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Abstract

1. Introduction

Optical flow estimation refers to the task of predicting
the 2-dimensional visual motion between two consecutive
images [7]. For each pixel in the first image, the corre-
sponding subpixel in the second image needs to be found. It
has several applications in areas such as video processing,
medicine, and robotics [1].

In recent years, deep learning has significantly advanced
the field, with models such as FlowNet [5] and RAFT [17].
These models are trained on synthetically generated images,
as well as a limited amount of real-world data, due to the
difficulty of obtaining correct optical flow vectors in real-
world settings. Although many models show strong cross-
dataset generalization [5,9, 11, ], showing generaliza-
tion to proper real-world scenes remains a challenge. For
example, one of the few datasets that utilizes real images
and is widely used for evaluation is KITTI [13], which de-
rives its ground truth by reconstructing the resulting optical
flow from LIDAR scans and not 2D annotations. It pre-
dominantly features urban environments where the camera
is mounted on a car, with limited diversity of motion as
the car only drives forward. A recent re-evaluation [4] of
scene flow models on more realistic datasets demonstrates
that better performance on KITTI [13] correlates negatively
with real-world generalization ability. Although focused on
scene flow, it highlights limitations in KITTI [13] that also
apply directly to optical flow.

One of the difficulties within optical flow prediction
models is repetitive patterns [15], such as tiled floors,
fences, textiles, or windows. In these cases, multiple re-
gions in one frame can appear visually identical, making it
difficult for a model to determine which regions correspond
to each other. Although some studies discuss the chal-
lenge of repetitive patterns, or correspondence ambiguity,
few studies specifically analyze the models’ performance on

repetitive patterns using a systematic evaluation. For exam-
ple, LiteFlowNet3 [8], claims to improve performance on
ambiguous correspondences. Even though its benchmark
results support this, the model is not evaluated using data
consisting of repetitive patterns, leaving it unclear whether
the improvements made actually address this particular is-
sue.

This research will investigate this empirical evidence
gap. The main research question is: How does the per-
formance of optical flow prediction models compare on
repetitive patterns in real-world footage? This question
is supported by the following subquestions: (1) Which mod-
els are most resilient to repetitive patterns in terms of End-
Point-Error (EPE), (2) Does a low reconstruction error and
a high EPE indicate a failure due to repetitive patterns, and
(3) Which models perform best according to the False Cor-
respondence Index?

To answer these questions, a dataset of real-world scenes
is collected and annotated in which repetitive patterns
are present. Then multiple optical flow models, such as
FlowNet [5], RAFT [17], and LiteFlowNet3 [8] are evalu-
ated on this dataset and their performance will be compared
to results on existing synthetic benchmarks.

2. Related work

Robustness benchmarks. Other research that tries to in-
vestigate areas of difficulty for optical flow models is the
work of Yi et al. [19]. They introduce several corrup-
tions into existing datasets, including lighting changes, blur,
noise, and digital compression artifacts. It uses a dataset
with ground-truth optical flow vectors (KITTI-FC) and one
without (GOPRO-FC), and measures the effect of optical
and temporal corruptions on the models’ performance by
comparing the predicted flow to the ground truth or to the
prediction on a clean image. They conclude that noise and
compression artifacts, which are abundant in videos and im-
ages taken in the real world, have a significant negative im-
pact on the accuracy of the optical flow models. Therefore,
to properly test models’ generalization to real-world data,



these camera and compression artifacts should be present,
which calls for more realistic data. Although they show
the impact of optical and temporal corruptions, they do not
address the effects of scenery that have challenging traits
for optical flow models, such as occlusions or repetitive
patterns. This highlights the need for further investigation
into more realistic confounding factors that challenge opti-
cal flow models.

Models with measures against repetitive patterns. One
of the models that specifically claim that they have taken
measures against errors due to repetitive patterns is Lite-
FlowNet3 [8] and Ef-RAFT [06].

3. Methodology and Tools

To evaluate and compare the performance of optical flow
estimation models on real data containing repetitive pat-
terns, a data set with human-annotated flow vectors is col-
lected. The data set contains image pairs of consecutive
frames, between which the optical flow is calculated, and
alongside a sparse ground-truth annotation of the optical
flow. The data is stored in the same directory structure as
the KITTI [13] dataset, for easy loading into existing eval-
uation frameworks, as KITTI [13] is widely supported and
includes a mask to indicate where optical flow vectors are
present.

To annotate the image pairs, a tool' was collectively de-
veloped by the Research Project group. Using the annota-
tion tool, two frames are picked from an input video. With
the two frames displayed side by side, multiple pairs of
corresponding points are carefully selected by hand with
pixel precision. The number of pairs of points per image
is around n = 35. This number of points covers a large por-
tion of repetitions with at least one annotation point and en-
sures that a correspondence mismatch by the model is mea-
surable.

For specifically annotating repetitive patterns that lie on
a planar surface, we introduce an annotation mode that al-
lows for interpolation of flow vectors within a region of in-
terest. This approach can only be used when the repeated
pattern lies entirely within a single 2D plane. A set of point
pairs is manually selected between two frames, from which
a homography matrix is estimated using OpenCV’s homog-
raphy fitting tools [2]. The transformation matrix is then
used to warp all source points within the convex hull of the
annotated region, and the optical flow is computed as the
displacement between original and warped points.

This annotation method is only valid under three as-
sumptions. First, the annotated area must fully lie on a
2-dimensional plane such that no depth-induced parallax
occurs. Secondly, the motion between the frames cannot
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include large perspective changes, such as tilting or trans-
lating from a sharp angle, as this can excessively distort
the polygon within which is interpolated. And lastly, the
camera must have minimal lens distortion, as this causes
nonlinear warping, which violates the assumptions of ho-
mographic mapping. If any of these conditions are not met,
interpolation between annotated points is not performed.

With the evaluation database in place, an inference pass
is done on the complete dataset for each model using a sub-
set of its available checkpoints. To include a large number
of models in this evaluation, the PTLFlow [14] framework
is used, which provides a collection of deep learning-based
optical flow estimation models. It includes the models ac-
companied by training checkpoints containing pre-trained
weights for their specific training dataset. As not all models
provide checkpoints for all datasets, a selection of check-
points needs to be made. Upon reviewing the available
checkpoints for each model, we find that including check-
points trained on FlyingThings [ 2], Sintel [3], KITTI [13]
and checkpoints based on a mix of datasets, cover all mod-
els under test. This allows for relative comparison of all
models that have the same training data.

The resulting optical flow predictions will be evaluated
using the following three metrics:

End-Point-Error (EPE) End-point-error is a widely-
used metric to measure the performance of optical flow
models. It measures the euclidean distance between the
ground-truth and the predicted optical flow vector as shown
in Fig. 2. To calculate the EPE for all predicted flow vec-
tors within the image, the mean of the EPEs is taken over
all pixels. However, since the collected data is sparsely an-
notated and the EPE can only be calculated where ground-
truth vectors are present, the mean is only taken over pixels
where annotations are present. The formal definition of the
End-Point-Error (EPE) is:
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Where M@ € {0,1} is a binary mask indicating
whether the ground truth at pixel i is valid (M) = 1) or
invalid (M () = 0).
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Figure 1. Visualization of homography-based flow annotation and reconstruction error. The top row shows the input frames at times ¢
and ¢ 4 1, with the annotated convex hull region highlighted. The bottom-left image visualizes the ground-truth optical flow, interpolated
using a homography fitted to the annotated point pairs (see color wheel for direction/scale reference). The bottom-right image shows the
Euclidean distance between the actual frame at ¢ + 1 and the reconstruction obtained by forward-splatting frame ¢ using the ground-truth
flow. This distance represents the pixel-wise RGB error and highlights regions where the homography-based flow fails to reconstruct the
appearance of the next frame accurately. In this example, the region with ground-truth flow appears almost entirely black, with only minor
speckles, suggesting that the homography-based interpolation is valid in this case.

To compute the overall EPE for a single model, we take
the mean of the per-image mean EPEs across all images.
This ensures that each image contributes equally to the final
score. Simply averaging the EPEs over all annotated pixels
would overrepresent images with dense or semi-dense flow
annotations, such as those generated via homographic in-
terpolation, while underrepresenting sparsely annotated im-
ages. By averaging at the image level, a fair contribution of
each image is maintained, regardless of annotation density.

End-point-error is suitable for revealing failures due to
confusion caused by repetitive patterns, as the predicted
flow vector will differ substantially from the ground-truth.
It does need sufficient annotations on a repetitive pattern
to detect any discrepancies between the prediction and the
ground-truth, as a single mismatched repetition could not
be captured by the metric otherwise.

F1-All Fl-all is another widely used metric that measures
the fraction of outlier predictions based on EPE. A flow pre-
diction is considered an outlier when its EPE exceeds a cer-
tain threshold. A 3 pixel absolute threshold and a 5% rel-
ative threshold are used, which follow from the thresholds
used by the KITTI benchmark [13]. Formally, a pixel 7 is
marked an outlier if

1, ifEPE® > max (3 px, 0.05 Hué?

0, otherwise.
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Figure 2. Visualization of End-Point Error (EPE) in optical flow.
The source point represents the origin of the flow. The green vec-
tor denotes the ground-truth flow, the blue vector denotes the pre-
dicted flow, and the red dashed line indicates the EPE, i.e., the
Euclidean distance between the predicted and ground-truth end-
points.

valid pixels marked as outliers:

N i i
F1-Allin, = M x 100%. “
2 im MO
Finally, to obtain an overall F1-All score, these per-
image percentages are averaged across all images, ensuring
that each scene contributes equally.
Like EPE, F1-All is sensitive to large prediction errors,
like those caused by confusion between repeated patterns.
Any flow estimate that exceeds the fixed error threshold is



counted as an outlier and fully penalized. Unlike EPE, how-
ever, it does not account for how far the prediction is from
the ground-truth once the threshold is exceeded all outliers
are treated equally. As a result, F1-All provides a clear in-
dication of how often a model makes significant mistakes,
regardless of their exact magnitude.

False Correspondence Index (FCI) The False Corre-
spondence Index (FCI) is a novel metric introduced in this
work to detect a failure mode that occur in scenes with
repetitive patterns: visually plausible but incorrect flow pre-
dictions, shown in Fig. 3. Optical flow models often rely on
visual matching to establish correspondences between fea-
tures in frames. However, when a visually repetitive pattern
is present, the model can mismatch their features. This re-
sults in a prediction where the reconstructed second frame
looks similar to the actual second frame, but where the flow
vectors are incorrect.

To capture such errors, the FCI compares the EPE with
the reconstruction error. A high EPE and a low construction
error would indicate that a mismatch has occurred. The re-
construction error is calculated by splatting all the pixels of
the first image using the predicted flow vectors [10]. Since
the vectors can also have decimal components, the color of
the source pixel is bilinearly interpolated and splatted across
up to four pixels where the flow vector would fall between.
To correct for brightness issues, the splats are corrected us-
ing a weighted average from multiple splats. Using for-
ward splatting, there are some limitations to keep in mind.
Forward splatting cannot be used when the scene contains
occlusions, as multiple source pixels can flow to the same
point in the resulting image and get averaged, even though
one of the pixels might have occluded the other.

4. Results

Tab. 1 shows the resulting EPE values for all models un-
der evaluation. It shows that the best performing models
have very similar scores.

False Correspondence Index Fig. 4 shows the relation
between visual consistency and the absolute flow error.
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Figure 3. Example of a visually plausible but incorrect forward-warped flow prediction. Top left: Actual second frame. Bottom left:
Annotated ground truth optical flow (interpolated via homography). Top right: First frame forward-warped to the second frame using the
predicted flow. Botfom right: model-predicted optical flow. Although the warped image appears well-aligned with the actual frame, the
predicted flow vectors are very incorrect, showing a failure mode due to repetitive patterns
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Figure 4. False correspondence index per model. The reference line indicates the reconstruction error achieved by human annotation.



Table 1. Mean End-Point Error (EPE) and F1-All scores for a range of optical flow models across a selection of training checkpoints. Each
row represents a single model, and values are reported only for the checkpoints it provides. Models are sorted for convenience by their
average EPE across available checkpoints. Lower values indicate better accuracy for both EPE and F1-All

Checkpoint Things Sintel Kitti Mix

EPE Fl1-All EPE Fl1-All EPE Fl1-All EPE F1-All
Model
ccmr_p - - 0.4007 0.00% 0.3914 0.00% - -
ms_raft_p - - - - - - 0.4000 0.07%
dpflow 0.4069 0.07% 0.4021 0.07% 0.3949 0.00% - -
splatflow - - - - 0.4234 0.07% - -
ccmr - - 0.4521 1.09% 0.4087 0.00% - -
rpknet 0.4380 0.07% 0.4315 0.07% 0.4363 0.00% - -
csflow 0.4300 0.22% - - 0.4672 0.22% - -
lev_raft 0.4525 0.07% - - - - - -
gmflownet_mix 0.4624 0.22% 0.4472  0.30% - - - -
irr_pwcenet_irr 0.4819 0.07% - - - - - -
liteflownet3s - - 0.4850 0.01% - - - -
flowformer_pp 0.4203 0.00% 0.4474 0.22% 0.6734 1.20% - -
unimatch_sc2 0.5061 0.01% 0.5075  0.00% - - 0.5329 0.00%
gmflow_p_sc2 0.5061 0.01% 0.5075  0.00% - - 0.5329  0.00%
rapidflow 0.4817 0.15% 0.4693 0.37% 0.6068 0.80% - -
unimatch_sc2_ref6 0.6606 2.19% 0.4476  0.25% 0.6214 1.11%  0.4111 0.00%
gmflow_p_sc2_ref6 0.6606 2.19% 0.4476  0.25% 0.6214 1.11%  0.4111 0.00%
irr_pwcnet 0.5427 1.06% - - - - - -
rapidflow _it6 0.4894 0.16% 04774 0.45% 0.8655 5.20% - -
gmflow _refine 0.5061 0.01% 0.5075 0.00% 0.8249 2.27% - -
raft_small 0.6471 1.00% - - - - - -
gmflow 0.5985 0.39% 0.6054 0.32% 0.7515 1.16% - -
gmflow_p 0.5985 0.39% - - - - 0.9047 0.94%
unimatch 0.5985 0.39% - - - - 0.9047 0.94%
neuflow2 0.7615 1.85% 1.1062 1.42% - - 0.4440 0.08%
sea_raft_s 0.5395 1.96% 0.7666  2.46% 1.5527 2.11% - -
rapidflow_it3 0.5760 0.56% 0.5357 0.39% 1.7480 11.78% - -
memflow 0.4070 0.15% 0.4153 0.07% 2.2595 2.59% - -
skflow 0.4284 0.45% 0.4218 0.30% 2.3253  2.55% - -
neuflow 1.2089 5.63% 1.0353 3.92% - - - -
dip 04779 1.20% 1.6667 3.89% 1.4406 1.62% - -
craft 0.4243  0.07% 0.4145 0.07% 3.0311 3.68% - -
memflow _t 0.3998  0.00% 0.4190 0.01% 3.9994  7.74% - -
hd3_ctxt 1.4730 4.17% 0.4843  0.59% 3.1606 5.12% - -
raft 0.4208 0.01% 0.4228 0.22% 4.6698 6.51% - -
sea_raft_ m 0.5539 2.40% 0.4408 0.31% 4.6927 4.33% - -
llaflow _raft 0.4277 0.07% 0.4423 0.15% 4.8990 5.12% - -
flowformer 0.4302 0.08% 0.4591 0.15% 52715 891% - -
liteflownet2 - - 2.1505 2.73% - - - -
flownets 2.8167 15.73% - - - - - -
flownet2 2.9295 15.00% - - - - - -
flownetcss 3.0046 15.26% - - - - - -
flownetcs 3.5741 16.09% - - - - - -
liteflownet3s_pseudoreg - - - - 3.7844  10.75% - -

Continued on next page




Table 1. Mean End-Point Error (EPE) for different models, sorted ascendingly.

Checkpoint Things Sintel Kitti Mix
EPE Fl1-All EPE Fl1-All EPE Fl1-All EPE Fl1-All

Model

flowld 0.4443  0.15% 0.4757 0.60% 10.6593  14.52% - -
liteflownet3 - - 4.0702 11.41% - - - -
liteflownet 0.7697 3.38% 0.6480 2.61% 10.9039  23.09% - -
sea.raft_1 0.6604 3.71% 1.0992 1.47% 11.4668 9.34% - -
dicl 7.9987 2291%  2.6321 4.92% 2.6904 14.15% - -
liteflownet3_pseudoreg - - - - 45198 12.17% - -
maskflownet_s 44424 1334%  4.8010 891% - - - -
liteflownet2_pseudoreg - - - - 4.8301 12.26% - -
pwcenet 27295 11.48% 69392 8.82% - - - -
videoflow_mof 5.9263 13.64%  0.4410 0.15% 10.8027 11.65% - -
gma 0.4324 0.30% 0.4434  0.30% 16.6945 9.75% - -
pwcenet_nodc 3.5060 13.91% 8.3433  15.59% - - - -
irr_pwce 0.5490 0.42% 1.4158 4.69% 15.8151 22.90% - -
flownetc 6.0608 25.51% - - - - - -
videoflow_bof - - 0.4668 0.10% 11.7124  12.76% - -
fastflownet 3.0698 8.56% 6.4820 14.24% 13.0060 22.94% 2.5197 10.29%
starflow 6.1713  12.44% 11.0985 10.99% 4.9468 14.29% - -
gmflownet 0.4535 0.32% - - 143642 19.28% - -
llaflow 0.4252  0.15% 0.4155 0.07% 227293  8.33% - -
flownetsd 8.1114 42.00% - - - - - -
maskflownet - - 34979  6.90% 18.1352  25.44% - -
scopeflow 0.4950 0.15% 0.4665 0.67% 43.3554  50.93% - -
ven 27.8040 26.19% 8.7887 15.85%  29.4939 50.95% - -
ven_small 33.9843  26.50% - - - - - -
hd3 0.5905 1.46% 1.5735 1.98% 129.1069  57.52% - -
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