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Summarz

After the study of fully developed and developing steady laminar flow

in curved channels of shallow rectangular wet cross—section (see earlier reports

in this series), steady turbulent flow in such channels is investigated

as a next step towards a mathematical model of the flow in shallow river
bends.

A mathematical model is developed for this type of flow, using a turbulence
model with a prescribed distribution of the turbulence viscosity and
starting from the same similarity hypothesis as in the equivalent laminar
flow models. The influence of various characteristics of the turbulence
model and the admissability of the most important assumptions underlying
the mathematical system that is solved are tested for the flow in a rather
sharply curved flume with rather strong effects of curvature. The perform-—
ance of the model is tested by comparing its results with experimental data

from various laboratory flumes.

The turbulence model appears to be of great importance to the secondary flow
and the xelated quantities.f&he similarity hypothesis yields: satisfactory
results for the main flow, but it needs to be refined for the calculation

of the magnitude and the direction of the bed shear stress.

The model appears to be applicable to curved channels of not very sharp
curvature (i.e. flows with a small or intermediate equivalent Dean number),

although the secondary flow intensity tends to be underestimated.



1. Introduction

1.1. General

The flow and the bed topography in curved alluvial river channels play

a prominent part in several aspects of river engineering, such as
navigability, bank protection and dispersion of pollutants, Hitherto,
engineering problems concerning river bends are mostly investigated using
physical scale models, even though the complex character of the flow may

give rise to scale effects that make the model data hard to interpret

in prototype terms. The increasing facilities of electronic computers,
however, make it more and more attractive to develop mathematical models.

They would facilitate the understanding of the physical phenomena and could

be used together with or even instead of physical models.

As it is impossible to reliably predict the bed topography withouth knowing
the flow field, an adequate model of the flow in a curved channel with an
uneven bed must be developed first. Assuming disturbances of the flow to travel
at a much higher celerity than disturbances of the bed, as is the case in most
of the navigable alluvial rivers, the bed can be considered as being fixed
when computing the flow. In addition, the flow can be assumed to be steady,
which is allowable under many practical conditionms.

The development of a mathematical model of steady flow in river bends with a
fixed uneven bed is one of the research projects of the Laboratory of Fluid
Mechanics of the Delft University of Technology, as a part of the river bend

project of the joint hydraulic research programme T.O.W.x).

1.2. The present investigations

After studying fully developed and developing laminar flow in curved channels
of shallow rectangular cross—section (DE VRIEND, 1978a and 1978b), the
development of a mathematical model of steady turbulent flow in such channels
is the next step on the way to a mathematical model of the flow in shallow

river bends.

x) (Toegepast Onderzoek Waterstaat), in which Rijkswaterstaat, the Delft
Hydraulics Laboratory and the Delft University of Technology participate.



Passing from laminar to turbulent flow implies an essential
complication of the problem. Steady laminar flow is properly

described by the time-independent version of the Navier-Stokes
equations. The turbulence-averaged motion in steady turbulent flow,
however, must be described by the Reynolds equations, in which the
Reynolds stresses account for the turbulence. These equations can only
be solved if additional assumptions are made for the Reynolds stresses
(the turbulence model). Establishing a turbulence model that is
appropriate to the type of flow considered here is one of the

purposes of the present project.

Another purpose of this step is to further develop the computational
procedure needed to solve the mathematical system, which is essentially
complicated by the introduction of turbulence, or rather: of the
turbulence model.

Furthermore, the development of a model of turbulent flow in curved
rectangular channels is attractivebecause it provides the possibility of
testing the model, and so the turbulence model and the computational
procedure, against laboratory experiments, many of which were carried

s out in rectangular flumes.
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2. Mathematical formulation of the problem

2.1. Channel configuration and coordinate system

The present part of the investigations on flow in river bends is to deal
with a computational technique for turbulent flow in curved shallow
channels. From this point of view a free surface and more or less arbitrary
channel patterns and bed configurations can be expected to be only complic-
ating factors that will not essentially influence the computational method.
Therefore considerations are limited to channels of uniform rectangular

wet cross-section with a channel axis consisting of circular arcs with
radii of curvature Rc x). Accordingly, the coordinate system to be used in
the mathematical formuEation of the present problem consists of a set of
cylindrical coordinate systems, each of which has a vertical axis that

goes through the centre of the circle forming the channel axis of the
relevant section (see figure 1). For the sake of simplicity, the explanation
of the model and the underlying assumptions will be limited to one channel
section with a circular axis of radius Rc, using a cylindrical coordinate
system (R,$,z) with the z-axis vertically upward and z=0 at the surface
(figure 2). If necessary, a transformation to curvilinear, stream-oriented

coordinates will be carried out.

2.2, Differential equations

The mathematical model is based on a set of differential equations
representing the conservation of mass and turbulence-averaged momentum

in stationary turbulent flow of an incompressible fluid. Anticipating on
what is stated in chapter 3 on the modeling of the Reynolds-stresses, a
scalar turbulence viscosity is assumed to be applicable. If At denotes
this turbulence viscosity, n the dynamic molecular viscosity of the fluid,
p its mass density, g the acceleration due to gravity, p the pressure

and v, v, and v, the velocity-components in R-, ¢- and z-direction,

R* ¢
respectively, the differential equations read

v v v v
l_¢, R, R _"z_
Rag 'R 'R 3 0 (2.1)

Rc may be chosen infinitely large, so that the relevant k-th channel section

iskstraight.
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vv, Rey —B_ 0 _13 el 2 S R_2 "4,
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R™ 3¢ R 9z

2.3. Boundary conditions

The boundary conditions at the surface arising from the impermeability

of this surface and the vanishing of the shear stresses along it read

v =0. ' {2.5)
% z=0 -
and
ov - ov.
tagm 28 =05 {@agm) 5| =0 (2.6)
z=0 z=0

» respectively. As the surface is kept fixed, it must be considered as
a frictionless rigid plate exerting normal stresses on the fluid. Consequently,

the dynamic free surface condition p=0 is not applicable here.



The boundary conditions at the fixed boundaries stem from the

impermeability of these boundaries and the noc-slip conditions.
v.=0; v =0; v, = 0 for z = -d and for R = Rc~i'§ (2.7)

in which B denotes the channel width. It should be noted that,
depending on the turbulence model adopted, the above conditions
at the fixed boundaries will necessitate a special treatment of

the flow in the vicinity of these boundaries (see chapter 3)).

In addition to these '"lateral" boundary conditions, inflow and outflow
conditions must be given. Most of these conditions will be formulated in
a later stage. Only the discharge Q is mentioned here, since it plays a

part in the integral conditions of continuity (cf. equation 2.1).

Rc+B/2 0

J dR J v¢dz = Q (2.8)
'RC-B/Z -d

and it will be used in the normalization of the system.

2.4, Normalization

The normalization carried out in order to make all variables dimensionless
and to estimate the order of magnitude of the various terms in the
differential equations is almost the same as in case of laminar flow

(DE VRIEND, 1978a and b).

In summary:

Vw ~ with V = Q/Bd &2,9)

_d .
v¢ = Vu; vR =X V v; vz R
c c
- 9__13a - a__13
y R Rc = dg, so 3R ~ d a8} 2 dg, so z " d (2.10)
1 _ 11 - R€a=8_) = 13 _ 1.3 _1 13
R TR T § = R(4=#g) = Byss s0 g 3% "R, % R T (.10

in which S denotes the longitudinal coordinate and R. is a characteristic

0
radius of curvature of the channel to be considered.
The only difference from the laminar flow case lies in the normalization
of the turbulence viscosity and the total pressure. The turbulence

viscosity is normalized by



At *n=Aja (2.12)

, in which KO denotes the overall mean value of At+r1 in the equivalent
fully developed flow in an infinitely wide straight channel. Supposing

the total pressure to be normalized by
P +pgz = Pp (2.13)

» the longitudinal momentum equation for fully developed flow in an
infinitely wide shallow channel reads
AV 2
P 9p 0 9 u 9a du

0 = - —— + (@ =% + = 2 (2.14)
, PRy 5~ g2 og2 %% 3
The pressure gradient term and the diffusion terms in this equation must
be of the same importance. As the model to be developed should include
the flow case described by (2.14), the scalefactors of the pressure gradient

term and the vertical diffusion terms are chosen equal. Hence

R R
= 0 _ .2 1 0
P AOV?‘OV Re. d (2.15)
0
in which Re0 = de/K0 can be considered as a Reynolds number based on
the mean turbulence viscosity.
Defining e = d/Ro, the normalized system of differential equations and
boundary conditions becomes
1 3Ju v € ow
—  — — — + —_— = .
rae "o TrY Tag 0 (2.16)
2 2 2 2
u Ju ou du . € 1 9p 9 u du € u
€Re, (cr +tVFEp+tWw o +t—-uw) = - — +ta(— +—S + 55—+
9
0 'r 3¢ £ 8; r r 3¢ 3§2 ag2 r2 8¢2
2
E.@E.-E.Eu.pﬁz.a_! +2_€_E§_C£(_l__3_l£ y_)+ig.(.a_u_§_u+_e_y_)
r 3¢ r2 r2 1) r 9¢ 'r 9¢ r 9§ "9 r r 9¢

(2.17)
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B/2d 0
[ fued
-B/2d e |
du _ . 9V _ _
w Oia’é'g_o’aa; 0 at ¢ 0
u=0; v=0;w=0 atg =-1 and at. £ = *B

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



3. Turbulence model e

In case of turbulent flow, two types of diffusion terms occur in

the turbulence-averaged momentum equations, viz. the molecular diffusion
terms, which are the same as in case of laminar flow, and the turbulent
diffusion terms érising from the net exchange of momentum due to
turbulence (Reynolds stress terms).

On the analogy of the viscous stresses, the components of the Reynolds
stress tensor can be assumed proportional to the relevant components of

the rate-of-strain tensor of the turbulence-averaged flow. For instance

1
57 'ﬁ'é'(r) (3.1)

in which v; and v; denote the turbulent fluctuations of v¢ and v,
respectively. The coefficient of proportionality At’ called eddy viscosity
or turbulence viscosity, is assumed to be a scalar quantity that depends
on the turbulence-averaged flow. Although many objections can be made

against this eddy viscosity concept, it appears to yield a satisfactory

- description of the mean flow properties in many cases of turbulent flow

(HINZE, 1975).

As At depends on the mean flow, which in turn depends on At’ the mathematical
system is not closed until either a direct relationship between At and the
mean flow properties has been established or additional differential
equations have been formulated from which such a relationship can be
derived (transport equations, describing the production, transport and
dissipation of turbulence properties; see, for instance, LAUNDER, AND
SPALDING §l972)). As a direct relationship between At and the mean flow
properties is mathematically simpler, such a relationship will be adopted
here. Only if this concept proves to fail, more advanced turbulence

models will be used.

To obtain an impression how At could be related to the mean flow, fully
developed turbulent flow inan infinitely wide straight channel is

considered. The streamwise momentum equation for that flow case reads

——

0=__§2+a82u , da 3u (3.2)
9s ac2 ¢ 9g



If the molecular part of the viscosity is neglected and q is

related to the mean flow by the mixing length hypothesis.

u

2 2 |9
a K ¢ (1+g) T

Re0 (3:3)

s k denoting Von Kdrmdn's constant, then the vertical distribution of u
is a logarithmic function. Since this distribution cannot satisfy the
no-slip condition at the fixed bottom g = -1 (cf. Equation 2.22), the
velocity is prescribed to vanish at a level ;==;“ slightly above the
bed, so that

1
il
Re 1
l+g

If Chézy's coefficient C is adopted as an indication of the bed

resistance, ;x is given by (DE VRIEND, 1976)

Tt = -1 + exp (-1 --5%) (3.5)

and the velocity distribution can be expressed as

u=u {l +'—'<%+-:<%ln (1+2)} ' (3.6)

, in which u denotes the depth—averaged value of u (E = 1 by definition
in the present case). Substitution of this result into (3.3) yields

34
a=- —-(—:—& c(1+g) Re0 (3.7)

So the distribution of g along the vertical is a parabola vanishing at
the bottom and at the surface and having its maximum at half depth.
The scalefactor KO of the turbulence viscosity was defined such, that
in the present flow case @ = 1. Hence

6 C _
Reo ?7§ and a = -6z (1+g) | (3.8)
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(cf. ENGELUND (1974) and RASTOGI AND RODI (1978), applying a
turbulence viscosity with a depth-averaged value corresponding
e s . C
with Re0 13 VE)'
In case of a straight channel of finite width, but without secondary

flow, the streamwise momentum equation for fully developed flow becomes

0= - P, Bzu + 9a du 82u + 92 3u

a——+—-—+qg — (3.9)
9s 3;1 9C 9L 3&2 9 9

and the equivalent of the mixing length hypothesis (3.3) reads

1
a=12 (& HH 2 (3.10)
in which Zm denotes the mixing length. For a given distribution of lm,
equation (3.9) and (3.10) can be solved to yield the transverse
distribution of u. The choice of Zm’ however, introduces important
uncertainties, so that the computational effort needed to solve the
rather complicated system (3.9)-(3.10) may be unjustified. In that
case, either more complicated turbulence models have to be applied (see,
for instance, RASTOGI AND RODI (1978) and LESCHZINER (1978)) or more
crude, but simpler models may just as well be used. As in the present
curved flow computations the modelling of turbulence is not expected to
be of primary importance (RODI, 1978'), it will be attempted to use models
that are simpler than (3.10).
The channels to be considered are shallow, so the vertical exchange of
momentum due to turbulence will be predominant in the greater part of the
cross—section. Only at relatively small distances (order of magnitude d)
from the sidewalls the influence of the horizontal exchange will be
perceptible. Although, especially in curved channel flow, it may be
necessary to describe the flow in the sidewall regions accurately in
order to have a good prediction of the flow in the rest of the cross-section
(DE VRIEND, 1978a), this accurate prediction in the sidewall regions in
itself is not a purpose of the investigations. Therefore it will be attempted
to apply a turbulence model similar to the one for infinitely wide streams

(see equations 3.8) to shallow channels of finite width, as well.
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The vertical distribution of the turbulence viscosity is taken the

same as in the fully developed flow case treated in the foregoing, i.e.
a~ 6g(l+g) (3.11)

It should be noted, however, that this is a rather arbitrary choice. As

an alternative, the vertical distribution of a could be derived from a
turbulence model that is different from the mixing length model under-

lying (3.11). A model that was applied with success in fully three-
dimensional computations of curved channel flow (PRATAP, 1975; PRATAP

AND SPALDING, 1975; LESCHZINER, 1978) is the so-called 'k—eg-model'

(LAUNDER AND SPALDING, 1972; RASTOGI AND RODI, 1978; RODI, 1978). This
"higher order" turbulence model is based on the solution of the turbulent
kinetic energy k and its rate of dissipation ¢ from two transport equations
and the determination of the eddy viscosity from an algebraic relationship
with k and €.

If the free surface is assumed to be a plane of symmetry, as was done by

all the aforementioned authors dealing with three-dimensional curved flow
computations, the eddy viscosity distribution found from the k-e-model appears
to differ considerably from the parabolic distribution (3.11), especially

in the upper half of the vertical (see figure 3). Nonetheless, the differences
between the corresponding velocity distributions are rather small, which
suggests the distribution of € in the upper half of the vertical to be

not very important.

Regarding this conclusion, the parabolic distribution (3.11) is adopted, mainly
because of its simple form. In a later stage, however, the influence of
replacing this distribution by the one found from the k-e-model will be
investigated.

In the shallow flows considered here, turbulence is mainly generated at the
bottom. Therefore it is rather obvious to assume a relationship between the
turbulence viscosity and the bed shear stress: At is taken proportional to the
bed friction velocity. In case of fully developed, infinitely wide streams,
the normalized friction velocity u equals Vg/C, so that it seems logical to

describe the normalized turbulence viscosity in channels of finite width by

a = —6%; u_t(1+7) o (3.12)
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Although the quantity CuT//g is not always equal to unity in the

flows to be considered, it will be of the order 0(1), so that the
turbulence viscosity is adequately normalized in this way.

The eddy viscosity distribution (3.12) implies that a goes to zero

at the bottom, where 1+z goes to zero, and at the sidewalls, where

the bottom friction velocity u vanishes. This gives rise to
difficulties when attempting to impose the no-slip conditions there

(cf. the problems near the bottom in case of uniform flow as discussed
earlier in this chapter). LAUNDER AND SPALDING (1974) suggest the use of
a "wall function technique" in order to avoid these difficulties: the
distribution of the velocity near a fixed boundary is given as a
function of the distance to that boundary. For smooth walls the following
"universal law of the wall" (RASTOGI AND RODI, 1978) is widely used:

U

o oL induE
Upes = = In(Ey") (3.13)

s in which: Ure resultant velocity parallel to the wall,

S

resultant friction velocity for the wall,

ET = roughness parameter (= 9 for smooth walls),
y+ = UT;/v = dimensionless wall distance,

; = wall distance, ‘

v = kinematic viscosity of the fluid,

As in alluvial rivers the bottom uses to be rough, however, a rough
wall equivalent of (3.13) or a generalized form holding good for smooth
and for rough walls is needed. Therefore the following generalized wall

function is adopted:

(=]

N
=t (kC y
Ures = : {75 + 1 + 1n d} (3.14)

(cf. the logarithmic velocity distribution (3.6)). Rewriting this expression

into the form of (3.13) yields

U n
=L n@E*Y)  wi * - s 3.1
Ures " In(E d) with E exp(l-PVE) (3.15)
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In case of a smooth wall Chezy's factor can be approximated by

C Urd
r i 2.5 In(3.7 —-) (3.16)
, so that
x Urd .
E = 10 S (3.17)

, which is almost in accordance with the aforementioned value of
9 for E.
The rough wall approximation of Chezy's factor given by CHOW (1959)

reads

c_ . d |
Vg = 2.5 In(12.2 9 (3.18)

» in which k denotes the Nikuradse sand roughness. Then

.

d
E® = 33 2 (3.19)
so that (3.15) can be elaborated to
UT 12

The dependence on the dimensionless wall distance 97k is in accordance
with the theory of turbulent boundary layers along rough flat plates
(HINZE, 1975).

In order to have an indication of the performance of this turbulence model,
it is applied to fully developed flow in a straight shallow channel.
Assuming the logarithmic distribution (3.6) to hold good for the velocity
in any vertical, equations (3.9) and (3.12) can be elaborated to

du, 6

- JURTY W | g, /8 a_ R S A
0 a 6 T gil+zg) {l*‘KC + C In(1+zg)} 3E u 3E c uu (3.21)
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As the velocity has the same vertical distribution in all verticals,

the bed friction velocity will be proportional to u. For the logarithmic

velocity distribution adopted, the constant of proportionality equals

Y
c: -

Averaging equation (3.21) over the depth of flow then yields

__® 1/g 3 ~du _ . /g=2
0=-3g* U+g0 (wap) 6 ¢cu

kC” 09g 9g

The distribution of u near the sidewalls is given by

B/2d+§

A

3

€

|A

u
ZW {5% + 1 + 1n(g + B/2d)}

u
_ 1 ww| (kC _
B/2d-§ =k g * 1 * In(B/2d = £)}

, in which ;rw is the depth-averaged sidewall friction velocity. _

The system (3.22) - (3.23) contains two unknown constants, viz.

3p

s ’

which can bé determined from the integral conditions of continuity, and

uTw , which must be estimated or determined from an additional condition

near the sidewalls. Such an additional condition can be obtained, for

instance, by assuming the regions where the depth—averaged velocity is

described by (3.23) to overlap with the region where equation (3.22) must

be solved. In that case (3.23) can be imposed not only in the points of

the computational grid nearest to the sidewalls, but also in the points

one step further inwards. Schematically

- — equation (3.22) ={ .
i e —a — o — — — *-—ae E
k(3.23)y k(3.23)3

In figure 4 the results of this depth-averaged computation, the details

of which are given in Appendix A, are compared with experimental data for

a narrow, smooth-walled pipe (TRACY, 1965; height/width = 6.4; C = 60 mi/s)

(3.22)

(3.23)
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and with experimental data as well as computational results®) for a
shallow rough-walled open channel (RODI, 1978; depth/width = 1/30;

C = 20 m*/s). The differences between the measured and the predicted
depth-averaged velocities occur within a distance d from the sidewalls,
but even there these differences, which are likely to arise mainly from
the secondary flow due to the transverse anisotropy of turbulence in

this non-circular conduit (GESSNER AND JONES, 1965; TRACY, 1965;

GERARD, 1978), never exceed 157 of the overall mean velocity. In addition,
only very small differences are found between the present results and those
obtained by the depth-averaged k-e-model.

Regarding this positive result, a generalized version of the turbulence
model used here will be applied in the curved flow computations.

The turbulence viscosity in this generalized model is described by
a =-65-U_z(1+) (3.24)
Vg 1

» in which UT denotes the resultant bed friction velocity. The velocity

distribution near the bottom is assumed to be given by

(=]

. - _T (kC .
Ueslz <~ 145 "% {775' + 1 + 1In(1+7)} (3.25)

* 5 Uoos denoting the resultant velocity parallel to the bottom. If the

bottom is horizontal, this condition can be split up into

u
T KC
uIc < -1 46 l—<— {7§ + 1 + ln(l'f'C)} (3.26)
v
: T kC
V_lC < -1456 —K-— {75 + 1 + 1In(l+g)} (3.27)

» Where u. and ev_ are the longitudinal and the transverse component
of UT, respectively. These components are determined from additional

conditions obtained by assuming an overlap of the region where (3.25)

From a mathematical model based on a depth—averaged version of the

k-e-model (RASTOGI AND RODI, 1978; RODI, 1978).
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holds good and the region where u and v must be solved from the
system of differential equations (see also Appendix B).

The velocity distributions near the sidewalls are generalized to

s B_
u|€£-B/2d+51 ===l In(z=+ )} (3.28)
w
1l (kC B
¥|e< - B/2d+5, ~ Tk g + 1+ 1InGGg+ &) (3.29)
Yrr (kC B
“|53_B/2d-ar=" ~ g 1+ InGg-eN (3.30)
w
1r kC B
wliiB/Zd‘ér - {75 + 1+ InGGz- )} (3.31)
, where Uy and ew , are the longitudinal and the vertical component
of the friction velocity at the left wall and u and ew_, are the
components at the right wall.
Averaging (3.28) and (3.29) over the depth of flow yields the following
generalization of (3.23):
= _ 11 (xC B
u|§_§_"B/2d+61 e {75 + 1+ In(GGz+ £)} (3.32)
o ;tr kC B
“lgis/zd-ar = - gt 1+ InGg-8) (3.33)

The wall friction velocities th and ;Tr are determined from additional
conditions obtained in the same way as in the case of straight channel
flow discussed before.

The wall function approximations used for the velocities parallel to the
fixed boundaries of the flow have implications for the velocities normal

to these boundaries, as well. The equation of continuity in the bottom layer,
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for instance, can be elaborated using (3.26) and (3.27) to yield
an expression for the vertical derivative of w, which can be

integrated to

=-J (EZL 3 = + 1.321)(1+ ) {KC*.l (1+2) }
Vgm1es T Tk GE T Vo T rag ) (B (gt in(ie) (3.34)

Similarly, the radial velocity in the sidewall layers is given by

du \%
L1 1 "l tl, B kC B
v|€§—B/2d+és1 T Gy T ) @at® gt InGg R} (335
du ow
1 3 M Pp B okC, B
v|E;1B/2d-<sr c Gag tag 2Gam® gt InGg-e) (3.36)

The shear stresses at the fixed boundaries of the flow are related to the

wall friction velocities through the definition

}

u = |IT
T. .| res es
res

sign(rr ) ' (3.37)
On the other hand the shear stress components are related to the corresponding
components of the rate of strain through the eddy viscosity. The bottom

shear stress components, for instance, follow from

5 a du . a EAY
T = lim — — 7, = lim —— — (3.38)
b¢ r4-1 Re, 14 b ri-1 Reoﬁac

These expressions can be elaborated using (3.24), (3.26) and (3.27), to
yield

.,
T, , = Urur’ Tbg = Urvt and hence Ty = UT (UT> 0) (3.39)

res

b¢
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, which is in accordance with (3.37).
The shear stresses at the left wall can be determined in a similar

way. Assuming a in the wall region to increase linearly with the

distance to the wall.

= B_

ge-p/aars, = WUr1 Q@ * R (U 2 O) (340}

, in which UTl is the resultant wall friction velocity, these shear

stresses are given by

T,, = lim .. 2. U.,u_.; T, = lim 2.3, U .w (3.41)

s == .
1¢ £E4-B/2d Re, 93¢ tltl’ "l E4-B/2d Re, 9E tltl
Similarly, the shear stresses at the right wall are
and T . = |u“|wTr W . <0 (3.42)

Tr¢ - IUrrluTr

Both (3.41) and (3.42) are consistent with (3.37).
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4, Simplification

The normalized system (2.16) through (2.22) will be simplified using
the experience gained in the development of the laminar flow model

(DE VRIEND, 1978b). The simplifying assumptions that have proved to be
applicable in case of laminar flow are supposed to hold for turbulent
flow, as well. As in the laminar flow case, the applicability of these

assumptions will be verified in a later stage.

4.1, Main and secondary flow; equation of continuity

To allow for the simplifications to be carried out, a main and a
secondary flow are‘distinguished. The main flow is defined such, that
its horizontal component is the component of the velocity in the
direction of the streamlines of the depth—averaged flow, to be called
"streamwise direction'" hereafter (see figure 5). The secondary flow is
defined in planes normal to this streamwise direction.

According to this definition, the vertical distribution of the main flow
may vary in the streamwise direction. Consequently, the main flow may
have a non-zero vertical component. In accordance with the laminar flow
case, where it was shown to be negligible, this vertical component

of the main velocity is neglected. Then the following separation between

the main and the secondary flow can be made

2 _ .
u=u +e u Vo=V + v W= W (4.1)
so that
1 aum avm £
-;—ST+-5-E—+;Vm=O (4.2)
e2 aus avs " aws
T 5 "% ‘r¥staw O -

Thus the equations of continuity for the main and the secondary flow are

separated.
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As terms being an order 0(52) smaller than the leading terms of
the same type in the same equation will be neglected in the present

model, the first term of equation (4.3) can be omitted to yield

S_
3% r¥s‘tag "0 (4.4)

4.2, Simplification of the momentum equations

Substituting definition (4.1) into the normalized momentum equations
(2.17) through (2.19) and neglecting terms being an order 0(82) smaller
than the leading terms of the same type in the same equation, these

momentum equations are reduced to

um aum aum o aum aum &
eReOQF_ 9¢ * vm 9 +'; Vmum * vs 9 * Vs g * ;-vsum) -
du Jdu
1 3p 2 Ja m € 9a  m
- B [ - — ol A .
rae” Yimtaw GE W ‘Y (45

ov oV oV EAY u_ v v v v
BRe ((B_m M _m,, B, ,m_s_ . _S _S —8
€ %' 39 m 3E s 9t st T 9 T s 9€ s o
2 ui 3p 2 2 2 € aum 52 2a aum €
TE R T T T A Ve T 2R T ey g T Y
v oV v v ow
2 3a m s 2 da m s s
— (— + ) + — + + 4.6
t2e o Gt e 5 Gz Yt (4.6)

u_ ow ow ow ow 2 du

3p. (LM __s _s s Sy __8% 2.2 ., € da_'m_
e RT3 T VmaE Vs Vs ag ae T E e N, r 3¢ oC
ov ov ow ow
2 3a m s s 2 3a s
- + — 4.7
5t g Tog Tt (4.7)

FIAE)A
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2 2
in which V% = 2—5-+ 3—5 +
T 9g

R|m

2.
3E

According to the conclusions drawn from the investigations of
fully developed and developing laminar flow, the transverse inertia

of the secondary flow, i.e. the terms with

AV v ow ow
s w s v S W s
s 9f ’ s o ’ s 3E °’ s 9L

v

in equations (4.6) and (4.7) can be neglected (DE VRIEND, 1978a), but

the streamwise inertia, i.e. the terms with

u_ ov oV u  ow ow
m s s m s S

- v —

r 9¢ > 'mE ’ T 03¢ ’ 'm 9

must be retained (DE VRIEND, 1978b). Hence the transverse momentum

equations can be simplified to

3 um avm avm avm avm um avs avs
€Reg &~ 35 *Vmae TVsTE Vs 'T s mag )t
2 ui ap 2 2 2 € dup €2 3 n e
TERe g T T T TR s T 25 ) Ty 3 B T r
v v v v ow
2 Ja m s 2 da m s S
v2et g Gt v o G tar ta) (4.8)
ow ow 2 Jdu
3 m_s S, _ _9op 2 € 3a _m
eRey (7~ 35 m 3E o TeRy v, * YA
: EAY v ow ow
2 3a m s s 2 da s
e 9 Gr Y ‘)t (4.9)
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4.3, Transformation to streamwise coordinates

In order to gain more insight into the system of differential equations,

a transformation to the stream-oriented curvilinear coordinate system

(n, 8, t) is carried out. Herein s denotes the distance, normalized by

Rc’ along the streamlines of the depth-averaged flow and n denotes the
distance, normalized by d, along the normal lines of the depth-averaged
flow“).

If gm and %mi-gs are the horizontal velocity components in s- and n-
direction, respectively, %m is identically equal to zero by definition.
Then the transformation of the equations of continuity (4.2) and (4.4) and

the momentum equations (4.5), (4.8) and (4.9) leads to

N N
Ju u
.—E-——F—l=0 )
38 r (4.10)
n
" I
v ow
on r s T (4.11)
8
", n N
Jdu ou du
R m v m_e v mo 32 2n
€ eO(u 9 * Vs o r, Velm ¥ s a;) 9s * avz“m *
N n N
du u du
da m m tled m
— e e P
* n (3n ers * 9% 9z , (4.12)
" N2 "
Vv u W
3 s 2 m_ _9p 2 20 m
€ Re, mas+€Reo§»‘s‘ an T €@ (Vv +529) +
" ~ n
v u A ow
2 da s m 2 da s s 2 da 0 € N
+ 2= (—=2-2 L£Z (o o s == : =
an Com rn) te g G twmt o, + 2 R_ Uy (4.13)
ow v ow ow du
3 v s ap 2.2 2 da s § 2 3a s 23 m
R —— T — + S —— p——.-<Y Pyt —— — —_— ——
€ Reg U — 5z T € av, wote o (BC * e ) + 2¢e 5T 3% te 53 Y3 (4714)

8 increases in.the main flow direction, n from the left.bank on

(see also figure 5).
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2 2 ou
inWhiChV§=§—f+'§"§"§,_"g'ﬁ and m=—-57+§—t
14 on 8 n s W

and where l/rs and l/rn denote the curvature, normalized by l/Rc, of

the streamlines and the normal lines, respectively“).

These transformed equations are very similar to those for laminar flow

(DE VRIEND, 1978b), as was to be expected. The only difference lies

in some additional terms due to the variation of the eddy viscosity.

The transformation hardly affects most of the equations; only the "radial"
momentum equation is simplified comsiderably. It becomes evident from the
transformed equation (4.13), in combination with (4.14), that the sources
of secondary flow are the main flow curvature and, to a much lower extent,

the streamwise variation of the main flow vorticity.

4.4, Similarity approximation

A similarity approximation for the main and the secondary flow has proved
to be most effective in computations of laminar flow in curved shallow
channels (DE VRIEND, 1978a and 1978b). As measurements in turbulent flow
suggest such a similarity approximation to be applicable to turbulent
flow, as well (DE VRIEND AND KOCH, 1977 and 1978), the main velocity is

approximated by

’

u =§Gm FLe) and v = ;m Fi¢9)

Regarding the equation of continuity (4.4), the secondary flow must have a

The curvature of a horizontal coordinate line is taken positive when the

outward normal of this line is directed opposite to the positive direction
of the other horiozontal coordinate line. In other words: the curvature of
a normal line is positive when the streamlines converge and the streamline

curvature is positive when the normal lines converge.

(4.15)
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scalar stream function y', which can be defined by’ﬁ

=13y’
and ws =S 5E

<
HI—
X2

As the scalefactor of the main source term of the secondary flow (viz.
the centrifugal term in equation (4.13)) is proportional to Reo, it is

obvious to define a stream function y = q)'/ReO instead of y', so that

S r S r

Re Re
14 9t

Accordingly, the similarity approximation for the secondary flow reads

O
<1

v=vg@; v, =- 0 *i g(z)

w
S S r

Substitution of (4.15) and (4.18) into the ¢-wise momentum equation (4.5)

yields
eRefzcr*g; ;.g.g+.§.a;)+eReg{-f3%srk<3“ £3) +
- - 2
Hf.E._i S w3 f , 3a" 3f
3C T o) g Tel e ) e e "
a" {U (_.?;—_.;.Eé). EE'E. (_a_g__g_a)}
f ag2 T 3 ¥ T

*) There are other possibilities, but this is the only one in which lines

of constant ' represent streamlines of the secondary flow (see also

DE VRIEND, 1978a and b).

(4.16)

(4.17)

(4.18)

(4.19)
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s in which a" = a/UT = --6Cg—i z(1+g).

This equation shows that, as in the case of laminar flow, the
importance of the secondary flow advection terms in the main flow
equations is indicated by the factor sReg, i.e. by the square of the

Dean number De,. = Reo/e.

0



- 36 =

5. Solution procedure

The mathematical system to bé solved in order to compute steady turbulent
flow in a curved channel of shallow rectangular cross-section consists of
the two equations of continuity (4.2) and (4.4) and the momentum equations
(4.5), (4.8) and (4.9), combined with a given distribution of the eddy
viscosity (3.24), the integral condition of continuity (2.20), the
boundary conditions (2.21) and (2.22) and a number of inflow and outflow
conditions to be discussed later. This fairly complex system of non-linear
differential equations requiresan iterative solution procedure, the most
important elements of which will be discussed in the present chapter. An

overall review of the procedure is given in section 5.6.

5.1. Vertical distribution of the main velocity

In view of the experience with similar computations for laminar flow

(DE VRIEND, 1978b), the similarity approximation for the main flow (4.15)

is adopted ‘for the main flow computation. After this computation has

been completed, the vertical distribution of the main flow and the bed shear
stress will be corrected for the influence of streamwise accelerations
varying over the cross—section.

Adopting the similarity approximations (4.15) and (4.18) for the main and
the secondary flow and neglecting terms being an order 0(52) smaller than
the leading terms of the same type, the ¢~wise momentum equation (4.19) can

be rewritten into an equation for f:

Gu o &F 2a" | pe2 B3 4 df _ udu,ou e
uu a 3;2 + {uu oz eRe — 5 gl 5z eR to0 TV TT uv)f'2

= N - - du
cReZ ¥ (34 L E ) g 7w edu Tt odu_ g "
* I:‘Reo r Ge *r Wt (agz T30 *aE Ge o r WS

(5.1)
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The main flow inertia term in this equation can be linearized

by setting

FfeYr (5.2)

» in which ? is a known estimate of f (for example: the distribution

found in the foregoing iteration step). Then equation (5.1) can be

considered as an ordinary second-order linear differential equation for

f as a function of ¢ that can be solved of u, u v, ¥ ?,.g and the tangential
pressure gradient are known.

The relevant boundary conditions, to be derived from (2.21) and (3.26)-(3.27),

are

a"-g{=0 at ¢z =0 (5.3)

f=k(l+-'/5-+-'—/—51n6) at ¢ = -14§ (5.4)
m kC kC 0 0

, in which 60 is a small normalized distance to the bottom, within the range
of validity of the wall function approximations (3.26) and (3.27). The
constant km is related to the ratio of the friction velocity and the depth-

averaged velocity through

<

l]'_‘::

C
g

C T
km 75 4 5—- (5.5)

e

This constant is determined from the additional condition (see chapter 3)
K

f'= km {l+{%+1/%1n(l+ r,l)} at z;==f.;l | (5.6)

» T denoting the vertical coordinate of the grid point that lies nearest

but one to the bottom.
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Making use of the proportionality between u and u (see equation 5.5),

equation (5.1) can be reformulated as

+ {eRe 5.7

e
E
|m

-
K
+
=
7~
(=3}
QL
¥
+
2l
SIE
p—
Q
s

'—h
|
| —
K

, where a' -6z (l+z) and tm is a known estimate of km. The details of the
solution procedure for f and km are given in Appendix B. Once the constant
km is known, the components of the bed shear stress due to the main flow

follow from

T =-3—ki62 and T —5—-k2" (5.8)

b¢m C2 bgm C

These relations between the bed shear stress and the depth—averaged
velocity are needed in the depth-averaged momentum equations for the main

flow to be derived in the next section.

5.2. Depth-averaged main velocity field: mathematical system

The tangential and radial momentum equations (4.5) and (4.8) can be averaged
over the depth of flow, making use of the similarity approximations (4.15)
and (4.18) and assuming the pressure to be hydrostatic, in accordance with
the results of the investigations of fully developed curved laminar flow

(DE VRIEND, 1978a). This yields

udu  -9du e == 2 .33 ¥ 3“ + B _f
eRe0 f2 ( + v 3 + = uv) + sRe0 { f’ag « ( - u) + s

Hicl

_i
E
+k AT @Ige N 4 (5.9)

and
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e @I, | 2 T 2 i, 3D
€ Reo y i (r % + v 85) eReo f2 = + g Re0 ( f‘ac r3 +g 3 T 36) =
_.QE._ezk;;(av_f) +52ka-rf{;§.3:+-a—;§.§+5£-£+
3k m g’ |g=-1 " N r '3
e = Ju ’
= SE} + other terms (5.10)

» in which the "other terms" are of the order 0(52, s3Re§) and concern
the secondary flow. They are neglected in the main flow computation.
It should be noted that for the present parabolic distribution of the

eddy viscosity the factor (q' 315

Y4 in these equations follows from

G==1

' 2 - /g . 6 b}
@ 3Dy =61, LB S =2 (5.11)

Together with the depth-averaged equation of continuity

e——.
equations (5.9) and (5.10) form a system of three partial differential
equations, from which the unknown quantities u, v and p can be solved if
an appropriate set of boundary conditions is given.
The boundary conditions imposed on the velocity components near the side-
walls are based on the wall function approximations discussed in
chapter 3. Hence
= aTl kC B
u’T(Eibl*-ln,Gl) at £=—'§'a'+5] (5.13)
- atr kC B
u=-—-;—(7§+l+ln61) at E,'='i'a'—51 (5.14)
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, where Gl is a small normalized wall distance within the domain
of validity of the wall functions (3.32) and (3.33). The additional

conditions used to determine the wall friction velocities u and

v Tl

u read

1r

- ;Tl kC B |

u=-'-<—{7£+1+1n(’i'a"‘€l)} at £ = g, (5.15)

= Grr kC B

W fyg + 1 + 1ln CEE - €2)} at £ = &, (5.16)

» in which gl and EZ are the transverse coordinates of the nodal points

nearest but one to the sidewalls. The sidewall conditions for v can be

derived from (3.35) and (3.36), taking account of the simplifications

introduced in section 4.1. This leads to
du_. §

- 1 Tl 1 kC _ _B_

v T 59 - (7§ + 1n 61) at g = 7d + 61 (5.47)
u__ &

= 1 —wr "1 «C B _

v T 675 + 1n 6]) at £ 7d Gl (5.18)

At the inflow boundary the longitudinal velocity distribution must be given.
Although any distribution satisfying the boundary conditions at the side-
walls could be used, this velocity distribution is derived here from the
equivalent fully developed straight channel flow, i.e. the channel section
considered is assumed to be preceded by an infinitely long straight channel
of the same cross—sectional configuration. The depth-averaged velocity
distribution in this fully developed straight channel flow can be computed
as described in Appendix A.

Depending on the method of solution, inflow or outflow conditions for v and

boundary conditions for p will be formulated.
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5.3. Depth-averaged main velocity field: method of solution

Various computational methods can be applied to solve the depth-
averaged flow problem described in section 5.2. One of the methods,
similar to the one used in the model of developing curved laminar flow
(DE VRIEND, 1978b), is based on the stream function/vorticity concept.
This means that the two velocity components u and v are not computed

directly, but are replaced by the stream function ¢, defined by

L S -1
u 3 and v = T 3% (5.19)

and the vorticity w, defined by
- £ 3V
“T T 99 Bt - (5.20)

These two quantities are solved from the relationships between & and w
to be derived from (5.19) and (5.20)

2 2 2
222,083 (5.21)
aE 26’ 3¢

and the vorticity transport equation to be derived from the momentum

equations (5.9) and (5.10) by eliminating the pressure.

When attempting to apply this method to the present turbulent flow case,

the problem of convergence, which was already encountered in the laminar

flow model, turns out to be acute here: even if, in accordance with Appendix A,
the quantity Gresa is solved instead of &, convergence is very poor and the
computations are quite expensive or even fail. This deterioration of

convergence with respect to the laminar flow model is likely to be caused

by the extra degree of freedom in the sidewall boundary conditions: the
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velocities at the sidewalls are not strictly prescribed, as in
case of laminar flow, but depend on the solution in the relevant
cross—section.
A family of computational methods that were applied with success to
a great variety of flows in two and three dimensions is based on the
solution of the velocity components from the momentum equations with
guessed pressure gradients and the correction of the pressure field
in such a way that the equation of continuity is satisfied everywhere
(PATANKAR AND SPALDING, 1972; PATANKAR, 1975; PRATAP AND SPALDING, 1976;
see also RODI a.o., 1978). All computational methods applied so far in
three-dimensional models of turbulent flow in curved channels (PRATAP, 1975;
PRATAP AND SPALDING, 1975 ; LESCHZINER, 1978) belong to this family, which
can be divided into three.groubs, dealing with
. "parabolic" flows, in which only downstream influencing occurs, i.e.
the velocity components and the pressure are only influenced by what
happens further upstream (PATANKAR AND SPALDING, 1972),
. "partially-parabolic" flows, in which upstream influencing occurs only
through the pressure (PRATAP AND SPALDING, 1976), and
. "elliptic" flows, in which upstream influencing occurs both through
longitudinal diffusion and through the pressure (GOSMAN AND PUN, 1973;
PATANKAR, 1975).
The character of the partial differential equations, and hence the solution
procedure to be applied, is essentially different for these three groups:
parabolic flo&s allow for a much simpler and more economical procedure
than partially-parabolic flows, which in turn are easier to be computed
than elliptic flows.
In the present case of curved channel flow, the parabolic flow approximation
applies to gentle bends only (McGUIRK, 1978), as in sharper bends the
pressure will give rise to considerable upstream influencing, especially
near the transitions between channel sections of different curvature.
If, for instance a straight channel section is followed by a bend, the
transverse pressure gradient will start to develop before the bend entrance,
as became evident from measurements of the free éurface elevation there
(ROZOVSKII, 1961; DE VRIEND, 1976) and also from potential flow approximations
(BUSS, 1938). So in sharper bends at least the partially parabolic or, if
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flow separation occurs, even the elliptic procedure has to be applied.

As flow separation is not included in the present model, the

longitudinal diffusion terms in the momentum equations being neglected,
the elliptic solution procedure can be left out of consideration. In
general, the partially-parabolic method will be used, but in addition

it will be investigated to what extent the more ecomonical parabolic
procedure is applicable.

The computational procedures actually used in the present model are quite
similar to the ones in the original publications (see PATANKAR AND
SPALDING (1972) for the parabolic procedure and PRATAP AND SPALDING (1976)
for the partially-parabolic one; see also RODI a.o. (1978) for a review
of all methods belonging to this family). Therefore only the main outlines
and some computational details that differ from the original ones will be .
treated here.

An important feature of the procedures is the use of a staggered
computational grid with G, v and P defined in different points (see

figure 6). The finite difference representations of the momentum equations
and the equation of continuity are obtained by a formal integration over
an elementary area, indicated in figure 6 as G, ;—, and P-elements,
respectively. The coefficients in the non-linear terms of the momentum
equations are evaluated using the velocities immediately upstream of

the cross-section considered and the transverse velocity gradients remaining
after integration of the diffusion terms are approximated using a second
order finite difference scheme.

In contrast with the original procedures, the depth-averaged longitudinal
component of the friction velocity is not estimated here, but is is made
part of the solution of the longitudinal momentum equation (5.9) by adopting
the additional conditions (5.15) and (5.16). Appendix C describes how the
solution of the system (5.9), (5.13) through (5.16) proceeds. Once the
sidewalls friction velocities Grl and GTI are known, the boundary
conditions (5.17) and (5.13) can be evaluated and v can be solved from

the transverse momentum equation (5.10).

In general, the velocities calculated from the momentum equations will

not exactly satisfy the equations of continuity (5.12). Therefore the
pressure field (and hence the velocities) are corrected in such a way,

that the conservation of mass is guaranteed. This pressure correction
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consists of two parts, one correcting the longitudinal gradient
of the cross-sectional mean value of the pressure in order to

satisfy the integral condition of continuity

B/2d
udg =

ol

-B/2d

,» the other one guaranteeing the conservation of mass in each cell

on the computational grid.

In each cross-section the longitudinal gradient of the mean pressure,

and accordingly u, are corrected immediately after solving the longitudin-
al momentum equation. If necessary, the steps of solving the momentum
equation and correcting the pressure gradient and u are repeated several
times before proceeding to the solution of v.

The local pressure correction is the only point at which the parabolic

and the partially-parabolic procedure essentially differ. A most important
feature of the parabolic procedure is the "uncoupling'" of the longitudinal

and the transverse pressure gradients by setting

.. in which p denotes the cross—sectional mean value of p. This makes it
possible to calculate u and the correction of the mean pressure gradient
independently of v and the local pressure correction, which serves only
for correcting the transverse pressure distribution and v.

In the partially-parabolic procedure, however, the pressure gradients
are not uncoupled: there is only one pressure field determining the
longitudinal and the transver pressure gradients. After calculating E,
dp/3¢ and v in a certain cross-section, the local conservation of mass
is satisfied by correcting the pressure. Now this correction influences
not only the transverse gradients of the pressure, but also the
longitudinal ones immediately upstream and downstream of the pressure-
points considered. Accordingly, not only v must be corrected, but also

u in the u-points immediately upstream and downstream (see figure 6).

(5.22)

(5+23]
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This u-correction introduces the upstream influence through

the pressure, which is characteristic for partially-parabolic
flows. As this influence extends over only half a cell, the flow
field has to be swept through a number of times until the velocity-
and pressure-corrections have become sufficiently small. It is this
iterative character that makes the partially-parabolic method less

economical than the parabolic one.

The parabolic and partially-parabolic solution procedures described

in the foregoing are incorporated in the present model through the

following algorithm:

1. Compute the velocity-distribution GO and the longitudinal pressure
gradient-io for fully developed flow in the equivalent straight
channel.

2, Estimate the cross—sectional mean values of the pressure by

integrating
p _ _ - ' ,
as ‘o | (5.24,

along the channel axis.
3. Start marching downstream from cross—section to cross—-section; in
the j-th cross-section (connecting the points where u. is defined):

4, Estimate the longitudinal and transverse velocity-components by

uj= uj_l; vj = vj-l (v04= 0) (5.25

5. Estimate the transverse distribution of the pressure pj+l by
integrating the truncated version of the transverse momentum
equation

4

— =2
B = - efre (P ) (5.26
j+1 j

s requiring the cross-sectional mean value of pj+l to be equal to

the estimated onex).

x) In the partially-parabolic procedure the estimation.by (5.26) ‘is -carried out

in the first sweep only. = -
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6. Solve Gj and Ej+] from the longitudinal momentum equation (5.9)
with the boundary conditions (5.13) and (5.14), the additional
conditions (5.15) and (5.16) and the integral condition of
continuity (5.22). In the original procedures Ej is solved from
the longitudinal momentum equation and subsequently it is corrected
together with the mean pressure gradient in order to satisfy the
integral condition of continuity; here the "correct" solutions of
Gj and 5j+l are obtained at once (see Appendix C). In order to
account for non-linear effects this step can be repeated several
times.

7. Solve ;j from the transverse momentum equation (5.10) with the
boundary conditions (5.17) and (5.18).

8. Ensure continuity in each cell between the cross—sections j and
j-1 Ey cgrrectigg either pj - Ej and ;j (parabolic case) or
pj, vj, uj and uj—l (partially-parabolic case).

9. After the entire flow domain has been swept through, the computation
is terminated (parabolic case) or the marching procedure 3. through 8.
is repeated until a termination criterion is satisfied (partially-
parabolic case).

Following a suggestion made by PRATAP (1975), the pressure-corrections

in the partially-parabolic procedure are underrelaxed by setting

p=p+adp S : : (5.27

».in which 5 denotes the pressure before correction, dp is the calculated
pressure correction and o is a constant between O and 1 (here: = 0.5).

If the partially-parabolic procedure described in the foregoing is applied
without modifications, the influence of downstream events travels upstream
at the rate of only one longitudinal step per sweep through the flow domain.
In order to accelerate this process, PRATAP (1975) suggests to apply a
weighted part of the p;essure correction calculated in any cross-section

to the pressures further upstream. So:

@inew = Pi-idora * By P for 0 < k < j (5.28
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, in which Bk decreases as the distance between the cross-sections
j and j-k becomes larger., For further details of this additional

pressure correction reference is made to the original publication.

5.4. Secondary flow: stream function equation

In view of the experience with a similar model of laminar flow in

curved channels (DE VRIEND, 1978b), the computation of the secondary
flow will not be simplified when it is part of the main flow calculation
procedure. So in any phase of the calculations the secondary flow is
determined from the transverse momentum equations (4.8) and (4.9) and
the equation of continuity (4.4).

Instead of solving the secondary velocity components themselves,
however, the stream function of the secondary flow, y (see definition 4.17),
is solved from an equation to be derived from (4.8) and (4.9) by
eliminating the pressurex).

If only the most important terms are retained, this stream function

equation reads (see Appendix D)

4 4 4
a{3‘£+232"’2+3£} 23“(—-?:1;- ——-—4’-—)+2§a(——‘£—— ——‘2)+
dE E " o 9E”  dEac e
2 .2 2, .2, 2 - 2 2
3%a 2%y 3%a _ 5 q; 3%y ud -3,y . 3%
4 * € 2) ( ) = eRe f (= = + v =) ( + )+
3eag 9g0r © (.2 r,z " S of &3 T Rl
- [f{ __%L + a; ( ..._‘1).)} + _ﬁ .1_—1. 32\[) + .?i _a.‘k} - a_.zf v é.‘k =
9E T 0E3¢ = 9F 2 gl 3% T 3o Bg ar | 2 bV O

_ah) re?

T rs
If the main velocity field is known, this is a linear fourth order

differential equation for y that can be solved if the.distribution of y

In contrast with the main flow computation (see sections 5.1 and 5.2), the

pressure is not assumed to be hydrostatic here.

(5.29
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at the inflow boundary is given and two boundary conditions are
imposed at the bottom, at the surface and at each sidewall.

The inflow condition that is consistent with the assumption of

fully developed straight channel flow at the inflow boundary-simply reads

inflow 0 ‘ : (5.30)

The boundary conditions at the lateral boundaries follow from the
conditions to be imposed on the secondary velocity components. The

conditions at the surface then become

=0 and a'—-—lg-=0 at ¢ =0 : (5.31)

The conditions at the fixed boundaries are replaced by the wall
function approximations treated in chapter 3. If Vs denotes the
component of the bed friction velocity due to the secondary flow, the

bed friction velocities can be expressed as

/g -

v =kmlcl-5\7+v and u =k u (5.32)

T TS T m C

Then the wall function approximations (3.27) and (3.34) caﬁ be elaborated

using the equation of continuity (5.12), to yield

v
=28 K€y 4 (1)) for g < - 14§ (5.33)
s K g —
avrs € kC
EA 3 o e vTS),(lﬂ;) i ¥ b ALY} forg g -1 (5.34)

The boundary conditions and the additional condition for y to be derived

from these wall functions are
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v/
TS kC
/] rKReOGO (VE + 1n60)
at ¢ = -l+60

oy _ ___1s8 kC
az rKReO(VE * 1+ 1ns))

vrs kC
vy = —r:l_l:o(HCl) {7g + In (1 + Ql)} at ¢ =g,

The conditions at the sidewalls must be derived from the wall

function approximations (3.29), (3.31), (3.35) and (3.36). The
functions (3.35) and (3.36) for v can be split up into two parts,

one for vm (see also condition 5.17) and one for vs. Near the left wall

these functions are

Ju
Lo g € , B_ B
Ve Gt 0 B0 1+ g0} for g <= Dove
ow
__1_ 1 B kC B _B
Ve T Tk Tar (2a * B Ut lrinGgro} for g -5+

» so that the conditions for y near the left wall become

Tl kC
¥ r " eoal (-)7—g + 1n61)

= - B
pat £ = - 53+ 8

w
oy _ Tl ,kC
o t KR60(7§ *1+dn 61%

rd

w
= r Xl B KC L =
=TI KRQO(Zd + El) {7g + 1n(2d + g])} at E El

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)
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Similarly, the conditions near the right wall are

w'tr kC
- - _Tr 1
¥ & KRe, 1 (7g * 108;)
- B _
> at E =53¢
ai wrr kC
w'rr B kC B
V=T Re, (GT T8 g * InGgg - &) at £=¢

In principle the stream function of the secondary flow can be solved
from equation (5.29) with inflow condition (5.30), boundary conditions
(5.31), (5.35), (5.39) and (5.41) and additional conditions (5.36),
(5.49) and (5.42). In the actual model, however, this system is split
up into a part for the vertical distribution of ¢ and a part of y. How

this is done will be shown in the next sectionms.

5.5. Secondary flow: vertical distribution of the stream function

Making use of the similarity hypothesis (4.18), the stream function

equation (5.29) can be split up into an equation for the vertical

distribution function g and an equation for the depth-averaged stream

function a. These two equations are solved alternately, using the most

recent values of { when solving for g-.and the most recent values of g when

solving for.E;

The equation for g is solved in one vertical of each cross-section, viz.

in the channel axis..Hence some additional simplifications of the stream
« function equation (5.29) are possible when deriving the equation for g.

As the radial derivatives in the channel axis are at least an order

0(e) smaller than the vertical ones, all radial derivatives in equation

(5.29) can be neglected.

In addition, the streamwise inertia terms are neglected, supposing these

terms to be of minor influence, as they appeared to be in laminar flow

(5.41)

(5.42)

P ——————
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(DE VRIEND, 1978b). This hypothesisis confirmed by experimental
data (DE VRIEND AND KOCH, 1977 and 1978), showing the streamwise
variation of g to be very small.

Taking account of these simplifications, equation (5.29) reduces to

a“y 3a 3% . 3% 2% ~ 3 (£2) 16_2
@t i 3t 2 1T T Tw«w
14 14 9g 9L 8

Substituting the similarity hypothesis (4.18) and the expression for

a into this equation leads to

2 2 -2
uaa——z-m'a—%)h—fiagc e
(14 14 8

The boundary conditions at the bottom and at the surface are

I'V
g =- ( + 1n § )
KwRe 7r
at ¢ = - 1+<S0
M o 18 (KC + 1 + 1n 6,.)
PY4 KwRe Vg 0
82
g=0 and a' —-%-= 0 at 7 =0
18

and the additional condition for the determination of Vi is

I'V

g=- (1+;){7—+1+1n(l+t;)} at ¢ =g,

KwRe

The system (5.44) through (5.47) is solved using a method based on

repeated vertical integration (see Appendix E).

(5.43)

(5.44)

(5.45)

(5.46)

(5.47)
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5.6. Secondary flow: depth-averaged stream function

Substituting the similarity hypothesis (4.18) and a = kmaa'
into the stream function equation of the secondary flow and
averaging the result over the depth of flow yields, after some

elaboration (see Appendix D)

4 ~ 3= 2- .2 2- - .= 2-
m— | ) - -
079(u%+2§—§§—%+a—3—%_+'12(u3—"%+2%!g +a—2—¢)+
13 g 9~ 3g 3 ¢ ot ]

- .3 = - 2- - o
+-cf2|c=0 u ¥ - eRe, {?5‘(% 2E 4 53 g s B LAY .. B3 by 4

apo52 | agd | 05 T 99a€ T 9 32
g T L T L N T
" acle-0 Gap t VBt e W) A (5.48)

The boundary conditions needed for the solution of ﬁ from this
equation are obtained by averaging conditions (5.30), (5.39) and
(5.41) over the depth of flow.

=0 g (5.49)

lPi.nflow
w
T Tl kC
V= KReoél Gg ¥ 1n 8
B
_ - at § = - 2 * 6] (5.50)
Y - Tl kC
oE r__KReO. (7; + 1 + 1n dl)
== ;Tr kC
V==r EEEO 8, (7E + 1n 51)
=B _
_ at § = 52 - 8, (5.51)

29

- - _Tr kC
g—g— r KReO (7§ + 1 + 1n 61)

| - -
The depth-averaged friction velocities Vo1 and w_ . are determined from

the additional conditions

o .
V=r Tl (%a + gl),{§§ + 1 + 1n(§a * g} at g = ¢

5.52
KReO ( )

1
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= r B kC B
v I“E§EOCEE £) {VE * 1+ 1In(Gg - €)1 at £ = g, i2.(5,53)
A description of the solution procedure applied to the system
(5.48) through (5.53) is given in Appendix F.
5.7. Iterative solution procedure
Making use of the elements described in the foregoing sections of
this chapter, the following iterative solution procedure can be drawn
up (cf. DE VRIEND, 1978b):
la. Estimate the vertical distribution functions f and g, for instance

by taking the logarithmic distribution

S+ 22,2 |
f=1+5+ 7 1n(l+) (5.54)

and solving g from equation (5.44) with conditions (5.45) through
(5.47), as described in Appendix E, or by evaluating the corresponding

analytical solution (see also DE VRIEND, 1976 and 1977)

8 /g g
g = {=2¢F, - gR, # 21 = ) (1+z) 1In(1+7)
2:-5Y8 44 B I xC ™2 2c2
kC 2.2
| k C
+ %8 (145) 1a2(145)) (5.55)
o _]__KC
with Fl = J ..l_ll(_é_t.c.)_ dz (Cx = e 7-8-)
-1+Cx
_t
z

and F

_ J 1n251+;) dz
2 4
3

—l+§
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2,

- &4 =

Estimate the depth-averaged stream function of the secondary flow,
by setting @ = 0, for instance.
Determine the depth-averaged main velocity field using one of the
procedures (parabolic or partially-parabolic) described in
section 5.2.
Calculate the curvatures of the streamlines and the normal lines
of this depth-averaged flow field using the expressions given in
Appendix D.
Solve for the depth-averaged stream function of the secondary flow E
as described in Appendix F.
Determine the vertical distribution function f of the main velocity
in the channel axis, making use of the procedure described in Appendix B.
Determine the vertical distribution function g of the stream function
of the secondary flow in the channel axis (see Appendix E).
Repeat the procedure from 2. on, until a termination criterion is
satisfied, for instance

=(n) _

max {|u G(n-l)l} < Yer with Yor << 1 (5.56)

=(n)

» in which u denotes u in the n-th iteration step.

If necessary, carry out an additional computation of f in all verticals
in order to account for the influence of the streamwise accelerations
of the main flow (see DE VRIEND, 1978b).

Determine the magnitude and the direction of the resultant shear

stresses at the fixed boundaries (see chapter 3).
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6. Verification of the model

Before carrying out the overall verification of the mathematical model

by comparing its results with measured data, the influence of the most

important assumptions will be investigated. The assumptions to be

considered in this respect are:

« the ones underlying the turbulence model (see chapter 3),

. the neglect of the vertical component of the main flow (see section 4.1),

. the similarity hypothesis for the main flow (see section 4.4), discarding
the influence of streamwise accelerations,

. the need of incorporating the streamwise inertia of the secondary flow.

This part of the verification will be carried out making use of the

computational results for the LFM-flume (see section 6.5), which has a

rather long, sharp bend giving rise to strong effects of curvature, thus

providing a rather severe test of the model.

6.1. The turbulence model

Although most interesting in this complex flow case, the verification of

the basic hypotheses of the turbulence model, viz. the Boussinesq hypothesis
(3.1) and the mixing length hypothesis (3.3), is left out of consideration
here"). Only the influence of the overall mean value of the turbulence

viscosity and its vertical and horizontal distribution will be treated.

6.1.1. Influence of the overall mean value of the turbulence viscosity

As was stated in chapter 3, the parabolic distribution of the turbulence

viscosity (3.7) corresponds with an effective Reynolds number

= o

C
Reo - 7'5 (6.1)

In case of fully developed flow in an infinitely wide straight channel,

the overall mean value of the turbulence viscosity is given by

A0 = 0.067 pvxd _ (6.2)

*) See for instance, BRADSHAW (1973) and HUNT AND JOUBERT (1979).
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}

the literature somewhat different values of the constant of

, where Ve © V g*/C is the friction velocity at the bottom. In
proportionality in (6.2) are suggested: ENGELUND (1964) gives a

value of 0.077 and RASTOGI AND RODI (1978) use 0.0765 in a depth-
averaged version of the k-e-model. These two values, however, are based
on experimental data on uniform flow in closed channels, so they will
only hold good in open channels if the influence of the water surface
is negligible. A comparison of turbulence characteristics measured in
uniform open channel flow (NAKAGAWA, NEZU AND UEDA, 1975) with those for
a closed channel (LAUFER, 1951) shows that the water surface influences
turbulence, indeed (see also RODI, l978)x).

Until recently, the turbulence viscosity used to be determined
experimentally from the turbulence-averaged velocity and shear stress

distributions in uniform flow, applying the definition

At = v

In uniform open channel flow LI varies linearly from its maximum at

the bottom to zero at the surface. Adopting Chezy's law, this yields

| @
- N < |N
AS

The vertical distribution of v is rather insensitive to the distribution
of At’ except close to the bottom (see section 6.1.2). Inversely, the
distribution of At in the upper part of the vertical is quité sensitive .to
the distribution of the velocity there. As At decreases strongly near the
bottom, the depth-averaged value of At is mainly determined by the
distribution in theagigher parts of the vertical. Regarding, in addition,
the sensitivity of —2 to errors in Vs this kind of experiments may be

9z
expected to yield a wide variety of At.

This could explain the velocity reduction near the water surface often
observed in open channel flow, even if the channel is straight and shallow
(see, for instance, the experiments in the DHL-flume described in section
6.5.2) -

(6.3)

(6.4)
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ROZOVSKII (1961) gives a review of the empirical values of Kt
obtained in this way. Grouped according to the approximation of the
measured velécity distribution:

. the Boussinesq-Bazin parabola, with At constant in a vertical and a
finite slip-velocity at the bottom (see also ENGELUND, 1964), which
yields values of the constant in (6.2) between 0.065 and 0.071 (cf.
ENGELUND: 0.077),

. the elliptic distribution (KARAUSHEV, 1946), yielding values of the

constant that are dependent on C:

A

pvxd

c 7! ¢
= (1.9 + 0.7-7g) for 3 <-7§ < 21

, so that for C = 60 mi/s a value of 0.065 is found,

. the logarithmic distribution, yielding k/6, as was shown in the foregoing;
for k = 0.4, the constant has the value 0.067, but if higher values of k
are used (RASTOGI AND RODI (1978) use 0.42, RODI (1978) suggests 0.435,
ROZOVSKII (1961) suggests values as large as 0.5), the constant increases
in proportion,

. the power law distribution; the 1/7th-power law, for instance; yields a

value of 1.15 ég for the constant, i.e. 0.060 for C = 60 m*/s.

Another class of experiments from which At can be determined concerns the
dispersion of suspended matter in uniform straight channel flow. This indirect
determination of At is based on the so-called Reynolds—-analogy, stating that
in turbulent flow the transport of momentum and the transport of mass are
analoguous (see HINZE, 1975). During the experiments reported by JOBSON AND
SAYRE (1970) dye was injected at the free surface of fully developed straight
channel flow. From the rate of vertical spreading of this dye the transfer
coefficient was derived. The observed values of this coefficient differ only
a few per cent from those predicted by equation (6.2). Similar experiments
were carried out with suspensions of fine-grained sand (VANONI, 1946; JOBSON
AND SAYRE, 1970; COLEMAN, 1970), but then the dispersion process was
complicated by the different densities of the fluid and the suspended particles.

Hence the values of Kt obtained from these experiments are not quite reliable.
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Recent advances in measuring technique (hot film, laser-doppler
anemometry) allow for the turbulent velocity fluctuations to be
measured. Hence At can be determined from turbulence quantities, using,

for instance, the basic relationship of the k-€-model

A = -EE c
€

(6.5)
¥ t

n-
in which kt denotes the local turbulence kinetic energy, €, the rate

of energy dissipation and c,6 2 known constant of proportionality (LAUNDER
AND SPALDING, 1972; RODI, 1978).

Equation (6.5) was applied to the measured distributions of kt and €

in uniform open channel flow presented by NAKAGAWA, NEZU AND UEDA (1975).
The resulting values of At are so widely spread, however, that it is
impossible to fit a reliable distribution curve through the measured data.
(see figure 7). The mean value of At is about 0.067, but regarding the large
spread in the data, this figure is not reliable either.

This shows that determining At from turbulence data requires extremely high
measuring accuracies, as well. Besides, it is evident that more experimental
work has to be done at this point.

It can be concluded from the foregoing that a great deal of uncertainty exists
about the value of the constant of proportionality in (6.2), even in uniform
rectilinear shear flow. Moreover, the turbulence in curved channel flow will
be influenced by the extra strain rates due to streamline curvature and the
skewed velocity field (BRADSHAW, 1976).

Therefore it is worthwhile to investigate the sensitivity of the mathematical
model to the mean turbulence viscosity. This is done by setting the effective

Reynolds number at
«XE (6.6)
Reo KVE

with y varying between 4 and 6, i.e. the constant in (6.2) varying between

0.10 and 0.067.

Accordingly, the parabolic distribution of the turbulence viscosity is modified
in such a way, that the mixing length distribution near the bottom is the same.

in any case:
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a' = - g(1+g) {12(1+g) - y(1+20)} (6.7)

For y = 6 this reduces to the parabola (3.8). For smaller y the
distribution remains almost parabolic, but the maximum shifts somewhat

upwards and increases slightly (figure 8a).

The influence of y on the vertical distributions of the main and the
secondary flow, shown in figure 8b, is rather small, and so is the
influence on the main bed shear stress factor k (figure 8c). The secondary
bed shear factor k k s however, increases con31derab1y with decreasing Yy
(figure 8d) and the fully developed secondary flow intensity $Re /u as well
as the secondary flow advection factor uv /u ), shown in flgures 8e and
8f, decrease fairly strongly with decrea51ng Y.

The conclusion drawn from these results is that quantities related to the
main flow are influenced only slightly by y, but quantities related to the

secondary flow are much more sensitive to this factor.

6.1.2. Influence of the vertical distribution of the turbulence viscosity

In uniform straight channel flow the parabolic distribution of the turbulence
viscosity used in the model leads to a purely logarithmic velocity distribution,
as was shwon in chapter 3. If turbulence is described by the k-e-model, the
vertical distribution of the turbulence viscosity closely agrees with the
parabola near the bottom, but differs considerably from it in the upper half

of the vertical (see figure 3). The resulting velocity distribution, however,
hardly differs from the logarithmic one, not even in the upper half of the
vertical. Hence it can be concluded that the distribution of the turbulence
viscosity there is rather unimportant in a model of uniform flow.

Inversely, this distribution will be quite sensitive to the velocity distribution,
so that it is rather difficult to determine it from velocity measurements (see
section 6.1.1). Therefore some of the experiments reported in the literature
seem to provide evidence in favour of the parabolic distribution (VANONI, 1946;

JOBSON AND SAYRE, 1970), whereas others seem to corroborate the more uniform

Both quantities evaluated in the channel axis, for fully developed flow

in a curved shallow channel, so that ¥ Re /u = Reo a/kmc and
av /u = —Re f'—z/k c
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distribution, so that it is rather difficult to determine it from

velocity measurements (see section 6.1.1). Therefore some of the
experiments reported in the literature seem to provide evidence in favour
of the parabolic distribution (VANONI, 1946; JOBSON AND SAYRE, 1970),
whereas others seem to corroborate the more uniform distribution according
to the k-e-model (COLEMAN, 1970). On the basis of physical arguments,
however, it can be shown that the water surface can not be exactly a

plane of symmetry, as assumed in the k-e-model used here: some reduction
of the turbulence viscosity is likely to occur near the surface (cf.

RODI, 1978; see also NAKAGAWA, NEZU AND UEDA, 1975 and, as far as reliable,

the elaboration of their data represented in figure 7).

Just as in uniform straight channel flow, the main velocity distribution
in mildly curved flow will be hardly influenced by the distribution of
the turbulence viscosity in the upper half of the vertical. The effect of

al

on the secondary flow and hence on the main velocity distribution in
sharply curved flow, however, needs further investigation.

To that end three different vertical distributions of the turbulence
viscosity are considered, each of them with the same slope at the bottom

and with y = 5 (see section 6.1.1):
1) the modified parabolic distribution (6.4)

a' = - ¢ (1+g) (7+2%) , (6.8)

2) an approximation of the k—e-distribution (see also figure 3)

a' =% (l+;)(8r,2-35;+2) for ¢ < -0.5
(6.9)
43 :
Vo e -
a 36 for z;z 0.5
3) a uniform distribution in the upper part of the vertical with a
linearly decreasing part near the bottom
a' = 5(1+g) for ¢ < -0.775
(6.10)
a' = 1.127 for ¢ > -0.775
The vertical distribution functions f, g and %%-and the most important

constants in the depth—averaged system, calculated on the basis of each
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of the distributions (6.8), (6.9) and (6.10), are represented

in figures 9 and 10.

Figures 9a through 9d show the vertical distributions of the velocity
components to be influenced only slightly by the distribution of a'.

The coefficients in the depth-averaged main flow equations (5.9) and

(5.10) and the secondary bed shear stress coefficient kmks are hardly
influenced, either (see figures 10a through 10d and 10g). The coefficients
in the depth-averaged stream function equation (5.48), however, are
influenced to a considerably higher extent (as is shown by figures 10e

and 10f and also by the secondary flow intensity far from the sidewalls
represented in figure 10h), and so is the secondary flow advection factor
;VS/GZ given in figure 10i. Nonetheless, the only quantity in which the
differences are larger than about 15% is ga't;C (figure 10f),which figures
in a group of higher order terms in equation (5.48), and even there the
difference between the distributions (6.9) and (6.10) is small.

In order to assess the influence of the large difference between the values
of EZT;C for the distributions (6.8) and (6.9), the complete model was
applied to the LFM-flume (see section 6.5.1) with either distribution of a'.
A comparison of the results, shown in figure 11, makes clear that the depth-
averaged main velocity distribution is hardly influenced and that the
influence on the depth-averaged stream function of the secondary flow

never exceeds 107.

Hence it is concluded that the vertical distribution of the turbulence
viscosity away from the bottom hardly influences the main flow, whereas

its influence on the secondary flow is rather small. The secondary flow and
its advective effect on the main flow tend to increase if the turbulence

viscosity is taken uniform in the upper part of the vertical.

6.1.3. Influence of the horizontal distribution of the turbulence

viscositz

The turbulence viscosity in the present model is related more or less
arbitrarily toithe local bottom friction velocity (see chapter 3). Far from
the sidewalls, where this friction velocity will ‘'vary only gradually and

the exchange of momentum due to turbulence is predominantly vertical, this
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approach will be almost correct. Near the sidewalls, however,

steep velocity gradients and hence important momentum transfer due to
turbulence will occur both in horizontal and in vertical direction.
Consequently, it must be doubted whether in these regions the turbulence
viscosity can be based on the bottom friction velocity only.

In order to investigate the influence of setting the turbulence
viscosity proportional to the bottom friction. velocity, the results
obtained when using this turbulence model were compared with those
obtained when using a uniform turbulence viscosity, with wall layers

in which a increases linearly from zero on:

a =5 CG;+8) a for £ < - 22+ 0.2
a =a for - 2o+ 0.2 < £ <2 _ 0.2 (6.11)
g T2 .
B _ ' B _
a S(Zd £) a fox:é;;:zcI 0.2

The results of fully developed straight channel flow computations based

on this distribution of a, combined with any of the distributions of q'
given before, agree better with the measured data (TRACY, 1965) than those
obtained from the original mathematical model (see figure 4a).

If the combination of (6.10) and (6.11) as a turbulence model in curved
flow computations, however, important local errors are introduced near the
sidewalls, even in as gentle a bend as the one in the DHL-flume (d/B = 0.042,
e = 0.005, Re0 = 239; see also section 6.5.2). A comparison between the

the mean velocities in this flume calculated by the original model and
those found when using (6.10) and (6.11) is given in figure 12.

This leads to the conclusion that, especially near the sidewalls, the
horizontal distribution of the turbulence viscosity needs special attention
if local errors have to be avoided. If the sidewalls regions are of no
interest, however, the accurate modelling of turbulence there is rather

unimportant, either.

6.2. The neglect of the vertical component of the main flow

As was stated in section 4.1, the equation of continuity (4.2) for the main
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flow does not account for the vertical component of the main flow.

If this component is included, the equation reads

1 aum va e awm
?W+'5€—+?vm+§—=o (6.12)

Making use of the depth-averaged version of this equation (5.2),
this yields

ow
—n

o

B<

I

) (6.13)

Hlel
cllac
<:||E<

9 = 9 E -
w()‘va—g()";‘\l(

<1

Adopting the similarity hypothesis for the main flow

uy = u f(£36,0)  and v =V f(Z3E,0) (6.14)
with f depending only weakly on £ and ¢ , equation (6.13) can be

elaborated to

4
with F = [ fdt (6.15)
-1

Ric1
wlw
|y
}
<1
wlo)
oy |y
]
H|m
<1
3

The only equation of main flow continuity that is actually incorporated
in the model is the depth—averaged equation (5.2), which is exact. In the
momentum equations, however, wm'is neglected, indeed.

The admissability of this neglect is verified by investigating whether in

the main flow equation

Bum u aum aum
Wm-a—;-— << r—w—, Vmsa— (6’16)

, which is further reduced to

u 3 3f oF du '
_r.(f%_?g.a.& <<-§Ea_¢; (6.17,

Figure 13 shows that for the LFM-flume this condition holds rather good,

except locally near the bend exit, where the range of variation of the
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first term is about 25% of the range of variation of the second

one. Still assumption (6.16) is thought to be acceptable.

6.3. The similarity hypothesis for the main flow

As far as the influence of diffusion and secondary flow advection

is concerned, the applicability of a similarity hypothesis for the main
flow was verified for fully developed laminar curved flow (DE VRIEND,
1978a). In developing flow, however, there will be streamwise accelerations
of the main flow, which give rise to deformations of the vertical
distribution of the main velocity (DE VRIEND, 1976 and 1977; DE VRIEND,
1978b) : positive accelerations make the velocity profile flatter, negative
accelerations make it more oblique than in fully developed flow. Since in
the present approximation (uniform cross-section) the cross-sectional mean
velocity is the same everywhere, both positive and negative accelerations
will occur in a cross-section. Hence adopting the similarity hypothesis
(4.15) for the main flow implies that the effect of the streamwise
accelerations is neglected.

The effect of this simplification is investigated for the LFM-flume by
carrying out an additional computation step after the normal iteration
procedure has been terminated. In this step the'vertical distribution
functions f and g are calculated in each vertical®™), still assuming their
horizontal derivatives to be negligible. Subsequently, the depth-averaged
quantities and the bottom shear stresses are calculated on the basis of
these vertical distribution functions. If the results of this additional
computation step differ only slightly from those after the normal iteration,

the influence of the streamwise accelerations can be assumed to be small,

Figures l4a and b show the vertical distribution functions to be almost
invariable in a cross-section, except near the entrance-and the exit of
the bend, where small variations occur. The bed shear stress constants km

and ks and the constant c, obtained when determining f and g, are represented

The only terms in equation (5.7) that are actually varied from vertical
to vertical are the main flow acceleration terms. All other terms are

calculated on the basis of the quantities in the channel axis.
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"in figure l4c, showing that km is influenced only slightly, whereas

ks and ¢ vary somewhat stronger, especially near the entrance and

the exit of the bend.

The results of the depth-averaged computation are shown in figure 15.

The variation of the vertical distribution functions due to streamwise
accelerations of the main flow appears to have only a minor effect on

the mean velocity field (figure 15a) and even the effect on the

secondary flow intensity is rather small and of a local kind (figure 15b).
Similarly, the magnitude of the bed shear stress (figure 16a), which is
dominated by the main component, is hardly influenced, whereas the
direction of the bed shear stress vector, in which the secondary flow
plays a more important part, is influenced to a somewhat higher extent
(see figure 16b). This influence on the direction locally amounts 207

of the overall mean value of ¢r in the bend.

The foregoing comparison leads to the conclusion that the effect of the
streamwise accelerations of the main flow on the vertical distribution
functions can be neglected when computing the main flow, but has to be
taken into account when computing the bed shear stress. In practice, this
implies that the similarity hypothesis (4.15) is used during the 'normal'
iteration procedure and that an additional ite;ation step, in which the
vertical distribution functions are determined in each vertical, is carried
out to determine the bed shear stress (cf. the laminar flow case; DE VRIEND,
1978b).

6.4. The influence of the streamwise inertia of the secondary flow.

On the basis of the conclusions drawn from the equivalent model of
developing laminar curved flow (DE VRIEND, 1978b), the streamwise inertia
of the secondary flow was incorporated in the equation for V) ('see section
5.4). Although these streamwise inertia terms do not give rise to a great
deal of extra computational effort, it is interesting to find out how they
work out in the results of the model.

Figure 17 gives a comparison between the results for the LFM-flume with
and without streamwise inertia of the secondary flow. In contrast with the
laminar flow case, the mean velocity distribution is hardly affected
(figure 17a). The secondary flow intensity and the direction of the bed
shear stress (figures 17b through d) are only affected in two rather small

regions, viz. beyond the entrance and the exit of the bend.
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Hence it is concluded that the streamwise inertia of the secondary
flow needs not be incorporated in the turbulent flow model during
the main flow computation. In the bed shear stress computation step,
however, the streamwise inertia terms in equation (5.48) have to be

accounted for.

6.5. Comparison with experimental data

The flow in curved channels was often investigated experimentally
both in the laboratory and in the 'prototype'. Out of the experimental
data available a selection was made for the verification of the present

model:

1. The experiments carried out in the Laboratory of Fluid Mechanics (LFM)
of the Delft University of Technology, in a rather sharply curved
(B/Rc = 0.4) U-shaped flume with a horizontal bottom and vertical
sidewalls (see figures 18)x).

2. The experiments carried out at the De Voorst branch of the Delft
Hydraulics Laboratory (DHL), in a large flume with a rather gentle
(B/Rc = 0.12) bend of almost 90°, a sloping flat bottom and vertical
sidewalls (see figure 21). The results, concerning main and secondary
velocity distributions and water surface configurations, were reported by
DE VRIEND AND KOCH (1977) . '

3. The experiments carried out at the Iowa Institute of Hydraulic Research
(IIHR), in a flume with two opposite, rather sharp (B/Rc = 0.25) bends
of 90° each and a shallow trapezoidal cross—section (see figure 25). The
results concern the main and secondary velocity components, the magnitude
and the direction of the bed shear stress:and the water surface
configuration (B.C. YEN, 1965).

4, One of the experiments (no. 1) carried out at the Institute of Hydrology
and Hydraulic Engineering (IHHE) of the Acedemy of Sciences of the USSR,
in a sharply curved (B/Rc = 1.0) U-shaped flume with a horizontal bottom
and vertical sidewalls (see figure 27). The measured data, concerning the
main and the secondary velocity components and the water surface configuration,

were reported in ROZOVSKII's (1961) book on curved open channel flow.

x) The measured data gathered during these experiments (main velocity
distributions and water surface configurations) have not been reported

yet, but they were kindly put at the author's disposal.
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It was attempted to simulate each of these experiments by the

mathematical model described in this report.

6.5.1. Simulation of the LFM-experiments

Out of the series of experiments carried out in the LFM-flume

two cases were selected, one with a rough bottom (C estimated

at 30 mi/s; bottom roughened by a layer of gravel) and one with a

smooth bed (C estimated at 60 mils; bare concrete bottom). In both

cases the depth to width ratio, based on the depth of flow at the
downstream end of the flume, was about 1:10 and the discharge was about
0.19 m3/s.

Both flow cases were simulated by the mathematical model, on a computational
grid consisting of 25 cross—sections situated between a virtual inflow
section 6 m ahead of the bend entrance and a virtual outflow section

6 m downstream of the bend, 21 verticals in each cross-section and 21
points in a vertical (see figure 18). The distance between the cross-
sections in the straight reaches was 1.00 m and in the bend it was 1.1l m
(measured along the axis), which is equivalent to an angle of 15° enclosed
between two subsequent cross—sections. The spacing between the verticals
in a cross-section ranged between 0.2d (near the sidewalls) and d (in the
central region) and the interval between the grid points in a vertical
was constant in the upper half of the vertical (0.1d) and decreased
exponentially towards the bottom. The grid points nearest to the fixed
boundaries were situated at a distance of 0.01d from these boundaries.
The value of C was the only difference between the two cases in the input
of the mathematical model. As this value could not be determined very
accurately by lack of a long straight reach with uniform flow or velocity
measurements close to the bottom, it was estimated and in addition to the
simulation on the basis of these estimations, the sensitivity of the
model to C was investigated.

Figure 19a shows the mean velocities as they were measured and computed,
the latter for three different values of C, ranging from 30 to 60 mi/s.
The differences between the computed distributions appear to be rather

small. Only near the sidewalls, especially near the bend exit and in the
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downstream straight reach, they are considerable. The measured

data for the smooth and the rough bottom differ significantly in

the second half of the bend. There the velocity tends to increase

towards the outer wall in case of a rough bottom whereas the smooth
bottom data show a decreasing tendency.

When comparing the measured and the computed velocities, the smooth
bottom case appears to be predicted rather well, except near the sidewalls,
where systematically higher velocities were measured: the local influence
of the secondary flow seems to be overestimated near the inner wall and
underestimated near the outer wall. The prediction of the rough bottom
flow, however, is much worse, especially in the second half of the bend,
where the theoretical curves lie much closer to those for the smooth
bottom than the measured data. Here the effect of the secondary flow

seems to be underestimated in the entire cross—section.

The discrepancies between the measured and the computed velocities in

case of the smooth bottom can be explained from the assumption that the
turbulence viscosity is proportional to the local bottom shear velocity

(see chapter 3 and also section 6.1.3). Even in uniform straight channel

flow this assumption gives rise to errors near the sidewalls (see figure 4)
in that the predicted velocities are too small there and the 'sidewall
boundary layer' is too thick. The same occurs in the present case: even in
the straight reach before the bend the predicted velocities near the '
sidewalls are too small. In the bend this will give rise to additional errors
in the secondary flow and its effect on the main flow. How this works out

is readily illustrated in figure 12: if the horizontal distribution of the
turbulence viscosity is made more uniform, the velocities near the sidewalls
increase, in the straight reach as well as in the bend.

The same figure, however, shows the model is rather sensitive to the
distribution of the turbulence viscosity close to the sidewalls. This implies
that a quite accurate description of a should be given there, provided that
the turbulence viscosity concept holds good in these regions at all. In
principle, it may be possible to find a distribution that gives satisfactory
results, but looking for this distribution is thought to be of no use as

long as the physical basis is missing. Hence the modelling of
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turbulence in the sidewall regions has to be studied before

attempting to improve the model predictions there. Regarding the
purpose of the present investigations, viz. the prediction of the

flow and the bed configuration in alluvial river bends, this is thought

to be going too far now.

It could be attempted to explain the differences between the smooth

and the rough bottom case from the influence of the sidewall roughness.

In the model all fixed boundaries have the same roughness. In the flume,
however, the sidewalls in the straight sections and the inner wall in the
bend were covered with plaster, the roughness of which was comparable

with the roughness of the bare concrete bottom. Moreover, the outer wall

in the bend consisted of a series of glass panels that were much smoother
than concrete or plaster. The nonuniformity of the boundary roughness
introduced in this way was stronger in case of the rough bottom then in

case of the smooth one. This could explain why the predictions for the
smooth bottom are better than those for the rough bottom. Besides it could
provide a qualitative explanation of the stronger outward shift of the

rough bottom flow in the second half of the bend, but it is not clear
whether this explanation holds good quantitatively. Finding this out would
require a modification of the mathematical model and additional measurements
of the secondary flow intensity (see also section 6.5.2.).

The predicted pressures and the measured water surface configuration, at

a distance of about the depth of flow from the sidewalls, are compared in
figure 19b, for the smooth bottom case only. The agreement turns out to be
rather poor: the predicted transverse pressure drop is about 1.5 times as
large as would correspond with the measured superelevation of the water
surface. In contrast with earlier suggestions (DE VRIEND, 1976 and 1977), this
difference cannot be explained from a false prediction of the main velocity
distribution, the main velocities being predicted rather well in this case.
A quantitative analysis on the basis of a truncated version of equation (5.10),

holding for fully developed curved flow,

2

9 2
3% = g Re0 f2

Rl
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leads to a transverse pressure drop given by

Pley = Pleeey

= 0.35 (6.19)

€ Reo

» which agrees with the model predictions. Besides, this way of

estimation leads to appropriate predictions of the transverse pressure
drop in many other curved flow experiments (C.L. YEN AND B.C. YEN, 1971;
ROZOVSKII, 1961; DE VRIEND AND KOCH, 1977), which raises doubt against

the measured data in the LFM-flume.

The LFM-experiments were simulated using the partially-parabolic main
flow computation model. To find out to what extent the simpler and more
economic parabolic model (see chapter 5) is applicable here, an additional
run was made using this parabolic model.

The essential difference between the two models is readily illustrated

by the pressure distributions represented in figure 19b: upstream
influencing is incorporated in the partially-parabolic model, so that the
pressure distribution starts changing before the bend entrance or the bend
exit is reached; the parabolic model, however, takes no account of upstream
influencing, so that the pressure distribution starts changing at the
entrance and at the exit of the bend.

According to figure 20, the use of the parabolic model leads to important
errors, both in the main velocity distribution (figure 20a) and in the
secondary flow intensity (figure 20b). Hence this parabolic model is not
suited to predict this rather sharply curved flow (see also PRATAP, 1975
and PRATAP AND SPALDING, 1975).

6.5.2. Simulation of the DHL-experiments

The experiments in the rectangular DHL—flumex) (DE VRIEND AND KOCH, 1977)
concern velocity and water level measurements for two discharges, viz.
0.610 and 0.305 m3/s, with a depth of flow near the outflow boundary of
about 0.25 m in either case. The magnitude and the direction of the
horizontal velocity component were measured in a three-dimensional grid

covering the whole flume and the water surface elevation was measured in

-~

In a later stage experiments were carried out in the same flume with a

non-rectangular cross—section (DE VRIEND AND KOCH, 1978).
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each vertical of this grid.

To determine the vertical distributions of the main and the

secondary flow, a rather fine vertical spacing of the grid points

was used in the channel axis and in one of the cross-sections in

the bend (at 550). In the other parts of the flume only the depth-
averaged velocit§ was determined and the grid was taken coarser.

The two flow cases were simulated numerically, with the partially-
parabolic as well as with the parabolic model. The computational grid
(see figure 21) consisted of 25 cross-sections, lying between a vertical
inflow section 24 m ahead of the bend entrance and a virtual outflow
section at 82.50, 29 verticals in each cross-section and 21 points in
a vertical. When measured along the channel axis, the distance between
two adjacent verticals ranged from 0.2d near the sidewalls to 2.0d in
the central region. The vertical spacing was the same as for the LFM-
flume (see section 6.5.1) and the wall distance of the grid points

nearest to the bottom or the sidewalls was 0.01d.

As the discharge plays no role in the mathematical system to be solved,
the two flow cases were covered by one run of the model. Consequently,
the results of the numerical simulation are represented in the figures by

only one curve.

Figure 22a shows the measured and the computed mean velocities for

C =60 mi/s. In contrast with the LFM-flume, the results obtained by the
parabolic model closely approximate those from the partially-parabolic

model now. Both theoretical distributions, however, show systematic
discrepancies with the measured data: near the inner wall the thickness of
the wall layer increases too little when proceeding through the bend, whereas
the velocities near the outer wall remain too small. It looks as if the
effect of the secondary flow were underestimated.

This is a tather unexpected conclusion, regarding the fair agreement with
the measured data obtained when simulating this turbulent flow using the
laminar version of the present model (DE VRIEND, 1978b). Moreover, the kind
of discrepancies is not in accordance with those found for the LFM-flume,
where the influence of the secondary flow was rather overestimated, at least

near the inner wall (see figure 19a).
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An important step towards the explanation of the discrepancies

in figure 22a is made when considéring the secondary flow intensity
represented in figure 22b and c. Although the measured data are

rather scarce (the intensity could only be determined with reasonble
accuracy in the verticals with the finer grid), they clearly show

that the predicted intensities are far too small.

If the secondary flow intensity in the model is multiplied by a

factor 1.5, the main flow predictions are much better, as is shown

in figure 22a. The remaining discrepancies near the sidewalls (too

small predicted velocities close to the walls) are consistent with those
in the LFM-flume and can be explained in the same way (see section 6.5.1).
Hence it is concluded that the main flow is described fairly well if the

secondary flow intensity is correct.

Thus the problem is shifted from the main velocity distribution to the
secondary flow intensity: how is it possible that the actual secondary
flow intensity is so much larger than the predicted one? The discrepancy
occurs throughout the flow field, without any preference for the sidewall
regions ) or the first part of the bend. Hence the explanation must be
looked for in the truncated version of the stream function equation (5. 48),

holding for fully developed curved flow far from the sidewalls:

_2 -—
c f2|§=o uy = - %fﬂ;:g » whence =i€:—c (6.20)

If the secondary flow intensity is characterized by $Re0, the differences
between the measured data and the model predictions have to be explained

on the basis of the relationship

ﬁ;Re0 = Re (6.21)

o
~
B ,Cl
0

This implies that the source of these differences lies either in the

vertical distribution of the main velocity, influencing km and c,

The deviant values of the measured secondary flow intensity near the
outer wall are caused by a locally deviating secondary flow pattern
there (see DE VRIEND AND KOCH, 1977).



- 63 -

or in the turbulence model.

The influence of the vertical distribution of the main velocity

can be shown by calculating the fully developed secondary flow

far from the sidewalls on the basis of the measured distribution of

u (see figure 23a). As this distribution is more uniform than the
theoretical one, km and ¢ are larger and the secondary flow intensity

is considerably smaller than when using the theoretical distribution of

u (fugure 23c). Hence the explanation of the underestimated secondary

flow intensity can certainly not be found in the vertical distribution

of the main velocity alone.

Consequently, this underestimation must be attributed to the turbuelence
model. As was shown in sections 6.1.1 and 6.1.2, the secondary flow
intensity tends to increase if y is raised and if the almost-parabolic
distribution of a' (equation 6.8) is replaced by the k-e-approximation
(6.9). The factor y is related directly to Von Karman's constant k and to
the constant of proportionality in equation (6.2). Neither k nor the
constant, however, are known very accurately: for both quantities a great
variety of values is suggested in the literature (see section 6.1.1). Hence
the possible values of y vary within wide bounds and raising the value
from 5 to 6, for instance, seems to be allowable. For C = 60 mils, raising y from
5 to 6 and replacing (6.8) by (6.9) lead to an increase of the secondary
flow intensity of about 507%.

Regarding the important role of the secondary flow in the direction of

the shear stress, this strong dependence on the turbulence model emphasizes
the need of further investigations on the modelling of turbulence in this

type of flow.

In contrast with the simulation of the LFM-experiments, the present
simulation yields transverse pressure distributions that agree fairly
well with the measured water surface configuration (see figure 24): the
differences between the measured and the computed values lie within the

range of accuracy of the former.

6.5.3. Simulation of the IIHR-experiments

The flow case selected out of the series of experiments carried out in

AL S NPT o W e . e



- 64 -

the IIHR-flume (YEN, 1965) concerns 'Run 3', i.e. a mean depth

of'flow of 0.512 ft (0.16 m), a mean velocity of 2.27 fps (0.69 m/s)

and a channel slope of 7.2 = 10-4. For the numerical simulation of

Bbed +d=6.5ft
(1.99 m) and the bottom was taken horizontal. The Chezy-factor was -
estimated at 127 fti/s (70 mils).

the cross-section was assumed to be rectangular, with B =

The magnitude and the direction of the horizontal velocity component
were measured in a three-dimensional grid covering the straight section
between the two bends and the second bend (see figure 25). In addition,
the water surface elevation and the bed shear stress were measured in
each vertical of this grid.

The flow was simulated numerically in the entire flume since the flow
in the second part of the flume, where the measurements were taken, was
expected to be influenced by the preceding bend. The computational grid
consisted of 25 cross-sections, lying between an inflow section 7 ft
ahead of the first bend and an outflow section 7 ft beyond the second
bend. The cross-section was divided into 22 (horizontal) x 20 (vertical)
meshes, the size of which decreased near the fixed boundaries, as shown

in figure 25.

According to figure 26a, the depth—averaged main velocity field is
reasonbly well predicted, except near the sidewalls and in the exit
sections of the bends, where the outward shift of the measured flow is
stronger. As in the other simulations (see sections 6.5.1 and 6.5.2), the
wall discrepancies must be attributed to the horizontal distribution of
the turbulence viscosity. The deviations at the bend exits can be
explained from the underestimation of the secondary flow intensity that
becomes evident from figures 26b through d.
Figure 26b shows the outward and inward radial discharges in the channel
axis, defined as

g 0
-lf vd ¢ and Zf vdzg (6.22)

in which T denotes the level at which the radial velocity component changes
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sign. These definitions can further be elaborated to

g g

[ vdg I fdg - Regy g(2) (6.23)
=1 -1

n
<

0 0

ZI vdg =v.{l - J fdg} +Re;vg(2) (6.24)
4

1
<

When comparing the predicted values of these quantities with the

measured ones, they appear to be too small. Despite of great local
differences, however, the net radial velocity v has the correct order

of magnitude (figure 26c), so that it must be the secondary flow that is
underestimated. This becomes even more evident from figure 26d, showing
the radial component of the secondary flow v in the channel axis*).

Not only the :intensity of the secondary flow in the bend is underestimated,
however, but also the 'memory effect' of the preceding bend. In the model
predictions, the secondary flow generated in the first bend has damped out
before the second bend is entered, whereas the measured data show the
secondéry flow of the first bend to the perceptible even in the first part
of the second bend, not only in the intensity, but also in the vertical
distribution of L (cf. MOSONYI AND GOTZ (1973) and GOTZ (1975), who
conducted experiments in subsequeiit, rather sharp (B/Rc = 0.25) 180° bends
with small (L = 2B) straight sections in between).

The predicted magnitude of the bed shear stress is about 207 larger than
the measured one (figure 26e) and the transverse distribution is not

quite correct, not only near the sidewalls (turbulence model), but also in
the central region, where the predicted curves have a somewhat smaller

slope. It should be noted, however, that the bed shear stress was measured

The 'measured values' of this quantity were obtained from
q y

vs = vy - \-lf (6.25)

in which the actually measured v and v were used and f was taken logarithmic.
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using a Preston tube, which is not quite suited for this skewed

type of flow (NISHI, SENOO AND TERAZONO, 1974).

The direction of the bed shear stress in the present model coincides

with the direction of the velocity near the bottom (cf. VAN DEN BERG

a.o. (1975), stating that in skewed boundary layers this is not quite
correct). Therefore the computed bed shear stress angles are considerably
larger than the predicted ones (see ifigure 20f).

The transverse pressure distribution corresponds quite well with the
measured water surface configuration (figure 26g), which is in

accordance with the conclusion to be drawn for the DHL-flume, but not

for the LFM-flume (see sections 6.5.2 and 6.5.1, respectively).

6.5.4. Simulation of the IHHE-experiments

There are different reasons why it is interesting to try and simulate

the IHHE-experiment 'no. 1' (ROZOVSKII, 1961):

. it concerns the flow in a sharp bend (B/Rc = 1.0), which provides
the possibility to test the performance of the model under extreme
conditions (high Dean-numbers),

. ROZOVSKII states that his secondary flow predictions, which are quite
similar to the present ones, are rather good, especially for this
experiment (see also DE VRIEND, 1976 and 1977),

. the same experiment was simulated numerically with a fully three-
dimensional model (LESCHZINER AND RODI, 1978), which provides another
testing possibility for the present 'two-plus—-one'-dimensional model.

All attempts to carry out this simulation, however, failed because of

ill-convergence of the main flow iteration procedure. Apparently, the

equivalent Dean number, amounting about 66 here, was too high to make
the similarity procedure underlying the model: convergence (cf. fully
developed laminar flaw (DE VRIEND, 1978a), where the procedure converged
for Dean numbers up to about..40). R ; o o _

In spite of this failure in the main flow prediction, some other tests ,.

are possible, considering that .

e far from the sidewalls and from the transitions between the bend and
‘the straight reaches, the predicted secondary flow can be approximated

as if it were fully developed, i.e.
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e the predicted transverse pressure distribution far from the

transitions is fairly well approximated by

-2
D, 2u
3% _ € T Reof2

» 80 that the transverse pressure drop follows from

p = P;

outer inner _ B
R
C

eRe0

The secondary flow in the IHHE-experiments is adequately described by

Rozovskii's formula for a smooth bottom

- u 1 g _ Vg
Ve Ty 3 1 ® + IR0 20 - 7B
® 1n(1+7) . 1n2(1+c)
in which F, = f ———=%dr and F, = [ —*dz.
1 ¢ ¢ 4 ¢

If the secondary flow intensity is characterized by @Reo, this yields

0 E a
= _ _u _ 1 /g 1
xbReo = -lf dzg -lf VSdC = -I-' (1 -i- R’) Z'?'

For C = 60 mi/s and k = 0.5, as Rozovskii suggests, the intensity

amounts 0.95-%. The intensity predicted_by the present model, for

(6.26)

(6.18)

(6.27)

(6.28)

(6.29)

k =0.4, y =5 and C = 60 mi/s is 0.82-2, i.e. about 15% smaller. If ¥y
r

is kept equal to 5 and the k-e-approximation (6.9) is used for a'

instead of the almost-parabolic distribution (6.8), however, the

. . u . . . .
intensity becomes 0.96 = which is almost correct. So in contrast with

the simulation of the DHL- and IIHR-experiments, y = 5 leads to
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satisfactory results here, provided that (6.9) is used as a vertical
distribution of the turbulence viscosity.

The transverse pressure drop following from (6.27) equals 1.0 and

the measured superelevation in the second part of the bend, wher§ it
was almost constant, is about 7.5 x 10—3 m, at a Froude number XE of
about 0.11, which corresponds with 1.1 as a result of (6.27). Si even
in this sharp bend the model describes the transverse configuration of

the water surface fairly well.

6.6. Discussion

The experimental verification of the mathematical model developed here
makes clear that the turbulence model is a most crucial part of it,
having a great influence on the main flow (near the sidewalls), but
especially on the secondary flow and hence on the bed shear stress
direction. This turbulence model, however, is also the most important
source of uncertainty in the modg%t On the basis of theoretical (HINZE,
1975) and practical (RODI, 1978; VAN DEN BERG, 1975) arguments, the
fundamental hypotheses of the model, viz. the applicability of a scalar
turbulence viscosity and especially of an algebraic relationship between
this viscosity and mean flow quantities, are subject to doubt. Besides,
the present verification of the- complete mathematical model has raised
doubt against the assumed vertical distribution of the turbulence viscosity,
its overall mean value and its exclusive dependence on the bottom friction
velocity. Verification and improvement of the turbulence model, however,
requires more and also more accurate experimental data, both for simple
uniform shear flow and for curved channel flow.
It seems that the rather poor prediction of the secondary flow intensity
in the DHL- and the IIHR-flume can for the greater part be attributed to
the turbulence model, but as turbulence quantities were not (DHL) or
insufficiently (IIHR) investigated in these experiments, this can be no
more than a hypothesis. Besides, if this hypothesis holds good, it is not

clear why the secondary flow intensity in the IHHE-flume is predicted much

better. Therefore it would be most interesting to have secondary flow measure-

ments in the LFM-flume, which is sharper than the DHL- and the ITHR-flumes,
but not as sharp as the IHHE-flume.

1 O TR
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Another point concerning the secondary flow that needs further

study is the poorly described 'memory effect' (see section 6.5.3).
This aspect of the model is likely to become even more important

in channels with a non-flat bottom, where much stronger streamwise
variations occur than in channels with a flat bed. So far, it has
not become clear whether the false prediction of this 'memory effect'
is due to the turbulence model or to the simplifications in the
secondary flow computation. Here, too, secondary flow data from the
LFM-flume, especially of the damping beyond ;he bend, would be of

interest,

More experimental data are also needed in the matter of the magnitude
of the bed shear stress. If this quantity is measured at all, the
accuracy of the results allows at best for a qualitative verification

of the calculated bed shear stress.

Finally, the present verification emphasizes the important role of

the sidewall regions in the flow process in rectangular channels.

In channels with non-rectangular cross-sections resembling those in
curved alluvial rivers, however, this influence of the sidewalls, if
present at all, is likely to be much less . important. As the modelling in
the sidewall regions requires a lot of extra effort, this raises the
question whether a model for rectangular channel flow is quite efficient
as an intermediate step in the development of a mathematical model of
the flow in curved alluvial rivers. It should be noted, however, that a
great deal of most important experimental information on curved channel
flow concerns rectangular channels and that extending the rectangular
channel model to more arbitrary cross-sectional shapes makes it possible

to investigate the importance of the sidewalls (banks).
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7. Recapitulation and conclusions

The investigations reported here have led to a mathematical model of
steady turbulent low Froude number flow in curved open channels with a
shallow rectangular cross-section. In the present chapter the most
important features of this model and the most important conclusions

drawn from the investigations will be summarized.

7.1. The turbulence model

The modelling of turbulence, i.e. establishing a relationship between the.
Reynolds stresses and the turbulence-averaged flow properties, is an
important part of the model. The turbulence model adopted here is based on
the Boussinesq-hypothesis, stating that the Reynolds stress tensor can be
related to the rate-of-strain tensor of the turbulence-averaged flow through
a scalar turbulence viscosity. This turbulence viscosity is assumed to be
related to the mean flow through the bottom friction velocity only; it is
taken proportional to this quantity. Its vertical distribution is taken
similar throughout the flow field, independent of the local flow conditions.
The prescribed spatial distribution of the turbulence viscosity was subject
to a closer investigation, which led to the following conclusions:

. the mean value of the turbulence viscosity strongly influences the
secondary flow intensity and hence the direction of the bed shear stress;
its influence on the vertical distribution of the main flow and on the
magnitude of the bed shear stress factor is rather small,

. the literature gives no decisive answer regarding the mean turbulence
viscosity, not even for fully developed straight channel flow;

. the literature gives no decisive experimental or theoretical evidence
for the vertical distribution of the turbulence viscosity in the upper
half of the vertical, either;

. this distribution hardly influences the main flow and even its influence
on the secondary flow is rather smallj;

. the secondary flow intensity tends to increase slightly if the turbulence
viscosity distribution in the upper half of the vertical becomes more uniform;

. the assymption that the bottom friction velocity is the only mean flow
quantity influencing the turbulence viscosity is certainly not correct near
the sidewalls; in the central region the assumption seems to hold good;

. prescribing a horizontal distribution of the turbulence viscosity independent
of any mean flow quantity may give rise to important local errors near the

sidewalls,
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7.2. Simplification of the mathematical system

The complete mathematical system describing this case of turbulent

flow consists of the conservation laws for mass and momentum, a

turbulence model and a number of boundary conditions (see chapters 2

and 3). In order to reduce the computational effort, some simplifications

were introduced into this system, making use of the limitation to shallow

channels. The most important of these simplifications were verified, which
yielded the following conclusions:

. the vertical component of the main velocity, which arises from variations
in the shape of the vertical distribution of the streamwise velocity, is
negligible in all equations of the system;

. adopting a similarity hypothesis for the main flow in a whole cross-section
implies that the effect of streamwise accelerations on the vertical
distribution of the main flow is neglected;

. this neglect is allowable when calculating the depth-averaged main velocity
field, but it is not when calculating the secondary flow and the magnitude
and direction of the bed shear stress;

. the streamwise inertia of the secondary flow needs not be incorporated in
the main flow computation, but it has to in the secondary flow and bed
shear stress computations. '

Taking account of these conclusions, the computational procedure was split

up into two subsequent steps, viz. the main flow computation step and the

bed shear stress computation step. In the main flow computation step the

similarity hypothesis for the main and the secondary flow is carried through

completely: in any vertical of a cross-section the velocity distributions are
taken similar to those in the channel axis. In the bed shear stress computation
step the similarity hypothesis is dropped in that the velocity distributions
may vary slightly from vertical to ve;tical in a cross—section.

The main flow computation step can be summarized as an iterative procedure,

in which the depth-averaged main velocity and pressure fields, the horizontal

distribution of the secondary flow intensity and the vertical distributions

of the main and the secondary flow in the channel axis are calculated alternately.

In the bed shear stress computation step the distributions of the main and the

secondary flow are calculated in all verticals of the computational grid,

making use of the depth—averaged main velocities and the secondary flow
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intensities resulting from the main flow computation step. Subsequently,
the distribution of the secondary flow intensity is corrected and the

magnitude and direction of the bed shear stress are calculated.

7.3. Computation of the depth-averaged main velocity field

The only part of the mathematical model that requires a rather complicated
computational procedure is the determination of the depth-averaged main
velocity field, where a complicated system of three partial differential
equations, viz. two momentum equations and an equation of continuity,

has to be solved simultaneously. All other parts of the model come down

to the solution of one ordinary differential equation allowing for

rather simple and straightforward computational methods.

The investigations concerning the depth-averaged main flow computations .

involved two essentially different methods, viz.

- a method based on the stream function/vorticity concept for two-dimensional

flows, solving for the stream function and the vorticity of the flow
rather than for the velocity components and the pressure; thus the number
of differential equations to be solved is reduced from three to two;

- a two-dimensional version of Spalding's method, calculating the velocity
components and the pressure directly from the momentum and continuity
equations; both the parabolic mode, discarding all upstream influencing,
and the partially-parabolic mode, in which upstream influencing through
the pressure is taken into account, were considered.

The conclusions drawn from these investigations are:

. in contrast with the equivalent model computational method in the model
for laminar curved flow (DE VRIEND, 1978b), the stream function/vorticity
concept gives rise to ill-convergence of the iteration procedure in the
main flow computation step,

. the two modes .of Spalding's method do not give rise to convergence
problems, ‘

. Spalding's method is much more efficient than the stream function/vorticity
nethod, A

. the most economic mode of the method, the pargbolic one, is only
applicable in mildly curved flows,

. the partially-parabolic mode of the method gives reliable results even in

sharply curved flows, provided that no flow separation occurs.
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7.4, Performance of the model

The performance of the model was tested by simulating a number of

laboratory experiments carried out in various curved flumes. The

conclusions drawn from these tests can be summarized as follows:

the main velocity redistribution in a curved channel with almost

uniform roughness is predicted reasonably well if the correct secondary
flow intensity is introduced; only locally near the sidewalls considerable
deviations from the measured data occur, most likely as a consequence of
the inadequate modelling of turbulence there;

the transverse distribution of the pressure and hence the transverse
configuration of the water surface is predicted fairly well;

the longitudinal distribution of the pressure does not correspond
everywhere with the longitudinal configuration of the water surface

as a consequence of backwater effects;

the often observed velocity reduction near the water surface, both in
straight and in curved channels, is not reproduced by the model; this
velocity reduction can certainly not be explained entirely from the
influence of the secondary flow due to the main flow curvature;

even in mildly curved flows the intensity of the secondary flow is
underestimated considerably, probably as a consequence of an erroneous
turbulence model; the overall mean value of the turbulence viscosity is
of great importance in this respect;

the damping of the secondary flow beyond a bend is poorly described by
the model; it is not clear whether this failure must be attributed to
simplifications in the mathematical system or to an inappropriate
turbulence model;

the vertical distribution of the secondary flow agrees rather well with
the measured data, except for tegions where the 'memory effect' is
important;

the magnitude of the bed shear stress can hardly be verified by lack of
reliable experimental data for rectangular channels; the comparison with
the measured data from the IIHR-flume suggests the magnitude of the
shear stress to be overestimated;

the direction of the velocity vector close to the bed is related directly

to the secondary flow intensity, so that the deviation from the direction
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of the channel axis is underestimated; in not too sharply curved
flows this implies that the predicted direction of the bed shear
stress is in error, as well;

. the model does not work at all for sharply curved flows with

relatively high effective Dean numbers.,

7.5. Further research

Apart from the extension of the present model to shallow channels with
a more arbitrary cross-section (arbitrary cross-sectional shape; more
arbitrary channel pattern), the investigations reported herein have
raised the need for further research at the following points;
. the modelling of turbulence in this type of flow; what is the answer
to questions as:
- to what extent does the Boussinesqu-hypothesis apply?
- how is the turbulence influenced by the streamline curvature and
how important is this influence?
= how is the turbulence influenced by the free surface and how can
this influence be accounted for?
= if a scalar turbulence viscosity is applicable, what is the
simplest acceptable way to relate it to the mean flow? ‘
- what should this turbulence viscosity look like in uniform
rectilinear shear flow?
. the "memory effect' in the secondary flow, both theoretically and
experimentally;
. the magnitude and direction of the bed shear stress, on which little
experimental information is available; in this context it is worthwhile
to find out to what extent the direction of the bed shear stress

coincides with the direction of the velocity close to the bottom.

Besides, it would be most interesting to carry out additional
experiments in the LFM-flume, with special attention to the secondary
flow.
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Figure 1, Combined cylindrical coordinate system
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(a) Main velocity distribution



10} : -

(=3

d/B = 0.1 modified parabolic distribution (eq.(6.8))
e = 004
C/\g = 18.2 ——— — approximative k-¢ - distribution (eq. (6.9))
Rey = 2.39
=8
] L L L 1 L ! 1 L 1
5 - 3 -2 -1 0 1 2 3 4 5

Figure 11, Influence of-the vertical distribution of the turbulence viscosity
on the flow in the LFM-flume

(b) Stream function of the secondary flow
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(a) Main velocity (b) Horizontal component of the secondary flow
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(a) Depth-averaged main velocity
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(b) Transverse pressure drop
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(b) Secondary flow intensity
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(d) Secondary flow
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(g) Transverse pressure distribution and water surface configuration
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APPENDIX A

Computation of the depth-averaged velocity in

fully developed straight channel flow




Appendix A. Computation of the depth-averaged velocity in

fully developed straight channel flow

If the vertical distribution of the velocity is given by a distribution
function f(z), with ? = | by definition, the depth-averaged velocity
distribution in fully developed turbulent flow in a straight shallow

channel can be solved from the equation

0=-Z+alFE @ - @ &) & .1

where a' = q/u. If f represent the logarithmic distribution

f=1 +-£& +-£— In(l+zg) (A.2)

and a is given by (3.12), equation (A.1) reduces to equation (3.22).
In addition to equation (A.1), the integral condition of continuity

(2.20) and the boundary conditions

u __'/8 L/.& _ _B

u = kl (1 + C + C 1n 61) at £ = - 2d + _61 | (A.3),
‘ /g, /s _B

u kr (1 + C + C 1n 6r) at § 74 Gr (A.4)

have to be satisfied. The wall shear stress factors kl and kr can be

determined from the additional conditions

- v % B _

Bk (g g Iy v are =g (4.5)

s=k (1 +224 "1n( ~E)) atE=¢ (A.6)
b kC 2d 2 e

If 61 and Gr and also-é;l and 52 are taken equal, the solution of this
mathematical system will be symmetric about the channel axis, i.e.

conditions (A.3) through(A.6) can be simplified to



A’z

- Y, Y, B B
u=k(1+?%+E—%ln6)=ktoat£=-—2-a~+6 and at £ = = - § | (A.7)

and

B

t at § = - B At and at & = 74

- Y Y
u=k(l+-K—%+-K—%lnA€)=kl 73 - AE (A.8)

As the pressure gradient will be a constant, equation (A.1) is a
non-linear ordinary differential equation of the second order for u
as a function of £. It may be attempted to solve this equation

iteratively, using the linearization

0=—%§+af—f )—(a'—"’-—f e (A.9)

"
in which u denotes the estimate of u found in the foregoing iteration step.

The convergence of this iteration procedure, however, appears to be very
poor, probably as a consequence of disturbances generated near the side-
walls. '

On the other hand, it is possible to write equation (A.1) in a closed form

2= 2

0==SBy L FTFLE ('9-73) a% (A.10)
9s 2 2 z=-1
13
» from which the quantity Gz can be solved directly, thus avoiding all
convergence problems.
In order to solve equation (A.10) with the relevant boundary conditions
to be derived from (A.7) and (A.8), 52 is split up into two parts
-2 _.2-2 _ 3p =2
u k U 55 U2 (A.11)
in such a way that
a2a?
_].-_T- l— -2= 1 -2= 2 =:’_. ..B_- 12
saf =5~ (a )IF'I uj =0 with wuj=t, atg Gg-® (A.12)



A.3

- (g L 1 =41/2
;f tg cosh th
cosh t(—é-a-d)
and
;g o ; a1 ‘ {1 = cosh th }
. (a 3C)|C='1 cosh t(ia-é)

The additional conditions (A.8) are satisfied if

2 -2 p - 2.2
k “1|gl 35 uzlgl'k"l

,» whence
u
21g
k2 =—32—-——.—..—-——I ! = —_aRKZ
9s ;2 _ t2 9s
11§ k
and
u
2|
=2 _93p , =2 _ 1 -2
i ( Y2 7 S _ t2 ul)
“1|g !

Substituting this result into the integral condition of continuity

(2.20) yields

» the solutions of these systems read

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)



A.4

_ oyt _ B/d
ST y B/2S L, o (A.19)
2K §(1 +;<—% In 8) + (K7u) + uy)?® de

-B/2d+§

» with which the depth-averaged velocity distribution and the shear
stress factor at the sidewalls are known.

The friction velocity at the sidewalls follows from

- Y8
|u‘rw| C k (A.20)
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Appendix B. Computation of the vertical distribution of

the main flow

If the quantities G, v, ;,}’(;) and 4(g) are known, equation (5.1)
for the vertical distribution function f of the main flow is an

ordinary differential equation of the form

9 .
af of =1
a 3;2 + a, = + a3f . af | (B.1)

» in which a a, and a, are known function of &, ¢ and Z. The boundary

conditions to be satisfied are

- /g , /8 - - -
f k {1+ c T o Im8y) =kt at g = 1+60 (B.2)
and
z{1+7) -g—{= 0 at ¢ =0 (B.3)

In addition, the following condition must be satisfied

- /8, /8 ey o _
f km {a + C + C 1n.(L+\;l)} = km?l at T =g (B.4)

-~

In accordanceiwith one of the conclusions drawn from the investigation
of fully developed curved laminar flow (DE VRIEND, 1978a), the pressure
is assumed to be hydrostatic, at least in the main flow computation step.
Hence the tangential gradient of the total pressure is independent of ¢

and the function f can be split up as follows:

1 3
Ffabhti~guly . - (B.5)

‘Herein the functions fl and fé are chosen such, that

azfl 3f) P |
a 5 + a, 32—A+ azl| = 0 (B.6)

14



B.2

with the boundary conditions

of
1
fl ty at —l+60 and c(1+r,)3;-——0 atz =0
and

2

3°f of
a3+ 8y g ¥ agfy < -l

oz ¢
with the boundary conditions

of

fy=0 atg =-l4, and g(l+z) 323 =0 atc=0

These two systems of differential equations and boundary conditions

can be solved to yield fl and fz.

Once the functions fl and fz are known, the constants km

remain to be determined. Substituting (B.5) into the additional

condition near the bottom (B.4) yields

Finally, ? = 1 by definition, so

A PR

l3p,
r 9¢

f2|'Cl Fi-Gyle -t 5

&y

, whence

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)



B.3

f
£ = 2|c1 (B.14)
0 = —
fale F1 Gilg, o0 By
and
lecl ai (f‘|51—t')f2 (B.15)

fz|;l £ = (fllcl--t!)?z
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Appendix C. Solution of the longitudinal momentum equation

In each cross-section j the longitudinal momentum equation (5.9)
can be rewritten as an ordinary differential equation in { that

is linear in u.. This equation has the form

J

azl_lj aG. _ _aé
31772 Y39 YT T s ke 1)

(13
, in which a through ag are known functions of £ and %E-is considered
as an unknown constant.
The sidewall-boundary conditions can be formulated as
uj kl(l+KC + =5 1n 61) kltO at § 7d + 61 (C.2)
U, = k.t gE k= B — (C.3)
i~ *cto 2d 1 , : :
with kl and kr as unknown constants, to be determined from the
additional conditions
” /g , V8 B
U, k1 {1 +E—6+K—C1n(<sl+Ag)}=k1tl at g = - 5o+ 8, +AL (C.4)

J 7

u. = k_t at ¢ = B o= § = A
| o7 i (c.5)
Now the velocity Gj is split up into four constituents
u. = k.u, +k.u +3‘_G + u
S S R S B P SR (C.6)
in such a way that

azﬁl ou, - .
a + a + a,u, =0 with u, = t. at E=-7=5+ c.7
1 852 2 3 371 | 0 2d 1 (c.n

= e B
and u, = 0 at g =—=-§



C.2

with u

and u

with u

and u

with u

and u

4

4

0

at

at

at

at

at

at

B
E=m@t Yy
=B _
E=23° 9
B
EEmmtt Yy
N
£=24 9§,
= - B_
IS
=B _
E=2a° %

The solution of Ej must satisfy the additional conditions (C.4)

and (C.5) and the integral condition of continuity (5.22), which

can be reformu

= ] with

e

Consequently,

» where 51 = -

lated as

e
I
Wl

the unknown

" p
uZI " 3s
&
= P
u2| * 9s
)
= p
Y s
B_
7d

-B/2d

constants kl’ kr and 2B

B/2d

+ 61 + AE and

dg

9

as

can be solved from

(c.8)

(c.9)

(c.10)

(c.11)

(C.12)

(C.13)

(C.14)



C.3

The cross-sectional mean value of the pressure pj+l is corrected

by setting

(C.15)

(C.16)
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Appendix D.

Stream function equation for the secondary flow

Making use of the similarity hypothesis (4.15) for the main flow
and the expressions for the curvatures of the streamlines and the

normal lines in terms of the depth-averaged velocity components

(see DE VRIEND, 1978b)
1 1l =, udv . —3v _u wt B . v B . g e
oo luesgprevgp - ) e gt vt T uwl
8 u
t
1 1 =, U3V, -3V _uX .-uda.-da. €-=
-I:=E§{EV(E;'8~$+€V-E—r—-)+u(-;-a—$ v—E+-£uv)}
t

» the transverse momentum equations (4.8) and (4.9) can be elaborated

to

u u
ezResz(u ;E + ev ;E) + e3Re0f (5-——5 + v

8

Elimination of the pressure from these equations yields

__S.+-.§.af)+2

- 3V oV

" r 3¢ g

N o, 2,02
+ LA 3¢ ) 3E + € aVlvs + e

kﬁ
~
I
g1
1
N
H|m

2

<
7]
~
|

_ _ 9p 2 _2 €
Y3 + € aVlw +

ow 2 2a aws

AT 3¢ g

e’ 2a

_...§)+

2a il
r

9

&,

- 3f
s 7T 3¢ Yo

+

e s A4
u) + ¢ ——'(ZEE—'FZ]"B'E— +

(D.1)

(D.2)

(D.3)

(D.4)



D.2

u u = W Bw
_2 of ) - 25 - EE 3 u_""s = av
eReo Y (u 7 + ev rn) + € Reof{r 5$— + v 8£ 35
ow - ~ v - 2
l_s du_eqgyy_ g, f m__s v _e - 5 f
YT Ge T Wl eReygr Gar Vo gE T T VeY) eRe 8C2
azws azws s Bws 2 3a aws azws a aws azws
=g a ( + + — ) — ( + + — + ) +
3;2 3E§ r z& 9E “3E acz r 9§ 852
2 3a ow v 9 vS e avs 2 82a 82a Bvs &zg
te o Gp 2 T2 rw)te Co TG )t
14 13 9 9z
2 ow v - 3 -
s 28 (s sy, 20 1dwdf 5 d°f) _ 23a3vaf,
99 9C g r 3¢ 9L 81;3 9 93¢ 9dr
2 2 .2 2 .2 2
_208a-3f € 3a =-3f € da - €y _,203a v
&« %Y 420 YT %Eeg Uar T X dgag @t 2T W - 2 g el *
2 2
+ e (2224 V%E (D.5)
9k T

w =-S5 - _= ' | (D.6)

A relationship between this vorticity and the stream function ¢ of
the secondary flow can be derived by combining definitions (D.6) and
(4.17), to yield

o wees (08 g B & B, (0.7)

Now equation (D.5) can be elaborated to a differential equation for y
by substituting (D.7) and (4.17). This stream function equation for

the secondary flow reads

a @ty ,, 0% L ofy _.‘P. 2y
- { M 2 55t ( )} "
13 9§ 9z 14 35 3§3C
1 da 83 ’ 83 82 32
toar (2GF 2t - 3 2L, 3y,

9k aga;z 8&2 61;2

2]



1 3a 3 Y Y € 3 Y 293a 3 Y € 3V
+—2 22ty ) + = (2 -£3 .
r 9C 8;3 agza; r 9£0C r 9£3C 9£9C r 9
2 2 .2 2 - 2. 2
L s r Bt~ BEE RN I PR
13 ag = 9§ g 13 14
2 2 - .2 ~ 2 2 -
e B BT RET < ST ORL R PRI 1Y)
3g? oz ¢ aE? g £ 3¢
- 2
& 1af (ud 9V _ £ 3y 3 13 f53 _
€Req T 37 T aces * G T % )a;}+€ReOrac2"ag
- 3 - 2 2
Re, 't 3¢ ag ag>  Rep SE 3L AT " Rey 3¢ 2~ ReyT 3836 ¢
2 2 .- 2 2 =
1 37a £ 2 da 3v,._da_23a _v 3f
" Re.r 3L3¢ flo+27w + Re, 9£3L 0 f (agz ac2) Re ) 3z
d _u b,
- gc)(“§+evr_n) (D.8)

If the secondary flow is assumed to be described with sufficient accuracy
when retaining only the most important terms of this equation, viz. the
main diffusion terms, the main streamwise inertia terms and the source

term due to the main flow curvature, the equation reduces to

4 3
a{--% 32'@2 a£}+23a(_w_ alp) %%(2 —‘£)+
13 3€ 14 ag E 3535 9g 9L 3C
2 2 2 ~ 2
9" a anp 3 a 3 a arxp aw u 3 = atp 37Y
+ 4 T e L T S P L R B Gl S S
9EdL 9E0C . ae_:z oz2 0" r 3¢ 3" 0p2 52
- 3u 1 _‘L ..._‘P_ _.f u _‘P_ v Y
sRey Ef{ag T 9£3¢ ag ( 22 agl 23 50 T acee T aE o)
2 -2
L _21 = - ._(fZ_EB_ (D.9)
acz & 14 ry

Substituting the similarity hypothesis (4.18) and a = kmaa' into this

equation and averaging the result over the depth of flow yields

- - 3= 2= 2
] du 37y . 3% 3%y 2%, qa' ag , du 9y
a'g (u=—p+ 2% ag3+a;2 52) + (@' 22 0% ag) 2(u—5 352 3¢ 3c) *




D'4

+ (a' 31{% +2 é?l' —
Y Y
) aZa, i ;.23@ ) €Re
32 a2 Ky
2
+(f.a_a Ef_ﬂ s
ac2 14 ac)é—
For a' =

elaborated as follows.

25 ol 2 2=
e thw L ien tow A AL
T 14 9z~ 9§

: r 3¢8£2 853 0 r 39¢0E
v % 2% oo
srE 0 P -g 2D ol -

14 14

-6 z(1+z), the vertical distribution products

can fu

- 124

3 g 3 oa’ 3°a’ d°a’'
' _av ql - _a_E + J’ g 2 dc:g 2
-1 -1 g T
3% 3a' 3g . 3%a' 3%g 2
a' __% + 2 3——-3% +— -—J% = cf £=0 (for c: see Appendix E)
oz s az” At
0 0o .2
3a' 3g _ da' 3°a'
—— e T g - [ g dz = +12
g o ar Yl | )
0 0 2 . 2
g ot I, a ac|z= 0 ag2
32 ) 9 0 9g 2 3 32
g_4§=g_8£| S A AP - [
cl_ _ g 9¢ 3z |c=0 2
14 1 1 9%
2
L) _ f2|
9z z=0

rther be

-12

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)



D'S

Making use of (D.11) through (D.16), equation (D.10) can be
elaborated to

: 4~ = 3 9= 9 3= - = 2=
a' (Ubg+2-g—uag+a;ag) + 12(u-a——'g-+2—g—l—l-a—g+-—2¢) +
13 13 0f" 3 3E 3E
. = - _ e a 2% - 2% L au 1% . av o
tef g V- {fg ( + v + = PO )
l; 0 km r 3¢8£2 ag3 £ r 3¢0E Y3 352
9g U@E “3_\!_1 _3_§ - ru 2
f dr|z=0 (I' PY) + v 3 + E w)]’ k » f lC=0 (D.17)
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Appendix E. Computation of the vertical distribution of the

secondary flow

The vertical distribution function g of the stream function of

the secondary flow is solved from equation (5.63), which can be

rewritten as

2 2 2
_3__2 @' 3__.‘21) - ca_gf__) (E.1)
14 14 ¢

in which ¢ is considered as an unknown constant to be determined
from the condition g = 1, which follows from the definition of g
by the similarity hypothesis (4.18). From the point of view of

convergence, this approach is preferable to evaluating

ru
k »r
m 8

- (E.2)

1
v
" on the basis of the most recent results of the depth-averaged flow

computations, since g satisfies all conditions in each iteration step

now.

The boundary conditions to. be satisfied can be written as

2
g=0 and @' 2L -0 at g=0 (E.3)

- /g - |
g ks‘SO k1 kC I 60) kstl  £

vPat § = -1 + & (E.4)
M. +-£5 + /g In 6,) = k_t °
L s k¢ " xc ™% s 0
o . C - . .
in which the constant ks (= e rst/wReo) is determined from
= —/-& = = | &
g=k, (I+ z,) {1 +—21n (1+z)} =kt, atg =1, (E.5)

The procedure used to solve g from equation (E.1) with conditions
(E.3) through (E.5) is based on repeated integration of (E.1) with
respect to % (see also DE VRIEND, 1978a and 1978b). To that end g

is split up into two parts



E.2

g = ksg* +cg, (E.6)

in such a way that

z,2 a?'gl 82g
2(a' 2)=0 withgl=0 and a' 2=0 at g =0 (E.7)
oL 14 la
ag]
and g, = t1 and T to at ¢ = -1+60
2 2
2 9°g 2 93g
C > (a' 22) = a;i ) with g, = 0 and a' 22 =0 atzg=20 (E.8)
9T 14 14
3,
and g, = 0 and T 0 atg = -1+60
The former system allows for an analytical solution, Vviz.
/8
l+KC (l+1n60—<so)
g, = {(1+g)1n(1+g) - z(1+1n8)} + £,z (E.9)
1+1nd.-6

0 0

, the latter system must be solved numerically. The solution of this

system can be written as

4 4 : g
_dc
g.= 1 a 5 =¥ __ A2a-+
2 <14 -1+6 6z (1+c) 0
0 0
8y + (1+2) {In(1+z) - 1né - 1} 0 t g z fz
+ I dzg J 2 (1+0) J dg
1+ 1n60— 60 -l+50 —1+dS0 0

(E.10)

The evaluation of the integrals near the surface requires some

further attention, since the factor z(1+f) goes to zero there, which



E.3
could raise numerical trouble. A Taylor series expansion about

the point £ = 0, however, shows that

"
1 2 o =t 2 _ 2
(1+7) Of frdg 'E_,{Cf2|c=o + 0D} =7 IC=0 + 0(z) (E.11)

, so that all problems are avoided by using f2|C=0 instead of
(4
1
— d
v oo

The functions 9, and g, being known, the constants ks and ¢ must
be determined from the condition g = 1 and the additional condition

(E.5). These two conditions are satisfied if

ksg] *cg, = 1 (E.12)
and
ksgl(cl) +c gz(;t) =k t, ) : (E.13)
Hence

. g.(T)
k, = 2 (E.14)

and

¢ -g,(z,)
c = At b (E.15)

9,9,(8)) = 9,1g,(x)) - t,)

Finally it should be noted that if the point g = %, and ¢ = —l+6o
are so close to one another that between these points g(Z) can be

approximated by a straight line, the counters and the denominators



E.4

of (E.14) and (E.15) may become very small. In extreme cases
lit may be preferable from the point of view of accuracy to

replace the additional condition (E.5) by

14 ks {r+ kC * kC 1n(H’I;l)} at & Cl

(E.16)
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Appendix F Computation of the depth-averaged stream

~ function of the secondary flow

The depth-averaged stream function of the secondary flow ¥ is

solved from the partial differential equation (5.48), which is

first order in ¢ and fourth order in £. This equation is solved

using an implicit forward marching technique, i.e. starting from

the. upstream boundary ¥ is solved implicitly in each subsequent
cross—section.

The differential equation in £ to be solved in a cross-section can be

written in the form

au.q.a .a_q}_-i-a a—‘k+aa+aa—a6 (F.l)

- /g )
vo=kyg 8,1+ 5 Ind)) =kt _ 5
) at g == 53 + 61 (F.2)
3t = K1 (1 *3c * e 108)) = Kt
vo=- krst2
B
_ at =ﬁ_ 61 (F.3)
MK
9k rs 0

and the additional conditions from which Els and Ers are determined

read

- B

= B_ /g, /8, B - i -
vk Gz tE) Usp+iolnGg+EDt =kt at £=¢& (F.4)

v=-k_ t atg=g, (F.5)
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Now ¢ is split up into three parts

in such a way, that the components il’ EZ and 63 follow from

AT A .
a, —— +a, —— + a,—— + a, 5
1 3&4 2 Bﬁj 3 852 4 JE
- Wl _
with wl t2 and 5E t0 at
- v,
and wl =0 and 3 - 0 at
2, 9%, W,
a, —— + a + a * & w
1 354 2 353 3 852 4 3E
- 3y,
with wz =0 and 32— =0 at
_ 9,
and wz = —t2 and'sg— = —to at
X 2> 2% o
3 43 ta, 33 tag 23 a3 ¢
3E > 3E &
o %,
with w3 =0 and 9 0 at

Once the functions ﬁl, EZ and $3 are known, the wall shear stress

constants Els and krs can be determined from conditions (F.4) and

(F.5), which are satisfied if

B
£=323° 9

+ gy =0

E=+ Gg-8)

ki i’llgl + ko $2‘51 * $3‘51 =kt

and

lzls i'1‘&2 * 1-(rs $2i£2 * E3‘52.= - Erstl

(F.6)

(F.2)

(F.8)

(F.9)

(F.10)

(F.11)
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Hence

} ; "‘3\51("’2|a2+t1) *¥3lg, Vale,

O RNy N N e
1l€1 1 2|g2 1 1‘52 2|~€l

and .

. -¢3|€l (w,|€1—tl) +u»3|£l wl\gz

kps = @ @ > = 3 - (F.13)

] -t)W +t.) - "

1|gl 1 2l52 1 1|52 2\51

Then the depth-averaged sidewall friction velocities follow from
k k

- /g 1s _ /g _xs
V.1°C = Re0 and V.r =T - Re0 (F.14)










