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Abstract
Exact network reconstruction from observations of the SIS process in discrete time would be very
useful if possible, with implications for tracking the spread of infectious diseases, trends and news on
social media. It could provide estimates for the strength of links in a network and the contribution of
individual nodes to the spread of an epidemic within a network as well as the underlying structure.

This Thesis provides a method for evaluating heterogeneous parameters where each node has a
randomly distributed curing probability and each link between two nodes has a randomly distributed
infection probability. The parameters are computed via maximum likelihood estimation using between
102 and 104 observations of the SIS process on networks ranging in size from 15 to 55 nodes, for both
directed Erdős-Rényi and Barabási-Albert graphs. We vary the network size to demonstrate that for a
fixed level of accuracy, the number of required observations increases exponentially with the number of
nodes for both the whole network and a subset of links and nodes. We further demonstrate that it may
require fewer observations to reconstruct certain nodes based on the degree of the node or reconstruct
links based on the degree of the node to which the link is incident. Additionally, if we interpret 106
or more observations as the number of required observations where reconstruction becomes infeasible,
a network size of 500 would be infeasible for reconstructing the full network and the approximate limit
for partial network reconstruction.

The Thesis is extended to look at the SI and SIR models, achieving a similar exponential increase
in the number of observations required as the network size increases, for a fixed error.
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1
Introduction

The increased presence of epidemic research in the media has resulted in a renewed interest in the field.
The pandemic outbreak of the Coronavirus disease, COVID-19, and its current impact across the globe
vindicate the effort to both produce more accurate forecast models and improve epidemic tracing.

In order to study epidemics effectively, the fundamental dynamics of the spreading process have to
be defined. This is not always a trivial question for an infectious disease as there are several methods of
transmission such as via a vector or contact with contaminated items. In addition to the transmission
routes of a virus, the curing process is important for describing epidemics. There could be different
methods for curing, individuals could cure by themselves or depend on a connection to another, ‘cur-
ing’ individual, e.g., a doctor which provides the cure. Most epidemic models assume that a healthy
individual can get infected via the contact to at least one infectious individual, and that infected indi-
viduals cure independently of the contact with other individuals. When we determine the collection of
links between individuals in a population, we obtain a contact network, which can become very complex
even under idealised conditions. There are complications that occur when mapping any contact network
which appears as noisy data when analysing the network. We consider the simplest case with self-curing
and transmission from contact with one or more individuals to avoid this as much as possible.

In the case of COVID-19, the disease enters a new population via a handful on individuals or even
a particular individual and then propagates through the rest of the population by passing from one
person to another. Determining the origin of the disease is very useful as it can allow for an epidemic
to be contained, by isolating the source or for all possible chains of transmission to be identified. By
checking the medical records and death certificates for symptoms of the disease the path can, in theory,
be retraced to the origin. There are many examples from history of particular people being identified as
the originator of a disease, such as the attribution of the introduction of smallpox to Central Americas
to a Spanish soldier [33]. In this example, the source was traced by hand to a single event, which gave
some certainty to where the initial transmission occurred. The problem of locating the source becomes
much more difficult if there are many possible events where a transmission can occur such as locally,
within neighbourhoods, or from travel between remote regions. Here analysing all the possibilities for
the spread of the infection person by person is very cumbersome and slow due to imperfect memory.

A modern approach to tracing the origin of an epidemic outbreak is contact tracing apps that
monitor the proximity of an app user to a person later confirmed to be positive for the disease from
a positive loop-mediated isothermal amplification (LAMP) or polymerase chain reaction (PCR) test,
an example of which is the CoronaMelder app [37]. There are challenges such as the fact only a
fraction of the population is currently using the app. Consequently, using all the data gathered from
app users would not constitute a complete set of observations. Other recent efforts in monitoring the
contact network between individuals for disease control include Test-and-Trace schemes, which map a
network over which a disease spreads by taking an infected individual and determining anyone they
were in contact with over a short period [17]. Test-and-Trace schemes rely on gathering as much data
as possible and backtrace to find who could have come into contact with the infected individual. Both
contact tracing apps and Test-and-Trace schemes provide some detail about the contact network and
may help contain an epidemic outbreak. Data from the COVID-19 outbreak in South Korea suggests
that keeping the number of infections low can be achieved by gathering as much information as possible

3



4 1. Introduction

in the begin stages and isolating the individuals [29].

In this thesis we reconstruct the contact network from observations of the epidemic. More precisely,
we consider the best-case scenario where the health status (healthy or infected) of every individual
is accessible at every time. We therefore explore the full potential of monitoring the health status
of individuals for uncovering the contact network and, ultimately, for predicting and controlling an
epidemic outbreak.

In [40] it is shown that there is a fraction of the population that is responsible for a disproportionality
high number of infections. Specifically 10% of the infected population can sometimes be responsible for
up to 45% of further infections. Identifying potential super-spreaders would be very useful for predicting
and mitigating future outbreaks. This relates to individual probabilities of transmission suggesting that
a focus on high risk connections is perhaps better than identifying all contacts to a person [23]. In this
thesis, we aim to determine how accurately connections in the contact network can be estimated, to
identify which individuals pose the greatest risk and would be responsible for the greatest number of
reinfections.

Lastly, we stress that, beyond the spread of infectious diseases, modern epidemiology encompasses
a broad spectrum of spreading phenomena. The spread of news, posts and opinions via modern com-
munication can be approached in a way similar to an infectious disease where instead of a disease, news
is spread. An example of this is the spread of fake news on Twitter [1], currently one of the largest and
most effective media for the dissemination of news. Twitter allows any news to be relayed at the press
of a button to anyone following the person re-tweeting the information. By keeping track of who is
re-tweeting what, one can obtain an indication of who is particularly susceptible to fake news and also
obtain insights on how fake news spreads. Twitter can give every user a particular score or probability
to believe news stories, which is analogous to them being infected by a disease.

From a network point of view, Twitter resembles a heterogeneously weighted network where users
correspond to nodes and links correspond to followings. The chance of retweeting varies from user to
user, leading to a greater prevalence of certain news amongst certain groups [9]. This thesis considers a
heterogeneously weighted network to account for the fact that certain interactions are much more likely
to occur than others.

1.1. Related Work
The main previous work on which this thesis is based is [34], where the susceptible-infected-susceptible
(SIS) model is considered. Here it is shown that for a network with homogeneous spreading parameters,
an exact network reconstruction is only possible for an infeasibly large number of observations. In this
thesis, we extend the network reconstruction approach in [34] to heterogeneous spreading parameters.
A discussion of some of the problems encountered in reconstructing networks from observed epidemics
is provided in [3].

Network reconstruction can also be used in conjunction with community detection. Peixoto [32]
developed a network reconstruction method and community detection method, which was applied to
uncover higher-order voting patterns in the lower chamber in the Brazilian parliament and demonstrated
the unity of various parties. In [32], a high number of observations of the SIS process are considered
with a maximum of 103 infections for each node.

Network reconstruction techniques that rely on Bayesian estimation, similar to those employed in
this thesis, are presented in [16] and [27]. In [16], the diffusion of web-links or phrases through a network
with homogenous spreading parameters is investigated via the susceptible-infected (SI) model. In [16],
the author proposes the NETINF algorithm to find the network which maximised the probability of the
observed diffusion. In [27], Bayesian network reconstruction is extended to networks with heterogeneous
spreading parameters for an SI, SIS and susceptible-infected-removed (SIR) model. In [16], clustering
based on types of source was observed when analysing phrases. Some phrases spread more quickly in
certain circles than others such as the spread of political phrases in political websites and accounts
compared to in entertainment websites and accounts.

There is a limit to the network size that can be estimated accurately with a given number of
observations of dynamics on the respective network. This thesis aims to find this limit computationally
by evaluating the number of observations as a function of the network size, for a given level of accuracy.



1.2. Document Structure 5

1.2. Document Structure
Chapter 2 introduces the models we used to generate networks and real-world applications including
the Erdős-Rényi, Barbási-Albert and Watts-Strogatz models. The background of epidemic modelling is
given, with a focus on compartmental models. We introduce the epidemic model in Chapter 3, which
is based on a discrete-time Markov chain. Chapter 4 formulates the network reconstruction problem as
an optimisation problem. Chapter 4 applies the reconstruction method to networks of different sizes
and different random graph models to obtain estimates of the network and the spreading parameters.
Chapter 5 applies the estimation to the SI and SIR processes. Chapter 6 states the conclusions of this
thesis and gives an outlook to future work.





2
Background

2.1. Network Science
Network science studies the patterns that emerge in complex, interconnected systems. Applications
of network science include monitoring the performance of telecommunication networks and electrical
grids, studying the interactions between proteins in living organisms via biological networks [10] and
analysing clustering in financial markets [24]. Network science can also be used to predict the behaviour
of complex systems using knowledge of the underlying graph such as the degree distribution of nodes.

Social science provides several good examples of the relation between the structure and the be-
haviours of a network. For example, the small-world experiment run by Milgram [26] which aimed to
find out how quickly an unaddressed and named letter could find a person via a chain of social connec-
tions across the United States. The result showed that the average number of intermediate steps was
around 6. This behaviour could be attributed to the structure of the network of connections which later
was modelled by Watts and Strogatz [43]. In this chapter we introduce how graph theory provides the
basic models used within epidemic modelling.

2.1.1. Graph Theory
Nodes are discrete entities, they can, for example, be individuals in a population or computers in a
network. Links connect pairs of nodes, in the case of a populations this could be interactions between
individuals. We denote a graph by 𝐺(𝒩, ℒ), where 𝒩 = {1, ..., 𝑁} is the set of 𝑁 nodes and ℒ is the set
of links. Any graph corresponds to an adjacency matrix A, whose entries 𝑎𝑖𝑗 are defined as:

𝑎𝑖𝑗 = {
1 for (𝑖, 𝑗) ∈ ℒ
0 otherwise

(2.1)

Graph Theory originates from the Königsberg bridge problem. The city of Königsberg consisted of
four landmasses connected by seven bridges which presented the residents with a puzzle: is it possible
to traverse all the bridges without crossing the same bridge multiple times? In 1736, Euler [14] demon-
strated that the problem could be studied by representing the city as a graph as shown in Figure 2.1a.
This particular topology cannot be traversed with a single path as the graph created based on the city
is neither Eulerian nor semi-Eulerian, meaning that the total number of nodes with an odd degree is
zero or at most two, respectively. As shown in Figure 2.1c, there are more than two nodes with an odd
degree, which is sufficient to show a trail cannot exist for the given topology in Figure 2.1b.

Graph theory has been used extensively to map and study networks. Social networks are an example
of the scale of human interaction networks people currently use day-to-day, with over 1.69 billion [11]
active users on Facebook alone. Modern research into real-world networks often characterises a network
via graph metrics. An important metric is connectedness which defines whether a graph is connected
or not, meaning a path exists between each pair of nodes. Examples of real world connected graphs
includes the telephone network, where any two phones may be connected in order for a call to be
established. Further important metrics are closeness and connectivity. Closeness, 𝐶𝑙𝑖(𝐺) is defined as
the reciprocal of the total hopcount of all the shortest paths that start at node 𝑖 and end at any other

7



8 2. Background

(a) The centre of the city of Königsberg, with regions A to D and bridges a to g.

C

A

B

D

c
g

d

a

e

b
f

(b) Graph representation of the seven bridges of
Königsberg

Area (Node) Degree
A 5
B 3
C 3
D 3

(c) Table representation of Königsberg.

Figure 2.1: Euler’s analysis of the Königsberg bridge problem. 2.1a, including the figure from the 1736 paper [14] and a
simplification of the problem to nodes and links in 2.1b. Table 2.1c shows there are more than two nodes with an odd
degree, demonstrating that the graph is neither semi-Eulerian nor Eulerian.

nodes in the graph. The larger the average shortest path, the larger the closeness 𝐶𝑙𝑖. Therefore the
closeness 𝐶𝑙𝑖 gives a measure of the participation of a node in a network. Connectivity, 𝜆(𝐺) measures
how resilient a connected graph is, that is the smallest number of nodes or edges that leads to the graph
becoming disconnected. There are many more useful metrics that are used in network analysis [41].

2.1.2. Random Graph Models
Random graphs are useful for simulating graphs with an irregular or unknown structure. Many real
world networks grow or are created randomly. This includes even small networks such as a group of
people who have been just introduced to each other, where it is very difficult to predict who will end up
speaking with whom, during a given period of time. The best way to represent this group and analyse
the network structure is via a random graph.

Random graphs are a type of graph where the links between nodes are determined probabilistically.
The origin of random graph theory starts with the Hungarian mathematicians Erdős and Rényi who
proposed the Erdős-Rényi (ER) model [13] and they proceeded to study the properties of various
random graphs. One version of the ER model consists of a constant number of links which are randomly
permuted between different nodes resulting in uniform random graphs, denoted by 𝐺𝑚(𝑁), where the
number of links, 𝐿 = 𝑚.

The second type of ER model results in binomial random graphs and was first proposed by Edgar
Gilbert [15]. Here, the absence or presence of any link is modelled by a Bernoulli random variable with
success probability 𝑝ER and the distribution (2.2). Figure 2.2 shows an example of a 𝐺𝑝ER(𝑁) graph.
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𝑎𝑖𝑗 ∼ Ber(𝑝ER), 𝑖 ≠ 𝑗, 𝑎𝑖𝑖 = 0 (2.2)

𝐴𝐸𝑅 =
⎡
⎢
⎢
⎢
⎣

𝑎11 𝑎12 𝑎13 𝑎14 𝑎15
𝑎21 𝑎22 𝑎23 𝑎24 𝑎25
𝑎31 𝑎32 𝑎33 𝑎34 𝑎35
𝑎41 𝑎42 𝑎43 𝑎44 𝑎45
𝑎51 𝑎52 𝑎53 𝑎54 𝑎55

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 1 1 0 0
1 0 0 1 0
0 1 0 0 1
0 1 0 0 0
0 0 1 1 0

⎤
⎥
⎥
⎥
⎦

(a) Adjacency matrix 𝐴𝐸𝑅 for the graph 𝐺0.7(𝑁, 𝐿)

1

2

3

4

5

(b) 5 node ER-directed graph, 𝐺0.7(𝑁, 𝐿)

Figure 2.2: An example of a 5 node random binomial graph with directed links.

An alternative to the ER-model was found by Barabási and Albert when analysing the structure
of the World Wide Web [4]. The scale-free nature of the network was a revelation as previous random
graph models, including the ER model, did not even closely reproduce a scale-free graph. Barabási and
Albert introduced the Barabási-Albert model which includes a power law degree distribution allowing
networks produced to be scale-free. The key of component of the BA model was preferential attachment
which models the growth of a network: new nodes attach, i.e. form a link, to the highest degree nodes
with the greatest probability. More specifically, if a new node is added to the network, the probability
𝑝BA,𝑖(𝑘𝑖) of attaching node 𝑖 is proportional to the degree 𝑑𝑖 of node 𝑖. This allows the probability to
be defined as 𝑝BA,𝑖(𝑘𝑖) =

𝑑𝑖
𝑑𝑡𝑜𝑡𝑎𝑙

. The BA model has two input parameters: 𝑚 and 𝑚0. The initial nodes
𝑚0 form a complete graph, as given in Figure 2.3a. Each further node attaches to 𝑚 nodes already in
the graph as depicted in Figure 2.3b and 2.3c.

1

2

3

(a) Step 1 with 𝑚0 = 3 nodes.

1

2

3

4

(b) Step 2. Adding node 4.

1

2

3

4

5

(c) Step 3. Adding node 5.

Figure 2.3: A BA graph with 𝑁 = 5 nodes, where one node and 𝑚 = 1 links are added sequentially using preferential
attachment. The graph grows from the initial complete graph given in Subfigure 2.3a by attaching two nodes sequentially.
First in Subfigure 2.3b, where the probability of the new node attaching to node 3 is 𝑝BA,3 = 𝑑3/𝑑𝑡𝑜𝑡𝑎𝑙 = 2/6. Then, in
Subfigure 2.3c the probability increases to 𝑝BA,3 = 3/8, since the number of degrees on node 3 increases.

Another prominent random graph model was proposed by Watts and Strogatz [43], who observed
that quite often there was high clustering and short paths that were inconsistent with ER graphs in a
seemingly random real-world network. They suggested introducing irregularity gradually into a network
by rewiring a regular graph, moving it from a not-random, regular graph to becoming a random graph,
such as those based on the ER-model. This allows for a scale of randomness in graph between a regular
and ER-graph. Rewiring reduces the length of the average shortest path and increase clustering. They
proposed a graph model now known as the Watts-Strogatz (WS) or ‘Small World’ model, the name
deriving from the Small World experiment by Milgram. These graphs are created by starting from a
regular ring structure with an average degree of 𝑑WS as depicted in Figure 2.4a. Rewiring is then used
to change the current links attached to individual nodes with the probability 𝑝WS, the link to replace
the current one is also chosen randomly. An example of WS random graphs are shown in 2.4b and 2.4c.
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(a) Without rewiring, 𝑝WS = 0.
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(b) Rewiring with 𝑝WS = 0.2.
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(c) Rewiring with 𝑝WS = 0.7

Figure 2.4: An example of a WS graph with 𝑁 = 5 nodes and a mean degree of 𝑘𝑊𝑆 = 2, demonstrating the rewiring
process.

2.2. Epidemics on Networks
Epidemiology is a field that has gained a tremendous amount of prominence in recent years. Epidemiol-
ogy studies the spread and effect of epidemics and can for example be used to predict the total number
of expected infections and possible deaths due to a pandemic outbreak. Various epidemic models have
been proposed and studied, providing differing levels of accuracy and complexity.

Bernoulli introduced the first epidemic model [5] in 1760, to analyse the efficacy of inoculation via
an early form of immunisation. The mathematics he presented in his model used differential equations
to show that inoculation would increase the average life expectancy for everyone, regardless of age,
despite the fact inoculation had a significant chance of causing death.

A fundamental concept in modern epidemiology is to separate the population into two or more com-
partments. The four most commonly used compartments are susceptible (S), exposed (E), infected (I)
and removed (R). The motivation for the compartmental model is that a set of differential equations can
be formulated detailing the transition rates between each compartment. Solving the set of differential
equations produces epidemic curves that predict the total number of individuals in each compartment.
Early epidemiology did not consider a contact network, and each compartment was considered as a
homogeneous population with indistinguishable and exchangeable individuals. The first study to use
compartments to produce a deterministic model of an epidemic was published in 1927 by Kermack and
McKendrick [21]. The solution to the model did indeed reproduce the curve of the infections in the
epidemic.

An early example of taking into account the contact network of a population was the survey con-
ducted on Cholera outbreak in London [39]. It was demonstrated that using data gathered from infected
individuals could be enough to isolate the cause of a the disease, in this case an infected water source
was found. Modern epidemiology also includes a focus on treating individuals or groups as discrete
entities connected to each other as a network. Thus, modern epidemiology strongly relies on graph
theory and network science.

Super-spreaders are a real world effect observed in certain individuals or events in pandemics [40],
computer systems and even in social networks with the concept of influencers [6], where certain nodes
have a significantly larger impact on the total number of infections than others. This can be due to a
considerably higher degree on these nodes or a particularly high values for the infection rate to adjacent
nodes [30].

There is a very broad range of problems that can be described by epidemic models, beyond infectious
diseases. This includes the propagation of malware across an established computer network such as the
internet. A cybersecurity department could know probabilistically what malware could be causing
problems by having an estimate of the current prevalence of the malware. Observations such as reports
by computers that have detected the malware could provide enough information to create a model and
generate estimates of the origin and the danger posed by malware to computers in the same network.

We consider exact networks, where the individual links and nodes are estimated. The links and
nodes for a network in an epidemic are often weighted to reflect the strength of infection and curing.
The weights can be identical, such as for an epidemic on a homogenous network [34]. Alternatively it can
vary depending on the link or node such as in a heterogeneous network. The advantage of heterogeneous
parameters is that it can more accurately reflect a real world network such as twitter. We can vary the
infection probability between users as the susceptibility or the chance of a user believing a certain news
article will vary based on the source. Therefore, a node 𝑖 will vary the chance of infection based on the
source node 𝑗. For the case of curing, we can also assume a user will verify news differently leading to
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a heterogeneous curing probability, where each node can have a unique curing probability.





3
Discrete-Time SIS Epidemic Model

Various models are used in epidemiology where nodes are classed into different compartments [31, 28,
22], with a node representing an individual in a population. These compartments include: infected (I),
when a node carries the disease; and susceptible (S), when the node is not infected however is able to
gain the disease. The viral states considered in this thesis are S and I. In the SIS model, nodes can be
reinfected once they are cured, hence they can transition from S to I and from I to S.

The SIS model describes several real-world situations well where a node changes its viral state
several times such as a reoccurring infectious disease [2]. Further applications of the SIS model include
modelling networks where misinformation is being spread. Here each individual shares, or chooses not
to share, several different blog posts or tweets.

A Markovian SIS process simplifies probability calculations within the model as there is no memory
of all previous states when calculating the probabilities of each step, and all transitions are independent
of each other1. The Markovian SIS process thus allows us to work with independent probabilities for
transitions for the viral state of individual nodes. A sequence of transitions for the viral state vector 𝑥[𝑘],
𝑋[𝑛] is a sequence of independent events with independent probabilities and a total probability that is
the product of the individual probabilities. A node can be in either one of two viral states: susceptible
or infected. There are two transition rates which determines how quickly a node gets infected or
cured. A continuous-time process is often approximated using discrete time. Real-world observations
of epidemics are recorded in discrete time such as the results of tests being reported periodically. This
means that whilst a process may be continuous for the spread of an infectious disease, the analysis is
done in discrete time. For social media, iterations are limited by physical factors that make the process
itself a discrete-time process with a minimum size time step. This is due to set refresh or tick-rate for
a server which means any interactions done will take at least the refresh rate for the system to change
state.

3.1. The SIS process
For the discrete-time SIS process, each node 𝑖 has a defined state at any time 𝑘 where 𝑥𝑖[𝑘] = 1 and
𝑥𝑖[𝑘] = 0 indicate an observation of node as infected or healthy respectively:

𝑥𝑖[𝑘] ∈ {0, 1}, ∀𝑖 ∈ 𝒩, ∀𝑘 ∈ ℕ𝑛 (3.1)

Where ℕ𝑛 is the set of integers from 0 to 𝑛, the total number of observations. For a network with
𝑁 nodes we define the 𝑁 × 1 viral state vector 𝑥[𝑘] = (𝑥1[𝑘], ..., 𝑥𝑁[𝑘])𝑇 and hence 𝑥[𝑘] ∈ {0, 1}𝑁. A
node 𝑖 can be infected by any node 𝑗 that is adjacent and infected, where a link exists, (𝑖, 𝑗) ∈ ℒ and
and 𝑥𝑗[𝑘] = 1.

We can calculate the probability of a particular viral state sequence given some parameters, Pr[𝑋[𝑘]|𝜃]
in terms of the transitions between states, the values of 𝛿 and 𝐵 form the parameter vector for all nodes,
𝜃 = (𝛿1, ..., 𝛿𝑁 , 𝛽11, ..., 𝛽𝑁𝑁). To define the transition probabilities for each node, we make two assump-
tions.
1Non-Markovian processes can also be used to generate observations for an SIS process [42].

13
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1. The transitions between states, {𝑥[𝑘 − 1] → 𝑥[𝑘], 𝑘 = 2, ..., 𝑛} are Markovian. This implies the
probability of a transition to the current state, Pr [𝑥[𝑘 − 1] → 𝑥[𝑘]], is only a function of the
previous observation 𝑥[𝑘 − 1] and the parameter set 𝜃. Concretely, this gives Pr [𝑥[𝑘 − 1] →
𝑥[𝑘]] = Pr [𝑥[𝑘]|𝑥[𝑘 − 1], 𝜃].

2. The process {𝑥𝑖[𝑘 − 1] → 𝑥𝑖[𝑘]} is independent of {𝑥𝑗[𝑘 − 1] → 𝑥𝑗[𝑘]} for any two nodes, where
𝑖 ≠ 𝑗, at any fixed time 𝑘.

Using assumptions 1 and 2 we can describe the SIS process as a Markov chain, where the next state
𝑥[𝑘 + 1] of the system only depends on the current state 𝑥[𝑘]. This means transitions between states
in the Markov chain are independent and the total probability of series of transition can be calculated
as the product of the the transitions at different times 𝑘.

We condition the probability of the next state based on the parameters and the observed current
state 𝑥𝑖[𝑘]. This allows us to define four transition probabilities:

1. I → S, curing of an infected node, Pr [𝑥𝑖[𝑘 + 1] = 0|𝑥𝑖[𝑘] = 1, 𝜃] = 𝛿𝑖, where 𝛿𝑖 is the curing rate
of node 𝑖.

2. I → I, nodes remains infected, Pr [𝑥𝑖[𝑘 + 1] = 1|𝑥𝑖[𝑘] = 1, 𝜃] = 1 − 𝛿𝑖. As the node will either
be cured or remain infected, the events of curing and not curing are mutually exclusive so we can
define this probability based on the transition in 1.

3. S → I, infection of a healthy node, Pr [𝑥𝑖[𝑘+1] = 1|𝑥𝑖[𝑘] = 0, 𝑥[𝑘], 𝜃] = ∑
𝑁
𝑗=1 𝑥𝑗[𝑘]𝛽𝑖𝑗. We need to

take into account the sum of all adjacent and infected nodes, ∑𝑁𝑗=1 𝑥𝑗[𝑘]𝛽𝑖𝑗, as each link to node
𝑖 has a probability of causing an infection.

4. S → S, node remain healthy, Pr [𝑥𝑖[𝑘 + 1] = 0|𝑥𝑖[𝑘] = 0, 𝑥[𝑘], 𝜃] = 1 − ∑
𝑁
𝑗=1 𝑥𝑗[𝑘]𝛽𝑖𝑗. The events

of infection and remaining healthy are mutually exclusive for a node.

The model allows for multiple nodes to change state from 𝑥𝑖[𝑘] to 𝑥𝑖[𝑘 + 1] simultaneously. This is
different to the model used in [34] where at most one node could change its viral state at time 𝑘.

The basic reproduction rate 𝑅0 can be used to indicate the growth of the epidemic, generally the
number of infected nodes should increase for 𝑅0 > 1 and decrease for 𝑅0 < 1 as this indicates the ratio
of infection to curing. It remains an open question as to whether there is an exact epidemic threshold
at 𝑅0 = 1 when multiple node transitions occur simultaneously in the SIS process. To obtain 𝑅0, we
first define the effective infection probability matrix 𝑊 with elements 𝑤𝑖𝑗 as:

𝑤𝑖𝑗 =
𝛽𝑖𝑗
𝛿𝑖

∀𝑖 ≠ 𝑗 (3.2)

In line with [12, 18, 19], we define 𝑅0 as the largest eigenvalue of 𝑊, the eigenvector 𝑧𝑘 corresponds
to the largest eigenvalue.

𝑊𝑧𝑘 = 𝑅0𝑧𝑘 (3.3)

3.2. Transitions in the SIS process
We provide a detailed example of the Markov chain and transition matrices for a three-node network
to demonstrate the complexity for the number of possible transitions. Further, we demonstrate the
difference between single and multiple node transitions for complete and non-complete networks.

The state of each node can be represented by a segment in the circle, labelled with a single value
in the binary sequence. In this case each of the three nodes has 2 states so the viral state vector is
𝑥[𝑘] ∈ {0, 1}3, thus the total number of viral states is eight. We compare the SIS model in Section 3.1 to
the SIS model of [34] by illustrating the two methods of transitions between these eight states in Figures
3.2 and 3.3, which correspond to a change in state for a single node or multiple nodes, respectively.

We further show by example that a complete graph will allow for all the transitions between Markov
states of any graph with the same number of nodes. This shows that the complete graph is always
a possible solution, given a finite number of observations as we cannot guarantee that every possible
transition or link has been used.
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Figure 3.1 provides a network on which the SIS process can occur, with the parameters given in
(3.4) and (3.5) for the infection and curing probabilities respectively. We visually represent the state
of the system via the sectors of the circle where the colour of a section indicates the state of the node.
This is used later to show the various Markov states of the network.

B = [
0 𝛽12 𝛽13
𝛽21 0 𝛽23
𝛽31 𝛽32 0

] (3.4) 𝛿 = [
𝛿1
𝛿2
𝛿3
] (3.5)

1

𝛿1
2

𝛿2
3

𝛿3

𝛽31

𝛽21 𝛽32

𝛽12 𝛽23

𝛽13

Figure 3.1: A 3 node complete graph where each the variables for infection and curing between nodes is described by the
matrix 𝐵 and vector 𝛿 from (3.4) and (3.5) respectively.

The SIS model in [34] considered a maximum of one node state change per time step, this approach
is demonstrated in Figure 3.2. The approach here, as shown in Figure 3.3 allows for multiple transitions
simultaneously.
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3 010
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1 000

(a) SIS Markov chain of [34], where at most one node 𝑖 changes its viral state 𝑥𝑖[𝑘] from time 𝑘 to 𝑘 + 1. The states are labelled

from the completely infection state 8 to the all-healthy state 1 .

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0

𝛿1 1−[𝛿1+𝛽12 0 0 𝛽12 𝛽13 0 0
+𝛽13]

𝛿2 0 1−[𝛿2+𝛽23 0 𝛽23 0 𝛽21 0
+𝛽31]

𝛿3 0 0 1−[𝛿2+𝛽13 0 𝛽31 𝛽32 0
+𝛽32]

0 𝛿2 𝛿1 0 1−[𝛿2+𝛿3 0 0 𝛽21+𝛽31
+𝛽21+𝛽31]

0 𝛿3 0 𝛿1 0 1−[𝛿3+𝛿1 0 𝛽32+𝛽12
+𝛽32+𝛽12]

0 0 𝛿3 𝛿2 0 0 1−[𝛿3+𝛿2 𝛽23+𝛽12
+𝛽23+𝛽12]

0 0 0 0 𝛿1 𝛿2 𝛿3 1−[𝛿1+𝛿2
+𝛿3]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b) Transition probability matrix 𝑃, whose elements 𝑃𝑖𝑗 represent the transition from state 𝑗 to state 𝑖.

Figure 3.2: The Markov chain of the various states of the SIS process for the network in Figure 3.1. At most one node
can be infected or cured in each time step. The solid lines indicate the two-way transitions between states. The dashed
lines indicate a one-way transition to the all-healthy state, labelled 000, where the disease has died out.
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(a) SIS Markov chain of section 3.1 for the complete graph, where multiple nodes can change their viral state 𝑥𝑖[𝑘] from time 𝑘
to 𝑘 + 1 simultaneously.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0

𝛿1 2−[(1+𝛿1) 𝛿1⋅𝛽12 𝛿1⋅𝛽13 𝛿1⋅𝛽12⋅𝛽13 𝛽13 𝛽12 𝛽12⋅𝛽13
(1+𝛽12)(1+𝛽13)]

𝛿2 𝛿2⋅𝛽21 2−[(1+𝛿2) 𝛿2⋅𝛽23 𝛽21 𝛿2⋅𝛽21⋅𝛽23 𝛽23 𝛽21⋅𝛽23
(1+𝛽21)(1+𝛽23)]

𝛿3 𝛿3⋅𝛽31 𝛿3⋅𝛽32 2−[(1+𝛿3) 𝛽32 𝛽31 𝛿3⋅𝛽31𝛽32 𝛽31⋅𝛽32
(1+𝛽31)(1+𝛽32)]

𝛿2⋅𝛿3 𝛿2⋅𝛿3 𝛿3 𝛿2 2−[(1+𝛿2)(1+𝛿3) 𝛿2 𝛿2 𝛽21+𝛽31
⋅(𝛽21+𝛽31) (1+𝛽21+𝛽31)] ⋅(𝛽21+𝛽31) ⋅(𝛽31+𝛽21)

𝛿1⋅𝛿3 𝛿3 𝛿1⋅𝛿3 𝛿1 𝛿1 2−[(1+𝛿1)(1+𝛿3) 𝛿2 𝛽12+𝛽32
⋅(𝛽12+𝛽32) ⋅(𝛽12+𝛽32) (1+𝛽12+𝛽32)] ⋅(𝛽12+𝛽32)

𝛿1⋅𝛿2 𝛿2 𝛿1 𝛿1⋅𝛿2 𝛿1 𝛿2 2−[(1+𝛿1)(1+𝛿2) 𝛽13+𝛽23
⋅(𝛽13+𝛽23) ⋅(𝛽13+𝛽23) ⋅(𝛽13+𝛽23) (1+𝛽13+𝛽23)]

𝛿1⋅𝛿2⋅𝛿3 𝛿2⋅𝛿3 𝛿1⋅𝛿3 𝛿1⋅𝛿2 𝛿3 𝛿2 𝛿1 2−[(1+𝛿1)
(1+𝛿2)(1+𝛿3)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b) Transition probability matrix 𝑃, whose elements 𝑃𝑖𝑗 represent the transition from state 𝑗 to state 𝑖.

Figure 3.3: Infection and curing for the discrete-time SIS process where multiple nodes can change their viral state in
each time step, for the network in Figure 3.1.
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We give another example of the SIS process for an alternative graph to the complete graph. More
specifically, we consider the path graph in Figure 3.4. Any transitions that required the links 𝛽13 and
𝛽31 are no longer possible, these changes are highlighted in the matrix entries in (3.6). Comparing the
Markov chains of Figure 3.2b and Figure 3.3b demonstrates that many of the same walks are possible
for both the complete and non-complete graph. Thus, it is difficult to differentiate the complete graph
and the graph in Figure 3.4, unless one of the transitions such as from state 2 to 8 occurs.

B = [
0 𝛽12 0
𝛽21 0 𝛽23
0 𝛽32 0

] (3.6) 𝛿 = [
𝛿1
𝛿2
𝛿3
] (3.7)

1

𝛿1
2

𝛿2
3

𝛿3

𝛽21
𝛽32

𝛽12
𝛽23

Figure 3.4: A 3 node line graph example. The diagonal for the 𝐵 matrix is always 0, for other elements it depends on the
existence of a link as given in Figure 3.6.
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(a) SIS Markov chain of section 3.1 for the graph in Figure 3.4, where multiple nodes can change their viral state 𝑥𝑖[𝑘] from time
𝑘 to 𝑘 + 1 simultaneously. The states are labelled with the circled numbers.

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0

𝛿1 1−[𝛿1+𝛿1⋅𝛽12 𝛿1⋅𝛽12 0 0 0 𝛽12 𝛽12⋅𝛽13
+𝛽12+𝛽12⋅𝛽13]

𝛿2 𝛿2⋅𝛽21 2−[(1+𝛿2) 𝛿2⋅𝛽23 𝛽21 𝛿2⋅𝛽21⋅𝛽23 𝛽23 𝛽21⋅𝛽23
(1+𝛽21)(1+𝛽23)]

𝛿3 0 𝛿3⋅𝛽32 1−[𝛿2+𝛿2⋅𝛽32 𝛽32 0 0 𝛽31⋅𝛽32
+𝛽32+𝛽31⋅𝛽32]

𝛿2⋅𝛿3 𝛿2⋅𝛿3 𝛿3 𝛿2 2−[(1+𝛿2)(1+𝛿3) 𝛿2 𝛿2 𝛽21+𝛽31
⋅(𝛽21+𝛽31) (1+𝛽21+𝛽31)] ⋅(𝛽21+𝛽31) ⋅(𝛽31+𝛽21)

𝛿1⋅𝛿3 𝛿3 𝛿1⋅𝛿3 𝛿1 𝛿1 2−[(1+𝛿1)(1+𝛿3) 𝛿2 𝛽12+𝛽32
⋅(𝛽12+𝛽32) ⋅(𝛽12+𝛽32) (1+𝛽12+𝛽32)] ⋅(𝛽12+𝛽32)

𝛿1⋅𝛿2 𝛿2 𝛿1 𝛿1⋅𝛿2 𝛿1 𝛿2 2−[(1+𝛿1)(1+𝛿2) 𝛽13+𝛽23
⋅(𝛽13+𝛽23) ⋅(𝛽13+𝛽23) ⋅(𝛽13+𝛽23) (1+𝛽13+𝛽23)]

𝛿1⋅𝛿2⋅𝛿3 𝛿2⋅𝛿3 𝛿1⋅𝛿3 𝛿1⋅𝛿2 𝛿3 𝛿2 𝛿1 2−[(1+𝛿1)
(1+𝛿2)(1+𝛿3)]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(b) Probability Matrix, 𝑃 with element 𝑃𝑖𝑗 representing the transition from state 𝑗 to state 𝑖.

Figure 3.5: Infection and curing for the discrete time SIS process where multiple nodes can change state in each time
step, for the network in Figure 3.4. Differences of the complete network Markov chain from Figure 3.3 are given in red.





4
Network Reconstruction for the SIS

Epidemic Model
Network reconstruction involves obtaining the underlying adjacency matrix, 𝐴 and potentially the node
and link characteristics such as curing and infection rates or probabilities. This is achieved by taking
measurements of the sequence of observations of the changes in viral state, 𝑋[𝑛]. Current state-of-the-
art methods used of for network reconstruction involves using either a Maximum A-Posteriori (MAP)
or the related Maximum Likelihood (ML) estimators to obtain an estimate for the parameters of the
network from the observations 𝑋[𝑛].

MAP estimation requires prior knowledge of the model used to produce the graph for example
whether it is directed or undirected and whether the links were generated using the BA, ER or WS
model from Section 2.1.2. It has been shown that while MAP estimation is at least as accurate as ML
estimation, the tendency for both is the same for the growth in the number of observations required to
estimate a network of size 𝑁 [34]. Additionally, ML estimation was sufficient to establish variation in
the number of observations required to gain a level of accuracy for exact reconstruction.

4.1. Maximum Likelihood Estimation
For Maximum Likelihood estimation, we aim to find the most probable parameter set from the value
of 𝜃 that maximises the likelihood function (4.1), where 𝑋[𝑛] = (𝑥[1], ..., 𝑥[𝑛]) is the 𝑁 × 𝑛 matrix of
observations.

argmax
𝜃

Pr[𝑋[𝑛]|𝜃] (4.1)

The likelihood function is the probability for a viral state sequence 𝑋[𝑛] conditioned on the parameter
set of the network 𝜃. We take the value of �̂� that maximises Pr[𝑋[𝑛]|𝜃] as our estimate of 𝜃. The
specific parameters we include within 𝜃 are given in (4.2).

𝜃 = (𝛽11, ..., 𝛽𝑁𝑁 , 𝛿1, ...𝛿𝑁) (4.2)

Assumption 1 states that subsequent changes to viral state are independent. The probability of the
viral state sequence up to time 𝑛 is the product of probability of each individual transitions

Pr [𝑋[𝑛]|𝜃] = Pr [𝑥[1]|𝑥[0], 𝜃] ⋅ Pr [𝑥[2]|𝑥[1], 𝜃] ⋅ ... ⋅ Pr [𝑥[𝑛]|𝑥[𝑛 − 1], 𝜃] (4.3)

For the whole network, we can use Assumption 2 where all transitions on different nodes that occur
simultaneously are independent so the total probability for all nodes is the product of transitions of
individual nodes. This allows the total probability for all observations of all nodes 𝑖 ∈ 𝒩 to be calculated
as

21
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Pr [𝑋[𝑛]|𝜃] =
𝑛−1

∏
𝑘=0

Pr [𝑥[𝑘 + 1]|𝑥[𝑘], 𝜃]

=
𝑛−1

∏
𝑘=0

𝑁

∏
𝑖=1

Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃]

(4.4)

We aim to find the maximum

�̂�ML = argmax
𝜃

𝑛−1

∏
𝑘=0

𝑁

∏
𝑖=1

Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃] (4.5)

To make this more easily computable, it can be expresses as the sum of negative logarithms

�̂�ML = argmin
𝜃

𝑛−1

∑
𝑘=0

𝑁

∑
𝑖=1
− log (Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃]) (4.6)

with the constraints

0 ≤ 𝛽𝑖𝑗 ≤ 𝛽max ∀ 𝑖 ≠ 𝑗 (4.7)

0 ≤ 𝛿𝑖 ≤ 𝛿max ∀ 𝑖 (4.8)

The objective function for each node 𝑖 is given in (4.9), which we derive in Appendix A.

Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃] =𝑥𝑖[𝑘] (𝑥𝑖[𝑘 + 1] + (1 − 2𝑥𝑖[𝑘 + 1])𝛿𝑖)

+ (1 − 𝑥𝑖[𝑘]) ((1 − 𝑥𝑖[𝑘 + 1]) + (2𝑥𝑖[𝑘 + 1] − 1)(
𝑁

∑
𝑗=1
𝑥𝑗[𝑘]𝛽𝑖𝑗))

(4.9)

To solve the optimisation problem (4.6), we use the fmincon function [25] in MATLAB, which uses
an existing interior point algorithm designed for large-scale non-linear programming [7]. Since (4.6) is a
convex optimisation problem, the interior point algorithm could guaranteeably find the global minimum
[20].

Concretely, the problem is to determine the values of 𝛿 and 𝐵, given that the observation set 𝑋[𝑛]
was generated. In an unweighted network where 𝛽𝑖𝑗 ∈ {0, 𝛽max}, finding the minimum of (4.9) is NP-
hard [35]. In this case, a brute force method quickly runs into complexity issues as this method would
consider all possible networks that can be generated from 𝑁 nodes, that is 2𝐿max where, 𝐿max = (𝑁2)
is the maximum number of links. By considering a weighted network we reduce the complexity so the
problem is convex and solvable in polynomial time as the values of 𝛽𝑖𝑗 are continuous in the range
𝛽𝑖𝑗 ∈ [0, 𝛽max].

The estimation process requires several runs for each network size to increase the reliability of an
estimate of the error in the calculated values of 𝛿𝑖 or 𝛽𝑖𝑗. The observations are generated probabilis-
tically, it can not be guaranteed that 𝛿, and 𝐵 are the most likely values to generate the observations
and so we aim to calculate a reliable average error in the estimate. There is a chance of being unlucky
and that the observations generated are not very representative of the parameters. For example if the
probability of a node becoming infected is 99% there us no guarantee that the observation generated
will be an infection, 99% of the time. Similarly, if 99 out of 100 times, a node got infected by the same
adjacent node, the link weight was not necessarily 0.99, this was simply the best estimate.
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4.1.1. Maximum a posteriori estimation for uniform prior distributions
For the case of a uniform prior, we demonstrate MAP estimation is equivalent to ML estimation.
Starting from Bayes’ theorem with the prior probability 𝑓𝜃(Θ), defined as the probability distribution
function of the parameter set 𝜃; the likelihood function Pr[𝑋[𝑛]|𝜃] and a posterior probability 𝑓Θ|𝑋[𝑛](𝜃),
the probability distribution function of the parameter set 𝜃 conditioned on the viral state sequence 𝑋[𝑛].
This gives the overall formula for the posterior distribution

𝑓Θ|𝑋[𝑛](𝜃) =
Pr[𝑋[𝑛]|𝜃] ⋅ 𝑓𝜃(Θ)

Pr[𝑋[𝑛]] (4.10)

Given that the probability of the observation set Pr[𝑋[𝑛]] is not a function of the parameters and
the prior distributions in 4.11 are uniform and independent therefore 𝑓Θ(𝜃) is constant over the ranges
in (4.7) and (4.8).

𝑓Θ(𝜃) = 𝑓Θ(𝛽11) ⋅ ...𝑓Θ(𝛽𝑁𝑁) ⋅ 𝑓Θ(𝛽11) ⋅ 𝑓Θ(𝛿1) ⋅ ... ⋅ 𝑓Θ(𝛿𝑁) = constant (4.11)

This shows that MAP estimation and ML estimation provide the same estimate �̂�

argmax
𝜃

Pr[𝑋[𝑛]|𝜃] = argmax
𝜃

𝑓Θ|𝑋[𝑛](𝜃) = �̂� (4.12)

4.2. Simulation Settings
Two different graph models are used to generate adjacency matrices for Barabási-Albert undirected and
Erdős-Rényi directed graphs. We consider networks sizes from 𝑁 = 15 to 𝑁 = 55. For the Erdős-Rényi
directed graphs, we use the link probability 𝑝ER = 0.3 for all graphs. For the Barabási-Albert graphs,
the initial complete graph has 𝑚0 = 3 nodes with each additional node connecting to 𝑚 = 3 nodes.

We initially obtain the curing and infection probabilities for simulating the SIS process. We generate
900 adjacency matrices 𝐴 and infection probability matrices B’ for each network size, where the elements
for 𝐵′ are generated uniformly at random in the range [0, 𝛽max]. We then take the element-wise product
of 𝐴 and 𝐵′ to obtain 𝐵. We generate 900 vectors 𝛿 = (𝛿1, ..., 𝛿𝑁)𝑇 of the curing probabilities uniformly
at random in the range [0, 𝛿max]. We can therefore obtain 900 parameter sets 𝜃 with which to generate
observations 𝑋[𝑛].

The curing probability for each node is generated from the distribution

𝛿𝑖 ∼ 𝑈(0, 𝛿max), 𝑖 ∈ 𝒩 (4.13)

The infection probabilities for single links are random variables that have a uniform distribution,
where the maximum value is 𝛽max = 1/(𝑁 − 1). This means the maximum value of the infection
probability incident on a node, the weighted degree 𝛽𝑖 is 1, where 𝛽𝑖 = ∑

𝑁
𝑗=1 𝛽𝑖𝑗.

𝛽𝑖𝑗 ∼ 𝑈(0, 𝛽max), (𝑖, 𝑗) ∈ ℒ (4.14)

The initial state is an all-one vector, 𝑥[0] = 𝑢 = (𝑥1[0] = 1, 𝑥2[0] = 1, ..., 𝑥𝑁[0] = 1)𝑇. The viral
state where all the nodes are cured, 𝑥[𝑘] = ([𝑥1[𝑘] = 0, 𝑥2[𝑘] = 0, ..., 𝑥𝑁[𝑘] = 0)𝑇 is an absorbing Markov
state. In order for the process network to continue the SIS process, the health status of all the nodes
is reset so that 𝑥[𝑘 + 1] = 𝑢 if 𝑥[𝑘] = 0. The next viral state is generated using Algorithm 3 from
Appendix B. This is repeated for 104 times to simulate 𝑛 = 104 observations.

The basic reproduction number 𝑅0 is specified by the infection probability matrix 𝐵 and the curing
probability 𝛿, see (3.3). We want to set the basic reproduction rate ourselves, 𝑅0 = 𝑅0,required so we can
choose a value that maximises the accuracy of the estimated network. The effective infection probability
of each link has to be scaled accordingly from the current value, 𝑅0,current.

𝑤𝑖𝑗,required = 𝑤𝑖𝑗,current ⋅
𝑅0,required

𝑅0,current
(4.15)

We can adjust 𝑤𝑖𝑗 by keeping 𝛽𝑖𝑗 constant and varying 𝛿𝑖, due to the relation in (3.2):

𝛿𝑖,required = 𝛿𝑖,current ⋅
𝑅0,current

𝑅0,required
(4.16)
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Testing several sets for values of 𝑅0 = 0.6 to 𝑅0 = 2.4 can be done to establish if there is a value
that increases the accuracy. We set the value 𝑅0 = 1.4 as this value meant fewer observations could
be used. Hence we consider the best case for network reconstruction and saves time for computing an
estimate for a fixed level of accuracy.
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4.3. Numerical Evaluation: Exact Network Reconstruction
The accuracy of an estimate of the adjacency matrix is measured using the AUC (Area Under Curve)
metric. An AUC of 1 indicates a perfectly reconstructed network where every link and absence of a
link is correctly identified. An AUC of 0.5 indicates that the average chance of an estimated link being
correct is completely random and an AUC of 0 is where the graph estimated is the complement, or exact
opposite of the actual graph. The AUC uses the area under an ROC (Receiver Operator Characteristic)
curve which plots the True Positive Rate (TPR) against the False Positive Rate (FPR). The greater
the area under the curve, the better the curve is at classifying the data correctly.

The estimation for each link was either a True Positive (TP), True Negative (TN), False Positive
(FP) and False Negative (FN) values given in Table 4.1. The fractions of links identified as TP or FN
are used to calculate the True Positive Rate (TPR) via (4.17) and the fraction of links defined as FP
or TN are used to calculate the False Positive Rate (FPR) via (4.18).

Actual=1 Actual=0
Estimate=1 TP FP
Estimate=0 FN TN

Table 4.1: The table used to determine whether the estimate of link is a true positive, true negative, false positive or false
negative.

TPR = TP
TP+ FN

(4.17)

FPR = FP
FP+ TN

(4.18)

Figure 4.1 shows the greater the area under the curve, the better the curve is at classifying the data
correctly. Each curve is generated by varying the threshold value that separates links into each of the
four categories in Table 4.1. This is used to demonstrate the increase in accuracy of an estimate for a
greater number of observations.
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Figure 4.1: ROC curves for N = 55, where the area under each curve (AUC) compares the accuracy of the estimate of
the adjacency matrix.

4.3.1. Reproduction rate
Figure 4.2 demonstrates the variation in AUC for different 𝑅0 values. This indicated that a network
with a value between 1.4 to 1.6 would have the best estimates of the adjacency matrix 𝐴. This may be
due to the number of infection and curing observations being maximised for a 𝑅0 value in that range.
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(a) Varying the reproduction rate for the Erdős-Rényi directed
model.
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(b) Varying the reproduction rate for the Barabási-Albert model.

Figure 4.2: Graphs showing the effect of changing the basic reproduction number 𝑅0 on the AUC of a reconstructed
network of size 𝑁 = 55.
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4.3.2. Reconstruction accuracy versus the observation length
We evaluate the accuracy of the estimate of the adjacency matrix, giving the results in Figure 4.3. As
expected, the AUC value converged quicker to AUC = 1 for a graph with a lower number of nodes,
this is likely due to more link involvement for a set number of observations for a smaller network
size, providing more data for an estimation for that link. The Erdős-Rényi directed graph converged
more slowly which may be due to the degree distribution with fewer low degree nodes compared to a
Barabási-Albert graph.
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(a) AUC versus the number of observations n for a directed Erdős-Rényi graph.
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(b) AUC versus the number of observations n for a Barabási-Albert graph.

Figure 4.3: Network reconstruction accuracy as a function of the number of observations 𝑛, for various network sizes, on
a semi-logarithmic scale.
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We present the absolute error of the node curing probability 𝛿𝑖 and the relative error in the link
infection probability 𝛽𝑖𝑗 in Figures 4.4 and 4.5 for Erdős-Rényi directed and Barabási-Albert graphs,
respectively. A relative error was used for as the larger the number of nodes 𝑁 the smaller the value of
𝛽max = 1/(𝑁 − 1). A relative error meant the error in the estimate of a link for different network sizes
could be compared.

We calculate the average error in curing probability for a node as

𝜂𝛿 =
1
𝑁

𝑁

∑
𝑖=1
|𝛿𝑖 − ̂𝛿𝑖| (4.19)

and the infection probability for a link

𝜂𝛽 =
1

(𝑁 − 1)𝑁 ∑
𝑖≠𝑗

|𝛽𝑖𝑗 − �̂�𝑖𝑗|
𝛽𝑖𝑗

(4.20)

We can see in Figures 4.4a and 4.5a that over the range 𝑛 = 102 to 𝑛 = 104, the number of
observations required to decrease the error in the curing probability estimate, increases at a greater
than linear rate.

For the link infection error, 𝜂𝛽, Figures 4.4b and 4.5b show that for a smaller number of observations
𝑛 < 500 for Erdős-Rényi graphs and 𝑛 < 300 for Barabási-Albert graphs, larger networks 𝑁 > 35 have
a relative error close to 1. This may be due to the majority of the links remaining unused and estimated
to be 0, leading to a relative error 𝜂𝛽 = 1. In both cases the same exponential decrease is also observed
in the link infection probability as for the curing probability, with 𝜂𝛽 → 0 as 𝑛 → ∞.

We can see that for 𝜂𝛿 there is not much of a reliance on network size on the accuracy on a estimate
unlike 𝜂𝛽, where there is a clear increase in accuracy for smaller networks. The effect of network size on
𝜂𝛽 is more pronounced for Erdős-Rényi directed graphs than Barabási-Albert graphs due to the scale-
free nature of Barabási-Albert graphs where there is always a high proportion of low degree nodes,
regardless of network size. We later analyse the effect of accuracy of an estimate of the link infection
probability for a node 𝑖 with degree 𝑑𝑖.
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(a) The average error in the curing probabilities 𝜂𝛿.
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(b) The average error in the infection probabilities 𝜂𝛽.

Figure 4.4: Average error in infection and curing for individual nodes and links, 𝜂𝛿 and 𝜂𝛽, for an Erdős-Rényi directed
graph, on a log-log scale.
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(a) The average error in the curing probabilities 𝜂𝛿.
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(b) The average error in the infection probabilities 𝜂𝛽.

Figure 4.5: Average error in infection and curing for individual nodes and links 𝜂𝛿 and 𝜂𝛽 for a Barabási-Albert graph
on a log-log scale.
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4.3.3. Required observation length for large networks
We apply an exponential fitting to the data to each sub-figure in 4.6, 4.7 and 4.8 in the form of (4.21),
where the number of observations 𝑛 is a function of the network size 𝑁 for a given error. We obtain
estimates for the values of 𝐶 and 𝑔 in (4.21) which can be used to compare the fitted function and
extrapolate the number of observations from the network size for graphs of 𝑁 = 500.

𝑛(𝑁) = 𝐶10𝑔𝑁 (4.21)

Figure 4.6 show the exponential type increase in the number observations required for an AUC
of 0.80, 0.85, 0.90 and 0.95. This shows that constructing the adjacency matrix to 80% accuracy
and above may require an exponentially increasing number of observations. This would suggest a
completely infeasible number of observations would be required for a pandemic even within a small,
isolated population of 𝑁 = 5000 would required somewhere in the region of 𝑛 > 10110 observations
which would be completely infeasible to collect. Table 4.2 suggests that the number of observations
required to for a network size of 𝑁 = 500 would require very high number of observations, 𝑛 > 1012
for a level of accuracy AUC > 0.8 for Erdős-Rényi directed graphs and 𝑛 > 107 for Barabási-Albert
graphs. We see that the exponent 𝑔 is approximately the same for different errors with 𝑔 ≈ 0.5 for
Erdős-Rényi directed graphs and 𝑔 ≈ 0.2 for Barabási-Albert graphs, for differing levels of accuracy.
There is some inaccuracy in the function approximated, which may be noted from Table 4.2b as the
number of required observations for 𝑁 = 500 is slightly lower that should be expected for AUC = 0.85
as it is lower than the value for AUC = 0.8.
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(a) Interpolation of AUC for the Erdős-Rényi directed graphs.
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Figure 4.6: The number of observations 𝑛 as a function of network size 𝑁. This indicates the function may be exponential
suggesting that for larger network sizes, it would quickly become infeasible to get enough observations to reconstruct the
adjacency matrix.

Error 𝐴 C g n(N=500)
0.95 222 0.022 1.3 ⋅ 1013
0.9 145 0.020 4.6 ⋅ 1012
0.85 92 0.021 4.3 ⋅ 1012
0.8 71 0.020 6.6 ⋅ 1011

(a) Reconstruction of Erdős-Rényi directed graphs.

Error 𝐴 C g n(N=500)
0.95 434 0.007 2.1 ⋅ 106
0.9 234 0.009 1.2 ⋅ 107
0.85 165 0.009 4.3 ⋅ 106
0.8 105 0.010 1.3 ⋅ 107

(b) Reconstruction of Barabási-Albert graphs.

Table 4.2: Table for fitting (4.21) to the calculated AUC to get C and g values for different errors. The number of required
observations is extrapolated to 𝑁 = 500.
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Reconstructing the infection probabilities of links 𝛽𝑖𝑗 appears particularly challenging as the level
of accuracy is very low. A relative error of 𝜂𝛽 = 0.1 was not achieved for 𝑛 = 104 observations. Figure
4.7 shows the increase in the number of observations. Table 4.3 shows that for a network with 𝑁 = 500
nodes, we would require more than 107 observations. For an error of 0.5 in 4.3b however we can note
that the extrapolated number of observations 𝑛 = 1.90 ⋅ 107 for a network of 𝑁 = 500 nodes is greater
than for an error of 0.3 and 0.4, which may be due to some error in the values of 𝐶 and 𝑔 for the
function approximation. The exponent of the exponential fitting in Figure 4.7a for 𝜂𝛽 in Erdős-Rényi
graphs is similar to the one for the error in 𝐴 as 𝑔 ≈= 0.5 in Table 4.3a. The value of the exponent for
the exponential fitting in Barabási-Albert graphs is also similar for the weighted and unweighted links,
where we obtain 𝑔 ≈ 0.2 in Table 4.3b. This suggests the number of observations required for network
reconstruction grows at the same rate for a given unweighted link error and weighted link error.
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(a) Interpolation of 𝜂𝛽 for th Erdős-Rényi graphs.
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Figure 4.7: Average error in infection and curing for individual nodes and links

Error 𝛽𝑖𝑗 C g n(N=500)
0.2 714 0.023 1.3 ⋅ 1014
0.3 410 0.021 1.1 ⋅ 1013
0.4 255 0.021 6.4 ⋅ 1012
0.5 185 0.020 1.3 ⋅ 1012

(a) Reconstruction of Erdős-Rényi directed graphs.

Error 𝛽𝑖𝑗 C g n(N=500)
0.2 1289 0.009 2.91 ⋅ 107
0.3 662 0.009 1.71 ⋅ 107
0.4 415 0.009 1.30 ⋅ 107
0.5 276 0.010 1.90 ⋅ 107

(b) Reconstruction of Barabási-Albert graphs.

Table 4.3: Table for fitting (4.21) to the estimates of 𝛽𝑖𝑗 to get C and g values for different errors. The number of required
observations is extrapolated to 𝑁 = 500.
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Figure 4.8 suggests there is an exponential increase in the number of required observations to estimate
the curing probability of a node 𝛿𝑖 however this increase is considerably weaker than for the AUC or
link infection probability. The exponent obtained from the exponential fitting for Erdős-Rényi directed
graphs given in Table 4.4a is 𝑔 ≈ 0.004 which is an order of magnitude less than for the exponent of
the growth in the number of observations for the error in the adjacency and link infection probabilities.
In Table 4.4b the exponent obtained is 𝑔 ≈ 0.01, which is half the value of the exponents in the fitting
for the number of observations for a fixed error in the adjacency and link infection probabilities. The
trend for the average error in the curing probability is less well defined as can be seen in Figure 4.8
where the standard deviation for estimating the number of observations 𝑛 as a function of the network
size 𝑁 is much larger than for estimating the AUC or link infection probability. Table 4.4 demonstrates
that 105 observations are required for Barabási-Albert graphs and 103 for Erdős-Rényi directed graphs.
We can again note that there is some error in 𝐶 and 𝑔 in the function approximation as the number of
observations for a network fo 𝑁 = 500 is higher for an error of 𝜂𝛿 = 0.05 compared to 𝜂𝛿 = 0.025 in
Table 4.4b.
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(a) Interpolation of 𝜂𝛿 for Erdős-Rényi directed graphs.
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(b) Interpolation of 𝜂𝛿 for the Barabási-Albert graphs.

Figure 4.8: Average error in curing probability for a node, for a constant error. This shows there is a weak dependence
on the network size for evaluating the curing probability for a node.

𝜂𝛿 C g n(N=500)
0.025 745 0.002 6.08 ⋅ 103
0.05 180 0.002 1.22 ⋅ 103

(a) Trend in 𝜂𝛿 for Erdős-Rényi directed graphs.

𝜂𝛿 C d n(N=500)
0.025 654 0.006 4.23 ⋅ 105
0.05 161 0.006 1.45 ⋅ 105

(b) Trend in 𝜂𝛿 for Barabási-Albert graphs.

Table 4.4: Table for fitting (4.21) to 𝜂𝛿 to get C and g values for different errors. The number of required observations is
extrapolated to 𝑁 = 500.
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4.4. Numerical Evaluation: Partial Network Reconstruction
It seems that reconstructing the whole network for a given level of accuracy is not possible for a feasible
number of observations. An alternative could be to reconstruct parts of the network, such as a subset
of links and nodes. This can be determined by separating the set of nodes 𝒩 into nodes with a low,
mid and high degree value the and set of links ℒ into links incident on nodes with low, mid and high
degree.

The accuracy of estimates of the link infection probability 𝛽𝑖𝑗, the curing rate 𝛿𝑖 and the adjacency
matrix 𝐴 are calculated for nodes of different degrees. This demonstrates there is a significant improve-
ment in the accuracy of estimates in lower degree nodes for 𝛽𝑖𝑗 and 𝐴 meaning low degree nodes can
be estimated for a given level of accuracy in larger networks. For curing rates however, the accuracy
increases for higher degree nodes meaning that 𝛿𝑖 can be estimated for a given level of accuracy in larger
networks.

Figure 4.9 demonstrates the increase in accuracy of an estimate of the adjacency of a node 𝑖 the
degree 𝑑𝑖 of the node. The AUC in Figure 4.9 is based on the links incident to a node 𝑖 that have
been classified correctly as having a infection probability 𝛽𝑖𝑗 > 0 or 𝛽𝑖𝑗 = 0. We observe a decrease in
accuracy for higher degree nodes in both Erdős-Rényi and Barabási-Albert graphs with 𝑁 = 55 nodes,
suggesting the trend may be independent of the type of random graph.
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Figure 4.9: Average AUC for a node with degree 𝑑, for networks of size 𝑁 = 55.
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We can show that the accuracy in the infection probability of a link 𝛽𝑖𝑗 improves for a decreasing
value of 𝑑𝑖. Figures 4.10a and 4.10b show the absolute error 𝛽𝑖𝑗 can decrease by more than an order of
magnitude when comparing high degree and low degree nodes.
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(a) Degree versus link error Erdős-Rényi directed graphs.
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(b) Degree versus link error Barabási-Albert graphs.

Figure 4.10: Average error in infection probability for incident links with a node of degree 𝑑.
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For the curing probability, Figures 4.11a and 4.11b the variation in the accuracy of an estimate of
𝛿𝑖 is not clearly defined other than a slight increase as the degree of a node 𝑑𝑖 increases for 𝑁 = 15.
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(a) Degree versus node error Erdős-Rényi directed graphs.
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Figure 4.11: Average error in curing probability for a node with degree 𝑑.
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4.4.1. Error in adjacency for nodes with different degrees
The number of observations required for AUC = 0.9 is lower for nodes with a lower degree compared
to nodes with a higher degree, for any network size in the range 𝑁 = 15 to 𝑁 = 55 as shown in Figures
4.12a and 4.12b. Table 4.5 shows that we predict that for a network size of 𝑁 = 500 we would require
more than 105 observations. We calculate the error in 𝐴𝑖, the adjacency of node 𝑖 by calculating the
AUC value of the estimate.
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Figure 4.12: Average error in the AUC for a node with adjacency 𝐴𝑖. This suggests that nodes with a lower degree can
more easily be reconstructed than nodes with a higher degree.

Degree 𝑑𝑖 C g n(N=500)
8-12 266 0.014 1.87 ⋅ 109
13-25 490 0.012 2.82 ⋅ 108

(a) Reconstruction of Erdős-Rényi directed graphs.

Degree 𝑑𝑖 C g n(N=500)
3-7 235 0.006 3.55 ⋅ 105
8-12 390 0.008 3.56 ⋅ 106

(b) Reconstruction of Barabási-Albert graphs.

Table 4.5: Table for fitting (4.21) to error in estimates of the adjacency of nodes in different networks, to get C and g
values for different errors. The number of required observations is extrapolated to 𝑁 = 500.
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4.4.2. Error in the link infection probability
Figures 4.13a and 4.13b suggest that links incident to nodes with a lower degree require fewer observa-
tions to be estimated with an error of 𝜂𝛽 = 0.2. This means that it will likely be easier to reconstruct
nodes in the network with a low degree. Table 4.6 suggests that over 106 observations are required to
reconstruct links in the network attached to nodes with a degree in the range 𝑑𝑖 = 3 to 𝑑𝑖 = 7.
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(a) Interpolation of the error in the link infection propability 𝛽𝑖𝑗
for mid and high degree nodes in Erdős-Rényi directed graphs.
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Figure 4.13: Average error in the infection probability 𝛽𝑖𝑗 for a link with for different ranges of degrees. This suggests the
infection probability of links with a low degree can be estimated more accurately than links with a high degree.

Degree 𝑑𝑖 C g n(N=500)
8-12 1225 0.012 1.51 ⋅ 109
13-25 1983 0.011 1.05 ⋅ 109

(a) Reconstruction of Erdős-Rényi directed graphs.

Degree 𝑑𝑖 C g n(N=500)
3-7 945 0.007 2.70 ⋅ 106
8-12 1435 0.001 1.91 ⋅ 107

(b) Reconstruction of Barabási-Albert graphs.

Table 4.6: Table for fitting (4.21) to error in estimates of the link infection probability, 𝜂𝛽 attached to a node 𝑖 with
degree 𝑑𝑖. We obtain C and g values for different ranges of degree. The number of required observations is extrapolated
to 𝑁 = 500.
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4.4.3. Error in curing probability
Figure 4.14a shows that nodes degrees in the mid range required more observations for an error of
𝜂𝛿 = 0.05 compared to nodes with degrees in th high range. Figure 4.14b demonstrates this is also the
case for nodes in the low degree range compared to the high degree range. Table 4.7 shows that 𝑛 > 104
observations are required in the best case to reconstruct particular nodes in graphs of 𝑁 = 500.
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(a) Interpolation of the error 𝜂𝛿 for mid and high degree nodes
in Erdős-Rényi directed graphs.
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Figure 4.14: Average error in the curing probability 𝜂𝛿 for a node with degree 𝑑𝑖. This suggests the curing probability of
nodes with a high degree can be estimated more accurately than nodes with a low degree.

Degree 𝑑𝑖 C g n(N=500)
8-12 125 0.009 3.96 ⋅ 106
13-25 126 0.006 1.10 ⋅ 105

(a) Reconstruction of Erdős-Rényi directed graphs.

Degree 𝑑𝑖 C g n(N=500)
3-7 216 0.006 2.69 ⋅ 105
8-12 153 0.004 1.44 ⋅ 104

(b) Reconstruction of Barabási-Albert graphs.

Table 4.7: Table for fitting (4.21) to error in estimates of the curing probability of nodes in different networks, to get C
and g values for different ranges of degrees. The number of required observations is extrapolated to 𝑁 = 500.
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4.5. Estimating nodal infection probability
We propose an alternative method to evaluating individual link probabilities where the weighted degree
of a node is used to estimate its infection probability. It is shown empirically in Figure 4.15 that the
weighted degree 𝛽𝑖 is highly correlated with the infection probability averaged over time, 𝜒, where
𝛽𝑖 = ∑

𝑁
𝑗=1 𝛽𝑖𝑗 and 𝜒𝑖[𝑘] = ∑𝑗≠𝑖 𝛽𝑖𝑗𝑥𝑗[𝑘] for node 𝑖. We can show the error in 𝛽𝑖 scales less strongly with

the network size 𝑁.
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(a) Average 𝜒𝑖[𝑘] against 𝛽𝑖 for the Erdős-Rényi directed model.
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(b) Average 𝜒𝑖[𝑘] against 𝛽𝑖 for the BA model.

Figure 4.15: Correlation between average infection probability and weighted degree

In addition, the number of observations required for reconstruction is much less for 𝛽𝑖 than 𝛽𝑖𝑗, as
demonstrated in Figure 4.16 and Table 4.8 for a fixed level of accuracy determined as

𝜂𝑑 =
1
𝑁

𝑁

∑
𝑖=1
|𝛽𝑖 − �̂�𝑖| (4.22)
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(a) Interpolation of the error in 𝛽𝑖 for the Erdős-Rényi directed
model.
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(b) Interpolation of error in 𝛽𝑖 for the BA model.

Figure 4.16: Average error in total infection probability for a node, for a constant error. This shows there is a weak
dependence on the network size for evaluating the weighted degree of a node.
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Error 𝛽𝑖 C g n(N=500)
0.05 663 0.006 5.89 ⋅ 105
0.1 207 0.004 1.82 ⋅ 104
0.15 112 0.0001 198

(a) Reconstruction of Erdős-Rényi directed graphs.

Error 𝛽𝑖 C g n(N=500)
0.05 540 0.010 4.43 ⋅ 107
0.1 147 0.013 3.94 ⋅ 108
0.15 71 0.014 5.97 ⋅ 108

(b) Reconstruction of Barabási-Albert graphs.

Table 4.8: Table for fitting (4.21) to error in 𝛽𝑖 to get A and g values for different errors. The number of required
observations is extrapolated to 𝑁 = 500.

We can analyse the accuracy of estimates of the weighted degree 𝛽𝑖 for nodes with low, mid or high
degrees. For the Erdős-Rényi directed graphs, Figure 4.17a the number of observations did not increase
exponentially as expected and levelled off suggesting that for high degrees, there was a convergence in
the number of observations required. Figure 4.17b shows that the low degree nodes for Barabási-Albert
graphs required fewer observations than the nodes with a mid-range degree, when considering an error
in 𝛽𝑖 of 0.05. Table 4.9 suggests for nodes with a low degree, the number of observations required for
a network size of 𝑁 = 500 would be around 106.
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(a) Interpolation of the error in the total infection probability of
a node 𝛽𝑖 for mid and high degree nodes in Erdős-Rényi directed
graphs.
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(b) Interpolation of the error in the wighted sum of links for a
node 𝛽𝑖 for low and mid degree nodes in Barabási-Albert graphs.

Figure 4.17: Average error in the weighted degree 𝛽𝑖 for a node with adjacency 𝐴𝑖. This suggests the weighted degree of
nodes with a high degree can be estimated more accurately than nodes with a low degree.

Degree 𝑑𝑖 C g n(N=500)
8-12 922 0.0005 1.58 ⋅ 103
13-25 - - -

(a) Reconstruction of Erdős-Rényi directed graphs.

Degree 𝑑𝑖 C g n(N=500)
3-7 602 0.006 9.91 ⋅ 105
8-12 552 0.016 4.75 ⋅ 1010

(b) Reconstruction of Barabási-Albert graphs.

Table 4.9: Table for fitting (4.21) to error in estimates of the weighted sum of links connected to node 𝑖 in networks of
different sizes. C and g values are given for different ranges of degrees. The number of required observations is extrapolated
to 𝑁 = 500.





5
Network Reconstruction for the SI and

SIR Epidemic Models
Conceptually, the network reconstruction method in Chapter 4 can be generalised to other models than
the SIS epidemic process. Here, we consider the susceptible-infected (SI) process where a node cannot
be cured once it is infected and susceptible-infected-removed (SIR) process where a node can be cured
however is placed in the removed (R) compartment where it is no longer infectious. We demonstrate
that maximum likelihood estimation allows for estimates of the adjacency matrix to be obtained for
both processes.

We consider a similar simulation setting as for the SIS process with 900 runs for five network sizes
in the range 𝑁 = 15 to 𝑁 = 55 and 𝑁 = 10 to 𝑁 = 30 for the SI and SIR models respectively. Each
Erdős-Rényi directed and Barabási-Albert undirected graph is generated randomly for each run.

5.1. SI process
The SI process occurs in many real-world situations such as a epidemic of an infectious disease for which
there is no known cure such as AIDS [8] where a person is likely to remain infective and alive for a
significant period of time after infection.

In order to use ML estimation, we require an objective function that no longer includes the curing
probability as for the SI process 𝛿 = 0, additionally the constraint for the curing probability is no longer
required. The optimisation problem (4.6) therefore reduces to

�̂�ML = argmin
𝜃

𝑛−1

∑
𝑘=0

𝑁

∑
𝑖=1
− log (Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃]) (5.1)

with the constraints

0 ≤ 𝛽𝑖𝑗 ≤ 𝛽max ∀ 𝑖 ≠ 𝑗 (5.2)

The objective function for each node 𝑖 is given as

Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃] = (1 − 𝑥𝑖[𝑘]) ((1 − 𝑥𝑖[𝑘 + 1]) + (2𝑥𝑖[𝑘 + 1] − 1)(
𝑁

∑
𝑗=1
𝑥𝑗[𝑘]𝛽𝑖𝑗)) (5.3)

To generate the observations we set a single node as infected and the rest as healthy. As nodes can
only transition from healthy to infected, the state where all nodes are infected is an absorbing state
in which case we reset the next state as having only a single random node as infected and the rest as
healthy.

Figure 5.1 shows that we cannot expect a full reconstruction for 𝑛 ≤ 104, for both Erdős-Rényi
directed and Barabási-Albert undirected graphs for network sizes of 𝑁 ≥ 15.

43
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(a) AUC versus the number of observations n for a directed Erdős-Rényi graph.
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(b) AUC versus the number of observations n for a Barabási-Albert graph.

Figure 5.1: Network reconstruction accuracy of estimates from observations of the SI process as a function of the number
of observations 𝑛, for various network sizes, on a semi-logarithmic scale.

We can see that it is possible to fit the exponential (4.21) to the SI process in Figure 5.2 for a fixed
AUC of 0.6 and 0.7. Tables 5.1a and 5.1b and show that it would be infeasible to reconstruct a network
size of 𝑁 > 500, for an AUC of 0.6 or greater.

Error 𝐴 C g n(N=500)
0.6 114 0.023 3.3 ⋅ 1013
0.7 490 0.034 3.3 ⋅ 1019

(a) Reconstruction of Erdős-Rényi directed graphs.

Error 𝐴 C g n(N=500)
0.6 59 0.026 5.8 ⋅ 1014
0.7 519 0.034 5.8 ⋅ 1019

(b) Reconstruction of Barabási-Albert graphs.

Table 5.1: Table for fitting (4.21) to the calculated AUC to obtain C and g values for different errors. The number of
required observations is extrapolated to 𝑁 = 500.
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(a) Interpolation of AUC for the Erdős-Rényi directed graphs.
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(b) Interpolation of AUC for Barabási-Albert graphs.

Figure 5.2: The number of observations 𝑛 as a function of network size 𝑁 for the SI process. Fitting an exponential curve
suggests that the increase number of observations required increases exponentially as the number of nodes increases.

5.2. SIR process
The SIR process can be used to model diseases where there is a high mortality such as the plague [21].
The SIR model includes three compartments. The new removed compartment R is used to represent
nodes that no longer participate in the spread of the disease, which in the case of a disease would
represent deceased or immune individuals. Infection moves an individual from S to I, as is the case for
the SI and SIS models. Curing moves an individual from I to R, where they can neither be infected by
nor infect other nodes. In this model, the absorbing state is where there are no infected individuals, as
a stable state is reached when no further infections or curing can occur. We consider several cascades
where the initial state consists of a single, randomly selected infected node with the rest susceptible.
The additional compartment requires an additional state for a node. By 𝑥𝑖[𝑘] = −1 we indicate that
node 𝑖 at time 𝑘 is in the removed state.

For the SIR model, the ML-estimation problem becomes

�̂�ML = argmin
𝜃

𝑛−1

∑
𝑘=0

𝑁

∑
𝑖=1
− log (Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃]) (5.4)

with the constraints

0 ≤ 𝛽𝑖𝑗 ≤ 𝛽max ∀ 𝑖 ≠ 𝑗 (5.5)

0 ≤ 𝛿𝑖 ≤ 𝛿max ∀ 𝑖 (5.6)

where the addends in the objective function (5.4) are given by

Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃] =
𝑥𝑖[𝑘](𝑥𝑖[𝑘] + 1)𝑥𝑖[𝑘 + 1]2

2 ((𝑥𝑖[𝑘 + 1] + 1)2 − 𝑥𝑖[𝑘 + 1]𝛿𝑖)

+ (𝑥𝑖[𝑘]2 − 1)(𝑥𝑖[𝑘 + 1] + 1) (
𝑥𝑖[𝑘 + 1]

2 − 1)

⋅ ((1 − 𝑥𝑖[𝑘 + 1]) + (2𝑥𝑖[𝑘 + 1] − 1)(
𝑁

∑
𝑗=1
𝑥𝑗[𝑘]𝛽𝑖𝑗))

+ 𝑥𝑖[𝑘 + 1](𝑥𝑖[𝑘 + 1] − 1)𝑥𝑖[𝑘](𝑥𝑖[𝑘] − 1)4

(5.7)

From Figure 5.3 we can see that it is possible to reconstruct the network from observations of the SIR
process. However as demonstrated in Figure 5.4 we again require an exponentially increasing number
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of observations. Tables 5.2a and 5.2b show how infeasible this becomes for a network size of 𝑁 = 500
with over 𝑛 = 1020 observations required for an accurate reconstruction.
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(a) AUC versus the number of observations n for a directed Erdős-Rényi graph.
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(b) AUC versus the number of observations n for a Barabási-Albert graph.

Figure 5.3: Network reconstruction accuracy of estimates from observations of the SIR process as a function of the number
of observations 𝑛, for various network sizes, on a semi-logarithmic scale.
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(a) Interpolation of AUC for the Erdős-Rényi directed graphs.
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(b) Interpolation of AUC for Barabási-Albert graphs.

Figure 5.4: The number of observations 𝑛 as a function of network size 𝑁 for the SIR process. Fitting an exponential
curve suggests that the increase number of observations required increases exponentially as the number of nodes increases.

Error 𝐴 C g n(N=500)
0.7 50.2 0.090 5.4 ⋅ 1046

(a) Reconstruction of Erdős-Rényi directed graphs.

Error 𝐴 C g n(N=500)
0.7 110 0.056 8.1 ⋅ 1024
0.8 516 0.040 5.0 ⋅ 1022

(b) Reconstruction of Barabási-Albert graphs.

Table 5.2: Table for fitting (4.21) to the calculated AUC to obtain C and g values for different errors. The number of
required observations is extrapolated to 𝑁 = 500.





6
Conclusion

A large part of the academic and data science community believe that the scale of Big Data will help
to resolve the issues of network reconstruction. The idea being, that by tracking the propagation of
information, such as posts, diseases or trends, the underlying properties of the network such as the
adjacency, curing and infection rates can be obtained. This can be seen as part of the Big Data belief
that there is enough data, in this case observations to allow for a reasonable estimate to be made
of a complex system. The possibilities are vast if estimation were possible and would help in a wide
array of issues from monitoring a group of individuals to uncover criminal gangs to helping remove the
connections that allow diseases to propagate through a network.

We demonstrate that it is hardly possible in practice to completely reconstruct the infection prob-
abilities, curing probabilities and the adjacency matrix 𝐴 for the whole network for a given level of
accuracy in a reasonable amount of time for a large number of nodes, that is greater than 𝑁 ≥ 500.
We solve the maximum-likelihood estimation meaning that a better estimation does not exist, unless
there is prior knowledge. Furthermore, we emphasise that we considered idealised conditions where
all observations of all nodes are available and transitions are Markovian meaning reinfections for nodes
are independent of previous infections for that node. We also consider the simplified setting of a static
network where the adjacency of the nodes does not change over time, as it might in a real world network.

For larger networks where 𝑁 > 500 one may wonder if it is possible to reconstruct parts of the
network. However we observe a similar exponential increase in the number of required observations
rendering network reconstruction infeasible, e.g. for social networks with millions of individuals. Esti-
mates of infection probabilities and links for low-degree nodes with a degree between 𝑑𝑖 = 3 and 𝑑𝑖 = 7
and curing probabilities for high-degree nodes with a degree 𝑑𝑖 > 13 are only possible if the number of
observations grows as 𝑛(𝑁) ≈ 𝐶10𝑔𝑛 where 𝐶 is in the range 100 < 𝐶 < 2000 and 𝑔 < 0.01.

Our results hold not only for the SIS epidemics, but also for SI and SIR epidemics. Hence, we believe
that the reconstruction of large networks is infeasible for a general class of compartmental epidemic
models, see for instance [38, 36].

6.1. Outlook
We show that the accuracy of an estimate of the curing and infection probabilities varies based on the
degree of a nodes. To extend the analysis of partially reconstructed networks, a more graph-theoretic
approach could establish if this relates to other graphs metrics such the closeness of a node and if
this has an effect on the accuracy of an estimate. There could be further indicators as to whether an
estimate of a node or link in a network is likely to be accurate or not.

Further research could analyse a network that varies over time to better simulate real-world con-
ditions. The average degree over time could be considered to as this could have implications for the
accuracy of an estimate as is the case for the degree in a static network.
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A
Objective function derivation

Four different begin and end states combinations exist for a node 𝑖 when a transition occurs from the
viral state at time 𝑘, 𝑥𝑖[𝑘] to the viral state at time 𝑘+1, 𝑥𝑖[𝑘 +1], resulting in the probabilities given
by (A.2) to (A.5). These can be conditioned on the viral state at time 𝑘 for the whole network 𝑥[𝑘]
and the parameters 𝜃.

For simplicity, we define
𝑛

∑
𝑗=1
𝑥𝑗[𝑘]𝛽𝑖𝑗 = 𝜒𝑖[𝑘] (A.1)

The probability of infection at time 𝑘 + 1 for node 𝑖 that is healthy at time 𝑘 is

Pr [𝑥𝑖[𝑘 + 1] = 1|𝑥𝑖[𝑘] = 0, 𝑥[𝑘], 𝜃] =
𝑁

∑
𝑗=1
𝑥𝑗[𝑘]𝛽𝑖𝑗 = 𝜒𝑖[𝑘] (A.2)

The probability of remaining infected at time 𝑘 + 1 for node 𝑖 that is infected at time 𝑘 is

Pr [𝑥𝑖[𝑘 + 1] = 0|𝑥𝑖[𝑘] = 1, 𝑥[𝑘], 𝜃] = 1 − 𝛿𝑖 (A.3)

The probability of curing at time 𝑘 + 1 for node 𝑖 that is infected at time 𝑘 is

Pr [𝑥𝑖[𝑘 + 1] = 0|𝑥𝑖[𝑘] = 1, 𝑥[𝑘], 𝜃] = 𝛿𝑖 (A.4)

The probability of remaining healthy at time 𝑘 + 1 for node 𝑖 that is healthy at time 𝑘 is

Pr [𝑥𝑖[𝑘 + 1] = 0|𝑥𝑖[𝑘] = 0, 𝑥[𝑘], 𝜃] = 1 −
𝑁

∑
𝑗=1
𝑥𝑗[𝑘]𝛽𝑖𝑗 = 1 − 𝜒𝑖[𝑘] (A.5)

Not all of these transitions are possible between times 𝑘 and 𝑘 +1. The value of 𝑥𝑖[𝑘] and 𝑥𝑖[𝑘 +1]
can be used to select certain terms in the objective function meaning there is no need to separate the
observations into sets. This gives the following equation for the probability of a transition for each node
𝑖 from time 𝑘 to time 𝑘 + 1

Pr [𝑥𝑖[𝑘 + 1]|𝑥[𝑘], 𝜃] =𝑥𝑖[𝑘] (𝑥𝑖[𝑘 + 1] + (1 − 2𝑥𝑖[𝑘 + 1])𝛿𝑖)

+ (1 − 𝑥𝑖[𝑘]) ((1 − 𝑥𝑖[𝑘 + 1]) + (2𝑥𝑖[𝑘 + 1] − 1)(
𝑁

∑
𝑗=1
𝑥𝑖[𝑘]𝛽𝑖𝑗))

(A.6)
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B
Algorithms

We first generate the parameters for a given network using Algorithm 1. We then generate observations
of the SIS process using the parameters 𝜃 and the network 𝐴 using Algorithms 2 and 3.

In Algorithm 1 we need to firstly generate the adjacency matrix 𝐴 with elements 𝑎𝑖𝑗. The graph
type is set as either a directed Erdős-Rényi graph in which case the graph parameters includes only the
link probability 𝑝ER or Barabási-Albert undirected graph where the graph parameters include the size
of the initial complete graph 𝑚0 and the number of nodes that any further nodes will have to connect
𝑚.

We set the maximum curing rate for a node as �̃�max = 𝑁 and the maximum infection rate for a link
as �̃�max = 1. This enables the curing probability 𝛿𝑖 and infection probability 𝛽𝑖 = ∑

𝑁
𝑗=1 𝛽𝑖𝑗 for a node

to be a maximum of 1 for a sample time of 1/𝑁.

Algorithm 1 Generate Parameters

1: Input: Maximum curing rate �̃�max, maximum infection rate �̃�max, basic reproduction rate 𝑅0,
network size 𝑁, graph type, graph parameters

2: Output: curing probability vector 𝛿, infection probability matrix 𝐵
3: A = generate adjacency matrix(𝑁, graph type, graph parameters)
4: for 𝑖 = 1, ..., 𝑁 do
5: ̃𝛿𝑖 = generate random number in range [0, �̃�max]
6: for 𝑗 = 1, ..., 𝑁 do
7: �̃�𝑖𝑗 = generate random number in range [0, 𝑎𝑖𝑗�̃�max]
8: for 𝑖 = 1, ..., 𝑁 do
9: for 𝑗 = 1, ..., 𝑁 do

10: The effective spreading parameter for a link from node 𝑗 to node 𝑖, 𝑤𝑖𝑗 = �̃�𝑖𝑗/ ̃𝛿𝑖
11: 𝑅0,𝑐𝑢𝑟𝑟 = largest eigenvalue of the effective spreading parameter matrix 𝑊
12: �̃� = 𝑅0,𝑐𝑢𝑟𝑟

𝑅0
⋅ �̃�

13: 𝑇 = 1
𝑁

14: 𝛿 = �̃� ⋅ 𝑇
15: 𝐵 = �̃� ⋅ 𝑇

In Algorithm 2 the viral state x[k] of all nodes at time k is used to calculated the next viral state
sequence 𝑥[𝑘 + 1]. If all node are healthy for 𝑥[𝑘] the process is in an absorbing state so we set all the
nodes to be infected.
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Algorithm 2 Generate Observations
1: Input: curing probability vector 𝛿, infection probability matrix 𝐵, number of observations 𝑛
2: Output: Viral state sequence 𝑋[𝑛]
3: 𝑥[0] = all-one vector u
4: for 𝑘 = 0, ..., 𝑛 − 1 do
5: if 𝑥[0] = 0 then
6: 𝑥[𝑘 + 1] = u
7: else
8: 𝑥[𝑘 + 1] = calculate the next viral state (𝑥[𝑘], 𝛿, 𝐵)

In Algorithm 3 we generate a viral state at time 𝑘 + 1, 𝑥[𝑘 + 1] by using the curing probability 𝛿𝑖
for a node 𝑖 if it is infected or the probability of infection 𝜒𝑖[𝑘] = ∑

𝑁
𝑗=1 (𝛽𝑖𝑗𝑥𝑖[𝑘]) if it is healthy.

Algorithm 3 Calculate The Next Viral State
1: Input: curing probability vector 𝛿, infection probability matrix 𝐵, current viral state 𝑥[𝑘]
2: Output: next viral state 𝑥[𝑘 + 1]
3: for 𝑖 = 1, .., 𝑁 do
4: 𝜒𝑖[𝑘] = ∑

𝑁
𝑗=1 (𝛽𝑖𝑗𝑥𝑖[𝑘])

5: if 𝑥𝑖[𝑘] == 1 then
6: if 𝛿𝑖 > random number in range [0, 1] then
7: 𝑥𝑖[𝑘 + 1] = 1
8: else
9: 𝑥𝑖[𝑘 + 1] = 0

10: if 𝑥𝑖[𝑘] == 0 then
11: if 𝜒𝑖 > random number in range [0, 1] then
12: 𝑥𝑖[𝑘 + 1] = 0
13: else
14: 𝑥𝑖[𝑘 + 1] = 1
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