotted against ψ. The green
dashed line indicates the minimum value found for ψ5MW = 19◦.

4-5 First-order model approximation of the NREL 5-MW Turbine

As discussed earlier, it is interesting to see if the complexity of the higher-order linearized
model can be approximated by a simplified model to provide a faster way of finding the ideal
offset for the MBC-transformation. The simplified model will be assumed to be a first-order
model. This would amount to finding first-order linear models which correspond roughly to
the models of Figure 4-1.

Equal Coupling Blade-Dynamic Model Structure

For this approximation a certain blade-dynamics model structures should be chosen. In
Chapter 4-3 several model structures have been discussed and why it might be relevant to
consider them. In the case of a first order approximation of every of the 9 models the most
important consideration is the gain and the time constant frequency. The approximation
which approximates the gains and the breaking point as well as possible can be seen in
Figure 4-6. This has been an heuristic way of tuning the model.

The approximation of the diagonal models are indicated by the black solid line and are all
the same. The off-diagonal models are indicated by the black dashed line and are also all
the same. As this fits the blade-dynamic model structure well over all different models, this
type of blade-dynamic model is considered (as explained in Chapter 2-4-2). The reason why
the more complex model structure as discussed in 2-4-3 is not used is because the gains and
breaking points correspond very well in all the off-diagonal models. The slight difference this
would make would not weigh up against the severe increase in model complexity. The transfer
function expressions in Figure 4-6 are described as
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Figure 4-6: Bode magnitude plots NREL 5-MW turbine linearisations with first-order model
approximations. The green dashed line indicates the rotational speed of the turbine. The orange
plots indicate the diagonal terms, whereas the blue plots show the interplay between different
blades. The fits on the diagonal are indicated by the black solid line and are all the same, and
are decribed by gb(s) = 5.27·104

0.2353s+1 . The fits on the off-diagonal are indicated by the black dashed
line and are all the same as well, and defined by gc(s) = 1.58·104

0.7692s+1 .

gb(s) = 5.27·104

0.2353s+1 ,

gc(s) = 1.58·104

0.7692s+1 ,
(4-6)

corresponding to the notation of Eq. (2-22). Where τ of gb(s) (0.2353) is chosen such that
the breaking point is at ωgb = 4.25 rad/s., and τ for gc(s) (0.7692) the breaking point is at
ωgc = 1.3 rad/s. These values are obtained in a heuristic fashion in order to make a proper
fit of Figure 4-1.

It is now possible to continue with the model of Eq. (4-6) and put it through the MBC-
transformation to obtain a model described by Eq. (2-23). Because the interest currently is if
the obtained model has the same approximate decoupling azimuth offset as the NREL 5-MW
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turbine an overview is presented with the discovered maximum decoupling. This overview is
presented in Figure 4-7, where ψ is varied from 0◦ to 90◦.

The lowest point of the approximations is indicated by the black dashed line, which is found
for ψ = 19◦. Two important characteristics can be seen in the variation of the linear model
structure. First, this value corresponds with the analytical form of Eq. (3-20). Secondly, the
ideal differentiator which is found for a fully decoupled blade-dynamic model structure (which
could be seen in Figure 3-3) is not possible anymore.

The ideal decoupling value of ψ = 19◦ of the 1st order model approximation corresponds
with the value found for the linearisation of the NREL 5-MW turbine. This gives a good
indication that the ideal offset for decoupling for the linearisation of a turbine can be found
by approximating it with a first order approximation.

Figure 4-7: The MBC-transformed first-order linear approximations of the NREL 5-MW turbine.
The black dashed line indicates the maximum decoupling achieved (ψ = 19◦), the blue lines
indicate the different offset values (ψ ∈ [0◦, 90◦]), and the red line indicates the baseline (ψ = 0◦).

Figure 4-2 and Figure 4-7 are both plots of MBC-transformed systems. Because the first
order model is used as an approximation of the higher-order model for finding the offset, it is
also interesting to see how the MBC-transformed dynamics relate to each other. This is seen
in Figure 4-8 for an offset of ψ = 19◦.
Figure 4-8 shows that there is a gain difference of about 2 - 3dB. on the diagonal. This is
probably due to the fact that the model of Eq. (4-6) is found by manual tuning and is very
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Figure 4-8: Comparing the MBC-transformation of NREL 5-MW turbine with a first-order ap-
proximation (with blade-dynamic model structure Gbc(s)) with an offset of ψ = 19◦.

sensitive to small changes. The roll-off in high frequencies does correspond with the lineari-
sation of the NREL 5-MW turbine. The off-diagonal shows a larger variation, but this is also
due to the effect that the 36 different models seem to be very sensitive to the offset chosen
and because each separate model will have its own specific ideal decouple offset.

This variation in dynamics of 36 different 29th order models can never be approximated by
a first-order model. But the first-order model does serve as a good approximation in finding
the ideal offset of the higher order complex model.

Diagonal Blade-Dynamic Model Structure

The literature generally makes use of the fully decoupled blade-dynamic model structure as
described in Eq. (2-17). In the previous section it has been argued that a more appropriate
choice is the choice of a blade-dynamic model structure of the form Eq. (2-22). This has been
applied as an approximation to the NREL 5-MW turbine and found the same offset.

It is also interesting to see how much it differs from the blade-dynamic model structure
classically applied to the wind turbine. This would mean that the approximation made in
Figure 4-6 changes and the off-diagonal terms (the black dashed lines) are removed. This
would only remain the black solid lines described by gb(s) = 5.27·104

0.2353s+1 in Eq. (4-6). If this
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model is transformed to the non-rotating frame, and the ideal offset is found it amounts to
an offset of ψd = tan−1(ω0τ) = 16.4◦. In Figure 4-9 the same plot as Figure 4-8 is made, but
with an offset of ψ = 16.4◦ and the Gb(s) model structure applied to the approximation.

Figure 4-9: Comparing the MBC-transformation of NREL 5-MW turbine with a first order
approximation (with blade-dynamic model structure Gb(s)) with an offset of ψ = 16.4◦.

Figure 4-9 shows that an ideal differentiator in the low frequency-region on the off-diagonal
shows up in the approximation. This is also what was deduced that would happen in Chapter
3-2. Although it does not happen to the higher-order linearisations. The diagonal model seems
to correspond better in terms of gains compared to Figure 4-8. To make the comparison a
bit easier to do, P11(s) and P12(s) of Figure 4-8 and of Figure 4-9 are plotted together in
Figure 4-10.

In Figure 4-10 it becomes clear that indeed the gain of P11(s) is better for the case of the
Gb(s) model approximation. The difference in the low-frequency gain of the P12(s) seem to
agree with the Gbc(s) model structure a bit better, because the linearisation of the NREL
5-MW turbine does not have an ideal differentiator in their low-frequency domain, whereas
the decoupled blade-dynamic model does. The difference in dynamics seen in the P12(s) plots
of Figure 4-10 also indicate that the offset of ψ = 19◦ is indeed a better value to decouple the
system. This agrees with the results found in Figure 4-5.
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Figure 4-10: Comparing the MBC-transformation of NREL 5-MW turbine with different first-
order approximations. Specifically the ones done in Figure 4-8 and Figure 4-9.

4-6 Conclusion

This Chapter has extended the theoretical basis set out of the previous Chapters to the actual
application on a high-fidelity wind turbine model. The application of the MBC-transformation
to this higher-order model could be done in a relatively fast fashion. The blade-dynamics of
the higher order model correspond in different ways to the different blade-dynamics models
earlier considered.

The increased complexity of the higher-order model meant that a metric had to be defined
by which decoupling could be quantified. This was due to the fact that the lower-frequency
dynamics of the linearisations of the non-linear model do not have a easily determinable DC-
gain. After the definition of the new decoupling metric, an ideal offset was found by varying
the offset from ψ = 0◦ to ψ = 90◦.

The blade-dynamics model (specifically Gbc(s)) allowed for the approximation of the high-
order wind turbine model with a first-order model. Although the approximation did not
produce an accurate picture of the MBC-transformed system dynamics, it did provide an
opportunity to find a fast approximation of the ideal azimuth offset needed in the MBC-
transformation to decouple the yaw and tilt moments.

Finally, the Gbc(s) model approximation was compared with a Gb(s) model approximation,
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because the Gb(s) is the model structure classically considered in the literature. The Gb(s)
model approximation had a 2.6◦ difference from the ideal offset. This can in turn be compared
to the decrease in decoupling compared to the ideal decoupling as plotted in Figure 4-5. Here
it is found that η(16.4)

η(19) ≈ 1.44. This means that even though the deviation from the ideal
offset is just 2.6◦, the increase in gain compared to the ideal decoupling is almost 44%. This
justifies the use of the small increase in complexity of the Gbc(s) model structure compared
to the Gb(s) model structure.
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Chapter 5

Identification, Simulation and Analysis

Everything up to this point has focussed on analysing linear models to get a good grasp on
the properties of the introduction of an offset in the MBC-transformation. In this chapter,
the NREL 5-MW turbine’s characteristics in the non-linear domain will be used. This is done
to see if the ideal offset as found in the previous chapter translates into the non-linear domain
and what the consequences are for applying control on the turbine using the offset.

The first part of this chapter identifies frequency response estimates of MBC-transformed
dynamics of the non-linear wind turbine. After these are analysed, the full non-linear system
is simulated with and without the offset to see what effect this has the system. Subsequently,
the sensitivity function of the system is set up to relate this to the results of the simulation.
Finally, a conclusion is presented.

5-1 Identification

In this section the interest is in identifying the MBC-transformed dynamics of the system.
This provides the possibility of comparing the effect of the offset on the linearised model (of
for example Figure 4-2) with the true dynamics.

This identification for a non-parametric spectral model is done on the NREL 5-MW turbine
which is implemented in an open-loop setup as can be seen in Figure 5-1. The non-linear
NREL 5-MW turbine model is denoted by the "WT" block. The mean pitch angle θ̄ and
torque τe are determined from controllers based on the operating conditions. The identifi-
cation is performed (θyaw(t), θtilt(t)) → (Myaw(t), Mtilt(t)) where it is applied for the offset
range ψ ∈ [0◦, 90◦].

The system is excited with two independent Random Binary Signals (RBS) of different seeds
with an amplitude of 1 deg and clock period of Nc = 1 [33]. During the first identification
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it was found that the unfiltered excitation signals produced faulty simulation results. As a
consequence a bandpass filter B was implemented at cut-off frequencies 10−3 rad/s and 102

rad/s. The sampling frequency was set to ωs = 125Hz, and the total simulation time was
2200s. In this case the first 200s were discarded to get rid of the transient effects from the data.
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Figure 5-1: The model being considered for identification of a spectral model of the non-linear
NREL 5-MW turbine (the "WT" block in the figure) model. The wind turbine is controlled in an
open-loop set-up by steady-state collective pitch angle θ̄, and generator torque τe. The system
is excited by Random Binary Signals (RBS) which are fed through a bandpass filter B to result
in two distinct excitation angles θyaw(t), θtilt(t). This identification is performed for different
offset ψ. The identification is performed from (θyaw(t), θtilt(t)) → (Myaw(t), Mtilt(t)). The
identification is performed at a wind-speed of 25m/s.

For the obtained data Power Spectral Densities (PSDs) were calculated. A Hamming window
was applied to reduce spectral leakage. Furthermore, frequency averaging was applied to re-
duce variance effects of the random signals (a frequency which might not have been actuated
as much as other frequencies). This was done with the help of the Predictor-Based-Subspace-
IDentification (PBSID) toolbox [34]. The PSDs were calculated for the non-rotating tilt-
and yaw-pitch angles to the tilt- and yaw-moments. The results of this identification for the
offsets ψ ∈ {0◦, 14◦, 19◦, 22◦} are shown in Figure 5-2. The top plot relates to P11(s), and the
bottom plot relates to P12(s) in previous chapters. The ideal decoupling offset was defined
as the offset which minimises the off-diagonal components in the low-frequency region. It is
clear from Figure 5-2 that this happens for ψ = 19◦ which corresponds nicely with the results
found in Chapter 4.

Furthermore, from Figure 5-2 it becomes clear that for frequencies larger than ∼ 5 rad/s the
effect of the offset is negligible. Or on the contrary, even has a deteriorating effect on the
decoupling. This agrees with the results found, even for first order systems.

5-2 Simulation

Now that the non-linear (de)coupling dynamics are identified, the goal is to see what effect
this has on simulations of the full system. This section first sets up the simulation with pre-
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Figure 5-2: Results of the non-linear spectral identification of the set-up of Figure 5-1 for offsets
ψ ∈ {0◦, 14◦, 19◦, 22◦}. Where the cross-coupling was miminized for an offset ψ = 19◦. In the
high frequency region the difference is reduced and the ideal decoupling there is at 0◦.

liminary load spectrum results, after which the direct comparison is made between the effect
of the offset on the results.

This simulation was set up using the NREL 5-MW turbine in a closed-loop setting using a
MATLAB Simulink compiled version of FAST. The IPC considered is implemented as shown
in Figure 5-3. Here, the NREL 5-MW block is the turbine model described above, and the
IPC is formed by two fully decoupled integrators with integrator gains Ktilt, Kyaw acting on
the tilt- and yaw-moments respectively. This type of setup was chosen, because in literature
the initial controllers for IPC are often basic integrator action with the assumption that the
system is fully decoupled [6, 18]. For this specific setup the values Kyaw = Ktilt = 1 · 10−8 as
a baseline case.

The system in the form of Figure 5-3 is simulated for a wind speed of 25 m/s and for a
ψ = 0◦ as well as a simulation with ψ = 19◦. Mean pitch and torque control values, as in
Figure 5-1, are implemented in parallel with the IPC. As was seen throughout the thesis, the
incorporation of an offset in the MBC-transformation has the effect of changing the gains of
the system. For a controlled system, this has as a consequence that the cross-over frequency
also shifts. In the case of ψ = 0◦, the integrator gains were chosen as Kyaw = Ktilt = 1 · 10−8.
To compensate for the gain change, for ψ = 19◦ the cross-over frequency is kept the same if
the integrator gains are slightly reduced to Kyaw = Ktilt = 0.95 · 10−8.

The results of these simulations with respect to the OoP bending moments can be seen in
Figure 5-4a. Here the PSD [33] is plotted against the frequencies. The baseline of when IPC
is fully disabled shows to have a big peak in its fatigue loads at a 1P (or ω0) frequency. This
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Figure 5-3: The setup used for running the simulation. The NREL 5-MW block is a
MATLAB/Simulink compiled version of the NREL 5-MW turbine combined with FAST. This
simulation is run for ψ = 0◦ and ψ = 19◦. Kyaw = Ktilt = 1 · 10−8 for ψ = 0◦, and
Kyaw = Ktilt = 0.95 · 10−8 for ψ = 19◦.

shows the usefulness of IPC. This reduction in OoP bending moments through IPC comes at
the cost of extra actuation of the blades, as can be seen in Figure 5-4b. This has also been
suggested in the literature [13].

(a) PSD of the OoP bending moments. A sig-
nificant reduction can be observed when IPC is
present.

(b) PSD of the pitch actuation. A significant
increase in pitch actuation is observed when IPC
is present.

Figure 5-4: Power Spectral Densities (PSD)s of OoP bending moments and the pitch actuation
of the blades. The PSDs are plotted for when IPC is turned off, for IPC with no offset in the
MBC-transformation present and for an offset of ψ = 19◦ in the MBC-transformation. The
difference between "No IPC" and the rest is significant. The difference between ψ = 0◦ and
ψ = 19◦ is hard to read out from the plots.

In Figure 5-4 it is hard to distinguish the exact differences between ψ = 0◦ and ψ = 19◦. To
see exact differences between these simulations the PBSID toolbox is once again used. Here
the ratio between the cross-spectral density with the PSD is calculated to obtain a frequency
domain estimate of the transfer function [34]. This means that for the frequency dependent
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OoP bending moments of the blades for no offset Mψ=0◦(s) can be related to the frequency
dependent OoP bending moments of an offset of ψ = 19◦, or Mψ=19◦(s). This would result
in a frequency domain estimate of the transfer function describing Mψ=19◦ (s)

Mψ=0◦ (s) .

The same can be said for the pitching actuation of the blades. The frequency dependent
pitching of the blades for no offset Θψ=0◦(s) can be related to the frequency dependent pitch-
ing of the blades for an offset of ψ = 19◦, or Θψ=19◦(s). This would result in a frequency
domain estimate of the transfer function describing Θψ=19◦ (s)

Θψ=0◦ (s) .

The frequency domain estimates of these transfer functions are given by Figure 5-5. In Fig-
ure 5-5a, this is done for the OoP bending moments. There seems to be an increase of the
bending moments in the low frequency region as well as a significant drop just around 1-1.3
rad/s, which represents the 1P frequency. The transient in the high frequency region subse-
quently seems to go to 0dB. Which means that the loads experienced in the high-frequency
region with and without offset is the same.

For the pitch actuation the results seem to be more significant. In Figure 5-5b there seems to
be a slight increase in pitch actuation in region of 0.4-1 rad/s. However, at the same time, the
pitch actuation of the offset ψ = 19◦ attenuates and stays below the pitch actuation compared
to when no offset is present in the high-frequency region.

(a) A frequency domain estimate of the transfer
function Mψ=19◦ (s)

Mψ=0◦ (s) .
(b) A frequency domain estimate of the transfer
function Θψ=19◦ (s)

Θψ=0◦ (s) .

Figure 5-5: Frequency domain estimates of the transfer function relating the OoP bending
moments and the pitch actuation signals. These signals relate the difference between an offset in
the MBC-transformation of ψ = 0◦ with ψ = 19◦. Both plots seem to indicate an amplification
peak around ω ≈ 0.65 rad/s. This is subsequently followed by a more significant attenuation of
both estimates. The bending moments return to 0dB in the high-frequency region, whereas the
pitch actuation remains lower. Which implies that with less pitch actuation the same loads are
observed.

Combining these results, it can be concluded that in the high-frequency region with less pitch
actuation the same load spectrum is present for the offset ψ = 19◦ as opposed to the case
when no offset is present. In the next section an extensive analysis will be given on the
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performance of the controller on the system, which helps to interpret the obtained results.

5-3 Sensitivity analysis

In previous chapters several reasons for introducing an offset in the MBC-transformation have
been set out. The reasons were mainly related to the cross-coupling of the MBC-transformed
dynamics. These coupled dynamics were reduced to make easier control synthesis possible,
because a decoupled system allows for control synthesis of separate SISO control loops.

In the previous section for the first time in this thesis, control has been applied on the system.
The results seem to indicate that the decoupling has an effect on the pitch and load dynamics
of the system. However, no analysis has been performed up until this point on the effect of
the offset on the controlled system.

5-3-1 Sensitivity function

A classical method to assess the performance of a controller is by analysing the sensitivity
function of the system. For a closed loop system the sensitivity function shows several. This
includes among other things how well the system is able to attenuate disturbances, and the
sensitivity of the closed-loop transfer function to the relative plant model error [28].

The classical (negative) feedback control loop model is given in Figure 5-6. This control loop
aims for the output y to track a reference signal r. The error term e = r − y is provided to
the controller K. The controller provides an input signal u. Input disturbance d2 is added to
the input signal u. The addition of these two signals is then fed into the plant G. An output
disturbance signal d1 is added to the output of the plant to result in the final output signal
y.

K G
u

d1d2
r e y+

− +

+

+

+

Figure 5-6: Feedback control loop for tracking a reference signal r. The output y is subtracted
from the reference of r. This results in the error signal e. The error signal is subsequently the
input for the controller K, which provides an input signal u into the plan G. There are two
disturbance signals, d1 and d2 which work on the output and the input respectively.

The sensitivity function for this classic control loop is defined as,

S = (I +GK)−1 =
{

y
d1
, for r = d2 = 0,

e
r , for d1 = d2 = 0.

(5-1)
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Here it becomes clear why the sensitivity function relates to disturbance rejection. It directly
gives a measure of how the error relates to the reference signal, or how the output disturbance
relates itself to the output signal. This is valid for both SISO and MIMO systems.

For MIMO systems, the sensitivity function can give information on the effectiveness of control
through the ratio ||e||2||r||2 (or ||y||2||d1||2 ). It can be derived that

¯
σ(S(jω)) ≤ ||e(ω)||2

||r(ω)||2
≤ σ̄(S(jω)). (5-2)

Where
¯
σ(S(jω)) indicates the smallest singular value, and σ̄(S(jω)) the largest singular value

of S(jω). The singular values correspond to the directions corresponding with the smallest
and the biggest gains of S(jω) [28].

The bandwidth for SISO systems is generally defined as the point where the sensitivity func-
tion S(jω) crosses −3dB (or 1/

√
2) from lower magnitudes. Colloquially this means that the

bandwidth is defined as the frequency up until which feedback control is effective. For MIMO
systems there is a so-called bandwidth region. This is the region between the frequencies
where

¯
σ(S) (the "best-case" direction) and σ̄(S) (the "worst-case" direction) crosses the −3dB.

Furthermore, the maximum and mimimum singular value of a system denote the maximum
and minimum gain of the system in certain directions. These directions can in turn be de-
termined by looking at matrices obtained by the Singular Value Decomposition (SVD) of the
system [28].

All the theory discussed can now be applied on the system under consideration to see what
effect the offset in the MBC-transformation has on the controlled system.

5-3-2 Application on IPC

In the previous section the classic (feedback) control structure (as shown in Figure 5-6) was
used to derive the sensitivity function with its respective properties. The model of Figure 2-3
can turned into the form of Figure 5-6. In the case of IPC there is positive feedback, and the
controller consists of two separate integrators. If all this is combined, Figure 5-7 is obtained.
Here r is set to zero, because the loads are supposed to be minimised. d1 and d2 indicate any
disturbances acting on the in- and output respectively.

In the case of positive feedback, the sensitivity function changes from the form presented
Eq. (5-1) into S = (I −GK)−1. This sign change does not change any of the other properties
discussed earlier. The plant G is now the transfer function from the tilt- and yaw-moments
to the tilt- and yaw-pitch angles, which has been referred to as P (s) throughout the thesis.
The IPC used in the simulations were two disconnected integrators. As a consequence, the
sensitivity function can be denoted as
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Figure 5-7: Combining the classic feedback control model of Figure 5-6 with the considered IPC
loop of Figure 2-3. The feedback is positive in the case of IPC.

S(s) =
[
1− Ktilt

s P11(s) −P12(s)
−P21(s) 1− Kyaw

s P22(s)

]−1

. (5-3)

In this case the wind turbine under consideration is the NREL 5-MW turbine. Once again
the linearisation of Chapter 4-3 is used. This time a method of state-space model averaging is
used. The method of state-space averaging is a summation of all 36 different A is made, after
which each value is divided by 36. This same is done for the B, C, D matrices. Even though
this method is not without its limitations [35], it suffices for the present analysis. It allows
a combination with the theory of Chapter 4-4-1, and is also present in the MBC3 script of
[32]. Which means that the 36 different linearisations are transformed into one single system
approximating the average of the 36 linearisations. This provides a 29th order description
of P (s) which can be substituted into Eq. (5-3). Together with the controllers applied in
Chapter 5-2 (meaning Kyaw = Ktilt = 1 · 10−8) the sensitivity function can be fully set up.
(More accurate methods for averaging have recently been proposed and might prove for more
accurate analysis [35].)

This allows for the comparison of the effect of the offset on the sensitivity function. In dif-
ferent sections of this thesis the ideal offset was found to be ψ = 19◦. When an offset is
introduced, this changes the gain of the open-loop system. As a consequence the gains of
the integrators are scaled appropriately to guarantee that the cross-over frequency of the
open-loop dynamics remains on the same frequency. In case of the sensitivity function, the
comparison between these values can be made. In Figure 5-8 the minimum and maximum
singular values of Eq. (5-3) are plotted.

In Figure 5-8 the sensitivity function of the plant without an offset has a significant spread.
This results in a bandwidth region (of ωb ∈ [0.38, 0.65]). In the case the offset is chosen to be
ψ = 19◦ there is almost no difference between the minimum and maximimum singular values.
This results in a single bandwidth frequency of ωb = 0.47 rad/s.

As described earlier, the mimimum and maximum singular values specify the extreme gains
of a system. In the case they (nearly) coincide it has as a consequence that no matter what
input direction is chosen, the gain of the system will be the same. In the case of the sensitivity
function this means that no matter the output direction of the plant, control will always be
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Figure 5-8: The sensitivity function of the average linearised NREL 5-MW turbine is plotted for
ψ ∈ {0◦, 19◦}. The green line signifies the line of −3dB (bandwidth). For ψ = 0◦ a bandwidth
between ω = 0.38 rad/s and ω = 0.65 rad/s is found. For ψ = 19◦ the bandwidth coincides on
the frequency ω = 0.47 rad/s.

just as effective. Or in other words, that no matter the output direction, the attenuation of
the error as a result of IPC is the same.

The obtained result can now be related to the RGA. If the RGA shows that the system
is sufficiently decoupled, this can be combined with the effect that the sensitivity function
properties to justify certain control properties. The RGA of the system at ω = 0.47 rad/s is
calculated to be

|RGA(Pψ=0◦(j0.47))| =
[
0.9052 0.0948
0.0948 0.9052

]
, |RGA(Pψ=19◦(j0.47))| =

[
0.9997 0.0003
0.0003 0.9997

]
.

(5-4)
Here it should be noted that the norm is justified because all the real values of the RGA are
positive and no negative coupling is therefore present in the RGA. In Eq. (5-4) it is clear
that the system for ψ = 19◦ is as good as decoupled compared to when the offset is not present.

Technically, the RGA for the case that no offset is present should be calculated at the fre-
quencies ω = 0.38 rad/s and ω = 0.65. If this is done, the value of the RGA deviates less
than 1% from the values found in Eq. (5-4). Therefore, the value of ω = 0.47 rad/s was chosen.

Master of Science Thesis Gianmarco Emilio Disario



66 Identification, Simulation and Analysis

Furthermore, to make conclusions for the entire region up until ωb = 0.47 rad/s, the RGA
should be known up until that value. A property of the RGA is that the columns and rows
sum up two 1 [28]. For this reason it is sufficient for a 2× 2 system to look at one row, there-
fore in Figure 5-9 the first row of the RGA of an offset of ψ = 19◦ is plotted. In Figure 5-9 it
is visible that near perfect decoupling is achieved up until around ω ≈ 3.5 rad/s.

Figure 5-9: The first row of the RGA of the average NREL 5-MW turbine with an offset of
ψ = 19◦. Here it is seen that the system is fully decoupled up until around ω ≈ 3.5 rad/s.
In the low-frequency region it is also observable that the imaginary component is a negligible
component, whereas when the decoupling breaks down it becomes also more prevalent.

As a small side note, the RGA also provides the possibility to analyse the high-frequency
coupling as well. It has been noticed that the RGA reaches its asymptote just under ω = 100
rad/s. Therefore, this frequency is taken as the high-frequency estimation. In Eq. (5-5) the
decoupling is seen as happening better for an offset of ψ = 0◦ as opposed to ψ = 19◦. This
corresponds to the results found for a first-order, as was found in Eq. (3-7).

|RGA(Pψ=0◦(j100))| =
[
1 0
0 1

]
, |RGA(Pψ=19◦(j100))| =

[
0.9103 0.0911
0.0911 0.9103

]
(5-5)

5-3-3 Effects on the system

The RGA of the system indicates decoupling of the system at least until the bandwidth fre-
quency. This means that the control that is applied to result in θtilt is dominated by Mtilt.
The same thing can be said for the yaw-component. As a consequence, choosing a diagonal
controller is justified (as was done in Chapter 5-2 and in Figure 5-7).
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This diagonal controller chosen with the control gains to be Ktilt = Kyaw(= 0.95 · 10−8) re-
sulted in a sensitivity function where nearly

¯
σ(S(jω)) ≈ σ̄(S(jω)) for ω ≤ ωb. Consequently,

the controller applied on the tilt-component is the exact same controller which is applied on
the yaw-component. These components are (almost fully) decoupled. The fact that these two
controllers result in the exact same sensitivity function for ω ≤ ωb seems to indicate that the
tilt- and yaw- dynamics in the low frequency region are equal to each other.

This corroborates the approximation made in Figure 4-6. Because it was based on the blade-
dynamic model of Eq. (2-22), which resulted in Eq. (2-23), which had on the diagonal the
same dynamic model for P11(s) and P22(s). As a consequence this seems to be true for low
frequencies up until about ω = 0.8 rad/s (as can be seen in Figure 5-8). This indicates that
the bandwidth could be increased to a higher frequency by changing the controller. Further-
more, the fact that the RGA in Figure 5-9 indicates that the system is (as good as) decoupled
until about 3.5 rad/s could mean that with more advanced controller synthesis an even higher
bandwidth than 0.8 rad/s is possible.

This can be related to the simulations performed in Chapter 5-2. The results seen in Fig-
ure 5-5b indicate that there is a reduction in pitch actuation in high frequencies for the basic
controller. This drop starts at a frequency of ω = 1 rad/s. This corresponds to the frequency
where the sensitivity function in Figure 5-8 crosses the 0dB line. This point in the sensitivity
function signifies where the error signal e or where the disturbance signal d1 starts being
amplified.

5-4 Conclusion

At the start of the chapter a spectral analysis of the non-linear MBC-transformed system has
been made to identify the effect of introducing an offset in the MBC-transformation. This
resulted in finding that the offset which decouples the non-linear system in the low-frequency
domain corresponded with the offset that decouples the system made by a first-order approx-
imation of the linearised dynamics.

Subsequently, a simulation was carried out by implementing a very basic decoupled controller
consisting of only an integrator to see if with the help of this controller the effects of the offset
could be seen. It does however seem to indicate that there is a decrease in pitch actuation
action in the high-frequency region.

In the final section an analysis of the sensitivity function is performed, together with an
evaluation of the RGA. These two finding do indeed seem to confirm the fact that the type
of (decoupled) control performed is justified for the offset of ψ = 19◦ whereas for the offset
ψ = 0◦ this is not straightforwardly justified. This section also showed that an increase in
bandwidth is possible by modifying the controller applied to the system.
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When relating the simulation results with the sensitivity function analysis it seems to show
that the actuation drop seems to correspond to the point where the sensitivity function crosses
the 0dB line. This means that from the point where the system starts to amplify the error
signal/output disturbances, the actuation is decreased for the system with ψ = 19◦, which is
a positive effect.

As the basic controller with the same integrator gains applied to the system has shown a
decrease in actuation signal in the high-frequency region a more careful controller synthesis
can prove to increase the usefulness of the offset even more. This is due to the fact that the
current controller just makes use of one of a big variety of loop shaping options. Furthermore,
the offset has presented the possibility to increasing the bandwidth of the controller as opposed
to the case where no offset is present.
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Chapter 6

Conclusion and Recommendations

In Chapter 1-2 the goal of this thesis was set out through stating the different problems cur-
rently encountered in the literature. The main problem was a lack of insight in the effects
of the offset in the MBC-transformation. This lack of insight was mainly due to the fact no
extensive analysis had been carried out.

The research performed has provided a variety of results which contribute in different ways to
an understanding of the introduction of an offset in the MBC-transformation. This chapter
discusses these results and in what way they contribute in acquiring a deeper understanding
of the effects of this offset. After the results are presented, several recommendations for future
research are proposed.

The conclusion is split up in two sections. First, the general conclusions made through
analytical analysis are set out, after which the results of the application on a high-order wind
turbine model are explained.

6-1 Analytical results

Several clarifications and results have come up during the analytical analysis of introducing
an offset in the MBC-transformation. Firstly, It has become clear why the offset is usually
applied in the inverse MBC-transformation. It is shown that it does not matter where it is
applied except for a sign change. What does matter however, is the choice of blade-dynamic
model structure. The initial assumption of a fully decoupled blade-dynamic model structure
is evaluated, and it is seen that the MBC-transformed system changes considerably when as-
suming different blade-dynamic model structures. Furthermore, it is shown that this changes
the value obtained of the ideal offset to decouple the MBC-transformed system. As a result,
it is very important to make a thorough assessment of the system before choosing the blade-
dynamic model structure.

Master of Science Thesis Gianmarco Emilio Disario



70 Conclusion and Recommendations

An important result is that for the most basic blade-dynamic model structure with a basic
linear model, it is impossible to decouple the system over the entire frequency region. This
result extends to more complex blade-dynamic model structures. Consequently, for the sys-
tem it should be clear in what frequency region decoupling is desired. Because the basic
MBC-transformation maps the 1P harmonics to 0P or the DC-gain of the system, decoupling
is desired in the low frequency region.

Another result is that the offset in the MBC-transformation can change the location of the
zeros of the elements of the MBC-transformed system. If the offset is chosen such that the
location of the zeros of the off-diagonal components of the MBC-transformed system are lo-
cated at low frequencies, the DC-gain of these off-diagonal components decreases, and as a
result the decoupling increases.

This is verified by determining the RGA of the system for different offsets. The RGA indeed
shows that the values of the offset which decouples the system correspond to the location which
places the zeros of the off-diagonals at the origin. The RGA furthermore shows that small
deviations from the ideal offset result in a polynomial/exponential decrease in decoupling, as
well as that the coupling can even invert by choosing certain values of the offset.

6-2 High-fidelity non-linear model results

With respect to the high-fidelity model, a number of results carry over from the analytical
case as well as new results have been found with respect to the introduction of an offset
in the MBC-transformation. One of these results is that the approximation of higher-order
linearised models is possible by first-order models. The ideal offset for decoupling the MBC-
transformed system for these first-order approximations corresponds with the higher-order
model. As a result, it allows for the possibility of using an analytic form to calculate the ideal
offset in a relatively fast fashion.

In the literature it has been stated that fully decoupled dynamics provide a valid blade-
dynamic model structure for IPC without deteriorating the performance of the controller all
that much [18]. This assumption is not valid. The dynamics of the pitching a specific blade
does have a non-negligible effect on the resulting moments of the other blades. In the case
these coupled dynamics are taken into account, it results in significantly better approxima-
tions of the ideal offset for the MBC-transformation. This is because a small deviation reduces
the performance of decoupling polynomially/exponentially in the higher-order linearisations.

A number of these results also carry over to the spectral estimates of the high-fidelity non-
linear model. The offset which decouples these spectral estimates is the same as the offset
which decouples the linearisations of high-fidelity non-linear model. Consequently, the offset
which decouples the spectral estimates can also be found with the first-order approximations
of these linearisations. Furthermore, small deviations from the ideal offset for the spectral
estimates also significantly decreases the decoupling. Which is also seen in the first-order
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model analysis of the MBC-transformation.

In the sensitivity analysis of a basic controller on the system it is found that a significant gain
difference exists (depending on the directionality of the input) for the case when no offset is
applied. This result signifies that choosing two exactly equal SISO controllers does not re-
sult in ideal performance. By introducing the offset, this dependency on the directionality of
the gain reduces significantly. This offset also decreases the peak of the sensitivity function,
whereby making the controller more robust and justifying the use of two controllers with
equal gains, resulting in similar sensitivity dynamics. The ideal offset which minimises the
gain difference of the sensitivity function, corresponds with the offset which decoupled the
tilt- and yaw-moments.

A reduction in pitch actuation in the high-frequency region is identified from non-linear
simulations. The frequency where this pitch actuation starts to be attenuated corresponds
with the frequency where the sensitivity function indicates that amplification of the error
signal and disturbances start to happen. This is an important result because increased pitch
actuation due to IPC can cause significant stresses on pitch actuators [13]. The introduction
of the offset in the MBC-transformation indicates that this can help alleviate high-frequency
pitch actuation without affecting the PSD of the loads in that frequency region.

6-3 Recommendations for future research

1. Data-driven approach to finding the ideal offset.
The method of finding the ideal offset for the wind turbine is currently done by setting
up a metric which is defined depending on the linear dynamics of the system. These lin-
ear dynamics were in turn found by the linearisation of a high-fidelity non-linear model,
which could be approximated with first-order models. This first-order approximation
was done in a heuristic fashion and showed promising results in finding the ideal offset
using lower-order parametrisable models. It is interesting to see if there is a more rigor-
ous way of approximating these linearisations such that the ideal offset can be identified
using a data-driven technique.

A second possibility is to extend this towards a method which is able to find the ideal
offset in a data-driven manner without the need of linearisations. Different data-driven
optimisation methods already exist, for example Extremum Seeking Control (ESC) has
proven itself a good contender in different applications of wind turbine control opti-
misation [36]. The definition of a suitable performance-/cost-function is important to
enable performance assessment of the the offset in a data-driven manner.

2. More advanced controller synthesis based on the decoupled tilt- and yaw-dynamics.
In this thesis a basic integrator controller with a fixed gain has been employed to
showcase the difference in performance for the offset. As the effect of the offset becomes
better understandable, it can be employed as the basis for controller synthesis. As a
result from the decoupling, the tilt-to-tilt and yaw-to-yaw dynamics would provide the
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main dynamics for controller design. This can increase the performance of the IPC as
opposed to the ones implemented in this thesis.

3. Analytic consequences of non-constant offsets.
Throughout the thesis, the assumption was made that a constant non-varying offset is
made of the form φθ(t) = ω0t+ ψ. In the analysis of the offset on the linearisations of
the high-fidelity non-linear model there were 36 different models present, all describing
the dynamics on different azimuth angles. During the analysis, the models reacted
differently to the same offset. This might indicate that making ψ dependent on the
azimuth angle could help in further decoupling over the entire rotating frame.

4. Varying the results over different wind speeds and under different wind conditions.
Currently, the non-linear simulation has only been run at wind speeds of 25m/s and
with one (type of) wind field. This has proven to be useful for an initial understanding,
but in the generalisation of the findings it is useful to vary the turbulent wind fields for
statistical reliability of the findings. Furthermore, as the wind speed varies it could be
that offset is only dependent of ω0, the wind speed itself, or of a combination of both.
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Appendix A

MBC-Derivation

In this Appendix the mathematical details of the MBC-transformation are set out. This
is done, because they are needed for later derivations of the effects of offsets in the MBC-
transformation. The goal of the derivation is to arrive at a matrix relating the tilt- and
yaw-pitch angles to the tilt- and yaw-moments as described in Eq. (2-7). To do be able to
do this, first certain Laplace transformations are needed. After these will be defined, the
derivation of the MBC-transformation can be completed.

A-1 Laplace transforms

The formula for the azimuth angle forms the basis Laplace transform and is for that reason
repeated here. It was defined to be φ(t) = ω0t, where ω0 was the constant rotational speed
of the wind turbine. This can now be used to write the Laplace transform of Eq. (2-7). This
is done with the help of the following identities. Where y(t) is an arbitrary function of time.

L [y(t) cos(ω0t)] = L
[
y(t) ejω0t+e−jω0t

2

]
= 1

2 [Y (s+ jω0) + Y (s− jω0)] , (A-1)

L [y(t) sin(ω0t)] = L
[
y(t) e−jω0t−ejω0t

2

]
= j

2 [Y (s+ jω0)− Y (s− jω0)] , (A-2)

In case there is an offset in the sines or cosines (as can be seen in some terms of TM (t) and
Tθ(t)), the following trigonometric identities might come in useful.

cos(ω0t+ α) = cos(ω0t) cos(α)− sin(ω0t) sin(α), (A-3)
sin(ω0t+ α) = sin(ω0t) cos(α) + cos(ω0t) sin(α) (A-4)

The Laplace transform of the cosines and sines with offsets will also be useful in the following
parts. The derivation for both the sine and cosine are made below. First, the derivation is
made for the offset in the cosine,
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L [y(t) cos(ω0t+ α)] = L [y(t) [cos(ω0t) cos(α)− sin(ω0t) sin(α)]] (A-5)
= cos(α)L [y(t) cos(ω0t)]︸ ︷︷ ︸

Eq. (A-1)

− sin(α)L [y(t) sin(ω0t)]︸ ︷︷ ︸
Eq. (A-2)

= cosα
2 [Y (s+ jω0) + Y (s− jω0)]

−j sinα
2 [Y (s+ jω0)− Y (s− jω0)]

= cosα− j sinα
2 Y (s+ jω0) + cosα+ j sinα

2 Y (s− jω0) (A-6)

= 1
2
[
e−jαY (s+ jω0) + ejαY (s− jω0)

]
. (A-7)

Secondly, the derivation is made for the sine with an offset,

L [y(t) sin(ω0t+ α)] = L [y(t) [sin(ω0t) cos(α) + cos(ω0t) sin(α)]] (A-8)
= cos(α)L [y(t) sin(ω0t)]︸ ︷︷ ︸

Eq. (A-2)

+ sin(α)L [y(t) cos(ω0t)]︸ ︷︷ ︸
Eq. (A-1)

= j cosα
2 [Y (s+ jω0)− Y (s− jω0)]

+sinα
2 [Y (s+ jω0) + Y (s− jω0)]

= sinα+ j cosα
2 Y (s+ jω0) + sinα− j cosα

2 Y (s− jω0) (A-9)

= j

2
[
e−jαY (s+ jω0)− ejαY (s− jω0)

]
. (A-10)

A-2 Completing the MBC-transform

It is now possible to apply the different Laplace transforms to get the MBC-transforms of
the linearized model as described above. When taking the Laplace transform of Eq. (2-5) the
following is obtained (with the help of Eq. (A-7) and Eq. (A-10)),

Θ1(s)
Θ2(s)
Θ3(s)

 = 1
2

 1 1 j −j
e−j

2π
3 ej

2π
3 je−j

2π
3 −jej

2π
3

e−j
4π
3 ej

4π
3 je−j

4π
3 −jej

4π
3


︸ ︷︷ ︸

Tθ


Θtilt(s+ jω0)
Θtilt(s− jω0)
Θyaw(s+ jω0)
Θyaw(s− jω0)

 . (A-11)

As was discussed in Chapter 2-2-2 a fully decoupled linear wind turbine model was assumed
to describe the dynamics of the blades. The Laplace transformed expression of Eq. (2-8) is

M1(s)
M2(s)
M3(s)

 =

gb(s) 0 0
0 gb(s) 0
0 0 gb(s)


Θ̃1(s)

Θ̃2(s)
Θ̃3(s)

 . (A-12)
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Substituting the obtained transformations for Θ1(s) to Θ3(s) from Eq. (A-11) (with I3 =
[ 1 0 0

0 1 0
0 0 1

]
),

M1(s)
M2(s)
M3(s)

 = 1
2gb(s)I3

 1 1 j −j
e−j

2π
3 ej

2π
3 je−j

2π
3 −jej

2π
3

e−j
4π
3 ej

4π
3 je−j

4π
3 −jej

4π
3




Θtilt(s+ jω0)
Θtilt(s− jω0)
Θyaw(s+ jω0)
Θyaw(s− jω0)

 . (A-13)

If s+jω0 and s−jω0 are entered as arguments into Eq. (A-13) two new equations are obtained
which come in useful later.

M1(s+ jω0)
M2(s+ jω0)
M3(s+ jω0)

 = 1
2gb(s+jω0)I3

 1 1 j −j
e−j

2π
3 ej

2π
3 je−j

2π
3 −jej

2π
3

e−j
4π
3 ej

4π
3 je−j

4π
3 −jej

4π
3




Θtilt(s+ 2jω0)
Θtilt(s)

Θyaw(s+ 2jω0)
Θyaw(s)

 (A-14)

and

M1(s− jω0)
M2(s− jω0)
M3(s− jω0)

 = 1
2gb(s− jω0)I3

 1 1 j −j
e−j

2π
3 ej

2π
3 je−j

2π
3 −jej

2π
3

e−j
4π
3 ej

4π
3 je−j

4π
3 −jej

4π
3




Θtilt(s)
Θtilt(s− 2jω0)

Θyaw(s)
Θyaw(s− 2jω0)

 .
(A-15)

It is possible to combine this all into a big matrix equation such that a relation for the
frequency shifted moments are related.



M1(s+ jω0)
M2(s+ jω0)
M3(s+ jω0)
M1(s− jω0)
M2(s− jω0)
M3(s− jω0)


= 1

2


gb(s+jω0) 0 0 0 0 0

0 gb(s+jω0) 0 0 0 0
0 0 gb(s+jω0) 0 0 0
0 0 0 gb(s−jω0) 0 0
0 0 0 0 gb(s−jω0) 0
0 0 0 0 0 gb(s−jω0)




1 1 j −j 0 0 0 0

e−j 2π
3 ej

2π
3 je−j 2π

3 −jej
2π
3 0 0 0 0

e−j 4π
3 ej

4π
3 je−j 4π

3 −jej
4π
3 0 0 0 0

0 0 0 0 1 1 j −j
0 0 0 0 e−j 2π

3 ej
2π
3 je−j 2π

3 −jej
2π
3

0 0 0 0 e−j 4π
3 ej

4π
3 je−j 4π

3 −jej
4π
3





Θtilt(s+ 2jω0)
Θtilt(s)

Θyaw(s+ 2jω0)
Θyaw(s)
Θtilt(s)

Θtilt(s− 2jω0)
Θyaw(s)

Θyaw(s− 2jω0)


(A-16)

The final step that rests is to obtain the relation from Mtilt,Myaw to the yaw- and tilt-pitch
angles in the Laplace domain is to make the Laplace transformation of Eq. (2-2).
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[
Mtilt(s)
Myaw(s)

]
= 2

6

[
1 e−j

2π
3 e−j

4π
3 1 ej

2π
3 ej

4π
3

j je−j
2π
3 je−j

4π
3 −j −jej

2π
3 −jej

4π
3

]


M1(s+ jω0)
M2(s+ jω0)
M3(s+ jω0)
M1(s− jω0)
M2(s− jω0)
M3(s− jω0)


(A-17)

From the Laplace transformation it becomes clear why the frequency shifted equation as build
up in Eq. (A-16) was made. This can now be substituted in the Laplace transform of the tilt-
and yaw-moments as described in Eq. (A-17). The full description then becomes

[
Mtilt(s)
Myaw(s)

]
= 2

12

[
1 e−j 2π

3 e−j 4π
3 1 ej

2π
3 ej

4π
3

j je−j 2π
3 je−j 4π

3 −j −jej
2π
3 −jej

4π
3

]


gb(s+jω0) gb(s+jω0) jgb(s+jω0) −jgb(s+jω0)
e−j 2π

3 gb(s+jω0) ej
2π
3 gb(s+jω0) je−j 2π

3 gb(s+jω0) −jej
2π
3 gb(s+jω0)

e−j 4π
3 gb(s+jω0) ej

4π
3 gb(s+jω0) je−j 4π

3 gb(s+jω0) −jej
4π
3 gb(s+jω0)

0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

gb(s−jω0) gb(s−jω0) jgb(s−jω0) −jgb(s−jω0)
e−j 2π

3 gb(s−jω0) ej
2π
3 gb(s−jω0) je−j 2π

3 gb(s−jω0) −jej
2π
3 gb(s−jω0)

e−j 4π
3 gb(s−jω0) ej

4π
3 gb(s−jω0) je−j 4π

3 gb(s−jω0) −jej
4π
3 gb(s−jω0)





Θtilt(s+ 2jω0)
Θtilt(s)

Θyaw(s+ 2jω0)
Θyaw(s)
Θtilt(s)

Θtilt(s− 2jω0)
Θyaw(s)

Θyaw(s− 2jω0)


(A-18)

To get a clearer picture of what is actually happening in Eq. (A-18) the gb(. . .) terms are
omitted from the big matrix and the multiplication of the two constant matrices is performed
after which the multiplication of the gb(. . .) will be reintroduced in its proper form.
It should be noted that this matrix multiplication and subsequent cancelling of the columns performed below is just there
to indicate the dropping out of many different terms. The actual mathematical multiplication was carried out with care
using the full matrix as described in Eq. (A-18).

[
1 e−j 2π

3 e−j 4π
3 1 ej

2π
3 ej

4π
3

j je−j 2π
3 je−j 4π

3 −j −jej
2π
3 −jej

4π
3

]


1 1 j −j 0 0 0 0
e−j 2π

3 ej
2π
3 je−j 2π

3 −jej
2π
3 0 0 0 0

e−j 4π
3 ej

4π
3 je−j 4π

3 −jej
4π
3 0 0 0 0

0 0 0 0 1 1 j −j
0 0 0 0 e−j 2π

3 ej
2π
3 je−j 2π

3 −jej
2π
3

0 0 0 0 e−j 4π
3 ej

4π
3 je−j 4π

3 −jej
4π
3

 =

[
0 3 0 −3j 3 0 3j 0
0 3j 0 3 −3j 0 3 0

]
(A-19)

Now that it has become clear that many terms drop out in the multiplication of the constant
matrices the multiplication performed in Eq. (A-18) ends up as (where all the zero columns
of the matrix in Eq. (A-19) will be omitted).
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[
Mtilt(s)
Myaw(s)

]
= 1

2

[
0 1 0 −j 1 0 j 0
0 j 0 1 −j 0 1 0

]


Θtilt(s+ 2jω0)
Θtilt(s)

Θyaw(s+ 2jω0)
Θyaw(s)
Θtilt(s)

Θtilt(s− 2jω0)
Θyaw(s)

Θyaw(s− 2jω0)


=

1
2

[
1 −j 1 j
j 1 −j 1

]
Θtilt(s)
Θyaw(s)
Θtilt(s)
Θyaw(s)

 (A-20)

Now that has become clear what is cancelled against each other, the derivation is continued
with the gb(s+ jω0), gb(s− jω0) terms in their proper places.

[
Mtilt(s)
Myaw(s)

]
= 1

2

[
gb(s+ jω0) −jgb(s+ jω0) gb(s− jω0) jgb(s− jω0)
jgb(s+ jω0) gb(s+ jω0) −jgb(s− jω0) gb(s− jω0)

]
Θtilt(s)
Θyaw(s)
Θtilt(s)
Θyaw(s)

 =

[
gb(s−jω0)+gb(s+jω0)

2 j gb(s−jω0)−gb(s+jω0)
2

−j gb(s−jω0)−gb(s+jω0)
2

gb(s−jω0)+gb(s+jω0)
2

] [
Θtilt(s)
Θyaw(s)

]
(A-21)

Here the final form has been derived. This form is used as the basis of the different variations
made on the MBC-transformation.
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Appendix B

Offset Derivation
MBC-Transformation

In this Appendix, the exact mathematical consequences of the introduction of an offset in
the MBC-transformation are discussed. First it is discussed in the context of an offset being
present in the Inverse MBC-transformation, then in the normal MBC-transformation and
finally in the case it is present in both the MBC-transformations. This Appendix serves as
the mathematical derivations of Chapter 2-3.

B-1 Offset in the inverse MBC-transformation

As was shown in Figure 2-5 the offset in the inverse MBC-transformation has as a consequence
that the derivation changes, because one of the matrices which is used in the derivation
changes. The change in the matrix is described in Eq. (2-10).

The change described in Figure 2-5 and Eq. (2-10) means that the inverse MBC-transformation
is changed a little bit, while the MBC-transformation (Eq. (2-2)) remains exactly the same.
This also means that in terms of the Laplace transforms that Eq. (A-11) also changes a little
bit.

Θ1(s)
Θ2(s)
Θ3(s)

 = 1
2

 e−jψθ ejψθ je−jψθ −jejψθ
e−j(

2π
3 +ψθ) ej(

2π
3 +ψθ) je−j(

2π
3 +ψθ) −jej(

2π
3 +ψθ)

e−j(
4π
3 +ψθ) ej(

4π
3 +ψθ) je−j(

4π
3 +ψθ) −jej(

4π
3 +ψθ)


︸ ︷︷ ︸

Tθoff


Θtilt(s+ jω0)
Θtilt(s− jω0)
Θyaw(s+ jω0)
Θyaw(s− jω0)

 (B-1)

While Eq. (A-17) remains the same transformation. As a result the multiplication performed
in Eq. (A-19) now changes, because of the change the block diagonal matrices. This means
that the new multiplication ends up as:
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[
1 e−j

2π
3 e−j

4π
3 1 ej

2π
3 ej

4π
3

j je−j
2π
3 je−j

4π
3 −j −jej

2π
3 −jej

4π
3

] [
Tθoff 0

0 Tθoff

]
=[

0 3ejψθ 0 −3jejψθ 3e−jψθ 0 3je−jψθ 0
0 3jejψθ 0 3ejψθ −3je−jψθ 0 3e−jψθ 0

]
(B-2)

Which means that the final form as was seen in Eq. (2-9) without the offset changes into the
following form with the offset:

[
Mtilt(s)
Myaw(s)

]
=
[

e−jψθgb(s−jω0)+ejψθgb(s+jω0)
2 j e

−jψθgb(s−jω0)−ejψθgb(s+jω0)
2

−j e
−jψθgb(s−jω0)−ejψθgb(s+jω0)

2
e−jψθgb(s−jω0)+ejψθgb(s+jω0)

2

] [
Θtilt(s)
Θyaw(s)

]
(B-3)

B-2 Offset in the MBC-transformation

If the offset is now introduced in the MBC-transformation, a description of the form of
Figure 2-6 and Eq. (2-12) is obtained. Once again, this changes the derivation slightly. In
this case a change in phase occurs in Eq. (A-17) (or in other words, an extra term ejψM is
introduced). If the Laplace transforms calculations are followed carefully with the help of
Eq. (A-7) and Eq. (A-10) we obtain the new form of Eq. (A-17),

[
Mtilt(s)
Myaw(s)

]
= 2

6

[
e−jψM e−j( 2π

3 +ψM ) e−j( 4π
3 +ψM ) ejψM ej(

2π
3 +ψM ) ej(

4π
3 +ψM )

je−jψM je−j( 2π
3 +ψM ) je−j( 4π

3 +ψM ) −jejψM −jej(
2π
3 +ψM ) −jej(

4π
3 +ψM )

]


M̃1(s+ jω0)
M̃2(s+ jω0)
M̃3(s+ jω0)
M̃1(s− jω0)
M̃2(s− jω0)
M̃3(s− jω0)


.

(B-4)
As Eq. (A-11) remains unchanged, just one matrix in the multiplication of Eq. (A-19) changes,
namely

[
e−jψM e−j(

2π
3 +ψM ) e−j(

4π
3 +ψM ) ejψM ej(

2π
3 +ψM ) ej(

4π
3 +ψM )

je−jψM je−j(
2π
3 +ψM ) je−j(

4π
3 +ψM ) −jejψM −jej(

2π
3 +ψM ) −jej(

4π
3 +ψM )

] [
Tθ(s) 0

0 Tθ(s)

]
=[

0 3e−jψM 0 −3je−jψM 3ejψM 0 3jejψM 0
0 3je−jψM 0 3e−jψM −3jejψM 0 3ejψM 0

]
. (B-5)

As a result the final part of the MBC-transformation can be finilized as

[
Mtilt(s)
Myaw(s)

]
=
[

ejψM gb(s−jω0)+e−jψM gb(s+jω0)
2 j e

jψM gb(s−jω0)−e−jψM gb(s+jω0)
2

−j e
jψM gb(s−jω0)−e−jψM gb(s+jω0)

2
ejψM gb(s−jω0)+e−jψM gb(s+jω0)

2

] [
Θtilt(s)
Θyaw(s)

]
.

(B-6)
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B-3 Offset in both the MBC-transformations

If the offset is now introduced in both the MBC-transformations, a description of the form of
Figure 2-7 and Eq. (2-10) and Eq. (2-12) is obtained. If the derivation is made once more, but
now with both offsets being present one will see that in Eq. (A-19) both matrices will change
in the respective ways they did in Eq. (B-2), and Eq. (B-5). This results in the following
multplication[

e−jψM e−j(
2π
3 +ψM ) e−j(

4π
3 +ψM ) ejψM ej(

2π
3 +ψM ) ej(

4π
3 +ψM )

je−jψM je−j(
2π
3 +ψM ) je−j(

4π
3 +ψM ) −jejψM −jej(

2π
3 +ψM ) −jej(

4π
3 +ψM )

] [
Tθoff 0

0 Tθoff

]
=[

0 3ej(ψθ−ψM ) 0 −3jej(ψθ−ψM ) 3e−j(ψθ−ψM ) 0 3je−j(ψθ−ψM ) 0
0 3jej(ψθ−ψM ) 0 3ej(ψθ−ψM ) −3je−j(ψθ−ψM ) 0 3e−j(ψθ−ψM ) 0

]
. (B-7)

This means that not all that much changes if the offset is in the regular part or in the inverse
part of the MBC-transformation, because the offsets are just subtracted from each other in
the phase shift. This also means that the final part of the transformations can be written as

[
Mtilt(s)
Myaw(s)

]
=

 e−j(ψθ−ψM )gb(s−jω0)+ej(ψθ−ψM )gb(s+jω0)
2

−j e
−j(ψθ−ψM )gb(s−jω0)−ej(ψθ−ψM )gb(s+jω0)

2

· · ·

j e
−j(ψθ−ψM )gb(s−jω0)−ej(ψθ−ψM )gb(s+jω0)

2
e−j(ψθ−ψM )gb(s−jω0)+ej(ψθ−ψM )gb(s+jω0)

2

[Θtilt(s)
Θyaw(s)

]
. (B-8)

Master of Science Thesis Gianmarco Emilio Disario



82 Offset Derivation MBC-Transformation

Gianmarco Emilio Disario Master of Science Thesis



Appendix C

Analytical Derivation Ideal Offset
First-Order Approximation

In Chapter 3-1 a description is given to decouple the 1st-order MBC-transformed system. As
discussed there, it can be done by considering different frequency regions. One where ω � ω0,
ω ≈ ω0, and ω � ω0.

For the low-frequency region, the term (τω sinψ)2 ≈ 0 which means the ideal offset can be
calculated as

ω � ω0 ⇒ arg minψ |P12(jω)| ≈ arg minψ
√

(sinψ − τω0 cosψ)2

⇔ sinψ − τω0 cosψ = 0
⇔ sinψ = τω0 cosψ
⇔ tanψ = τω0
⇔ ψ = tan−1(τω0).

(C-1)

It is important to state that this is only valid for ψ ∈
[
−π

2 ,
π
2
]
rad. For the case that ω � ω0

a similar dropout happens in the numerator of Eq. (3-5), but this time it is due to the fact
that (τω sinψ)2 � (sinψ − τω0 cosψ)2 whereby making this second term negligible in its
contribution to the magnitude. As a result the ideal offset in the high-frequency region is

ω � ω0 ⇒ arg minψ |P12(jω)| ≈ arg minψ
√

(τω sinψ)2

⇒ ψ = 0. (C-2)

This leaves the region where ω ≈ ω0. In this case it is significantly more laborious to see if
a definite single ideal offset exists which allows for a maximum amount of decoupling. Even
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though the derivation is laborious it is still possible analytically and it goes as follows,

ω ≈ ω0 ⇒ arg minψ |P12(jω)|
= arg minψ

√
(sinψ − τω0 cosψ)2 + (τω sinψ)2

= arg minψ (sinψ − τω0 cosψ)2 + (τω sinψ)2

= arg minψ
(
sin2 ψ − 2τω0 sinψ cosψ + τ2ω2

0 cos2 ψ + τ2ω2 sin2 ψ
)

ω=ω0= arg minψ
(
sinψ (sinψ − 2τω0 cosψ) + τ2ω2

0
)

⇒ d
dψ
(
sinψ (sinψ − 2τω0 cosψ) + τ2ω2

0
)

= 0
= 2 sinψ cosψ − 2τω0 cos2 ψ + 2τω0 sin2 ψ
= sin(2ψ)− 2τω0 cos(2ψ) = 0
⇔ sin(2ψ) = 2τω0 cos(2ψ)
⇔ tan(2ψ) = 2τω0

⇔ ψ = tan−1(2τω0)
2 , valid for ψ ∈

[
−π

2 ,
π
2
]
.

(C-3)
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Glossary

List of Acronyms

CPC Collective Pitch Control

DCSC Delft Center for Systems and Control

ESC Extremum Seeking Control

EWEA European Wind Energy Association

FAST Fatigue, Aerodynamics, Structures and Turbulence

GWEC Global Wind Energy Council

HAWT Horizontal Axis Wind Turbine

IPC Individual Pitch Control/Individual Pitch Controller

LCoE Levelised Cost of Energy

LQG Linear Quadratic Gaussian

MBC Multi-Blade Coordinate

MPC Model Predictive Control

MIMO Multiple-Input Multiple-Output

NREL National Renewable Energy Laboratory

OoP Out-of-Plane

PBSID Predictor-Based-Subspace-IDentification

PI Proportional Integral

PSD Power Spectral Density

RBS Random Binary Signals

Master of Science Thesis Gianmarco Emilio Disario



90 Glossary

RGA Relative Gain Array

SISO Single-Input Single-Output

SVD Singular Value Decomposition
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