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and his guidance during the project. I also want to thank the Discrete Mathematics & Optimisation
group for giving me the opportunity to present my findings during the seminar and mostly for actually
coming to my talks. This journey would have been a lot more difficult if I would not have had my
friends to study together with and share the ups and downs with that writing a thesis gives. Being one
of the last two to finish, has made me appreciate the moments we were with a bigger group even more.
Thank you especially to Zoë for being (not always) there all the way through. Another special thanks
goes to Jasmijn, for all the breakfasts and great morning conversations. I want to thank my mother too,
for taking care of me (read: feed me) during my Easter-writing-retreat. Lex, thank you for putting up
with my (dis)ability of creating an overflowing schedule which often fails to include free time. Lastly, I
want to take this opportunity to thank all the other people who have made my time as a student an
unforgettable period of my life.

Giulia Montagna
Delft, June 2023
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Abstract

A set of lines passing through the origin in Rd is called equiangular if the angle between any two lines is
the same. The question of finding the maximum number of such lines, N(d) in any dimension d is an
extensively studied problem. Closely related, is the problem of finding the maximum number of lines,
Nα(d), such that the common angle between the lines is arccosα. In recent years, many progress has
been made on this problem. We review some of these breakthrough results and the techniques they use
to approach this problem. The first main result is a linear upper bound on Nα(d) which is found using a
completely novel approach with respect to techniques used in previous works. Another main result that
we discuss solves the problem of finding Nα(d) for high enough dimensions. Some classic results from
some of the first studies on equiangular lines are also discussed. Finally, some suggestions are given for
possible further research.
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1
Introduction

A set of lines L passing through the origin in Rd is called equiangular if the angle between any two lines
l1, l2 ∈ L is the same. The very first results on equiangular lines date back to Haantjes [1] who showed
the maximum number of equiangular lines in R2 is 3, in R3 is 6 and in R4 is also 6. The problem of
finding the maximum number of equiangular lines in any dimension d was formally stated for the first
time by Van Lint and Seidel in [2]. They connect the problem to discrete mathematics by reformulating
it in terms of matrices and constructing graphs from these matrices, making it a graph-theoretical
problem. Godsil and Royle consider this problem a founding problem of algebraic graph theory [3, p.
249]. For any integer d, we will let N(d) denote the maximum number of equiangular lines in Rd. A
closely related problem introduced by Lemmens and Seidel in [4] is that of finding the maximum number
Nα(d) of equiangular lines in Rd with a fixed common angle arccosα.

Equiangular lines were first considered in terms of elliptic geometry [1], [2]. They are also connected
to frame theory, in particular Grassmannian frames which are optimal if they are equiangular [5].
These frames in turn have applications in coding theory. Another important application of equiangular
lines occurs in quantum theory. Maximal sets of complex equiangular lines are known in this field as
Symmetric Informationally Complete Positive-Operator-Valued Measures, better known as SIC-POVM
[6], [7].

For many years the results on the asymptotic behaviour of N(d) and Nα(d) from Lemmens and Seidel
in [4] were the best known. The results from this paper are still highly relevant to this day. A theorem
due to Gerzon gives a general upper bound on N(d) of

(
d+1
2

)
. This upper bound can only be reached in

specific cases and is known to be attained only for a few dimensions. Another result in this paper is due
to Neumann, which states that Nα(d) can only be larger than 2d if 1/α is an odd integer. Since this
result shows that large values of Nα(d) can only be reached in this specific case, there has been special
interest in finding the maximum number of equiangular lines with fixed common angle arccosα, where
1/α an odd integer. Lemmens and Seidel themselves already studied the first two cases, α = 1/3, 1/5,
and solved the problem for α = 1/3. Neumaier later confirmed a conjecture of them concerning α = 1/5
and said that the next interesting case, α = 1/7, would require considerably stronger techniques [8].

In the past decade significant progress has been made regarding the problem of finding the maximum
number of real equiangular lines in any dimension. The first breakthrough came from Bukh [9] who
showed that Nα(d) grows linearly for every α. Since then, many more improvements have followed and
new contributions continue to be published. First of all, Balla, Dräxler, Keevash and Sudakov showed
that Nα(d) reaches its maximum at 2d− 2 when α = 1/3 and is at most 1.93d otherwise [10]. Jiang and
Polyanskii further improve on this bound and give more evidence supporting a conjecture which states
that N1/(2k−1) =

k
k−1d+O(1) [11]. This last conjecture has subsequently been proven to be true for

large enough dimensions by Jiang, Tidor, Yao, Zhang and Zhao in [12]. All these results heavily rely on
Ramsey theory which is why they are limited to large enough dimensions. Balla finds a way around this
by using projections of matrices [13]. With this novel approach he shows a linear upper bound on Nα(d).

This thesis contains an overview of the most noteworthy recent contributions that have been made
on the subject of equiangular lines. It can be used as an introduction into the current state of research
concerning this topic. It covers some classic results on the subject and the most innovative recent results

1



2 Chapter 1. Introduction

and techniques. These last results all have potential for further improvements, which will be suggested
at the end of this thesis.

We start with a chapter containing the necessary linear algebraic an graph theoretical preliminaries.
At the end of the chapter we show one of the first recent results connected to equiangular lines. This
regards a theorem which bounds the multiplicities of eigenvalues of a bounded degree graph. It is a
purely graph-theoretical theorem which will be of great importance later to prove one of the other
main results discussed in this thesis. In Chapter 3 some classic results on equiangular lines will be
treated. This chapter gives a good introduction into some techniques that can be used to analyse the
behaviour of equiangular lines through the dimensions. Next, in Chapter 4 we give a linear upper bound
on Nα(d) which holds for all dimensions. The results from this chapter are due to Balla in [13] and use
a completely new approach which overcomes some limitations of previous works. Lastly, in Chapter 5
we discuss a result by Jiang, Tidor, Yao, Zhang and Zhao from [12] which solves the question of finding
the maximum number of lines with a fixed angle in Rd for high enough dimensions. Chapter 4 is more
technical and complex than Chapter 5. The two chapters can be read independently of each other. We
conclude the thesis with multiple suggestions of further research that can be done related to the topic of
equiangular lines.



2
Preliminaries

In studying equiangular lines we will use linear algebraic and graph theoretical tools. In this chapter all
concepts of these two subjects are introduced that will be needed throughout this thesis. We will start
with a section on linear algebra, covering the basic notions, eigenvalues and some results on positive
semidefinite matrices. The next section will go over all the necessary graph theory and spectral graph
theory. We will conclude this section with a recent result on the multiplicity of the j-th eigenvalue of
any connected graph, for j > 1.

2.1 Linear algebra
In this section some basic notions of linear algebra are discussed which will be needed throughout the
whole thesis. Since the linear algebra will mostly be applied on adjacency matrices of graphs, our interest
lies primarily in real symmetric matrices with non-negative entries. After covering the basic notions we
introduce eigenvalues and some useful results on eigenvalues. Lastly we will review some properties of
positive semidefinite matrices which will be needed later on. For an extensive introduction into linear
algebra we refer to [14].

2.1.1 Basic notions

Let V be a vector space over a field F, where F is either the field of real numbers R or complex field C.
A function ⟨·, ·⟩ : V → F is an inner product if for any u,v,w ∈ V and scalars α, β ∈ F the following
properties hold:

(i) ⟨u,u⟩ ≥ 0 (Non-negativity)
(ii) ⟨u,u⟩ = 0 if and only if u = 0 (Non-degeneracy)
(iii) ⟨αu+ βv,w⟩ = α⟨u,w⟩+ β⟨v,w⟩ (Linearity)
(iv) ⟨u,v⟩ = ⟨v,u⟩. (Conjugate symmetry)

Note that if F = R, the conjugate symmetry is equivalent to normal symmetry, i.e.⟨u,v⟩ = ⟨v,u⟩.
Let v = (v1, v2, . . . , vn)

T,u = (u1, u2, . . . , un)
T be any vectors in Rn. The standard inner product

⟨v,u⟩ is defined by
⟨v,u⟩ = vTu = v1u1 + v2u2 + · · ·+ vnun.

It is easily verified that this function indeed satisfies the properties above and thus defines an inner
product on Rn. The norm ∥v∥ of v is given by ∥v∥ =

√
⟨v,v⟩. The following widely used inequality

gives a relation between the inner product and norms of two vectors.

Theorem 2.1 (Cauchy-Schwarz inequality). Let v,u be two vectors in Rn, then

|⟨u,v⟩| ≤ ∥u∥∥v∥.

3



4 Chapter 2. Preliminaries

An immediate consequence of the Cauchy-Schwarz inequality is the triangle inequality given by
∥u+v∥ ≤ ∥u∥+ ∥v∥. The two vectors v,u are said to be orthogonal if their inner product is zero. A set
of vectors V = {v1,v2, . . . ,vm} in Rn is linearly independent if the equation c1v1+c2v2+ · · ·+cmvm = 0,
for c1, c2, . . . , cm ∈ R only has trivial solution, i.e. c1 = c2 = · · · = cm = 0 is the only solution. If the set
of vectors is not linearly independent, it is called linearly dependent. Any linearly independent set V of
n vectors in any n-dimensional space spans the whole space. This means that any vector in the space
can be written as a linear combination of vectors in V .

For any m× n matrix A there are two important subspaces associated to it. The first is the kernel
of the matrix, which is also called its null space, defined as

KerA = {v ∈ Rn : Av = 0}.

The other space is the range of the matrix

RanA = {Av : v ∈ Rn}.

The dimensions of these two spaces are known as the nullity and the rank, rkA, of the matrix respectively.
We say that an m× n matrix has full rank if its rank equals min(m,n). A fundamental result in linear
algebra states that the rank of a matrix equals the rank of its transpose, i.e. rkA = rkAT. The
rank-nullity theorem gives a useful relation between the rank and the nullity of a m× n matrix A. The
theorem states that

dimKerA+ rkA = n. (2.1)

The following lemma gives an example of an application of this theorem.

Lemma 2.2. Let A be a real m× n matrix. Then rkAAT = rkATA = rkA.

Proof. To prove the lemma we show that the null spaces of ATA and A are equal. Then from the
rank-nullity theorem it follows that rkATA = rkA, since dimKerA+rkA = dimKerATA+rkATA = n.
Furthermore, from rkA = rkAT it then follows that rkAAT = rkATA = rkAT = rkA.

To show equality of the null spaces, first of all notice that for any v such that Av = 0 we have
ATAv = AT0 = 0. Thus KerA ⊆ KerATA. Conversely, let u be such that ATAu = 0. Then
∥Au∥2 = uTATAu = 0. So we must have Au = 0. This gives KerATA ⊆ kerA which concludes the
proof.

Another useful property of the rank is its subadditivity. Let A and B be any two matrices of
the same dimensions, then rk(A + B) ≤ rk(A) + rk(B). Notice that from this it also follows that
rk(A)− rk(B) ≤ rk(A−B). Indeed, write rk(A) = rk(A−B +B), then from the subadditivity we find

rk(A) = rk(A−B +B) ≤ rk(A−B) + rk(B),

which after rearranging gives rk(A)− rk(B) ≤ rk(A−B) as desired.
An n× n matrix is called a square matrix. The trace of a square matrix A, denoted Tr(A), is the

sum of its diagonal entries. The trace is a linear mapping which means that for any two square matrices
A and B and scalars α and β

Tr(αA+ βB) = αTr(A) + β Tr(B).

Furthermore, for an m× n matrix A and n×m matrix B

Tr(AB) =

m∑
i=1

(AB)ii =

m∑
i=1

n∑
j=1

AijBji =

n∑
j=1

m∑
i=1

BjiAij =

n∑
j=1

(BA)jj = Tr(BA).

By substituting the matrix A by a multiplication of any number of matrices in the equation above, we
can deduce the cyclic property of the trace, which for any integer n and matrices A1, A2, . . . , An is given
by

Tr(A1A2 . . . An) = Tr(AnA1A2 . . . An−1) = · · · = Tr(A2A3 . . . AnA1).

In particular, this shows that for any two vectors u,v ∈ Rn, which we can view as n× 1 matrices, we
have

Tr(uvT) = Tr(vTu) = vTu = ⟨v,u⟩. (2.2)



2.1. Linear algebra 5

Using the trace, we can define an inner product on the space of m× n matrices, Mm×n, by

⟨A,B⟩F = Tr
(
B

T
A
)
=
∑
i,j

BijAij

known as the Frobenius inner product. If the matrices are real, the inner product equals ⟨A,B⟩F =
Tr
(
BTA

)
=
∑

i,j BijAij , and is also called the trace inner product. The subscript F will be left out
when it is clear from context that we are talking about the Frobenius inner product. Observe that if we
view the matrices A and B as vectors in Rmn, then we see that the trace inner product is actually equal
to the standard inner product in Rmn. Hence, it indeed satisfies the properties needed to be an inner
product. The Frobenius inner product also has a corresponding norm, the Frobenius norm, defined as
∥A∥F =

√
⟨A,A⟩F , for any matrix A ∈ Mm×n.

From this point on all matrices considered will be square matrices. A symmetric matrix A is a
square matrix for which AT = A. For symmetric matrices A and B the trace inner product simplifies to
⟨A,B⟩F = Tr(BA). Furthermore, by the non-negativity and non-degeneracy of an inner product for
any symmetric matrix A, Tr(ATA) = Tr(A2) ≥ 0, with equality if and only if A = 0. We also note the
following useful property of a symmetric matrix A and vector v ∈ Rn:

∥Av∥2 = ⟨Av, Av⟩ = vTATAv = vTA2v = ⟨v, A2v⟩. (2.3)

A square matrix A is invertible if there exists a matrix denoted by A−1 such that A−1A = AA−1 = I,
where I is the identity matrix. The matrix A−1 is called the inverse of A. Invertible matrices can be
defined by multiple other properties. For any square matrix A, the following are equivalent:

(i) A is invertible;
(ii) for any vector b, Av = b has a unique solution for v ∈ Rn;
(iii) the kernel of A is trivial, i.e. Ker(A) = {0};
(iv) A has full rank;
(v) detA ̸= 0;
(vi) 0 is not an eigenvalue of A (see Section 2.1.2).

2.1.2 Eigenvalues

Let A be a square matrix and let λ be a scalar such that there exists a non-zero vector v satisfying

Av = λv.

A scalar λ and vector v satisfying this property are respectively called an eigenvalue and eigenvector of
the matrix A. Note that the definition states that an eigenvector can never be the zero vector, but the
scalar 0 can be an eigenvalue. To find all eigenvectors corresponding to an eigenvalue λ it suffices to
solve the equation Av = λv, which is equivalent to solving

(λI −A)v = 0.

This shows that finding all eigenvectors of a matrix A corresponding to the eigenvalue λ is equivalent to
finding the nullspace of the matrix λI − A. The nullspace Ker(λI − A) is called the eigenspace of A
associated to the eigenvalue λ. The set of all eigenvalues of A is called the spectrum of A and denoted
by σ(A).

Since an eigenvector is a non-zero vector, a scalar λ is an eigenvalue if and only if the nullspace
of λI − A is non-trivial, i.e. it contains a non-zero vector. This means that the matrix λI − A is not
invertible and thus det(λI −A) = 0. In the previous section we saw that a matrix is invertible if and
only if it has a trivial kernel. The eigenspace of the eigenvalue 0 equals Ker(0 · I −A) = KerA, and so
we see that a matrix is invertible if and only if 0 is not an eigenvalue.

The determinant of λI−A is a polynomial of degree n of the variable λ and is called the characteristic
polynomial of A. The eigenvalues of the matrix A thus coincide with all the roots of its characteristic
polynomial. Let p(x) = det(xI −A) be the characteristic polynomial of the matrix A. The multiplicity
of λ as a root of p(x) is called the algebraic multiplicity of the eigenvalue λ. The eigenvalue λ also has a
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geometric multiplicity which is defined as the dimension of the eigenspace Ker(λI −A). The algebraic
multiplicity is used more often, this is why we will simply say ‘multiplicity’ when talking about the
algebraic multiplicity of an eigenvalue. If λ1, λ2, . . . , λr are the distinct eigenvalues of a matrix A with
corresponding multiplicities m1,m2, . . . ,mr, we write σ(A) = {λm1

1 , λm2
2 , . . . , λmr

r }.
The algebraic and geometric multiplicity of an eigenvalue can differ, but the geometric multiplicity

never exceeds the algebraic multiplicity. The two multiplicities are equal for symmetric matrices. In
particular, this leads to the following useful lemma concerning the nullity of a symmetric matrix. The
lemma immediately follows from the observation that the kernel of any matrix equals the eigenspace of
the eigenvalue 0.

Lemma 2.3. The nullity of any symmetric matrix A is equal to the multiplicity of the eigenvalue 0.

From this lemma and the rank-nullity theorem it follows that any symmetric matrix A has exactly
r = rkA non-zero eigenvalues. Since rkATA = rkAAT = rkA, this implies that the matrices ATA
and AAT also have r non-zero eigenvalues. In particular, the two matrices even have the same non-
zero eigenvalues with the same multiplicities. To see this, let λ be a non-zero eigenvalue of AAT

with corresponding eigenvector v. Then, ATAATu = ATλv = λATv. So, λ is an eigenvalue of ATA
with corresponding eigenvector ATv. Similarly, we find that a non-zero eigenvalue µ of ATA with
corresponding eigenvector u is also an eigenvalue of AAT with eigenvector Au.

The eigenvalues of a matrix can be used to calculate it trace and determinant. Let A be an n× n
matrix and let λ1, λ2, . . . , λn be its eigenvalues counting multiplicities, then

• TrA = λ1 + λ2 + · · ·+ λn, and
• detA = λ1 · λ2 · · · · · λn.

This equation for the trace can be used to prove a lower bound on the rank of a symmetric matrix
A in terms of its trace and the trace of the squared matrix. The result follows immediately from the
Cauchy-Schwarz inequality applied to its non-zero eigenvalues, of which there are exactly rkA by the
previous lemma.

Lemma 2.4. Let A be a real symmetric matrix. Then

rkA ≥ Tr(A)2

Tr (A2)
.

Proof. Let r = rkA and notice that, by Lemma 2.3, A has exactly r non-zero eigenvalues, denoted by
λ1, λ2, . . . , λr. So, we have TrA =

∑r
i=1 λi and Tr

(
A2
)
=
∑r

i=1 λ
2
i . Denote by λ the vector with entries

λ1, . . . , λr. Then, by taking the inner product with the all-ones vector 1, the Cauchy-Schwarz inequality
yields

r∑
i=1

λi = ⟨1,λ⟩ ≤ ∥1∥∥λ∥ =
√
r ·

√√√√ r∑
i=1

λ2
i .

Taking the square of both sides gives Tr(A)2 ≤ rkA · Tr(A2). Dividing both sides by Tr(A2) gives the
required inequality.

Two matrices that will come up a lot are the n × n identity matrix, denoted In, and the n × n
all-ones matrix, denoted Jn. When the dimensions are clear from context we will simply write I and J .
The identity matrix has eigenvalue λ = 1 with multiplicity n. The eigenvalues of the all-ones matrix
are λ1 = n with multiplicity 1 and λ2 = 0 with multiplicity n − 1. For a matrix A with eigenvalues
λ1, . . . , λn and a polynomial p, the eigenvalues of p(A) are {p(λ1), . . . , p(λn)}.

The eigenvalues of symmetric matrix are always real. Furthermore, symmetric matrices have the
useful property that they can always be decomposed using their eigenvalues and eigenvectors. These
eigenvectors are also all orthogonal. These properties are given by the spectral decomposition theorem.

Theorem 2.5 (Spectral decomposition theorem). Any real symmetric matrix A with eigenvalues
λ1, . . . , λn and corresponding eigenvectors v1, . . . ,vn can be decomposed as

A =

n∑
i=1

λiviv
T
i . (2.4)

These eigenvectors form an orthonormal basis of Rn.
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The decomposition of the matrix in the theorem above can also be written as A = PDPT , where D
is a diagonal matrix with the eigenvalues λ1, . . . , λn on the diagonal and P is an orthogonal matrix with
the eigenvectors v1, . . . ,vn as columns. If for any two symmetric matrices A and B there exists one
orthogonal matrix P such that A = PDAP

T and B = PDBP
T, where DA and DB are both diagonal,

we say that A and B are simultaneously diagonalisable. In this case, the eigenvalues of the sum A+B
are sums of the eigenvalues of A and B, since A+B = PDAP

T + PDBP
T = P (DA +DB)P

T.
For a symmetric matrix A and a non-zero vector v we define the Rayleigh quotient as

R(A,v) =
vTAv

vTv
=

⟨Av,v⟩
⟨v,v⟩

.

The Rayleigh quotient gives a lower bound on the maximum eigenvalue, λmax, of the matrix A and an
upper bound on its minimum eigenvalue, λmin, as the following theorem shows.

Theorem 2.6. For any symmetric n× n matrix A and non-zero vector u, λmin ≤ R(A,u) ≤ λmax.

Proof. By the spectral decomposition theorem, there is an orthonormal basis of Rn consisting of
eigenvectors of A. So, let {v1, . . . ,vn} be an orthonormal basis of Rn consisting of eigenvectors vi of A
with corresponding eigenvalues λi for i = 1, . . . , n.

The vector u can then be written as

u =

n∑
i=1

civi

for some constants ci. Now we can write the inner product ⟨u,u⟩ as

⟨u,u⟩ =

〈
n∑

i=1

civi,

n∑
i=1

civi

〉
=

n∑
i=1

n∑
j=1

cicj⟨vi,vj⟩ =
n∑

i=1

c2i ,

where the last step follows from ⟨vi,vj⟩ = 0 if i ̸= j and ⟨vi,vi⟩ = 1. For the inner product ⟨Au,u⟩ we
find

⟨Au,u⟩ =

〈
A

n∑
i=1

civi,

n∑
i=1

civi

〉
=

〈
n∑

i=1

ciλivi,

n∑
i=1

civi

〉
=

n∑
i=1

λic
2
i .

So the Rayleigh quotient is now given by

R(A,u) =
⟨Au,u⟩
⟨u,u⟩

=

∑n
i=1 λic

2
i∑n

i=1 c
2
i

.

Since λmin ≤ λi ≤ λmax for all i, we conclude

λmin =

∑n
i=1 λminc

2
i∑n

i=1 c
2
i

≤
∑n

i=1 λic
2
i∑n

i=1 c
2
i

≤
∑n

i=1 λmaxc
2
i∑n

i=1 c
2
i

= λmax.

Only a specific type of real number can be an eigenvalue of a symmetric matrix. These numbers are
the so called totally real algebraic integers. An algebraic integer λ is the root of a monic polynomial
with coefficients in Z. The minimal polynomial of λ is the lowest degree monic polynomial with λ as its
root. The conjugates of an algebraic integer λ are the other roots of its minimal polynomial. Lastly, we
say that λ is totally real if all its conjugates are real.

Lemma 2.7. If λ is an eigenvalue of a symmetric matrix A with integer entries, then it is a totally real
algebraic integer.

Proof. Let A be a matrix with integer entries and λ as an eigenvalue. Consider the characteristic
polynomial p(x) = det(xI − A). The polynomial p(x) is a monic polynomial with integer coefficients.
This implies that all its roots are algebraic integers, from which follows that λ is an algebraic integer.
Furthermore, since the minimal polynomial of any root of p(x) divides p(x), all the conjugates of any
root of p(x) are also roots of p(x). These conjugates are thus also eigenvalues of A. Since A is symmetric,
all its eigenvalues are real. So it follows, that all the conjugates of λ are real, i.e. λ is totally real.
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The converse of the lemma has also been shown to hold by Estes [15], meaning that every totally
real algebraic integer occurs as the eigenvalue of a symmetric integer matrix.

Remark 2.8. The proof of the lemma shows us that all algebraic conjugates of any eigenvalue of the
matrix A are also eigenvalues of A. Let p(x) be the characteristic polynomial of A and let λ be any
eigenvalue of A. Then the multiplicity of its conjugates as a root of p(x) equals the multiplicity of λ as
a root of p(x). In other words, the algebraic conjugates of λ have the same algebraic multiplicity as λ.

The maximum eigenvalue of a matrix is known as the spectral radius of the matrix. We will always
write the eigenvalues of a matrix A in non-increasing order λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A), so that
λ1(A) = λmax(A). In graph theory we mostly work with matrices that have no negative entries. We call
such a matrix A non-negative and write A ≥ 0. For two matrices A and B we write A ≥ B if A−B ≥ 0.
The Perron-Frobenius theorem gives valuable results on the spectral radius of non-negative matrices.
We will only state the theorem here and refer to [3] for more details. Before giving the theorem, we need
to define the concept of an irreducible matrix. A real n× n matrix A is irreducible if (I + |A|)n−1 has
all positive entries. An equivalent definition can be given in terms of graphs (see Section 2.2 for the
necessary definitions). To the matrix A we can associate a directed graph with vertex set [n] and an arc
from i to j if Aij ̸= 0. If this directed graph is strongly connected, then A is irreducible. In particular
this means that the adjacency matrix of any connected graph is irreducible.

Theorem 2.9 (Perron-Frobenius). Let A be an irreducible non-negative n × n matrix with spectral
radius λ1, then

(i) λ1 has multiplicity one;
(ii) for any other eigenvalue λ of A, |λ| ≤ λ1;
(iii) A has an eigenvector v corresponding to λ1 with positive entries;
(iv) if B is a non-negative n× n matrix such that A−B is non-negative, then λ1(B) ≤ λ1.

The second and last property of the theorem actually also hold when A is non-negative but not
irreducible. In this case the spectral radius of A can have a multiplicity larger than one. For example,
the n × n identity matrix I is non-negative, but not irreducible. It has spectral radius λ1 = 1 with
multiplicity n. For a non-negative matrix A a less strict version of the third property holds, namely that
A has an eigenvector corresponding to λ1 with all non-negative entries.

When working with graphs, the concept of interlacing will help us to analyse the eigenvalues of
subgraphs. Let A be a symmetric n × n matrix, and B a symmetric m × m matrix, where m ≤ n.
Denote the eigenvalues of A by λ1, . . . , λn and the eigenvalues of B by µ1, . . . , µm. The eigenvalues of B
interlace those of A if, for i = 1, . . . ,m,

λi ≥ µi ≥ λn−m+i.

The following theorem states that the eigenvalues of principal submatrix of a symmetric matrix always
interlace those of the matrix. A principal submatrix is obtained from a n× n matrix by removing the
rows and columns indexed by a subset of [n].

Theorem 2.10. Let B be a principal submatrix of a symmetric matrix A, then the eigenvalues of B
interlace the eigenvalues of A.

2.1.3 Positive semidefinite matrices

A real symmetric n × n matrix A is called positive semidefinite, denoted A ⪰ 0, if for all v ∈ Rn,
vTAv ≥ 0. Positive semidefinite matrices can be characterised in many other equivalent ways. The
following theorem gives the characterisations that are most often used.

Theorem 2.11. For a real symmetric n× n matrix A, the following are equivalent:

(i) A is positive semidefinite;
(ii) all eigenvalues of A are non-negative;
(iii) there exists a matrix L ∈ Rn×k, k ≥ 1, such that A = LLT, this is called the Cholesky decomposition

of A;
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(iv) there exist vectors v1, . . . ,vn ∈ Rk, where k ≥ 1, such that Aij = ⟨vi,vj⟩ for all i, j ∈ [n].

The theorem shows that from any set of vectors V = {v1, . . . ,vn} in Rk a positive semidefinite
matrix MV can be constructed by taking as entries (MV )ij = ⟨vi,vj⟩ for all i, j ∈ [n]. We call this
matrix the Gram matrix of V . If A is the matrix with the vectors of V as columns then notice that
MV = ATA. From Lemma 2.2 we can now easily deduce the rank of MV from the rank of A. Since V is
a set of vectors in Rk, the matrix A has rank at most k and thus so does MV .

Conversely, from a positive semidefinite matrix A, we can always find vectors as in (iv). These
vectors can be easily be retrieved from its Cholesky decomposition. Denote the rows of L by vi ∈ Rk,
i ∈ [n]. Then from the equality A = LLT it immediately follows that the entries of A are Aij = ⟨vi,vj⟩.
Algorithms exist to find the Cholesky decomposition of a matrix [16, Section 3.2]. Alternatively, it is
possible to find the vectors through the spectral decomposition of the matrix [14, Theorem 7.2.7].

Positive semidefinite matrices have various useful properties. We will only discuss a few results here
that we will need later on. For more details we refer to Chapter 7 of Horn and Johnson [14].

Lemma 2.12. Let A be a symmetric non-negative matrix such that A+ rJ is positive semidefinite for
some r ∈ R. Then A has at most one negative eigenvalue.

Proof. Denote the eigenvalues of the matrices A, rJ and A+rJ in non-decreasing order λ1(·) ≥ · · · ≥ λn(·).
We want to show that A has at most one negative eigenvalue, which is equal to showing that λn−1(A) ≥ 0.
To show that this holds, we will use the following Weyl inequalities [14, Theorem 4.3.1]:

λi(A+ rJ) ≤ λi−j+1(A) + λj(rJ), j ≤ i.

Note that the eigenvalues of rJ are λ1(rJ) = rn and λi(rJ) = 0, for all i > 1. Furthermore, since A+ rJ
is positive semidefinite all its eigenvalues are non-negative and thus λn(A+ rJ) ≥ 0. Now take i = n
and j = 2 in the inequality above. Then we find

0 ≤ λn(A+ rJ) ≤ λn−1(A) + λ2(rJ) = λn−1(A) = 0,

and thus we conclude that indeed λn−1(A) ≥ 0 as desired.

The sum of any two positive semidefinite matrices is again positive semidefinite. The kernel of the
sum is equal to the intersection of the kernels of the two matrices. To prove this, we first need the
following lemma.

Lemma 2.13. Let A be a positive semidefinite matrix and let u be a vector. Then

Au = 0 ⇔ uTAu = 0.

Proof. First suppose that Au = 0. Then uTAu = uT0 = 0.
Conversely, suppose that uTAu = 0. Since A is a symmetric matrix there is an orthonormal basis

{v1, . . . ,vn} of eigenvectors of A. Let λ1, . . . , λn be the corresponding eigenvectors. Now we can write
u =

∑n
i=1 civi for some constants ci. Then we have

Au = A

n∑
i=1

civi =

n∑
i=1

λicivi

and

uTAu =

(
n∑

i=1

civi

)T n∑
i=1

λicivi =

n∑
i=1

λic
2
i = 0,

since A is positive semidefinite λi ≥ 0 for all i. So for the last equality to hold we must have ci = 0 for
all i for which λi > 0. This means that in the sum

∑n
i=1 λicivi either ci = 0 or λi = 0 and thus we find

Au = A

n∑
i=1

civi =

n∑
i=1

λicivi = 0
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Lemma 2.14. Let A and B be two positive semidefinite matrices. Then

Ker(A+B) = KerA ∩KerB.

Proof. First we show KerA ∩ KerB ⊆ Ker(A+ B). In order to do this let v ∈ KerA ∩ KerB. Then
Av = Bv = 0 and thus

(A+B)v = Av +Bv = 0+ 0 = 0.

This implies that v ∈ Ker(A+B).
Now let v ∈ Ker(A+B). Then using the previous lemma we have

0 = vT(A+B)v = vTAv + vTBv,

since A and B are both positive semidefinite vTAv ≥ 0 and vTBv ≥ 0. So for the sum of both of them
to be zero we must have vTAv = vTBv = 0. By the previous lemma we find Av = Bv = 0 and thus
v ∈ KerA ∩KerB.

2.2 Graph theory
Graphs are incredibly useful structures to model relations between objects. They will play a major role
in our study of equiangular lines. In this section we will introduce all the graph-theoretical concepts that
will be used throughout the thesis. We will start with some basic notions and then give an introduction
into spectral graph theory. For more background material into these topics we refer to [17] and [18].
Lastly we will discuss a recent theorem on the multiplicity of the j-th eigenvalue of a graph, which will
be of great importance in proving one of the main results on equiangular lines reviewed in this thesis.

2.2.1 Basic notions

A graph G is an ordered pair of sets (V,E) such that each element of E is an unordered two-element
subset of V . The elements of V are called vertices and the elements of E are called edges. An edge
{u, v} is written as uv. Note that if uv is an edge, vu defines the same edge. We say that two vertices
u, v are adjacent, or neighbours, if there exists an edge uv. In this case, the edge uv is incident to u
and v. If all vertices of G are pairwise adjacent, the graph G is complete. All considered graphs will be
simple, loopless graphs. This means that the graph has no edges from a vertex to itself and there can
only be one edge between any two vertices.

A subgraph of G is a graph G′ = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E. If V ′ = V we say that G′ is
a spanning subgraph of G. For a subset U ⊂ V , the graph G[U ] is the graph with vertex set U whose
edges are precisely the edges of G with both endpoints in U . We call G[U ] an induced subgraph of G. A
clique is a complete subgraph, in other words, a clique is a subgraph such that there is an edge between
any two vertices in the subgraph. A subgraph with no edges is an independent set. This can be seen as
the opposite of a clique.

The degree d(v) of a vertex v is the number of edges incident to that vertex. This is also equal
to its number of neighbours. The set of neighbours of a vertex v is called its neighbourhood and
denoted by N(v). A vertex with no neighbours is called isolated. The maximum and minimum degree
of the graph are denoted by ∆(G) and δ(G) respectively. The average degree of G is the number
D(G) = 1

|V |
∑

v∈V d(v). The number of edges of a graph is related to the degrees of the vertices by the
equality |E| = 1

2

∑
v∈V d(v).

Proposition 2.15. Let G be a graph with average degree d = d(G) > 0. Then G has a subgraph H with
minimum degree at least d/2.

Proof. Notice that d
2 = |E|

|V | denotes the ratio of edges per vertex in the graph, since |E| = 1
2

∑
v∈V d(v) =

1
2 |V |d.

Construct a sequence of induced subgraphs G = G0 ⊃ G1 ⊃ G2 ⊃ . . . where Gi+1 = Gi − vi for a
vertex vi ∈ Gi with d(vi) ≤ d/2. If such a vertex vi does not exist, set Gi = H. Let Vi and Ei denote
the vertex and edge set of Gi respectively. For all i we have |Vi+1| = |Vi| − 1 and |Ei+1| ≥ |Ei| − d

2 .
This gives

|E1|
|V1|

≥
|E0| − d

2

|v0| − 1
=

|E0| − |E0|
|V0|

|V0| − 1
=

(|V0| − 1)|E0|
|V0|(|V0| − 1)

=
|E0|
|V0|
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and hence
|E2|
|V2|

≥
|E1| − |E0|

|V0|

|V1| − 1
≥

|E1| − |E1|
|V1|

|V1| − 1
=

|E1|
|V1|

.

Repeating this argument we find |Ei+1|
|Vi+1| ≥

|Ei|
|Vi| ≥

|E0|
|V0| , which implies that the ratio of edges per vertex

does not decrease.
Now, since |E0|

|V0| =
d
2 > 0 and |EH |

|VH | ≥
|E0|
|V0| , it follows that H ̸= ∅. Furthermore, by construction H

does not have a vertex v such that d(v) ≤ d/2 and thus δ(H) ≥ d/2.

To any graph G several matrices can be associated. The most widely used matrix, is the adjacency
matrix, denoted A = AG. It is a square matrix indexed by V (G) with entries

Auv =

{
1, if uv ∈ E(G);

0, otherwise.

Notice that A is a symmetric matrix with zeros on the diagonal since there can be no edge from a vertex
to itself and for any edge uv, vu denotes the same edge. Furthermore, the row and column indexed by v
sum up to the degree of v, for any v ∈ V (G). So the diagonal entries of the matrix A2 give the degrees
of each vertex and hence, TrA2 = 2|E|. In fact, the entries of A2 denote the number of walks of length
two from one vertex to another.

A walk in a graph G = (V,E) is an ordered list of vertices (v0, v1, . . . , vk) where vi−1vi ∈ E for all
1 ≤ i ≤ k. The number of walks of length k from one vertex to another are indicated by the entries of
the matrix Ak. The walk is closed if v0 = vk. If all vi are distinct the walk becomes a path. A closed
walk with distinct vertices except for the first and last is called a cycle. The graph is connected if for
each pair of vertices u, v ∈ V there is a path in G from u to v. A tree is a connected graph with no cycles.
A (connected) component of a graph is a maximal connected subgraph, i.e. a connected subgraph that
is not contained in a larger connected subgraph. The distance dG(u, v) in G between any two vertices
u, v ∈ V is the length of the shortest path between the two vertices. If this path does not exist we set
dG(u, v) = ∞.

A different notion of a graph which we have already used in Section 2.1.2 to define an irreducible
matrix, is that of a directed graph. In a directed graph Γ = (V,E) the set E is an ordered two element
subset of V . The elements of E are now called arcs. The definition of a path is analogous in a directed
graph, in this case we speak of a directed path. Now we say that Γ is strongly connected if for each pair
of vertices u, v ∈ V there is a directed path in Γ from u to v.

2.2.2 Spectral graph theory

When talking about the eigenvalues of the graph we mean the eigenvalues of its adjacency matrix. In
the previous section we saw that the diagonal entries of the adjacency matrix are all zero implying that
the trace of the matrix is also zero. Since the trace equals the sum of the eigenvalues, this means that
the eigenvalues of any graph always sum to zero.

Example 2.16. Let K1,m be the star graph on m+ 1 vertices. This is the graph consisting of one vertex
connected to m other vertices. Let v1 be the centre of the star. The adjacency matrix of K1,m is

A =


0 1 · · · 1
1 0 · · · 0
...

...
. . .

...
1 0 . . . 0

 ,

with spectrum σ(A) =
{√

m
1
, 0m−1,−

√
m

1
}
. We can easily see that these eigenvalues indeed sum to

zero.

The eigenvalues of a graph can be used to analyse certain properties of the graph. For example, a
graph is bipartite if and only if it has a symmetric spectrum, which means that for each eigenvalue λ of
the graph −λ is also an eigenvalue. A simple argument shows that the spectral radius of any graph can
not exceed its maximum degree.
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Lemma 2.17. The spectral radius of a graph is bounded from above by its maximum degree.

Proof. Let G be a graph with maximum degree ∆, adjacency matrix A and spectral radius λ1. Let v
be an eigenvector associated to λ1 and let x be the vertex for which vx has maximum value over all
vertices. We may assume that vx is positive since otherwise we can simply take −v as our associated
eigenvector. Now we have

λ1vx = (Av)x =
∑
y∼x

vy ≤
∑
y∼x

vx = d(x)vx.

So we see that λ1 ≤ d(x) ≤ ∆.

As seen in Section 2.1.2, the adjacency matrix of any connected graph is irreducible. So by
Perron-Frobenius (Theorem 2.9) it immediately follows that the spectral radius of a connected graph
has multiplicity one. The spectrum of a graph that is not connected, depends on the spectra of its
components.

Lemma 2.18. The spectrum of a graph is the union of the spectra of its components.

Proof. Let G be a graph of n vertices with m components denoted by G1, . . . , Gm. For each i ∈ [m],
the component Gi has ni vertices and adjacency matrix Ai. By definition of a component, there are no
edges between any two Gi and Gj for i ̸= j. The adjacency matrix of the graph G can thus be written as

AG =


A1 0 · · · 0

0 A2
. . .

...
...

. . . . . . 0
0 · · · 0 Am

 ,

where 0 denotes the zero matrix. The eigenvalues of G are all λ such that det(λI−AG) = 0. Furthermore,
since AG is a block diagonal matrix its determinant equals

det(λI −AG) = det(λIn1 −A1) · det(λIn2 −A2) · · · · · det(λInm −Am).

It follows that for any eigenvalue λ of G, there must be some i ∈ [m] such that det(λIni
−Ai) = 0,

implying that λ is an eigenvalue of Gi. Conversely, if λ is an eigenvalue of Gi for some i ∈ [m], then the
right hand side of the equation is zero and thus det(λI −AG) = 0. So λ is also an eigenvalue of G and
the lemma follows.

The proof of the lemma in fact shows that the characteristic polynomial of AG is the product of the
characteristic polynomials of A1, . . . , Am. Two useful properties follow from this lemma. The first is
that adding isolated vertices to a graph only adds zeroes to its spectrum and thus doesn’t change its
non-zero eigenvalues. Secondly, let H be a connected graph and let G be the union of taking n copies of
H. Since H is connected it has spectral radius λ1(H) with multiplicity one. By the above lemma the
graph G then has spectral radius λ1(G) = λ1(H) with multiplicity n.

Knowing the spectrum of graph, we can deduce certain properties of its subgraphs by interlacing.
Let H be an induced subgraph of a graph G. Notice that the adjacency matrix of H is a principal
submatrix of G. It thus follows immediately from Theorem 2.10 that the eigenvalues of H interlace
those of G. In particular this leads to the following property.

Lemma 2.19. Let H be an induced subgraph of a graph G. Then

λ1(G) ≥ λ1(H) ≥ λmin(H) ≥ λmin(G).

The inequality λ1(H) ≤ λ1(G) actually also holds if H is a subgraph that is not induced. To see
this notice that if an edge of the graph is removed, the new adjacency matrix A′ is a non-negative
matrix such that AG −A′ is non-negative. So by Perron-Frobenius, λ1(A

′) ≤ λ1(AG). This shows that
the removal of edges can only decrease the spectral radius of the graph. Interlacing shows us that the
removal of a vertex also cannot increase the spectral radius.
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2.3 Graph eigenvalue multiplicities
If we denote the eigenvalues of a graph G as λ1 ≥ λ2 ≥ · · · ≥ λ|G|, we call λj the j-th eigenvalue of G.
One of the main results of Jiang, Tidor, Yao, Zhang and Zhao in [12] is a theorem that states that the
j-th eigenvalue of a connected graph with bounded maximum degree has bounded multiplicity.

Theorem 2.20 ([12]). For every integer j and ∆, there is a constant C = C(j,∆) so that every
connected n-vertex graph with maximum degree at most ∆ has j-th eigenvalue multiplicity at most

Cn
log logn .

Note that in the theorem, ∆ is a constant that is independent of the number of vertices of the graph.
The case j = 2 will be one of the main tools in proving their result on equiangular lines with a fixed
angle. The proof is however analogous for any fixed j. The result is proven by using interlacing of the
eigenvalues of a subgraph on a strategically constructed subgraph.

The theorem is a general graph theoretical result, which is why we state and prove it in this chapter.
It will be used in Chapter 5 to prove a tight bound on the number of equiangular lines with a fixed angle.
In this section we will give the proof of the theorem. First we will need to define a specific subgraph and
subset of a graph. Then we discuss some lemmas that will be necessary to prove the theorem before
turning to the full proof.

Let G be a graph and v be a vertex in the graphs. The r-neighbourhood of v is the subgraph induced
by all vertices that are at distance at most r from v. We denote this graph by Gr(v). By definition,
Gr(v) is a connected graph. For a subset W ⊆ V we will write Gr(W ) =

⋃
w∈W Gr(w). We call a subset

U of the vertices of G an r-net if all vertices of G are within distance r of some vertex in U . Note that
the r-net is a subset of V (G) and hence not a graph itself. An upper bound exists on the minimum size
of an r-net that can be found in a connected graph.

Lemma 2.21. Every n-vertex connected graph has an r-net with size at most
⌈

n
r+1

⌉
, where n and r are

positive integers.

Proof. Let n and r be positive integers. First of all we note that it suffices to prove the lemma in the
case that G is a tree. To see this, notice that any r-net of a spanning tree T of a graph G is also an
r-net of G since the distance between any two vertices in G is always smaller or equal to their distance
in T . We now prove the lemma by constructing an r-net of size at most

⌈
n

r+1

⌉
in a tree.

So suppose G is an n-vertex tree and pick an arbitrary vertex v of G. Let u be a vertex at maximum
distance d from v. If d ≤ r, then all other vertices of the graph are also at a distance of at most r from
v and thus {v} is an r-net of G.

Otherwise, if d > r, we will add vertices to the net U until it is indeed an r-net. We start with
U = {v}. Let w be the vertex at distance r from u lying on the path from v to u. Add w to the net U
and remove it from the graph G. Since G is a tree, the graph G− w now has at least two components,
including one containing u and one containing v. Note that the vertices in the components that do not
contain v are at distance at most r from w in G. Indeed, if this would not be the case, there would be a
vertex u′ at distance at least r + 1 from w. This would imply that u′ is at distance at least d+ 1 from v
which is not possible since d is the maximum distance from v to any other vertex in G. Since u is at
distance r from w, the component containing u has at least r elements.

So now we only need to look at the component of v in G−w, which has at most n− (r + 1) vertices.
We repeat the above argument inside this component, adding a new vertex to the net and again removing
at least r + 1 vertices from the graph. This can be repeated at most n

r+1 times and thus the r-net will

have no more than
⌈

n
r+1

⌉
vertices.

Figure 2.1 shows the first step of the proof of the lemma for a tree in which we want to find a 2-net.
The left graph shows the tree with vertex u at maximum distance from v and the vertex w at distance
2 from u on the path to v. By removing vertex w we obtain the graph on the right, which has three
components. The vertices of the components not containing v all lie at distance at most 2 from w in the
original graph.

The r-nets and r-neighbourhoods can give better insights into the spectrum of the graph as the
following two lemmas will show. The first result tells us that removing an r-net from the graph decreases
the spectral radius. Furthermore, the spectral radii of the r-neighbourhoods of a graph G can be used
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Figure 2.1: A tree before and after removing vertex w to find a 2-net in it.

to bound its spectrum. This result follows by counting closed walks of length 2r in G and the use of the
Rayleigh quotient as a lower bound on the spectral radius.

Lemma 2.22. Let r be a positive integer and G a graph. Let H be the graph obtained from G by
removing an r-net of G. Then

λ1(H)2r ≤ λ1(G)2r − 1.

Proof. By Lemma 2.18 adding isolated vertices to a graph only adds zeroes to its spectrum. This implies
that it suffices to show that the lemma holds for an n-vertex graph G with no isolated vertices.

So let G be a graph with no isolated vertices and let H be the graph obtained from G by removing
an r-net. Add zeroes to the adjacency matrix AH of H to extend it to an n× n matrix. We first show
that A2r

H ≤ A2r
G − I entry-wise. Notice that the entries of A2r

H and A2r
G denote the number of walks of

length 2r from one vertex to the other in H and G respectively. So, to show this inequality holds we
will count the different types of walks in the graphs.

Note that since H is a subgraph of G, all walks of length 2r in H also exist in G. From this it
immediately follows that

(
A2r

H

)
uv

≤
(
A2r

G

)
uv

for all distinct u, v ∈ G. We thus only need to show that
for any vertex v in G there is at least one more walk of length 2r in G than in H. Observe that in the
graph G there is a path from v to a vertex in the r-net at distance at most r from v. If this vertex is
exactly at distance r, we can walk back along this path to find a walk of length 2r. Otherwise, we can
walk up and down between two vertices of this path a required number of times before turning back to v
to find a walk of length 2r. This gives a walk of length 2r which is not available in the graph H, and
thus

(
A2r

H

)
vv

≤
(
A2r

G

)
vv

− 1. This shows that A2r
H ≤ A2r

G − I indeed holds.
The matrices A2r

H and A2r
G − I are both non-negative. By Perron-Frobenius it thus follows that

λ1

(
A2r

H

)
≤ λ1

(
A2r

G − I
)
,

which implies the desired result λ1(H)2r ≤ λ1(G)2r − 1.

Lemma 2.23. For every n-vertex graph G and positive integer r,
n∑

i=1

λi(G)2r ≤
∑

v∈V (G)

λ1 (Gr(v))
2r

.

Proof. Let G be an n-vertex graph and r a positive integer. Recall that the sum of the eigenvalues of a
matrix is equal to the trace of the matrix, so

∑n
i=1 λi(G)2r = Tr

(
A2r

G

)
. The trace of A2r

G counts the
number of closed walks of length 2r in G. For any v ∈ V (G) all closed walks lie in the r-neighbourhood
Gr(v) of v, since a closed walk of length 2r can reach at most a vertex at distance r from v before
returning. Let ev be the vector with a 1 at entry v at all other entries zero. The number of closed
walks from v are counted by eTvA

2r
Gr(v)

ev, so Tr
(
A2r

G

)
=
∑

v∈V (G) e
T
vA

2r
Gr(v)

ev. Since ⟨ev, ev⟩ = 1, this

quantity is equal to the Rayleigh quotient R
(
A2r

Gr(v)
, ev

)
. By Theorem 2.6 it follows that

eTvA
2r
Gr(v)

ev ≤ λ1 (Gr(v))
2r

.

This yields
∑n

i=1 λi(G)2r ≤
∑

v∈V (G) λ1 (Gr(v))
2r as required.
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To show the upper bound on the multiplicity of λj we will create a subgraph by removing some
strategically chosen vertices and then use interlacing of the eigenvalues. The first type of vertices we
remove are all those whose r-neighbourhood have a large spectral radius, for some positive integer r.
The size of the subset of these vertices is upper bounded.

Lemma 2.24. Let G be an n-vertex graph with maximum the degree ∆ and denote by λ = λj(G) the
j-th eigenvalue of G. For any positive integer r, the set W = {v ∈ V (G) : λ1(Gr(v)) > λ} has at most
j∆2(r+1) elements.

Proof. Let W0 be a maximal subset of W such that the distance in G between any two vertices of W0 is
at least 2(r+1). By the maximality of W0, its 2(r+1)-neighbourhood G2(r+1)(W0) contains W . Indeed,
suppose that this is not the case. Then there is a w ∈ W which is not in G2(r+1)(W0). This means that
for all u ∈ W0 the distance between u and w in G is greater than 2(r + 1). But then, W0 ∪ {w} is a
subset of W larger than W0 satisfying the same condition. This is not possible by the maximality of W0.
We thus have W ⊆ G2(r+1)(W0). The 2(r + 1) neighbourhood of any w ∈ W0 has no more than ∆2(r+1)

vertices. This gives
|W | ≤ |G2(r+1)(W0)| ≤ |W0|∆2(r+1).

So bounding the size of W0 will give an upper bound on the size of W .
The r-neighbourhoods of any two vertices in W0 are disjoint, so Gr(W0) has |W0| components. Since

W0 is a subset of W , each component of Gr(W0) has spectral radius larger than λ, by definition of W .
This means that the |W0| first eigenvalues of Gr(W0) are all larger than λ, i.e.

λ1 (Gr(W0)) , . . . , λ|W0| (Gr(W0)) > λ = λj(G).

Since Gr(W0) is an induced subgraph of G its eigenvalues interlace those of G, so the inequality

λi(G) ≥ λi (Gr(W0))

holds for all 1 ≤ i ≤ |Gr(W0)|. It follows from the two inequalities that we must have |W0| < j, which
implies the upper bound j∆2(r+1) for W .

Next to the vertices from the above lemma, we will also remove an r1-net from the graph for a
certain positive integer r1 < r. In the resulting graph we will first bound the multiplicity of λj as an
eigenvalue of this graph using the lemmas above. We then use interlacing to bound the multiplicity
of the eigenvalue in the original graph. Recall that for a graph G we write the eigenvalues of G in
non-increasing order λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G).

Proof of Theorem 2.20. Let G be a connected n-vertex graph with vertex set V and maximum degree
∆. Let λ1, . . . , λn be the eigenvalues of G and let λ = λj(G) be the j-th eigenvalue. We want to show
that the multiplicity mG(λ) of λ in G is of order O(n/ log logn). We will first prove the theorem in the
case that λ ≤ 0 and then prove it for λ > 0.

Suppose λ ≤ 0 and let q be the number of distinct eigenvalues of G. The sum of the squared
eigenvalues of G satisfies

n∑
i=1

λ2
i = mG(λ1)λ

2
1 + · · ·+mG(λ)λ

2 + · · ·+mG(λq)λ
2
q ≥ mG(λ)λ

2,

since λ2
i ≥ 0 for all i ∈ [q]. It thus suffices to bound the value of the sum. Since λ ≤ 0, for all i ≥ j the

eigenvalue λi is also at most zero. This implies n∑
i=j

λi

2

=

n∑
i=j

λ2
i +

∑
i̸=k
i,k≥j

λiλk ≥
n∑

i=j

λ2
i (2.5)

Furthermore, we note that since 0 =
∑n

i=1 λi =
∑j−1

i=1 λi +
∑n

i=j λi the equality

j−1∑
i=1

λi = −
n∑

i=j

λi (2.6)
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must hold. Now using these two identities and the fact that 0 ≤ λi ≤ ∆ for all 1 ≤ i ≤ j, we find

n∑
i=1

λ2
i

(2.5)

≤
j−1∑
i=1

λ2
i +

 n∑
i=j

λi

2

(2.6)
=

j−1∑
i=1

λ2
i +

(
j−1∑
i=1

λi

)2

≤ (j − 1)∆2 + (j − 1)2∆2

≤ j2∆2.

It thus follows that mG(λ) ≤
(

j∆
λ

)2
which is of order O(n/ log log n) proving the theorem for λ ≤ 0.

Now we turn to the case where λ = λj > 0. Let c(∆, j) be a small enough constant and define
r1 = ⌊c log log n⌋ and r2 = ⌊c log n⌋. Denote the sum of these two constants as r = r1 + r2.

We start by constructing a subgraph H of size at least n−Oj,∆ (n/ log log n) by removing specific
vertices from the graph. Define the set W = {v ∈ V : λ1(Gr(v)) > λ}, which by Lemma 2.24 has at
most j∆2(r+1) elements. Let U be an r1-net in G of size at most ⌈n/(r1 + 1)⌉, which exists by Lemma
2.21 since G is connected. We define H as the subgraph induced by G \ (W ∪U). The two upper bounds
on the sets W and U give

|W ∪ U | ≤ |W |+ |U | ≤
⌈

n

r1 + 1

⌉
+ j∆2(r+1) = Oj,∆

(
n

log logn

)
.

This leads to |H| ≥ n−Oj,∆

(
n

log logn

)
as necessary.

The next step in the proof is to upper bound the multiplicity of λ in H, denoted by mH(λ). We will
first use Lemma 2.23 to bound mH(λ) using the spectral radii of the 2r-neighbourhoods of vertices of H.
Next, we will show that for any v ∈ H, the graph H2r(v) is obtained from Gr(v) by removing an r1-net.
This will allow us to use Lemma 2.23 to further bound the multiplicity mH(λ).

Suppose H has k distinct eigenvalues denoted by µi and note that µ2r2
i ≥ 0 for all i ∈ [k]. We have

|H|∑
i=1

µ2r2
i = mH(µ1) · µ2r2

1 + · · ·+mH(λ) · λ2r2 + · · ·+mH(µk) · µ2r2
k

≥ mH(λ) · λ2r2 ,

and by Lemma 2.23
|H|∑
i=1

µ2r2
i ≤

∑
v∈V (H)

λ1(Hr2(v))
2r2 .

Hence, we find
mH(λ) · λ2r2 ≤

∑
v∈V (H)

λ1(Hr2(v))
2r2 . (2.7)

It follows that to find an upper bound on mH(λ) we need to bound the spectral radius of Hr2(v) for any
v ∈ V (H).

To bound λ1(Hr2(v)) for any v ∈ V (H) we will show that Hr2(v) is obtained from Gr(v) by removing
an r1-net. Then we apply Lemma 2.22 to further bound mH(λ). First of all we show that Hr2(v) is a
subset of Gr(v). Then we prove that Gr(v) \Hr2(v) is indeed an r1-net of Gr(v) by showing that for any
u ∈ Gr(v) there is a w ∈ Gr(v) \Hr2(v) such that the distance in Gr(v) between u and w is at most r1.

Let v be an arbitrarily chosen vertex of V (H). Note that Hr2(v) is a subgraph of H and hence
contains no vertices from the sets W and U . The graph Hr2(v) contains all vertices at distance at most
r2 from v in H. Since H ⊆ G, this means that any vertex u ∈ Hr2(v) is also within distance r2 of v in G.
In particular, it now follows from r2 ≤ r that u is within distance r of v in G, implying that u ∈ Gr(v).
This shows that Hr2(v) ⊆ Gr(v).

Figure 2.2 shows a sketch of the graph G with the subsets U and W and the subgraphs Hr2(v) and
Gr(v) for some v ∈ V (H). The red vertices in the picture represent the set W . The area outside of U
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Figure 2.2: Sketch of the graph and subgraphs from the proof of Theorem 2.20

excluding W is the graph H. For any vertex in G there is a vertex in U at distance at most r1. The
graph Hr2(v) is a subgraph of H and hence contains no vertices from U nor from W , i.e. no red vertices.
The distance from v to any other vertex in Hr2(v) is at most r2 and its distance to any vertex in Gr(v)
is at most r. We now show that the marked area, i.e. Gr(v) \Hr2(v), is ans r1-net of Gr(v).

Take u ∈ Gr(v) arbitrarily. To show that Gr(v) \Hr2(v) is an r1-net of Gr(v) we will prove that
a vertex x ∈ Gr(v) \Hr2(v) exists at distance at most r1 from u. Note that if u /∈ Hr2(v) the case is
trivial, since we can take x = u. Hence, we only need to show such an x exists if u ∈ Hr2(v). Since
Hr2(v) ⊆ Gr(v) the distance of u to v in Gr(v) is at most r2. Let x be a vertex in U at distance at most
r1 from u in G. Then

dG(v, x) ≤ dG(v, u) + dG(u, x) ≤ r1 + r2 = r.

This implies that x ∈ Gr(v). Furthermore, since x is an element of U it can not be an element of
Hr2(v). This proves the existence of a vertex in Gr(v) \Hr2(v) at distance at most r1 from u and thus
Gr(v) \Hr2(v) is indeed an r1-net of Gr(v).

We have now shown that Hr2(v) is obtained from Gr(v) by removing an r1-net, for any v ∈ V (H).
Applying Lemma 2.22 thus yields

λ1(Hr2(v))
2r1 ≤ λ1 (Gr(v))

2r1 − 1 ≤ λ2r1 − 1,

where the last step follows since v /∈ W . Using this result and inequality (2.7) we now find

mH(λ) · λ2r2 ≤
∑

v∈V (H)

λ1(Hr2(v))
2r2

=
∑

v∈V (H)

(
λ1(Hr2(v))

2r1
) r2

r1

≤
∑

v∈V (H)

(
λ2r1 − 1

) r2
r1

≤ n
(
λ2r1 − 1

) r2
r1 .

Dividing both sides by λ2r2 yields mH(λ) ≤
(
1− λ−2r1

) r2
r1 ≤ e−λ−2r1 r2

r1 . For c small enough this is at
most m := e−

√
logn, which is of order Oj,∆(n/ log log n). To see this, note that when c becomes smaller,
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λ−2r1 = λ−2c log logn becomes larger. This makes e−λ−2r1 r2
r1 smaller, and for small enough c this is indeed

smaller than e−
√
logn. Figure 2.3 shows the two functions in the specific case where λ2c = 3

2 . It also
shows n

log logn , from which we easily see that indeed e−
√
logn = Oj,∆(n/ log log n).

Figure 2.3: Growth of functions e
− 3

2
log log n r2

r1 , e−
√
logn and n

log logn
.

In the last step of this proof we will use interlacing to show that this implies that the multiplicity of
λ in G is also at most Cn

log logn for some constant C = C(j,∆). Let i be the first index such that µi = λ.
Then µi−1 > µi = λ. By the interlacing of eigenvalues of induced subgraphs, Lemma 2.19, we have
µi−1 > λ = λj ≥ µj , which implies that i− 1 < j. Next note that since the multiplicity of λ in H is at
most m, λ = µi > µi+m+1. Let mG(λ) denote the multiplicity of λ in G, so that λ = λj = λj+mG(λ).
Again applying Lemma 2.19 we find

λj+mG(λ) > µi+m+1 ≥ λn−|H|+i+m+1.

Which implies

j +mG(λ) ≤ n− |H|+ i+m+ 1

≤ n− n+Oj,∆

(
n

log log n

)
+ j +Oj,∆

(
n

log log n

)
+ 1

= j +Oj,∆

(
n

log logn

)
,

and hence we find mG(λ) = Oj,∆

(
n

log logn

)
as needed.

The theorem does not work for disconnected graphs. This is because a disconnected graph can have
many components with λj as their spectral radius. Furthermore, the theorem also does not work without
the assumption of the maximum degree. To see this, note that the complete graphs have n vertices,
degree n− 1 and second eigenvalue −1 with multiplicity n− 1.

In the study of equiangular lines, we are mostly interested in the case where j = 2. The theorem
above was a new result and since then further research has been done into the multiplicity of the second
eigenvalue. The upper bound has been improved in [19] to O

(
n/ log1/5−o(1) n

)
. The best known lower

bound is due to Haiman, Schildkraut, Zhang, and Zhao in [20]. In this article a construction is given of
graphs with bounded degree whose second eigenvalue have a multiplicity of order n1/2−o(1).



3
Classic results

The problem of finding the maximum number of lines N(d) in dimension d such that the angle between
any two lines is the same was first stated by Van Lint & Seidel [2]. A few years later Lemmens &
Seidel [4] introduced the related problem of finding the maximum number of equiangular lines Nα(d) in
dimension d with fixed common angle arccosα. The results of these two papers lay a foundation into
the topic of equiangular lines and give the first insights into the behaviours of N(d) and Nα(d). In this
chapter we will discuss three of these classic results. The first will be a theorem due to Neumann, which
shows that Nα(d) can only be large if α−1 is an odd integer. The next two results are the absolute and
relative bounds, which are both upper bounds. Neumanns theorem is used to classify the dimensions for
which the absolute bound can hold with equality. Before discussing these results, we will rewrite the
problem of finding a set of equiangular lines into finding a specific kind of matrix. To give an example of
a proof using this notation, we will show an almost trivial lower bound on Nα(d).

Let L = {l1, l2, . . . , ln} be a set of equiangular lines in Rd with common angle arccosα, where
α ∈ (0, 1). For any line li ∈ L, we can choose a unit vector vi ∈ Rd in the direction of the line, see Figure
3.1. Then, for all distinct i, j ∈ [n], the inner product between any two unit vectors vi and vj satisfies
⟨vi,vj⟩ = ±α. The set of resulting unit vectors C = {v1, . . . ,vn} is a also known as a spherical code.

Figure 3.1: Unit vectors representing equiangular lines in R2.

Definition 3.1. A set of unit vectors C in Rn is a spherical L-code if ⟨v,u⟩ ∈ L for any pair of distinct
vectors v,u ∈ C.

So we see that a set of n equiangular lines with common angle arccos(α) corresponds to a spherical
{−α, α}-code, which we denote by Cα. We will say that Cα represents the set of equiangular lines. By
Theorem 2.11 a positive semidefinite matrix can be constructed from this set of vectors, which is known
as the Gram matrix of C = Cα, which we denote by MC . The entries of MC are 1 on the diagonal and

19
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±α everywhere else. It is a symmetric n × n matrix of rank at most d, since the vectors in C are all
elements of Rd.
Example 3.2. Let C = {u,v,w} be the spherical {− 1

2 ,
1
2}-code representing the set of three equiangular

lines in R2 in Figure 3.1. The inner products are ⟨u,v⟩ = 1
2 , ⟨v,w⟩ = 1

2 and ⟨u,v⟩ = − 1
2 . So the Gram

matrix of C is

MC =


u v w

u 1 1
2 − 1

2
v 1

2 1 1
2

w − 1
2

1
2 1

.

This matrix has eigenvalues λ1 = λ2 = 3
2 and λ3 = 0. These are all non-negative, so MC is indeed

positive semidefinite. The multiplicity of the eigenvalue 0 is one, and thus the rank of the matrix is
rkMC = 3− 1 = 2 which is equal to the dimension d = 2 as required.

Conversely, any positive semidefinite matrix M with diagonal entries 1 and off-diagonal entries
±α of rank at most d is the Gram matrix of a set of n equiangular lines. By Theorem 2.11, vectors
v1, . . . ,vn ∈ Rd can be found such that Mij = ⟨vi,vj⟩. These vectors give a spherical {−α, α}-code
representing a set of n equiangular lines. So to find a set of n equiangular lines in Rd with common
angle arccosα, it suffices to find an n × n matrix with all the properties of M . We will now prove a
lower bound on Nα(d) by constructing such a matrix.

Proposition 3.3. For α ∈ (0, 1) and integer d, Nα(d) ≥ d.

Proof. Define the d × d matrix M = (1 − α)I + αJ , where α ∈ (0, 1). This matrix has eigenvalue
1+(d− 1)α with multiplicity 1 and 1−α with multiplicity d− 1. Since 0 is not an eigenvalue, the matrix
has full rank. Furthermore, all eigenvalues are positive, so A is positive semidefinite. By Theorem 2.11
we can thus find vectors v1, . . . ,vd ∈ Rd such that Mij = ⟨vi,vj⟩. These vectors correspond to a set of
equiangular lines since for any distinct i, j ∈ [d], ⟨vi,vj⟩ = α. Thus we have found a construction of d
equiangular lines in Rd with common angle α, so Nα(d) ≥ d.

Figure 3.2: Three equiangular lines in R3.

This lower bound is still the best general lower bound known to date. In Chapter 5 we will see a
better lower bound which only holds for a specific class of values of α. Furthermore, Schildkraut proved
very recently that there are infinitely many α ∈ (0, 1) such that Nα(d) ≥ n+Ω(log log n) [21]. For all
other values of α, the above proposition is the best bound known.

It is natural to ask what the construction of d equiangular lines in Rd actually looks like. This
construction can be visualised in the following way. Take the unit sphere Sd−1 in Rd and embed a
regular d-simplex onto this sphere. Draw lines connecting the centre of the sphere with each vertex of
the simplex. This yields d lines and the angle between any two of these is always the same. The angle
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between the lines can then be increased or decreased by making the simplex larger or smaller. In R3

this means that we take a regular triangle embedded onto the unit sphere Sd−1 and connect each vertex
of the triangle to the center of the sphere. Figure 3.2 shows what such a construction looks like.

3.1 Neumanns theorem

In this section we prove a result by Neumann given in [4] which states that if Nα(d) is bigger than 2d,
then α−1 should be an odd integer. In particular this means that for all other values of α the number of
equiangular lines in Rd with common angle arccosα is upper bounded by 2d. The result has led to an
interest in the special case of α−1 being an odd integer, since it tells us that a high number of lines can
only exist in this case. We follow the original proof from [4].

Theorem 3.4 (Neumann). If Nα(d) > 2d, then 1/α is an odd integer.

Proof. Let C be a {−α, α}-code representing a set of n equiangular lines with common angle arccosα.
Let MC be the Gram matrix of the code C. We know that this matrix is positive semidefinite and has
rank at most d. By the rank-nullity theorem the kernel of MC has dimension at least n− d. Since the
matrix is positive semidefinite, this implies that it has smallest eigenvalue 0 with multiplicity m ≥ n− d.
We now construct the matrix

S =
1

α
(MC − I),

which has smallest eigenvalue − 1
α with multiplicity m. Observe that S is an integer matrix, so − 1

α is an
algebraic integer by Lemma 2.7. Now, if n > 2d, then m ≥ n− d > 1

2n. Since S is an n× n matrix it
can not have more than one eigenvalue of multiplicity m. By Remark 2.8, all algebraic conjugates of
− 1

α are also eigenvalues of A with the same multiplicity. Since, there can not be any more eigenvalues
with multiplicity m, − 1

α does not have any conjugates. This implies that − 1
α is a rational algebraic

integer. Any rational algebraic integer must be an integer, and thus − 1
α is integer.

It now remains to show that − 1
α is odd. In order to do this consider the matrix

B =
1

2
(J − I − S).

The eigenspace of A corresponding to the eigenvalue − 1
α has dimension m. The eigenspace of J

corresponding to the eigenvalue 0 has dimension n−1. Since m > 1 these two subspaces have a nontrivial
intersection. That means that there exists a vector v which is an eigenvector of A with eigenvalue − 1

α
and an eigenvector of J with eigenvalue 0. This vector is also an eigenvector of B with corresponding
eigenvalue µ = 1

2

(
−1 + 1

α

)
. Indeed,

Bv =
1

2
(J − I − S)v =

1

2

(
0− 1−

(
− 1

α

))
v =

1

2

(
−1 +

1

α

)
v.

The matrix B is again an integer matrix, so µ is an algebraic integer. Since − 1
α is a rational algebraic

integer, µ is also a rational algebraic integer and thus integer. For this to hold, − 1
α must be odd.

The matrix S = 1
α (MC − I) used in the proof, is a Seidel matrix. Seidel matrices are symmetric

matrices with zeroes on the diagonal and all other entries ±1. They were first introduced by Van Lint
and Seidel in [2]. Introductions into Seidel matrices can be found in Chapter 11 of [3] and Section 1.8.2
of [18].

Above we saw that finding a set of n equiangular lines with common angle arccosα in Rd corresponds
to finding a positive semidefinite matrix M of rank d with diagonal entries 1 and off-diagonal entries ±α.
Since the smallest eigenvalue of M is zero with multiplicity at least n− d, the smallest eigenvalue of the
Seidel matrix S is −1/α with multiplicity at least n− d. It follows that to find a set of n equiangular
lines in Rd, we must find an n× n Seidel matrix whose smallest eigenvalue λmin has multiplicity at least
n− d. The cosine of the angle between the lines is then ± 1

λmin
. From the Seidel matrix we can find the

Gram matrix corresponding to a set of equiangular lines with the equation M = I − 1
λmin

S.
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3.2 The Absolute Bound

We now turn to the first upper bound on the number N(d) of equiangular lines in Rd. It is known as the
absolute bound and is due to Gerzon [4, Theorem 3.5]. The name arises from the fact that the bound
only depends on the dimension and not on the angle between the lines. The theorem says that there can
be no more than d(d+ 1)/2 equiangular lines in Rd. To prove the result we will follow the approach of
Godsil and Royle in [3]. The proof uses projection matrices and their trace inner product.

Let {v1,v2, . . . ,vn} be a set of unit vectors corresponding to a set of equiangular lines with common
angle arccosα. Define the matrix Xi = viv

T
i . This matrix is a symmetric d× d matrix and X2

i = Xi. So
Xi is a symmetric projection matrix representing the projection onto the line li spanned by the vector
vi. These projection matrices X1, X2, . . . , Xn satisfy

XiXj = viv
T
i vjv

T
j =

(
vT
i vj

)
viv

T
j

and hence, using the linearity of the trace and Equation 2.2, we find that the trace inner product is
given by

⟨Xi, Xj⟩F = Tr(XiXj) = Tr
((
vT
i vj

)
viv

T
j

)
=
(
vT
i vj

)
Tr
(
viv

T
j

)
=
(
vT
i vj

)
(vT

j vi) = ⟨vi,vj⟩2.

It follows that for any distinct i, j ∈ [n]

⟨Xi, Xj⟩F = ⟨vi,vj⟩2 = α2.

If i = j it follows from Xi being a projection matrix and vi being a unit vector that

⟨Xi, Xi⟩F = Tr(X2
i ) = Tr(Xi) = Tr(viv

T
i ) = ⟨vi,vi⟩ = 1.

To prove the theorem we will show that the matrices X1, X2, . . . , Xn defined above are linearly
independent. Since they are symmetric matrices and the space of symmetric matrices has dimension
d(d+ 1)/2 the theorem will follow. We will also show that the bound is tight only for a specific class
of dimensions using Neumanns theorem. Two of the dimensions for which we know the bound is tight
are d = 2 and d = 3. For these dimensions the problem was already solved by Haantjes [1] who showed
that N(2) = 3 = 2 · (2 + 1)/2 and N(3) = 6 = 3 · (3 + 1)/2. Next to these two cases, the only other two
known dimensions for which the absolute bound is reached are d = 7 and d = 23 [22, Table 1].

Theorem 3.5 (Gerzon). We have N(d) ≤ d(d+1)
2 . If equality holds, then d = 2, d = 3 or d+ 2 is the

square of an odd integer.

Proof. Let v1, . . . ,vn be unit vectors corresponding to a set of n equiangular lines and let arccosα be
the common angle. Define the projections X1 = v1v

T
1 , . . . , Xn = vnv

T
n . As we have seen above that for

all distinct i, j ∈ [n], ⟨Xi, Xj⟩ = α2 and ⟨Xi, Xi⟩ = 1.

The space of symmetric d× d matrices has dimension
(
d+1
2

)
. We will prove the statement by showing

that the matrices X1, . . . , Xn are linearly independent.
Suppose

∑n
i=1 ciXi = 0 for some ci ∈ R, i = 1, . . . , n. Then for any j ∈ [n]:

0 =

〈
Xj ,

n∑
i=1

ciXi

〉

=

n∑
i=1

ci Tr(XiXj)

= cj · 1 + α2
n∑

i ̸=j

ci

= (1− α2)cj + α2
n∑

i=1

ci.

This holds for all j ∈ [n] which implies that we must have c1 = · · · = cn =: c. So the equation becomes

0 = (1− α2)c+ α2nc = (1 + (n− 1)α2)c.
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For this to hold we must have c = 0, since 1 + (n − 1)α2 > 0. Thus it follows that the matrices are
linearly independent and so N(d) ≤

(
d+1
2

)
.

Now suppose that equality holds. We have already seen above that for d = 2 and d = 3 equality
holds, so we only need to show that d+ 2 is the square of an odd integer. When equality holds, the
matrices X1, . . . , Xn form a basis of the space of symmetric d× d matrices. In particular, this means
that there exist scalars b1, . . . , bn such that I =

∑n
i=1 biXi. First we show that for this to hold we must

have bi = d/n for all i ∈ [n].
For any j ∈ [n] we have

Xj = IXj =

n∑
i=1

biXiXj .

Taking the trace gives

1 = Tr(Xj) = Tr

(
n∑

i=1

biXiXj

)

=

n∑
i=1

bi Tr(XiXj)

= (1− α2)bj +

n∑
i=1

bi

(3.1)

Since this holds for all j, all bj ’s must be equal. Let b denote this value. Then I = b
∑n

i=1 Xi and by
taking the trace again we find

d = Tr(I) = b

n∑
i=1

Tr(Xi) = bn.

By substituting b = d/n into Equation 3.1 and simplifying, we find d+2 = 1
α2 . To prove the theorem

it thus suffices to show that 1/α is an odd integer. This immediately follows from Theorem 3.4, by
noticing that for d > 3, n = 1

2d(d+ 1) > 2d.

It follows from the theorem and the proof that this absolute maximum of equiangular lines can only
be attained in very specific cases. To reach the absolute bound for a dimension d > 3, d+ 2 must be the
square of an odd integer and 1/α must be an odd integer satisfying d+ 2 = 1/α2. The first dimension
which satisfies these conditions is d = 7. In this case d+ 2 = 9 = 32 and 1/α = 3 which is indeed an odd
integer. A construction of d(d+ 1)/2 = 28 equiangular lines in R7 with common angle arccos

(
1
3

)
indeed

exists as shown by the following example. This construction was already given in a slightly different
formulation by Van Lint and Seidel in [2].

Example 3.6. Define a unit vector in R8 by

vT
1 =

1√
24

(3, 3,−1,−1,−1,−1,−1,−1).

Let v2,v3, . . . ,v28 be all other vectors of this form with two entries 3 and all other entries −1. Notice
that for all i ∈ [28], ⟨vi,1⟩ = 1√

24
(3 + 3− 6) = 0, so all vectors are orthogonal to 1. This means that the

set of vectors lies in the 7-dimensional subspace of R8 orthogonal to 1, and hence the vectors correspond
to 28 lines in R7. Furthermore, for any i ̸= j, ⟨vi,vj⟩ = ±1/3, indicating that the angle between any
two vectors is arccos

(
1
3

)
. So this yields the desired 28 lines in R7 with common angle arccos

(
1
3

)
.

A construction of a tight bound is also known for d = 23, shown for the first time in [23]. In higher
dimensions, no construction reaching the absolute bound is yet known. A construction of equiangular
lines on the order of d2 has been given by de Caen in [24] for an infinite number of dimensions. This is
the first and only constructive lower bound on the order of d2 known up to date.
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3.3 The Relative Bound

The absolute bound gives an upper bound on the number of equiangular lines in Rd independent of the
angle between the lines. An analogous version of the bound exist if we take the angle between the lines
to be fixed. The resulting bound is called the relative bound, as opposed to the absolute bound. This
result was first proven by Van Lint and Seidel in [2]. Their proof uses the trace of the Seidel matrix.
Here we again use the approach from Godsil and Royle [3].

Theorem 3.7. For any α ∈ (0, 1), Nα(d) ≤ d 1−α2

1−dα2 if d < 1/α2.

Proof. Let L be a set of n equiangular lines with common angle arccosα and let X1, . . . , Xn be the
projections onto the lines of L. Recall that we have ⟨Xi, Xj⟩ = α2 and ⟨Xi, Xi⟩ = 1 for all distinct
i, j ∈ [n]. Put

Y = I − d

n

n∑
i=1

Xi.

Notice that Y is a symmetric matrix, so by the non-negativity of the trace inner product Tr(Y TY ) =

Tr(Y 2) ≥ 0. We have Y 2 = I − 2d
n

∑n
i=1 Xi +

d2

n2 (
∑n

i=1 Xi)
2, which gives

Tr(Y 2) = d− 2d+
d2

n2
(1 + α2n(n− 1)) ≥ 0.

Rearranging yields
d− dα2 ≥ n(1− dα2).

If 1− dα2 > 0, we can divide the inequality by it to obtain the desired result.

From the proof it follows that equality can only hold in this bound if and only if ⟨Y, Y ⟩ = Tr(Y 2) = 0.
By the non-degeneracy of the inner product, this only happens whenever Y = 0, and thus I = d

n

∑n
i=1 Xi.

In the previous section we saw that if equality holds in the absolute bound, then we must also have
I = d

n

∑n
i=1 Xi. From this we conclude that if the absolute bound holds with equality, the relative

bound is also met. That equality holds in the relative bound if it holds in the absolute bound can also
be calculated using the identity α2 = 1/(d+ 2). Substituting this into the relative bound we see that
d 1−α2

1−dα2 = d(d+1)
2 .

The converse statement is not true, which the following example will show. For this we note that we
can view the Seidel matrix as a nonstandard adjacency matrix of a graph, where two distinct vertices i
and j are adjacent if Sij = 1 and non-adjacent if Sij = −1. If G is a graph, SG will denote the Seidel
matrix of this graph.

Example 3.8. Let G be the Petersen graph. Then the Seidel matrix SG of G has eigenvalues 3 and −3,
both with multiplicity 5. So the matrix

M = I +
1

3
SG

has eigenvalues 2 and 0, again both with multiplicity 5. Since the eigenvalues are all non-negative, M is
a positive semidefinite matrix. Furthermore, the nullity of M is 5 and so its rank is rkM = 10− 5 = 5.
So M is the Gram matrix of a set of unit vectors representing 10 equiangular lines in R5 with common
angle arccos(1/3). If we plug these values into the relative bound, we find

d
1− α2

1− dα2
= 5

1− 1
9

1− 5
9

= 5 · 8
4
= 10 = d.

This shows that this example meets the relative bound with equality. On the other hand d(d+1)
2 = 5·6

2 = 15,
and hence the maximum of the absolute bound is not attained.

This example shows that equality in the relative bound only tells us that this is the maximum number
of equiangular lines with that specific common angle. There could thus be an angle allowing a larger
number of equiangular lines in the same dimension.
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Linear upper bound for all dimensions

For many years, no significant progress has been made in finding bounds on the maximum number of
equiangular lines in Rd. This was until Bukh showed in [9] that a linear upper bound can be found on
Nα(d). This bound has been further improved by Balla, Dräxler, Keevash and Sudakov in [10] and later
by Jiang and Polyanskii in [11]. The approach used in proving these bounds relies on Ramsey’s theorem
which is why they only hold in large enough dimensions. Recently, Balla used a completely different
approach which overcomes the use of Ramsey’s theorem and shows a linear upper bound on Nα(d) for
all dimensions d in [13]. Next to overcoming the use of Ramsey’s theorem, the tools established in this
article are also interesting because they can be generalised to complex space. This way, Balla also finds
bounds on the number of complex equiangular lines. Since our focus lies on real equiangular lines we
will not go into the details of these results.

The main tool used by Balla is a geometric inequality that holds for the Gram matrix of a spherical
code representing a set of equiangular lines. Before stating the theorem we define what it means to apply
a function to a matrix. For any n× n matrix A and function f : R → R we will define the matrix f(A)
as f(A)ij = f(Aij) for all i, j ∈ [n]. This means that the function is applied to the matrix entry-wise.
Similarly, we can apply the function to any vector v ∈ Rn by defining the vector f(v) as f(v)i = f(vi)
for all i ∈ [n].

Theorem 4.1 ([13]). Let M be the Gram matrix of a spherical {−α, α}-code C corresponding to a set
of n equiangular lines with common angle arccosα. Define f : R → R as the function f(x) = x2. For all
u,v ∈ Rn, we have

1− α2

2

(
⟨v,Mv⟩ ⟨u,Mu⟩+ ⟨v,Mu⟩2

)
+

α2

α2n+ 1− α2
⟨Mv,Mu⟩2 ≥ ⟨f(Mv), f(Mu)⟩ ,

with equality whenever n =
(
d+1
2

)
.

By taking u = ei, where ei is a standard basis vector, the inequality of the theorem can be rewritten
in terms of a single vector v.

Corollary 4.2. Let M be the Gram matrix of a spherical {−α, α}-code C corresponding to a set of n
equiangular lines with common angle arccosα. For all i ∈ [n] and v ∈ Rn, we have

1− α2

2α2

(
⟨v,Mv⟩ − (Mv)

2
i

)
+

1

α2n+ 1− α2

(
M2v

)2
i
≥
〈
v,M2v

〉
,

with equality whenever n =
(
d+1
2

)
.

The inequalities from Theorem 4.1 and its corollary can be used to find an upper bound on the
second eigenvalue of the Gram matrix. Together with a bound on its spectral radius we can deduce the
following theorem giving an upper bound of linear order.

Theorem 4.3 ([13]). For all d ∈ N and α ∈ (0, 1),

Nα(d) ≤
√
d

2α3
+

(1 + α)d

2α
.

25
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In Section 3.2 we have seen that if the absolute bound is met, the cosine of the angle between the
lines must satisfy α = 1/

√
d+ 2. Note that if we plug this value of α into the bound of the theorem

above we find Nα(d) ≤ (1 + o(1)) r
2

2 , which asymptotically reaches the absolute bound. For the values
α = 1

3 ,
1
5 ,

1
7 ,

1
9 ,

1
11 , this bound has been improved by De Laat, De Muinck Keizer and Machado in [25]

using a semidefinite programming approach. They show that for these values of α, Nα(d) ≤ cα + (1+α)d
2α

for all d ≥ dα, where cα and dα are constants that only depend on α. They also deduce exact values for
these two constants.

Introducing some more tools will make it possible to use Theorem 4.1 to prove the following linear
bound on Nα(d).

Theorem 4.4 ([13]). For all d ∈ N and α ∈ (0, 1) we have

Nα(d) ≤ max

(
2

α5
+

2

α3(1− α)
,

(
2 +

8α2

(1− α)2

)
(d+ 1)

)
.

In this chapter we will prove these theorems. First we will prove the inequality from Theorem 4.1
using orthogonal projections of symmetric matrices. In Section 4.2 we will show upper bounds on the
first and second eigenvalue of the Gram matrix with which we will prove Theorem 4.3. In Section 4.3
the associated graph of a spherical {−α, α}-code is introduced along with the concept of switching. This
tool is then used in the last section together with Theorem 4.1 to bound the maximum degree of the
graph. This will give us all the necessary ingredients to prove Theorem 4.4.

4.1 Matrix projections

In Section 3.2 we defined the matrices Xi = viv
T
i for i ∈ [n], where the vectors vi are unit vectors

corresponding to a set of n equiangular lines. These matrices are all elements of Sd, the set of symmetric
d× d matrices. The proof of Theorem 4.1 will use orthogonal projections of symmetric matrices with
respect to the Frobenius inner product onto the span of X1, . . . , Xn. The Frobenius norm of a matrix
can only decrease when projecting it. This observation will lead to the inequality from the theorem.

Before we can give the proof of the theorem we need to generalise the concept of orthogonal projections
to general inner product spaces. As seen in Section 2.1 the Frobenius inner product defines an inner
product on the space of m× n matrices Mm×n, hence making Mm×n an inner product space. Since
the space of symmetric matrices Sn is a subspace of Mn×n the Frobenius inner product also makes
Sd an inner product space. Let L : U → V be a linear map between any two inner product spaces U
and V . We define the adjoint linear map of L as the map L∗ : V → U satisfying ⟨L∗v, u⟩U = ⟨v, Lu⟩V
for all u ∈ U and v ∈ V . Here ⟨·, ·⟩U and ⟨·, ·⟩V denote the inner products corresponding to U and V
respectively. Any matrix A ∈ Sn defines a linear map from Rn to Rn. The adjoint matrix of A is the
matrix satisfying ⟨A∗u,v⟩ = ⟨u, Av⟩, for any u,v ∈ Rn. The matrix that satisfies this is the transpose
of A and so we see that the adjoint map is a generalisation of the transpose to any linear map between
inner product spaces.

A linear map P is a projection if P 2 = P = P ∗. The orthogonal projection onto the range of a linear
map L, is given by the map P = L(L∗L)−1L∗. We can easily verify that this map is indeed a projection
by calculating P 2 and P ∗:

P 2 = L(L∗L)−1L∗L(L∗L)−1L∗ = L(L∗L)−1L∗ = P

P ∗ =
(
L(L∗L)−1L∗)∗ = L

(
(L∗L)

−1
)∗

L∗ = L(L∗L)−1L∗ = P.

We will now use these type of projections onto a span of matrices to prove Theorem 4.1.

Proof of Theorem 4.1. Let C = {v1,v2, . . . ,vn} be spherical {−α, α}-code in Rd, corresponding to a set
of n equiangular lines, with Gram matrix M = MC . For each i ∈ [n] define the matrix Xi = viv

T
i and

let X : Rn → Sd be the linear map defined by Xei = Xi. Let X ∗ : Sd → Rn be the adjoint map of X .
Then X ∗X is a linear map from Rn to Rn and can thus be represented by an n × n matrix. We will
show that this matrix is f(M).

For any i ∈ [n], (X ∗X )ei gives the i-th row of X ∗X . Taking the inner product with ej , j ∈ [n] yields
the j-th entry of this row. So, the ij-th entry of X ∗X is given by

⟨(X ∗X )ei, ej⟩ = ⟨X ∗Xi, ej⟩ = ⟨Xi,Xej⟩F = ⟨Xi, Xj⟩F .
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Recall from Section 3.2 that for i, j ∈ [n] distinct, ⟨Xi, Xj⟩ = α2 and ⟨Xi, Xi⟩ = 1. It thus follows that
the matrix X ∗X has diagonal entries 1 and all other entries α2, which is equal to the matrix f(M). So,
we have

X ∗X = f(M) = (1− α2)I + α2J.

This matrix has eigenvalues 1+ (n− 1)α2 and 1−α2, and since these are not equal to zero it is invertible
and has full rank. The inverse of f(M) is

1

1− α2

(
I − α2

α2n+ 1− α2
J

)
. (4.1)

We now define the orthogonal projection onto the span of X1, . . . , Xn, P = X (X ∗X )−1X ∗ : Sd → Sd.
This map is well-defined since we have just shown that the inverse (X ∗X )−1 indeed exists. It can easily
be verified that P2 = P = P∗ and PX = X , so P is indeed a projection onto X .

Let V be the matrix with the vectors v1, . . . ,vn as columns, such that V TV = M . For any u,v ∈ Rn

define the matrix
Y =

1

2

(
V v(V u)T + V u(V v)T

)
,

which is symmetric. Projecting Y can only decrease its norm, so ∥Y ∥2F ≥ ∥PY ∥2F . The required
inequality follows immediately from this one by computing ∥Y ∥2F and ∥PY ∥2F .

We first compute ∥Y ∥2F , for which we will need to know the inner products
〈
V v(V u)T, V v(V u)T

〉
F

and
〈
V v(V u)T, V u(V v)T

〉
F
. For the former we have

〈
V v(V u)T, V v(V u)T

〉
F
= Tr

((
V v(V u)T

)T
V v(V u)T

)
= Tr

(
V u(V v)TV v(V u)T

)
= Tr

(
(V v)TV v(V u)TV u

)
= ⟨V v, V v⟩⟨V u, V u⟩
= ⟨v,Mv⟩⟨u,Mu⟩.

Similarly, we find
〈
V v(V u)T, V u(V v)T

〉
F

= Tr
(
(V u)TV v(V u)TV v

)
= ⟨v,Mu⟩2. Now the squared

norm of Y equals

4∥Y ∥2F =
〈
V v(V u)T + V u(V v)T, V v(V u)T + V u(V v)T

〉
F

=
〈
V v(V u)T, V v(V u)T

〉
F
+ 2

〈
V v(V u)T, V u(V v)T

〉
F
+
〈
V u(V v)T, V u(V v)T

〉
F

= ⟨v,Mv⟩⟨u,Mu⟩+ 2⟨v,Mu⟩2 + ⟨u,Mu⟩⟨v,Mv⟩
= 2

(
⟨v,Mv⟩⟨u,Mu⟩+ ⟨v,Mu⟩2

)
.

Next we compute ∥PY ∥2F , which is equal to

∥PY ∥2F = ⟨PY,PY ⟩F = (PY )
∗ PY = Y ∗P∗PY

= Y ∗PY = Y ∗X (X ∗X )−1X ∗Y.

We thus need to calculate X ∗Y . Notice that X ∗Y is a vector in Rn. By taking the inner product with
ei for some i ∈ [n] we find the i-th entry of this vector. To be able to compute this inner product we
first need to calculate

〈
V v(V u)T,viv

T
i

〉
F
. This inner product equals〈

V v(V u)T,viv
T
i

〉
F
= Tr

(
viv

T
i V v(V u)T

)
= Tr

(
(vT

i V vV u)Tvi

)
= ⟨V v,vi⟩⟨V u,vi⟩
= (Mv)i(Mu)i,

where for the last step we notice that vT
i V is a vector with entries ⟨vi,vj⟩ for j ∈ [n] which is in fact

the i-th row of the Gram matrix M . Now let w ∈ Rn be the vector with entries wi = (Mv)i(Mu)i for
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any i ∈ [n]. Then, for the i-the entry of X ∗Y we, find

⟨X ∗Y, ei⟩ = ⟨Y,Xei⟩F
= ⟨Y,Xi⟩F

=
1

2

(〈
V v(V u)T,viv

T
i

〉
F
+
〈
V u(V v)T,viv

T
i

〉
F

)
=

1

2
((Mv)i(Mu)i + (Mu)i(Mv)i)

= wi.

So, it now follows that X ∗Y = w and Y ∗X = (X ∗Y )∗ = w∗ = wT. Hence, we find

∥PY ∥2F = Y ∗X (X ∗X )−1X ∗Y

= wT(X ∗X )−1w

(4.1)
= wT 1

1− α2

(
I − α2

α2n+ 1− α2
J

)
w

=
1

1− α2

(
wTw − α2

α2n+ 1− α2
wTJw

)

=
1

1− α2

 n∑
i=1

((Mv)i(Mu)i)
2 − α2

α2n+ 1− α2

(
n∑

i=1

(Mv)i(Mu)i

)2


=
1

1− α2

(
⟨f(Mv), f(Mu)⟩ − α2

α2n+ 1− α2
⟨Mv,Mu⟩2

)
.

Now that we have computed ∥Y ∥2F and ∥PY ∥2F , the inequality ∥Y ∥2F ≥ ∥PY ∥2F becomes

1

2

(
⟨v,Mv⟩⟨u,Mu⟩+ ⟨v,Mu⟩2

)
≥ 1

1− α2

(
⟨f(Mv), f(Mu)⟩ − α2

α2n+ 1− α2
⟨Mv,Mu⟩2

)
,

which can be rearranged to the required inequality

1− α2

2

(
⟨v,Mv⟩ ⟨u,Mu⟩+ ⟨v,Mu⟩2

)
+

α2

α2n+ 1− α2
⟨Mv,Mu⟩2 ≥ ⟨f(Mv), f(Mu)⟩ .

Finally, it is left to show that equality holds whenever n =
(
d+1
2

)
. Equality holds in ∥Y ∥2F ≥ ∥PY ∥2F

if and only if P is the identity map. Note that the matrix X ∗X = f(M) is invertible, which means that
it has full rank. The rank of X ∗X is equal to the rank of X , so rkX = n. The dimension of Sd is

(
d+1
2

)
.

Hence, if n =
(
d+1
2

)
, the range of X is Sd. This makes P a projection from Sd onto itself, which is the

identity map. This shows that if n =
(
d+1
2

)
, then equality holds.

Although the matrices X1, . . . , Xn have already been used early on in the study of equiangular lines
to prove results as the absolute and relative bound, this is the first result using projections onto the
span of these matrices. In previous works, orthogonal projections have been used onto large subsets
S ⊆ C such that all inner products between elements of S are α [9], [10]. These large subsets are found
using Ramsey theory, which limits the results to large values of d relative to α. The inequality from the
theorem above makes it possible to find bounds on the number of equiangular lines without having to
rely on Ramsey theory.

We conclude this section with the proof of Corollary 4.2 which is an immediate consequence of
Theorem 4.1 and gives the equivalent of the inequality for only one vector v ∈ Rn.

Proof of Corollary 4.2. The inequality follows from Theorem 4.1 by taking u = ei and then simplifying.
So let f be defined as in the theorem. Recall that M is symmetric, so MT = M . We first compute the
necessary inner products, which are

• ⟨ei,Mei⟩ = Mii = 1,
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• ⟨v,Mei⟩ = (Mei)
Tv = eTi Mv = (Mv)i,

• ⟨Mv,Mei⟩ = (Mei)
TMv = eTi M

TMv =
(
M2v

)
i
.

For the last inner product ⟨f (Mv) , f (Mei)⟩, first note that f(Mei) = α21+(1−α2)ei, since all entries
of Mei are ±α except the i-th entry which is 1. So, the inner product equals

⟨f(Mv), f(Mei)⟩ = α2⟨f(Mv),1⟩+ (1− α2)⟨f(Mv), ei⟩

Now observe that, for any vector w ∈ Rn, ⟨f(w),1⟩ =
∑n

j=1 w
2
j = ∥w∥2. Hence, ⟨f (Mv)⟩ = ∥Mv∥2

and by Equation 2.3 this is equal to ⟨v,M2v⟩. Substituting this in the equation above yields

⟨f(Mv), f(Mei)⟩ = α2∥Mv∥2 + (1− α2)(Mv)2i

= α2⟨v,M2v⟩+ (1− α2)(Mv)2i .

Plugging this all into the inequality of Theorem 4.1 we conclude

1− α2

2

(
⟨v,Mv⟩+ (Mv)2i

)
+

α2

α2n+ 1− α2
(M2v)2i ≥ α2⟨v,M2v⟩+ (1− α2)(Mv)2i .

Subtracting (1− α2)(Mv)2i from both sides and dividing by α2 gives the desired result. Equality for
n =

(
d+1
2

)
also follows immediately from Theorem 4.1.

4.2 Bounds on the first and second eigenvalue
To prove Theorem 4.3 we will start by bounding the first and second eigenvalue of the Gram matrix M .
Recall from Chapter 3 that a set of equiangular lines in Rd can be represented by a spherical code C.
If arccosα is the corresponding angle between the lines, the Gram matrix M = MC of C has diagonal
entries 1 and off-diagonal entries ±α. The matrix M is a symmetric n × n matrix of rank at most
d. The first lemma of this section gives a bound on the spectral radius of M which follows from the
Cauchy-Schwarz inequality.

Lemma 4.5. Let M be the Gram matrix of a spherical {−α, α}-code representing a set of n equiangular
lines. The spectral radius λ1 of M satisfies

λ1 ≤ 1− α+ αn.

Proof. Let v be a unit eigenvector corresponding to λ1. Note that for a unit eigenvector vTMv =
vTλ1v = λ1v

Tv = λ1. Furthermore, the sum
∑n

i=1 vi can be written as ⟨v,1⟩. Using the Cauchy-Schwarz
inequality, we find

λ1 = vTMv =
∑

i,j∈[n]

Mijvivj ≤
∑

i,j∈[n]

|Mij ||vi||vj | =
n∑

i=1

|vi|2 + α
∑
i ̸=j

i,j∈[n]

|vi||vj |

= (1− α)

n∑
i=1

|vi|2 + α

(
n∑

i=1

|vi|

)2

≤ (1− α)

n∑
i=1

|vi|2 + α∥v∥2∥1∥2

= 1− α+ αn.

Next, an upper bound on the second eigenvalue of the Gram matrix M in terms of the first eigenvalue
is shown. It will follow from Theorem 4.1 by letting u and v be unit eigenvectors corresponding to the
first and second eigenvalue of the Gram matrix respectively.
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Lemma 4.6. Let M be the Gram matrix of a spherical {−α, α}-code representing a set of n equiangular
lines, with first and second eigenvalues λ1 and λ2 respectively. If λ1 > 1−α2

2α2 , then

λ2 ≤ 1− α2

2

λ1

α2n+1−α2 − 1−α2

2α2λ1

1− 1−α2

2α2λ1

,

with equality whenever n =
(
d+1
2

)
.

Proof. Let v, u be unit eigenvectors corresponding to λ1 and λ2 respectively. Define f as in Theorem
4.1 and apply the theorem to the unit eigenvectors. Since v and u are eigenvectors corresponding to
two different eigenvalues of a symmetric matrix they are orthogonal. This means that both the inner
products ⟨v,Mu⟩ and ⟨Mv,Mu⟩ are equal to zero. Furthermore, note that ⟨v,Mv⟩ = vTλ1v = λ1 and
similarly ⟨u,Mu⟩ = λ2. Lastly, we have ⟨f(Mv), f(Mu)⟩ = ⟨f(λ1v), f(λ2u)⟩ = λ2

1λ
2
2

∑n
i=1 v

2
iu

2
i . So

by Theorem 4.1 we have
1− α2

2
λ1λ2 ≥ λ2

1λ
2
2

n∑
i=1

v2
iu

2
i .

Dividing by λ1λ2 and rearranging we find λ2 ≤ 1−α2

2λ1

(∑n
i=1 v

2
iu

2
i

)−1.
To find the desired inequality we thus have to lower bound the sum

∑n
i=1 v

2
iu

2
i in terms of α and

λ1. We will do this by lower bounding vi for all i ∈ [n]. Let x denote this lower bound, then we have∑n
i=1 v

2
iu

2
i ≥

∑n
i=1 xu

2
i = x

∑n
i=1 u

2
i = x, so a lower bound on vi implies a lower bound on the sum.

Applying Corollary 4.2 to v we find for any i ∈ [n]

1− α2

2α2
(λ1 − λ2

1v
2
i ) +

1

α2n+ 1− α2
λ4
1v

2
i ≥ λ2

1.

Dividing by λ1 and rearranging the terms yields

v2
i

(
λ2
1

α2n+ 1− α2
− 1− α2

2α2

)
≥ 1− 1− α2

2α2λ1
.

Since we assumed λ1 to be strictly larger than 1−α2

2α2 , the right hand side of this inequality is positive.
The left hand side must thus also be positive. In particular, since v2

i is positive, we must have that
λ2
1

α2n+1−α2 − 1−α2

2α2 is positive. We can thus divide by this term, giving us the required lower bound on v2
i .

With this lower bound on v2
i we conclude

λ2 ≤ 1− α2

2λ1

(
n∑

i=1

v2
iu

2
i

)−1

≤ 1− α2

2λ1

(
1− 1−α2

2α2λ1

λ2
1

α2n+1−α2 − 1−α2

2α2

)−1

=
1− α2

2

λ1

α2n+1−α2 − 1−α2

2α2λ1

1− 1−α2

2α2λ1

Remark 4.7. Notice that we can use Lemma 4.5 to simplify the bound on the second eigenvalue of the
Gram matrix. Combining this lemma with the fact that α2n+1−α2 = α(αn+1−α)+1−α > α(αn+1−α),
we see that

λ1

α2n+ 1− α2
≤ αn+ 1− α

α(αn+ 1− α)
=

1

α
.

With this, the upper bound of λ2 can be simplified to

λ2 <
1− α2

2
(
1− 1−α2

2α2λ1

) ( λ1

α2n+ 1− α2
− 1− α2

2α2λ1

)
<

1− α2

2
(
1− 1−α2

2α2λ1

) λ1

α2n+ 1− α2

<
1− α2

2
(
1− 1−α2

2α2λ1

) 1

α
=

1− α2

2α− 1−α2

αλ1

.
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With these two lemmas we will be able to prove Theorem 4.3. Recall that we want to show that
n ≤

√
d

2α3 + (1+α)d
2α for any set of n equiangular lines in Rd with common angle arccosα. If the spectral

radius λ1 of the Gram matrix M is large enough we will apply the above lemmas to the trace of M ,
which satisfies n = TrM =

∑n
i=1 λi. For small λ1, we find the required bound by bounding the trace of

the square of M using the spectral radius.

Proof of Theorem 4.3. Let L be a set of n equiangular lines in Rd with common angle arccosα, with
α ∈ (0, 1). Let C be a spherical {−α, α}-code representing L with corresponding Gram matrix M = MC .
Denote the nonzero eigenvalues of M as λ1, λ2, . . . , λd in non-increasing order. Since M has rank at
most d, its nullity is at least n− d by the rank-nullity theorem. This implies that the multiplicity of the
eigenvalue zero is at least n− d and that M has no more than d nonzero eigenvalues.

Define t = α2(1 + α)
√
d and note that

(1 + t)
√
d

2α3
=

√
d+ α2(1 + α)d

2α3
=

√
d

2α3
+

(1 + α)d

2α
.

Hence, in order to prove the theorem it suffices to show that n ≤ (1+t)
√
d

2α3 .
We will distinguish between two cases based on the value of the spectral radius of M , namely

λ1 ≤ 1+t
2α2 and λ1 > 1+t

2α2 . So first assume that λ1 ≤ 1+t
2α2 . We will show that n < λ1

α

√
d, since then

n <
λ1

α

√
d ≤

1+t
2α2

α

√
d =

(1 + t)
√
d

2α3
,

as required. The upper bound on n follows by bounding the trace of the squared Gram matrix. This
trace equals

Tr
(
M2
)
=

n∑
i,j=1

MijMij =

n∑
i=1

Mii +
∑
i ̸=j

M2
ij = nn+ n(n− 1)α2 = n(α2n+ 1− α2).

So, we find

α2n2 < n
(
α2n+ 1− α2

)
= Tr

(
M2
)
=

d∑
i=1

λ2
i ≤ λ2

1d.

Dividing by α2 and taking the square root yields the necessary inequality .
Now suppose that λ1 > 1+t

2α2 . We will prove the theorem by showing that the following inequalities
are valid:

n <
1 + α

2α− 1−α2

αλ1

(d− 1) + 1 (4.2)

<
(1 + α)(1 + t)

2αt
(d− 1) + 1 (4.3)

<
(1 + α)(1 + t)

2αt
d (4.4)

=
(1 + α)(1 + t)

2α · α(1 + α)
√
d
d =

1 + t

2α3

√
d.

First, let us prove inequality (4.2). For this we will use Lemmas 4.5 and 4.6. Note that this second
lemma may be applied since we have λ1 > 1+t

2α2 > 1−α2

2α2 . By Remark 4.7 the bound in Lemma 4.6 can be
simplified to

λ2 <
1− α2

2
(
1− 1−α2

2α2λ1

) 1

α
=

1− α2

2α− 1−α2

αλ1
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Combining this bound on λ2 with Lemma 4.5, we find

(1− α)(n− 1) = n− (αn+ 1− α) ≤ n− λ1

= TrM − λ1 =

d∑
i=1

λi − λ1

=

d∑
i=2

λi ≤ (d− 1)λ2

≤ (d− 1)
1− α2

2α− 1−α2

αλ1

.

Dividing by (1− α) and adding 1 shows us that inequality (4.2) holds.
To prove inequality (4.3) we need to show that 2α − 1−α2

αλ1
> 2α t

t+1 . Using the assumption that
λ1 > 1+t

2α2 , we find

2α− 1− α2

αλ1
> 2α− (1− α2)2α2

α(1 + t)
= 2α

(
1− 1− α2

2α2

)
> 2α

(
1− 1

2α2

)
= 2α

t

t+ 1
.

Hence, inequality (4.3) also holds.
It is now only left to show that inequality (4.4) is also true. We need to show that − (1+α)(1+t)

2αt +1 < 0

which after rearranging is equivalent to showing that (1 + α)(1 + t) > 2αt = 2α3(1 + α)
√
d. Notice that,

αk > αk+1 for any k ∈ N , since α < 1. Using this, we see that

(1 + α)(1 + t) = (1 + α)
(
1 + α2(1 + α)

√
d
)

= 1 + α+ α2(1 + α)
√
d+ α3(1 + α)

√
d

> α2(1 + α)
√
d+ α3(1 + α)

√
d

> 2α3(1 + α)
√
d.

This proves the last inequality and with this we have proven the theorem.

4.3 The associated graph
To be able to prove Theorem 4.4 we need some more tools. At the end of Section 3.3 we constructed a
graph from the Seidel matrix of set of equiangular lines. In this section we formerly introduce this graph
and redefine it in a slightly different way. We also introduce the concept of switching. A simple lemma
is proven which gives a foundation for the results in the following section in which switching will be used
to prove Theorem 4.4.

At the end of Section 3.3 we saw that we can view the Seidel matrix as a nonstandard adjacency
matrix of a graph. If we let C be the spherical {−α, α}-code corresponding to a set of equiangular lines,
the Seidel matrix is defined in terms of the Gram matrix M of C as S = 1

α (I −M). So we can also
define this graph based on the Gram matrix, or equivalently, based on the spherical code C.

Definition 4.8. Let C = Cα be a spherical {−α, α}-code. The associated graph GC of C is the graph
with vertex set C and an edge between any two vertices u,v ∈ C if ⟨u,v⟩ = −α.

Figure 4.1 shows the graph associated of a set of three equiangular lines in R2. The inner products
between the vectors in the figure are ⟨u,v⟩ = 1

2 , ⟨v,w⟩ = 1
2 and ⟨u,v⟩ = − 1

2 . This leads to a graph on
the three vertices u,v and w with one edge connecting u and w since only the inner product between
those two vectors is negative.

The Gram matrix M of the spherical code can be written in terms of the adjacency matrix A = AG

of the associated graph G = GC as follows:

M = (1− α)I + αJ − 2αA. (4.5)
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Figure 4.1: Associated graph

Indeed on the diagonal we find Mii = 1 − α + α = 1, for any two adjacent vertices i, j we have
Mij = α− 2α · 1 = −α and for any two non-adjacent vertices i, j we have Mij = α− 2α · 0 = α. So the
problem of finding a large set of equiangular lines in Rd becomes equivalent to finding a graph on as
many vertices as possible such that the matrix M is positive semidefinite and has rank d. Notice that
in this context the construction of Proposition 3.3 can be recreated by taking the empty graph on d
vertices. In the following example we reconstruct the 28 lines in R7 from Example 3.6 with a graph.
Example 4.9. In Section 3.2 we gave a construction of 28 equiangular lines in R7 with common angle
arccos

(
1
3

)
. A construction of these lines can also be given in terms of graphs. Let G = K(8, 2) be the

Kneser graph on 28 vertices with adjacency matrix A = AG. This is the graph on 28 vertices with as
vertex set all two-element subsets of {1, 2, . . . , 8} and an edge between any two vertices if the sets are
disjoint. The spectrum of G is σ(G) = {151, 120, (−5)7}. Now we show that the matrix

M =

(
1− 1

3

)
I +

1

3
J − 2 · 1

3
A

is a positive semidefinite matrix of rank 7. The all-ones vector 1 is an eigenvector of I, J and A, and
hence also of M . It has corresponding eigenvalue(

1− 1

3

)
+

28

3
− 2 · 15

3
= 0.

Since all other eigenvalues of J are zero, the other eigenvalues of M are 1− 1
3−

2·1
3 = 0 and 1− 1

3+
2·5
3 = 8

3 .
This shows that all eigenvalues of M are non-negative, hence M is positive semidefinite. Furthermore,
since the multiplicity of −5 as eigenvalue of A is 7, the multiplicity of 8

3 as eigenvalue of M is also 7.
The only other eigenvalue of M is zero, which thus has multiplicity 21. Hence, the nullity of M is also
21, implying that rkM = 7. This shows that M is the Gram matrix of a set of vectors in R7 with
common angle arccos

(
1
3

)
.

An important tool that can be used when working with the associated graph, is the concept of
switching, which was already introduced by van Lint and Seidel in [2]. Let C be a spherical {−α, α}-code
representing a set of equiangular lines L with common angle arccosα. Negating any vector v ∈ C does
not change the line it spans. So, if C′ is a spherical code obtained from C by negating some vectors, C′

also represents L. This action of negating a vector in C is known as switching. In the associated graph,
switching corresponds to inverting the adjacency of the vertex v since the inner product between v and
any other vector u ∈ C changes sign when v is negated. Figure 4.2 shows the associated graph of the
spherical code C = {u,v,w} representing three equiangular lines in R3 from Figure 3.1 and the graph
obtained from switching w, which is the associated graph of the code C′ = {u,v,−w}.

Using a switching argument we can show that a spherical code representing a set of equiangular lines
can always be chosen in such a way that the associated graph has an isolated vertex.

Lemma 4.10. Let L be a set of equiangular lines in Rd with common angle arccosα. A spherical
{−α, α}-code C representing L can be chosen such that the associated graph G has an isolated vertex.

Proof. Let C be a spherical {−α, α}-code representing L with associated graph G. Choose a vector
v ∈ C and negate all vectors u that in G are adjacent to v. The resulting code C′ still represents L and
in its associated graph v is an isolated vertex, since C′ contains no vector whose inner product with v is
negative.
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Figure 4.2: Switching

4.4 The maximum degree of the associated graph

We now continue onto the proof of Theorem 4.4, for which we will use the associated graph. This proof
will use two main ingredients. The first, is the fact that we can choose the spherical code representing a
set of equiangular lines in such a way that the associated graph has bounded maximum degree (Theorem
4.14). The second main tool is an upper bound on the number of lines that depends on the average
degree of the associated graph (Lemma 4.15).

The bound on the maximum degree we show in this section is not the first known bound of this
type. A bound on the maximum degree was already shown in [12]. The two results differ completely in
their approach. The result in [12] relies on Ramsey’s theorem and gives a bound of an order that is
exponential in 1/α. However, the bound from [13] that we discuss here, follows from Theorem 4.1 and
hence does not depend on Ramsey theory. The inequality from this theorem makes it possible to find a
bound of order O(1/α4).

We start this section by stating some lemmas necessary to prove the upper bound on the maximum
degree and then proving this bound. Then we give an upper bound on the number of equiangular lines
in terms of the average degree of the associated graph. Subsequently, we derive an inequality which will
help us to strengthen the bound on the maximum degree of the graph in order to prove Theorem 4.4.

First of all, we show a bound on the degree of the vertices of the graph G associated to a spherical
code that is chosen in such a way that G has an isolated vertex. This bound follows immediately from
Corollary 4.2 by taking v = e1.

Lemma 4.11. Let G be the associated graph of a spherical {−α, α}-code C representing a set of
equiangular lines, where C is chosen in such a way that G has an isolated vertex. Let v1 be this isolated
vertex. For all i ≥ 2, the degree d(vi) of the i-th vertex satisfies

(
n− 2d(vi) +

2

α
− 2

)2

≥
(
n+

1

α2
− 1

)(
n− 1

2

(
1

α4
− 4

α2
+ 3

))
,

with equality whenever n =
(
d+1
2

)
.

Proof. The inequality follows by applying Corollary 4.2 with v = e1 and i ≥ 2. This gives

1− α2

2α2

(
⟨e1,Me1⟩ − (Me1)

2
i

)
+

1

α2n+ 1− α2

(
M2e1

)2
i
≥
〈
e1,M

2e1
〉
. (4.6)

Multiplying the matrix M with the vector e1 gives the first column of M which has entry 1 in the first
position and α on all other positions, since v1 is an isolated vertex and thus its inner product with any
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other vector in C equals α. So we have Me1 = α1+ (1− α)e1, which we us to calculate

⟨e1,Me1⟩ = 1

(Me1)i = (α1+ (1− α)e1)i = α,(
M2e1

)
i
=
〈
M2e1, ei

〉
= ⟨Me1,Mei⟩ = α⟨1,Mei⟩+ (1− α)⟨e1,Mei⟩

= α⟨1,Mei⟩+ α(1− α),

⟨e1,M2e1⟩ = ∥Me1∥2 = ⟨α1, α1⟩+ 2⟨α1, (1− α)e1⟩+ ⟨(1− α)e1, (1− α)e1⟩
= α2n+ 1− α2.

So Equation 4.6 now reads

1− α2

2α2

(
1− α2

)
+

α2

α2n+ 1− α2
(⟨1,Mei⟩+ (1− α))

2 ≥ α2n+ 1− α2,

which after rearranging becomes

(⟨1,Mei⟩+ (1− α))
2 ≥ α2n+ 1− α2

α2

(
α2n+ 1− α2 −

(
1− α2

)2
2α2

)
. (4.7)

To further simplify the left hand side of this inequality we need to calculate ⟨1,Mei⟩. Similarly to the
case with e1, the multiplication of M with ei yields the i-th column of M . This vector has entry 1 on
the i-th position. Moreover, it has exactly d(vi) entries −α and all other n− 1− d(vi) entries are α.
Since ⟨1,Mei⟩ is the sum of all entries of Mei, we find

⟨1,Mei⟩ = 1− d(vi)α+ (n− 1− d(vi))α = 1− α+ α (n− 2d(vi)) .

Substituting this into Equation 4.7 gives

(2− 2α+ α (n− 2d(vi)))
2 ≥

(
n+

1

α2
− 1

)(
α2n+ 1− α2 −

(
1− α2

)2
2α2

)
.

Dividing both sides by α2 yields(
n− 2d(vi) +

2

α
− 2

)2

≥
(
n+

1

α2
− 1

)(
α2n+ 1− α2 −

(
1− α2

)2
2α2

)
1

α2

=

(
n+

1

α2
− 1

)(
n− 1

2

(
1

α4
− 4

α2
+ 3

))
as desired.

We will now use this inequality to show that we can partition the associated graph with an isolated
vertex into vertices of high and low degree for large enough n, so that it is possible to take the square of
both sides of the inequality of the previous lemma.

Lemma 4.12. Let C be a spherical code representing a set of equiangular lines with common angle
arccosα such that the associated graph G has an isolated vertex. Suppose that n > 1

2

(
1
α4 − 4

α2 + 3
)

and
define the sets H = {v ∈ C : d(v) > n

2 + 1
α − 1} and L = C \H. Then for all v ∈ H we have

d(v) > n− 1

4

(
1

α4
− 4

α2
+ 3

)
+

1

α
− 1,

and for all u ∈ L we have

d(u) <
1

4α4
−
(
1

α
− 1

2

)2

.
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Figure 4.3: Plot of − 1
2

(
1
α4 − 4

α2 + 3
)

and 1
α2 − 1.

Proof. Since n > 1
2

(
1
α4 − 4

α2 + 3
)

we can take the square root on both sides of the inequality of Lemma
4.11 so that we have∣∣∣∣n− 2d(v) +

2

α
− 2

∣∣∣∣ ≥
√(

n+
1

α2
− 1

)(
n− 1

2

(
1

α4
− 4

α2
+ 3

))
> n− 1

2

(
1

α4
− 4

α2
+ 3

)
, (4.8)

where the last inequality follows since 1
α2 − 1 > − 1

2

(
1
α4 − 4

α2 + 3
)

for α ∈ (0, 1), see Figure 4.3.
First let v ∈ H. Then n− 2d(u) + 2

α − 2 < 0, so the absolute value equals
∣∣n− 2d(v) + 2

α − 2
∣∣ =

−
(
n− 2d(u) + 2

α − 2
)

and Equation 4.8 becomes

−
(
n− 2d(u) +

2

α
− 2

)
> n− 1

2

(
1

α4
− 4

α2
+ 3

)
.

which gives the desired result after some rearranging.
Now let u ∈ L. In this case n− 2d(u) + 2

α − 2 > 0 and so Equation 4.8 gives

d(u) <
1

4

(
1

α4
− 4

α2
+ 3

)
+

1

α
− 1

=
1

4α4
−
(
1

α
− 1

2

)2

,

as required.

We now show that the set H of high degree vertices has a maximum number of elements. This
observation will be a key ingredient in finding a spherical code whose associated graph has bounded
degree. It ensures that after switching all vertices in H, the degrees of the vertices outside of H can
only increase by a bounded number of elements.

Lemma 4.13. Let C be a spherical code representing a set of equiangular lines with common angle
arccosα such that the associated graph G has an isolated vertex. Suppose that n > 1

α4 and let H = {v ∈
C : d(v) > n

2 + 1
α − 1} as in the previous lemma. Then

|H| ≤ 1

4α4 − 3
n

<
1

α4
.
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Proof. To prove the bound we will first give an upper and lower bound on the number |E(H,L)| of
edges between H and L in terms of |H|, n and α. Then we combine this with a bound on |H| in terms
of n only. The upper bound will follow by combining the two resulting inequalities.

First of all, let us count |E(H,L)| in two different ways to find an upper and lower bound on the
number. For the upper bound on |E(H,L)| observe that the number of edges with one vertex in L can
not exceed the sum of the degrees of the vertices in L. The degree of any vertex in L is at most 1

4α4 by
the previous lemma. This gives

|E(H,L)| ≤
∑

v ∈ Ld(v) ≤ (n− |H|) 1

4α4
.

The sum of all degrees of the vertices in H counts all the edges E(H) with two vertices in H twice.
Subtracting all these edges from the sum leaves us with all edges with only one vertex in E(H,L). Recall
from the previous lemma that the degree of all vertices in v in H satisfy d(v) ≥ n− 1

4α4 +
1
α −1 ≥ n− 1

4α4 .
Furthermore, observe that |E(H)| can be at most

(|H|
2

)
which is no larger than |H|2. So, as a lower

bound on |E(H,L)|, we find

|E(H,L)| =
∑

v ∈ Hd(v)− 2|E(H)| ≥ |H|
(
n− 1

4α4

)
− |H|2.

Combining the upper and lower bound on |E(H,L)| that we found above, gives

|H|
(
n− 1

4α2

)
− |H|2 ≤ (n− |H|) 1

4α4
,

which can be simplified to

|H|
(
1− |H|

n

)
≤ 1

4α4
. (4.9)

We now show an upper bound on |H| in terms of n by using the Gram matrix M of the code C.
Recall from the proof of Lemma 4.11 that for any i ∈ [n], ⟨1,Mei⟩ = 1− α+ α (n− 2d(vi)), where vi

is the i-th vertex of G. Moreover, by our assumption on n, for any vertex v ∈ H, its degree satisfies
d(v) ≥ n − 1

4α4 + 1
α − 1 ≥ 3

4n + 1
α − 1 Using these two properties and the fact that M is positive

semidefinite we find

0 ≤ 1TM1 =

n∑
i=1

⟨1,Mei⟩ = n(αn+ 1− α)− 2α
∑
v∈L

d(v)− 2α
∑
v∈H

d(v)

≤ n(αn+ 1− α)− 2|H|
(
3

4
αn+ 1− α

)
,

which yields

|H| ≤ n(αn+ 1− α)
3
2αn+ 2(1− α)

≤ 2

3
n. (4.10)

From this last inequality it follows that |H|
(
1− |H|

n

)
≥ |H|

3 . Using Equation 4.9 we now find

|H| ≤ 3

4α4
.

We use this improved bound on |H| in Equation 4.9 to obtain

|H|
(
1− 3

4α4n

)
≤ |H|

(
1− |H|

n

)
≤ 1

4α4
,

which can be rewritten as
|H| ≤ 1

4α4
(
1− 3

4α4n

) =
1

4α4 − 3
n

.

Lastly, since we assumed that n > 1
α4 , we have 1

4α4− 3
n

< 1
α4 as required.



38 Chapter 4. Linear upper bound for all dimensions

Using the above lemmas we can now show that the spherical code C representing a set of equiangular
lines can be chosen such that the associated degree has bounded maximum degree. In order to prove
this a switching argument will be used. At first the code representing L will be chosen such that its
associated graph has an isolated vertex. We then partition the vertices of the graph into high and low
degree vertices. A new graph is created by negating all vectors in the set of high degree vertices. By
this action all the vertices that had a high degree will now have a bounded degree. Furthermore, since
the number of high degree vertices was bounded, the degree of all vertices with low degree can only
increase by a bounded number.

Theorem 4.14. Let L be a set of n equiangular lines in Rd with common angle arccosα. If n ≥ 1/α4,
then there exists a spherical {−α, α}-code C representing L such that the associated graph GC has
maximum degree

∆(GC) ≤
1

4α4
+

1

4α4 − 3
n

<
1

4α4
+

1

α4
.

Note that the maximum degree of a graph is never more than its number of vertices. So, if n < 1/α4,
then the maximum degree of the graph is also bounded since it can not be larger than n itself. This
means that in this case we also have ∆(GC) ≤ 1

α4 ≤ 1
4α4 + 1

α4 .

Proof. By Lemma 4.10 there is a spherical {−α, α}-code C representing L such that its associated graph
G has an isolated vertex. So let C be such a code and define the sets H = {v ∈ C : d(v) > n

2 + 1
α − 1}

and L = C \H of respectively high and low degree vertices as in Lemma 4.12. From the previous lemma
we know that the set H has at most 1/

(
4α4 − 3

n

)
elements.

Construct the spherical {−α, α}-code C′ = {−v : v ∈ H} by negating all vectors in the set H. This
code also represents the set L. Denote the associated graph of C′ as G′. This switching action does
not change the adjacency between any two vertices v and u in the set L. The edges inside H are also
not affected by this switching, since for any two vertices v and u we have ⟨−v,−u⟩ = ⟨v,u⟩. Between
the sets H and L the switching argument inverts the edges. So, the graph G′ is obtained from G by
inverting the adjacency between any vector v ∈ H and u ∈ L.

We now show that the graph G′ has maximum degree at most 1
4α4 + 1

4α4− 3
n

as required. We do this
by first showing this upper bound holds for all vertices in L and then showing it holds for all vertices in
H.

So, let v be any vector in L. The degree of v in G′ can increase by at most |H| with respect to its
degree in the original graph G. Using Lemmas 4.12 and 4.13 it immediately follows that

dG′(v) ≤ dG(v) + |H| ≤ 1

4α4
+

1

4α4 − 3
n

.

Now we turn to the degree of the vertices in the set H. Let v be an arbitrarily chosen vector in
H. For all vectors u ∈ H which are adjacent to v in G, the vector −u is adjacent to −v in the graph
G′. This gives |H ∩NG(v)| neighbours. All other neighbours of −v must be vectors in L. All vectors
u ∈ L which in G were not neighbours of v are neighbours of −v in the new graph G′. These are exactly
|L \NG(v)| neighbours. It follows that the degree of −v in G′ is

dG′(−v) = |H ∩NG(v)|+ |L \NG(v)|.

The set H ∩NG(v) is a subset of H and hence |H ∩NG(v)| ≤ |H| ≤ 1/
(
4α4 − 3

n

)
. By Lemma 4.12,

|NG(v)| = dG(v) > n− 1
4α4 . Combining this with |L| < n, gives |L \NG(v)| ≤ 1/(4α4). So, we conclude

dG′(−v) ≤ 1

4α4
+

1

4α4 − 3
n

.

We have now shown that the degree of any vertex in G′ is at most 1
4α4 + 1

4α4− 3
n

and hence, this holds
in particular for its maximum degree ∆(G′).

As in the previous lemma, since n ≥ 1
α4 , we have 1

4α4− 3
n

≤ 1
α4 and thus it follows that

∆(G′) ≤ 1

4α4
+

1

4α4 − 3
n

≤ 1

4α4
+

1

α4
.
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The upper bound on the maximum degree of the graph will be the main tool in proving Theorem 4.4
together with the following lemma. This lemma bounds the maximum number of lines using the average
degree of the associated graph. Since the average degree is no larger than the maximum degree, we can
use the above bound together with this lemma to bound the number of lines. The proof of this lemma is
completely based on Lemma 2.4.

Lemma 4.15. Let C be a spherical {−α, α}-code representing a set of n equiangular lines with common
angle arccosα. Let G be the associated graph of C with average degree D = D(G). Then

n ≤

(
1 +

(
2α

1− α

)2

D

)
(d+ 1).

Proof. Let M be the Gram matrix of the code C and let A = AG be the adjacency matrix of the graph
G. Recall from Equation 4.5 that we can write M as M = (1 − α)I + αJ − 2αA. Define the matrix
B = M − αJ = (1− α)I − 2αA. We will use the inequality Tr(B)2 ≤ Tr

(
B2
)
rk(B) from Lemma 2.4 to

prove the required inequality.
The rank of the matrix B is upper bounded by rkM + rk(−αJ) ≤ d+ 1, by the subadditivity of the

rank. For the trace of B we have Tr(B) = (1−α) Tr(I)− 2αTr(A) = (1−α)n. Note that for any i ∈ [n]
there exactly d(vi) entries j ∈ [n] such that Bij = −2α. Hence, the trace of the square of B equals

Tr
(
B2
)
=

n∑
i,j=1

B2
ij = (1− α)2n+ 4α2

n∑
i=1

d(vi) =
(
(1− α)2 + 4α2D

)
n.

Using Lemma 2.4 we now find

(1− α)2n2 ≤
(
(1− α)2 + 4α2D

)
n(d+ 1).

Dividing by (1− α)2n yields

n ≤

(
1 +

(
2α

1− α

)2

D

)
(d+ 1),

as required.

All we need now to upper bound the number of equiangular lines n with a fixed common angle of
arccosα is an upper bound on the average degree D of the associated graph G. Note that Theorem
4.14 already gives us an upper bound on the average degree for any n ≥ 1/α4, since D ≤ ∆(G). So,
combining the bound from Theorem 4.14 and the above lemma already shows that

n ≤
(
1 +

5

α2(1− α)2

)
(d+ 1).

This upper bound is not yet strong enough to prove Theorem 4.4. In order to prove this theorem we
will need even sharper bounds on the maximum degree ∆. To achieve these bounds we will derive an
inequality using the maximum Rayleigh quotient of the adjacency matrix A of the associated graph G
over all vectors orthogonal to 1, which we denote by

ρ(G) := max
v∈Rn\{0}

v⊥1

R(A,v) = max
v∈Rn\{0}

v⊥1

vTAv

vTv
.

We will show an upper and lower bound on ρ(G). Together, these two will give us an inequality which
will help us find tighter upper bounds on ∆.

Lemma 4.16. Let C be a spherical {−α, α}-code in Rd corresponding to a set of n equiangular lines
with common angle arccosα, with associated graph G = GC. Then

ρ(G) ≤ 1− α

2α
,

with equality whenever n ≥ d+ 2.
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Proof. Let M = MC be the Gram matrix of C and A = AG the adjacency matrix of the graph G. Recall
from Equation 4.5 that M = (1− α)I + αJ − 2αA. Let v be any nonzero vector in Rn such that v ⊥ 1.
Then Jv = 0 and so, since M is positive semidefinite, we find

0 ≤ vTMv = vT ((1− α)I + αJ − 2αA)v = (1− α)vTv − 2αvTAv.

Rearranging this inequality yields
vTAv

vTv
≤ 1− α

2α
.

Since we chose v arbitrarily, it follows that ρ(G) ≤ 1−α
2α .

Now suppose that n ≥ d + 2. The rank of M is at most d and hence dimKerM ≥ 2, by the
rank-nullity theorem. Then KerM intersects the subspace U of all vectors orthogonal to 1. To see this
note that dim(U) = n− 1 and n ≥ dim(U) + dimKerM − dim(U ∩KerM) = n+ 1− dim(U ∩KerM),
which implies that dim(U ∩ KerM) ≥ 1 and hence the intersection of U and KerM is nonempty. It
follows that KerM contains a nonzero vector v that is orthogonal to 1. So, we have

0 = vTMv = (1− α)vTv − 2αvTAv,

which implies vTAv
vTv

= 1−α
2α . Since ρ(G) is the maximum of R(A,u) over all u orthogonal to 1, it follows

that ρ(G) ≥ R(A,v). Hence, we must have equality.

The upper bound on ρ(G) only depends on the angle arccosα between the lines. We now continue
to show a lower bound on ρ(G) which depends on its average and maximum degree and a subgraph of
G. We first prove the general inequality for any subgraph of G. By then choosing a specific subgraph,
the inequality will be simplified into an easier applicable form.

Lemma 4.17. Let G be a graph on n vertices with maximum degree ∆ = ∆(G) and average degree
D = D(G). For any subgraph H of G we have

ρ(G) ≥ λ1(H)− 2∆−D

n
|H|.

Proof. Let A = AG be the adjacency matrix of the graph G with vertex set V = {v1, . . . , vn} and let H
be any subgraph of G with spectral radius λ1(H). Let v ∈ R|H| be a unit eigenvector corresponding to
λ1(H). Since the adjacency matrix AH of the subgraph H is non-negative, the vector v can be chosen
such that all its entries are non-negative. Extend v to a vector in Rn by adding zeroes to it such that
vTAv = vTλ1(H)v = λ1(H). Now define

u = v − ⟨v,1⟩
n

1,

the projection of v onto the orthogonal complement of 1. Then, since ρ(G) is the maximum of the
Rayleigh quotient of A over all vectors orthogonal to one, we have ρ(G) ≥ R(A,v). In order to prove
the lemma it thus suffices to show that

R(A,u) =
uTAu

uTu
≥ λ1(H)− 2∆−D

n
|H|.

First, note that uTu = ∥v∥2 − ⟨v,1⟩
n ≤ 1 and hence

R(A,u) ≥ uTAu.

We thus want to lower bound uTAu and so we compute

uTAu = vTAv − 2
⟨v,1⟩
n

1TAv +
⟨v,1⟩2

n2
1TA1

= λ1(H)− 2
⟨v,1⟩
n

n∑
i=1

vid(vi) +
⟨v,1⟩2

n2

n∑
i=1

d(vi)

≥ λ1(H)2
⟨v,1⟩
n

n∑
i=1

vi +
⟨v,1⟩2

n2
D

= λ1(H)− (2∆−D)
⟨v,1⟩2

n
.
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The vector v has at most |H| nonzero entries. If we let 1H denote the vector with entries one for all
elements in H and zero otherwise, we find ⟨v,1⟩ = ⟨v,1H⟩ ≤ ∥v∥∥1H∥ =

√
|H|. So, we conclude

ρ(G) ≥ R(A,u) ≥ uTAu ≥ λ1(H)− (2∆−D)
⟨v,1⟩2

n

≥ λ1(H)− 2∆−D

n
|H|.

By taking H in the above lemma to be the star graph K1,t for any t ≤ ∆, we can simplify this lower
bound.

Corollary 4.18. Let G be a graph on n vertices with maximum degree ∆ = ∆(G). For all t ∈ N such
that t ≤ ∆, we have

ρ(G) ≥
√
t− 2∆(t+ 1)

n
.

Proof. Since t is no larger than ∆ we can always find a copy of the star graph K1,t as subgraph of G.
Indeed, taking any vertex v in G of degree ∆ together with t of its neighbours yields such a subgraph.
In Example 2.16 we saw that the spectral radius of K1,t is

√
t. It now immediately follows from the

previous lemma that

ρ(G) ≥ λ1(K1,t)−
2∆

n
|K1,t| =

√
t− 2∆(t+ 1)

n
.

Remark 4.19. Notice that we can now combine the upper and lower bound on ρ(G) to conclude that for
any spherical {−α, α}-code C in Rd with n elements and associated graph G with maximum degree ∆,
we have

1− α

2α
≥

√
t− 2∆(t+ 1)

n
. (4.11)

With this inequality we will be able to tighten the bound on ∆ and prove Theorem 4.4. Recall that
in order to prove this theorem we want to show that for a set of n equiangular lines in Rd with common
angle arccosα,

n ≤ max

(
2

α5
+

2

α3(1− α)
,

(
2 +

8α2

(1− α)2

)
(d+ 1)

)
.

In the proof we first use inequality (4.11) to show that n > 2
α5 + 2

α3(1−α) implies that n > 4∆3/2. This
lower bound n will make it possible to use the inequality to give a tighter bound on ∆, which, together
with Lemma 4.15, will lead to the desired result.

Proof of Theorem 4.4. Let L be a set of n equiangular lines in Rd with common angle arccosα. By
Theorem 4.14, there exists a spherical {−α, α}-code C representing L such that its associated graph G
has maximum degree

∆ = ∆(G) ≤ 1

4α4
+

1

4α4 − 3
n

.

If n ≤ 2
α5 + 2

α3(1−α) , then we are done. Hence, we assume n > 2
α5 + 2

α3(1−α) > 2
α5 . Note that in this

case, we have

∆ ≤ 1

4α4
+

1

4α4 − 3
n

<
1

4α4
+

1

4α4
(
1− 3

8α
) =

1

2α4
+

3
8α

4α4
(
1− 3

8α
)

=
1

2α4
+

3

32α3 − 12α4
<

1

2α4
+

3

20α3
. (4.12)

We will first show that we must have n > 4∆3/2. Then we will use this in inequality (4.11) from Remark
4.19 to tighten the bound on ∆.

We show that n must be bigger than 4∆3/2 by contradiction. So, suppose that n ≤ 4∆3/2. We will
derive the inequality

n ≤ 4∆

(
1

α
− 1 +

2α

1− α

)
, (4.13)
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which together with the bound on ∆ from above will lead to a contradiction. Observe that if n ≤
4∆
(
1
α − 1

)
, then we are done. So, assume that n > 4∆

(
1
α − 1

)
. Define t =

⌈
n2

16∆2

⌉
and note that t ≤ ∆.

Using this t in inequality (4.11) yields

1− α

2α
≥

√
t− 2∆(t+ 1)

n
≥ n

4∆
−

2∆
(

n2

16∆2 + 2
)

n
≥ n

4∆
− n

8∆
− 4∆

n
>

n

8∆
− α

1− α
,

which can be rearranged to inequality (4.13). Now if we use the bound on ∆ from Equation 4.12 in
(4.13), we find

n ≤ 4

(
1

2α4
+

3

20α3

)(
1

α
− 1 +

2α

1− α

)
≤ 2

α5
+

(
1

2α4
+

3

20α3

)
2α

1− α

=
2

α5
+

1 + 3
10α

(1− α)α3
<

2

α5
+

2

(1− α)α3
.

This contradicts our assumption n > 2
α5 + 2

(1−α)α3 and thus it follows that n must be larger than 4∆3/2.
We have now shown that n > 4∆3/2 indeed holds and using this in the inequality from Remark 4.19

with t = ∆, we find

1− α

2α
≥

√
∆− 2∆(∆ + 1)

n
≥

√
∆− 2∆2 + 2∆

4∆3/2
=

1

2

√
∆− 1√

∆
≥ 1

2

(√
∆− 1

)
.

In the last inequality above we use ∆ ≥ 1. If this would not be the case, G would be the empty graph,
which by Proposition 3.3 corresponds to a set of d equiangular lines in Rd and thus trivially satisfies the
required result. By rearranging the above inequality it follows that ∆ ≤ 1/α2.

With this new upper bound on ∆ we will again apply inequality (4.11)with t = ∆, now using our
assumption n > 2

α5 + 2
α3(1−α) > n > 2

α5 + 2
α3 as lower bound on n. This gives

1− α

2α
≥

√
∆− 2∆(∆ + 1)

n
≥

√
∆−

2
α4 + 2

α2

2
α5 + 2

α3

=
√
∆− α,

which implies ∆ ≤
(
1−α
2α − α

)2. Finally, using this upper bound on ∆ and the fact that D(G) ≤ ∆ we
use Lemma 4.15 to conclude

n ≤

(
1 +

(
2α

1− α

)2

D

)
(d+ 1) ≤

(
1 +

(
2α

1− α

)2(
1− α

2α
− α

)2
)
(d+ 1)

=

(
1 +

(
1 +

2α2

1− α

)2
)
(d+ 1)

≤
(
2 +

8α2

(1− α)2

)
(d+ 1).
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Tight bound for high dimensions

As seen in the previous chapter, the number of equiangular lines in Rd with a fixed angle arccosα grows
linearly in the dimension. Due to Theorem 3.4, from early on in the study of equiangular lines there
has been a special interest in the case where 1/α is an odd integer. For α = 1/3 the maximum number
of lines N1/3(d) was already completely determined by Lemmens and Seidel in [4], who proved that
N 1

3
(d) = 2d− 2 for all d ≥ 15. They also conjectured that N1/5(d) =

⌊
3
2 (d− 1)

⌋
for d ≥ 185, which was

first shown to be true for large enough d by Neumaier in [8] and was completely solved only many years
later in [26].

It was shown by Balla, Dräxler, Keevash and Sudakov in [10] that Nα(d) reaches its maximum at
α = 1/3 and that it can be at most 1.93d for all other values of α. Building onto the ideas from this paper,
Jiang and Polyanskii further improved these results in [11]. They showed that N1/3(d) = 2d+O(1),
N1/5(d) =

3
2d+O(1) as was already known and the new result N1/(1+2

√
2) =

3
2d+O(1). For all other

values of α they tightened the bound from [10], showing that Nα(d) ≤ 1.49d+O(1).
For all further values of α for which 1/α is an odd integer not much was known. The results for

α = 1/3, 1/5 suggest a certain pattern which led to the conjecture N 1
2k−1

= kd/(k − 1) + O(1), for
all integer k ≥ 2 and d → ∞, stated both by Bukh in [9] and Balla, Dräxler, Keevash and Sudakov
in [10]. The results from Jiang and Polyanskii also give further evidence supporting the conjecture.
The conjecture is completely solved in [12], as is the problem of determining the maximum number of
equiangular lines with a fixed angle in high dimensions. In this chapter we will discuss this result.

First we need to introduce the notion of the spectral radius order, which was first used in the study
on equiangular lines by Jiang and Polyanskii [11].

Definition 5.1. The spectral radius order, k(λ), of a real number λ > 0 is the smallest integer k such
that there exists a k-vertex graph with spectral radius λ. If no such graph exists, k(λ) = ∞.

Example 5.2. Consider the two connected graphs on three vertices, the star graph K1,2 and the complete
graph K3, shown in Figure 5.1. These two graphs have spectral radius

√
2 and 2 respectively. There are

Figure 5.1: The connected graphs on three vertices

no smaller graphs with these values as spectral radius and so we have k
(√

2
)
= k(2) = 3.

Remark 5.3. The example shows that the spectral radius order of the integer 2 is k(2) = 3, which is
satisfied by the complete graph. In general, for any integer n the smallest graph with spectral radius n
is the complete graph on n+ 1 vertices and so for λ = n the spectral radius order satisfies k(λ) = n+ 1.

43
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If the spectral radius order k(λ) of any real number λ exists, then λ is an eigenvalue of a symmetric
matrix. It thus follows from Lemma 2.7 that λ must be a totally real algebraic integer. Furthermore,
since λ is the largest eigenvalue of a non-negative matrix, all its conjugates must in absolute value be
smaller or equal to λ itself. This means that the spectral radius order can not exist for any number
that is not a totally real algebraic integer or for any totally real algebraic integer that is not largest
amongst its conjugates. As an example of this last case, let λ = 2

√
3 − 1. The minimal polynomial

of λ is x2 + 2x− 11, which also has −2
√
3− 1 as a root. This root is larger in absolute value than λ

and hence k(λ) = ∞. Note that the condition of λ being a totally real algebraic integer that is largest
amongst its conjugates is only necessary and not sufficient. This means that such numbers can exist
which do not have a spectral radius order.

The theorem that solves the problem of finding Nα(d) for high enough dimensions uses the spectral
radius order of (1− α)/2α.

Theorem 5.4 (Jiang, Tidor, Yao, Zhang and Zhao [12]). Fix α ∈ (0, 1). Let λ = 1−α
2α and k = k(λ) be

its spectral radius order. The maximum number Nα(d) of equiangular lines in Rd with common angle
arccosα satisfies

(a) Nα(d) =
⌊
k(d−1)
k−1

⌋
for all sufficiently large d > d0(α) if k < ∞,

(b) Nα(d) = d+ o(d) as d → ∞ if k = ∞.

As seen in Remark 5.3, the spectral radius order of any integer n is k(n) = n + 1. So, if we take
α = 1/(2k− 1) for any integer k ≥ 2, we have λ = k− 1 and hence k(λ) = k. This leads to the following
corollary of the theorem, which extends the known results of α = 1/3 and α = 1/5 to any odd integer
1/α.

Corollary 5.5. For every fixed integer k ≥ 2 and all sufficiently large d > d0(k),

N1/(2k−1)(d) =

⌊
k(d− 1)

k − 1

⌋
.

To prove the theorem we will rewrite the problem of finding the maximum number of equiangular
lines in Rd with common angle arccosα in a slightly different way. Let L be a set of n equiangular lines
with common angle arccosα and let C be an {−α, α}-code representing L with Gram matrix M = MC .
Recall from Section 4.3 that we can associate a graph G = GC to the spherical code C with vertex set C
and an edge between two vertices u,v ∈ C if ⟨u,v⟩ = −α. By Equation 4.5 the Gram matrix can be
written as M = (1− α)I + α(J − 2AG), where AG is the adjacency matrix of G. Furthermore, M is a
positive semidefinite matrix with rank at most d. Now let λ be as in the theorem. Then dividing the
Gram matrix by 2α we find the matrix

N =
1

2α
M = λI −AG +

1

2
J, (5.1)

which is also positive semidefinite with rank at most d.
Conversely, if there is an n-vertex graph G such that the matrix N is positive semidefinite of rank

at most d, then we can find vectors v1, . . . ,vn in Rd such that (2αN)ij = Mij = ⟨vi,vj⟩, where again
we let λ = 1−α

2α . These vectors then correspond to a configuration of equiangular lines with common
angle arccosα. From this we conclude that there is set of n equiangular lines in Rd with common angle
arccosα if and only if there exists an n-vertex graph G such that the matrix N is positive semidefinite
of rank at most d.

5.1 Lower bounds
In this section we establish the lower bounds of Theorem 5.4. In particular, we will show that

(a) Nα(d) ≥
⌊
k(d−1)
k−1

⌋
if k < ∞, and

(b) Nα(d) ≥ d if k = ∞,
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where α ∈ (0, 1), λ = (1 − α)/2α and k = k(λ) is the spectral radius order of λ. The lower bounds
actually hold for all dimensions d as we will see.

Notice that we have already seen in Proposition 3.3 that Nα(d) ≥ d. This in particular also holds
when the spectral radius order of λ equals k(λ) = ∞, so this proves the lower bound of part (b) of
Theorem 5.4.

For k(λ) < ∞, the following proposition gives a construction of a set of
⌊
k(d−1)
k−1

⌋
equiangular lines.

This lower bound has also been shown using a different approach by Jiang and Polyanskii in [11]. They
relate a spherical {−α, α}-code to a {−1/λ, 0}-code and then construct the required {−1/λ, 0}-code. In
the proof we give here, a graph is constructed on the required amount of vertices such that the matrix
N from Equation 5.1 is positive semidefinite of rank at most d.

Proposition 5.6. Let α ∈ (0, 1), λ = 1−α
2α and d be a positive integer. If the spectral radius order

k = k(λ) of λ satisfies k < ∞, then Nα(d) ≥
⌊
k(d−1)
k−1

⌋
.

Proof. To prove the lower bound we will construct a graph on
⌊
k(d−1)
k−1

⌋
vertices such that the matrix N

is positive semidefinite of rank at most d.
Suppose k = k(λ) < ∞. Let H be a k-vertex graph with spectral radius λ1(H) = λ. Construct the

graph G by taking the disjoint union of
⌊
d−1
k−1

⌋
copies of H and adding (d− 1)− (k − 1)

⌊
d−1
k−1

⌋
isolated

vertices. The graph G then has exactly
⌊
k(d−1)
k−1

⌋
vertices.

The spectrum of G is the union of the spectrum of its components (see Lemma 2.18). The addition
of isolated vertices only adds zeroes to the spectrum. So, the spectral radius of G is λ1(G) = λ with
multiplicity

⌊
d−1
k−1

⌋
. The matrix λI−AG thus has eigenvalue 0 with the same multiplicity. Since, λI−AG

is symmetric this means that dimKer(λI −AG) =
⌊
d−1
k−1

⌋
. By the rank-nullity theorem we then find

rk(λI −AG) =

⌊
k(d− 1)

k − 1

⌋
−
⌊
d− 1

k − 1

⌋
= d− 1.

Since J has rank 1 it follows by the subadditivity of the rank that

rkN = rk(λI −AG +
1

2
J) ≤ d− 1 + 1 = d.

Furthermore, all other eigenvalues of G are smaller than λ and so we have λ − λj(G) ≥ 0 for all
j > 1. This implies that all eigenvalues λI −AG are non-negative, so λI −AG is positive semidefinite.
The matrix J is also positive semidefinite and so we conclude that N is positive semidefinite.

We have thus found a matrix G on
⌊
k(d−1)
k−1

⌋
such that N is positive semidefinite and has rank at

most d, proving the proposition.

5.2 Upper bounds
Proving the upper bound of Theorem 5.4 requires more work than the proofs of the lower bounds.
We start with a proposition that proves the upper bound when λ = (1− α)/2α, where arccosα is the
common angle of set of equiangular lines, is not a totally real algebraic integer.

Proposition 5.7 ([11]). Let λ = 1−α
2α , where α ∈ (0, 1). If λ is not a totally real algebraic integer, then

Nα(d) ≤ d+ 1.

Proof. Let C be a {−α, α}-code in Rd with Gram matrix M = MC and associated graph G = GC
with adjacency matrix A = AG. The Gram matrix can be rewritten from Equation 4.5 as M =
(1 − α)

(
I − 1

λA
)
+ αJ and has rank at most d. Since λ is not a totally real algebraic integer, it can

not be an eigenvalue of A by Lemma 2.7. This implies that the matrix I − 1
λA does not have 0 as an

eigenvalue and is thus a full rank matrix. So we find

d ≥ rk(M) ≥ rk

(
I − 1

λ
A

)
− rk(J) = |C| − 1,

which gives Nα(d) ≤ d+ 1 as desired.
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Remark 5.8. Note that the proof of the proposition actually shows that if λ is not an eigenvalue of the
associated graph, then Nα(d) ≤ d+ 1.

By Lemma 2.7 we know that if λ is not a totally real algebraic integer, then it can not be the
eigenvalue of a graph. So, in this case the spectral radius order satisfies k(λ) = ∞. Hence, the above
proposition already proves the upper bound in part (b) of Theorem 5.4 for specific values of α. Note that
the spectral radius order can also be infinite for certain numbers that are totally real algebraic integers.
This case is not covered by the proposition, thus it does not yet prove part (b) of the theorem entirely.

To prove Theorem 5.4 we will use the bound on the second eigenvalue of a bounded degree graph
from Theorem 2.20. In order to be able to apply this theorem we need the associated graph G to have a
bounded maximum degree. In the previous chapter we have seen that a spherical code C representing
a set of equiangular lines can be chosen such that the associated graph has maximum degree at most
1

4α4 + 1
α4 . The original proof of Theorem 5.4 uses an upper bound of much larger order which is deduced

using an argument based on Ramsey’s theorem. We give a quick sketch of this proof here and refer to
Appendix B for the full proof.

Let G be the associated graph of a spherical {−α, α}-code with n elements. Using Ramsey’s theorem
a large independent set I can be found in G if n is large enough. Next, a switching operation can be
applied to make sure that no vertex is adjacent to more than half of the vertices in this independent
set. We can then analyse how the vertices outside of the independent set attach to I. First of all, one
can show that for a subset X of I, the set of all neighbours of X has a bounded amount of vertices
depending only on α. This implies that the set of all neighbours of the I is bounded and thus the degree
of any vertex in I is also bounded . Furthermore, it can be shown that the set of all non-neighbours
of I has bounded degree. Combining this with the bound on the number of elements in the set of all
neighbours of I, gives an upper bound on the degree of any vertex not in I. Hence it follows that the
degree of any vertex in the graph is upper bounded.

Before turning to the complete proof of Theorem 5.4 we discuss one last lemma to make the proof
easier to read.

Lemma 5.9. Fix α ∈ (0, 1) and let λ = 1−α
2α Let G be the associated graph of a spherical {−α, α}-

code with spectral radius λ1(G) > λ. Denote the connected components of G by C1, . . . , Ct such that
λ1(G) = λ1(C1). Then for all i > 1, λ1(Ci) < λ.

Proof. Take i > 1 arbitrarily. By definition both C1 and Ci are connected. By Perron-Frobenius, both
graphs have an eigenvector corresponding to the spectral radius with non-negative entries. Let u′

denote the eigenvector corresponding to λ1(C1) with non-negative entries and let v′ be the eigenvector
corresponding to λ1(Ci) with non-negative entries. Now let u be the vector that is zero on all vertices
not in C1 and u′ on the vertices of C1. Similarly, let v be the vector that is zero on all vertices not in
Ci and v′ on the vertices of Ci. Then 1Tu = 1Tu′ > 0 and 1Tv = 1Tv′ > 0. Choose a c ̸= 0 such that
the vector w = u− cv satisfies 1Tw = 0. Using the fact that λI −AG + 1

2J is positive semidefinite and
that Jw = 0 we find

0 ≤ wT

(
λI −AG +

1

2
J

)
w = wT(λI −AG)w,

which implies
wTAGw ≤ wTλIw. (5.2)

Now we substitute w by u− cv to expand both the left and right hand side of the equation. Note that
uTv = 0. In this way the left hand side becomes

(u− cv)TAG(u− cv) = uTAGu+ c2vTAGv = λ1(C1)u
Tu+ c2λ1(Ci)v

Tv.

Next the right hand side of Equation 5.2 is expanded to find

λwTw = λ(u− cv)T(u− cv) = λuTu+ λc2vTv.

So Equation 5.2 now reads

λ1(C1)u
Tu+ c2λ1(Ci)v

Tv ≤ λuTu+ λc2vTv.

By assumption λ1(C1) > λ. For the inequality to hold, we thus must have λ1(Ci) < λ. Since i was
chosen arbitrary, this holds for all i > 1, hence proving the lemma.
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We now turn to the full proof of Theorem 5.4. Since we have already established the lower bounds, we
will now show the upper bounds. In order to do this we will start with an arbitrary set of n equiangular
lines in Rd with common angle arccosα. Let G be a graph associated to a spherical code representing
this set and let λ = (1− α)/2α. We will bound the number of lines n using the rank-nullity theorem.
Since

n = rk

(
λI −AG +

1

2
J

)
+ dimKer

(
λI −AG +

1

2
J

)
= rk(λI −AG) + dimKer(λI −AG),

finding an upper bound on both the rank and the nullity of the matrix λI − AG, will give an upper
bound on n. Upper bounding these values will be done through a case distinction depending on the
relation of λ to the associated graph G. When λ is not an eigenvalue of G, we have already shown in
Proposition 5.7 that Theorem 5.4 indeed holds. If λ is the spectral radius of G, λI − AG is positive
semidefinite and we will use Lemma 2.14 to bound its rank. The dimension of the kernel will be bounded
by bounding the number of components of AG which have spectral radius λ. The last case will be when
λ is an eigenvalue of the graph but not its spectral radius. The rank of λI − AG will then simply be
bounded using the subadditivity of the rank. In bounding the nullity we will use Lemma 5.9 to show
that λ is the second eigenvalue of the first component of the graph. It will then follow that the nullity
of λI − AG equals the nullity of λI − AC1

. Using the upper bound on the multiplicity of the second
eigenvalue of C1 from Theorem 2.20 will give an upper bound on the nullity of λI −AG.

Proof of Theorem 5.4. Fix α ∈ (0, 1) and let λ = 1−α
2α with spectral radius order k = k(λ). The lower

bounds of the theorem follow from Propositions 3.3 and 5.6. So, it remains to show that

(a) Nα(d) ≤
⌊
k(d−1)
k−1

⌋
for all sufficiently large d > d0(α) if k < ∞, and

(b) Nα(d) ≤ d+ o(d) as d → ∞ if k = ∞.

To show the upper bounds, consider a set of n equiangular lines in Rd with common angle arccosα.
By Theorem 4.14 there is a spherical {−α, α}-code C representing this set of equiangular lines such that
the associated graph G has maximum degree at most ∆ := 1

4α4 +
1
α4 . Note that since our graph G comes

from a set of equiangular lines, the matrix N = λI −AG + 1
2J is positive semidefinite and has rank at

most d.
In this proof we will distinguish between three different cases:

1. λ /∈ σ(G),
2. λ1(G) = λ, and
3. λ1(G) > λ, λ ∈ σ(G).

We will show that in all three cases the theorem holds. Notice that the conclusion from the first case in
particular holds when k = ∞ and thus we will show that in this case Nα(d) is upper bounded by d+o(d).
The second case implies that k < ∞ by definition, which means we will show that Nα(d) ≤

⌊
k(d−1)
k−1

⌋
.

The last case holds both when k < ∞ and k = ∞. We will distinguish between these two at the end of
the proof and show that the theorem also holds in this case.

For the first case, suppose that λ /∈ σ(G). Then it immediately follows from Remark 5.8 that
Nα(d) ≤ d+ 1.

For the next two cases, let C1, . . . , Ct denote the connected components of G in such a way that
λ1(G) = λ1(C1). Recall that n = rk(λI − AG) + dimKer(λI − AG), by the rank-nullity theorem. In
both cases the theorem will be shown by upper bounding both the rank and nullity of λI −AG.

Now suppose that λ1(G) = λ. To show that Nα(d) ≤
⌊
k(d−1)
k−1

⌋
, we first bound the rank of λI −AG.

Since all eigenvalues of AG are smaller or equal to λ, the matrix λI−AG has only non-negative eigenvalues
and is thus positive semidefinite. The matrix J is also positive semidefinite, so by Lemma 2.14

KerN = Ker(λI −AG) ∩Ker

(
1

2
J

)
.

The adjacency matrix of G has non-negative entries. It follows by Perron-Frobenius that λ1(G) has a
corresponding eigenvector v1 with all non-negative entries. This vector lies in the kernel of λI − AG,
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but is not an element of the kernel of 1
2J . This implies that the intersection of the kernels of the two

graphs is at least one element smaller than the kernel of λI −AG, so

dimKerN ≤ dimKer(λI −AG)− 1.

The rank-nullity theorem now yields

rk(λI −AG) + dimKer(λI −AG) = rkN + dimKerN

≤ rkN + dimKer(λI −AG)− 1,

so rk(λI −AG) ≤ rkN − 1 ≤ d− 1.
Next, we bound the nullity of λI −AG. Together with the bound on the rank, this will give us an

upper bound on n. Let C1, . . . , Cj be the components of G with spectral radius λ. Then each of these
components has at least k elements by the definition of k. This implies that n ≥ k · j. Furthermore,
since each component is connected, the multiplicity of λ as an eigenvalue of Ci is 1 for each i ∈ [j] by
Perron-Frobenius. It follows that the multiplicity of λ in G is equal to j and hence dimKer(λI−AG) = j.
We thus need to bound j to bound the nullity of λI −AG. By the rank-nullity theorem we find

rk(λI −AG) = N − dimKer(λI −AG) ≥ kj − j = (k − 1)j.

Combining this lower bound of the rank of λI −AG with the upper bound on the rank found above we
get (k − 1)j ≤ d− 1 and so j ≤ d−1

k−1 .
Combining the upper bound on the rank and the upper bound on the nullity of λI −AG we find

n = rk(λI −AG) + dimKer(λI −AG) ≤ d− 1 +
d− 1

k − 1
=

k(d− 1)

k − 1

as desired. This proves the theorem for the case where λ1(G) = λ.
It is now left to prove the theorem when λ1(G) ≥ λ and λ is an eigenvalue of G. In this case the

spectral radius order k(λ) of λ can be both smaller or equal to infinity. We will show that the theorem
holds in both cases. Again, we first give an upper bound on the rank of λI −AG, which satisfies

rk(λI −AG) ≤ rk

(
λI −AG +

1

2
J

)
+ 1 ≤ d+ 1.

The next step is to bound the nullity of λI−AG. We will do this by showing that dimKer(λI−AG) =
dimKer(λI −AC1

). Then the nullity of λI −AG equals the multiplicity of λ in C1.
First of all note that λI − AG has at most one negative eigenvalue. Indeed, since N ⪰ 0 and

N = (λI −AG) +
1
2 it follows from Lemma 2.12 that λI −AG has no more than one negative eigenvalue.

This implies that the second eigenvalue of G cannot be larger than λ. Furthermore, from Lemma 5.9 we
know that λ1(Ci) < λ for all i > 1. Since we assumed that λ is indeed an eigenvalue of G it follows that
we must have λ2(G) = λ2(C1) = λ.

From λ1(Ci) < λ it also follows that λ /∈ σ(Ci) and hence λI −ACi
has trivial kernel for all i > 1.

So, we conclude that the nullity of λI −AG is indeed equal to the nullity of λI −AC1
which in turn is

equal to the multiplicity of λ in C1. Since C1 is a connected graph with maximum degree ∆ by Theorem
2.20 the multiplicity of λ is O∆

(
|C1|

log log |C1|

)
. Hence,

dimKer(λI −AG) = O∆

(
|C1|

log log |C1|

)
= O∆

(
n

log log n

)
.

Combining the upper bound on the rank and the upper bound on the nullity of λI −AG we find

n = rk(λI −AG) + dimKer(λI −AG) ≤ d+ 1 +O∆

(
n

log log n

)
.

This implies (see Appendix A)

n ≤ O∆

(
d

log log d

)
+ d = d+ o(d).

If k < ∞, then this is smaller than
⌊
k(d−1)
k−1

⌋
for large enough d.

We have now shown that the theorem holds in all three cases, thus concluding the proof.
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From the proof we see that if a spherical code C representing the set of equiangular lines exist such
that its associated graph has spectral radius λ, then the first part of the theorem holds for all dimensions.
Only when no such graph exists, the results hold for large dimensions only. In this case, it is not yet
known how large d needs to be exactly for the theorem to hold.

If k = ∞, the theorem does not yet give an exact value for Nα(d). From Proposition 5.7 we know
that if λ is not a totally real algebraic integer, then Nα(d) ≤ d+ 1, which together with Proposition 3.3
gives d ≤ Nα(d) ≤ d+ 1. A result by Jiang and Polyanskii [11] shows that if λ is a totally real algebraic
integer that is not the largest among its conjugates, then d ≤ Nα(d) ≤ d+ 2. These two results bring us
a lot closer to an exact solution for Nα(d) in these specific cases.

What happens when λ is a totally real algebraic integer which is largest among its conjugates that has
infinite spectral radius order, is however not known. The above two results suggest a conjecture which
states that Nα(d) = d+O(1) if k(λ) = ∞. However, only very recently Schildkraut disproves this by
showing that an infinite amount of α ∈ (0, 1) exist such that d+Ω(log log d) ≤ Nα(d) ≤ d+O(d/ log log d)
[21].





6
Conclusion

The last decade has seen remarkable progress in the study on equiangular lines. In this thesis we have
given an overview of the current state of research on equiangular lines including some classic results and
the most significant contributions made in recent years. Even after all this progress, there still are many
open problems left. In this chapter we give some concluding remarks and discuss possible topics for
further research in this field.

In Chapter 3 we introduced equiangular lines through some classic results, including the absolute
bound. The proof of this bound gives conditions that have to be satisfied for a construction that reaches
the bound. This significantly limits the number of dimensions that can possibly reach the absolute
bound. However, de Caen has shown that for an infinite number of dimensions a construction of lines on
the order of d2 exists [24]. No other constructions are known up to now of this order. It could be of
interest to investigate what happens if we start by assuming Ω(d2) equiangular. Can some conditions be
deduced on this construction that must be satisfied?

A crucial result needed to find the linear upper bound from Balla [13] in Chapter 4 is Lemma 4.15,
which gives a bound on the number Nα(d) in terms of the average degree of the associated graph. The
upper bounds on Nα(d) are deduced from this lemma by using upper bounds on the maximum degree of
the associated graph, since a bound on the maximum degree also gives a bound on the average degree.
This does however motivate the question if improvements could be made by bounding the average
degree of the associated graph. Is it possible to find upper bounds on the average degree instead of
the maximum degree of the associated graph? To find such a bound, one will need to construct an
associated graph in such way that the high and low degree vertices balance each other out.

We concluded Chapter 2 with a theorem bounding the multiplicity of the j-th eigenvalue of a
connected bounded degree graph. This bound plays a key role in the proof of Theorem 5.4 which gives
strict bounds for the number of equiangular lines with a fixed angle in high dimensions. Following these
results, more research has been done into the multiplicity of the second eigenvalue of a graph. In the
context of equiangular lines we are this is the multiplicity we are most interested in. Currently, the
upper bound of this multiplicity has been improved to O

(
n/ log1/5−o(1) n

)
in [19] and a construction is

known of graphs with second eigenvalue multiplicity of Ω
(
n1/2−o(1)

)
[20]. The gap between these two

bounds is still very big.
The bound on the multiplicity of the second eigenvalue is connected to the dimension for which part

(a) of Theorem 5.4 holds. While this theorem essentially solves the problem of finding the maximum
number of equiangular lines with a fixed angle, it is still an open question as to the exact value of the
dimension for which their results hold. The uncertainty concerning this value arises from the bound on
the multiplicity of the second eigenvalue. Improvements on this bound can thus lead to stricter results
and more knowledge on the dimension d for which the results hold. A first step could be to analyse
what happens when using the bound O

(
n/ log1/5−o(1) n

)
from [19].

Another important tool in the results of [12] is the spectral radius order. This parameter was first
introduced by Jiang and Polyanskii in [11]. Not much is yet known about this graph parameter, which
is why we can not yet exactly classify the cases which fall into part (a) or (b) of Theorem 5.4. We
know that if for any λ the spectral radius order k(λ) is not equal to infinity, then λ must be a totally
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real algebraic integer which is largest amongst its conjugates. This condition is however only necessary
and not sufficient. A number λ can exist satisfying these conditions which has spectral radius order
k(λ) = ∞. Can we find sufficient conditions for any number to be the spectral radius of some graph?
Or equivalently, can we find conditions for which a totally real algebraic integer that is largest amongst
its conjugates has infinite spectral radius order?

Regarding lower bounds on the number of equiangular lines, there are probably still improvements
possible. The recent result by Schildkraut [21] shows an unexpected behaviour of Nα(d) for many values
of α. It disproves a conjecture which stated that if λ = (1− α)/2α has spectral radius order k(λ) = ∞,
then Nα(d) = d + O(1). This conjecture does hold for values of α for which λ is not a totally real
algebraic integer or λ is a totally real algebraic integer that is not the largest amongst its conjugates.
Shildkrauts result shows that the case k(λ) = ∞ is more complicated than expected and needs more
case distinctions to come closer to an exact solution. For the specific values of α covered by Schildkraut
the gap between the lower and upper bound is still very large and thus suggests room for improvement.
Furthermore, we now know that for all values of λ that aren’t a totally real algebraic integer we have
d ≤ Nα(d) ≤ d+ 1 (Proposition 5.7). For values of λ that are a totally real algebraic integer that is not
the largest amongst its conjugates we have d ≤ Nα(d) ≤ d+ 2 [11]. Lastly, there are an infinite number
of α for which d+Ω(log log d) ≤ Nα(d) ≤ d+O(d/ log log d). There still are many values of α for which
k(λ) = ∞ which are not covered by any of these results and for which we thus do not know exactly how
Nα(d) grows and if d is the best lower bound or not.
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A
Asymptotic notation

The bounds in this thesis make use of asymptotic notations. This notation is used to denote the
asymptotic growth rate of a function. Let f and g be two functions such that g(x) is positive for all
large enough values of x. The different relevant asymptotic notations are defined as

• f(x) = O(g(x)) if there exists a constant C > 0 and x0 ∈ N such that |f(x)| ≤ Cg(x) for all
x ≥ x0,

• f(x) = Ω(g(x)) if g(x) = O(f(x)) or in other words, there is a constant c > 0 and x0 ∈ N such
that |f(x)| ≥ cg(x) for all x ≥ x0, and

• f(x) = o(g(x)) if limx→∞
f(x)
g(x) = 0.

The first two notations can also be defined using limits. With this notation we have f(x) = O(g(x))

if lim supx→∞
f(x)
g(x) < ∞, and f(x) = Ω(g(x)) if lim infx→∞

f(x)
g(x) > 0. The definitions slightly abuse the

notation of the ‘is equal to’ sign,‘=’. The notation f(x) = O(g(x)) means that f grows like g, and so it
is read as f(x) ‘is’ O(g(x)) and not f(x) ‘is equal to’ O(g(x)). This means that the ‘=’ sign is only read
one way. If f(x) = O(g(x) is true, O(g(x)) = f(x) is however not true.

Intuitively, f(x) = O(g(x)) means that f(x) grows at most as fast as g(x). This means that in
any function the term that grows the fastest will always dominate the others. If, for example, we let
f(x) = 4 log x+

√
x+ 3x2, then x2 is the fastest growing term and hence f(x) = O

(
x2
)
. The notation

f(x) = o(g(x)) means that g(x) grows a lot faster than f(x). Any function f(x) that is o(g(x)) is also
O(g(x)) but not the other way around.

At the end of the proof of Theorem 5.4 we claim that if n ≤ O∆

(
n

log logn

)
+ d then it follows that

n ≤ O∆

(
d

log log d

)
+ d and furthermore that O∆

(
d

log log d

)
+ d = d+ o(d). This last step is easily shown

to hold, since

lim sup
d→∞

d
log log d

d
= lim sup

d→∞

1

log log d
= 0.

Proving the first step requires a bit more work.

Lemma A.1. Let L be a set of n equiangular lines in Rd and choose the associated graph such that it
has maximum degree at most ∆. If n ≤ O∆

(
n

log logn

)
+ d then n ≤ O∆

(
d

log log d

)
+ d.

Proof. By proposition 3.3 we have d ≤ n. Suppose n ≤ C n
log logn + d for some constant C. Thus we

have the following two inequalities

n ≥ d (A.1)

d ≥ n− C
n

log logn
. (A.2)

To prove the statement we show that there is a Γ > C such that n ≤ Γ d
log log d + d.
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By A.2, Γ d
log log d + d ≥ Γ

n−C n
log log n

log log d + n− C n
log logn . We need to show that

Γ
n− C n

log logn

log log d
+ n− C

n

log log n
− n ≥ 0.

From inequality A.1 it follows that 1
log logn ≤ 1

log log d . This gives

Γ
n− C n

log logn

log log d
− C

n

log log n
≥ Γ

n− C n
log logn

log log n
− C

n

log log n

≥ (Γ− C)
n

log log n
− C

n

log log n2

≥ 0,

for n large enough.



B
Ramsey theory

Ramsey theory is a branch of the study of combinatorics that looks at the structures that arise in
combinatorial objects as these become larger. The questions that arise in Ramsey theory usually ask
how large or small some structure must be for a specific property to hold. For example, how many edges
can a graph have such that it does not contain a cycle? Or, how many people can we invite to a party
such that there is always a group of three people who all know each other or a group of three mutual
strangers? This question is actually equivalent to the following graph-theoretic problem. If we colour
the edges of any complete graph with two colours, how large can such a graph be without containing a
monochromatic triangle? And of course, the problem this thesis is about, what is the largest number of
lines in Rn that pass through the origin such that any two lines share the same angle?

Ramsey’s theorem gives the foundation of this branch of combinatorics. In its original form, the
theorem is about colourings of large subsets. We state the theorem here in its graph-theoretical form
and refer to [27] for more details into this subject.

Theorem B.1 (Ramsey’s theorem). For any two integers s, t ≥ 1 there exists a number R = R(s, t)
such that any graph on at least R vertices either contains a clique of size s or an independent set of size
t.

Note that R(s, t) = R(s, t), since we can simply invert the terms ‘clique’ and ‘independent set’ in the
theorem above.

The results on equiangular lines from [9]–[11] and [12] all rely on this theorem to find a certain
subgraph in the graph associated to a set of equiangular lines. In this appendix we will show how this
theorem can be used to prove that a spherical code representing a set of equiangular lines can be chosen
in such a way that its associated graph has bounded maximum degree.

B.1 The maximum degree using Ramsey
In Chapter 4 we have seen that a spherical code representing a set of equiangular lines can be chosen in
such a way that its associated graph has bounded maximum degree (Theorem 4.14). In [12] already
showed a bound on the maximum degree with a proof that relies on Ramsey’s theorem. The bound they
found is of a much larger order than the new bound given by Balla in [13]. We will now give the proof
from [12] to show how Ramsey’s theorem is used in the context of equiangular lines. The theorem we
will prove is the following.

Theorem B.2 ([12]). For a set of equiangular lines, the unit vectors representing each line can be
chosen in such a way that the associated graph G has bounded degree ∆(α).

To prove the theorem we will use a switching operation that will ensure that the obtained graph will
have bounded degree. First, a large independent set in the graph will be found using Ramsey’s theorem.
Then a switching argument will be used in such a way that no vertex outside the independent set will
be adjacent to more than half the vertices of the independent set. By partitioning the vertices outside
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58 Appendix B. Ramsey theory

the independent set and analyzing how these subsets attach to the independent set, the degree of all
vertices can be bounded.

To find the large independent set using Ramsey, we first need the following lemma which gives a
limitation on the size of a clique in the graph associated to a set of equiangular lines.

Lemma B.3. Let G be the associated graph of a spherical {−α, α}-code, where α ∈ (0, 1). Then any
clique in G has size at most 1

α + 1.

Proof. Let K be any clique in G. We have

0 ≤

∥∥∥∥∥∑
v∈K

v

∥∥∥∥∥
2

=
∑
v∈K

∥v∥2 +
∑

v,u∈K
v ̸=u

⟨v,u⟩ = |K| − α|K|(|K| − 1).

Rearranging gives |K| ≤ 1
α + 1 as needed.

Since the clique of the associated graph can not be larger than α−1 + 1, by Ramsey’s theorem we
will be able to find a large independent set in the graph. Once we have found this independent set, we
will partition the vertices outside of this set. To make this partition we will use the following notation.

Definition B.4. Let G be a graph with vertex set V and let X ⊂ Y ⊂ V . We define CY (X) as the set
of vertices in V \ Y that are adjacent to all vertices in X and no other vertices of Y (see Figure B.1).

Figure B.1: The set CY (X)

Remark B.5. Note that in this notation, CY (∅) denotes the set of all vertices that have no neighbour in
Y . Furthermore, observe that CY (X) is defined as a set and not a subgraph. Since it is a subset of the
vertices of G it does, however, induce a subgraph of G.

The vertices outside of the independent set will be partitioned depending on their neighbours in the
independent set. The following lemma will enable us to bound the degrees of all vertices in the graph.
We will skip its proof, for which we refer to [12].

Lemma B.6. Let G be the associated graph of a spherical {−α, α}-code, α ∈ (0, 1), and let λ = 1−α
2α .

There exist positive integers M1,M2 depending only on α such that if I is an independent set of G with
at least M1 vertices, then

(a) the subgraph induced by CI(∅) has maximum degree at most
⌈
λ2
⌉
, and

(b) |CI(X)| ≤ M2 for every nonempty proper subset X of I.

It almost immediately follows from this proof that all vertices in the independent set I have bounded
degree. To see this, notice that the neighbours of any vertex v ∈ I are all elements of CI(X) for all
proper subset X of I containing v. Since all these sets CI(X) are bounded, it follows that the number
of neighbours of v is also bounded. Proving that the vertices outside the independent set are bounded
requires a bit more work as we will now show in the proof of Theorem B.2.
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Proof of theorem B.2. Let L be a set of n equiangular lines with common angle arccosα and let λ = 1−α
2α .

Let G be the associated graph of L with vertex set V = {v1, . . . ,vn}.
Define integers M1,M2 as in the lemma above. By Ramsey’s theorem there exists an integer

R = R
(⌈
α−1

⌉
+ 2, 2M1

)
such that if |V | > R, then G either has a clique of size

⌈
α−1

⌉
+ 2 or an

independent set of size 2M1. Note that if |V | < R, then we can simply choose ∆ ≥ R and the theorem
holds.

We may thus assume |V | > R. By lemma B.3 G can not contain a clique of size
⌈
α−1

⌉
+ 2, so it

must have an independent set of size 2M1. Denote this independent set by I.
We now modify our set of vectors V with the following switching operation. For any vi /∈ I that is

adjacent to more than half of the vertices in I, replace vi with −vi, as shown in Figure B.2. In the figure
NI(vi) denotes the set of neighbours of vi in I. Negating a vector in the set V inverts the adjacency of
this vector as a vertex of G. Thus, after applying this switching operation there are no vertices outside
of I which are adjacent to more than M1 vertices of I. In particular this means that for all X ⊆ I, with
|X| > M1, the set CI(X) is empty.

Figure B.2: Switching adjacency of vi

The set V \ I can now be partitioned into disjoint subsets CI(X), where X ranges over all subsets
of I with at most M1 elements. By part (b) of the above lemma all CI(X) have at most M2 vertices.
Now let A = CI(∅) be the set of vertices in V \ I non-adjacent to any vertex in I. Then

|V \A| = |I|+
∑
X ̸=∅

|CI(X)| ≤ 2M1 + 22M1M2 =: M.

From this we find that the degree of any vertex v in I can be at most M , since it can only have
neighbours in V \A.

To prove the theorem, it remains to bound the degree of the vertices not in I. So let v /∈ I and let
Y be the set of non-neighbours of v in I. Since after the switching operation no vertex outside of I has
more than M1 neighbours in I, the set Y contains at least M1 vertices. Note that since Y is a subset of
I, it is also an independent set. Consider the subgraph induced by CY (∅). The set CY (∅) contains all
vertices that are not adjacent to any vertex of Y and thus contains the vertex v. By part (a) of the
above lemma, CY (∅) has maximum degree ⌈λ2⌉, which means that the degree of v in G[CY (∅)] is at
most ⌈λ2⌉. Furthermore, notice that all vertices in A have no neighbours in I and thus in particular
have no neighbours in Y . This implies that A ⊆ CY (∅) and thus to find an upper bound on the degree
of v it suffices to bound its degree into V \ A. This is at most M , since V \ A has no more than M
elements. It follows that the degree of v in G is at most ∆ = ⌈λ2⌉+M .

So we have now found that d(v) ≤ M ≤ ∆ for all v ∈ I and that d(v) ≤ ∆ for all v ∈ V \ I. Since ∆
is a constant that only depends on α, this proves the theorem.
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