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Performance of the Standardized Precipitation Index
Based on the TMPA and CMORPH Precipitation

Products for Drought Monitoring in China
Jing Lu , Li Jia, Massimo Menenti, Yuping Yan, Chaolei Zheng, and Jie Zhou

Abstract—This paper evaluated the accuracy of multiple
satellite-based precipitation products including the tropical rain-
fall measuring mission multisatellite precipitation analysis (TMPA)
(TMPA 3B42RT and TMPA 3B42 version 7) and the Climate
Prediction Center MORPHing technique (CMORPH) (CMORPH
RAW and CMORPH BLD version 1.0) datasets and investigated
the impact of the accuracy and temporal coverage of these data
products on the reliability of the standardized precipitation index
(SPI) estimates. The satellite-based SPI was compared with the SPI
estimate using in situ precipitation observations from 2221 mete-
orological observation sites across China from 1998 to 2014. The
SPI values calculated from the products calibrated with rain gauge
measurements (TMPA 3B42 and CMORPH BLD) are generally
more consistent with the SPI obtained with in situ measurements
than those obtained using noncalibrated products (TMPA 3B42RT
and CMORPH RAW products). The short data record of satellite
precipitation data products is not the primary source of large errors
in the SPI estimates, suggesting that the SPI estimate using satellite
precipitation data products can be applied to drought assessment
and monitoring. Satellite-based SPI estimates are more accurate in
eastern China than in western China because of larger uncertain-
ties in precipitation retrievals in western China, characterized by
arid and semiarid climate conditions and complex landscapes. The
satellite-based SPI can capture typical drought events throughout
China, with the limitation that it is based on precipitation only
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and that different durations of antecedent precipitation are only
suitable for specific drought conditions.

Index Terms—Drought, precipitation, remote sensing, standard-
ized precipitation index.

I. INTRODUCTION

DROUGHT is one of the most severe natural disasters
and can lead to large economic losses and threaten na-

tional food security [1], [2]. With the increase in drought extent
and severity in the twenty-first century [3], drought monitoring
based on satellite data is becoming increasingly useful [4]–
[7]. AghaKouchak et al. reviewed the progress, challenges, and
opportunities of remote sensing-based drought assessment and
monitoring and pointed out that the current short data record of
available satellite observations is a major limitation on drought
monitoring from a climate perspective. In addition, data conti-
nuity, unquantified uncertainty, sensor changes, and community
acceptability also hinder drought monitoring with satellite data
products [8].

The occurrence of a drought is initially caused by the lack
of precipitation during a certain period, which triggers the
causal chain of agricultural drought, hydrological drought, and
socioeconomic drought [9]–[12]. The launches of the Trop-
ical Rainfall Measuring Mission (TRMM) in 1997 and the
Global Precipitation Measurement mission in 2014 provide ad-
vanced approaches for precipitation observations at both the
regional and global scales. However, the high uncertainties
and relatively short temporal coverage of satellite-based pre-
cipitation datasets for drought monitoring remain outstanding
issues.

TRMM multisatellite precipitation analysis (TMPA) data
[13] and Climate Prediction Center (CPC) MORPHing tech-
nique (CMORPH) data [14] are two well-known satellite-based
precipitation data products [15]–[18] that have been used for
drought monitoring in many regions worldwide. Sahoo et al.
evaluated the TMPA 3B42v6, 3B42v7, and 3B42RTv7 prod-
ucts for the assessment of meteorological drought worldwide
using the standardized precipitation index (SPI) [19]. The re-
sults indicated that TMPA data can provide useful informa-
tion for drought monitoring, but caution should be taken when
using the 3B42RTv7 product for the real-time monitoring of
drought conditions due to the lack of corrections based on gauge

1939-1404 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 14,2020 at 08:04:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2149-7071


1388 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 11, NO. 5, MAY 2018

observations. Naumann et al. analyzed the uncertainties in
TMPA data and suggested that relatively short time series of
satellite precipitation products can be used for reliable drought
monitoring over Africa [20]. Zeng et al. assessed the ability of
TMPA 3B43v6 data to monitor drought in the Lancang River
Basin in China by studying two severe drought events in 2006
and 2009 [21]. The results showed that TMPA 3B43v6 data
have the potential to monitor drought in data-scarce regions. Li
et al. investigated the temporal and spatial variations of dry/wet
conditions in the Poyang Lake Basin in China using TMPA
3B42 data, and concluded that the satellite-based SPI exhib-
ited an interannual variability consistent with rain gauge data
[22]. Lu et al. also used monthly TMPA 3B43v7 data to ana-
lyze the characteristics of summer drought in Henan Province in
2004 and concluded that the data did capture the drought event
effectively [23].

Most of these studies were based on outdated TMPA data.
The most recent, high-quality versions of the datasets (TMPA
v7 and CMORPH v1.0 data products) have not yet been widely
used. In China, the evaluation of satellite precipitation data for
drought monitoring purposes focused on small river basins. In
contrast, this study will use recent versions of the TMPA and
CMORPH precipitation datasets for drought monitoring at the
national scale.

The SPI is a widely used estimator of the severity of a drought
[24]–[27] and requires observations of precipitation over an ex-
tended and continuous period. It is generally accepted that a
minimum data record of 30 years is necessary for SPI calcula-
tion [28]. Compared with rain gauge observations, the TMPA
and CMORPH data records are relatively short (no more than
20 years). Wu et al. investigated the effects of the length of the
data record on SPI estimates and demonstrated that the SPI val-
ues computed using data records of variable lengths are highly
correlated and consistent when the gamma distribution of pre-
cipitation over different periods is similar [29]. However, their
analysis mainly focused on data records of 30 years or longer.
Rhee and Carbone discussed the impact of shorter data records
on SPI estimates in the United States, and concluded that short
data records, e.g., 10–20 years, generally produced small mean
cross-validation absolute errors on SPI [30]. The lengths of
the TMPA and CMORPH precipitation data records should be
analyzed to determine whether they are sufficient for drought
monitoring in China.

The somewhat conflicting evidence summarized above sug-
gests that even short precipitation data records may provide
reliable SPI estimates, but this needs to be evaluated region by
region. This study will evaluate the TMPA v7 and CMORPH
v1.0 precipitation products throughout China using all available
rain gauge data. The evaluation method and data are introduced
in Sections II and III, respectively. The accuracies of both pre-
cipitation data products and the SPI estimates obtained with
them are documented by these evaluations, which are given in
Sections IV-A–C. The performance of satellite-based SPI es-
timates in the monitoring of extreme drought events in China
is assessed in Section IV-D. Finally, Section V summarizes the
conclusions.

TABLE I
LEVELS OF DROUGHT SEVERITY DEFINED BY RANGES OF SPI VALUES

Level Class SPI value

D0 No drought −0.5 < SPI
D1 Light drought −1.0 < SPI � −0.5
D2 Mild drought −1.5 < SPI � −1.0
D3 Severe drought −2.0 < SPI � −1.5
D4 Extreme drought SPI � −2.0

II. METHOD

A. Drought Monitoring Method: The Standardized
Precipitation Index

The SPI is widely utilized as a drought monitoring index
because it captures drought conditions at different time scales
[28], [31]. The SPI is based on the standardized probability
of precipitation, so SPI = 0 indicates the median precipitation
amount, while SPI < 0 reflects drought, and SPI > 0 implies wet
conditions. The determination of a probability density function
for precipitation is essential for calculating the SPI and this cal-
culation may be influenced by the length of the data record.
The generally accepted gamma probability density function
is widely used by numerous agencies, including the National
Drought Mitigation Center, the Western Regional Climate Cen-
ter, and the National Agricultural Decision Support System in
the United States. We calculated the SPI using the gamma prob-
ability density function and according to the procedure in [32],
as detailed in Appendix A.

The levels of drought severity defined by SPI ranges are
shown in Table I. These ranges are derived from the “Classifi-
cation of Meteorological Drought” defined by China National
Standardization Management Committee.

To assess the impact of the precipitation record length on the
SPI estimates, SPI values obtained with record lengths from 1
to 30 years were evaluated. To separate the impact of the ac-
curacy of the precipitation data products from the impact of
the data record, the evaluation was conducted using rain gauge
measurements from the 2221 stations with long-term records.
The SPI estimates based on a consecutive 30-year precipita-
tion record were considered as references to assess the results
obtained using shorter records.

B. Evaluation Method

Multiple metrics were applied to evaluate the quality of both
the precipitation data products and SPI estimates. These metrics
include the correlation coefficient (R), the root mean square
error (RMSE), the mean bias error (MBIAS), the relative bias
(RBIAS), and the Nash–Sutcliffe efficiency (NSE), which are
expressed as follows:

R =
n

∑
XY − ∑

X
∑

Y
√

n
∑

X2 − (
∑

X)2
√

n
∑

Y 2 − (
∑

Y )2
(1)
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Fig. 1. Distribution of national standard weather stations and their mean an-
nual precipitations. Mean annual precipitations are calculated by the averages
of rain gauge measurements from 1985 to 2014.

RMSE =

√
∑

(X − Y )2

n
(2)

MBIAS =
∑

(X − Y )
n

(3)

RBIAS =
MBIAS

Ȳ
× 100% (4)

NSE = 1 −
∑

(X − Y )2

∑(
Y − Ȳ

)2 (5)

where X and Y are the estimates and reference values, respec-
tively. The SPI values calculated using rain gauge measurements
are generally considered as references. The larger the values of
|R|, the lower the RMSE, and the closer to zero MBIAS and
RBIAS indicate that estimates are closer to the reference val-
ues, thereby reflecting a high reliability of the estimates. The
NSE values range from negative infinity (poor skill) to one (per-
fect skill). An NSE value of 0.4 is considered to be the threshold
value for a satisfactory data quality in this study [33], [34].

III. DATA

A. Rain Gauge Measurements

Rain gauge measurements were obtained from the “China
Daily Ground Climate Dataset v3.0” provided by the China Me-
teorological Administration (CMA) (http://data.cma.cn). The
dataset includes the daily precipitation observations from 2474
national standard weather stations covering the period from
1951 to the present. For precipitation observation, rain gauges
have no heated funnel in cold region and no wind shield in
windy regions. About 2221 of those stations were ultimately
selected because they have data records of 30 consecutive years
from 1985 to 2014. In general, there are more stations in the
south (east) than in the north (west) of China (see Fig. 1).
The mean annual precipitation gradually decreases from the
southeast to the northwest in China due to the East Asian mon-
soon. Arid, semiarid, semihumid, and humid climatic regions of
China are distinguished by annual precipitations of 0–200 mm,
200–400 mm, 400–800 mm, and >800 mm, respectively, as
shown in Fig. 1.

B. Satellite-Based Precipitation Data

The latest versions of the TMPA (https://disc2.gesdisc.
eosdis.nasa.gov/data) and CMORPH (ftp.cpc.ncep.noaa.gov/
precip/CMORPH_V1.0) data products were used in this study.
The TMPA 3B42RT and CMORPH RAW retrievals were ob-
tained directly from satellite observations that integrate infrared
and passive microwave radiance without any further calibration
with rain gauge observations. TMPA 3B42 and CMORPH BLD
are research products that have been calibrated with rain gauge
observations. Approximately 500 gauges over China collected
by the Global Precipitation Climatology Center were used in
the TMPA 3B42 product, while approximately 200 gauges from
the China Global Telecommunication System collected by the
CPC were used to generate the CMORPH BLD product [35].
Additional details about the generation of the precipitation data
products are provided in [13], [36]–[38]. The TMPA data pro-
vide precipitation estimates between 50 °N and 50 °S, while the
CMORPH data provides estimates between 60 °N and 60 °S.
The TMPA 3B42RT and TMPA 3B42 products both have 3-h in-
terval, while the CMORPH RAW and CMORPH BLD products
have daily temporal resolutions. All products cover a period
from 1998 to present, with the exception of TMPA 3B42RT,
which provides data beginning in 2001. Data from prior to 2014
are used in this study. Monthly and annual values were calcu-
lated from hourly or daily precipitation data. All the data have
a 0.25° spatial resolution.

IV. RESULTS

A. Preliminary Assessment of Satellite-Based Precipitation

Compared with previous evaluations of satellite precipita-
tion products throughout China [18], [39], [40], this evaluation
uses the new versions of the TMPA v7 and CMORPH v1.0
products. The extracted satellite precipitation data are from the
grid points including each rain gauge sites and are compared
with in situ observations. The annual precipitation from the
four satellite-based products are rather consistent with the rain
gauge measurements, with R values from 0.82 to 0.96 and NSE
values from 0.52 to 0.90 (see Fig. 2). The calibrated satellite
products (TMPA 3B42 and CMORPH BLD) agreed better con-
sistently with ground observations than the TMPA 3B42RT and
CMORPH RAW products, which suggests that the quality of
satellite precipitation data can be largely improved by the cali-
bration with rain gauge measurements. Except the uncertainty of
satellite retrieval precipitation, the mismatch spatial scale from
satellite and ground-based observations is also an important
reason for the inconsistent assessment results. The cumulative
distribution function (CDF) of NSE based on the evaluation of
2221 rain gauge stations is shown in Fig. 3, and 62% of sta-
tions exhibit a satisfactory NSE > 0.4 for the CMORPH BLD
product. Approximately 55% of stations exhibit a satisfactory
NSE value for the TMPA 3B42 product. Only 10% of stations
give NSE > 0.4 for the TMPA 3B42RT product, and fewer
than 6% of stations give a satisfactory NSE for the CMORPH
RAW product. Overall, the CMORPH BLD product followed
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Fig. 2. Comparisons of the annual precipitation values from satellite-based
data with rain gauge measurements. (a) TMPA 3B42RT. (b) TMPA 3B42.
(c) CMORPH RAW. (d) CMORPH BLD.

Fig. 3. Cumulative distribution function (CDF) of the Nash–Sutcliffe effi-
ciency (NSE) based on an evaluation of 2221 stations observations.

by TMPA 3B42 exhibits the best agreement with the ground
observations of annual precipitation.

It appears that the TMPA 3B42RT product overestimates an-
nual precipitation when smaller than 800 mm [see Fig. 2(a)],
while the CMORPH RAW product underestimates precipita-
tion when larger than 800 mm [see Fig. 2(c)]. The same data
products were evaluated under arid and humid conditions (see
Fig. 4). Overall, the four products slightly overestimate pre-
cipitation, with the exception of the slight underestimates in the
CMORPH RAW product over humid areas [see Fig. 4(a)]. Simi-
lar underestimates in the CMORPH RAW product were reported
earlier and are most likely due to the inability of the CMORPH
RAW product to effectively capture extremely heavy precipita-
tion in humid and warm regions [41]. The RBIAS is larger than
50% for both the TMPA 3B42RT and CMORPH RAW products
and reaches a maximum in arid areas and gradually decreases
with increasingly humid conditions [see Fig. 4(a)]. The R values
gradually increase from arid to humid regions [see (Fig. 4(b)].
These findings suggest that satellite-based products can more
effectively estimate annual precipitation in humid areas than in
arid areas. The NSE values in Fig. 4(c) show that the TMPA data
are only accurate in humid areas, while the CMORPH BLD data
are more accurate in semihumid and humid areas than in arid and
semiarid areas. It appears that the TMPA 3B42 and CMORPH

Fig. 4. (a) Relative mean bias (RBIAS). (b) Correction coefficient (R).
(c) Nash–Sutcliffe efficiency (NSE) of the four satellite-based precipitation
evaluations in four different arid and humid regions.

BLD products calibrated with rain gauge observations is not suf-
ficient in arid and semiarid areas. As shown in Fig. 1, our study
targeted the arid and semiarid areas in western China and the hu-
mid and semihumid areas in southern and eastern China. Given
the accuracy of the rain gauge observations and the satellite pre-
cipitation data products, it becomes challenging to capture the
large spatial and temporal variability of precipitation in the arid
and semiarid areas of western China. Moreover, it is even more
challenging to accurately estimate precipitation in the complex
terrain of western China (e.g., the Tibetan Plateau). Insuffi-
cient ground-based rainfall observations also limited the cali-
bration of the TMPA 3B42 and CMORPH BLD products [40],
[42], [43].

The precipitation over China has a seasonal cycle due to the
monsoon. Most of the rainfall generally falls during the summer
and a small fraction of annual precipitation occurs in the winter.
Monthly precipitation was also evaluated and the results show
that the monthly NSE values for the TMPA 3B42 and CMORPH
BLD data are nearly constant around 0.8 (see Fig. 5). Relatively
large differences can be observed in January, February, Novem-
ber, and December, and the performance of TMPA 3B42 is
slightly better than that of CMORPH BLD. The variability of
NSE for CMORPH RAW and TMPA 3B42RT is considerable
and the NSE values for the CMORPH RAW product are gen-
erally larger than those for the TMPA 3B42RT product. Both
have better performance from March to October than in other
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Fig. 5. Nash–Sutcliffe efficiency (NSE) values of the satellite-based monthly
precipitation data products compared with rain gauge measurements.

Fig. 6. (a) Nash–Sutcliffe efficiency (NSE) and the root mean square error
(RMSE) of SPI values obtained with different data record lengths compared
with those based on a consecutive 30-year precipitation record. (b) 1-month and
12-month SPI calculated using 17 years data versus the values based on 30 years
of recorded data.

months, which is related to the seasonal distribution of precip-
itation in China (i.e., more rainfall in summer than in winter).
Moreover, these results are consistent with previous conclu-
sions [16], [44]–[46] and imply that satellite observations can
capture heavy rainfall better than light rain or winter snow. This
finding also partly explains why satellite precipitation data prod-
ucts are more accurate in humid regions, where precipitation is
higher throughout the year. The larger precipitation observation
error in cold or windy regions also leads to the inconsistency
between satellite-based precipitation and rain gauge measure-
ments. The higher NSE values of TMPA 3B42 and CMORPH
BLD clearly document the benefit of calibration with rain gauge
observations.

B. Consistency of SPI Values Calculated With Different Data
Record Lengths

The NSE decreases and the RMSE increases as the data record
length decreases. When the length of data records is less than
10 years, the NSE is less than 0.9, and the RMSE is greater
than 0.4 [see Fig. 6(a)], which indicates that the larger errors
may become unacceptable with shorter data records. The SPI
values calculated using a 17-year record from 1998 to 2014 (i.e.,
the period covered by the satellite precipitation data products)
versus those based on the complete 30-year record from 1985
to 2014 are plotted in Fig. 6(b). The results show that RMSE =
0.2 and R = 0.98 when using the 17-year data record, i.e., SPI
estimates based on a 17-year precipitation data record are rather
accurate. Two different durations of the antecedent precipita-
tion, i.e., 1-month and 12-month periods, were also applied to
estimate SPI (see Fig. 6). There is no obvious difference in the

Fig. 7. Mean bias error (MBIAS) of the SPI values resulting from 17-year
data records at different drought levels.

Fig. 8. Comparison of the SPI values from 1998 to 2001 calculated using any
consecutive 17-year record within the period of 1985 to 2014 with those using
the 30-year record (1m and 12m means respectively the 1-month and 12-month
scale for SPI calculation).

Fig. 9. Cumulative distribution function (CDF) of the Nash–Sutcliffe effi-
ciency (NSE) between 30-years and 17-year record-based SPI comparison for
all available rain gauge stations.

results obtained using 1-month or 12-month cumulative precip-
itation data. The 12-month estimates gave slightly better results
than the 1-month estimates, suggesting the longer duration of
cumulative precipitation apparently filters out random errors in
monthly precipitation [47].

However, MBIAS in the SPI estimates based on the 17-year
data record increases with the increasing drought severity (see
Fig. 7). Under extreme drought conditions, the SPI is generally
overestimated by approximately 0.15, i.e., the SPI based on
shorter records slightly underestimates drought severity.

We generated fourteen 17-year data records starting in each
year between 1985 and 1998, and all data records include the
period 1998 to 2001. These records are used for the evalua-
tion against the SPI estimates based on the 30-year record (see
Fig. 8). The NSE and RMSE values fluctuates around 0.96 and
0.2, respectively, indicating that differences in the distribution
of precipitation across the 14 realizations of the 17-year data
record have a negligible impact on the accuracy of SPI esti-
mates. The CDF analysis shows that the NSE values are larger
than 0.8 for all stations (see Fig. 9), i.e., the impact of the length
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Fig. 10. Comparison of the 12-month SPI calculated using the satellite precip-
itation data products versus that calculated using the rain gauge measurements,
for (a) TMPA 3B42RT, (b) TMPA 3B42, (c) CMORPH RAW, and (d) CMORPH
BLD products.

of the precipitation data record on SPI estimates does not de-
pend on the location of the stations. This result is also consistent
with the conclusions of previous studies [29], [30] and suggests
that the shorter length of the satellite precipitation data records
is not the main source of errors in the SPI estimates.

C. Evaluation of Satellite-Based SPI

The accuracy of the precipitation data products (see
Section IV-A) does not necessarily have the same impact on
the accuracy of SPI estimates, because the SPI is calculated
using the probability of a given amount of precipitation. Ac-
cordingly, the four satellite precipitation products are further
assessed to analyze their accuracies in the SPI estimates.

Time series of satellite precipitation data were extracted for
each station as described in Section IV-A, then SPI was esti-
mated and compared with the estimates obtained from the rain
gauge measurements from 1998 to 2014. The MBIAS is almost
0 for all SPI comparisons (Figs. 10 and 11), as expected because
of the normalization process applied to estimate SPI. The cal-
ibrated data products, TMPA 3B42 and CMORPH BLD, give
SPI estimates in good agreement with those based on rain gauge
observations with NSE of approximately 0.6, while NSE < 0.4
for the TMPA 3B42RT and CMPRPH RAW products. Likewise,
TMPA 3B42 and CMORPH BLD give R of approximately 0.8
and RMSE of ∼0.6 [see Figs. 10(b) and (d) and 11(b) and
(d)] compared to R of ∼0.5 and RMSE of ∼1.0 for the TMPA
3B42RT and CMPRPH RAW products [see Figs. 10(a) and (c)
and 11(a) and (c)]. This means that drought severity can be as-
sessed with the TMPA 3B42 and CMORPH BLD products, but
the estimated severity level may be incorrect. When the TMPA
3B42RT and CMPRPH RAW products are used, the assessed
severity level may be off by as much as two levels due to the
large RMSE.

Fig. 11. Same as Fig. 10, but for the 1-month SPI.

Fig. 12. Cumulative distribution function (CDF) of the Nash–Sutcliffe effi-
ciency (NSE) for the SPI at different time scales.

The CDF analysis reveals that more than 80% of stations give
NSE > 0.4 for the TMPA 3B42 and CMORPH BLD products,
regardless of whether a 1-month or 12-month duration is used
to determine the antecedent precipitation (see Fig. 12). Only
10% of stations give NSE > 0.4 for the TMPA 3B42RT and
CMORPH RAW products at a 1-month duration, while 40%
of stations exhibit NSE > 0.4 at a 12-month duration, which as
noted earlier filters out random errors on precipitation. It appears
that the agreement in satellite versus in situ SPI estimates (see
Fig. 12) is better than in the precipitation data (see Fig. 3). This
confirms that the SPI can mitigate the impact of errors in the
satellite retrieval of precipitation.

The spatial variability of NSE value for SPI evaluations is
large and clearly related to the magnitude of precipitation [see
Figs. 13 and 14 for 1-month and 12-month duration, respec-
tively). The NSE values are generally higher in eastern China
than in western China, where the precipitation total is lower
and more variable and retrievals are less accurate. This implies
that satellite precipitation data products can be used to mon-
itor drought in eastern China under humid conditions, while
uncertainties are much larger in the west under arid conditions.
This finding agrees with the assessment on the accuracy of
the satellite precipitation data products (see Section IV-A) and
is consistent with the conclusions of a previous investigation
[48]. Accurate precipitation retrievals lead to better drought
monitoring based on the SPI. Stations in eastern and southern
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Fig. 13. Spatial distribution of the Nash–Sutcliffe efficiency (NSE) values for
the satellite-based 12-month SPI vs. those based on rain gauge measurements,
for (a) TMPA 3B42RT, (b) TMPA 3B42, (c) CMORPH RAW, and (d) CMORPH
BLD products.

Fig. 14. Same as Fig. 13, but for the 1-month SPI.

China commonly have NSE > 0.4 for the TMPA 3B42RT and
CMPRPH RAW products at a 12-month duration relative to a
1-month duration. There is no obvious difference when employ-
ing TMPA 3B42 or CMORPH BLD, but more stations give NSE
> 0.8 with a 12-month duration than with a 1-month duration,
which is consistent with the results in Fig. 12. Clearly, the accu-
racy of satellite precipitation retrievals in western China under
arid and semi-arid climate conditions needs to be improved.

As with the estimates based on rain gauge observations (see
Fig. 7), the MBIAS of the satellite-based SPI increases with
the increasing drought severity (see Fig. 15). The MBIAS for
the 12-month SPI [see Fig. 15(a)] is always lower than that for
the 1-month SPI [see Fig. 15(b)] at each drought level. As ex-
pected, in all cases, the MBIAS is lower for the TMPA 3B42
and CMORPH BLD data products than for TMPA 3B42RT
and CMORPH RAW. The negative MBIAS in the absence of
drought conditions suggests that the drought severity level will
be overestimated. Conversely, at a higher drought severity level,
a positive MBIAS implies that the satellite-based SPI values
will be overestimated and drought severity underestimated, es-
pecially under extreme drought conditions.

Fig. 15. Mean bias (MBIAS) of satellite-based SPI values at different drought
levels for a (a) 12-month scale and (b) 1-month scale.

Fig. 16. Drought severity on January 24, 2010 using different durations
of antecedent precipitation from the CMORPH BLD products, (a) 1-month,
(b) 3-month, (c) 6-month, and (d) 12-month SPI.

D. Response of Satellite Precipitation Data to Extreme
Drought Events

The duration of antecedent precipitation plays a vital role in
drought monitoring because it directly influences the SPI val-
ues and leads to different classifications of the drought severity
level. Although the accuracy of the satellite-based SPI estimates
can be improved by increasing the duration of antecedent pre-
cipitation, different durations respond to distinct drought types.
It is difficult to exactly determine the most appropriate duration
for drought monitoring in a specific region, because the occur-
rence of a drought is related to not only precipitation but also
solar radiation, vegetation, soil, and the nature of the irrigation
systems.

We assessed the drought severity for two typical drought
events (the southwest extreme winter-spring drought in 2010
and the extreme summer drought in Henan Province in 2014)
using different durations of antecedent precipitation (1, 3, 6,
and 12 months) with the CMORPH BLD products (see Figs. 16
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Fig. 17. Same as Fig. 16, but for August 4, 2014.

and 17). The drought assessments from the National Climate
Center (NCC) of the CMA (see Appendix B) were used as
a reference. The southwest extreme drought occurred in the
winter and spring and seriously affected crop growth. The Henan
Province extreme drought occurred during the growing season
when sufficient water is required for crops. Both drought events
led to serious agricultural losses.

For the southwest extreme drought in 2010, the 3-month SPI
provides a drought distribution that is most comparable with
the CMA assessments. These findings are consistent with the
conclusions of a previous study [27], which found that the corre-
lation between the drought severity index and the 3-month SPI
was largest. At the same time, some regions in central China
also experienced light and mild droughts that could not be de-
tected with the 3-month SPI. This is consistent with the results
of Section IV-C, wherein the 3-month SPI led to underestimate
the drought severity. The 1-month SPI generally overestimates
the drought severity over China during this period because an-
tecedent precipitation is ignored. Moreover, both the 6- and
12-month SPI underestimate the drought severity because pre-
cipitation during the longer periods downgrades the assessed
drought severity during the actual drought event.

SPI calculations using four different durations did capture
the extreme 2014 summer drought event in Henan Province,
central China. However, all SPI estimates, with the exception of
the 1-month SPI, overestimated droughts in western China and
underestimated the drought severity in the south of Northeast
China.

Therefore, to monitor droughts of different types, different
SPI estimation strategies should be adopted that consider the
impacts of the antecedent precipitation, climate regime, hydro-
logical conditions, drought periods, and drought severities. Ad-
ditional investigations should be conducted in the future on this
aspect.

V. CONCLUSION

Satellite precipitation data products provide an advanced ap-
proach for monitoring droughts over large regions. The un-
certainties in such data products can influence the reliabil-
ity of drought assessment. The applicability of four satellite

precipitation data products (i.e., TMPA 3B42RT, TMPA 3B42,
CMORPH RAW, and CMORPH BLD) to assess and monitor
drought throughout China based on the SPI was evaluated. The
main conclusions of the study are as follows.

1) The accuracy of remote sensing precipitation retrieval can
be improved by calibration with rain gauge measurements.
Accuracy is higher in humid and semihumid areas than
in arid and semiarid areas, and it is also higher in sum-
mer than in winter due to the larger amount of rainfall in
summer (in China).

2) SPI calculation is not sensitive to the length of precipi-
tation data record. A 17-year satellite-based precipitation
data record is sufficiently long for estimating the SPI and
is thus applicable for drought monitoring. The SPI esti-
mated with a shorter data record, however, is increasingly
overestimated with increasing drought severity, accord-
ingly leading to the underestimation of drought severity.

3) SPI estimates based on the TMPA 3B42 and CMORPH
BLD products are generally in better agreement with those
based on rain gauge measurements than those based on
the TMPA 3B42RT and CMORPH RAW products. The
overall accuracy of the satellite-based 12-month SPI is
better than that of the 1-month SPI due to the mitigation
of random errors by the longer duration of antecedent pre-
cipitation. Satellite-based SPI errors can increase with the
increasing drought severity level. Moreover, the accuracy
in western China is poorer than in eastern China because
of the arid and semi-arid climate conditions.

4) The calibrated precipitation retrievals can generally cap-
ture drought events throughout China. However, it is dif-
ficult to precisely determine the duration of antecedent
precipitation required for SPI estimates for each drought
type, especially in western China.

Droughts are complex phenomena and different applica-
tions adopt different definitions of droughts. TMPA 3B42 and
CMORPH BLD data are accurate, but they depend on rain gauge
measurements. Additionally, the relatively low monthly update
frequency may be insufficient for the quasi-real-time monitoring
of droughts and associated early warning. The TMPA 3B42RT
and CMORPH RAW products provide hourly data, but the ac-
curacy is poor and requires further improvement. Therefore,
future investigations must be conducted to clarify and reduce
the uncertainties in satellite precipitation products for drought
monitoring, especially for complex landscapes and arid and
semiarid climate conditions.

APPENDIX

A. Procedure for SPI Calculation: First, provided that the
precipitation during a period is x, and its probability density
function assuming a gamma distribution is as follows:

g (x) =
1

βαΓ (α)
xα−1e−

x
β (x > 0)

where α is the shape parameter, β is the scale parameter, and
Γ(α) is the gamma function. α and β can be estimated with the
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Fig. 18. Drought assessments by the National Climate Center (NCC) of the
China Meteorological Administration (CMA) on (a) January 24, 2010, and
(b) August 4, 2014.

maximum likelihood method as follows:

α̂ =
1 +

√
1 + 4A/3
4A

β̂ =
x̄

α̂

where A = ln(x̄) −
∑

ln(x)
n , and n is the length of the time

series.
Second, after determining the parameters of the probability

density function, the cumulative probability can be calculated
as follows:

G (x) =
x

∫
0

g (x) dx =
1

Γ (α̂)

x

∫
0

tα̂−1e−1dt

with t = x/β̂.

The gamma function is not valid when x = 0, but the actual
precipitation can be 0. Therefore, the cumulative probability is
expressed differently as follows:

H (x) = q + (1 − q) G (x)

where q is the probability of zero precipitation and is equal to
m/n, where m is the number of days without precipitation in a
given time series.

Finally, the cumulative probability H(x) can be transformed
into the standard normal distribution function using the follow-
ing equation:

SPI = P

(

t − c0 + c1t + c2t
2

1 + d1t + d2t2 + d2t2

)

.

If H(x) ≤ 0.5, then P = − 1 and t =
√

ln[ 1
H (x ) 2 ]. If

H(x) > 0.5, then P = 1 and t =
√

ln{ 1
[1−H (x ) ] 2

}. In addi-
tion, c0 = 2.515517; c1 = 0.802853; c2 = 0.010328; d1 =
1.432788; d2 = 0.189269; and d3 = 0.001308. These con-
stant coefficients are derived from the study of Edwards (1997).

B. Drought Events: Drought assessments provided by the
NCC of the CMA on January 24, 2010 and August 4, 2014 are
shown in Fig. 18. The drought monitoring index of the CMA
is based on a relative humidity index that includes evapotran-
spiration and precipitation from ground-based measurements
(http://cmdp.ncc.cma.gov.cn/download/Monitoring/Drought).
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