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Abstract—Crowd-sourced imagery is increasingly important
for urban mapping and visual localization. However, its reliability
is limited by GPS inaccuracies and heterogeneous capture condi-
tions, including device variability, viewpoint differences, illumi-
nation changes, and temporal shifts. In these settings, achieving
metric-scale pose estimation remains a central challenge. Deep
Learning-based pose estimation models address this problem
by learning to estimate the 6-DoF pose using geometric cues
between image views and metric supervision during training
on large datasets. This encourages spatial consistency and sup-
ports generalization across diverse conditions. Recent learning-
based architectures, often based on vision transformer encoders,
approach the task through unified multi-task frameworks that
jointly predict metric depthmaps and 2D-2D correspondences,
with relative pose estimated downstream. This thesis evaluates
whether such frameworks predict accurate metric depthmaps
under domain shifts. Experiments show that, even with scale
correction through data-driven fine-tuning with metric supervi-
sion, depth predictions from multi-task relative pose estimation
models fail to generalize reliably to out-of-domain environments.
In contrast, monocular models, trained on significantly larger
and more varied datasets, demonstrate strong zero-shot reliability
for metric depth prediction. A hybrid pipeline is proposed that
combines the geometric consistency of relative pose models with
the stable metric cues of monocular models, enabling robust pose
estimation in crowd-sourced outdoor environments.

I INTRODUCTION

Applications such as urban planning [1], infrastructure
monitoring [2], and disaster resilience [3] increasingly rely
on large-scale visual data. Crowd-sourced imagery provides a
scalable and low-cost alternative for such applications, cov-
ering diverse locations and capture conditions that extend far
beyond the scope of controlled datasets. For instance, crowd
workers have used Google Street View panoramas to annotate
urban objects such as street trees, generating accurate geo-
tagged urban maps [4]. Similarly, platforms like Bee Maps
[5] leverage driver-collected street-level imagery to support
detailed mapping of urban infrastructure, while imagery from
Mapillary [6] has been applied to identify road signs, map
pedestrian infrastructure such as sidewalks and crosswalks, and
enhance navigation services.

Despite these benefits, commodity GPS tags in crowd-
sourced imagery often introduce errors of several meters,
undermining their reliability as ground truth for mapping
and localization. Such inaccuracies hinder the training and
evaluation of deep learning methods that rely on accurate

supervision, including models for visual place recognition,
camera pose regression, and large-scale mapping. This prob-
lem is further compounded by the heterogeneity of the data:
images originate from diverse devices, capture conditions,
and viewpoints, which complicates consistent pose estimation
and metric scale recovery. Structure-from-Motion (SfM) [7]-
[9] remains the most reliable purely image-based approach
for camera pose recovery, but is computationally expensive,
sensitive to initialization, and requires auxiliary information
for metric scale.

Early learning-based methods attempted to bypass these
limitations by directly regressing camera poses from images,
demonstrating the feasibility of end-to-end pose estimation but
struggled in complex or dynamic environments [10]. Relative
pose estimation is the task of estimating the relative pose
between two images, whereas absolute pose estimation seeks
to regress the pose of a new image directly with respect to
a known reference frame. In deep learning—based methods,
relative approaches often generalize better to unseen environ-
ments since they do not rely on scene-specific cues but instead
learn features that transfer across domains [11], [12]. Later
approaches shifted toward training specialized networks for
individual components, such as depth estimation or feature
matching, combining geometric principles with data-driven
learning to improve scalability and accuracy [13].

More recently, unified architectures have emerged that
jointly learn dense image-to-image correspondences and met-
ric depth prediction within a multi-task framework. These
models show strong promise for robust feature matching
across diverse scenes and challenging conditions. Because
metric scale recovery is inherently tied to coherent geo-
metric understanding, such architectures implicitly enforce
scale by embedding cross-view geometric constraints within
their learned representations. Training on metric supervision
encourages models to capture both structural and semantic
priors relevant for scale estimation. Nevertheless, it remains
unclear whether such representations generalize robustly to
crowd-sourced outdoor imagery.

In particular, the depthmaps predicted by multi-task rela-
tive pose estimation models must be examined to determine
whether they are accurate in metric scale, i.e., whether the
predictions are aligned with ground-truth or absolute measure-
ments. Beyond accuracy, it is also important to assess whether



the scale of these predictions remains consistent, meaning it
does not change within a scene and is comparable across
different scenes, or whether it varies depending on the input.
The central issue is whether unified multi-task architectures,
which couple correspondence learning with depth supervision
to enforce metric scale, can generalize under domain shift.
In contrast, monocular metric depth models, trained on vastly
larger and more diverse datasets, may provide more robust
and reliable metric cues even though they lack cross-view
supervision.

To address these gaps, this work systematically compares
the two paradigms: evaluating the capability of multi-task
relative pose estimation approaches to enforce metric scale,
benchmarking them against monocular metric depth models,
and testing whether metric fine-tuning improves robustness
or merely leads to scene-specific adaptation. The following
research questions guide this study:

1) Can multi-task architectures supervised on metric depth
generalize across diverse outdoor environments?

2) Are the depthmaps produced by multi-task architectures
accurate in metric scale, and does the scale remain
consistent within and across scenes?

3) Can heuristic or data-driven scale correction improve
the accuracy of depthmap predictions from multi-task
models and lead to more reliable downstream pose
estimation?

4) Do monocular metric depth models, trained on larger
datasets, achieve metric scale accuracy more reliably
across domains?

II RELATED WORK

Traditional Structure-from-Motion (SfM) [7]-[9] pipelines
have long been regarded as the gold standard for visual local-
ization (6-DoF pose estimation) and 3D scene reconstruction
from images alone. These methods rely on detecting and
matching local features across multiple images, followed by
triangulation and bundle adjustment to jointly estimate camera
poses and reconstruct scene geometry. While highly accu-
rate under controlled scenarios, StM demands dense image
coverage, precise initialization, and substantial computational
resources [7]. These requirements limit SfM’s scalability in
large-scale or dynamic outdoor environments, which often
include challenges typical of crowd-sourced imagery: mov-
ing objects, illumination changes, temporal differences, and
heterogeneous data quality. Additionally, StM requires scale
information from the scene such as known object sizes or
ground-truth data collected via sensors such as LiDAR to
recover metric scale [7].

Deep learning-based pose estimation reformulates camera
localization as a learning problem, training neural networks to
regress camera positions and orientations either directly from
images or through intermediate representations such as depth,
feature correspondences, or dense matching. These methods
can be distinguished as map-aware or map-free depending
on how they are applied. Map-aware methods, including ACE
[14], ACEO [15], and MAREPO [11], achieve high accuracy by

exploiting prior knowledge of a scene such as pre-computed
maps or densely captured reference imagery with known
poses. For instance, ACE [14] is a map-aware absolute pose
estimation framework that leverages scene-specific re-training
to improve depthmap predictions using only images and asso-
ciated poses. While effective when this information is avail-
able, map-aware approaches are fundamentally constrained
by their dependence on priors, limiting their applicability in
scenarios with sparse coverage or unreliable ground truth.
In contrast, map-free approaches, such as Mickey [16], avoid
reliance on priors, generally trading some accuracy for greater
generalization across heterogeneous data.

Recent map-free architectures for relative pose estimation,
such as DUSt3R [17], advance learned pose estimation by
jointly integrating correspondence search, depth regression,
and geometric consistency into a unified model that processes
image pairs. This multi-task framework encourages models
to embed structural coherence across views alongside im-
plicit scale cues, yielding robust performance under view-
point and illumination changes. Its successor, MASt3R [18],
enhances the framework with reciprocal matching strategies
and descriptor-level supervision, and further introduces a “Fast
Reciprocal Matching” algorithm with theoretical guarantees
on computational efficiency. Building on this line of work,
MUSt3R [19] extends pairwise inference to multi-view to
impose richer geometric constraints and reduce memory when
regressing 3D points. Meanwhile, MASt3R-SfM [20] integrates
a frozen MASt3R backbone into a full SfM pipeline, com-
bining efficient image retrieval, high-quality correspondence
matching, and global optimization for scalable and accurate
3D reconstruction of unconstrained image collections. These
developments highlight the versatility of such architectures: a
single backbone can be adapted for correspondence estimation,
relative pose prediction, and full 3D reconstruction.

Nevertheless, despite employing scale-aware losses during
training, it remains unclear to what extent joint learning of
scene geometry and correspondences enforces faithful metric
scale under domain shifts and unseen environments. A persis-
tent bottleneck in outdoor pose estimation research lies in the
scarcity of suitable benchmarks [21]. Existing datasets often
rely on SfM pipelines for ground truth generation and inherit
their limitations. Examples include Aachen Day-Night [22]
and the Map-Free Visual Localization Benchmark [23], both
constructed from heterogeneous image sources. Automotive
datasets such as RobotCar Seasons and CMU Seasons offer
long-term variation in illumination and weather but exhibit
relatively constrained viewpoint changes [21]. Ground truth
in these datasets is typically generated through COLMAP
reconstructions [8], [9], sometimes supplemented with manual
annotation of 2D-3D correspondences [22] and curated pair
selection. As a result, pose labels may still inherit errors from
SfM reconstructions [23], or require multi-sensor fusion to
mitigate inaccuracies [21].

Metric supervision encourages networks to capture typical
object sizes and distance distributions in outdoor scenes,
embedding metric scale within their feature representations.



By leveraging diverse geometric cues and semantic priors
between images, relative pose estimation models internalize
not only geometric consistency but also implicit metric scale
information. However, their generalization ability depends
critically on the size, accuracy, and diversity of available
training data, which remains challenging to obtain in complex
outdoor settings.

Unlike relative pose estimation models, monocular depth
models are trained to predict dense depthmaps independently
for each image, enabling access to far larger and more varied
training datasets. While such models do not explicitly encode
cross-view geometry or relative pose constraints, their depth
predictions provide valuable metric cues that can complement
multi-view pose estimation pipelines and strengthen their
robustness. Typically, these models are first pre-trained on
large-scale datasets to learn general depth cues, and then
fine-tuned on smaller metric datasets to refine predictions
and improve alignment with absolute scale [24]-[26]. For
example, Depth Anything V2 [26] is a metric monocular
depth estimation model trained through large-scale teacher—
student distillation. Leveraging over 62 million real-world
images alongside synthetic data, it demonstrates strong zero-
shot generalization across diverse environments.

Existing works have yet to fully evaluate how multi-task
relative pose estimation models generalize metric scale under
domain shifts, particularly in diverse outdoor and crowd-
sourced imagery settings. Addressing this gap, this thesis
makes three main contributions:

1) A systematic evaluation of metric depthmap predic-
tions from scale-aware multi-task relative pose estima-
tion models, compared against monocular metric depth
models, assessing their accuracy and consistency under
domain shifts.

2) An empirical analysis of scale variation in depthmaps
from multi-task relative pose estimation models, demon-
strating that predicted scale varies with input. The study
further tests fine-tuning with metric depth supervision as
a scale correction strategy and shows that improvements
remain largely scene-specific rather than generalizable.

3) A scalable pipeline that integrates relative pose esti-
mation models with robust monocular depth predictors,
enabling generalizable relative pose estimation across
heterogeneous outdoor scenes. The pipeline can be fur-
ther extended by incorporating large-scale datasets such
as ZOD [27] and Waymo [28] to broaden coverage by
accurately localizing nearby images from crowd-sourced
collections like Mapillary.

IIT METHODOLOGY

This section outlines the relative pose estimation framework
studied in this thesis. Section III.A formally defines the prob-
lem and introduces a modular pipeline that combines dense
3D depthmaps with 2D image correspondences to estimate
relative camera pose at metric scale. Sections III.B and III.C
then present the models and baselines used to instantiate
this pipeline. Finally, Sections III.D.1 and III.D.2 describe

strategies to improve metric scale accuracy in depthmaps
predicted by scale-aware multi-task models, covering explicit
scale estimation techniques and implicit data-driven correction
methods, respectively.

III.A Problem Formulation

Given a set A of anchor images defined as
A={I}PHLK) |i=1,...,N.}, (D

where I? is the i-th anchor image, P¢ = (R?, t?) its known
camera pose or assumed to be at the origin, and K¢ the
intrinsic parameters. Similarly, we define the set Q of query
images

Q={(I,PLK!) |j=1,...,Ng}, )

where Ig is the j-th query image, K? are the intrinsics, and
P? is the unknown camera pose to be estimated.

Given a pair of images, I{* (anchor) and Ij‘? (query), the
matching neural network function

G: (If‘,qu) — M, 3)

takes the two images as input and predicts robust pixel
correspondences M;; between them by leveraging learned
feature representations and enforcing mutual nearest-neighbor
relationships for cyclic consistency.

Consider the metric depth neural network function

H: I, — Dy € REXWx3 4)

that predicts a dense depthmap Dy defining a 3D point at
every pixel in image Ij in the camera frame. Some models
may directly predict metric 3D points, while others predict per-
pixel metric depth values (dy, € R¥*W). Using the camera
intrinsic parameters, each depth value at pixel (u,v) can be
transformed into a corresponding 3D point expressed in the
camera coordinate frame.

For I (anchor) and IJ‘? (query), if M;; contains P valid
2D-2D image matches, the projection model is then

au! =KIRD{,+t), p=12....,P. (5

R € SO(3) and t € R? define the relative transformation
from the anchor to the query frame, K? the query intrinsics,
and o € R a scalar depth factor (o = 1 if D is in metric
scale).

Thus, the relative pose between anchor ¢ and query j is
estimated by finding the optimal (R,t) that minimizes the
reprojection error over all correspondences in M;; (as shown
in Figure 1). Pose estimation is performed using OpenCV’s
solvePnPRansac, which robustly rejects outliers while
solving this optimization.

III.B Choice of G (Image Matching)

A core component of the formulation in Section III.A is the
matching function G, which establishes correspondences be-
tween image pairs. Dense matching methods typically exhibit
quadratic complexity in the number of pixels, which becomes
prohibitively slow for large-scale or crowd-sourced imagery if
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Fig. 1: Using DL based models to substitute for the functions G' (image matching or correspondence search) and H (3D
depthmap predictions), the relative pose (R, t) between anchor and query images can be estimated using PnP.

not carefully addressed. MASt3R introduces a Fast Reciprocal
Matching scheme that reduces matching complexity by orders
of magnitude while providing theoretical guarantees of cor-
rectness. This is used as G across all evaluations presented in
this work. Experiments show that MASt3R outperforms prior
approaches across a wide range of baselines and illumination
changes, achieving a 30% absolute improvement in VCRE
AUC! on the Map-Free localization benchmark [18].

II.C Choice of H (Depthmap Prediction)

The second component of the formulation is the function
H, which provides dense geometric predictions used for pose
estimation. The central question of this thesis is whether
models trained with metric scale supervision generalize to
unseen domains. To this end, we consider a diverse set of
H functions:

o« MASt3R-DPT: MASt3R uses the same learned de-
scriptors to generate correspondences (Section III.B)
and depthmaps via a distinct Dense Prediction Trans-
former (DPT) head. It also predicts confidence scores for
depthmap predictions. The scale correction strategies de-
scribed in Section III.D are applied to improve the metric
scale for MASt3R-DPT. This configuration enables us
to study whether multi-task supervision, which couples
correspondence and geometry prediction, can produce
metric depthmaps across different scenes.

o Metric Monocular Depth Models: We consider three
monocular metric depth models: ZoeDepth [24], Depth-

IVCRE AUC (Visual Correspondence Relative Error, Area Under Curve)
measures the accuracy of predicted correspondences by quantifying the
reprojection error between matched points and the true 3D geometry. It
summarizes the proportion of correspondences with reprojection errors below
varying thresholds as an area-under-curve score, with higher values indicating
more accurate and robust matching.

Pro [25], and Depth Anything V2 [26]. ZoeDepth is
first pretrained on multiple datasets for relative depth
estimation to capture scene geometry and then fine-
tuned on metric datasets to produce accurate metric-scale
depthmaps. DepthPro is trained to predict metric depth
directly from the start using diverse synthetic and real
datasets, focusing on high-resolution, sharp depth outputs.
Depth Anything V2 has the largest and most diverse
training domain, including 62 million pseudo-labeled real
images, subsequently fine-tuned on metric datasets for
scale-consistent predictions. As detailed in Appendix A,
these models leverage large and diverse training datasets
with some overlap (Table V).

o The Metric Depth Oracle uses ground-truth LiDAR
point clouds which serve as a reference for evaluating
the metric accuracy of predicted depthmaps and facilitates
scale correction. It also allows us to evaluate the MASt3R
matching performance.

Together, these choices allow us to compare whether
depthmaps produced by multi-task relative pose estimation
models (MASt3R-DPT) can outperform specialized monocular
depth models in terms of metric scale alignment with Oracle.

IILD Scale Correction Strategies for MASt3R-DPT

This section outlines the approaches used to quantify and
analyze metric scale discrepancies between predicted scene
geometry and ground-truth measurements. Section III.D.2
outlines explicit scale estimation methods that compare the
ground truth LiDAR measurement to the MASt3R-DPT
depthmaps. Section II1.D.2 explains the data-driven fine-tuning
strategy that implicitly tries to improve the model’s predic-
tions.



IILD.1 Explicit Scale Correction

Explicit scale correction involves computing determinis-
tic scale factors and subsequently applying these factors to
MASt3R-DPT predictions before downstream pose estimation.
This process does not update any model parameters; instead,
the predicted 3D points are rescaled to align with LiDAR
measurements in the anchor frame. Given two depthmaps
defined in the anchor image frame D%(u,v) € RHEXWx3
composed of x¢ € R3:

Dgt = {X?,gl}z]'vzl Dgred = {X?,pred}i]\;h (6)

the objective is to compute scale factor(s) that best align Dgred

to the ground-truth measurement Dg, using all (u, v) where we
have valid 3D LiDAR points in the coordinate frame of the
anchor image. We evaluate explicit scale correction using a
the heuristic scale factors detailed below.

1) Per-Axis Scale Estimation: A per-axis scale vector s =

[Sz, Sy, -] is computed as the ratio of norms along each
coordinate axis

1Dl
Sper-axis,k = T ke {I7y7 Z}a (7)
|| pred,k ‘
where k represents the direction and ||-|| denotes a

chosen norm (e.g., Ly or Lq).

2) Mean Per-Axis Scale: Instead of estimating independent

scale factors per coordinate axis, this method computes

a single global scale spean by comparing the average Lo
norm across all axes

Zke{z,y,z} ||Dgt,k ‘2

Smean = skl2 @®)
e Z:ke{ac,y,z}”Dpred,k”2

This approach assumes the same scale error across
axes, unlike per-axis scaling which corrects each axis
independently.

3) Similarity Transform (Umeyama Method): A full sim-
ilarity transform estimating scale s, rotation R, and
translation t solves

N

, 2
s, R, t = arg min Z [[sRX prea +t = x|, (9
=1

with R € SO(3) and t € R?. The Umeyama algorithm
provides a closed-form solution including the optimal
scale s; the translation and rotation from this solution
are ignored.

II1.D.2 Implicit Scale Correction

This section presents a strategy for implicitly encoding scale
into the depthmap predictions generated by the neural network
H. Rather than relying on post-hoc scaling corrections, this ap-
proach aims to improve the metric stability of the predictions
by modifying the model’s outputs directly, thereby producing
accurate metric depthmaps without depending on LiDAR at
test time. Supervision is provided via ground-truth LiDAR
point clouds, with the goal of reducing scale error while
preserving the geometric consistency learned by MASt3R.

In this approach, the MASt3R-DPT is fine-tuned using a
regression loss that directly compares predicted and ground-
truth 3D depthmaps. All weights are frozen, except those of
the DPT head for the anchor image which is updated using

1
L:r(l) - -
¢ My (u,z%e:/\/h

||X1,pred[uav} - Xl,gl[uvvml , (10

where M denotes the set of pixel locations with valid ground-
truth depth from LiDAR. This training objective deviates from
the original MASt3R and DUSt3R pipelines, which weigh the
loss with confidence scores.

The central premise underlying this data-driven training is
that the model learns a distribution specific to the training
scenes. It is therefore of interest to determine whether targeted
fine-tuning of the depth regression head can effectively correct
scale-related errors and how well such adaptations transfer
to novel scenes. This approach is conceptually similar to re-
training strategies employed in map-aware frameworks such
as ACE, which adapt depth predictions using scene-specific
supervision, as well as to the final metric fine-tuning stages
commonly used in monocular depth prediction models (e.g.,
ZoeDepth, Depth Anything V2). We aim to study the gains
of such adaptations across scenes to assess generalization
ability and to compare performance against other metric depth
prediction networks.

IV EXPERIMENTS

The experimental evaluation is divided into two parts. First,
we assess performance on the Vision Benchmark Rome (VBR)
dataset, comparing off-the-shelf models and scale correction
strategies. Second, we analyze generalization on Mapillary
imagery, providing a qualitative evaluation under real-world
capture conditions.

IV.A Experimental Setup

This section details the datasets used, how training and
evaluation splits were defined, and chosen evaluation metrics.

IV.A.1 Datasets

The Vision Benchmark Rome (VBR) [29] dataset contains
trajectories collected across six locations in Rome: Spagna,
Pincio, DIAG, Campus, Colosseum, and Ciampino. For this
study, Pincio (dense vegetation), DIAG (indoor setting), and
Colosseum (crowded with people) are excluded, focusing
instead on Spagna, Campus, and Ciampino, which represent
urban scenes featuring buildings and roads. The dataset also
provides associated frame transformations between the LIDAR
and camera sensors, as well as camera intrinsics and distortion
parameters. Trajectories collected in the Campus scene orig-
inate from the same physical location at Sapienza University
of Rome and thus treated as one unified scene (Figure 3b).
In contrast, trajectories from the Ciampino scene are recorded
in different physical locations with no overlap and these are
split into two independent scenes, Ciampinol and Ciampino2
(Figure 3c).

Each scene includes one or more trajectories consisting
of images, local LiDAR point clouds, and corrected poses



(a) Spagna (b) Campus

(c) Ciampinol (d) Ciampino2

Fig. 2: Sample image pairs from four selected scenes in the VBR dataset.

(a) Spagna: contains only one trajectory
location

(b) Campus: two trajectories in the same (c) Ciampino: two trajectories at nearby but

distinct locations

Fig. 3: Trajectory layouts for each scene in the VBR dataset.

expressed in a local coordinate frame defined at the start
of the trajectory. The Spagna scene was recorded with a
handheld Ouster OS0-128 sensor, which offers a shorter range
but a wider vertical field-of-view. In contrast, the Campus
and Ciampino trajectories were captured with a car-mounted
Ouster OS0-64, providing slightly longer range. All captures
used the same Manta G-125B/C camera at a resolution of
1388%700. Since absolute GPS ground truth is not avail-
able, Appendix B-4 details how the trajectories were globally
aligned.

In addition to the VBR trajectories, we incorporate crowd-
sourced Mapillary imagery collected around the Spanish
Steps and Campus areas in Rome and mine anchors from
the VBR dataset. Unlike the controlled VBR captures, these
images (examples shown in Figure 4) exhibit substantial
variation in capture conditions, including day—night shifts,
shadows and illumination. They are recorded with heteroge-
neous consumer devices (smartphones, action cameras, etc.)
leading to inconsistencies in focal length, resolution, and
distortion. Further challenges arise from arbitrary viewpoints,
moving pedestrians, and occasional motion blur. Mapillary
additionally provides estimated camera intrinsics obtained via
its OpenSfM processing pipeline. These intrinsics are used
when performing PnP with Mapillary images as queries,
ensuring that evaluation remains consistent with the metadata
available in real-world scenarios where calibration information

is not accessible.
IV.A.2 Evaluation Metrics

Translation error, rotation error and depthmap error were
selected as evaluation metrics, as they provide an accurate
measure of both pose accuracy and geometric consistency. We
report the Median Translation Error (MTE), Median Rotation
Error (MRE) and AbsRel for each scene.

Pose estimation accuracy is evaluated by comparing the
estimated pose Pest = [test, Qest] to the ground-truth pose
Pt = [tat, dg), Where t denotes translation and q denotes
rotation quaternion.

1) Translation error (t_error) is defined as the Euclidean
distance between estimated and ground-truth positions
expressed as

(1)

2) Rotation error is computed as the minimum angular
distance between the estimated and ground-truth orien-
tations represented by unit quaternions e, g € S3

t_error = [[teg — tgl|2-

Qrel = Qest @ qg_tl7 (12)

rot_error = 208~ " (|gret,uw|) » (13)

where ¢, is the scalar (real) part of the relative
quaternion gy, and ® denotes quaternion multiplication.
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Fig. 4: Examples of Mapillary imagery near the Spanish
Steps. Images span day and night, different focal lengths, and
are often affected by occlusions, shadows, and motion blur,
reflecting the diversity of crowd-sourced data.

This formulation ensures the angular difference lies
within [0, 7] radians.

3) Absolute Relative Error (AbsRel) evaluates the accuracy
of predicted depthmaps (Dj, . ,) against LiDAR ground
truth (D). It is computed using all (u,v) where we
have valid 3D LiDAR point in the coordinate frame of
the anchor image,

N a a
1 IDge: — Diyeq,ill2
AbsRel = — £ precs
N E 1D, [
In addition, per-axis errors are reported by restricting the
calculation to each coordinate dimension k € {z,y, z}

(14)

a a
A 1. — 1 |Dgt,ik - Dpred,ik|
bsRel, = — E - ,
Nk? . a |Dgt ik|
ie{|Dg, , [>€} :

15)
where ¢; , is the ground-truth coordinate along axis k,
Ny is the number of valid samples for that axis, and ¢
is a small constant to avoid division by zero.

IV.A.3 Implementation Details

Table I summarizes the final dataset splits used for evalu-
ation. For implicit scale correction, we follow the MASt3R
training protocol with one modification: the regression loss is
adapted to sparse LiDAR supervision (see Section III.D.2).
Fine-tuning is performed with an initial learning rate of
3 x 1075, with a floor of 5 x 10~ to reduce overfitting on
the smaller training set. Details of image pair generation, data
preprocessing, and additional hyperparameters are provided in
Appendix B and Appendix C-1.

Scene No. of Pairs No. of Pairs Train/Val
Inliers > 200 Inliers > 700 [Test! /Test?
Spagna 2485 1168 817 / 175/ 175 / 1492
Campus 1929 1214 849 / 181 / 181 / 1027
Ciampinol 2030 1291 903 /193 / 193 / 932
Ciampino2 1992 869 608 / 130 / 130 / 1253

TABLE I: Number of candidate pairs before/after filtering with
number of inliers and final dataset splits.

(b) MASt3R matches (random subset)

(c) MASt3R confidence map (d) MASt3R-DPT depthmap

(e) MASER-DPT depthmap
(scaled)

(f) Oracle

Fig. 5: MASt3R output on a Campus sample: Scaling (per-axis
L; norm) aligns the MASt3R depthmap prediction to Oracle
depth (ground truth). The corners and far away background
matches have lower confidence.

IV.B Evaluation on VBR

The experimental evaluation is designed to assess the gener-
alization ability of scale-aware relative pose estimation models
in unseen outdoor environments. We begin by evaluating the
off-the-shelf performance of MASt3R [18]. Next, we analyze
how scale in depthmaps predicted by MASt3R-DPT varies
within and across scenes using heuristics. We then investigate
whether fine-tuning MASt3R-DPT on new environments im-
proves the metric scale of predicted depthmaps, and whether
such gains remain confined to the training scenes or transfer
to novel settings. Finally, we assess hybrid pipelines pairing



MASt3R as the correspondence function G with monocular
depth networks as H, including ZoeDepth [24], Depth Pro
[25] and Depth Anything V2 [26].

IV.B.1 MASt3R: Off-the-shelf Generalization

Table II reports errors (MTE, MRE, AbsRel) for MASt3R
as G combined with different variants of H on the test!
splits. With Oracle depthmaps, MASt3R matches yield very
low MTE (< 0.20 m across all scenes), confirming that
correspondence quality is high. In contrast, using MASt3R-
DPT depthmaps without scaling does not achieve sub-meter
MTE. Confidence thresholding improves MTE but slightly
worsens MRE. Figure 7 shows a consistent trend across
scenes: baseline distance between anchor and query generally
decreases as inliers increase, with wider baselines yielding
fewer matches. At the same time, Oracle MTE remains low
even at higher baseline distances, indicating that MASt3R
correspondences can still support accurate pose estimation
under wider viewpoint changes.

Figure 5 shows MASt3R depthmap, confidence map and 2D
matches predictions. The network assigns high confidence to
foreground structures such as buildings and signage, and lower
confidence to edges and background regions.

IV.B.2 Scale Variation Across Scenes in MASt3R-DPT
Depthmaps

We evaluate explicit scale correction in two ways: (i) per-
pair scale factors computed by using LiDAR at test time and
(ii) global per-scene scale factors derived from the training
split (no LiDAR measurements used using inference). Among
proposed scale estimation heuristics, per-axis L scaling with
LiDAR at test time yields the best pose accuracy and low-
est AbsRel errors in predicted depthmaps, while isotropic
scale factors (such mean per-axis Lo scaling and similarity
transforms) are less reliable. Train-set median scaling helps
meaningfully only in Ciampino?2.

Table III shows that computed per-axis L, scale factors dif-
fer substantially between scenes, even where LiDAR and cam-
eras sensors are identical (Campus, Ciampinol, Ciampino2).
Intra-scene variance is smaller for Campus and Ciampino, but
Spagna, recorded with a short-range handheld LiDAR, exhibits
higher scale and variance. Variability is largest along Z in all
scenes.

Figures 5d and S5e compare MASt3R depthmaps before and
after applying explicit per-axis L scale correction, illustrating
the improvement in scale alignment after scaling.

IV.B.3 Implicit Scale Correction via fine-tuning MASt3R-
DPT head

MASt3R-DPT was fine-tuned on two different scenes: one
trained on Ciampinol (validated on Ciampino2), the other
on Campus (validated on Ciampino2). In their respective
domains, both models report lower MTE, MRE, and AbsRel
errors than the off-the-shelf baseline. These gains are largely
scene-specific: the Ciampinol-tuned model performs well on
Ciampino but raises MTE on Spagna (Table II).

Median (X, Y, Z) Variance (X, Y, Z)
All valid pairs (Per Axis L; Norm)

Scene

Spagna 3.956, 4.025, 4.593  4.251, 4.832, 4.485
Campus 1.703, 1.572, 2.135  0.706, 0.694, 1.261
Ciampinol  1.943, 1.854, 2.544  0.474, 0.497, 1.099
Ciampino2  1.808, 1.737, 2.530  0.339, 0.321, 0.680
Train sets (Per Axis L; Norm)

Spagna 3.690, 3.750, 4.016  3.598, 3.991, 4.112
Campus 1.539, 1.413, 1.894  0.648, 0.646, 1.171
Ciampinol  1.847, 1.765, 2.412  0.391, 0.392, 0.996
Ciampino2 2.067, 1.963, 2.871  0.316, 0.310, 0.656

TABLE III: Median and variance of heuristic scale factors
computed per-pair.

Fine-tuning increases predicted depth values, aligning them
more closely with the Oracle (Fig. 6). Cross-scene fine-tuning
(Campus— Ciampino2) also improves over the pre-trained
baseline but produces depthmaps with blurred boundaries
for distant buildings, while the associated confidence maps
lose detail after fine-tuning. Training curves are provided in
Appendix C-2.

IV.B.4 Zero-shot Performance of Metric Monocular Depth
Prediction Models

Among monocular depth networks, Depth Anything V2 as
H achieves sub-meter MTE across all scenes and lower MRE
than any MASt3R-DPT variant. It provides consistent AbsRel
errors across scenes, demonstrating stable depth alignment
without task-specific fine-tuning. DepthPro performs compet-
itively, especially in rotation estimation, achieving the lowest
MRE values overall (as low as 0.22° on Ciampino2). However,
the depthmap predictions do not provide reliable metric scale
across scenes and the AbsRel errors vary across scenes.
ZoeDepth, despite metric fine-tuning on KITTI (same as
Depth Anything V2), produces higher translation and AbsRel
errors compared to pre-trained MASt3R-DPT. Nevertheless, it
also achieves substantially lower MRE than MASt3R-DPT,
highlighting that monocular models provide more reliable
rotation cues. Overall, although fine-tuned MASt3R-DPT can
sometimes match or surpass monocular networks in AbsRel,
Depth Anything V2 and DepthPro depthmaps consistently
provide better downstream pose accuracy.

Figure 8 visualizes depthmaps for different H functions
and shows that Depth Anything V2 and Depth Pro provide
off-the-shelf metric scale alignment with Oracle compared to
ZoeDepth and MASt3R-DPT.

Inlier count can serve practical proxy for pose confidence,
Figure 7 shows that MTE generally decreases as the number
of inliers increases. Appendix D-1 further shows that across
all choices of H, the translation component along z dominates
overall translation error.

IV.C Evaluation on Mapillary Images

In this section, we extend the evaluation to crowd-sourced
Mapillary imagery to assess robustness under real-world,
uncontrolled capture conditions. Images from Mapillary are



Spagna Campus Ciampinol Ciampino2
MTE MRE MTE MRE MTE MRE MTE MRE
H (m) ©) AbsRel (m) ©) AbsRel (m) ©) AbsRel (m) ©) AbsRel
Oracle \ 0.17  0.90 \ 0.11 0.19 — \ 0.10 0.20 — \ 0.08 0.17 —
MASt3R-DPT (Pre-trained Model [18]) 271 2.04 0.78 2,12 249 0.41 4.18 347 0.60 201 293 0.62
MASt3R-DPT (Confidence Thresholded) 2.50 2.06 0.77 1.73  2.51 0.40 255 372 0.61 1.69 4.21 0.61
MASt3R-DPT Scaled: LiDAR used at test-time
Per Axis L1 Norm (*) 0.60 2.08 0.15 0.74 2.08 0.17 040 2.08 0.14 039 1.95 0.18
Per Axis Lo Norm (*) 0.81 2.24 0.16 1.01  2.10 0.21 0.50 2.05 0.16 0.50 2.00 0.21
Mean Per Axis Lo Norm (*) 0.90 2.04 0.17 590 249 0.20 6.78 3.47 0.18 5.14 290 0.23
Similarity Transform (*) 1.01  2.04 0.22 6.06 249 0.20 6.39 344 0.20 470 297 0.23
MASt3R-DPT Scaled: Train-set Median Scale
Per Axis L; Norm 091 2.18 2.14 220 211 4.92 232 207 4.58 0.89 2.01 2.00
Per Axis L2 Norm 0.94 227 2.15 230 238 5.63 225 213 4.53 0.96 2.11 2.04
Mean Per Axis Lo Norm .12 2.04 2.14 512 249 5.18 779 344 4.90 622 293 2.39
Similarity Transform 1.06 2.04 1.93 525 249 5.34 744 344 4.95 538 293 3.02
MASt3R-DPT (Campus— Ciampino2) 2.01 190 0.28 0.83 0.69 0.12 1.31  0.66 0.16 0.76  0.79 0.20
MASt3R-DPT (Ciampinol— Ciampino2) 295 210 0.29 1.15  0.51 0.13 0.59 045 0.11 047 0.50 0.15
ZoeDepth [24] 2.84 141 6.21 323 043 741 339 039 6.72 275 034 6.79
Depth Pro [25] 1.16  0.96 0.91 0.90 0.25 0.41 0.35  0.27 0.22 0.28 0.22 0.27
Depth Anything V2 [26] 0.86 1.26 0.23 0.33 0.29 0.20 0.38 0.32 0.21 0.59 0.31 0.26

TABLE II: Errors (median) on fest' splits for each scene using MASt3R as G combined with different models for H. Lower
values indicate better performance for all metrics (MTE, MRE, AbsRel). Rows marked with * use LiDAR-based per-pair scale
at inference; unstarred rows use the train-set median scale. Fine-tuning MASt3R-DPT (Train— Val) shows mostly within-domain
gains but can also lead higher MTE (shown in red).

Depth (m)

(g) Anchor image from Ciampino2

(i) Pre-trained (j) Fine-tuned (Ciampinol— Ciampino2) (k) Fine-tuned (Campus— Ciampino2)

y/-—

(1) Pre-trained (m) Fine-tuned (Ciampinol— Ciampino2) (n) Fine-tuned (Campus— Ciampino2)

Fig. 6: Effect of fine-tuning on MASt3R-DPT. Top: Anchor image with LiDAR ground truth. Middle: depthmaps before/after
fine-tuning (Train—Val), showing improved metric alignment but blurred distant boundaries. Botfom: confidence maps lose
detail after fine-tuning.
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Fig. 7: Mean translation error (MTE) versus number of inliers on test? splits, shown per scene. Results compare scale corrected
MASt3R-DPT against selected monocular depth prediction models as choices for H, with poor-performing models excluded
for readability.

localized using VBR anchors, with MASt3R providing 2D IV.D Discussion

correspondences () and the Oracle or Depth Anything V2

as H. Mapillary sequences with inaccurate GPS locations are Experiments on both VBR and Mapillary confirm that cor-
shown in Figure 10, whereas inspection of the images indicates respondence quality is not the bottleneck for pose estimation.
that the ‘true’ position should be different. Our anchor-based The main limitation lies in predicting metric depthmaps con-
relative pose estimation corrects these errors reliably, pose sistently across domains. In zero-shot settings, Depth Anything
estimates from Depth Anything V2 depthmaps closely track V2 consistently provides the lowest AbsRel errors across
the Oracle. Figure 9 illustrates an especially challenging case scenes and sub-meter MTE, demonstrating stable metric scale
where the query is captured at night with low visibility and alignment without any scene-specific adaptation. Depth Pro
limited overlap to the anchor, since the camera is tilted upward also performs competitively, excelling in some scenes, but its
to avoid pedestrian areas. Such conditions are typical in crowd- errors vary more across environments, indicating less reliable
sourced data and usually undermine feature matching. Despite  zero-shot generalization. Notably, even in their training do-
this, our pipeline successfully refines the pose. The initial mains the fine-tuned MASt3R-DPT models did not achieve
GPS-based estimate placed the query over the fountain, but lower MTE (in relative pose estimation) compared to zero-
after refinement the pose aligns correctly along the street. shot monocular models, despite reporting lower AbsRel. These
This demonstrates resilience to both appearance change and outcomes align with the observed variability in scale factors
viewpoint bias. across scenes: adaptation to one local scale distribution fails

to transfer elsewhere.
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Fig. 8: Qualitative comparison of depthmaps from different H
models.

On queries from Mapillary (Section IV.C), the combination
of MASt3R correspondences and metric depth from Depth
Anything V2 is able to recover accurate relative pose under
erroneous GPS, challenging illumination, and viewpoint shifts.
These results are obtained on completely unseen data, without
any scene-specific fine-tuning.

V CONCLUSION

This thesis examined whether multi-task relative pose es-
timation models can produce metric depthmaps in GPS-
inaccurate, crowd-sourced outdoor imagery. While these mod-
els provide robust correspondences, their depth predictions
lack consistent metric scale across scenes. Heuristic scale
corrections improved alignment when auxiliary cues were
available but remained tied to such measurements. Implicit
strategies produced local gains within training scenes but failed
to generalize. The results highlight that scale in depthmap
predictions from these models remains dependent on input
and scene. In contrast, monocular depth models trained on
large and diverse datasets provided stable metric cues without
scene-specific adaptation, with Depth Anything V2 standing
out due to its vastly larger training domain.

Two factors limited this work: the small amount of per-scene
training data and the sparsity and range limits of LiDAR su-
pervision, both of which weakened the available metric signal.
Future work should explore enforcing scale through trajectory-
level constraints, integrating an explicit scale-regression head
in MASt3R-DPT, and evaluating on larger datasets with tar-
geted fine-tuning for monocular models as well.

Overall, the results indicate that metric scale remains the
central bottleneck in relative pose estimation. A practical next
step is to couple multi-task relative pose architectures such
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(c) 2D image matches predicted using MASt3R as G

Fig. 9: MASt3R accurately predicts matches between pairs
taken at different times of day leading to downstream pose
correction when combined with Depth Anything V2

as MASt3R with stable, zero-shot monocular depth predic-
tors like Depth Anything V2, an approach that can improve
robustness when applied to real-world, crowd-sourced data.
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(a) Spagna: Query images are positioned closer to buildings, whereas the Mapillary GPS (b) Highlighted anchor—query pairs (Spagna).

locations indicate positions near the center of the open square.

Legend
Mapillary GPS
Anchors

. Depth Anything V2
Oracle

(d) Highlighted anchor—query pairs (Campus).

(c) Campus: Queries from Mapillary (clearly captured over the road) are shown to have
GPS locations over/inside buildings.
Fig. 10: Results from Spagna (top) and Campus (bottom). Anchors from VBR (yellow) are used to correct inaccurate GPS for

Queries from Mapillary (green), and corrected positions using Oracle (blue) and Depth Anything V2 (red).
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APPENDIX A
TRAINING DATASETS FOR METRIC DEPTH PREDICTION
MODELS

Table IV presents the datasets used to train the various
models proposed as depth prediction functions H. There is
some overlap in the training sets as reported in Table V. Depth
Anything V2 and ZoeDepth models are finetuned on KITTI
[30] (outdoor) and NYUDepthV2 [31] (indoor) to produce
metric checkpoints.

The training curriculum of these metric depth models differ
primarily in how they balance learning relative depth and
achieving accurate absolute scale.

o ZoeDepth [24]: Follows a two-stage pipeline. Stage 1
pretrains on diverse datasets to optimize relative depth
estimation. Stage 2 fine-tunes on metric datasets, with
specialized prediction heads enabling scale-consistent
outputs.

DepthPro [25]: Employs a two-stage training regime
oriented towards absolute metric predictions from the
outset. Stage 1 trains on a mix of synthetic and real
datasets, using metric supervision where available and
scale-invariant normalization otherwise. Stage 2 fine-
tunes on high-quality synthetic metric datasets with
boundary-focused losses, yielding sharp and accurate
scale-consistent depthmaps.

Depth Anything V2 [26]: Uses a three-stage training
curriculum. Stage 1 trains a teacher network on accurate
synthetic datasets. Stage 2 distills knowledge into student
networks via over 62 million pseudo-labeled real-world
images, boosting robustness and domain generalization.
An optional Stage 3 fine-tunes on metric datasets to align
absolute scale.

APPENDIX B
DATASET PREPARATION

This subsection details the preprocessing steps applied to
the Vision Benchmark Rome (VBR) dataset. Dataset creation
included generation of candidate image pairs, scaling input im-
ages, filtering based on inlier thresholds, and global trajectory
alignment.

B-1 Pair Construction

Overlapping sequences within each trajectory were grouped,
designating one as the anchor and the others as queries.
Anchor and query frames were sub-sampled at different step
sizes to balance coverage and computational overhead. For
each anchor—query pair, features were extracted with MASt3R,
and correspondences were evaluated via fundamental ma-
trix estimation. To improve robustness, forward and reverse
matches were computed. Only the top-n anchors with the
highest inlier support were retained per query, yielding a final
set of reliable pairs with inliers > 200.

B-2 Pair Filtering and Splits

Table VI summarizes the mining parameters and resulting
pair counts per scene. Filtering was performed via OpenCV’s
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Model | Datasets

MASt3R [18] Habitat [32], MegaDepth [33], ARKitScenes [34],
StaticScenes3D [35], BlendedMVS [36], Scan-
Net++ [37], CO3D-v2 [38], Waymo [28], Map-free
[23], WildRgb [39], VirtualKitti [40], Unreal4dK

[41], TartanAir [42], Internal Dataset (undisclosed)

HRWSI [43], BlendedMVS [36], ReDWeb [44],
DIML-Indoor [45], 3DMovies [46], MegaDepth
[33], WSVD [47], TartanAir [42], ApolloScape
[48], IRS [49], KITTI [50], NYUDepth v2 [31]

ZoeDepth [24]

Depth Pro [25] Stage 1: Hypersim [51], TartanAir [42], Synscapes
[52], Urbansyn [53], Dynamic Replica [54], Bed-
lam [55], IRS [49], Virtual Kitti2 [30], Sailvos3d,
ARKitScenes [34], Diml Indoor [56], Scannet [57],
Smart Portraits [58], UnrealStereo4k [41], 3D Ken
Burns [59], EDEN [60], MVS Synth [61], HRWSI
[43], BlendedM VS [36]

Stage 2: Hypersim [51], TartanAir [42], Synscapes
[52], Urbansyn [53], Dynamic Replica [54], Bed-
lam [55], IRS [49], Virtual Kitti2 [30], Sailvos3d
[62]

Depth Anything V2 [26] | Precise Synthetic (595K): BlendedMVS [36],
Hypersim [51], IRS [49], TartanAir [42], VKITTI2
[30]

Pseudo-labeled Real (62M): BDDI100K [63],
GoogleLandmarks [64], ImageNet-21K [65],
LSUN [66], Objects365 [67], OpenlmagesV7

[68], Places365 [69], SA-1B [70]

TABLE IV: Training datasets used by models (H)

fundamental matrix estimation with RANSAC (reprojection
threshold 1px, confidence 0.99). Pairs with fewer than 700
inliers were discarded to ensure geometric consistency for
training and validation. The remaining pairs were randomly
shuffled and partitioned into train/val/test’ splits using a
0.7/0.15/0.15 ratio. An additional test®> set was defined by
reintroducing rejected pairs with 200 < inliers < 700,
allowing evaluation on more challenging cases. Table I reports
the resulting counts.

B-3 Matching Resolution

Only coarse features are used during matching. Inputs are
re-scaled such that the longest image side is reduced to 512
pixels while maintaining the original aspect ratio, followed by
cropping to the model patch size (16).

B-4 Global Localization from Image-Map Correspon-
dences

Since the VBR dataset does not provide absolute GPS lo-
cations, global localization of image trajectories was achieved
by manually selecting correspondences between landmarks
visible in the images and their locations on a satellite map.
The process proceeds in three main stages:

1) Georeferencing correspondences:
Distinct visual markers on the ground (e.g., poles, cor-
ners) were identified in the camera images and localized
on the satellite map. Their geographic coordinates were
converted from latitude/longitude to UTM coordinates
using PyProj, ensuring consistency with the local metric



Dataset MASTt3R [18]

ZoeDepth [24]

Depth Pro [25] Depth Anything V2 [26]

BlendedMVS [36] v
MegaDepth [33]
TartanAir [42]

IRS [49]
VirtualKitti [40] / VKITTI2 [30]
Hypersim [51]

HRWSI [43]
ARKitScenes [34]
UnrealdK [41]
ScanNet++ [37] / ScanNet [57]
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TABLE V: Dataset overlaps between models

Scene Sub-sampling  Top n Total Valid Pairs
(Query/Anchor) Anchors Pairs (>200 Inliers)
Spagna 50 /50 10 2580 2485
Campus 20/ 10 10 2060 1929
Ciampinol 20/ 10 5 2060 2030
Ciampino2 20/ 10 7 2212 1992

TABLE VI: Summary of mining parameters per scene. Sub-
sampling values indicate the frame step size for query and
anchor sequences. Top n anchors shows the number of highest-
scoring anchors retained per query. Valid pairs indicate the
number of anchor—query pairs with more than 200 inliers.

frame. Figure 11 shows an image with selected markers
and the corresponding points on a satellite map.
Camera pose estimation:

For images with pixel-map correspondences, a
Perspective-n-Point (PnP) problem was solved using
the 2D pixel coordinates of the selected markers and
their corresponding 3D UTM coordinates projected
onto the ground plane. This provided extrinsic estimates
(rotation and translation) for each camera relative to
the global UTM frame.

Trajectory alignment:

To align the VBR local trajectory with the GPS-aligned
estimates, we solve for a similarity transform

2)

3)

N

. 2
ggiggﬂsRmf+t—yAl,

where z; are local trajectory points and y; their

GPS-aligned counterparts. The correspondence set

{(zs,y:)}, is obtained from 3—4 images that were

manually matched with the map (via Step 1).

The closed-form solution (Umeyama, 1991) provides:

tr(DX)
S= =73,
2 llill?

where (us, f1y) are centroids, ¥ is the cross-covariance,
and D enforces a proper rotation.

R=VDU', t = py — sRyi,

The resulting similarity transform was applied to the full lo-
cal trajectory, yielding an aligned trajectory in the UTM/global
frame (latitude, longitude and heading). The final resulting
trajectories shown in Figure 3). This procedure yields a
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(b) Corresponding markers on Satellite Map

Fig. 11: By finding distinguishable markers on the image
and then localizing them on the satellite map, images can be
globally localized in the UTM frame

globally aligned camera trajectory even when absolute GPS
is unavailable, enabling evaluation on Mapillary images.

APPENDIX C
ADDITIONAL DETAILS: IMPLICIT SCALE CORRECTION

This section provides additional details on the fine-tuning of
MASt3R-DPT for implicit scale correction. We compare the
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Fig. 12: Training curves for MASt3R model finetuned on
Training Set— Validation Set with regression loss

modified regression loss used in this work against the original
confidence-weighted objective, and analyze how these choices
affect the stability of MASt3R-DPT predictions during fine-
tuning. Training curves are included to illustrate convergence
behaviour, and the exact hyperparameters and implementation
settings are reported for reproducibility.

C-1 Hyperparameters Used

All the necessary hyperparameters required to replicate the
training the pointmap prediction for the anchor image using
regression loss are listed in Table VIIL.

C-2 Training Curves

The standard training procedure in MASt3R and DUSt3R
employs a confidence weighted regression loss, where per-
point confidence scores are used to weigh the regression error.
For the VBR dataset, however, we made two adjustments when
fine-tuning the depth prediction head:

o A lower learning rate was adopted to prevent overfitting,

given the limited dataset size.

« Confidence weighed loss was replaced with simple re-
gression loss, since the LiDAR supervision in VBR is
sparse.

When confidence weighting is used with the same learning
rate as presented in Table VII, we observe that the predicted
confidence values collapse within the first epoch, saturating
near 1 for all points. This renders the confidence estimates
meaningless. We also tried reducing the learning rate to
1 x 1076 (minimum 1 x 10~7), however this configuration
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(b) Compared to fine-tuning with regression loss, confidence weighing
does not show the same reduction in regression loss

Fig. 13: Training curves for MASt3R model finetuned on
Campus— Ciampino2 with confidence weighed regression loss
with lower learning rate: 1 x 106 (minimum 1 x 10~7)

does not reduce the regression loss (Figure 13), which is our
main objective, as effectively as unweighted regression (Figure
12). Further analyzing how the confidence prediction changes
shows that using confidence weighing in the loss function
always leads to the confidence values all collapsing (as shown
by the overwhelmingly blue confidence maps in Figure 14c).

APPENDIX D
ANALYZING PER-AXIS ERRORS

This section examines the per axis errors in translation error
and also per-axis AbsRel errors for different models as H
and MASt3R as G. Finally Section D-2 presents a more in-
depth analysis of how per-axis scaling affects the MASt3R-
DPT depthmaps.

D-1 Per-Axis Translation and AbsRel Accuracy

Tables VIII and IX highlight two consistent patterns. First,
the translation error (MTE) is always dominated by the z
component, irrespective of the method. Even for the monoc-
ular depth estimation baselines (Depth Anything V2 and
ZoeDepth), the z-axis translation error is consistently larger
than the = and y components, confirming that depth uncer-
tainty directly drives pose recovery through PnP.

Second, the per-axis AbsRel error exhibits different be-
haviors depending on the model family and scaling strategy.
For MASt3R-DPT and it’s variants that use LiDAR-based
scaling at test time, the largest AbsRel is usually observed



Hyperparameter

Value

Training Set Resolutions
Validation Set Resolutions
Model

Pretrained init

Batch size

Optimizer

Learning rate

Min. learning rate
Weight decay

Warmup epochs

Total epochs

Save frequency

Eval frequency

Loss

8

(512, 384), (512, 336), (512, 288), (512, 256), (512, 160)

(512, 384)

AsymmetricMASt3R (ViT-L / DPT head)
MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric

(gradient accumulation x4)
AdamW
5x 1075
3x 1076
0.05
0
20

every 1 epoch (keep every 2)

every | epoch

Regr3D (L21, norm_mode=avg_dis, gt_scale=True)

TABLE VII: Fine-tuning hyperparameters for MASt3R-DPT on VBR sequences.

(a) Anchor image (left) and predicted confidence map from the pre-
trained model (right).

(b) Confidence maps for MASt3R-DPT trained with regression loss
at epoch 4 (left) and 12 (right).

(c) Confidence maps for MASt3R-DPT trained with confidence-
weighted regression loss at epoch 4 (left) and 12 (right), learning
rate 1 x 10~% (minimum 1 x 10~7).

Fig. 14: Effect of fine-tuning (Campus— Ciampino2) with
different loss functions on predicted confidence maps. Hyper-
parameters used are detailed in C-1 unless indicated otherwise.

along the z axis. In contrast, for train-set—scaled variants, the
dominant error shifts to the z axis and for fine-tuned variants
it generally shifts to the y axis. Meanwhile, the monocular
depth estimation models (Depth Anything V2 and ZoeDepth)
produce nearly isotropic AbsRel errors, with z, y, and z of
similar magnitude. This is expected since the models only
predict per pixel depth which are transformed into 3D points
using camera intrinsics.

Although fine-tuned MASt3R-DPT reports reduced z-axis
AbsRel compared to Depth Anything V2, downstream relative
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pose estimation shows higher MTE. Overall, while AbsRel
distributions differ across methods, the z axis remains the
dominant source of error in translation. The rotation errors
reported for different H are also significantly lower for monoc-
ular depth estimation models. Thus improving depth reliability
is the most effective avenue for reducing overall localization
error. These results show that lower AbsRel along z does not
necessarily imply more accurate pose estimation.

D-2 Per-Axis Explicit Scale Estimation

To investigate the difference between per-axis scaling and
a single global scale factor, we examine the distributions of
MASt3R-DPT depthmaps (scaled using these explicit scale
estimation methods) along the z, y, and z spatial axes and
comparing them against the ground-truth Oracle distributions.

Figure 15 shows two representative image pairs, alongside
scaled and unscaled MASt3R-DPT depthmaps. The histograms
show plots corresponding to each spatial axis, illustrating the
spread of points along that axis. The mean per-axis Ly norm
computes a single global scalar, implicitly assuming isotropic
scale error in the MASt3R pointmaps and applying an identical
correction across all axes. In contrast, the per-axis L1 norm
estimates independent scale factors for each axis direction.

The histograms reveal that scale errors are indeed axis-
dependent: under global scaling, the coordinate distributions
along the z, y, and z axes remain unevenly offset from the
LiDAR reference. By contrast, per-axis scaling brings the
distributions into closer alignment, matching both their shapes
and central statistics (means and medians) to the LiDAR
ground truth. This demonstrates that MASt3R predictions
require distinct correction factors along individual axes to
recover accurate metric geometry.

ATTRIBUTION OF EXTERNAL RESOURCES

This thesis makes use of external resources for formatting
and figures:
TU Delft report class template [71]
IEEE LaTeX template [72]
Pixabay cover image [73]
Esri World Imagery (for all satellite imagery) [74]



Spagna Campus Ciampinol Ciampino2
Method T Y z MTE| =z Y z MTE| =z Y z MTE| =z Y z MTE
Oracle \ 0.06 0.04 0.10 0.17 \ 0.02 0.05 0.08 0.11 \ 0.03 0.05 0.08 0.10 \ 0.02 0.03 0.07 0.08
MASt3R-DPT (Pre-trained Model [18]) 0.83 0.14 142 271 | 028 0.09 2.04 2.12 |035 0.14 415 4.18 | 025 0.12 1.89 2.01
MASt3R-DPT (Confidence Thresholded) 0.81 0.13 139 250 | 027 0.09 1.65 1.73 | 039 0.11 252 255|030 008 1.67 1.69
MASt3R-DPT Scaled: LiDAR used during inference
Per Axis L1 Norm (*) 0.14 0.11 039 0.60 |0.09 022 0.58 0.74 |0.06 0.12 035 040 | 0.07 0.06 034 0.39
Per Axis Lo Norm (¥) 0.19 0.15 057 0.81 |0.10 024 087 1.01 |0.07 0.15 043 0.50 [0.09 0.09 043 0.50
Mean Per Axis Lo Norm (*) 022 0.09 076 090 | 044 021 586 590 |0.71 0.28 6.66 6.78 | 047 024 513 5.14
Similarity Transform (*) 027 0.09 0.68 1.01 |044 021 579 6.06 | 059 0.27 6.25 639 | 043 022 4.69 4.70
MASt3R-DPT Scaled: Train-set Median Scale
Per Axis L1 Norm 027 0.07 0.67 091 |0.18 024 214 220 |0.17 0.12 231 232 |0.08 0.09 084 0.89
Per Axis L2 Norm 028 0.11 0.67 094 | 020 036 226 230 |0.16 0.16 218 225 |0.10 0.16 0.87 0.96
Mean Per Axis Lo Norm 0.31 0.10 0.89 1.12 | 046 0.17 5.09 5.12 {071 030 7.78 7.79 | 0.56 027 6.21 6.22
Similarity Transform 032 0.10 082 1.06 |047 0.17 523 525 |0.64 027 736 744 |050 024 533 538
MASt3R-DPT (Campus— Ciampino2) 045 0.13 1.74 2.01 |0.08 0.08 082 0.83 |0.11 0.10 1.29 131 |0.08 0.08 0.72 0.76
MASt3R-DPT (Ciampinol— Ciampino2) 046 0.17 270 295 |0.11 0.09 112 1.15|0.07 0.08 0.57 0.59 | 0.06 0.05 044 047
ZoeDepth [24] 091 0.14 159 284 |020 0.02 3.22 323|028 0.03 337 339|021 002 273 275
Depth Pro [25] 025 0.06 0.63 1.16 |0.06 0.05 089 090 |0.05 0.05 032 035 |0.04 004 024 028
Depth Anything V2 [26] 0.39 0.09 0.60 0.86 |0.07 0.04 032 033 |0.08 0.04 033 038 | 0.09 0.03 057 0.59
TABLE VIII: Median translation error per direction (X, Y, Z) and overall median (MTE) on test! splits (meter). * indicates
LiDAR-based per-pair scale estimation at inference; unstarred rows use train-set median scale. Bold values denote the highest
error per axes for each scene for MASt3R-DPT variants. Fine-tuning MASt3R-DPT (Train— Val) may result in higher translation
errors (shown in red).
Spagna Campus Ciampinol Ciampino2
Method T Y z Med| zx Y z Med| =z Y z  Med T Y z Med
MASt3R-DPT (Pre-trained Model [18]) 0.84 0.76 0.78 0.78 [ 0.72 0.27 042 041 ]0.67 050 0.61 0.60 | 0.68 0.50 0.64 0.62
MASt3R-DPT (Confidence Thresholded) 085 0.76 0.77 0.77 | 0.72 025 041 0.40]0.66 050 0.61 0.61 | 0.68 049 0.63 0.6l
MASt3R-DPT Scaled: LiDAR used during inference
Per Axis L1 Norm (¥*) 0.70 0.19 0.14 0.15|0.82 0.16 0.16 0.17 059 0.15 0.13 0.14| 0.72 0.19 0.17 0.18
Per Axis Lo Norm (*) 0.69 020 0.15 0.16 | 0.8 0.19 020 0.21]0.60 0.16 0.15 0.16 | 0.73 020 0.20 0.21
Mean Per Axis Lo Norm (*) 0.75 022 0.16 0.17 | 1.09 042 0.16 020|080 036 0.14 0.18 | 1.00 047 0.17 0.23
Similarity Transform (*) 0.71 026 021 022|106 039 0.17 020073 027 0.17 020]| 0.81 036 0.19 0.23
MASt3R-DPT Scaled: Train-set Median Scale
Per Axis L; Norm 0.54 024 200 2.14 [ 1.18 058 4.64 492|109 045 428 458 | 056 026 1.85 2.00
Per Axis L2 Norm 0.56 026 2.00 2.15 (135 065 534 563|109 045 428 453 | 056 027 185 204
Mean Per Axis Lo Norm 0.61 029 193 2.14 (145 0.79 4.62 518|096 029 4.54 490 | 095 050 2.08 239
Similarity Transform 054 025 176 193 [ 152 082 472 534|103 038 449 495| 0.66 032 272 3.02
MASt3R-DPT (Campus— Ciampino2) 045 0.53 026 028022 027 0.11 0.12]025 028 0.16 0.16 | 0.34 044 0.20 0.20
MASt3R-DPT(Ciampinol— Ciampino2) 049 045 026 029 |0.19 023 0.12 0.13]|0.16 020 0.11 0.11]| 020 031 0.15 0.15
ZoeDepth [24] 621 622 621 621|742 744 741 741|672 672 6.72 6.72 | 6.80 6.81 6.79 6.79
Depth Pro [25] 091 092 091 091|041 041 041 041]022 022 022 0.22] 028 0.28 028 0.28
Depth Anything V2 [26] 023 023 023 023|021 021 020 020|021 021 021 021]| 027 027 0.26 0.26

TABLE IX: Median AbsRel error per direction (X, Y, Z) and overall median on test' splits. * indicates LiDAR-based per-pair
scale; unstarred rows use train-set median scale. Bold values denote the highest error among per axes for each scene for
MASt3R-DPT variants. Depth Anything V2 has the most consistent performance across scenes (shown in green).
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Fig. 15: Left: Distribution of matched 3D points along each spatial axis (X: blue, Y: orange, Z: green). Right: Anchor-query
pairs with ground truth and MASt3R-DPT depthmaps. Spatial distributions show that per-axis scaling aligns mean and median
(vertical lines) better.
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