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Abstract
This paper presents a train robust control method to optimize train operation based on the

concept virtual coupling on train platoon. This approach is inspired by the recent development
of platoon control for autonomous vehicles, and it is hoped that this platoon control can be
applied to railway transportation. We use a decentralized model predictive control (MPC)
to control leading train and followers together. To solve the complexity minimax objective
function, we reformulated objective function as a minimization problem subject to linear matrix
inequalities (LMIs). We defined four weight parameters to evaluate the model. Simulation result
indicated that based on the premise of platoon stability, increase the performance parameters
to obtain an optimal solution. We show that after the virtual coupling of less than two minutes,
the gap distance between two consecutive trains is reduced and the capacity is increased while
ensuring safey.

Keywords— Robust control, Train platoon, Virtual coupling, Train control system

1 Introduction
Railway transport demand continues growing, and the capacity has become an important factor
in promoting the development of railway transportation. Railway signalling system designed to
convey information to drivers to control train movement in a safe manner. The capacity offered
by conventional signaling systems is very limited. Fixed block and moving block are two main
types of signalling system. The fixed block system divides the railway network into fixed blocks
which are separated by signals. A train is not allowed to enter a given track section before the
preceding train has cleared it. Moving block does not require traditional track-clear detection
for determining train position. Instead, it relies on continuous two-way digital communication
between each controlled train and a wayside control centre and Train Integrity Monitoring.
The train’s occupying track part becomes the moving block in which no other train can en-
ter. Both signalling systems imply huge separations between trains, lowering significantly the
available capacity. This conservative operation causes a large distance gap between trains. In
reality, focus on the relative braking distance of consecutive trains, the distance gap between
two consecutive trains can be reduced. So a closer communication between trains can help
further minimizing separations.

Virtual Coupling (VC) is a concept that expands moving block signalling by relying on
the assumption that trains communicate with each other via a Vehicle-to-Vehicle (V2V) radio
layer, allowing to reduce the train separation further than less of the absolute braking distance.
Trains can hence form a platoon following each other at a relative braking distance as function
of their speed difference or even travel in platoons where they move synchronously at a short
distance from each other (Quaglietta et al., 2022). ETCS Level 3 is a first step towards VC as
VC needs the components developed for ETCS Level 3. Virtual coupling enables the virtually
combining and splitting of vehicles on the move by controlling the gap between the vehicles
without any mechanical coupling, which is one of the technologies for increasing the transport
capacity and enhancing operational efficiency (Park, Lee, & Eun, 2022).

Virtual coupling technology presents the following advantages. First, it increases the line
capacity by reducing the departure interval and the headways. Second, in VC, trains can be
coupled and decoupled dynamically according to the service needs and respecting the safety
requirements, which allows trains to be more flexible in adapting to complex rail transport
service tasks.

In order to virtually couple two trains, the following two points are very important. The
first one is the use of moving block system, which is based on the fact that the trains continu-
ously calculate and communicate their exact position, speed and train integrity to the wayside
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equipment distributed along the line, these continuous data transmission via Global System for
Mobile Communications − Railway (GSM-R) with the Radio-Block Center (RBC) give the re-
quired information to trains. That allows the calculation of the track segment to be potentially
occupied by the train, giving the movement authority and continuously adjust their speeds
while ensuring safety and comfort. The moving block system makes the assumption that the
consecutive trains on the same track must be separated by an absolute braking distance and an
extra safety margin to ensure that each train is capable of braking and stopping before reaching
the last known position of the train ahead at any time. The other is high reliability and low
time-delay V2V communication technology. Trains are virtually-coupled via V2V communica-
tion, sharing information with other trains in platoon and radio-based Vehicle-to-Infrastructure
(V2I) communication with the RBC reporting train position. On the basis of the information
received from the trains within the convoy, the on-board system is responsible for the train
speed to keep a desired distance to the predecessor, allowing the follower to pursue the leader
train in a safe way (Zhang, Yang, Zhang, & Huang, 2022).

Quaglietta (2019) proposed a mode of train platoon operation in which the leading train of
a platoon moves under ETCS Level 3, a train getting closer to preceding train will switch its
control from ETCS Level 3 to VC. In such a case, the train communicates to the preceding train
by means of the V2V communication speed, position, acceleration. This information is used
by the following train’s on-board subsystem to compute the relative braking distance which let
the train move at the same speed of the leader. For controlling the platoons, Park et al.(2020)
assume that the leading train runs with speed control and that the following train keeps the
target distance gap with the leading train using a gap controller. Therefore, in Park et al.,
(2020) model, all trains must equip both a velocity controller and gap controller to select the
appropriate controller according to one’s role in the convoy.

This paper has the objective of implementing an approach from connected automated ve-
hicles (road traffic) of the robust platooning control to a virtual-coupled train platoon. The
research question of this paper can then be stated as follows:

What changes are needed to a robust platoon controller to optimize virtual coupling?

Different from the traditional train operation, VC train platoon maintain a smaller distance
gap between trains, therefore, the control of train operation needs to be more advanced and
accurate. MPC (model predictive control) is a control algorithm that relies on the iterative
solution of an optimal control problem based on the predicted state to compute a control in-
put at each sampling. Felez et al.∼(2019) use a decentralized MPC framework for each train
participating in a convoy formation. They pointed out that there are two possible control
architectures for VC. The first one is centralized VC, in which trains cooperate in order to
optimize the overall convoy strategy. The second control architecture is decentralized VC, in
which each train optimizes its own strategy given the movement estimation of the preceding
train. Compared to the decentralized controller, the centralized controller focuses more on the
whole system optimum rather than individual local optimum.

Chen et al.(2018) designed a robust platooning control strategy for connected automated
vehicles (CAVs). A centralized control method is used to make cooperation driving system
stable under time delay or some uncertainties happen. The control process is that the leader of
a CAV platoon collects information from followers then computes the desired acceleration for
all controlled vehicles. After this calculation, broadcasts the information to followers to make
them drive at the right acceleration to meet the desired distance gap.

The vehicle dynamics in train operation and road traffic use similar variables and parame-
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ters such as acceleration, headway and other basic parameters, but some factors that affect the
robust platooning control approaching model are still different. For example the way to position
vehicles and the impact of the track geometry on the train dynamics/platoon. So we assess
some of the similarities as well as the differences to identify possibilities for model improvement
and differences between railway operation and road traffic for the robust control operation.

The position of vehicles is an important factor to influence the model accuracy. The accurate
feedback information on positions of controlled vehicles can be obtained via V2V communica-
tion and on-board sensors like odometers or GNSS (Global Navigation Satellite System), but is
subject to a fixed feedback delay. But for VC in railways, in addition to positioning feedback
delay, VC headways will be dependent on train positioning system precision (e.g. odometer
error or satellite positioning resolution in future generation ERTMS) which has an influence
on the entity of safe margins (i.e. minimum/maximum safe rear/front end), and on the V2V
connection performance (including bandwidth and stability) together with the availability of
appropriate sensors/radars. (Di Meo et al., 2019)

Another difference between railway operation and road traffic is that the impact of track
geometry on train operation is more obvious. Quaglietta et al.(2020) developed a multi-state
train-following model that overcomes limitation of car-following model by considering line resis-
tances due to track gradient and curvature. Quaglietta et al.(2022) proposed five safety-critical
risk factors for VC that need to be determined. These are train positioning error, communica-
tion update delays, train control delays, emergency braking application of the leader train and
exogenous factors, and a dynamic safety margin is defined as the sum of these five factors. By
calculating the sensitivity indexes for flat track and with the actual track with gradients, the
results shows that the following train’s braking rate is the most influential parameter to VC ca-
pacity, means significant changes in train operation due to track geometry. Barney et al.(2001)
also indicated that one of the influencing factors of braking distance is the track gradient the
train travels over from when the brakes are commanded to where the front of the train stops.
So for a VC platoon on a line with gradients, the controller should continuously adjust the
desired gap distance as the gradient changes.

Although railway operations share many motion similarities with road traffic, differences
are still shown in terms of train length, mass, sensor delay and gradient effects. In this article
we using the concept of virtual coupling and MPC, develops a control system that reduces
distance between trains and combine several trains into one train platoon while guaranteeing
safe separation between two consecutive trains.

The contribution of this paper is we defined a robust MPC model for train platoon. And
while realizing the train VC, by adjusting the weight parameters, balance the entire virtual
coupling process in terms of smoothness, convergence time, comfort and other aspects makes
the whole optimization process optimal.

The remainder of this paper is organized as follows. Section II defines the state prediction
problem and present a robust MPC train dynamics model. Section III formulates the nonlinear
MPC developed for virtual coupling including the design assumption, the cost function and
the different constraints that have been considered. Section IV presents a method to makes
the optimization process achievable by rewriting minimax problem as a minimization problem.
Section V presents the different weight tests, simulations and results. Finally, Section VI in-
cludes the conclusions of this work.

Notation: For a vector x and positive-definite matrix ξ, ||x||2ξ = xT ξx.
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2 Dynamics models
This section presents a robust MPC train dynamics model for state prediction for VC train
platoon considering actuator lag.

2.1 Single train dynamics model
Consider a VC train platoon with one leader and N followers, propose a dynamics model for
a train n with xn, vn, an and ln representing the location, speed, actual acceleration and train
length of the subject train n. The leading train is train n = 0 and it aims to track a reference
speed vref . As shown in Figure 1, sn is the distance gap between train n and its preceding train
n− 1, sn = xn−1 − ln−1 − xn. We define the distance gap error ∆sn as the deviation between
the distance gap sn and the desired distance gap sdn to the preceding train n − 1 for train n,
i.e. ∆sn = sn − sdn. We define the desired distance gap sdn = vnt

d + smin, where smin is the
minimum distance gap to be kept between trains, td is the desired time gap between trains to
control the desired distance gap. And the relative speed ∆vn = vn−1 − vn (n ≥ 1) is the speed
difference to the preceding train.

Figure 1: Train platooning formation

For a single train n ≥ 1 in VC platoon, the system state Zn is described by the gap error
∆sn, relative speed ∆vn and acceleration an.

Zn = (∆sn,∆vn, an)
T (1)

The control variable is defined as un, which is the desired acceleration of train n. Following
a third-order derivative formula, the system dynamics is described by Equation 2.

d

dt
Zn =

d

dt

∆sn
∆vn
an

 =
d

dt

xn−1 − ln−1 − xn − sdn
vn−1 − vn

an

 =

∆vn − an · td
an−1 − an

un−an
τAn

 = f(Zn, un) (2)

In Equation 2, un−an
τAn

is the dynamics of the acceleration means the control rate of the accelera-
tion (Chen et al., 2018). And the actuator lag τAn is considered here uncertain, but with known
upper and lower bounds.

f(Zn, un) = AnZn +Bnun +

0
1
0

 an−1 (3)

where,
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An =

0 1 −td
0 0 −1
0 0 − 1

τAn

 ;Bn =

 0
0
1
τAn



And

0
1
0

 an−1 is an exogeneous disturbance to the train system, which is the actual acceleration

of the preceding train.
We model the dynamics of the leading train in a similar way to the followers. The location,

speed, acceleration and train length of the leader train are x0, v0, a0 and l0, respectively. No
distance gap is needed because there is no preceding train. We assume that the target speed of
the leading train is a constant reference speed (vref ). So the relative speed for the leading train
is the error between the reference speed and the speed of the leader train ∆v0 = vref − v0. And
the state for the first train is:

d

dt
Z0 =

d

dt

(
∆v0
a0

)
=

(
−a0
u0−a0
τA0

)
= f(Z0, u0) (4)

where,

A0 =

[
0 −1
0 − 1

τA0

]
;B0 =

[
0
1
τA0

]

2.2 Platoon dynamics model
To describe the platoon dynamic model, we rewrite Equation 2 and Equation 4 as a single linear
matrix system by considering the state of the whole convoy of trains Z. The platoon state is
defined as Z = (∆v0, a0,∆s1,∆v1, a1, ...,∆sN ,∆vN , aN )T , the control variable is defined as
U = (u0, u1, u2, ..., uN )T . The system dynamics model for a VC platoon with N followers can
be expressed as:

d

dt
Z = A · Z +B · U (5)

where,

A =


[ A0 ]2×2 · · · 0

[ A1 ]3×4
...

[ A2 ]3×4

... . . .
0 · · · [ AN ]3×4

 , B =



B0 · · · · · · · · · 0
... B1

...
... B2

...
... . . . ...
0 · · · · · · · · · BN


where,

A0 =

[
0 −1
0 − 1

τA0

]
;Ai =

0 0 1 −td
1 0 0 −1
0 0 0 − 1

τAi

 , i = 1, 2, 3, ..., N ;

B0 =

[
0
1
τA0

]
;Bi =

 0
0
1
τAi

 , i = 1, 2, 3, ..., N ;

And now the exogenous disturbance term from Equation 3 is included in the sub-matrices Ai.
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3 Design of robust controller for platoon operation
3.1 Design assumptions
The homogeneous VC platooning controller is designed based on the following assumptions:

• The VC trains are homogeneous. They have the same train length, desired acceleration
boundary, speed limits and the same actuator lag τA = τA0 = ... = τAN .

• The accurate feedback information on positions, speeds and actual accelerations of con-
trolled vehicles can be obtained via on-board sensors, RBCs and V2V communication.

• The controller apples the control command at regular intervals of time ∆t. The robust
MPC algorithm calculates this for the next M intervals of time, but only the first one is
implemented at each iteration.

• The uncertainty in the dynamics of the trains in the platoon is made explicit in the
matrices A and B, which depend on an uncertain parameter τA. In the model, τA is a
constant actuator lag with τA ∈ [α, β], (0 < α < β).

• The train tracks are straight and flat without gradient.

3.2 Platooning control formulation
3.2.1 Min-Max model predictive control problem
The designed controller minimize a cost function J(Z,U) over a time horizon under the worst
case, which express by Chen et al. as:

min
u[t0,t0+th]

max
[A,B]∈Ω

J(Z,U) = min
u[t0,t0+th]

max
[A,B]∈Ω

t0+th∑
j=t0

J(Z(j), U(j)) (6)

where Ω is a polytope defined by all the possible values of the uncertain matrices A and B,
which depend on the value of the uncertain parameter τA. Ω = {[A,B] : α ≤ τA ≤ β} . th is
the prediction horizon.

The main goal is to find the best control policy in the interval [t0, t0 + th] that will work
for any of the possible values of τA. This problem is subject to the dynamics of the platoon
described in Equation 5 and the following constraints.

3.2.2 Constraints
1. Speed constraints

The speed of all trains should be non-negative and must not exceed the the speed limit
vmax, i.e. vn ∈ [0, vmax] , n = 0, 1, 2, ..., N.

To link the speed constraint with the dynamic system state Z and control U , vn needs to
be rewritten as a function of the variables in Z.

• For vn ≤ vmax :

vmax − vref +
n∑

i=0

∆vi ≥ 0, n = 0, 1, 2, ..., N ; (7)

• For vn ≥ 0 :

vref −
n∑

i=0

∆vi ≥ 0, n = 0, 1, 2, ..., N ; (8)
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2. Gap constraint
The gap constraint shows that the real gap distance sn to train n and preceding train n−1
for n ≥ 1 should be larger or equal to the minimum distance gap smin and less or equal to
the maximum distance gap smax (define smax = H + smin which H is a sufficiently large
fixed value), that is smin ≤ sn ≤ smax. Again, this should be rewritten as a function of
∆sn and ∆vn. After rewriting, the gap constraint is expressed as:

∆sn − td ·

(
n∑

i=0

∆vi

)
+ td · vref ≥ 0, n = 1, 2, ..., N ; (9)

∆sn − td ·

(
n∑

i=0

∆vi

)
+ td · vref −H ≤ 0, n = 1, 2, ..., N ; (10)

3. Acceleration constraint
The acceleration of each train an ∈ [amin, amax]. The acceleration constraint can be
written directly as :

amin ≤ an ≤ amax, n = 0, 1, 2, ..., N ; (11)

4. Control constraint
In addition to three state constraints, control variables are also constrained by the maxi-
mum and minimum accelerations that can be achieved, which is the same as the acceler-
ation constraint. For control vector U = (u0, u1, u2, ..., uN )T .

amin ≤ un ≤ amax, n = 0, 1, 2, ..., N ; (12)

3.2.3 Cost function
The cost function J (Equation 13) is related to performance, platoon stability, comfort and
energy consumed measured by si, vi, ai, ui respectively, where c1, c2, c3 and c4 are their
associated weight parameters.

J(Z,U) = c1 ·
N∑
i=1

(∆si)
2 + c2 ·

N∑
i=1

(∆vi)
2 + c3 ·

N∑
i=1

(ai)
2 + c4 ·

N∑
i=1

(ui)
2 (13)

The performance cost term implies that it tries to minimize the distance gap to reduce
the convergence time. The stability cost term makes the relative speed between followers
and preceding trains smaller to keep the following behavior more stable in VC platoon. The
energy cost penalizes large values of desired acceleration to save energy by making the train
accelerate/decelerate process more smoothly. Also smooth acceleration/deceleration can make
the train service more comfortable for passengers. The controller regulates platoon desired
accelerations over a time horizon to minimize this cost function subject to speed limits, desired
acceleration constraint and minimal gap distance (Equation 7 - Equation 12).

3.2.4 Time discretization
Since we aim to apply minimax MPC to calculate and update the control policy U at regular
intervals of time ∆t, we discretize the minimax MPC problem defined by Equation 6 - Equa-
tion 13, and we will solve the resulting robust problem until time goes to infinity, starting from
t0 = 0, and then apply the calculated optimal control policy from t0 to t1 = t0 + ∆t. Then,
we repeat this starting from t1, apply the resulting robust optimal policy from t1 to t2 and
repeat this iterative process indefinitely. So the continuous time should be discretized. Start-
ing from time t0 = 0, the time is divided in regular intervals (t0, t1, ...) with time step (control
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update time) ∆t i.e. tk+1 = tk + ∆t. To simplify the notation, we drop the t of the tk, so
Z(k) = Z(tk), k = (0, 1, ...).

• For Equation 5,

Z(k + 1) = AZ(k) +Bu(k) (14)

where,

A = ∆t ·A+ I, B = ∆tB

• For Equation 7 and Equation 8,

vmax − vref +

n∑
i=0

∆vi(k) ≥ 0, n = 0, 1, 2, ..., N ; k = 0, 1, ...; (15)

vref −
n∑

i=0

∆vi(k) ≥ 0, n = 0, 1, 2, ..., N ; k = 0, 1, ...; (16)

• For Equation 9 and Equation 10,

∆sn(k)− td · (
n∑

i=0

∆vi(k)) + td · vref ≥ 0, n = 1, 2, ..., N ; k = 0, 1, ...; (17)

∆sn(k)− td · (
n∑

i=0

∆vi(k)) + td · vref −H ≤ 0, n = 1, 2, ..., N ; k = 0, 1, ...; (18)

• For Equation 11 and Equation 12,(
I
−I

)
· a(k) ≤

(
amax

−amin

)
, k = 0, 1, ...; (19)

(
I
−I

)
· u(k) ≤

(
amax

−amin

)
, k = 0, 1, ...; (20)

where a = (a0, ..., aN ), u = (u0, ..., uN ) and I is identity matrix.
• For the cost function Equation 13,

J(k) =

∞∑
i=0

Z(k + i)TLZ(k + i) + u(k + i)TRu(k + i), k = 0, 1, ...; (21)

where L and R are weighting matrices, i.e.

L =



c2 · · · 0
c3

c1
... c2

...
c3

. . .
0 · · · c3



(3×N+2)×(3×N+2)

, R =

c4 0
. . .

0 c4


(N+1)×(N+1)
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3.2.5 Constraint combination
Then we combine all constraints into two parts: state constraints and control constraint.

State constraints

For speed constraints:

ψ
1
= (vref − vmax)

1...
1


(N+1)×1

≤ ψ1Z ≤ vref

1...
1


(N+1)×1

= ψ1 (22)

with,

ψ1 =


[1 0] 0 0 0 0 0 0 · · · 0
[1 0] [0 1 0] 0 0 0 · · · 0
[1 0] [0 1 0] [0 1 0] · · · 0
...

...
...

... . . .
[1 0] [0 1 0] [0 1 0] · · · [0 1 0]


For gap constraints:

ψ
2
= (−td · vref )

1...
1


(N+1)×1

≤ ψ2Z ≤ (H − td · vref )

1...
1


(N+1)×1

= ψ2 (23)

with,

ψ2 =


[−td 0 1 −td 0] 0 0 0 0 · · · 0
−td 0 0 [−td 0 1 −td 0] 0 · · · 0

...
... . . .

−td 0 0 −td 0 0 −td · · · [−td 0 1 −td 0]


For acceleration constraints:

ψ
3
= amin

1...
1


(N+1)×1

≤ ψ3Z ≤ amax

1...
1


(N+1)×1

= ψ3 (24)

with,

ψ3 =


[0 1] 0 0 0 0 · · · 0
0 0 [0 0 1] 0 · · · 0
0 0 0 0 0 [0 0 1] · · · 0
...

... . . .
0 0 0 0 0 · · · [0 0 1]


In this way, the state constraint can be expressed as:

−ψ ≤ ψZ ≤ ψ (25)

with,
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ψ =

ψ1
ψ
2

ψ
3

 , ψ =

ψ1

ψ2

ψ3

 , ψ =

ψ1

ψ2

ψ3


Control constraint

−u = amin

1...
1


(N+1)×1

≤ u ≤ amax

1...
1


(N+1)×1

= u (26)

4 Robust predictive control
In this section, we use a robust control algorithm to rewrite the minimax problem as a min-
imization problem subject to several LMIs constraints, following the approach introduced by
Ding et al. (2004).

After time discretization, the dynamic model is reformulated to a discrete time model shown
in Equation 14 with the constraints (15) - (20). With the combination of state and control
constraints (25) and (26), the state and control constraints are expressed as:

−u ≤ u(k + i) ≤ u, ∀i ≥ 0 (27)

−ψ ≤ ψZ(k + i+ 1) ≤ ψ, ∀i ≥ 0 (28)

where ψ is the matrix that gathers the state constraints. The notation (k + i|k) highlights the
fact that a variable at the time step k + i depends on the state at the time step k, which is at
each iteration the initial state of the system.

The minimax control is formulated as:

min
u(k),k≥0

max
[A,B]∈Ω

J(k) with J(k) =

∞∑
i=0

||Z(k + i|k)||2L + ||u(k + i|k)||2R (29)

s.t.

Z(k + i+ 1|k) = AZ(k + i|k) +Bu(k + i|k), ∀i ≥ 0

with constraints:

−u ≤ u(k + i) ≤ u, ∀i ≥ 0

−ψ ≤ ψZ(k + i+ 1) ≤ ψ, ∀i ≥ 0

ψ ≥ 0, ψ ≥ 0, u ≥ 0, u ≥ 0

4.1 New robust model predictive control strategy
Assume that after the time step k+M the system is controlled using a feedback loop that will
stabilize the system. We separate the optimization problem into two parts (before k +M and
after k +M) i.e. (Λ) = (Λ1) + (Λ2)

(Λ1) : When 0 ≤ i ≤M : min
u(k+i|k),k≥0,i=0,··· ,M−1

max
[A,B]∈Ω

J1(k) (30)

where,

J1(k) =
∑M−1

i=0 ||Z(k + i|k)||2L + ||u(k + i|k)||2R, i ∈ [0,M − 1]
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(Λ2) : When i ≥M : min
u(k+i|k),k≥0,i≥M

max
[A,B]∈Ω

J2(k) (31)

where,

J2(k) =
∑∞

i=M ||Z(k + i|k)||2L + ||u(k + i|k)||2R, i ≥M

To get rid of the max term, we need to find convenient upper bounds to both terms of the
separated cost function and that the optimal solution is the one that minimizes both upper
bounds. This allows to remove the maximization term of the cost function, allowing solve
the minimax optimal control problem as a minimization problem that is way easier to solve.
According to Ding et at.(2004), to find an upper bound σ for J2 that σ ≥ J2(k), ∀[A,B] ∈ Ω
to make Λ2 a minimization optimization by get rid of the maximum term, introduce a linear
feedback control when i ≥M :

u(k + i|k) = F (k) · Z(k + i|k), ∀i ≥M (32)

To achieve this, a quadratic function is defined:

V (i, k) = ||Z(k + i|k)||2P (i,k), ∀i ≥M, P (i, k) > 0 (33)

And then impose a bound on the cost function by:

V (i+ 1, k)− V (i, k) ≤ −||Z(k + i|k)||2L − ||u(k + i|k)||2R, ∀[A,B] ∈ Ω, i ≥M (34)

By summing Equation 34 from i =M to ∞, we find an upper bound to the max J2(k) term,
allowing us to reformulate the minimax optimization component related to J2(k) as a problem
that aims to minimize the mentioned upper bound.

max
[A,B]∈Ω

J2(k) ≤ V (M,k) (35)

At last, after turning the min-max optimization of J2(k) as a problem that aims to mini-
mize the upper bound V (M,k), then original min-max problem is turned into a new min-max
optimization:

(Λ) : min
u(k+i|k),i≤M−1,F (k),V (M,k),P (M,k)

max
[A,B]∈Ω

J(k) (36)

where,

J(k) =
∑M−1

i=0 ||Z(k + i|k)||2L + ||u(k + i|k)||2R + ||Z(k +M |k)||2P (M,k)

After this transformation, the only problem is that this procedure requires turning con-
straints into LMI that depend on the mentioned bounds. After that, we solve this problem
using toolbox CVX Research by Grant and Boyd.

4.2 Optimization
4.2.1 Without constraints
The prediction of the state Equation 14 now rewrites as:
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 Z(k + 1|k)
...

Z(k +M |k)

 =

 A(k)
...

A(k +M − 1) · · ·A(k + 1)A(k)

Z(k|k)

+


B(k) 0 · · · 0

... . . . ...

... . . . 0

A(k +M − 1) · · ·A(k + 1)B(k) B(k +M − 1)


 u(k|k)

...
u(k +M − 1|k)


(37)

or can be simplified split into above and below the dashed line, expressed as follows:[
Z̃(k + 1|k)
Z(k +M |k)

]
=

[
Ã(k)

ÃM (k)

]
Z(k|k) +

[
B̃(k)

B̃M (k))

]
ũ(k) (38)

Then according to the result from Equation 36, J(k) changes to:

J(k) = ||Z(k)||2L + ||ÃZ(k) + B̃ũ(k)||2
L̃
+ ||ũ(k)||2

R̃
+ ||ÃMZ(k) + B̃M ũ(k)||2P (M,k) (39)

where L̃ and R̃ are:

L̃ =

L · · · 0
... . . . ...
0 · · · L

 , R̃ =

R · · · 0
... . . . ...
0 · · · R


The uncertain parameter τA will take a fixed value between α and β. Let ω1 = λ, ω2 = 1−λ.

There exist l = 2 matrices Pl : P1, P2 such that (Daafouz & Bernussou, 2001):

P (i|k) = λP1 + (1− λ)P2, i ≥M

and
||Al +BlF (k)||2Pt

− Pl + L+ ||F (k)||2R ≤ 0, l = 1, 2 ; t = 1, 2 (40)

[A,B] are static so P (i|k) is constant for all i. Then let:

γ1 ≥ ||ÃZ(k) + B̃ũ(k)||2
L̃
+ ||ũ(k)||2

R̃
(41)

γ2 ≥ ||ÃMZ(k) + B̃M ũ(k)||2P (M,k) (42)

Combined with Equation 39, the minimax optimization problem without constrains is rewrit-
ten as a minimization problem:

(Λ) : min
γ1,γ2,ũ(k),F (k),P1,P2

||Z(k)||2L + γ1 + γ2 s.t. (40) - (42) (43)

Now we have to transform Equations (40) - (42) into LMIs. Define that Q1 = γ2P
−1
1 , Q2 =

γ2P
−1
2 and F (k) = Y G−1, where Y is matrix of size: (number of trains)×(Length of (Z)) and G

is matrix of size: (Length of (Z))×(Length of (Z)), where (Length of Z) = (number of trains)×
3−1. The symbol ∗ induces a symmetric structure, so wherever ∗ is found, it should be replaced
by the transposed submatrix placed in the opposite side of the diagonal of that matrix. Then
the constraint Equation 40 can be transformed into the following LMI:

12




G+GT −Ql ∗ ∗ ∗
AlG+BlY Ql ∗ ∗
L1/2G 0 γ2I ∗
R1/2Y 0 0 γ2I

 ≥ 0, l = 1, 2 (44)

And Equation 41, Equation 42 can be transform into LMIs respectively according to (Ding
et al., 2004):  L̃−1 ∗ ∗

0 R̃−1 ∗
ũ(k)T B̃T

l + Z(k)T ÃT
l ũ(k)T γ1

 ≥ 0, l = 1, 2. (45)

[
1 ∗

ÃM,lMZ(k) + B̃M,lM ũ(k) Ql

]
≥ 0, l = 1, 2; lM = 1, 2. (46)

Now the optimization problem without constrains is rewritten as:

min
γ1,γ2,ũ(k),Y,G,Q1,Q2

||Z(k)||2L + γ1 + γ2 s.t. (44), (45) (46) (47)

4.2.2 With constraints
Since now the control input are parameterized by ũ(k), Equation 27 and Equation 28 can be
rewritten on the basis of Equation 38 with i = 0, 1, ...,M − 1, which are:

−ũ ≤ ũ(k) ≤ ũ (48)

−ψ̃ ≤ ψ̃[ÃlZ(k) + B̃lũ(k)] ≤ ψ̃, l = 1, 2;

−ψ ≤ ψ[ÃM,lMZ(k) + B̃M,lM ũ(k)] ≤ ψ, lM = 1, 2 (49)

where ũ, ũ, ψ̃, ψ̃ and ψ̃ are vectors constructed using the same rule as Equation 38. According
to Cuzzola et al. (2002), assume that there exist two symmetric matrices Ql = P−1

l > 0, l = 1, 2,
two symmetric matrices {Φ,Γ} and a set of matrices {G,Y } satisfying following:[

Φ Y
Y T G+GT −Ql

]
≥ 0, Φjj ≤ ϕ2j,inf , l = 1, 2, j = 1, 2, ...,m (50)[

G+GT −Ql ∗
ψ(AlG+BlY ) Γ

]
≥ 0, Γss ≤ ψ2

s,inf , l = 1, 2; s = 1, 2, ..., q (51)

where ϕj,inf = min
{
ujuj

}
, ψs,inf = min

{
ψ
s
, ψs

}
and Φjj is the jth diagonal element of Φ,

Γss is the sth diagonal element of Γ.

The entire optimization problem is now expressed as a minimization problem subject to
several LMIs:

min
γ1,γ2,ũ(k),Y,G,Q1,Q2

||Z(k)||2L + γ1 + γ2 s.t. (44), (45), (46), (48), (49), (50) and (51) (52)

When solving this optimization problem, we give the initial state Z(k|k) and apply the
calculated optimal control u(k|k) in order to drive the system to Z(k+1|k). After this, take
then k + 1 as the new initial time step of system and repeat this iterative process.
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5 Simulation result
In this section, we declared the parameter setting, explained simulation and tuning process,
and the result.

5.1 Parameter settings
We define a platoon consisting of four trains, which contains a leader train and N = 3 followers.
We consider a homogeneous fleet, that is to say, τA takes the same fixed (but unknown) value
for all the considered trains. The desired time gap between trains is set as 1 s. For trains,
ln = 100m, ∀n, vref = 110km/h, vmax = 150km/h and the acceleration is between -1 m/s2 and
1 m/s2. For the controller, ∆t = 2s, td = 1s, smin = 5m. The actuator lag τA ∈ [0.5s, 1s] and
the total control time is 180 s. In the initial state of the fleet, all trains travel at a constant
speed equal to 110km/h with distance gaps of 200 m, and the controller virtually couples these
trains into a platoon, and the leading train tries to track the reference speed. (target speed).

5.2 Control performance for different weights
The weight parameters are manually tuned to find out the best controller performance weight
allocation, to get the impact of weights on performance, the shortest actuator lag is chosen
to reduce the impact of lag time (when τA = 0.5s). First, we chose to make each of the four
weight parameters much larger than the other three to evaluate the impact of each weight on
controller performance, the parameter values per experiment is shown in Table 1.

Table 1: Parameter values for four scenario

Scenario Safety
weight (c1)

Stability
weight (c2)

Comfort
weight (c3)

Energy consumed
weight (c4)

Penalizing the performance term of the cost 10 0.01 0.01 0.01
Penalizing the platoon stability term 0.01 10 0.01 0.01
Penalizing the comfort term 0.01 0.01 10 0.01
Penalizing the energy consumption term 0.01 0.01 0.01 10
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• Penalizing the performance term of the cost

Figure 2: Relative speed, acceleration and distance gap error for each train when performance term
is penalized

(a) Actual speed (b) Actual distance gap

Figure 3: Actual speed and distance gap when performance term is penalized

When penalizing the performance term of the cost, controller minimized the distance gap
error which are aimed at make distance gap to reach the desired distance gap quickly.
From Figure 2 and Figure 3, although the platoon complete the virtual coupling in a very
short time, the changes in train speed and acceleration exhibited extremely volatile fluc-
tuations that could not have occurred in real operation. Also, to complete the coupling
faster, the leading train and the last follower fluctuate greatly in speed and the third
follower even has frequent acceleration and deceleration in a short period of time. So, the
controller fails to provide a convenient control strategy when penalizing the performance
over the other terms of the cost function.
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• Penalizing the platoon stability term

Figure 4: Relative speed, acceleration and distance gap error for each train when penalizing the
platoon stability

(a) Actual speed (b) Actual distance gap

Figure 5: Actual speed and distance gap when penalizing the platoon stability

The stability parameter makes the speed difference between trains smaller, and it can
be seen from Figure 5 that the entire virtual coupling process has only experienced one
acceleration process and one deceleration process, and the three followers gradually move
closer to the leading train by accelerating first and then slowly decelerating. The whole
coupling process shows that the speed of the leading train changes very little, and the fol-
lowers gradually move closer to the leader. This smoother virtual coupling is also needed
in actual railway transportation operations. However, due to the long deceleration pro-
cess, the virtual coupling time reached about 100 seconds.
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• Penalizing the comfort term

Figure 6: Relative speed, acceleration and distance gap error for each train when penalizing the
comfort term

(a) Actual speed (b) Actual distance gap

Figure 7: Actual speed and distance gap when penalizing the comfort term
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• Penalizing the energy consumption term

Figure 8: Relative speed, acceleration and distance gap error for each train when penalizing the
energy consumption term

(a) Actual speed (b) Actual distance gap

Figure 9: Actual speed and distance gap when penalizing the energy consumption term

Both the comfort weight and the energy consumption weight are acceleration-related pa-
rameters and therefore exhibit similar performance. At the beginning of the virtual cou-
pling, there is a large difference in speed between different vehicles, and because these two
parameters make acceleration tends to 0, the entire virtual coupling process takes longer
to reduce the speed to target speed. So in a short period of time, the speed of the train
converged to the same but did not reach the target speed, and with a small acceleration
limit, they took longer to complete the virtual coupling.
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Table 2: Maximum relative speed, maximum acceleration vary with weight parameters tuning

c1 Max ∆v (m/s) Max acceleration (m/s2)
0.010 1.95 0.791
0.011 2.03 0.838
0.012 2.10 0.862
0.013 2.14 0.855
0.014 2.19 0.849
0.015 2.24 0.842
0.016 2.29 0.839
0.017 2.33 0.834
0.018 2.38 0.828
0.019 2.47 0.862
0.020 2.37 0.886

5.3 Controller optimization
Since penalizing the stability shows an adequate but slow control performance, we fix the weight
related to the stability term and vary the performance one to accelerate the process. We decided
to give the fixed values for the other ci, i = 2, 3, 4 under the worst case (τA= 1s) and tuning
the value of performance weight (c1) to shorter the converge time to get the optimal control
performance.

Because the output starts to show slight fluctuations when the performance parameters
reach 0.02, we choose to look for the optimal results from 0.01-0.02. As shown in Table 2,
the relative speed does not show a significant change when tuning. In order to make the train
acceleration as small as possible to ensure the comfort of train operation and the stability of
virtual coupling, Figure 10 shows that when performance parameter equal to 0.018, controller
reduces the convergence time while maintaining a small maximum acceleration.

The optimal result under the worst case shown in Figure 12, Compared to the result that
only penalizes stability term (Figure 11), the optimal result reduces the convergence time by
about 20 seconds while ensuring a smooth virtual coupling process.

Figure 10: Maximum acceleration vary with weight tuning
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Figure 11: Actual speed when penalized stability term
(τA = 1s, c1 = 0.01, c2 = 10, c3 = 0.01, c4 = 0.01)

Figure 12: Actual speed under optimal control condition
(τA = 1s, c1 = 0.018, c2 = 10, c3 = 0.01, c4 = 0.01)
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5.4 Sensitivity analysis
A sensitivity analysis of controller has been carried out to investigate the influence of different
actuator lag on performances of virtual coupling.

Figure 13: Actual speed when τA ∈ [0.5s, 1.0s] (c1 = 0.018, c2 = 10, c3 = 0.01, c4 = 0.01)

The sensitivity results show that change of actuator lag does have an impact on the perfor-
mance of the controller, mainly when the speed changes gradually become slightly fluctuating.
First, the maximum speed of all trains has increased slightly, and the leading train shows slight
fluctuations from scratch to accommodate this speed increase. Although the maximum speed
varied, this did not affect the convergence time of the virtual coupling, and the controller ad-
justed the deceleration process so that the convergence time in each experiment was almost the
same which still around 80 seconds. So, the result is actuator lag within the acceptable range
will not significantly affect the normal operation of the controller.
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6 Conclusion and recommendation
This paper proposed a robust model predictive control for a train platoon. We formulate the
robust control problem as a minimax MPC which in turn is reformulated as a minimization
problem subject to LMIs, which is the problem that is solved in this paper to calculate the
robust-optimal control policy. Through simulation, the impact of four weights, including safety,
platoon stability, comfort and energy consumed, on the controller was discussed. Through
the tuning of the weight parameters, we found that penalizing the stability of the platoon led
to a control strategy that had an appropriate performance. On this basis, by adjusting the
safety weight parameter, the time required for virtual coupling is greatly reduced, which can
make controller efficiently and safely completes the virtual coupling of the train platoon. In
the sensitivity analysis, the flexibility of the model is verified, and the train control within the
actuator lag range can be completed. This robustness to lag times can improve the efficiency
of train virtual coupling, which may have a positive impact on railway operation and capacity
of rail traffic.

This controller also has some limitations. First of all, the control process is to couple several
trains running smoothly into a platoon. In this process, whether the leading train might have
other heterogeneous behaviors is not considered, because the leading train and follower are
controlled together. The second point, this linear system is a simple model, controlling the
acceleration of the train by traction and braking force was not realized. Also in our assumption,
the track is straight and flat, some of the effects of turning behaviour and track gradient are
not considered in the model so the model can not realize online implementation so far. Finally,
the calculation time of each time step of this model is about 2.75 seconds, but one time step
is 2 seconds, which means that there is a time gap of 0.75 seconds, which makes it hard
to calculate the next behavior of the train in time and transmit it to the operating system.
Perhaps a more advanced on-board equipment is required to complete the calculation or further
simplification of the calculation process is required. However, despite not being suitable for an
online implementation, the framework presented here constitutes an initial step towards virtual
coupling platoon formation under uncertainty.
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